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Abstract 

Reinforcement learning is a methodology with great potential of applicability in 

manufacturing decision-making problems due to the reduced need of previous training data, 

i.e., the system learns along time with actual operation.  

This dissertation focuses on the implementation of a reinforcement learning 

algorithm in an assembly decision-making problem of an airplane, from the Yale-CMU-

Berkeley Object and Benchmark Dataset, aiming to identify the effectiveness of the 

proposed approach in the assembly time optimization. There are numerous types of 

reinforcement learning algorithms, with Q-Learning being the algorithm chosen for this 

dissertation. This algorithm is based on the learning of a matrix of Q-values (Q-table) from 

the successive interactions with the environment to find an optimal state-action policy that 

maximizes the accumulated reward, formalized as a Markov Decision Process (MDP).  

This implementation was achieved in three scenarios with increasing 

complexity. In the first scenario, the reinforcement learning agent could only distinguish 

between feasible and impossible assembly sequences. In a second scenario the actions’ 

average time were included so that different assembly sequences corresponded to solutions 

with diverse accumulated rewards. This scenario allowed an initial optimization of the 

algorithm’s parameters and rewards. Finally, in the last scenario, the tasks’ average time 

were measured with the corresponding time variances, so that the assembly sequences would 

have a larger distribution on accumulated rewards. This last scenario allowed the further 

optimization of the algorithm’s parameters and rewards. 

The implemented algorithm, after optimization, achieved very promising results 

by learning the optimal assembly sequence 95.83% of the times. 

 

 

Keywords Reinforcement Learning, Q-Learning, Assembly Sequence, 

Optimization. 
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Resumo 

Reinforcement learning é uma metodologia com grande potencial de 

aplicabilidade em problemas de tomada de decisões na manufatura devido à reduzida 

necessidade prévia de dados, isto é, o sistema aprende durante a real operação. 

Esta dissertação foca-se na implementação dum algoritmo de reinforcement 

learning num problema de tomada de decisões na montagem de um avião, pertencente ao 

dataset de objetos e benchmark de Yale-CMU-Berkeley, com o objetivo de identificar a 

eficácia da abordagem proposta na otimização dos tempos de montagem. Existem inúmeros 

algoritmos de reinforcement learning, tendo sido o algoritmo Q-Learning o escolhido para 

o trabalho desta dissertação. Este algoritmo baseia-se na aprendizagem duma matriz de Q-

values, conhecida como Q-table, através de sucessivas interações com o ambiente de forma 

a determinar a state-action policy que maximiza as rewards acumuladas e formalizada como 

um Markov Decision Process (MDP). 

Esta implementação foi conseguida em três cenários distintos, com um nível de 

complexidade crescente. No primeiro cenário, o reinforcement learning agent apenas 

poderia distinguir entre sequencias de montagem possíveis ou impossíveis. Num segundo 

cenário os tempos médios de duração das ações foram adicionados com a consequência de 

diferentes sequências de montagem corresponderem a diferentes soluções com valores de 

rewards acumuladas. Este cenário permitiu uma primeira otimização dos parâmetros e 

rewards do algoritmo. Por fim, no terceiro cenário os tempos médios das ações foram 

medidos com as respetivas variações, o que tornou a distribuição de rewards acumuladas 

mais dispersas. Este cenário permitiu uma nova otimização dos parâmetros e rewards do 

algoritmo. 

O algoritmo implementado, após a sua otimização, apresentou resultados 

promissores ao aprender a sequência de montagem ótima 95.83% das vezes. 

 

 

Palavras-chave: Reinforcement Learning, Q-Learning, Sequência de 

Montagem, Otimização. 
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1. INTRODUCTION 

Along with the advent of product customization, industrial manufacturing tasks 

are increasingly more complex and required to be highly flexible and efficient. 

Reinforcement learning (RL) is a current approach to such optimisation problems and as 

such, this dissertation intends to identify its efficacy in the assembly optimization of a 

product comprised of various parts and fasteners. 

Reinforcement learning (RL) is, alongside with supervised learning (SL) and 

unsupervised learning (UL), a paradigm of machine learning (Sutton and Barto 2018) 

originally inspired by the way biological systems learn (Schultz, Dayan, and Montague 

1997; Schmajuk and Zanutto 1997; Touretzky and Saksida 1997), where an agent (e.g. a 

human, a robot, a vehicle) interacts with the environment by taking actions (Figure 1.1). As 

a consequence of the action taken, the environment defines states and rewards. A state is 

essentially a description of the environment’s situation and the rewards are an abstract 

concept that describes the feedback, by which the success or failure of the agent is measured. 

This kind of learning is often used in problems that require decision making, by dynamically 

exploring a solution that maximizes the total rewards.  

 

 

Figure 1.1. Agent and environment interaction. 
Taken from (Sutton and Barto 2018). 

 

In SL, the learning phase is based on labelled input-output examples, allowing 

the learned model to extrapolate to new situations. This learning method is often used in 

classification and regression problems. Contrarily, in UL, neither features nor outputs are 
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known and its typical uses are in the detection of patterns in data, also known as clustering 

problems. The differences in RL are the fewer data available in the learning phase, which 

are the current states and expected rewards, and a continuous learning process, fuelled by 

the interaction between the agent and the environment. 

Given its characteristics, RL methods are used in complex problems where there 

appears to be no obvious or easily programmable solution, such as game playing, robotics, 

control problems or operational research and in problems where there is not enough labelled 

data such as anomaly detection problems. 

The first uses of RL algorithms were in game playing problems since the possible 

states during a game can be very large, which deems infeasible the common approach of 

manually designing rules for the player to follow. By applying RL algorithms the agent can 

play against humans or other agents in order to continuously improve its playing capabilities. 

In the field of robotics, since most of robot programming tasks are tedious, 

require years of experience and expertise, RL algorithms can be applied to replace it with an 

intuitive process comprehensible even by an unskilled user. Also, hard-coding controllers 

for robots may have limitations when the robot must adapt to new situations or when the 

robot/environment cannot be sufficiently modelled (Deisenroth 2011). 

For example, in control problems, the perfect knowledge of the system is not 

possible, which is a common assumption in control-optimization. Therefore, in these 

situations, RL methods can be applied since they only learn on measured data and rewards. 

Also, the learning could be done in a simulation environment, which would be further 

improved by learning in the real world while the system remains online (Kober, Bagnell, 

and Peters 2013). 

Lastly, RL could be used in operational research in the area of targeting 

marketing, for example, to learn cross channel integration (Abe et al. 2004) or to optimize a 

product delivery system with various transportation vehicles (Proper and Tadepalli 2006). 

Reinforcement learning can be also used in anomaly detection problems to tackle 

the insufficient data availability problem. In recent years, the industry has transitioned from 

a corrective maintenance to a predictive maintenance standpoint (C. Huang et al. 2018).  In 

other words, instead of only fixing and replacing components after they fail, methods are 

used to predict when such failures will occur, using statistics methods or anomaly detection 

models, so that actions can be taken before the failure happens. In this type of scenarios, 
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labelled anomalies are hard to obtain, enabling the potential of RL methods to improve 

continuously an anomaly detection model throughout the life of the equipment. 

This dissertation is organized as follows. In the Section 2 reinforcement learning 

is discussed in detail. In the Section 3 the state of the art of the RL’s algorithm is identified, 

as well as the application of RL in robotics and decision-making problems. In the Section 4 

an assembly process is thoroughly analysed, and the Q-Learning algorithm is implemented 

in three different scenarios to optimize the assembly sequence. Finally, in the Section 5, the 

conclusions are presented as well as suggestions for future work. 
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2. REINFORCEMENT LEARNING 

As previously stated, machine learning can be divided into three main categories, 

supervised learning, unsupervised learning and reinforcement learning. 

Typically, in reinforcement learning problems the agent has a goal (or goals) 

related to the environment’s state and has both the capabilities of taking actions that may 

affect the environment and extracting information regarding to the environment’s current 

state. The RL agent is supposed to learn an optimal behavioural strategy where, based on the 

information available from the environment, it takes the optimal actions towards its desired 

goal (Sutton and Barto 2018). This mapping from the perceived states to actions is known 

as the policy 𝜋, which is the RL agent´s core. In other words, the policy is the set of stimulus-

response rules or relations. This policy, given a state 𝑠 and an action 𝑎, may be deterministic, 

𝑎 = 𝜋(𝑠), or stochastic which would imply the need to specify the probability for each 

action, 𝑎~𝜋(𝑠, 𝑎) = 𝑝(𝑎|𝑠). 

Contrarily to RL, in SL an external supervisor provides a training set of labelled 

examples, i.e. a set of situations together with the correct action the system should take in 

each situation, which the model uses to learn. The goal is to extrapolate the trained system 

response to situations not yet seen. Notwithstanding, it could not be adequate to learn from 

interaction since it’s often impractical to obtain correct and representative examples of every 

desired behaviour (difficult to have labelled data). However, RL might be combined with 

SL in specific cases where it would be important to determine which capabilities are critical 

or not. UL on the other hand is about finding patterns hidden in sets of unlabelled data. 

 

2.1. Modelling theory 

To better understand the formalization of RL problems, the concepts of Markov 

chains, Markov decision processes (MDPs) and partially observed Markov decision 

processes (POMDPs) are introduced. The Markov chain, ℳ = {𝒮, 𝒯}, is a simple graphical 

model proposed by Andrey Markov which can be defined by a state space 𝒮 and a transition 

operator 𝒯. The state space is a set of valid states 𝑠 the system can occupy, 𝑠 ∈ 𝒮, and the 
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transition operator defines the conditional distribution of the next state over the previous 

state, i.e. 𝑝(𝑠𝑡+1|𝑠𝑡).  Figure 2.1 shows an example of a Markov chain. 

