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aprendizagem sob a sua orientação permitiu-me crescer a nivel pessoal e intelectual

e participar ativamente na comunicação e produção cient́ıfica. Desta forma, quero

deixar um agradecimento especial ao professor, pela oportunidade concedida, pela
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porque estás lá sempre quando mais preciso e me apoias em todos os momentos

na esperança de ver os meus sonhos concretizados. Obrigado ao meu irmão gémeo,
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Resumo

As redes neuronais profundas oferecem um elevado poder preditivo ao ser capazes de

inferir as propriedades farmacológicas e atividades biológicas de pequenas moléculas

em aplicações para a descoberta de fármacos. No entanto, a quantidade de in-

formação supervisionada dispońıvel para treino é escassa e o passo de lead-optimization

apresenta um problema de low-data, dificultando a descoberta de novos compostos

com a atividade terapêutica pretendida e dos respetivos análogos farmacológicos.

Um requisito fundamental é a necessidade de uma grande quantidade de exemplos

de treino por classe, o que nem sempre é posśıvel em aplicações para descoberta de

fármacos. Estes desafios invalidam o uso de instâncias cujas classes são desconheci-

das no treino ou de dados biológicos onde o número de classes é elevado e oscila

dinamicamente.

O grande objetivo deste estudo é otimizar a descoberta de novos compostos partindo

de um conjunto reduzido de moléculas candidatas. Assim, propomos uma arquite-

tura de redes neuronais paralelas implementando uma estratégia de one-shot learn-

ing, baseada num conjunto de redes neuronais convolucionais (CNNs) capazes de

aprender a partir de um dado score de semelhança entre duas moléculas devolvido

por uma dada função de similaridade.

Aplicando uma estratégia de one-shot learning, apenas necessitamos de um reduzido

conjunto de instâncias por classe para treino e de um pequeno conjunto de dados

e recursos computacionais para a construção de um modelo eficaz na previsão. Os

resultados obtidos demonstram que o uso de um conjunto de redes neuronais con-

volucionais paralelas implementando uma estratégia de one-shot learning conduz à

obtenção de desempenhos superiores na previsão de novos compostos comparando

com os modelos state-of-the-art. Assim, o modelo proposto permite prever correta-

mente e com elevada eficácia, novos compostos e respetivos análogos farmacológicos,

considerando a escassez de dados biológicos dispońıveis para aplicações de descoberta

e desenvolvimento de fármacos.
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Abstract

Deep neural networks offer a great predictive power when inferring the pharma-

cological properties and biological activities of small molecules in drug discovery

applications. However, in the traditional drug discovery process, where supervised

data is scarce, the lead-optimization step is a low-data problem, making it difficult to

find molecules with the desired therapeutic activity and obtain accurate predictions

for novel compounds and their pharmacological analogs. One major requirement to

ensure the validity of the obtained neural network models is the need for a large

number of training examples per class, which is not always feasible in drug discovery

applications. This invalidates the use of instances whose classes were not considered

in the training phase or in data where the number of classes is high and oscillates

dynamically.

The main objective of the study is to optimize the discovery of novel compounds

based on a reduced set of candidate drugs. We propose a Siamese neural network

architecture for one-shot classification, based on Convolutional Neural Networks

(CNNs), that learns from a similarity score between two input molecules according

to a given similarity function.

Using a one-shot learning strategy, few instances per class are needed for training,

and a small amount of data and computational resources are required to build

an accurate model. The results achieved demonstrate that using a Siamese Deep

Neural Network for one-shot classification leads to overall improved performance

when compared to other state-of-the-art models. The proposed one-shot Siamese

neural network architecture provides an accurate and reliable prediction of novel

compounds considering the lack of biological data available for drug discovery tasks.

Keywords: Drug Discovery, Deep Learning, One-Shot Learning, Siamese Neural

Network, Convolutional Neural Network.
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1

Introduction

1.1 Context

The Role of Drugs: Drug-Target Interaction

Ligands are molecules capable of binding to a specific receptor or enzyme and trigger

an appropriate physiological response within the cell. Ligands bind to very specific

regions of the receptor macromolecules called binding sites. The interaction with a

binding site can be reversible and may activate or inactivate the receptor, increasing

or decreasing its biological activity [1].

Drugs are ligands capable of binding specifically to these receptors, activating or in-

activating them and, consequently, enhancing or inhibiting a given cellular function.

