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Resumo

A gestão e limpeza florestal são tarefas cruciais na prevenção de incêndios florestais, uma

causa comum de perdas humanas e económicas em países como Portugal. Além disso, a

limpeza florestal pode ser laboriosa e perigosa, tornando-a uma forte candidata à automati-

zação, sendo que, a forma que nós procuramos é aquela em que o robô limparia a floresta de

forma totalmente autonoma. Uma tecnologia essencial para a limpeza autónoma das florestas

é a navegação, através da qual um robô é capaz de se deslocar na floresta de forma segura e

eficiente, o que constitui actualmente um desafio científico e tecnológico significativo.

Esta tese apresenta um método de planeamento local 3D em ambientes exteriores em

aplicações florestais, de maneira a facilitar a navegação autónoma de um veículo terrestre não

tripulado. O método proposto integra um módulo que estima o esforço mecânico envolvido

na travessia do espaço circundante. Isto permite o sistema tenha em consideração o esforço

mecânico ao planear os caminhos a percorrer, permitindo planear de forma mais eficiente.

Começamos por apresentar um levantamento em navegação e planeamento de caminhos,

concluindo que a navegação em ambientes florestais 3D é muito desafiante devido a vários

fatores, tais como o terreno acidentado e escorregadio que dificulta o movimento, a natureza

não estruturada do ambiente que dificulta as técnicas de mapeamento, ou fatores dinâmicos

como o vento ou a chuva. Existem alguns exemplos de sucesso nesta área, tendo alguns deles

atingido o objetivo de navegar num ambiente florestal 3D, mas nenhum deles tem em conta

o esforço mecânico do robô.

A nossa solução foi validada utilizando um simulador realista de ambiente florestal 3D,

que inclui um robô e a informação recebida dos seus sensores. Os resultados mostram que

alguns algoritmos existentes dão prioridade ao caminho e tempo mais curto ao escolher

as trajetórias, ignorando a topologia do terreno. Também demonstrámos que a nossa abor-

dagem pode navegar num ambiente 3D, contabilizando o custo do caminho, ou seja, o esforço

mecânico do robô. Isto resulta numa técnica que faz com que o robô escolha os caminhos

com menor esforço, dando prioridade a descidas e terrenos planos, quando possível.
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Abstract

Forest management and clearing are crucial tasks in preventing wildfires, a common cause of

human and economical loss in countries such as Portugal. Furthermore, forest clearing can be

tedious, repetitive and dangerous, making it a strong candidate for automation Specifically,

levels of automation in which the robot would clean the forest completely autonomously are

preferred. A key enabling technology for autonomous forest clearing is navigation, whereby

a robot is able to move through the forest safely and efficiently, which currently constitutes

a significant scientific and technological challenge.

This thesis presents an innovative method for 3D local planning in outdoor environments

in forestry applications to facilitate autonomous navigation of an Unmanned Ground Vehicle

(UGV). The main practical output of the work is a module that estimates the mechanical

effort involved in traversing the surrounding space, allowing the system to take mechanical

effort into consideration when planning paths to traverse, enabling it to plan more efficiently.

We start by presenting a survey in navigation and path planning, concluding that nav-

igating in 3D forestry environments is very challenging due to several factors, such as the

rough and slippery terrain that interfere with the movement, the unstructured nature of the

environment that hinders static mapping techniques, or dynamic factors such as wind or

rain. There are some successful examples in this area, some of them having reached the goal

of navigating in a 3D forest environment, but none of them take into account the mechanical

effort of the robot.

Our solution was validated using a realistic 3D forest environment simulator, including a

robot and the information received from its sensors. Results show that existing algorithms

prioritise to the shortest path and the shortest time when choosing the trajectories, ignoring

terrain topology. We also demonstrated that our approach can navigate in a 3D environment,

accounting for the cost of the path, i.e., the mechanical effort of the robot. This results in a

technique that makes the robot choose the paths with less effort, prioritising the downward

slopes and level paths, when possible.
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1 Introduction

1.1 Context and Motivation

Uncontrolled fires have caused significant environmental and economic damages over the past

few decades, especially in the Mediterranean region [39]. One of the most effective measures

for forest fire prevention is fostering landscaping and forest management procedures [11],

such as forest clearing, whereby unnecessary plant matter is reduced to small particulate

in order to reduce its flammability. Clearing the forest is a harsh and dangerous task that

routinely involves the usage of heavy machinery and specialised manpower, both of which

command significant costs and are also increasingly difficult to source. These issues make

forest clearing a very interesting task to automate, potentially reducing costs and increasing

productivity. A key aspect to automating this task is enabling robots to navigate the forest

safely and efficiently, so that they may perform their tasks in the forest autonomously.

Reliable autonomous outdoor navigation in forestry scenarios is still a significant sci-

entific challenge. These environments can be very dynamic, with varying conditions such

as weather, illumination, wind, etc, all of which contribute to hindering the robot’s ability

to navigate reliably [26]. Other issues include the unstructured environment that make it

difficult perception and localisation [17], or the fact that estimating odometry may not be

possible due to rough terrain and slippage [37]. Moreover, for a robot to navigate efficiently,

it must possess information on its surroundings, which is hindered by the dynamic nature of

the environment, thus it is necessary to find solutions to correctly perceive the surrounding

environment.

The SEMFIRE R&D project1 (Safety, Exploration, and Maintenance of Forests with

the Integration of Ecological Robotics), to the scope of which this dissertation is inserted,

using the Ranger (Fig. 1.1) as main actor, proposes the development of a robotic system

to reduce fuel accumulation in forests. Its main goal will be to eliminate living flammable

1http://semfire.ingeniarius.pt/
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Figure 1.1: The Ranger UGV being teleoperated in a realistic test in a forest environment. Its
main sensors can be seen in its head, see Section 4.1.1 for more details.

material for wildfire prevention using a mulcher, thus assisting in landscape maintenance

tasks, addressing in the process several challenges in forestry and field robotics [8]. The

overall processing pipeline for decision-making of the Ranger platform can be seen in Fig. 1.2.

Within the architecture shown in this figure, this dissertation will be contributing only to

the 3D Safe Navigation module.

1.2 Main Goals of this Dissertation

The main goal of this work is to propose navigation and local planning methods that allow

a forestry robot to safely navigate to a target configuration while avoiding obstacles, taking

into account our definition of mechanical effort. Specifically, we:

1. Conduct a state of the art study in navigation and path planning taking into account

specific forest navigation problems;

2. Introduce a technique that uses a 3D point-cloud from the robot’s sensors to esti-

mate the cost of traversing each individual point in space, producing a costmap for

navigation;

2



Figure 1.2: SEMFIRE decision-making pipeline for the Ranger, taken from [32].

3. Test the feasibility and applicability of existing local planning methods in forestry

environments in light of the mechanical costs of traversal;

4. Demonstrate that existing techniques do not take mechanical cost into account, and

can thus be refined to produce more economical trajectories;

5. Demonstrate that our approach chose the path with less mechanical effort.

Our tests were conducted on a forestry robot simulator, developed for the SEMFIRE

project, that allows us to perform repetitive testing without the inherent costs of using the

real large-scale rig, presented in Fig. 1.1.

1.3 Document Overview

This document is stuctured as follows. We start by performing a literature review in 3D

navigation and path planning in Chapter 2. We then present our approach, explaining in

detail the different steps to reach the final costmap that take into account the mechanical cost

and the power consumption of the robot, in Chapter 3. Our approach is tested in Chapter 4,

which presents the experimental setup and results. Lastly, in Chapter 5 we reflect upon the

overall success of this work, proposing a number of potential lines of future work.

3
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2 Background on 3D Navigation and

Path Planning

2.1 Basic Concepts in Navigation

Autonomous navigation can be defined as a robot’s ability to move in its environment without

any external control by human operators, by planning and executing trajectories safely, both

for itself, but also for humans and other entities that might be sharing its workspace [3].

Based on the kinematic constraints on movement that a robot is subject to, it can generally be

classified as holonomic or non-holonomic. If a robot is holonomic with respect to N physical

dimensions, it will be capable of moving in any direction in any of those dimensions, thereby

approximating the ideal, unrestricted situation. On the other hand, if it is non-holonomic, it

is restricted by its configuration in which directions it can move in. For example, a holonomic

robot may be a drone (a quadcopter), and a non-holonomic may be a differential drive robot

(like the Ranger).