 

 

Figure 2.1. Markov chain. 

 

To define a Markov decision process, ℳ = {𝒮, 𝒜, 𝒯, 𝑟}, an action space 𝒜 and 

a reward function 𝑟 are added to the Markov chain definition. The action space is, in other 

words, the set of possible actions 𝑎 the agent can take such that 𝑎 ∈ 𝒜. In Markov decision 

processes, the transition probabilities are not only conditioned on the previous state but also 

on the previous action, 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡). Since the policy is the mapping of the states to actions, 

𝜋𝜃(𝑎𝑡|𝑠𝑡), a graphical representation of a Markov decision process can be observed in Figure 

2.2. 

 

 

Figure 2.2. Markov decision process (MDP). 

 

Classical RL problems are formalized as Markov decision processes. The reason 

for this formalism is the increased difficulty in computation, by considering all the states and 

actions taken from the initial state to the current state. Using MDPs the system only needs 

to keep track of the last state and action. However, it is important to understand that this 

Markov assumption leads to the loss of data, which in some situations might be relevant 

since rewards may be infrequent and delayed. 

Lastly, POMDPs are a generalization of MDPs and are used in particular RL 

problems where the agent cannot sense every information regarding the environment’s state, 
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and therefore, can only act according to the (partial) observations it makes of the 

environment. To define the POMDPs, an observation space 𝒪 and the emission probabilities 

ℰ are added to the MDPs’ definition so that ℳ = {𝒮, 𝒜, 𝒪, 𝒯, ℰ, 𝑟}. The observations space 

is the set of all possible observations the agent can make 𝑜 ∈ 𝒪 and the emission probability 

defines the probability of an agent making a certain observation 𝑜 in regards to the 

environment state 𝑠, 𝑝(𝑜𝑡|𝑠𝑡). Since the agent acts on the observations taken, the policy is 

now defined as 𝜋𝜃(𝑎𝑡|𝑜𝑡). An example of such a process can be observed in the Figure 2.3. 

 

 

Figure 2.3. Partially observed Markov decision process (POMDP). 

 

The learning agent must evaluate whether it is being successful in the task. An 

agent can discern good from bad events based on the reward signal, which is analogous to 

the way humans learn when experiencing pain or pleasure. This is the primary source of 

improvement of the policy, since if the action selected in a certain state returns a low reward, 

then the policy may be changed so that, when faced by the same exact state, the policy selects 

a different and more rewarding action. However, the agent’s goal is to maximize the 

accumulated reward over time through the actions chosen. However, an action with a high 

immediate reward might not be the optimal choice, since it may lead to a lower accumulated 

reward over the future. To tackle this issue there are two important concepts, the value 

function and the quality function, usually known as Q-function. 

Given a policy, the value function is defined as the total expected reward from a 

given state 𝑠𝑡: 

 

 𝑉𝜋(𝑠𝑡) = ∑ 𝐸𝜋𝜃
[𝑟(𝑠𝑡′ , 𝑎𝑡′)|𝑠𝑡]

𝑇

𝑡′=𝑡
 ( 2.1 ) 
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The Q-function is, on the other hand, the total expected reward from taking the 

pair action 𝑎𝑡 in the state 𝑠𝑡: 

 

 𝑄𝜋(𝑠𝑡, 𝑎𝑡) = ∑ 𝐸𝜋𝜃
[𝑟(𝑠𝑡′ , 𝑎𝑡′)|𝑠𝑡, 𝑎𝑡]

𝑇

𝑡′=𝑡
 ( 2.2 ) 

 

Actions must therefore be selected based on value judgements because the 

agent’s goal is to maximize the accumulated reward over time. Unfortunately, while rewards 

are given directly by the environment, values must be estimated multiple times within the 

sequence of observations. 

Another significant concept in RL is the model of the environment, which is an 

element used for planning a course of action considering the future states. This element 

describes the way the system and the environment will evolve over time as a stochastic 

function of the current state and actions (Abbeel 2008), which means that given a certain 

state and action the model might be able to predict the next probable state and reward. 

 

2.2. Algorithm structure 

RL algorithms can be structurally subdivided into three different parts (Figure 

2.4). The first one corresponds to its ability to generate new sample experiments (i.e. run the 

initial policy) by interacting with the environment. After generating samples, the algorithm 

must fit a model and evaluate its performance. Lastly, the policy is improved. 

 

 

Figure 2.4. Structure of an RL algorithm. 
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Given the anatomy of RL algorithms, they can be classified into three categories 

of methods which are value-function methods, policy search methods and actor-critic 

methods. The value-function methods, also known as critic-only methods, are based on the 

idea of initially discovering the optimal value function by fitting a value-function or a Q-

function and then deriving the optimal policy from this. On the other hand, the policy search 

methods, also known as actor-only methods, search directly in the policy space by summing 

the rewards of sample trajectories, which is only possible if the search space is restricted. In 

the particular case of policy search algorithms, known as policy gradient methods, one step 

of gradient ascent is applied on the expected reward objective. Lastly, the actor-critic 

methods are a combination of both where the critic monitors the agent’s performance by 

fitting a value function or a Q-function to determine when the policy must be changed by 

the actor. Moreover, the models can be also divided into model-free algorithms, which do 

not use models of the environment and are explicitly trial-and-error learners and model-

based algorithms, which use the model for planning or policy improvement. 

The reason for the vast number of existing RL algorithms and approaches is the 

usage of reinforcement learning to tackle a large variety of different problems, with different 

specificities and setups. Different problems require different properties of RL algorithms 

which relate to sample efficiency, stability, ease of use and assumptions used. 

Sample efficiency is related to the number of samples required to arrive at a good 

final policy. One of the most important factors in sample efficiency is regarded to the 

algorithm being on-policy or off-policy. An off-policy algorithm is able to improve without 

generating new samples from the new policy, while an on-policy algorithm requires the 

generation of new samples each time the policy is changed. Therefore, an on-policy 

algorithm is less sample efficient than an off-policy. Most policy gradient methods are on-

policy and value-function methods are off-policy. The comparison of sample efficiency 

between the various classes of algorithms can be observed in the diagram of the Figure 2.5. 
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Figure 2.5. Sample efficiency of the different classes of algorithms. 
Adapted from (Levine 2018). 

 

The sample efficiency, however, does not deem an algorithm better than the 

other, since they could require more computation time. Sample efficiency is particularly 

relevant when applying RL in problems which require samples from the real world, instead 

of a simulated environment. In terms of stability, only policy gradient methods are proven 

to converge since they use a method of gradient ascent. Moreover, algorithms often require 

certain assumptions, such as full observability, episodic learning and continuity or 

smoothness. Another important criterion is the difficulty of representing elements such as 

reward functions, policies and models being dependent on the type of problem in study. 

 

2.3. Main challenges 

Even though many advances were made in recent years, there are yet some 

challenges when applying RL algorithms. This is particularly evident when applying RL in 

robotic settings because the robot’s states and actions are inherently continuous. Therefore, 

the resolution at which they are represented must be specified, often related to control 

problems (Kober, Bagnell, and Peters 2013). 

The first challenge arises in the learning phase where the agent must do a trade-

off between exploration and exploitation, which means that the agent must choose actions it 

knows from previous experience to be effective in producing reward (exploitation). 

However, in order to discover such actions, the agent must take actions not previously 

selected (exploration). This challenge is known as the exploration-exploitation dilemma 

(Sutton and Barto 2018). 

Another common challenge in RL problems is the “curse of dimensionality” 

(Bellman 2003). In high-dimensional spaces, when the number of dimensions grows, the 

data and computation needed to cover the entire state-action space increases exponentially. 
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To ensure global optimality, data must be collected throughout the entire state-space, which 

may be infeasible in high-dimensional state-action spaces (Kober, Bagnell, and Peters 2013). 

There is also the “curse of real-world samples” since robots inherently interact 

with the physical world. This means that there are restrictions on expensive hardware, 

component’s wear and economical and logistical consequences of maintaining or repairing 

such systems. Consequently, when applying RL in robotic systems a safe exploration is 

critical, besides that most real robot learning tasks require human supervision (Kober, 

Bagnell, and Peters 2013). 

In order to limit the need for real-world interactions, accurate models are often 

used as simulation systems. Ideally, such models would allow the system to learn on 

simulations which would be later transferred to the real scenario/robot. However, creating 

accurate models is very challenging and sometimes even impracticable. Small errors due to 

under-modelling can accumulate and make the simulation robot diverge from the real-world 

robot, which limits the direct transfer to the real system. This challenge is usually known as 

“curse of under-modelling and model uncertainty” (Kober, Bagnell, and Peters 2013). 

Finally, in RL the desired behaviour is often specified by the reward function, 

which is frequently easier than defining the behaviour itself, however, in practice, in some 

problems it may be astonishingly difficult. This RL challenge is often known as “curse of 

goal specification”. In order to specify reasonable reward functions, the reward function 

often needs to include intermediate rewards, in a process named reward shaping (Kober, 

Bagnell, and Peters 2013). 
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3. STATE OF THE ART 

3.1. Background 

As stated, RL algorithms can be generally divided into model-free algorithms 

and model-based algorithms. It is also relevant to further divide model-free algorithms into 

value-function methods, policy search methods and actor-critic algorithms. 

In the case of value-function methods, (Sutton 1988) devised a temporal 

difference algorithm known as TD(λ) in the early stages of modern reinforcement learning. 

This algorithm led to the highly successful TD-Gammon, a game-learning program capable 

of beating professional gammon players (Tesauro 1995), which incentivised further work in 

the RL field. 