Generally, drugs are highly selective by binding only to a specific receptor and its

multiple subtypes. They generally bind to receptors but can also form complexes

with specific enzymes [2].

The binding site in the receptor macromolecules may be different for different en-

dogenous agonists in the production of a physiological response. Agonists are analog

molecules which bind to the receptor and mimic the interaction of a natural ligand.

On the other hand, antagonists bind without triggering the effect of the natural lig-

and leading to the blocking of the receptors activity [3]. They can interact reversibly

or irreversibly, competing or not with an agonist [4]. Thus, drugs can act as ago-

nists or antagonists, activating or inactivating the receptor in the signal transduction

pathway that leads to the final response in organs and tissues.

The effectiveness of a given drug in producing the desired physiological response is

determined by aspects that directly influence the activity of the drug-target complex.

Thus, the probability that a given molecule binds to a specific receptor at a given

instant (affinity), directly influences the formation of this complex. The cellular

response to the stimulus is also determined by the intrinsic activity, that is, the

1



1. Introduction

degree to which the drug forms the complex and triggers the desired effect. Both of

these factors are determined by the molecule chemical structure which models the

efficacy of the physiological response to the signal [5].

The mechanisms of drug-target interaction are a key aspect in the prediction of the

biological function of the various classes of therapeutic targets and the consequent

response on organs and tissues. The signal transduction mechanisms triggered by the

binding of drugs to specific receptors and enzymes are highly sensitive and specific

to this interaction pair.

The specificity of the interactions triggered by drug-target binding result from the

affinity between the signal and its specific receptor in the target cells and tissues and

is mediated by weak non-covalent forces identical to those that regulate the enzyme-

substrate or antibody-antigen binding [6]. Complex organisms have an increased

level of specificity in their transduction pathways due to the presence of specific

receptors for a given signal in certain cell types, which determines the effectiveness

in the cellular response to a given receptor-specific signal.

The transduction pathways activated by drug-target binding are extraordinarily

sensitive to the stimulus that results from this interaction. This is due to the high

molecular affinity of the receptors for a given specific signal, the cooperation of

the receptors in the face of low concentration variations of the ligands and the

amplification in the signal transduction through enzymatic cascade reactions [7].

The activation of a signal transduction pathway arises primarily from the interac-

tion of a signal with its specific target or receptor. The signal interacts with its

specific receptor which enables the production of a second signal. The signal trig-

gers a transduction pathway that leads to the desired effect through a change in

the metabolic activity of the cell by modifying the biological activity of a certain

protein or enzyme [8].

Most drugs and their pharmacological analogs act in many transduction pathways

mediated by proteins responsible for the physiological response to an intracellular

or extracellular signal. These signals are divided into different types according to

the stimulus and transduction mechanism: G protein-coupled receptors (GPCRs),

enzymatic receptors, ionic channels and nuclear receptors.

The GPCRs are capable of indirectly activating a signal transduction pathway

through the activity of GTP-binding proteins. These enzymes synthesize a sec-

ondary intracellular messenger, typically cAMP (cyclic AMP). The transduction

mechanism is defined by 3 essential components: a transmembrane receptor, an en-
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Figure 1.1: Enzime-substrate interaction as guide for the ligand-
receptor binding. Image from "www.khanacademy.org/science/

ap-biology/cellular-energetics/enzyme-structure-and-catalysis/a/

enzymes-and-the-active-site".

zyme that synthesizes a secondary messenger and finally a GTP-binding protein that

dissociates itself from the receptor and activates an enzyme that triggers a cellular

response to the stimulus. A model of this type of receptor is the beta-adrenergic

receptor [9, 10].

Enzyme receptors are receptors that have an extracellular binding domain at the

membrane surface and an intracellular active site. In the case of a tyrosine-kinase

receptor, the intracellular active site phosphorylates tyrosine residues triggering a

reactive cascade within the cell (a set of consecutive phosphorylations and dephos-

phorylations) [11].

Ion channels are permeable channels arranged transversely along the cell membrane.

Their opening occurs through conformational changes mediated by the interaction

of specific intracellular or extracellular ligands to the membrane surface binding sites

or through changes in transmembrane potential [12].

Nuclear receptors interact with specific ligands capable of triggering a change in

gene expression. The change in gene expression translates into a change in the

concentration of a given protein or enzyme within the cell and hence a change in

cell metabolism [13].