Navigating safely and autonomously involves sensory and perceptual abilities for obstacle

detection and tracking, enabling the system to circumvent entities in the environment that

are hindering its navigation. As such, these systems can be equipped with sensing modalities

such as time-of-flight cameras, laser-based 3D sensors [41], or 3D point cloud sensors, for in-

stance to reconstruct a triangle mesh of the environment in real-time [33]. After the obstacle

detection process, it is necessary to perform path planning that determines a collision-free

path between start and goal positions in a workspace cluttered with obstacles. Path plan-

ning is usually a geometric matter because it aims to generate trajectories with no interest of

the time of their execution [13]. In a complex environment, it becomes a dynamic planning

process due to the flexibility and real-time nature of the conditions [55]. It is useful for

the robot to keep a permanent recording of more than the immediate surroundings that its

sensors can perceive at a specific moment in time - this information, drawing a human-like

5



Figure 2.1: Flow diagram for a robot navigation. The sensors receive information from the
environment that will be used to build a representation of the environment (map), which will be
used by the robot control in order to decide its performance.

analogy, is said to compose a map. A map is a description of the environment which can be

used for navigation and usually represents the static elements of the environment.

One approach to obtain a map is to perform Simultaneous Localization and Mapping

(SLAM) [50] [22], an approach that allows the generation of a map of the robot’s surroundings

while estimating its location in that map at the same time. In [31], full 3D localization is

performed by adapting an existing 3D SLAM algorithm, referred to as C-SLAM, to create the

base map. In [26], authors considered the use of trunks as landmarks for localization using a

sensor tilted upwards. However, one of the drawbacks of this technique was that the presence

of people considerably increases the complexity of tree trunks extraction. Pose estimation

performed by SLAM approach proposed by the authors can correct dead reckoning errors

and track a single hypothesis of the vehicle pose, with little computational effort. Finally,

in [46] the authors use two 2D LIDARs to develop a 2.5D SLAM based on the FastSLAM

algorithm, where both LIDARs are used to build a joint occupancy grid map.

A robot may be semi-autonomous (i.e. remotely-controlled) or fully autonomous. There

are several types of autonomous, unmanned vehicles, including:

6



• Unmanned Aerial Vehicle (UAV), (commonly known as a drone) [40] [18];

• Unmanned Water Vehicle (UWV), a type of vehicle can be further subdivided in:

– Unmanned Surface Vehicle (USV) if it operates on the surface of the water;

– Unmanned Underwater Vehicle (UUV) if it operates underwater;

• Unmanned Ground Vehicle (UGV) [31].

The type of terrain (air, water, ground) the vehicle operates in presents its own chal-

lenges. Underwater vehicles may have more favorable buoyancy and gravitational environ-

ments, at the expense of many problems with the communication. The dynamics associated

with underwater motion are considered more complex and non-linear compared with other

types. Aerial and, to a lesser extent the ground vehicles, must deal with gravity forces, but

the physics of their interaction with the environment are much better understood. Prior

work usually focuses on ground vehicles [42]. The robot used in the work described in this

dissertation is a non-holonomic UGV (Unmanned Ground Vehicle) operating in a forestry

application.

One of the key enabling features of an autonomous UGV is the ability to detect navigable

areas, can reliably classify traversable ground in the environment. This topic is commonly

referred to as traversability analysis. The quality of the traversabily analysis affects the free

movement of the platform and how the robot is able to plan a path safe from collisions

during the navigation. In 2D indoor environments traversability analysis is simply classified

based on the observed obstacles. However in unstructured environments, where the ground

is not flat and obstacles are not purely vertical, for traversability analysis specialized sensors

are used to perceive a dense model of the world [49].

Historically, traversability estimation was addressed as a binary classification problem,

distinguishing traversable from non-traversable areas. More recently, the need for a more

accurate classification was recognized that assigned a continuous traversability capacity score

or classified the terrain into the various classes that were commonly found in a specific

application [29].

2.2 2D Navigation and Path Planning

Safe navigation and path planning is one of the most important functions of any mobile

robot, being one of the most researched topics in Robotics nowadays. Global navigation

7



can be described as the ability to estimate the position of entities (e.g. objects, people,

etc.) in the environment in function to a reference axis, and to steer to a previously decided

goal; local navigation identifies the dynamic conditions of the environment and establishes

positional relationships between various elements [30].

A generic path planning algorithm needs to take into account that [28]:

• the chosen path must have the lowest cost to prevent misdirection;

• the chosen path must be acquired quickly;

• the algorithm must be generic with respect to different maps, meaning that it should

not be optimized for a specific map type.

There are several path planning algorithms, each adapted to different characteristics of

the environment in which the robot is navigating in. Classical approaches [25] include the

Visibility Graph, where lines are used to connect features to denote visibility; the Voronoi

Diagram, which partitions space into cells, each of which consisting of points closer to one

particular object than any other; the Cell Decomposition, with which free space is decom-

posed into a set of simple cells, and the adjacent relationships among the cells are computed;

Artificial Potential Fields, wherein a robot is treated as a particle under the influence of an

artificial potential field whose local variations reflect the “structure" of the free space.

The classic methods mentioned above suffer from a substantial number of disadvantages,

such as time complexity in high dimensions, and getting trapped in local minima, which

makes them inefficient in practice. For some reason, probabilistic approaches have been

developed in order to improve the efficiency of classic methods, such as, for example, Prob-

abilistic road maps and Rapidly-exploring Random Trees (RRT) [20].

Path planners can be divided into global and local approaches. Global path planners

are based on a static map, creating a path from the start to a goal position. Local path

planners, on the other hand, consider the global planner goals, and create local waypoints,

taking into consideration the dynamic obstacles on the way and also vehicle constraints.

Using local planning local map is reduced to the surroundings of the vehicle and is updated

as the vehicle is navigating [9]. In Table 2.1, we can see the main differences between the

two different approaches for path planners.

As mentioned above, the global planner requires a map of the environment to calculate

the best route. Depending on the analysis of the map, some methods are based on road

maps, such as Silhouette [5] or Voronoi [2]. Some approaches solve the problem by assigning

8



Table 2.1: Differences between Global and Local Path Planners (Based on [9]).

Global Path Planner Local Path Planner
Map based Sensor based system
Deliberative system Reactive system
Relatively slower response Fast response
Complete knowledge of the workspace area Incomplete knowledge of the workspace area
Obtain a feasible path leading to goal Follow path to the target while avoiding obstacles

a value to each region of the road map to find the path with the minimum cost, like Dijk-

stra [44] algorithm, Best First [10], and A* [14]. Other approaches use potential fields as

described in [52], a classical technique developed decades ago, Rapidly Exploring Random

Trees (RRT) [19], or the approach based on Neural Networks [54].

Local planning generates short-term control that tries to match the trajectory as much

as possible to the waypoints provided by the global planner. There are some examples such

as Dynamic Window Approach (DWA) proposed in [12], and Rollout Trajectory Planner

(RTP) [15], which both discretely sample in the robot’s control space and perform a forward

simulation to evaluate each trajectory, scoring each one and discarding illegal ones. However,

RTP samples from a set of achievable velocities over the entire forward simulation period,

while DWA only samples for one simulation step.

Another example is Elastic Band (EBand) [35], which does not necessarily sample the

robot’s control space, instead it produces a collision-free path based on key features called

“contraction force” and “repulsion force”, where the former is responsible for minimising the

length of path while the latter one pushes the robot away from possible obstacles. Another

approach is the Timed Elastic Band (TEB) [38], an optimization of EBand that takes into

account temporal aspects of motion in terms of dynamic constraints such as limited robot

velocities and accelerations.

2.3 Navigation and Path Planning in 3D Environments

Planning feasible paths in three-dimensional environments is a challenging problem [37].

Existing algorithms typically use limited 3D representations that discard potentially useful

information [47]. According to [53], 3D path planning algorithms can be divided into five

categories distinguished from each other by their unique properties. The division proposed

with a brief description of each method is illustrated in Figure 2.2.

Sample-based methods are widely used because of their effectiveness and low computa-

tional cost for high-dimensional spaces. They sample the environment as a set of nodes, cells,

9
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Figure 2.2: Categories of 3D path planning algorithms (Image based on [53]).

or other means of subdivision of space, and then map the environment or search randomly

to achieve a feasible path. This type of algorithm can be divided into two categories: active,

for which algorithms achieve the best feasible path to the goal through their own processing

procedure, and passive, wherein the algorithm generates a road net from the starting point

to the goal through a combination of search algorithms to pick up the best feasible path in

net maps where many feasible paths exist.

The RRT (Rapidly-exploring Random Trees) [1] [53] are an example of an active sample-

based method, and has been widely used for fast trajectory search because of its incremental

nature, with several different versions of RRT developed to improve the cost of the solution

path. Other examples include methods based on the Artificial Potential Field, i.e. forces

of attraction and repulsion, like the Vector Field Histogram (VFH) that uses a statistical

representation of the robot’s environment through a histogram grid [26] being considered

collision avoidance. Passive methods include PRM (Probabilistic Road Maps), that consists

of taking random samples from the configuration space of the robot, testing them for whether

they are in the free space, and use a local planner to attempt to connect these configurations

to other nearby configurations [18].