One of the most well-known value function algorithms is Q-learning, which is 

also a temporal difference learning algorithm. Q-learning was introduced by (Watkins 1989) 

(Watkins and Dayan 1992) and is based on the idea of learning a table of Q-values, known 

as Q-table, from the successive interactions with the environment. After all the 

improvements in the Q-table, the actions are chosen based on the best Q-value available in 

the current state. This algorithm is highly affected by the curse of dimensionality since the 

increase in dimensions increases the Q-table’s size. In order to tackle this problem, the deep 

Q-network algorithm was introduced (DQN). 

The DQN algorithm combines Q-learning with deep neural networks (DNNs) by 

substituting the Q-table with a DNN, which takes the state and approximates the Q-values 

for each action. The use of DNN also allows the agent to learn directly from high-

dimensional sensory inputs, such as images (Mnih et al. 2015). The use of DNNs in RL, also 

known as deep RL, proved to be a highly successful approach to tackle the “curse of 

dimensionality”.  (van Hasselt, Guez, and Silver 2015) proposed the Double Q-Learning 

algorithm, an improvement on the Q-Learning algorithm by tackling the problem of 

overestimation on the action values under certain conditions (Van Hasselt 2010). Similarly, 

since DQN was also known to suffer from overestimation of the values of the actions a 

similar improvement to DQN was made, surging the algorithm Double DQN. 
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Another well-known value-function method is the SARSA algorithm (Rummery 

and Niranjan 1994) which is identical to Q-Learning with the differences of being an on-

policy algorithm, that follows a policy to find the next action instead of choosing an action 

in a greedy fashion. 

In the category of policy search algorithms, policy gradient methods are the most 

widely used, however, alternative methods can be employed such as methods inspired by 

expectation maximization. One example of such algorithms is the Policy Learning by 

Weighting Exploration with Returns (PoWER) and was designed for robotic tasks. This 

method updates by a reward-weighted imitation of previously seen episodes and leverages 

the use of the motor primitives’ concept. Motor primitives encode elemental motions which 

can be generalized, sequenced and combined into more complex tasks. In essence, this 

algorithm performs a local search around the policy learned from demonstration and 

previous knowledge (Kober and Peters 2009). 

Regarding to policy gradient algorithms, the REINFORCE algorithm was 

proposed in (Williams 1992). This algorithm relies on estimate returns by Monte Carlo 

methods to update the policy weights.  

Policy gradients, however, have two major flaws as they have low sample 

efficiency and poor convergence. In order to tackle the poor convergence problem, natural 

policy gradients where introduced. This approach, which had its origins in supervised 

learning (Amari 1998), was later introduced to the reinforcement learning field by (Kakade 

2001). The way natural policy gradients tackle the poor convergence problem is by the usage 

of a fixed penalty coefficient in order to limit the policy change, so that the collapse of the 

training performance is prevented.  

Similarly, the Trust Region Policy Optimization algorithm (TRPO) (Schulman 

et al. 2015), later devised, tackles the poor convergence problem in a similar fashion but 

instead of using a fixed penalty coefficient, it uses a method named as fixed KL divergence, 

which is basically a measure of difference between the old and the new policy. These last 

two algorithms are second-order optimization methods, and therefore, are computationally 

expensive.  

Proximal Policy Optimization (PPO) (Schulman et al. 2017) was later introduced 

as an algorithm capable of attaining the data efficiency and the reliable performance of 

TRPO, while only using first-order optimization.  
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Regarding to actor-critic methods, the actor-critic architecture was introduced 

by (Barto, Sutton, and Anderson 1983) and was applied in a pole-balancing problem. The 

algorithms Advantage Actor-Critic (A2C) and Asynchronous Advanced Actor-Critic (A3C) 

are two classic actor-critic methods specialized on parallel training (Mnih et al. 2016). In 

these algorithms, the critics learn the value function while multiple actors are trained in 

parallel. In A3C the actors get synced from time to time and each actor talks independently 

with the global parameters. The A2C, on the other hand, has a coordinator who waits for the 

work completion of all the actors before updating the global parameters, and therefore, in 

the following iteration all the actors start from the same policy. A2C is essentially a 

synchronous deterministic version of the algorithm A3C.  

Another interesting actor-critic algorithm is the Deterministic Policy Gradient 

(DPG), which considers deterministic policies instead of the usual stochastic policies. This 

algorithm was also able to outperform its stochastic counterparts in a RL problem with 20 

continuous action dimensions and 50 state dimensions (Silver et al. 2014). Following DPG 

successes, a new algorithm named Deep Deterministic Policy Gradient (DDPG) was 

proposed by adapting the DQN’s idea of combining deep neural networks in reinforcement 

learning algorithms (Lillicrap et al. 2015). In a similar fashion to DQN, the usage of a deep 

neural network allowed this new algorithm to process high-dimensional sensory inputs. 

The algorithm Normalized Advantage Function (NAF), a continuous variant of 

the Q-Learning algorithm, was introduced in (Gu et al. 2016). This algorithm was devised 

to simplify the standard actor-critic style algorithms while conserving the benefits of 

nonlinear function approximation. This algorithm was tested against DDPG and was able to 

outperform it in the majority of the simulated tasks. This algorithm was also shown to 

improve its sample efficiency when incorporating learned models, however, the learned 

models were required to perfectly match the real model. 

DDPG was further improved with the introduction of Distributed Distributional 

DDPG (D4PG) algorithm (Barth-Maron et al. 2018). This algorithm includes two major 

differences which are distributional updates and multiple distributed workers which write 

into the same replay table. When tested across a wide variety of simple control tasks, difficult 

manipulation tasks and hard obstacle-based locomotion tasks, the D4PG achieved state of 

the art performance. 
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Another relevant deep reinforcement learning algorithm is the Soft Actor-Critic 

(SAC) (Haarnoja et al. 2018). This algorithm is based on the maximum entropy RL 

framework, in which the actor aims to maximize the expected reward as well as maximizing 

the entropy, i.e. to be successful at the task while acting as randomly as possible. SAC is an 

off-policy maximum entropy actor-critic algorithm that can provide both sample efficient 

learning and stability. Effectively, this algorithm has been proved to extend to very complex 

high-dimensional tasks, such as the Humanoid benchmark (Duan et al. 2016) with 21 action 

dimensions, where off-policy methods such as DDPG tend to struggle to obtain good results. 

Model-based algorithms, instead of learning directly from experience by 

performing actions in the environment, they use a reduced number of interactions with the 

environment to build a model and then use this model to simulate the further episodes. The 

model learning task is based on the experience acquired where for each action and state the 

environment provides a new state and a reward. This is essentially a supervised learning 

problem. 

In summary, the main loop of model-based reinforcement learning starts with 

the collection of experience in the real environment. The experience is then used to generate 

a model, which is used to generate new samples. The value functions and policies are 

updated with the new samples and the new value functions and policies are used to select 

the next action to be performed in the environment (Figure 3.1). 

 

 

Figure 3.1. Model-based reinforcement learning’s main loop. 
Adapted from (Sutton and Barto 2018). 



 

 

  State of the art 

 

 

Miguel António Silva Neves  17 

 

An alternative to this loop is known as the Dyna Architecture. In this architecture 

the real experience is not only used to build the model but also to update the value functions 

and policies (Figure 3.2). 

 

 

Figure 3.2. Model-based reinforcement learning based on the Dyna Architecture. 
Taken from (Sutton and Barto 2018). 

 

An example of an algorithm that employs the Dyna architecture is the Dyna-Q 

algorithm. This algorithm proposed by (Sutton 1990) was built based on (Watkins 1989) Q-

Learning algorithm. 

When solving complex high-dimensional problems, standard policy gradient 

methods often require a large number of iterations and are prone to poor local optima. To 

solve these difficulties the algorithm Guided Policy Search (GPS) uses trajectory 

optimization to guide the policy away from poor local optima (Levine 2013). However, in a 

context with a small number of real-world samples, the resulting neural network is only 

robust in the neighbourhood of the trajectory distribution explored by real-world 

interactions. Generative Motor Reflexes (GMR) was introduced to tackle this exact problem, 

improving robustness by using motor reflexes and stabilizing actions (Ennen et al. 2019). 

One of the key problems with model-based algorithms is the model bias, i.e. the 

assumption that the learned model resembles accurately the real environment. This can be a 

problem especially when only a few samples and no prior knowledge are available regarding 

to the task at hand. To tackle this issue an algorithm named PILCO (probabilistic inference 

for learning control) was introduced. This model-based policy search algorithm implements 
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a probabilistic dynamic model to express the model uncertainty and incorporates model 

uncertainty into planning and policy evaluation (Deisenroth and Rasmussen 2011). 

Model-based algorithms often require exhaustive exploration to learn an 

accurate model. To tackle this the algorithm Reinforcement Learning with Decision Trees 

(RL-DT) was proposed. This method, as the name implies, uses decision trees to learn 

efficiently and rapidly a model of the domain, which is later used to compute a reasonable 

policy. This characteristic and the usage of an explicit exploration mode where the fewest 

visited states are explored turn RL-DT a sample efficient algorithm (Hester and Stone 2009). 

Lastly, a new reinforcement learning model-based method, whose agent is 

known as Dreamer, was introduced recently. Dreamer learns long-horizon behaviours purely 

by latent imagination. This method was shown to outperform previous methods, such as A3C 

and D4PG, in data-efficiency, computation time and final performance on a variety of 

challenging continuous control tasks (Hafner et al. 2020). 

All the algorithms previously mentioned have in common a reward function. 

However, designing a reward function is critical to obtain good results and if there is 

misspecification the reward function can be exploited by the agent and cause unintended 

behaviour. Further than that, in some complex RL problems, the design of the reward 

function might be very difficult or even unfeasible. To tackle such problems, regarding the 

“curse of goal specification”, Inverse Reinforcement Learning (IRL) (Russell 1998) and 

Variational Inverse Control with Events (VICE) (Fu et al. 2018) were developed. 