The discovery of drugs that interact with specific enzymes represents a major chal-

lenge in drug discovery tasks. The importance of the activation of transduction

pathways coupled with enzyme receptors lies in their determining role in all cellu-

lar mechanisms. Conformational changes and modification of its biophysical and

biochemical profile trigger important effects in the regulation of cell homeostasis,
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signalling mechanisms, energy production and storage and also in the elimination of

cytotoxic agents.

The high sensitivity and specificity of the drug-receptor interaction hinders the mod-

elling of the physiological response to a stimulus. Thus, it is necessary to develop

compound prediction models able to predict new classes of molecular structures

leading to the discovery of novel compounds with improved therapeutic effects and

increased biological activity.

Figure 1.2: G-coupled receptor-signal transduction. Image from ”Structure and
dynamics of GPCR signaling complexes” [9].
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Pharmacodynamics

Pharmacodynamics consists of the set of physiological and biochemical mechanisms

triggered by a given drug in organs and tissues, involving the binding to its specific

receptor, post-binding effects and chemical interactions [14].

The receptors are macromolecular structures involved in intracellular and intercel-

lular signal transduction mechanisms. The ligand-receptor complex or drug-target

complex directly or indirectly regulates the cell metabolism, ion flow through the cell

membranes, protein phosphorylations, gene expression and cell enzymatic activity

[15].

The efficacy of the response to a stimulus depends on multiple factors, including the

degree of affinity of the drug-target complex, the intrinsic activity, the life span of the

complex (residence time) and also the conformational changes that occur within an

interaction. Longer residence times may explain a longer pharmacological effect and

increased toxicity against a pharmacological target [16]. Many of these factors are

determined by the molecular structure of the compounds. The ability to interact

with a receptor still depends on factors external to the cell and on intracellular

regulation mechanisms. Ageing, mutations, and the interaction with other drugs

and molecules may increase (upregulate) or decrease (downregulate) the affinity of

a compound to its specific receptor.

Ultimately, the desired physiological response is mediated by multiple drug-targets

complexes, and several steps can be interposed between the first ligand-receptor

interaction and the final effect on organs and tissues. Multiple molecules may inter-

vene in the production of the same pharmacological response which motivates the

change from a ’one drug, one target’ paradigm to a ’multi-drug, multi-target’ model

in the prediction of novel compounds in drug discovery tasks [17, 18].

The non-specific binding of a drug with a molecular binding site not designated as

a receptor may lead to the inhibition of the response by preventing the formation of

the drug-receptor complex, inactivating the drugs effect. Given the complexity of

the drug-receptor interactions it is time, resource-consuming and extremely expen-

sive to find new candidate molecules through traditional experimental procedures.

Therefore, it is crucial to develop prediction models through in silico methods that

start from a given set of molecular structures and allow the identification of novel

compounds that interact with specific target enzymes [19].

Agonist or antagonist ligands are capable of producing or eliminating the final re-

sponse to a signal. The discovery of analog agonists or antagonists for given pharma-
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cological target may potentiate the discovery of drugs with less off-target activities,

optimal therapeutic effects and improved physicochemical profile.

Figure 1.3: Polipharmacology using the pharmacological space following a “multi-
target, multi-drug” paradigm. Image from ”Drug-target and disease networks:
polypharmacology in the post-genomic era” [19].
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Drug Discovery and Development: Lead Optimization Step

The drug discovery process is a complex process ranging from the discovery of a

lead molecule, approval through clinical trials and post-approval monitoring. The

drug discovery process consists of the following steps: target discovery, lead dis-

covery, lead optimization, pre-clinical trials, clinical trials and regulatory approval.

The first 2 steps include the discovery of a new molecule involved in a given disease

and a drug capable of interacting with the identified target (hit molecule) through

a compound library screening against the identified target molecule (HTS - High

Throughput Screening). The lead optimization step consists in changing the molec-

ular properties of the hit to increase the effectiveness and safety of the therapy. Once

a molecule has been identified (lead molecule), pre-clinical trials (in vivo tests) are

performed by evaluating the conditions (in vitro and in situ) of adsorption , distri-

bution, metabolism, excretion and toxicity (ADMET). The discovered lead molecule

then passes through a set of clinical trials to be approved by a regulatory agency

(by the FDA or EMA), evaluating the efficacy and safety of the therapy through 3

stages of human tests [20].