Node based algorithms share the same property in that they explore among a set of nodes

in the map where information sensing and processing procedures are already executed. This

type of planers can find an optimal path according to the certain decomposition. Some

examples are A* [41], D* [4], and Dijkstra’s [31] [33], which are widely used for global

planning, assuming that a global (or at least partial) representation of the environment

exists.

Mathematics-models based technique include linear algorithms and optimal control. They

10



model the environment as well as the system and then bound the cost function with all the

kinematic and dynamic constraints which are inequalities or equations to achieve an optimal

solution. Finally, bioinspired algorithms originate from mimicking biological behavior to

solve problems. One example would be neural networks [16].

In the literature, we can find several works on 3D navigation not just for ground robots,

but also aerial robots [18] [40], using local planners like the B-spline approach, Elastic Band,

respectively, and underwater robots [51], that uses the Dynamic Window Approach.

In [45] the authors represent the traversability map in a 2D Grid where each cell gives

the probability that the vehicle can successfully drive over. The authors of [33] use a

3D representation of a estimation of distances, height differences, and roughness, called

navigation_mesh, to see if a area is traversable or not, testing this approach with a local

planner that follows the approach of [48] to extract the vector field that directly correspond

to the potential field. In [41], the authors present two techniques to detect and classify

traversable areas in 3D environments: the first is a low-level mechanism aimed to detect ob-

stacles and holes using a time-of-flight camera; the second is a high-level classification mecha-

nism that detect traversable regions from 3D point clouds. They tested this work integrating

their system with the Robot Operating Systems (ROS), using base_local_planner with

the Rollout Trajectory Planner (RTP) and move_base as the low-level controller. In [7], the

authors, from a given image that represent the height map of a terrain build a convolutional

neural network to predict whether the robot will be able to traverse some path and in which

direction. This particular methods take into consideration the fact that some points of the

terrain might be traversable only in specific directions and by a specific robot, depending on

the robot power.

In [27], the authors incorporate existing ROS-based algorithms for localization, mapping,

traversability, navigation and exploration in unknown and unstructured environments. The

authors used the traversability_estimation package that requires an elevation map to

estimate the traversable spaces. To test their approach, they used the A* as a global planner

in the traversability costmap and the Timed Elastic Band (TEB) as the local path planner.

This is the current system used by the the SEMFIRE project for Ranger navigation.

There are also some works that take into consideration the energy spent by the robot, try-

ing to minimize that energy in each path. The work presented in [24] performs a traversabil-

ity analysis online from data sensed by the robot and assumes that the power consumed in

navigation has two terms: a part which is a function of the path, the velocity, slope and

traversability; and a part that results from the operation of on-board computers, sensors
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and communication gear (the so-called “hotel load"). Performing several tests, using the D*

algorithm [4] as path planner, the authors aim that the estimated map converges to the true

map, optimistically assuming that the terrain has low traversability, however if the cost due

to “hotel load" and the estimated travel cost does not provide a reduced energy cost the

robot will not explore those particular areas.

Table 2.2 presents a comparison between some of the most used local path planners,

taking into account the state of the art done.

2.4 Navigation in ROS

There are several software packages used for robot navigation, such as, Orocos1 or works like

[26] that use a software framework called Sensor Sharing Manager (SSM). As alternative,

ROS, the Robot Operating System, is becoming increasingly popular and highly regarded.

Because the SEMFIRE project use this framework and the packages we want to test are

there, this will be the used framework.

ROS is a flexible framework for writing robot software. It includes a set of tools, libraries,

and conventions that aim to simplify the task of creating complex and robust robot behavior

across a wide variety of robotic platforms [6]. The key feature of ROS is the way the software

runs and how it communicates, allowing the design of complex software while abstracting

away from the hardware.

ROS provides a way to connect a network of processes (nodes), which can be run on

multiples devices, allowing the exchange of messages [34]. It implements a standardised

inter-process communication framework that leverages a uniform message passing system to

provide abstraction from low-level communication details. It defines and implements two

main message passing paradigms: publisher-subscriber, whereby nodes subscribe to topics

that propagate information in a multicast fashion; and server-client, wherein a node requests

a service from another and blocks until it is fulfilled.

This framework is organized in packages, which generally contain code, message types

and other support files. It includes off-the-shelf packages that implement navigation and

path planning.

1https://orocos.org/
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Table 2.2: Comparison table of different local path planners

Path Planner References Operating Principles ROS Package Outdoor
Environments

Tested in
Forest
Environments

Metrics Used

Vector Field
Histogram (VFH) [26]

Artificial forces of
attraction and
repulsion

No Yes No
- Success Rate
- Distance from
goal point

Dynamic Window
Approach (DWA) [51], [9]

Samples from the set
of achievable velocities for
just one simulation
step given the acceleration
limits of the robot

dwa_local_planner
and
base_local_planner

Yes No

- Smoothness
- Minimum distance
from goal point
- Maximum distance
from goal point

Rollout Trajectory
Planner (RTP) [41]

Samples from the set of
achievable velocities over
the entire forward
simulation period
given the acceleration
limits of the robot

base_local_planner Yes Yes
- Precision in
traversability
segmentation

Elastic Band (EBand) [21], [9]

A collision-free path
is generated using a
“contraction force” and
a “repulsion force”

eband_local_planner Yes No

- Smoothness
- Minimum distance
from goal point
- Maximum distance
from goal point

Timed Elastic
Band (TEB) [9], [27]

An optimization of
EBand, considering the
temporal aspects of the
motion

teb_local_planner Yes Yes
- Success Rate
- Planning Time
- Smoothness
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ROS provides a popular navigation software as a collection of nodes, which is used world-

wide in distinct mobile robots, commonly known as Navigation Stack2. The role of this

software is to process data from odometry, sensors and the environment map in order to find

a safe path for the robot to execute, and give the robot the actuation commands [56]. The

move_base package (Fig. 2.4) contains the high-level interface to the Navigation Stack,

providing an implementation of an action that, given a goal, will attempt to reach it. The

move_base node links both global and local planner, supporting different global planner al-

gorithms such as the carrot_planner3, navfn4 and global_planner5. In the context of this

work we focus on local planners, such as base_local_planner6, the teb_local_planner7,

the eband_local_planner8, and the dwa_local_planner9. The Navigation Stack soft-

ware was initially created for 2D environments in order to allow a robot to complete a

certain distances of autonomous navigation in a real office environment [23]. Since then it

has been widely used and supported by the ROS community, configured to the character-

istics of each robot and environments [36]. Some existing works, such as [56], in order to

help to understand the Navigation Stack parametrization, present a guide for beginners,

explaining how to best parametrize the global and local planners, as well as the costmaps.

Existing ROS packages also tackle the problem of traversability, and possibly navigate,

such as mesh_navigation10 or traversability_estimation11 package, which uses eleva-

tion maps and traversability estimation filters to generate a traversability map. This pack-

ages has been integrated with the Navigation Stack in order to extend this software to

3D environments. As presented in the Section 2.3, [33] integrated the mesh_navigation

with Navigation Stack in order to allow a robot to navigate in a 3D outdoor environment.

The traversability_estimation have been used in the current SEMFIRE navigation sys-

tem [27], allowing the robot to navigate in complex forestry environments.

In addition, ROS has tools to visualize the robot’s world, rviz 12, a 3D visualization

tool for ROS applications. It provides insight into the robot model, captures information

from the robot sensors and reproduces the captured data. It can display cameras, lasers,

2http://wiki.ros.org/navigation
3http://wiki.ros.org/carrot_planner
4http://wiki.ros.org/navfn
5http://wiki.ros.org/global_planner
6http://wiki.ros.org/base_local_planner
7http://wiki.ros.org/teb_local_planner
8http://wiki.ros.org/eband_local_planner
9http://wiki.ros.org/dwa_local_planner

10https://github.com/uos/mesh_navigation
11https://github.com/leggedrobotics/traversability_estimation
12http://wiki.ros.org/rviz
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Figure 2.3: Ranger’s LIDARs point cloud in simulation.

2D and 3D device data, including images and point clouds. In Figure 2.3 an example of

visualization of the Ranger’s back (red dots) and front (green dots) LIDARs, in the dense

forest simulation scenario is illustrated.

2.5 Main Contributions

As mentioned in Chapter 1, we aim to allow a ground robot to safely navigate, focusing

in local path planning, in a 3D forestry environment, who has many dynamic conditions

already mentioned in Section 1.1.

Through Section 2.3 several techniques are discussed, which are able to successfully nav-

igate in 3D scenarios, the state of the art shows that no technique seems to explicitly take

the mechanical effort into account when planning the trajectories.

Mechanical effort is the quantity that accounts the additional burden of the UGV

when climbing hills in rough terrain environments.

We build on existing local planning methods to propose an algorithm that integrates the

cost of the mechanical effort in a 2D Grid to be considered for local planning, potentially

allowing a robot to safely navigate in a 3D forestry environment. In Fig. 2.4, the blue

blocks represent the focus of this work. Taking into account the goals defined in Section 1.2,

specifically we contribute by:
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Figure 2.4: move_base operating diagram. Two planning levels are implemented: local planning
using a local costmap, and global planning using a global costmap. These are informed by sensor
data and a mapping approach, respectively. The main contribution of this work will be the blue
blocks.