In IRL, instead of designing a reward function, the agent learns the correct 

behaviour by mimicking expert behaviour, i.e. modelling the preferences of another agent 

using its observed behaviour (Russell 1998). 

However, IRL requires examples of expert behaviour to learn, which might be 

hard to obtain, and therefore, VICE was proposed to generalize IRL to alternative forms of 

expert supervision. An example of that would be the replacement of full demonstrations by 

examples of the desired outcome of the task (Fu et al. 2018). The comparison between IRL 

and VICE can be better understood by the Figure 3.3. In IRL a policy is learned by 

mimicking somewhat closely the correct expert behaviour (supervision). In contrast, in 

VICE the supervision is made solely from desired outcomes which can lead to a range of 

completely different policies despite the similar outcome. 
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Figure 3.3. Comparison between IRL and VICE. 
Taken from (Fu et al. 2018) 

 

One implementation of VICE is the Off-policy VICE-RAQ with soft actor-critic 

algorithm, known simply as VICE-RAQ, where RAQ stands for RL with active queries 

(Singh et al. 2019). This algorithm is an integration of off-policy VICE, an extension of 

VICE to an off-policy setting by using the SAC algorithm, in an active query framework. 

The active query framework corresponds to the request of user labels of success for the 

current state. 

Another important approach in the field of reinforcement learning is hierarchical 

reinforcement learning (HRL). This approach has the goal of solving more abstract and 

difficult problems that can be subdivided into simpler tasks. In other words, HRL methods 

were created with the objective of learning and planning while using high-level macro-

actions instead of low-level primitive actions. The most well-known formulation for HRL is 

the Options framework (Sutton, Precup, and Singh 1999). An example of an option would 

be a navigation task, where if an agent does not have any obstacle it would move forward 

until one was found. In this particular case, the initiation set would be the non-existent 

obstacle in its’ path, the policy would describe the forward movement and the termination 

condition would be the encounter of an obstacle. As shown in the Figure 10, once in a 

classical MDP in each time step an action is chosen, in HRL there is a decision of an option, 

in particular states represented by the white circles. This option initiates and is executed 

based on its policy until it terminates. This skill acquisition method builds a skill tree from 

a set of sample solution trajectories obtained. It uses a detection method to segment each 
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solution trajectory into chains of skills, in each one is allocated its abstractions and finally, 

the skill chains are then merged into a skill tree (Konidaris et al. 2010). 

 

 

Figure 3.4. Comparison between a MDP and a MDP using the Options framework. 
Adapted from (Sutton, Precup, and Singh 1999). 

 

3.2. Applications 

Before introducing RL applications in the fields of robotics and anomaly 

detection examples, it is important to start by mentioning two examples of highly successes 

in the area of game playing. 

The first one is the application of RL in a set of 49 Atari games by developing 

the DQN algorithm. This new algorithm was able to outperform the best RL methods at the 

time in 43 out of the set of 49 game. Furthermore, DQN performed at a level comparable to 

a professional player, achieving more than 75% of the human score in 29 out of the set of 49 

games tested (Mnih et al. 2015). 

The second one is the development of the Go playing program known as 

AlphaGo. This program achieved a 99.8% winning rate against other Go programs and 

defeated the European Go champion by 5 games to 0 (Silver et al. 2016). This program was 

trained by supervised learning from human expert moves and by reinforcement learning 

from self-play. This program was further trained and competed against the 9 dan player Lee 

Sedol, winner of 18 international titles. This new version of AlphaGo (AlphaGo Lee) won 4 

out of the 5 games played. Later, a new algorithm, AlphaGo Zero, was later developed as an 

improvement on the previous successes of AlphaGo. This new algorithm is based solely on 
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reinforcement learning and does not use human data. AlphaGo Zero won against the 

previous AlphaGo 100 games to 0 (Silver et al. 2017). 

In the robotics context, reinforcement learning was implemented both in 

simulated environments and real-world environments in a variety of highly complex tasks. 

The following advances in RL presented are divided in purely simulated applications and 

applications with real-world implementation. 

In the work by (Maravall, de Lope, and Martín H. 2009), evolutionary algorithms 

and reinforcement learning were incorporated to combine the advantages of both methods. 

While RL is a method effective in real-time and on-line applications, it has some difficulties 

when applied in high-dimensional problems. On the contrary, evolutionary algorithms are 

powerful off-line optimizers, especially in extremely high dimensional spaces, however, 

they are not suited to real-time, on-line environments. Therefore, a hybrid approach was 

proposed in the application of autonomous navigation of a L-shaped two-link robot in a 

cluttered environment with unknown obstacles. 

Another virtual application in robotics is proposed in (Maeda and Aburata 2013), 

where a virtual robot is initially trained by supervised learning to push a cubic object from 

an initial position to the target position. The robot is then trained further by an actor-critic 

RL method which improves its ability to solve this task from shifted initial positions. 

Learning real-world tasks from scratch is an extremely complex problem since 

it requires usually big training times and a high sample-complexity. To tackle this issue, in 

(Gu et al. 2017), an asynchronous version of the NAF algorithm, parallel NAF, was used in 

a variety of robotic arm tasks both in simulation and in the real-world. This algorithm allows 

various robots to learn simultaneously in an asynchronous fashion, which reduces the 

training time proportionally to the number of robots in use. The robotic arms were trained 

with success in random target reaching tasks, in virtual and real environments, door opening 

tasks, in real and virtual environments, and pick and place tasks, in a virtual environment. 

Similar tasks were also learned by 48x48 RGB image observations and active 

queries, both in virtual and real environments, in a 7-DoF robotic arm by the usage of the 

proposed VICE-RAQ algorithm (Singh et al. 2019). In this case, the tasks learned in a virtual 

environment were an object pushing task, where a mug is pushed onto a coaster, a door 

opening task and an object picking task. In the real environment, the tasks learned were an 

object pushing task, similar to the simulated one, a draping task, were the robot arm drapes 
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a cloth over an object, and a bookshelf task, where the robot arm places a book in an empty 

slot of the bookshelf. In (Rupam Mahmood et al. 2018) a UR5 robot was trained a real-world 

reaching task using the TRPO algorithm with the objective of observing the impact of task 

setups elements in the performance of the robot. A six axes Kinova Jaco 2 robot arm was 

trained in a similar reaching task and in a task where the robot was expected to place a block 

in a hole using GMR, an improvement on the GPS algorithm, both in a simulation and in the 

real-world. GMR proved itself as more robust than the GPS algorithm (Ennen et al. 2019). 

In (Kormushev, Calinon, and Caldwell 2010) a WAM robot was successfully trained in a 

similar reaching task and in a highly complex pancake flipping task with the help of the 

policy search algorithm PoWER. 

In order to reduce the programming effort required by an expert, in (Akkaladevi 

et al. 2018) an approach based on Interactive Reinforcement Learning is proposed, where a 

complete collaborative assembly process is learned. The learning approach is done in two 

steps. The first one consists of modelling simple tasks that constitute the assembly process, 

using task-based formalism. These modelled simple tasks are then used by the robotic system 

by proposing to the user a set of possible actions at each step of the assembly process via a 

graphic user interface (GUI). After the user selects the action, the robot performs it, 

progressing the assembly process while learning the assembly order. The framework also 

allows different users to teach different assembly processes to the robot. This proposed 

approach is based on Q-Learning and IRL and was successfully applied in a UR10 robot in 

an assembly process comprising tasks such as, picking, holding, mounting and receiving 

objects. 

An especially relevant task in robotics is the locomotion task. Since the Sony 

Aibo robot ERS-210A has by default a fairly slow gait, its gait is usually enhanced by hand-

coding or by the usage of learning algorithms. Hand-coding a parametrized gait is very time-

consuming and requires human expertise. Therefore, in (Kohl and Stone 2004) the 

application of policy gradient RL in the continuous 12-dimensional space problem was 

proposed. The final gait obtained surpassed previous hand-coded and learned solutions. 

An interesting and challenging application of RL in robotics is the usage of the 

model-based RL-DT algorithm to learn how to do penalty kick goals on the Aldebaran Nao 

humanoid robot. This algorithm was proposed since it generalizes during model-learning, 

which limits the number of trials needed for learning. The robot was first trained in a 
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simulated environment with a standard ball location and then with a randomized ball 

location. Finally, this task was learned on the physical robot (Hester, Quinlan, and Stone 

2010). 

IRL algorithms proved to be successful in solving, very challenging, previously 

unsolved control tasks. They have enabled a quadruped robot, designed by Boston 

Dynamics, to traverse challenging, previously unseen terrain. IRL algorithms also extended 

the state-of-the-art in autonomous helicopter flight and achieved the ability to perform the 

most challenging aerobatic manoeuvres performed by any autonomous helicopter to date, 

including manoeuvres such as continuous in-place flips, rolls and tic-tocs. Effectively were 

achieved performances in aerobatic flight, in the XCell Tempest and the Synergy N9 

helicopters, comparable to that of the best human pilots (Abbeel 2008). 

Another highly complex and relevant RL development in robotics is the usage 

of HRL. In (Konidaris et al. 2011), with the goal of solving several tasks in a room, such as 

handle pulling, button pushing and switch pressing, in a specific order an uBot-5 robot was 

first trained how to interact with each object and in which order. Then, using the CST HRL 

algorithm these skills were able to be transferred so that the robot would learn how to solve 

a different room with similar tasks.  

In the anomaly detection field, a time series anomaly detector was created with 

the help of a recurrent neural network (RNN) combined with Q-Learning. This detector was 

formulated with the required features making no assumption about the concept of the 

anomaly, being threshold-free and being able to improve dynamically. This detector was 

trained on Yahoo benchmark datasets. From the experiments made, the anomaly detector 

was capable of identifying shifts on means, point anomalies and anomalous patterns, and 

achieved high-quality results (C. Huang et al. 2018). 