The lead optimization step follows the discovery of a set of hit molecules able to inter-

act with the identified target. The objetive is to improve the effectiveness of the hits

and identify a pharmacological profile consistent with their biological activity and

desired therapeutic effect. Therefore, this hit-to-lead process aims to optimize the

activity of the hit for a specific target and achieve the required safety conditions,

affinity, ADMET and pharmacokinetic properties. The lead optimization step is

crucial in the discovery and development of novel compounds with improved phar-

macological activity on the identified target. This step intervenes in the adjustment

of the molecular structure of the compound intending to introduce modifications

that enhance its pharmacological activity. In this step, we seek to maintain the

desired properties of the main components of the molecule, preventing any struc-

tural deviation that might compromise their biological activity while eliminating

deficiencies in the compound structure. Typically it involves the application of mul-

tiple compound screenings (in vivo and in vitro) to characterize the metabolic and

pharmacokinetic properties (DMPK) of multiple compounds and to find structural

analogs with optimal pharmacological and pharmacokinetic activities for a given

target molecule [21].

Thus, there are multiple requirements to be met for a drug to interact with its specific

target and trigger the physiological response leading to the desired effect on organs

and tissues. These fundamental properties include potency, bioavailability, safety,
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duration and pharmaceutical acceptability. The intrinsic capacity of the drug to

produce a given response, the capacity to overcome multiple physiological barriers,

the time that remains in circulation, the ratio between the interaction with the target

and the unspecific interactions with other targets are important properties, when

predicting the appropriate compound structure for the desired therapeutic effect

[22]. The hit-to-lead process also prevents the occurence of off-target binding with

non-specific targets optimizing the interaction with the identified target molecule.

Therefore, the lead optimization process leads to the discovery of a molecule which

produces the desired physiological response, as well as presents the optimal DMPK

properties and a safety profile compatible with its therapeutic effect. The main

objective is to identify analog compounds with optimal therapeutic effects, less

toxicity, greater pharmacological activity, reduced risks for the organism, and better

conditions of solubility and selectivity.

Figure 1.4: Stages of drug discovery and development. Image from ”Medicinal
Biotechnology for Disease Modeling, Clinical Therapy, and Drug Discovery and
Development” [23].
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1.2 Motivation

The hit-to-lead stage of drug discovery is an extremely long and expensive process.

It is common for the initial drug screening to generate a set of at least tens of

thousands of potential lead compounds. The lead molecules undergo a new screening

that reduces the initial compound library to a small set of candidate molecules.

However, only a small fraction of the drug discovery projects survive and culminate

in the identification of a small set of lead molecules ready to be tested and later

distributed and commercialized.

Among the most common failures in the identification of lead molecules in drug

discovery processes, there are: the inability to constitute a viable, consistent and

reliable test; failure to obtain potential lead compounds through HTS screening;

toxicity of molecules obtained in vivo or in vitro; abnormal behaviour in the target

tissues; failure to obtain a good metabolic and pharmacodynamic profile (DMPK)

that enhances their therapeutic function; failure to cross the blood-brain barrier in

compounds intended to interact with elements of the central nervous system [24].

On the other hand, once identified a lead molecule the possibility of attrition with

other compounds and the occurrence of side effects in the clinical testing phase

is quite high, so that only 1 in every 10 candidate molecules is configured as a

compound that can be effectively administered to a patient.

Across all areas of therapeutic research for drug discovery and development, ap-

proval by regulatory agencies is a process that can extend over more than 12 years

and cost billions. The development of new molecular entities (NMEs), small molec-

ular structures, is an extremely expensive process with a low probability of success

considering all the constraints associated with the feasibility of their administration

for human consumption [25].

Due to the costs and resources required for the experimental execution of the drug

discovery and development process, in silico molecule prediction seems to be an effi-

cient and notoriously more economical approach. This strategy saves resources but

also provides important information to support the tests conducted, experimentally,

in the laboratory [26].