• Introducing a technique that uses a 3D point cloud from the robot’s sensors to create

a 2D grid based on the mechanical effort, producing a local costmap for navigation, an

approach that no other work has taken, to the best of our knowledge;

• Testing and comparing our technique with existing ROS systems, to prove that it can

produce more economical trajectories;

• Integrating the produced map with the ROS Navigation Stack so that the local plan-

ner takes into account the mechanical effort when choosing the paths, thus making our

contributions widely available to the community.
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3 Adding Mechanical Effort Aware-

ness to the Navigation Stack

Figure 3.1: Flow diagram of the implemented algorithm to estimate the cost of traversing each
individual point in space.

3.1 Overview

Most of the existing techniques do not take into account the effort that quantifies the addi-

tional burden of the UGV when climbing hills in rough terrain environments. Throughout

this chapter, we will describe the solution to estimate the cost of traversing each individ-

ual point in space, producing a costmap for navigation (summarized in Fig. 3.1) and the

necessary changes to integrate this map with the ROS Navigation Stack.

The focus of this works is the Fig. 3.1 blue box (Mechanical Effort Analysis), divided in

three main blocks that uses 3D Point Clouds from the robot sensors to obtain a Occupancy
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Grid Map, to use as a local costmap for robots navigation, where each cell give the mechanical

effort necessary for the robot navigate. The mechanical effort of each cell is given with the

relation of the gradient and the effort concept (explained in Section 3.2.4). The map is sent

to a ROS topic, used by move_base. The local planner will subscribe that topic in order to,

when its given a goal, the local path planner take into that cost.

This system is user-configurable in all relevant dimensions:

• Size of the map, in meters;

• Resolution of the map, in meters/cell;

• The option to choose if the user want a map based on gradient, or the effort concept,

or in both, the last one ideal.

Our map contains information that move_base would not normally take into account,

requiring that we extend it in a few specific ways. The default costmaps used by move_base

are given by the package costmap_2d1, despite the fact each cell in the costmap can have

255 different cost values, this package only represent three: free, occupied or unknown. Our

resulted map uses all cost values to represent, in occupancy probabilities, <50 less effort

(downward slopes) , =50 neutral effort (plane) and >50 bigger effort (upward slope), i.e., we

want to prioritize descents and straights. So to integrate our map with the ROS navigation

stack, we will:

• Subscribe to our map topic in the move_base package;

• Change the base_local_planner to take into account our map in the time to chose

the trajectory;

• Create a weight to control how much the planner should take into account our cost.

3.2 Mechanical Effort Analysis Node

3.2.1 ROS Interface

The first sub-component of this node is the ROS Interface, this class takes data from the

front and back 3D LIDAR Point Clouds available in the Ranger UGV. The final map will

be built with the position that comes from odometry as center, so the points of each LIDAR
1http://wiki.ros.org/costmap_2d

18

http://wiki.ros.org/costmap_2d


Figure 3.2: Flow diagram of the three main steps of the block 2D Projection and Interpolation of
Fig. 3.1. Receiving the 3D data we do a 2D projection in a 2D grid, interpolating the cells without
information.

are transformed from their respective frame into the odometry frame, converted in x, y, z

coordinates and concatenated in a single matrix. The output matrix (P ) is N×3, where each

line represent one point of the LIDAR and the 3 colunms represent the x, y, z coordinates:

P =



x1 y1 z1

x2 y2 z2
... ... ...

xN yN zN


(3.1)

3.2.2 2D Projection

We used the ROS Navigation Stack that traditionally operates in 2D, which is a disadvantage

when it is necessary to plan for a 3D environment. To account for this the points from P

had to be 2D projected. This process is divided in three main steps, shown in Fig. 3.2. The

main output of the technique is a spatial grid that contains the z information in that place.

The first step to computing the 2D costmap is to project the 3D LIDAR points into a

2D grid, so that information was represented by:

Φ(x, y) = z, (3.2)

where Φ(x, y) is one cell of the grid, x and y the index of the cell, and z the height information

of the cell. In this step, we take into account the size and resolution of the map, and project

each LIDAR point into its corresponding cell is in or if the point of the LIDAR is out of the

map limits, not considering these points for the creation of the map.
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Figure 3.3: 3D representation of the LIDAR information projected in a 2D grid with dimension
10 meters and resolution 0,3 meters/cell before and after the interpolation.

Due to their discrete nature, each cell may contain more than one LIDAR point. In these

cases, the median is used as a representative value for the whole cell. This results in a plot

similar to the left picture of Fig. 3.3.

3.2.3 Interpolating Cells Without Information and Processing Ver-

tical Points

The previous procedure results in many empty cells, like we see in the left graph of Fig. 3.3,

so it is necessary to perform interpolation to obtain an estimation of a value for those empty

cells. Our approach is to apply an adaptation of the natural neighbour interpolation [43],

by analysing the neighbour cells in row, column and diagonals with information and apply

the median, as before, to estimate the cell value. The algorithm deals with missing data, for

instance in rows, by analysing if the cell next to it has no value, it runs through the entire

row until it finds a cell with information.

Strong discontinuities in the resulting map cause undesirable artifacts when interpolated.

These highly discontinuous points are part of the relief that we are not interested in (the
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Figure 3.4: Gradient arrows of the environment. We can observe that large discontinuities in
verticality generate uneven noise that is not representative of the true gradient of the terrain.
These should instead be dealt with by an obstacle detection technique.

detection of obstacles takes care of them), and that spoil the smoothing that we want to

remove from the interpolation. Thus, before applying the median of all neighbors, we have

opted to filter out these points from the interpolation procedure according to:

|zi − z| < ρ, (3.3)

where zi is the height estimation of each of the neighbours of the current cell, z is the

weighted average of all the neighbours, and the ρ threshold has been empirically adjusted

to 2m allowing for appropriate smoothing of the interpolation. The weighted average (z) is

computed as:

z =
∑n

i wizi∑n
i wi

, (3.4)

being n the total number of neighbours and wi the weights of each neighbour given by the

inverse of the euclidean distance, because, like it was explained above, some neighbours are
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Figure 3.5: Resulting costmap based on the gradient and effort. We note that the discontinuities
in Fig. 3.4 are considered in this graph as obstacles (black cells), the remaining grey graduations
occur as explained in Section 3.1.

not the cell right after, so the further cell the less impact it has in the average. Only the

neighbours of a certain cell that fulfill this condition are included in the calculation. An

example of a result of the interpolation can be seen on the right of Fig. 3.3.

3.2.4 Gradient and Effort Calculation

With the map complete enough for our purposes, we calculated the gradient (Eq. 3.5) on

each cell of the 2D grid to obtain the inclination in each direction, Fig. 3.4:

∇z(x, y) =< ∂z

∂x
(x, y), ∂z

∂y
(x, y) > (3.5)

In order to build a costmap of the surrounding environment, all cells with gradient norm

above a certain threshold, empirically chosen as 0.8, are automatically considered as non-

traversable; to other cells, we apply the product between the gradient norm and the γ, i.e.,
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Figure 3.6: Simulated environment in rviz, with the information that the sensors perceive from
robot surroundings and the resulting Occupancy Grid map

the effort (ξ):

ξi,j = ‖∇z(x, y)‖ · γ, (3.6)

where i and j are the x and y indexes, respectively, of a certain cell. We use γ to distinguish

upward from downward slopes and is defined as:

γ = cos(θ), (3.7)

where θ is the angle between the two vectors: the vector that connects the position of the

robot with the position of the cell we are currently analyzing, and the gradient vector in

that cell. Because the gradient direction is the direction in which the function increases most

quickly, when the effort is:

• Maximum (γ = 1) we are facing an upward slope;
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Figure 3.7: Sequence diagram of the changed classes for the integration of our method with
base_local_planner of the Navigation Stack

• Neutral (γ = 0) we are on a flat terrain;

• Minimum (γ =−1) we are facing a downward slope.

Thus, we obtain a 2D Occupancy Grid Map as in Fig. 3.5, where the black cells corre-

spond to the non-traversable areas, and the shades of gray correspond to the probabilities

explained in Section 3.1. This map is sent to a new ROS topic, to be used as a local cost

map by with move_base, as seen in Fig. 3.6.

3.3 Integration with the Navigation Stack

To test this approach in navigation we integrated back into the Navigation Stack, taking

only into account the local planning methods. For local planning we are using the ROS

package base_local_planner, that provides implementations of the Trajectory Rollout and

the Dynamic Window Approach. This planner uses costmaps to determine the optimal

trajectory according to known costs between the target points, using a brute-force approach.