In recent years, the research on the applicability of RL is also increasing in the 

fields of decision-making and system control problems. In (Fernandes 2019) Q-Learning 

was applied in a stock optimization problem and was able to achieve better results, up to 

25%, when compared with traditional stock management algorithms. (Wang and Usher 

2007) studied the implementation of the Q-Learning algorithm for the usage of job agents 

when establishing routing decisions in a job shop environment. In this work the effects of 

the Q-Learning application were investigated and guidelines for future applications and 

recommendations for factor settings were devised. Also, in dynamic job shop scheduling 
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problem (DJSS)  (Shahrabi, Adibi, and Mahootchi 2017) proposed the usage of RL with a 

Q-factor algorithm to improve the scheduling method’s performance while considering 

random job arrivals and machine breakdowns. In a simulated environment this proposed 

method achieved high performances. (J. Huang, Chang, and Chakraborty 2019) proved, 

through a simulation study, the effectiveness of the usage of Q-Learning in a maintenance 

problem where random failures of machines are highly disruptive. The performance in 

manufacturing work cells that utilize gantries to load and unload the materials and parts 

needed is highly dependent on the gantry movements in real operation. (Ou et al. 2018) 

formulated the gantry scheduling problem as a RL problem through the usage of Q-Learning 

and demonstrated, from the simulation results, the capability of effectively reducing system 

production losses in real-time operations. In the manufacturing field (Watanabe and Inada 

2020) proposed the usage of RL to improve assembly efficiency by a dual-arm robot and 

achieved higher performance when compared with other methods. By the usage of RL, 

(Low, Neo, and Kumar 2020) devised a process to automatically designing the fixtures used 

in a machining or measurement process to mitigate the dependence on the user’s experience 

of conventional methods. A common task in industrial manufacturing is the sorting of small 

parts. This task is typically done by the usage of vibratory bowl feeders, which are designed 

manually in a expensive trial-and-error approach. To tackle this issue (Stocker, Schmid, and 

Reinhart 2019) proposed the usage of Q-Learning. In the welding process RL was 

implemented in order to achieve an intelligent weld control capable of attaining and 

maintaining the desired weld pool width, (Jin, Li, and Gao 2019). Lastly, the usage of robots 

to replace simple manual manufacturing tasks sometimes encompasses some control issues. 

An example is the usage of a robot in a grinding task where the grinding force signal can 

easily overshoot during the impact stage and instabilities can occur during the process stage. 

To tackle these issues, (Zhang et al. 2020) propose a force control algorithm based on a 

press-and-release model and model-based reinforcement learning. This approach attained a 

fast convergence of the normal force in the impact and processing stages as well as a reduced 

surface roughness in the workpiece. 

 

 



 

 

  Case Study 

 

 

Miguel António Silva Neves  25 

 

 

4. CASE STUDY 

In this dissertation the assembly process of an airplane, from the Yale-CMU-

Berkeley Object and Benchmark Dataset (Figure 4.1), is studied and optimized through the 

implementation of a RL methodology. This process is representative of an assembly job of 

a complex product containing different parts and tools, decomposed in a number of tasks 

which can be assembled in different sequences by an assigned resource (for the purpose of 

this study we will disregard if it is a human or robotic resource). However, improving the 

time efficiency of such an assembly process is often impractical due to the complexity of 

measuring all tasks sequences’ time. For that reason, the goal of this work is to identify the 

effectiveness of the RL framework in the resolution of such a problem. 

 

 

Figure 4.1. Airplane from the Yale-CMU-Berkeley Object and Benchmark Dataset. 

 

In the first subchapter, the airplane’s components and assembly structure are 

thoroughly analysed. Later, in the second subchapter, the assembly problem is formulated 

using Q-Learning and is implemented in three different scenarios. The first scenario 

corresponds to the situation where the agent must learn a feasible assembly sequence, i.e. an 

assembly sequence that respects all the task precedences. In the second scenario, estimated 

time durations of each task are incorporated in the decision-making algorithm to foment the 

learning of the most time-efficient assembly sequences. In this scenario, the algorithm’s 
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parameters are individually analysed in order to improve the agent’s performance. Lastly, in 

the third scenario, more accurate and disperse time durations are implemented and the 

parameters are once again optimized. 

4.1. Problem description: airplane’s components and 
assembly structure 

The airplane is comprised of 9 structural parts and 2 types of fasteners, which 

are displayed in Table 4.1 and Table 4.2. 

 

Table 4.1. Airplane’s structural parts. 

Part Airplane’s part description Number of parts 

A Front wheels 2 

B Upper wing 1 

C Lower wing 1 

D Rear wheels 2 

E Cockpit window 1 

F Propeller 1 

G Propeller support (engine) 1 

H Lower fuselage (lower body of the airplane) 1 

I Upper fuselage (upper body of the airplane) 1 

J Tail wing (rear body of the airplane) 1 

K Front wheel’s support 1 

 

Table 4.2. Airplane’s fasteners. 

Fastener Fastener’s head type Number of fasteners 

n Wheel nuts 2 

s Screws 5 

 

After subdividing the airplane in parts and fasteners, the assembly process was 

subdivided in a total of 8 tasks. In the Table 4.3 each task is associated with the 

corresponding parts and fastener required. It is important to note that some parts can be used 
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in more than one task. For the assembly to be complete, every task must be executed without 

repetitions, therefore the number of different assembly sequences is 𝑛! = 8! = 40320. 

 

Table 4.3. Parts and fasteners associated with each task and their respective quantities. 

 Parts Fasteners 

Task A B C D E F G H I J K s n 

1       1 1 1     

2          1  1  

3      1      1  

4   1         1  

5  1         1 1  

6  1   1       1  

7 1          1  2 

8    1      1  1  

 

However, the feasible number of assembly sequences is lower than the 

previously calculated one, due to the fact that certain tasks require other tasks to be 

previously completed. Such precedence sequence dependencies are displayed in the Table 

4.4. 

 

Table 4.4. Precedence task’s dependencies. 

Task Precedence task 

1 None 

2 1 

3 1 

4 1 

5 1 and 4 

6 1 

7 None 

8 None 
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In order to determine the feasible number of assembly sequences, the actions can 

be placed in 8 slots, resembling the order in which the tasks are executed.  Since the actions 

7 and 8 have no dependencies they can be placed in any one of the 8 slots, therefore they can 

be calculated as a permutation of 8 slots taken 2 at a time ( 𝑃2
8 ). After assigning the tasks 7 

and 8, the action 1 must be executed in the first available slot since all the other actions are 

dependent to this task. The actions 4 and 5 can be placed in any available slot as long as the 

action 4 is executed before the action 5, which can be described as the combination of 5 

objects taken 2 at a time ( 𝐶2
5 ). Finally, the remaining actions can be executed in any order, 

which is represented as the permutation of 3 objects taken 3 at a time ( 𝑃3
3 ) (Figure 4.2). 

Therefore, there are 𝑃2
8 × 1 × 𝐶2

5 × 𝑃3
3 = 3360 feasible assembly sequences. 

 

 

Figure 4.2. Feasible assembly sequences’ scheme. 

 

4.2. MDP formulation 

As previously stated, the assembly process is subdivided in 8 different tasks, or 

actions, and the assembly can be considered as complete when all the 8 tasks have been 

executed. Therefore, the MDP’s states can be defined by the updated assembly status at each 

task, where the initial state would correspond to the situation where none of the actions were 
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executed, and the final state when all the actions were completed and the airplane is 

assembled. Each action can be assigned to a binary variable which would have the value of 

0 if the task is yet to be completed, and 1 if the task was already executed. To calculate the 

existing number of states, each state could be associated with an 8 digit binary number, in 

which the leftmost digit corresponds to the action 1, the following digit corresponds to the 

sequential action 2 and so on until the rightmost digit (Figure 4.3). The initial state would 

then be represented as 00000000 and the final state would correspond to 11111111, which 

in decimal notation corresponds to 0 and 255 respectively, thus, the number of states is 256.  

 

 

Figure 4.3. MDP’s states and actions scheme. 

 

However, some states are impossible to be achieved due to task precedences. 

There are two main groups of impossible states. The first one is the case where the first 

action was not executed and at least one of the actions 2, 3, 4, 5 and 6 has been executed, i.e. 

action 1 has the value of 0 and the actions 2, 3, 4, 5 and 6 can have the value of either 0 or 

1, which can be calculated as (25 − 1) states. Since the actions 7 and 8 can be either executed 

or not, the number of impossible states in the first group can be calculated as (25 − 1) × 22. 



 

 

A reinforcement learning application to an assembly decision-making problem 

 

 

30  2020 

 

The second group of impossible states corresponds to the case where the action 5 is executed 

previously to the action 4 while action 1 has already been done. In this case, the action 1 has 

been executed, the action 4 has not been executed, the action 5 has been executed. All the 

other actions were either executed or not executed, which mathematically corresponds to 25 

states. Thus, the number of impossible states is 1 × (25 − 1) × 22 + 25 = 156, which in 

turn means that the number of possible states is 256 − 156 = 100. 