However, the biological data available to find new analog molecules in the lead-

optimization step of drug discovery tasks are often limited in size and are very

expensive to obtain due to the scarcity of experimental data for drug discovery

applications [27]. These datasets are the result of clinical trials, which might not
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be repeatable due to ethical reasons. Therefore, it is extremely difficult to obtain

accurate and reliable predictions for novel compounds given the lack of supervised

biological data available to optimize drug discovery.
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1.3 Objectives

The application of deep neural networks is an important asset to significantly in-

crease the predictive power when inferring the properties and activities of small-

molecules and those of their pharmacological analogs. However, in the traditional

drug discovery process, the lead-optimization step is a low-data problem, which

makes it difficult to find analog molecules with the desired therapeutic activity.

Ultimately, we aim to validate how a one-shot-based Siamese Neural Network allows

us to outperform the state-of-the-art models in the accurate and reliable prediction of

pharmacological analogs that could lead to the discovery of promising lead molecules.

Therefore, there are four main objectives to fulfill:

1. Use of deep learning methods to tackle the challenges identified in the lead

optimization step of drug discovery tasks;

2. Face the low-data problem of the lead optimization step of drug discovery

tasks using an one-shot learning strategy;

3. Use of a Siamese Neural Network architecture to achieve strong results on

one-shot classification tasks based on a similarity score between two input

molecules;

4. Evaluate the performance of a one-shot Siamese neural network and compare

it with other machine learning and deep learning approaches;

5. Optimization of the prediction of drug analogs with increased biological activ-

ity based on a reduced set of candidate molecules.

11
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1.4 Workflow

The reduced amount of labelled data available for drug discovery makes it necessary

to develop innovative in silico approaches capable of predicting a set of candidate

leads with optimized biological activity for an identified pharmacological target.

Thus, by adopting a drug repositioning approach, it is possible to develop models

capable of predicting analog compounds of pre-existing drugs. The identified lead

molecules must be able to produce the intended therapeutic effect in different types

of pharmacological targets involved in a given signal transduction pathway.

It is important to combine this strategy with high-performance predictive models

to speed up the hit-to-lead process and to find the set of lead molecules that pro-

duces the most appropriate physiological response for the identified target molecules.

Unlike traditional drug discovery methodologies, drug-repositioning iteratively op-

timizes pre-existing drugs resulting in a set of candidate lead molecules with higher

potency, safety and efficacy for multiple pharmacological targets.

The application of in silico methods, like deep neural networks, enhances the learn-

ing of models capable of inferring the properties of molecular structures through the

identification of patterns that best describe the optimal molecular structure for the

interaction with the identified target molecule.

Figure 1.5: In silico methods in the optimization of drug discovery using a one-shot
deep learning approach.
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1.5 Research Contributions

The work developed during this thesis resulted in the following contributions:

Papers

Torres, L.H.M. and Nelson R. C. Monteiro and Oliveira, J.L. and Arrais, J.P. and

Ribeiro, B. , ”Exploring a Siamese Neural Network Architecture for One-Shot Drug

Discovery”. BIBE2020, 20th IEEE International Conference on Bioinformatics and

Bioengineering. (Submitted on 13th July 2020 and accepted as a short paper).

Posters

Torres, L.H.M. and Nelson R. C. Monteiro and Ribeiro, B. and Arrais, J.P. ,

”Siamese Neural Networks for One-Shot Drug Discovery”, in Bioinformatics Open

Days (BOD) 2020, 2020 (Poster Presentation on February 2020).

1.6 Document Structure

The document is divided into 7 different chapters. The present chapter, Introduc-

tion, provides a brief introduction to the biochemical phenomena and pharmacody-

namic principles of drug-receptor interactions as well as, the motivations, objectives

and the approaches adopted in this study. The second chapter, State of the Art,

presents a set of in silico methodologies and previous works for drug discovery and

development applications, describing a wide range of computational approaches, in-

cluding a one-shot learning strategy. The Chapter 3, Data Preparation, identifies a

set of methods used in data collection, data processing and data grouping required

for the implementation of the proposed model. Chapter 4, Model, presents the deep

neural network used in the development of the proposed model and how the training

and hyperparameter optimization was performed. Chapter 5, Experimental Setup,

describes in more detail the type of architecture used in the proposed deep learning

model, the set of hyperparameters used, the one-shot learning methodology imple-

mented and the models used for the comparison with the proposed model. Chapter

6, Results and Discussion, presents the results obtained by different models pro-

viding a statistical significance analysis and discussion of the results regarding the

performance, advantages and disadvantages of different model approaches. The last

chapter 7, Conclusion, concludes on the proposed model indicating possible future

applications and suggestions for improvement of the proposed work.
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State of the Art

Currently, the process of research and development in drug discovery has faced

an extensive set of challenges thanks to the scientific advances verified in the last

decades. Innovative methods for experimental screening of drugs have made it possi-

ble to speed up and improve the process of drug discovery leading to the generation

of promising lead molecules. These techniques combined with molecular modelling

strategies, genomics and computational biology, provided a better understanding

of drug-target interactions leading to more accurate predictions in drug discovery

applications.