For the integration we have gone through several nodes, as shown in the sequence diagram

of Fig. 3.7. We made the MoveBase node subscribe the our new map topic, the output of the

Mechanical Effort Analysis node, Fig. 3.8, so that it could be included in the data structures

of base_local_planner, initialized in the TrajectoryPlannerROS node. In this node, our

map is sent to the TrajectoryPlanner node where is calculated the cost of traversing

each cell, which it uses to score each possible trajectory, that behind this cost uses other

characteristics. The score (T ) is given by:

T = w1 ·D + w2 ·G+ w3 ·O + w4 ·M, (3.8)
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Figure 3.8: Resuming diagram of the mechanical effort analysis node.

where D is the distance to the goal, G distance to the local goals, O the obstacle cost

given by the costmap2D (in this case zero because for the tests the observation sources were

deactivated to only analyse our cost influence), and w1, w2, w3 the respective weight of each

parameter. The M parameter, corresponding to the mechanical cost obtained with our map

and w4 the respective weight were added by us.

Beyond that, in order to give priority flat and downward areas, we applied an offset to

the M cost, with the average value that the map can take, 50:

τ =


M − offset, if M ≥ offset

0, otherwise,
(3.9)

i.e., to all the flat and downward areas is given the value zero, it is safe to navigate.

All the trajectories are identified by a sampled velocity, and the trajectory with the

smaller score is chosen, sending the corresponding velocity to the robot.

In addiction, the ROS Navigation Stack it is a powerful framework designed for, if pos-

sible, be used by a large number of robots, of different shapes and sizes. Optimizing the

performance of the navigation stack requires tuning a number of parameters to ensure that

it operates according to the requirements of our particular hardware. [56] presents a good

explanation of some basics for parametrize the navigation stack. Beyond all the parame-

ters needed for the robot configuration, the tolerance given in the goal, and the simulation,

the main parameters that have a major impact in this strategy correspond to the trajec-

tory scoring parameters, the w1, w2, w3, w4 of Equation 3.8, this parameters are shown in

Table 3.1.

The occdist_scale is set to zero, because for this work the observation sources of the
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Table 3.1: Main parameters needed to integrate our system with the ROS Navigation Stack, with
the associated chosen values. (The name and description of existing parameters were taken from
the ROS Wiki website2).

Parameter Description Value

pdist_scale (w1)
The weighting for how much the controller should stay
close to the path it was given 0.05

gdist_scale (w2)
The weighting for how much the controller should attempt to reach
its local goal, also controls speed 0.08

occdist_scale (w3)
The weighting for how much the controller should attempt to
avoid obstacles 0.0

mechanical_weight (w4)
The weight for how much the controller should take into account
the mechanical cost that come for our costmap (parameter created by us) 5.0

move_base are turned off, because in this tests we only want to test the applicability of

the existing methods in light of our concept of mechanical effort. The pdist_scale and

gdist_scale are set with low values and the mechanical_weight with a high value, this

because if this difference did not happened, the planner did not take into account the cost of

our map. Also, the gdist_scale is slightly higher than the pdist_scale because we want

the controller to follow more the local paths than the global path, i.e., the paths that take

into account the mechanical effort.

We have noticed that if we assign a low value to the mechanical_weight, the path

planner ignores our costmap.. On the contrary, if we have a high value in weight, the robot

get stuck, rotating on itself to find a safe path, but never succeeding.

In the following chapter, we will validate the technique experimentally, testing our ap-

proach and comparing it with existing techniques in light of the mechanical cost of traversal.
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4 Experimental Validation

(a) Ranger platform without the
mechanical mulcher attachment.

(b) Ranger in a simulated scenario.

Figure 4.1: Depictions of the real Ranger and in a simulated scenario. In the left pictures we
observe the Ranger in a forest simulated environment, can see the similarities between the real and
the simulated robot.

4.1 Experimental Goals, Setup and Metrics

We have carried out several experiments in order to:

1. Demonstrate that existing techniques do not take mechanical cost into account;

2. Demonstrate that our approach is able to plan paths with lower costs than existing

techniques.

These goals were defined in line with the overall goals of the thesis, and will be discussed

with them in Chapter 5.
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(a) Main sensor hub.

(b) Back sensor hub

Figure 4.2: Ranger sensor hardware framework.

4.1.1 Ranger

The Ranger (Fig. 4.1a) is a 4000kg robot, based on the Bobcat T190, equipped with several

sensor modalities (Fig. 4.2), allowing the task of path planning and navigation in unknown

environments:

• Two LeiShen C16 Laser Range Finders 1, which provide a 360º 3D view of the en-

vironment, contributing for instance for the estimation of distance to obstacles and

occupancy;

1http://en.leishen-lidar.com/product/leida/MX/15d44ea1-94f5-4b89-86eb-f5a781b04078.
html
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• One FLIR AX8 thermal camera 2, which combines thermal imaging with a visual

camera in one small package for continuous temperature monitoring;

• One Teledyne Dalsa Genie Nano C2420 multispectral camera 3, providing high speed,

low noise, multispectral images, namely in the NIR range;

• Five Intel RealSense D435 RGB-D Cameras with five AAEON UP Board Atom for

sensor acquisition 4, each consisting of a pair of depth sensors, RGB sensor, and infrared

projector;

• GPS and RTK devices 5, used to enhance the precision of position data derived from

satellite-based positioning systems;

• Inertial Measurement Unit 6, measures and reports the orientation of the body.

4.1.2 Simulator

In order to do sistematic navigation tests with a large forestry robot, we have used a simulator

that realistically mimicks the Ranger platform and its sensors in a forest environment. This

simulation was created with Unity by Ingeniarus Ltd. for the SEMFIRE project. It uses

ROS#, allowing the simulator to communicate with ROS through rosbridge, a JSON API to

ROS functionality for non-ROS programs. All scenarios, like the one shown in Figure 4.1b,

were developed using the physics engine from Unity.

For our approach, from the large set of sensors that the robot presents, as observation

source we only use the two 3D LIDARs.

4.1.3 Scenarios and Metrics

To test and compare the different algorithms we used three scenarios of the simulator:

1. One to validate the metrics, using a simple planar scenario with some obstacles (Fig. 4.3a);

2. In the second one, we used a forestry scenario, providing a minimally flat goal (Fig. 4.3b);

3. In the third goal, we intend to navigate through a more challenging forestry scenario,

with large hills, to check whether the robot can overcome them efficiently (Fig. 4.3c).

2https://www.flir.com/products/ax8-automation/
3https://www.edmundoptics.eu/p/c2420-23-color-dalsa-genie-nano-poe-camera/4059/
4https://store.intelrealsense.com/buy-intel-realsense-depth-camera-d415.html
5EmlidReachM+(https://emlid.com/reach/)
6https://www.pololu.com/product/2740
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(a) First scenario. (b) Second scenario. (c) Third scenario.

Figure 4.3: Simulator scenarios where the comparison tests of the approaches were carried out.

We compare our modified version of the base_local_planner with the default version of

base_local_planner and dwa_local_planner available in ROS, which uses RTP planning.

We also compare our work with the approach proposed in [27], the current system used by the

the SEMFIRE project for the Ranger navigation, that uses traversability analysis techniques

and teb_local_planner for local planning (more detail in Section 2.3). We have opted for

testing these specific techniques as they share their basis with state-of-the-art approaches,

and are readily available as ROS-based packages. See Section 2.2 for more details on RTP,

DWA and TEB.

We use different metrics that help us to evaluate and compare the different methods:

• Elapsed Time - Total time from a initial pose to the goal, in seconds;

• Traveled Distance - Every 0.1s we calculate the Euclidean distance between the current

and the previous position of the robot, and use the sum as our measure of total distance

traveled;

• Total Cost (T ), defined as:

T =
N∑
i

(∇zi), (4.1)

where ∇zi corresponds to the z gradient value every 0.1s of the trajectory and T the

sum of all the N z gradient values.

• Upward Cost (τ), defined as:

τ =


∑n

i (∇zi), if ∇zi > 0

0, otherwise,
(4.2)
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Table 4.1: Experimental results.