 

4.3. Q-Learning implementation 

After defining the MDP’s states and actions, the Q-Learning algorithm was 

gradually implemented in three scenarios using MATLAB. In order to implement the Q-

Learning algorithm, it is necessary to understand the Q-Learning parameters used, therefore, 

it is important to understand how the Q-table is updated. The value iteration update is done 

at each step through the Bellman Equation, which consists on the weighted average of the 

old Q-value and the new information obtained, where 𝛼 corresponds to the learning rate, 𝛾 

to the discount factor, 𝑟𝑡 to the received reward when moving from state 𝑠𝑡 to 𝑠𝑡+1,  

𝒬𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) to the new Q-value of the state 𝑠𝑡 and action 𝑎𝑡, 𝒬(𝑠𝑡, 𝑎𝑡) to the old Q-value of 

the state 𝑠𝑡 and action 𝑎𝑡 and max
𝑎

𝒬(𝑠𝑡+1, 𝑎) to the estimate of the optimal future Q-value: 

 

 𝒬𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) ← 𝒬(𝑠𝑡, 𝑎𝑡) + 𝛼 × (𝑟𝑡 + 𝛾 × max
𝑎

𝒬(𝑠𝑡+1, 𝑎) − 𝒬(𝑠𝑡, 𝑎𝑡)) ( 4.1 ) 

 

The learning rate parameter has values between 0 and 1 and influences to what 

extent the new information changes the old information, which means that a lower learning 

rate leads to a longer learning time. However, it is important to note that a higher learning 

rate may lead to suboptimal results or even divergence. The discount factor determines the 

importance of future rewards, so the lower its value the less meaningful are the future 

rewards. If the discount factor has the value 0, only the current reward is considered. 

The selection of the action is made using an epsilon greedy search, i.e. the agent 

selects a random action with probability 𝜀 and otherwise selects the action greedily, with 

probability 1 − 𝜀, by selecting the action with the highest Q-value. The value of epsilon (𝜀) 

decays based on a decay rate known as epsilon decay. 
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The learning phase takes place over various episodes. In this specific case, an 

episode starts with no tasks done and ends when all tasks have been successfully completed 

or when the maximum number of steps has been reached. In all scenarios, the algorithm 

considered that, whenever the Q-Learning agent selected an impossible action, the current 

state does not change, which means that the sequence is penalised to require more than 8 

steps to complete an episode i.e. the agent could not successfully assemble the airplane with 

only 8 actions. The number of episodes required to complete the learning phase is dictated 

by the maximum number of episodes per experiment. At the end of the experiment, the agent 

selects the actions based solely on the Q-Values, which means that after learning, the agent 

selects always the same assembly sequence (learned assembly sequence), which could be 

for example the assembly sequence 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8. 

The values of the default parameters used in the Q-Learning algorithm 

implementation can be observed in the Table 4.5.  

 

Table 4.5. Values for the Q-Learning parameters. 

Parameter Value 

Learning rate (𝛼) 1 

Discount factor (𝛾) 1 

Epsilon (𝜀) 0.9 

Epsilon decay 0.01 

Max steps per episode 8 

Max episodes per experiment 1500 

 

4.3.1. Scenario 1: Learning a feasible assembly sequence 

In the first scenario of the Q-Learning algorithm implementation, the main goal 

was for the agent to be able to learn one feasible assembly sequence, as previously detailed, 

which corresponds to 100 ×
3360

40320
= 8.333% of all the assembly sequences. 

In order to do so, it is essential to previously define the rewards to account in the 

equation ( 4.1 ). In this simpler case, three types of rewards were defined: partial rewards, 

completion rewards and reward penalties. The partial rewards are attributed to each executed 
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task, the completion reward is granted when all tasks have been executed, and reward 

penalties are assigned when an impossible task is selected by the agent. 

This first implementation was executed in three different sets of rewards, as 

shown in Table 4.6, with the parameters in the Table 4.5 and was repeated in 120 

experiments. As previously stated, in each one of the 120 experiments one assembly 

sequence is learned. 

 

Table 4.6. Scenario 1: rewards. 

Rewards Set 1 Set 2 Set 3 

Partial reward 0 0 10 

Completion reward 0 100 100 

Reward penalty -10000 -10000 -10000 

 

In this scenario, all the 120 experiments were able to successfully learn one of 

the feasible assembly sequences, but not necessarily the same, which in turn did not allow 

to understand the impact of the partial and completion rewards in the determination of the 

most efficient assembly sequences. Without the ability to conclude the efficacy of each 

reward type in the Scenario 1, the complexity of the problem was increased in the Scenario 

2. 

4.3.2. Scenario 2: Learning an assembly sequence based on 
estimated task average times and variances 

4.3.2.1. Part 1: Introduction of estimated assembly times 

 

With the objective of understanding how well the agent would be able to 

compare the efficiency of the feasible assembly sequences based on the rewards, a new 

reward system was designed to ponder the time spent to perform each task. In this scenario, 

the tasks’ average times were estimated (Table 4.7) as well as the increase/decrease variances 

on the average times with respect to the tasks previously done (Table 4.8). 
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Table 4.7. Tasks’ average time. 

Task 1 2 3 4 5 6 7 8 

Average time 

(time units, t.u.) 
10 7 8 6 12 8 11 9 

 

Table 4.8. Tasks’ variance in respect to the average time (t.u.). 

Task 1 2 3 4 5 6 7 8 

Task 1 done       0 0 

Task 2 done   -1 -1.5 0 -1 0 1 

Task 3 done  0  0 0 0 0 0 

Task 4 done  -0.5 0   0 0 0 

Task 5 done  -1 -0.5   -2 1 0 

Task 6 done  0 0 0 0  0 0 

Task 7 done 0 0 0 0 0 0  0 

Task 8 done 0 0 0 0 0 0 0  

 

The rewards were then defined through the following equation, where 𝑹(𝑠, 𝑎) is 

the reward for taking the action 𝑎 in the state 𝑠, 𝑟𝑚 is the reward multiplier, 𝑟𝑠 the reward 

shift, 𝑟𝑝 the reward penalty and 𝑻(𝑠, 𝑎) the predefined time it takes to complete the action 𝑎 

in the state 𝑠, that is calculated by summing the respective variances to the task’s average 

time: 

 

 {
𝑅(𝑠, 𝑎) = 𝑟𝑚 × (−𝑇(𝑠, 𝑎) + 𝑟𝑠)

𝑅(𝑠, 𝑎) = 𝑟𝑝

𝑖𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑎𝑐𝑡𝑖𝑜𝑛

     𝑖𝑓 𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑎𝑐𝑡𝑖𝑜𝑛
 ( 4.2 ) 

 

Since the RL algorithm’s goal is to maximize the accumulated reward, in order 

to learn the most time-efficient assembly sequence (minimize the assembly sequence time), 

the matrix 𝑻(𝑠, 𝑎) must be subtracted in the equation ( 4.2 ). The 𝑟𝑠, as the name implies, 

shifts each reward by its value and, as a result, shifts the accumulated reward by eight times 

its value. The 𝑟𝑚, on the other hand, multiplies the shifted reward. Consequently, the 

accumulated reward is also multiplied by 𝑟𝑚. If 𝑟𝑚 and 𝑟𝑠 have the values of 1 and 0 
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respectively the accumulated reward is equal, in absolute values, to the duration of the 

assembly sequence. 

The accumulated rewards for all feasible assembly sequences for these exact 

values of 𝑟𝑚 and 𝑟𝑠 are displayed in the Figure 4.4. 

 

 

Figure 4.4. Distribution by number (A) and percentage (B) of feasible assembly sequences’ accumulated 
rewards. 

 

As it can be observed in the Figure 4.4 (B), the most common accumulated 

reward, corresponding to 18.39% of all feasible assembly sequences, is -69.5, which 

correlates to the corresponding total assembly time. An example of such an assembly 

sequence is 8 → 1 → 3 → 4 → 7 → 2 → 6 → 5 where the accumulated reward is 

∑ 𝑅(𝑠, 𝑎) = −9 − 10 − 8 − 6 − 11 − 6.5 − 7 − 12 = −69.5. 

It is also possible to observe in the Figure 4.4 (A) that there are 50 feasible 

assembly sequences with the maximum accumulated reward of -65 (optimal accumulated 

reward). 

As in the scenario 1, each set of parameters and rewards was replicated in 120 

experiments for each set, so that a statistically relevant change could be observed for a 95% 

confidence interval. As an example, the mean, sample standard deviation and 95% 

confidence interval for the first set in Scenario 2 are calculated in the equations ( 4.3 ), ( 4.4 

) and ( 4.5 ) respectively based on the problem results presented in the Table 4.9 for the 120 

experiments. In the equation ( 4.4 ), for a 95% confidence interval the significance level (𝛼∗) 

has the value of 5% and since we are dealing with a sample size of 120 the number of degrees 

of freedom is 119. Therefore, the Student t value is equal to 1.6578 ≈ 1.658. 
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Table 4.9. Replication results of 120 experiments considering set 1. 

Accumulated reward Count Accumulated reward Count 

-65 3 -69 6 

-65.5 0 -69.5 21 

-66 10 -70 4 

-66.5 5 -70.5 15 

-67 12 -71 1 

-67.5 8 -71.5 6 

-68 12 -72 0 

-68.5 16 -72.5 1 

 

Table 4.10. Parameters of set 1. 

Rewards Value 

Reward shift 0 

Reward multiplier 1 

Reward penalty -10000 

 

 𝑥̅ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
= −68.558 ( 4.3 ) 

 

 
𝑠∗ = √

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

𝑛 − 1
= 1.652 ( 4.4 ) 

 

 𝑥̅ ± 𝑡𝛼∗

2⁄
×

𝑠∗

√𝑛
= −68.558 ± 1.658 ×

1.652

√120
== −68.558 ± 0.250 ( 4.5 ) 

 

In an initial sensitivity analysis, the parameters learning rate, discount factor, and 

the rewards (𝑟𝑠 and 𝑟𝑝) were tested individually (Figure 4.5) while using the parameters in 

the Table 4.5. The comparison of the performances for the various sets of parameters and 

rewards considers three indicators: the mean accumulated reward, normalized for a 𝑟𝑚of 1 

and a 𝑟𝑠 of 0; the percentage of times the agent learned one of the 50 optimal assembly 

sequences; and the percentage of times the agent failed to learn one feasible assembly 
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sequence in the 120 experiments. When the agent failed to learn a feasible assembly 

sequence the number of experiments was increased so that the mean would reflect 120 

correctly learned assembly sequences. The reason for this rule was the high penalty on the 

mean of an incorrectly learned assembly, which would turn unfeasible a correct comparison 

between sets. 