The increase in corporate investment led to the development of computer-aided

drug discovery (CADD) methods able to predict the optimal DMPK profile and

molecular structures capable of triggering the intended biological response in organs

and tissues. Thus, in silico methods applied to drug discovery have enhanced the

discovery of new leads with increased therapeutic potential and approval rates for

distribution and commercialization [26].

In silico methods used in CADD can significantly reduce the amount of data that

needs to be screened out in an HTS assay. These methods reduce the cost of drug

discovery and drug design but also reduce the amount of time needed for a drug to

be approved by the regulatory agencies and, consequently, reach the market. These

tools identify a set of possible lead molecules suitable for testing and effectively

predict the toxicity and bioavailability of the identified compound structures. CADD

also modulates the prediction of novel compounds by identifying a set of possible

analog molecules with increased pharmacological activity derived from high potency

compound structures. CADD methods generally, combine approaches based on the

knowledge of ligands that interact with the target of interest (ligand-based drug

discovery, LBDD) and others based on the three-dimensional structure of the target

molecule and the drug-target complex (structure-based drug discovery, SBDD) [28].

The application of a CADD method depends on the accessibility of the target
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structural information. Therefore, when the information about the tridimensional

structure is available, it is possible to apply a SBDD approach to predict the lead

molecules compound structure. LBDD methods predict according to the structure

of the active binders of the identified target molecule when there is no available

information about its tridimensional structure.

The most widely used SBDD approaches include structure-based virtual screening,

molecular docking, homology modelling or molecular dynamics. On the other hand,

LBDD methods like pharmacophore modelling, quantitative structure-activity re-

lationships (QSAR), similarity approaches and ligand-based virtual screening are

important in the discovery of small molecules and, at identifying possible correla-

tions between the molecular structures and their biological activity [29].

Figure 2.1: Computer-aided drug discovery methods for compound prediction.
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2.1 Structure-Based Drug Discovery

Once the three-dimensional structure of a target molecule is known, the most cor-

rect approach to adopt is the use of a structure-based method. The drug design

is carried out based on the knowledge of the tridimensional structure of its specific

target. This is only feasible if it is possible to determine the three-dimensional struc-

ture of the target molecule either by X-ray crystallography or by NMR spectroscopy.

Both techniques entail high costs and have serious limitations related to their exper-

imental execution. X-ray crystallography is only possible if protein crystalization is

achievable, which in the case of transmembrane proteins, is an extremely difficult

task. On the other hand, NMR spectroscopy is limited by the size of the target

molecules, being restricted only to small molecules [30]. Molecular dynamic simu-

lation (MD) techniques are alternative methods often used to predict the structure

of the binding site, modelling different signalling pathways [31]. Molecular docking

and the novel design of ligands (agonists, antagonists and inhibitors) are among the

most used methods in a structure-based approach.

Wu et al. [32] (2003) developed a grid-based docking algorithm using a represen-

tative docking method called CDOCKER. The objective of this study was to com-

pare the performance of this MD algorithm using grid-based approximations for the

ligand-target interaction against an all-atom force field calculations. The best per-

formance was achieved when combining both approaches, using a grid-based docking

algorithm and an all-atom force field at the final minimization step to optimize the

molecular poses at the docking sites. The use of a grid-based docking algorithm also

provided a computational time reduction and statistically identical results when

compared with an all-force field docking algorithm.

Claußen et al. [33] (2001) designed a docking software tool, FlexE, capable of ad-

dressing the problem of structural variations in protein sequence and the challenge

of docking a flexible ligand into alternative models of a protein structure. These al-

ternative models are superimposed into a single protein model capable of describing

multiple conformations of its tridimensional structure. The docking results achieved

were similar to the best results achieved by docking the ligand with the target

sequence and provided a significantly lower computing time. The discovery of po-

tential inhibitors is achieved by superimposing different conformations of the protein

active site considering all the possible structures and conformational changes that

may occur during an interaction.