(a) Results for the first scenario

Approach Traveled Distance Time T τ

This Work 38.7505 ± 0.0175 46.5059 ± 0.1925 -0.0004 ± 0.0006 0.0037 ± 0.0009
base_local_planner 38.7692 ± 0.0200 46.4179 ± 0.1563 -0.0006 ± 0.0004 0.0035 ± 0.0009
dwa_local_planner 38.7693 ± 0.0839 77.4759 ± 0.1636 -0.0001 ± 0.0002 0.0032 ± 0.0002
Paper [27] system 39.0196 ± 0.0086 45.8759 ± 0.0592 -0.0017 ± 0.0002 0.0019 ± 0.0001

(b) Results for the second scenario

Approach Traveled Distance Time T τ

This Work 20.5997 ± 0.2443 35.9900 ± 3.1151 -0.0038 ± 0.0033 0.5653 ± 0.0225
base_local_planner 20.3395 ± 0.0579 25.6539 ± 3.4040 0.0011 ± 0.0015 0.5693 ± 0.0054
dwa_local_planner 20.5104 ± 0.1021 41.6579 ± 0.2079 0.0046 ± 0.0084 0.5471 ± 0.0081
Paper [27] system 20.5806 ± 0.0484 24.5139 ± 0.1974 0.0375 ± 0.0059 0.6902 ± 0.0209

(c) Results for the third scenario

Approach Traveled Distance Time T τ

This Work 18.6101 ± 0.5707 58.5279 ± 2.8600 0.3206 ± 0.0304 0.4454 ± 0.0790
base_local_planner 16.1218 ± 0.3155 49.7199 ± 2.7572 0.4078 ± 0.0594 0.7431 ± 0.0333
dwa_local_planner 15.9532 ± 0.0735 69.3179 ± 0.9581 0.4389 ± 0.0079 0.7373 ± 0.0054
Paper [27] system 17.8027 ± 1.3161 26.2499 ± 3.8105 0.3506 ± 0.0119 0.5639 ± 0.0769

corresponding to the sum of the n positive z gradient values, which we use as a proxy

for the mechanical effort for the same goals given to the robot.

In order to maximize the autonomy or minimize the energetic costs, the robot should

mainly avoid steep climbs to reduce substantially the mechanical effort involved in the

planned trajectory path. In this tests we aimed that our approach have a lower Total

Cost (T ) and Upward Cost (τ), with the possibility that, since we are not only taking into

account the shortest path, the distance traveled is greater. We start by doing a simple test

with simple planar scenario, in order to validate all the metrics.

All the algorithms were tested 10 times on each scenario in order to obtain an average

and standard deviation for each metric. To test our approach, we used a mechanical effort

costmap with size 15 meters and resolution 0.5 meters/cell.

4.2 Results and Discussion

Given the results in the Table 4.1a, the planar scenario, we can observe that all the techniques

make efficient use of mobility resources: they plan trajectories that take the robot from A

to B in a quick, efficient manner. As expected all the algorithms chose the shortest path,

travelling essentially the same distance, with a small variance that can easily be attributed to

randomness both in the simulator and the control algorithms themselves. In this scenario, it

is expected that all the approaches have the value of z nearly zero and constant, Fig. 4.4a-d,
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(a) Modified base_local_planner. (b) base_local_planner. (c) dwa_local_planner.

(d) Paper [27] system. (e) Modified base_local_planner. (f) base_local_planner.

(g) dwa_local_planner. (h) Paper [27] system.

Figure 4.4: Plot of the z ((a), (b), (c) and (d)) during the route of the robot of one test in the
first scenario and the corresponding gradient z values ((e), (f), (g), and (h)).

which result in a gradient of z almost zero, as it can be seen in Fig. Fig. 4.4e-h. Taking

into account our mechanical effort definition, as well as, the definition of our metrics, it is

expected that both Total Cost (T ) and Upward Cost (τ) be nearly zero, which is confirmed

according to the information in the table. It can be observed in the table that all the

algorithms have a Total Cost (T ) negative, meaning that the z value slightly went down

more then up, but not significantly.
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(a) Modified base_local_planner. (b) base_local_planner. (c) dwa_local_planner.

(d) Paper [27] system. (e) Modified base_local_planner. (f) base_local_planner.

(g) dwa_local_planner. (h) Paper [27] system.

Figure 4.5: Plot of the z ((a), (b), (c) and (d)) during the route of the robot of one test in the
second scenario and the corresponding gradient z values ((e), (f), (g), and (h)).

In this first scenario, with the more simple scenario where it is more likely to the robot

have a constant speed, we calculated the average speed of all the techniques taking into

account the traveled distance and the elapsed time. The dwa_local_planner tends to be

slightly slower, taking more time to reach the goal, with only an average speed of 0.5004±

0.0043 m/s, while the standard base_local_planner, the modified base_local_planner

and the approach presented in [27] obtained an average speed of 0.8352 ± 0.0.0037 m/s,
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(a) Modified base_local_planner. (b) base_local_planner. (c) dwa_local_planner.

(d) Paper [27] system. (e) Modified base_local_planner. (f) base_local_planner.

(g) dwa_local_planner. (h) Paper [27] system.

Figure 4.6: Plot of the z ((a), (b), (c) and (d)) during the route of the robot of one test in the
third scenario and the corresponding gradient z values ((e), (f), (g), and (h)).

0.8332± 0.0.0046 m/s and 0.8505± 0.0015 m/s, respectively, very similar with one another

and close to the maximum speed of the robot (0.9 m/s). This can be easily be attributed to

a difference in the parameters used between approaches.

However, the existing techniques do not take mechanical cost into account in light of

our definition of effort (Goal 1 of Section 4.1), the simple local planning algorithms tend to
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choose the shortest path, not considering other costs. In the second and third scenarios we

observe that both of the existing algorithms do not have problem to climb the hill instead

of circumventing it, which can be seen in Fig. 4.5b-c and Fig. 4.6b-c. In this figure we

observe that both algorithms tend go up and down instead of find a path that circumvent

the hill, making it possible to obtain an improved Upward Cost (τ) and Total Cost (T ). In

the paper [27] the traversability analysis technique consider all the are traversable in this

scenario, so the local planner just try to reach the shortest possible distance, as we can see

in Fig. 4.5d the robot prefer go over the hill, presenting a higher Upward Cost (τ) and Total

Cost (T ) .

In the second scenario, we observe that our approach also does not avoid the hill, in

Fig. 4.5a and observing the time that took our approach to reach the goal, Table 4.1b, we

conclude that our approach had some indecision in the time to choose the trajectory but be-

cause the inclination of the hill was not so significant the robot ends to going over the hill. In

the same table we observe that all the algorithms present a very similar Upward Cost (τ) and

Total Cost (T ), being the mean of the Upward Cost (τ) better in the dwa_local_planner,

and the Total Cost (T ), with the a negative value, our approach, meaning that the robot

prefer to go more for downward slopes that upward, which is positive.

In the third scenario we can observe the main difference between our approach and the

existing techniques, that our technique take into account our definition of mechanical effort

(Goal 2 of Section 4.1). In this scenario we command the robot to navigate to a goal behind a

larger hill and on a climb. Taking into account the plot on Fig. 4.6a and comparing with the

Fig. 4.6b-c, we observe that our approach circumvent the big climb instead of attempting to

traverse it directly, only climbing the necessary to reach the goal. In contrast, the existing

approaches only choose the shortest path, not minimising the mechanical effort of climb

the hill, preferring go up and down. This is further demonstrated by Table 4.1c, we can

observe lower values for both Upward Cost (τ) and Total Cost (T ). The work presented

in [27] present a better Upward Cost (τ) and Total Cost (T ) comparing with the existing

local planning algorithms. The system tries to avoid some points that it does not consider

traversable but largely favours steep slops to go up and down, similarly the other existing

techniques, instead of circumvent the hill, Fig. 4.6d.

Generally, we can observe that our technique tends to pick longer paths, both in physical

distance and in traversal time, but does take the overall mechanical effort into account.

Thus, our technique avoids steeper slopes, which not only lead to higher consumption of

fuel, but are also more dangerous to execute.
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5 Conclusion

This dissertation presents a technique that seeks to enable large heavy-duty robots to navi-

gate in challenging 3D forest environments. We start by surveying the state of the art in 3D

local planning, concluding that there are a number of potentially applicable techniques, but

that these do not taking mechanical effort into account (goal 1 of Section 1.2). Specifically,

we propose a technique that estimates the cost of traversing each individual point in space

according to terrain gradient, allowing the robot to prioritise paths that minimise its me-

chanical effort, and are thus safer and require less energy to execute (goal 2 of Section 1.2).

Our method was integrated with the ROS Navigation Stack as a new factor in one of the

default local path planners.

We have compared our work with existing techniques to determine how well they fared

according to our metrics when navigating in a simulated forestry scenario. We determined

that most techniques are applicable, making an effective use of mobility resources, with all

techniques succeeding in guiding the robot from an initial pose to a goal point, both in flat

and hilly environments. These results support goal 3 of Section 1.2.

We also observed that existing techniques do not take into account our definition of

mechanical effort and power consumption. Instead, they consider only the distance traveled

and ignore the terrain gradient, driving over steep slopes instead of trying to circumventing

them. These techniques can thus be refined to produce more economical trajectories, which

supports goal 4 of Section 1.2. In turn, our results show that the proposed technique favours

paths with less mechanical effort for the robot, i.e. prioritizing level ground and downward

slopes, potentially reducing the power consumption of the robot, which supports goal 5 of

Section 1.2.