 

 

Figure 4.5. Impact of the learning rate (A), discount factor (B), reward shift (C) and reward penalty (D) on 
the agent’s performance. 

 

When examining the Figure 4.5 (A) and (B) we can observe that changing the 

learning rate and the discount factor seems to not affect significantly the percentage of fails 

and the percentage of optimal assembly sequences. However, it may suggest that a value 

lower than 1 in the learning rate and a higher discount factor could lead to better results. In 

regard to the 𝑟𝑠 in the Figure 4.5 (C), a negative value increases the likelihood of incorrectly 

learning an impossible assembly sequence because the agent is not able to differentiate 

between the penalties and the accumulated rewards shifted to values increasingly more 

negative. Also, a positive 𝑟𝑠 may lead to better results as seen in the mean increase for the 

value of 20. The reward penalty, as seen in the Figure 4.5 (D), understandably, influences 

the percentage of fails since an action with a higher 𝑟𝑝 is more likely identified as an incorrect 

action, i.e. the bigger the penalty the lower the percentage of fails. 



 

 

  Case Study 

 

 

Miguel António Silva Neves  37 

 

With the objective of understanding the impact of the 𝑟𝑚 and the maximum 

number of episodes they were individually changed maintaining the parameters in the Table 

4.5 and Table 4.10, except for the 𝑟𝑠 and 𝑟𝑝 with the new values of 20 and -1000000 

respectively. Also, in the experiments where the maximum number of episodes was altered, 

the selected 𝑟𝑚 used was 5. Even though the results may suggest better outcomes with a 

learning rate lower than 1, the parameter was kept unchanged for the following simulations 

since the higher the value the faster the learning (Figure 4.6). 

 

 

Figure 4.6. Impact of the reward multiplier (A) and maximum number of episodes per experiment (B) on the 
agent’s performance. 

 

In terms of the 𝑟𝑚 sensitivity analysis displayed in the Figure 4.6 (A), there is no 

statistically significant improvements in the agent’s performance. However, the value 

chosen for 𝑟𝑚 in future sets of parameters and rewards is 20 as it accomplished the best 

results. In respect to the maximum number of episodes, presented in the Figure 4.6 (B), it is 

possible to conclude that increasing the maximum number of episodes per experiment leads 

to an increase in performance (both visible in the mean and in the percentage of optimal 

accumulated rewards) until a certain value in which it seems to plateau. Though, is important 

to remember that a higher value for the maximum number of episodes is related to the 

amount of times the experiment has to be repeated for the agent to learn, which means that 

it is essential to maintain the number as low as possible because in a real scenario the 

maximum number of episodes in an experiment corresponds to the amount of assemblies 

required to learn the most efficient assembly sequence. Thus, for these parameters, and 

especially, for the epsilon decay of 0.0001, the optimal maximum number of episodes is 

3000. The optimal maximum number of episodes is dependent on the epsilon decay’s value 
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since a lower epsilon decay leads to a slower increase in the greedy selection by the agent 

and, as such, requires more episodes in the learning phase. In order to identify the relation 

between these two parameters, a graph of the evolution of the episodic accumulated reward 

in one of the experiments with 5000 maximum number of episodes is analysed (Figure 4.7). 

 

 

Figure 4.7. Evolution of the episode reward over the episodes for a value of epsilon decay of 0.0001. 

 

When analysing the Figure 4.7, it is possible to observe that after the previously 

identified optimal maximum number of episodes the episodic accumulated reward does not 

increase greatly, which could explain why increasing the maximum number of episodes 

further does not lead to a significant change in the results in the Figure 4.6. Similar graphs 

were analysed (Figure 4.8) for different values of epsilon decay in order to identify in which 

episode the episodic accumulated plateaus during an experiment to select this value as the 

optimal maximum number of episodes per experiment for the given epsilon decay. The 

optimal pairs of maximum number of episodes per experiment and epsilon decay are 

displayed in the Table 4.11. 
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Figure 4.8. Evolution of the episode reward over the episodes for various values of epsilon decay. 

 

Table 4.11. Maximum number of episodes selected for each epsilon decay value. 

Epsilon decay 0.005 0.002 0.001 0.0005 0.0002 0.0001 0.00005 0.00003 

Max episodes 90 175 350 800 1800 3000 6500 12000 

 

 

Figure 4.9. Graph of maximum number of episodes over epsilon decay. 

 

From the values available in the Table 4.11, a linear regression was devised using 

a logarithmic scale in both axes. As shown in the Figure 4.9, the data (Table 4.11) 
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approximated fits the function 𝑦 = 0.50528 × 𝑥−0.95747 where 𝑦 is the maximum number 

of episodes and 𝑥 the epsilon decay. 

Additional new experiments were run with the parameters shown in the Table 

4.12, apart from the epsilon decay and maximum number of episodes which were based on 

the Table 4.11. Their results are displayed in the Figure 4.10. 

 

Table 4.12. Parameters for the pair epsilon decay and maximum number of episodes experiment. 

Parameter Value 

Learning rate 1 

Discount factor 1 

Epsilon 0.9 

Max steps per ep. 8 

Reward shift 20 

Reward multiplier 20 

Reward penalty -1000000 

 

 

Figure 4.10. Impact of the pairs of epsilon decay and maximum number of episodes on the agent’s 
performance. 

 

As one can observe in the Figure 4.10 the increase in the maximum number of 

episodes, accompanied by the respective decrease in the epsilon decay, leads to better results 
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with an increase in the mean and in the percentage of optimal rewards. It is also possible to 

notice that such an increase only starts around 1800 and 3000 maximum number of episodes. 

4.3.2.2. Part 2: Reintroduction of completion rewards 

In the second part of this scenario, an earlier concept was reintroduced to explore 

if it was able to improve the results, the completion reward 𝑟𝑐. For its’ reintroduction, the 

reward function ( 4.2 ) needs to be updated to the following equation. 

 

 {

𝑅(𝑠, 𝑎) = 𝑟𝑐 + 𝑟𝑚 × (−𝑇(𝑠, 𝑎) + 𝑟𝑠)

𝑅(𝑠, 𝑎) = 𝑟𝑚 × (−𝑇(𝑠, 𝑎) + 𝑟𝑠)

𝑅(𝑠, 𝑎) = 𝑟𝑝

         𝑖𝑓 𝑙𝑎𝑠𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑎𝑐𝑡𝑖𝑜𝑛
𝑖𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑎𝑐𝑡𝑖𝑜𝑛

     𝑖𝑓 𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑎𝑐𝑡𝑖𝑜𝑛
 ( 4.6 ) 

 

Three different values for 𝑟𝑐were used (0, 100 and 500) with the parameters 

displayed in the Table 4.12 and with an epsilon decay of 0.000025 and a maximum number 

of episodes of 13000. The results of these three attempts are visible in the Figure 4.11. 

 

 

Figure 4.11. Impact of the completion reward on the agent’s performance. 

 

As expected, the completion reward worsens the accumulated reward results. 

This is explained by the addition of the completion reward value to all feasible assembly 

sequences, which leads to a less noticeable accumulated reward difference between them. 

The completion reward could be effective to minimize the percentage of fails, however, this 

percentage is already 0%. For a completion reward of 100, the mean difference is not 
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statistically relevant, however, both the percentage of optimal rewards and the mean seem 

to decrease with the increase of the completion reward. 

4.3.3. Scenario 3: Learning an assembly sequence based on 
measured task average times and estimated variances 

 

 In the third scenario of this project, each exact task time was measured and 

repeated 10 times (Table 4.13) so that the average processing times (Table 4.14) would be 

accurate. Before the measurements, each task was tested several times so that the variability 

in the times would be as small as possible. 

 

Table 4.13. Task’s time measurements. 

 Task 1 2 3 4 5 6 7 8 

Measured 

times 

[t.u.] 

1 6.36 9.10 8.59 6.75 10.62 9.87 12.36 10.06 

2 6.28 9.15 10.30 8.22 10.52 11.31 12.39 8.50 

3 4.71 8.00 8.70 7.90 9.82 11.56 12.88 8.03 

4 5.38 8.15 10.49 8.29 9.25 11.00 10.49 9.09 

5 5.80 8.30 8.75 7.25 9.44 8.95 11.22 8.90 

6 6.71 8.52 8.97 7.40 10.04 12.16 11.04 9.37 

7 5.73 8.17 9.00 7.95 9.07 9.24 11.94 7.70 

8 7.31 8.05 8.29 6.30 10.76 10.01 10.34 8.70 

9 5.16 7.62 8.33 7.75 9.95 9.56 10.14 8.15 

10 5.89 6.55 8.50 7.00 9.30 10.09 11.98 9.71 

Mean [t.u.] 5.93 8.16 8.99 7.48 9.88 10.38 11.48 8.82 

 

 

Table 4.14. Task’s average time. 

State 1 2 3 4 5 6 7 8 

Average 

time [t.u.] 