The proposed technique can now be extended and applied in a number of ways, described

below.
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5.1 Future Work

Map Creation Speed: In the creation of the map we have to analyse a significant amount

of data that comes from the LIDARs point clouds, resulting in execution times that can take

over a second on some machines. The step that lasts longer is projecting the pointcloud into

the 2D grid, where points are looped over individually in order to obtain the grid cell to

which each point belongs, and cells are looped over individually to compute the median of

the height values; thus, map creation time increases with map resolution and pointcloud size.

It would be important to further optimize the code, reducing execution time to facilitate

real-time implementation.

Real Robot: It would be very interesting to transfer our tests to the real robot – the

Ranger – to test our approach in real scenarios. This was one of the initial goals, but

because of various technical constraints, as well as the pandemic context in which we live,

it was not at all possible. As mentioned in Section 2.3 the proposed approach in [27] is the

current system used by the the SEMFIRE project for the Ranger navigation, which already

allows the robot to navigate in a 3D environment using elevation maps and traversability

estimation. It would be interesting to integrate our approach with this system so that it also

takes into account the mechanical effort and possibly the power consumption results from

certain trajectories.

Local Planners: As seen in Section 2.4, the ROS Navigation Stack accepts different local

planners. It would be interesting to integrate our approach with different local planners and

determine whether they perform better with respect to our cost.

Interpolation Methods: After the 2D projection, to estimate the height value of the

cells without information we perform an interpolation based on an adaptation of the natural

neighbour interpolation, where we analyse all the neighbours and estimate the height value

doing a median. It would be interesting to test different interpolation methods, potentially

resulting in a better representation of the surface.
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3D Local Planning for a Forestry UGV based on
Terrain Gradient and Mechanical Effort

Dora S. B. Lourenço, João F. Ferreira and David Portugal1

Abstract— Planning feasible paths in 3D environments is a
challenging problem, mainly in forestry environments due to,
for instance, the rough and slippery terrain or the challenges
for perception, as those caused by the high amount of trees,
wind, and general unstructured nature of the environment. This
paper presents a work in progress to propose an innovative
method for 3D local planning in outdoor environments, to fa-
cilitate autonomous navigation of a forestry Unmanned Ground
Vehicle. The proposed method builds on the ROS navigation
stack integrating a module that analyses the gradient of the
terrain to quantify slopes on the robot’s path, and taking
into consideration its mechanical effort when planning paths
to traverse.

I. INTRODUCTION

Reliable outdoor autonomous navigation, particularly in
forestry scenarios, is still a major challenge due to the dy-
namic conditions of outdoor environments such as weather,
illumination and vegetation characteristics changes make it
difficult to build a system that can robustly navigate all
the time in all conditions [1]. The forest environment is
unstructured making it difficult to perceive and to correctly
localize in at all times [2]; the estimation of wheel odom-
etry that is often a useful source for localization in most
environments may not be usable in forests, because of the
rough terrain conditions and slippage [3]. Forestry vehicles
are also typically large heavy-duty machines, making their
deployment process a hard and tedious task with safety
concerns.

The main goal of this work is to propose local planning
methods that allow a forestry robot to safely navigate from
an initial to a target configuration while avoiding obstacles.
Specifically, we:

1) Present a technique that uses a 3D pointcloud from
the robot’s sensors to estimate the cost of traversing
each individual point in space, producing a costmap
for navigation;

2) Test the feasibility and applicability of existing local
planning methods in forestry environments in light of
the mechanical costs of traversal;
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Fig. 1. The Ranger UGV.

3) Demonstrate that existing techniques do not take me-
chanical cost into account, and can thus be refined to
produce more economical trajectories.

We tested the approach in a forestry robot simulator,
developed for the SEMFIRE R&D project1, allowing us to
perform repetitive testing without the related costs of using
the real large-scale rig, presented in Fig. 1. This robot – the
Ranger UGV – is the main actor of the SEMFIRE (Safety,
Exploration, and Maintenance of Forests with the Integration
of Ecological Robotics) project, which proposes the devel-
opment of a robotic system to reduce fuel accumulation
in forests, by eliminating flammable material for wildfire
prevention, thus assisting in landscape maintenance tasks [4].

This paper is structured as follows: In Section II a lit-
erature review focused in 3D navigation is presented. In
Section III is presented the approach proposed by this paper.
In Section IV-A is presented experimental setup for the the
tests and in IV-B the obtained results and their discussion.

II. RELATED WORK

Robot navigation is a common ability that enables the
robot to reach the destination required by a certain job,
planning and executing trajectories safely, both for itself, but
also for humans and other entities that might be sharing its
workspace [5].

Planning feasible paths in fully three-dimensional envi-
ronments is a challenging problem [3]. Existing algorithms
typically require the use of limited 3D representations that
discard potentially useful information. In the literature, we
can find several works on 3D navigation not just for ground

1http://semfire.ingeniarius.pt/, last accessed 2020/09/16.
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Fig. 2. Flow diagram of the implemented algorithm to estimate the cost of traversing each individual point in space.

robots, such as [6], [7], [8], but also aerial [9], [10], [11] and
underwater robots [12].

As mentioned in Section I, we aim to allow a robot to
safely navigate in a 3D forestry environment. Benefiting from
existing local planning methods, we propose an algorithm
that distinguishes traversable areas and integrates the cost
of the mechanical effort of the robot in a 2D Grid, to be
considered for local planning. In a nutshell, we consider
the mechanical effort as a quantity that accounts for the
additional burden of the UGV when climbing hills in rough
terrain environments. In [13], a similar approach to ours
is followed. The authors represent the traversability map
in a 2D Grid, but instead of each cell representing the
mechanical cost of that point they represent the probability
that the vehicle can successfully drive over that cell.

Other seminal research works on traversability analysis
methods are available in the literature [14], [15], and in
this work, we make use of the Robot Operating System
(ROS) to develop our own method to estimate the cost of
traversing the environment. ROS includes some ready-to-use
methods, such as navigation mesh2, adopted in [16].
The authors refer to this method as a 3D representation of
estimation of distances, height differences, and roughness.
If specific safety thresholds are violated, these areas will
be marked as lethal obstacles. Similarly to [13], they only
evaluate if the area is traversable, not taking into account
the mechanical effort of the robot. In [17], the authors use
a “perceive-decide” paradigm on an Elevation Map of the
terrain to identify traversable areas, and based on this map
the best trajectory is selected. There are other packages in
ROS, such as traversability estimation3, which
use the elevation map and traversability estimation filters to
generate a traversability map.

For local planning, some of the works mentioned earlier
use existing methods like [6], in which the authors integrate
their system with ROS, using base local planner4

with the Rollout Trajectory Planner (RTP) and move base5

as the low-level controller.

2https://github.com/uos/mesh_navigation
3https://github.com/leggedrobotics/

traversability_estimation
4http://wiki.ros.org/base_local_planner
5http://wiki.ros.org/move_base
All URLs last accessed 2020/09/16.

Fig. 3. 3D representation of the LIDAR information projected in a 2D grid
with dimension 10 meters and resolution 0.3 meters/cell before and after
the interpolation process.

III. PROPOSED APPROACH

We have developed an algorithm that uses a 3D pointcloud
from the robot’s sensors to estimate the cost of traversing
each individual point in space, producing a costmap for
navigation. This allows us to quantify the mechanical effort
of traversing each cell of a map, enabling the robot to decide
to traverse paths that are sub-optimal according to traditional
metrics, such as total distance or time, while optimizing its
use of other resources, such as energy. An overview of this
process is shown in Fig. 2.

The first step is a ROS Interface, in which we subscribe to
the front and back 3D LIDAR Point Clouds available in the
Ranger UGV. The points of each LIDAR are transformed
from their respective frame into the robot base frame and
concatenated in a single matrix.

We used the ROS Navigation Stack, a framework designed
to generate minimal but complete autonomous navigation
solutions, thus speeding-up the implementation processes
required to obtain a robot navigation solution.

This framework traditionally operates in 2D, which is
a disadvantage when it is necessary to plan for a 3D
environment. To account for this, we can project the 3D
LIDAR information into a 2D grid, so that information is
represented by:



(a) Gradient arrows of the environment. (b) Resulting costmap based on the gradient and effort.

Fig. 4. Graphics representing a costmap with dimension 10×10 meters and resolution 0.3 meters/cell. In (a) we can see some outliers, that are points
with a very high gradient norm, and in (b) we can see the represented obstacles, such as trees in the environment.

Φ(x, y) = z, (1)

where Φ(x, y) is one cell of the grid, and z is the height of
detected LIDAR obstacles in the corresponding discretized
cell x, y.

The main output of the technique is a spatial grid that
contains a specific cost per cell. The size and the resolution
of the grid can be chosen by the user as a parameter of the
approach. Due to their discrete nature, each cell may contain
more than one LIDAR point. In these cases, the median is
used as a representative value for the whole cell, as shown
in the left picture of Fig. 3. Because this procedure results
in many empty cells, it is necessary to perform interpolation
to obtain an estimation of a value for those empty cells.
Our approach is to apply Nearest Neighbour Interpolation by
analysing the neighbour cells in row, column and diagonals
with information and apply the median, as before, to estimate
the cell value.

Strong discontinuities in the resulting map cause undesir-
able artifacts when interpolated. Thus, we have opted to filter
out these points from the interpolation procedure according
to:

|zi − zaverage| < ρ, (2)

where zi is the height estimation of each of the neighbours
of the current cell, zaverage is the weighted average of all the
neighbours, and ρ the threshold applied. Note that the weight
of each neighbour is inversely proportional to the euclidean
distance between the current cell and the neighbour cell, and
the ρ threshold has been empirically adjusted to 2 m allowing
for appropriate smoothing of the interpolation, resulting in
the representation seen on the right of Fig. 3.

After the interpolation we calculate the gradient (Eq. 3) on
each cell to obtain the inclination in each direction, Fig. 4(a):

∇z(x, y) =<
∂z

∂x
(x, y),

∂z

∂y
(x, y) > (3)

We define effort ξ, as:

ξ = cos(θ), (4)

where θ is the angle between two vectors: the vector that
connects the position of the robot with the position of the
cell we are currently analyzing, and the gradient vector in
that cell. Because the gradient direction is the direction in
which the function increases more quickly, when the effort
is maximum (ξ = 1) we are facing an upward slope, and
when minimum (ξ =−1), a downward slope.

In order to build a costmap of the surrounding environ-
ment, all cells with gradient norm above a certain threshold
are automatically considered as non-traversable; to other
cells, we apply the product between the gradient norm and
the so-called effort. Thus, we obtain a 2D Occupancy
Grid Map as in Fig. 4(b), where the black cells correspond
to the non-traversable areas.

This approach was then integrated back into move base.
For local planning we are using the base local planner
ROS package. This planner uses costmaps determine the
optimal trajectory according to known costs between the
target points, using a brute-force approach. To integrate our
map with this package we made move base subscribe
the our new map topic, so that it could be included in
the data structures that base local planner analyses to
calculate the cost of traversing each cell, which it uses to
score each possible trajectory.

IV. EXPERIMENTS

We have carried out experiments to demonstrate that
existing local planning methods in forestry environments
do not take mechanical cost into account, and can thus be
refined to produce more economical trajectories, in light of
our definition of effort (see claims 2) and 3) in Section I).



(a) Typical simulator scene. (b) Simulated environment in rviz.

Fig. 5. Images representing the same scenario, in (a) within the Unity simulator, and in (b) the information that the sensors perceive from robot
surroundings, as shown in rviz.

(a) First scenario. (b) Second scenario. (c) Third scenario.

Fig. 6. Simulator scenarios where the comparison tests of the approaches were carried out.

A. Experimental Setup

As mentioned in Section I, we have used a Unity-based
simulator that realistically simulates a 3D forest environment.
In Fig. 5(a) we show an image of a typical scene in the
simulator. The simulated Ranger UGV is equipped with two
3D LIDARs, that are used as source data for our algorithm.
In Fig. 5(b), we can see the information collected by the front
(green dots) and back (red dots) LIDARs, as well as the local
2D Occupancy Grid Map created with our algorithm.

We compare the default version of
base local planner and dwa local planner
available in ROS, measuring distance traveled, the time it
took to get to the target point, the total cost (T ), defined as:

T =
N∑

i

(∇zi), (5)

where ∇zi corresponds to the z gradient value every 0.1s of
the trajectory and T the sum of all the N z gradient values.
The Upward Cost (τ ), defined as

τ =

{∑n
i (∇zi), if ∇zi > 0

0, otherwise,
(6)

corresponding to the sum of the n positive z gradient values,
that is, the mechanical effort for the same goals given to the
robot. We tested different scenarios (cf. Fig. 6):

1) One to validate the metrics, using a simple planar
scenario with some obstacles, Fig. 6(a);

2) In the second one, we used a forestry scenario, provid-
ing a minimally flat goal, with small map elevations,
Fig. 6(b);

3) In the third goal, we intend the robot to go through a
more challenging forestry scenario, with large hills, to
check whether the robot can overcome them, Fig. 6(c).

B. Results and Discussion

Given the results in the Table I, we can observe that
existing techniques make efficient use of mobility resources:
they plan trajectories that take the robot from A to B in
a quick, efficient manner. In the first test, the robot just
had to go through a planar scenario, so as expected both
algorithms chose the shortest path, and the traveled distance
is the same. Being a planar scenario it was expected that
both algorithms obtained a total cost very close to zero,
with a small variance. The dwa local planner even
obtained a very small negative total cost T , meaning that



(a) Resulting z (left graph) and z gradient (right graph) values as a function of time of dwa local planner.

(b) Resulting z (left graph) and z gradient (right graph) values as a function of time of base local planner.

Fig. 7. Graphs obtained from the z values and the z gradient, with the two algorithms along the third scenario.

there was a slightly greater negative variation of the gradient
than positive along the path. The dwa local planner
tends to be slightly slower, taking more time to reach the
goal, with only an average speed of 0.459 m/s, while the
base local planner obtained an average speed of 1.180
m/s, close to the maximum speed of the robot (1.5 m/s).

However, they do not take mechanical cost into account
in light of our definition of effort. As said in the last
paragraph, both algorithms tend to choose the shortest path,
not considering other costs. In Fig. 7, and in Tables I-III
we can see that both algorithms prefer to go through a
big climb, presenting a high Upward Cost (τ ), instead of
circumventing it. In Fig. 5(a) we can see that some hills can

be circumvented, preventing the high mechanical effort.
Therefore, these can be refined to produce more econom-

ical trajectories, avoiding slopes by preventing the robot
to just choose the shortest path. In order to maximize
the autonomy or minimize the energetic costs, the robot
should mainly avoid steep climbs to reduce substantially the
mechanical effort involved in the planned trajectory path.

V. CONCLUSION

This paper presents a work in progress on a technique
to estimate the cost of traversing each individual point in
space. The method is grounded on prioritizing paths that
minimize the mechanical effort to the robot. We have defined



TABLE I
RESULTS FOR THE FIRST SCENARIO

Approach Traveled Distance (m) Time (s) T τ

base local planner 38.680 32.779 0.00029 0.006
dwa local planner 38.647 79.719 -0.00026 0.001

TABLE II
RESULTS FOR THE SECOND SCENARIO

Approach Traveled Distance (m) Time (s) T τ

base local planner 23.366 25.559 0.2706 0.7899
dwa local planner 23.335 48.36 0.276 0.842

TABLE III
RESULTS FOR THE THIRD SCENARIO

Approach Traveled Distance (m) Time (s) T τ

base local planner 17.670 28.98 0.390 0.4646
dwa local planner 16.88 43.659 0.403 0.6117

metrics and tested competing techniques to determine how
well they fared according to our standards. We can conclude
that there is room for improvement and, thus, this research
will continue.

In the short term, besides testing additional interpolation
methods, and to generally improve, document and make the
proposed approach available to the community, we aim to
obtain quantitative results comparing the travel time and
energy spent when taking into consideration the mechanical
effort. Also, we would like to propose metrics to answer
questions such as: “Is circumventing a hill better than driving
on it considering that a larger route will imply also additional
power consumption to some extent?”. Future work will tackle
two main fonts: (1) we will compare our approach with the
standard techniques; (2) when a stable approach is proposed,
tests will be transferred to the real robot – the Ranger, a
4000 kg heavy-duty UGV, based on the Bobcat T190 (see
Fig. 1).
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the technical discussion and scientific guidance and Rui P.
Rocha for invaluable help with technical support for carrying
out this work.

REFERENCES

[1] Y. Morales, A. Carballo, E. Takeuchi, A. Aburadani, and T. Tsub-
ouchi, “Autonomous robot navigation in outdoor cluttered pedestrian
walkways,” Journal of Field Robotics, vol. 26, no. 8, pp. 609–635,
2009.

[2] M. K. Habib and Y. Baudoin, “Robot-assisted risky intervention,
search, rescue and environmental surveillance,” International Journal
of Advanced Robotic Systems, vol. 7, no. 1, p. 10, 2010.

[3] R. Reis, F. N. dos Santos, and L. Santos, “Forest robot and datasets
for biomass collection,” in Iberian Robotics conference, pp. 152–163,
Springer, 2019.

[4] M. S. Couceiro, D. Portugal, J. F. Ferreira, and R. P. Rocha, “Sem-
fire: Towards a new generation of forestry maintenance multi-robot
systems,” in 2019 IEEE/SICE International Symposium on System
Integration (SII), pp. 270–276, IEEE, 2019.

[5] A. Bonarini, S. Ceriani, G. Fontana, and M. Matteucci, “On the
development of a multi-modal autonomous wheelchair,” in Handbook
of Research on ICTs for Human-Centered Healthcare and Social Care
Services, pp. 727–748, IGI Global, 2013.
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