6 8 9 7.5 10 10.5 11.5 9 
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As in scenario 2, the tasks’ average times have variations in respect to the 

corresponding precedence tasks. These variations are difficult to measure and very time-

consuming and for that reason, as in the scenario 2, were estimated which means they are 

not an accurate depiction of the real scenario. (Table 4.15). It is important to notice, 

nevertheless, that the tasks variability complexity has increased from the scenario 2 so that 

there would be a larger variety of accumulated rewards and a lower number of assembly 

sequences with the largest accumulated reward, i.e. optimal assembly sequences. The 

variability was also increased by introducing the tool changeover time. Since there are two 

different types of fasteners, the fastening device’s tool must be switched during the assembly 

process. Regarding the fastening device, there are two main assumptions made, that the 

assembly process starts without any tool placed and the tool changeover lasts three time units 

to be performed. In order to introduce the tool changeover, the number of states must be 

increased since there is a new state information. The new states, apart from the 8 binary 

variables that define the completion of each task, have a new variable that can have three 

possible values (0, 1 and 2). The value 0 indicates that the fastening device does not have 

any tool placed (start of the assembly), the value 1 indicates that the fastening device has the 

screwdriver applied, and the value 2 indicates the nut driver is applied. The new total number 

of states is 1 + 255 × 2 = 511 since in the first state the fastening device has no tool and in 

any other state it can have either the first or the second tool. Apart from the impossible states 

similar to the ones in the scenario 2, which in this case are twice as much (312), there are 

additional impossible states where the tool is incorrect. Such impossible states are of two 

types: states where only the task 7 was executed and the first tool is applied, and states where 

the task 7 was not yet executed and the second tool is applied. The first kind of impossible 

states only occurs once, when only the task 7 has occurred. The second type of impossible 

tasks can be subdivided in three groups. In the first group, the task 1 has not been taken, and 

therefore, tasks 2 through 6 have also not been taken, task 8 has already been executed and 

the second tool is applied, which accounts for 1 impossible assembly sequence. In the second 

group, the task 1 has already been executed, while tasks 4 and 5 have not yet been executed, 

tasks 2, 3, 6 and 8 were either executed or not and the second tool is applied. This group 

accounts for 24 = 16 impossible states. Lastly, in the third group, the task 1 has already been 

taken as well as the task 4 and the tasks 2, 3, 5, 6 and 8 were either executed or not, which 
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accounts for 25 = 32. Therefore, the number of impossible states is 312 + 1 + 1 + 16 +

32 = 362 and the number of possible states 511 − 362 = 149. 

 

Table 4.15. Task’s variance in respect to the average time in time units. 

State 1 2 3 4 5 6 7 8 

Task 1 done       0 0 

Task 2 done   -2 -3 -0.5 -2 0 1.5 

Task 3 done  0  0 0 0 0 0 

Task 4 done  -1 0   -1.5 0 0 

Task 5 done  -2 -1   -3 2 0 

Task 6 done  -1 -0.5 1 -0.5  0 0 

Task 7 done 0 0 0 0 0 0  0 

Task 8 done 0 0 0 0 0 0 0  

 

With the respective changes to the average times and time variances the new 

distribution of accumulated rewards from the feasible assembly sequences can be observed 

in the Figure 4.12. 

 

 

Figure 4.12. Distribution by number (A) and percentage (B) of feasible assembly sequences’ accumulated 
rewards. 

 

The new distribution has, as previously stated, a larger variety of accumulated 

rewards and the highest accumulated reward or optimal accumulated reward is shared only 
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by 2 assembly sequences (Figure 4.12 (B)), which are 7 → 1 → 8 → 2 → 4 → 5 → 6 → 3 

and 7 → 8 → 1 → 2 → 4 → 5 → 6 → 3, and has the value of -64. In this new scenario, it 

may be easier to understand the impact of the set’s parameters on the agent’s performance. 

With that idea in mind, the reward shift was modified for the values (0, 3, 6, 7, 8, 9, 10 12, 

15) while using the values of the Table 4.12, apart from the epsilon decay and maximum 

number of episodes, which had the values of 0.00005 and 6500 respectively. The results of 

the multiple sets of 120 experiments are displayed in the Figure 4.13. 

 

 

Figure 4.13. Reward shift’s impact on the agent’s performance. 

 

The mean of all the 37 possible values of accumulated reward is -73 (for a 𝑟𝑠 of 

0 and 𝑟𝑚of 1), and therefore, if subdivided evenly, each task would have a reward of -9.125, 

which we will define as mean task reward. A value of 𝑟𝑠 equal to the mean task reward shifts 

the accumulated rewards to a position where they are evenly separated into positive and 

negative. When analysing the Figure 4.13 it is possible to identify that the best accumulated 

reward occurs for a value of the reward shift of 8. Also, it is important to notice that the 

percentage of fails decreases with the increase of the reward shift and is approximately 0 for 

values higher or equal to 9. Thus, the optimal reward shift may be related to the mean task 

reward, but it may be relevant to confirm this relation with a different scenario. A value of 

the reward shift slightly lower than the mean task reward may improve the mean 
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accumulated reward since a larger number of the accumulated rewards are negative. 

However, it also increases the percentage of fails, which is highly prejudicial for a real 

scenario. For that reason, the optimal value for the reward shift is 9. With this new 𝑟𝑠 value, 

the learning rate and the discount factor were individually analysed (Figure 4.14). 

 

 

Figure 4.14. Learning rate’s and discount factor’s impact on the agent’s performance. 

 

Since in both cases the confidence interval is very small, even small differences 

in the mean are significant. Both in the learning rate and in the discount factor, it can be 

concluded that the optimal value is 1, however, in the discount factor case the difference in 

the mean and in the percentage of optimal results is more accentuated. 

Then, with the same set’s parameters as before, the maximum steps per episode 

was individually analysed (Figure 4.15). 
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Figure 4.15. Maximum steps per episode’s impact on the agent’s performance. 

 

It is possible to conclude that an early increase in the maximum number of steps 

per episode leads to a significant increase both in the mean and in the percentage of optimal 

rewards. The further increase in this value does not significantly alter the results. The value 

15 was selected for this parameter. 

Lastly, with all the other parameters decided, the reward multiplier’s impact was 

studied with various values (1, 5, 9, 11, 13, 15, 19, 25, 30) and the experiments results are 

visible in the Figure 4.16. 

 

 

Figure 4.16. Reward multiplier’s impact on the agent’s performance. 
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It can be observed that there is an optimal value for 𝑟𝑚 since the increase in the 

value of the reward multiplier leads to an early increase both in the mean and in the 

percentage of optimal rewards followed by a peak. For the smaller values of the reward 

multiplier the percentage of fails is nonzero. Based on the graph it can be defined that the 

optimal reward multiplier value is 13. 

After all the experiments and comparisons, it is possible to conclude that the best 

set’s parameters are the ones expressed in the Table 4.16, with which the agent, in 120 

experiments, was able to learn one of the 2 optimal assembly sequences 115 times 

(≅ 95.83%), one of the assembly sequences with the second best accumulated reward 4 

times (≅ 3.33%) and one with the fifth best accumulated reward once (≅ 0.83%), while 

never failing to learn a feasible assembly sequence. 

  

Table 4.16. Optimal set’s parameters. 

Parameter Value 

Learning rate 1 

Discount factor 1 

Epsilon 0.9 

Epsilon decay 0.00005 

Max steps per ep. 15 

Max episodes 6500 

Reward shift 9 

Reward multiplier 13 

Reward penalty -1000000 

 

 

 

 



 

 

  Conclusions 

 

 

Miguel António Silva Neves  49 

 

 

5. CONCLUSIONS 

In this dissertation, the challenges in the application of a reinforcement learning 

algorithm in a decision-making problem are explored, considering the implementation of a 

Q-Learning model-free algorithm. By formulating the problem as a MDP, it is shown that 

Q-Learning finds an optimal state-action policy that maximizes the accumulated reward over 

a succession of given steps. This allows to verify the application of a scalable method to 

address the optimization of an assembly sequence problem as a sequential decision process, 

where the action in one state influences the transition to the subsequent state. Despite its 

reduced application in the literature, RL methods show a straightforward versatility in 

complex problems where uncertainty plays a significant role, such as on-line industrial 

environments, where until now mostly traditional optimization and heuristic approaches are 

considered. 

The improvement of the time efficiency on the assembly of complex products is 

often impractical due to the complexity of measuring all tasks sequences’ times. Such 

complex problems, however, are proven to be tackled successfully through the usage of 

reinforcement learning. In fact, this approach has the advantages of achieving good 

optimization results, where the optimal assembly sequence was learned 95.83% of the times, 

while never learning an assembly sequence outside the top 1.16% of the assembly sequences 

(corresponding to the assembly sequences in the top 5 accumulated rewards), and being 

capable of learning the best assembly sequence by assembling in real-time. However, in the 

current situation, the algorithm requires 6500 assemblies to correctly learn the best assembly 

sequence, which is higher than the number of feasible assembly sequences. This is due to 

the fact that impossible actions are not restricted, but only penalised, which increases the 

assembly sequence’s search space from 3600 (feasible assembly sequences) to 40320 (all 

assembly sequences), i.e. the algorithm searches the best assembly sequence from all 

assembly sequences (including impossible ones). When considering this increase in the 

search space we can conclude that the number of assemblies required by the reinforcement 

learning algorithm is only 16.12% of all assembly sequences. 
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5.1. Future work 

RL provides an easily understandable and accessible platform to address diverse 

problems. The work done in this dissertation can be further improved in three main aspects. 

First of all, a similar analysis could be done with a different assembly process to understand 

the relation between the optimal Q-Learning algorithm’s parameters and rewards, and 

therefore, comprehend the adaptability of this approach to different scenarios. Then, the 

reward definition could be improved by measuring the time durations during assembly, 

without requiring previous knowledge on the task’s average time and variabilities. Finally, 

the efficiency of the approach could be enhanced by implementing the restrictions on 

impossible actions, which would require a lower number of assemblies to learn the optimal 

assembly sequence. Withal, the exploration of optimization problems could ultimately 

expand this approach to combine RL algorithms and mathematical programming approaches 

to improve results and computing time with the speed and flexibility of RL.  
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