Bhardwaj et al. [34] (2016) proposed a series of computational methods for the de
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novo design of structurally restricted peptides. These methods allowed the design

of 18-47 residue variations of the peptides and the design of disulfide-crosslinked

peptides and heterochiral and cyclized variations. These computational methods

served as a basis for the development of small-molecule-based drugs.

Pegg et al. [35] (2001) developed a genetic algorithm capable of reducing the search

space of compounds using the information available of other known ligands. This

genetic algorithm called ADAPT uses the interactions observed in docking calcula-

tions as a function capable of reducing the number of predictable structures. The

algorithm uses a set of candidate molecules to iteratively build novel compounds

without prior information about the target ligands and according to the function

score achieved by the previous set of candidate molecules. The ability to perform

local sampling and introduce compound diversity in each iteration of the design

cycle provided results that outperform those of the known genetic algorithms.
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2.2 Ligand-Based Drug Discovery

The absence of information about the target tridimensional structure leads to the

application of a ligand-based approach. This methodology uses information about

analog compounds with relevant biological activity over an identified target. De-

scriptors of the molecular structure establish relationships between the molecular

structure and biological activity useful for compound prediction. Some ligand-based

approaches include pharmacophore modelling, molecular similarity approaches and

quantitative structure-activity relationship (QSAR) analysis [36].

Since the information about the three-dimensional structure is not available, target

information is gathered from known active binders. If the target three-dimensional

structure is available, all the information concerning the structure of the binding

site is used in the development of a predictive model. Important features such as

the presence of relevant functional groups, acid and basic amino acid residues or

the existence of polar or apolar molecular regions are used in the development of

pharmacophore models [37].

QSAR (quantitative structure-activity relationships) are predictive models capable

of correlating the physical, chemical and structural properties of a molecule with

the corresponding biological activity. This method assumes a relationship between

the molecular structure and the biological activity. Thus, similar molecular struc-

tures will result in similar biological activities [38]. These models are based on the

quantitative description of the physicochemical properties and molecular structure

and, through the mathematical formulation of a given property relationship predict

the biological activity of an identified target molecule.

Once this mathematical relationship between variables is found, it is possible to

predict the response or activity of other chemical structures based on the identified

relationship:

Biological Activity = function(Structural and Molecular Information) (2.1)

However, the relationship between the activity and the molecule descriptors is not

always linear, and different parameters and properties may present different weights

in obtaining the desired biological activity through non-linear dependency relation-

ships with the remaining variables. Thus, machine learning and deep learning tech-

niques have been used to develop QSAR models capable of describing a non-linear

relationship between the biological activity and the target molecule descriptors [39].
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Mestres et al. [40] (1997) developed MIMIC, a program capable of identifying the

similarities between molecular structures and return the relative orientation of the

molecules that maximize compound similarity. These molecule alignments are the

basis for the development of models capable of predicting molecule structures able

to interact with protein binding sites and identify molecular regions important for

target binding. This information is later used design compound structures that

mimic the key characteristics of these binding domains. MIMIC identifies the set

of structurally similar compounds and locates the global and local similarity maxi-

mums. The ability to calculate the atomic contributions of the molecular structure

to the molecular similarity gives the means to build useful pharmacophore patterns.

Steindl et al. [41] (2006) proposed a parallel pharmacophore-based virtual screening

method to develop a system capable of providing reliable in silico predictions for

bioactivity profiles of virtual compounds and small molecules. The method was

applied to 50 structure-based pharmacophore models for multiple targets and 100

antiviral molecules. The enrichment of the pharmacophore models resulted in a

successful activity profiling for almost all input molecules.

Lima et al. [42] (2006) developed a QSAR approach to explore multiple combinations

of modelling techniques and various types of descriptors followed by rigorous model

validation. The modelling method used to perform the prediction was Support Vec-

tor Machine (SVM), binary QSAR, decision trees and K-nearest neighbour (KNN).

These methods combined with different types of molecular descriptors (connectivity

indices, atom pair descriptors, VolSurf descriptors, molecular operation environment

descriptors) resulted in 16 different QSAR model approaches. This study demon-

strated the increased performance of the combined models with concurrent methods

and averaged predictions, over the individual model approaches highlighting the

benefits of a combinatorial QSAR methodology.
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2.3 Deep Learning in Drug Discovery

The large volume of data available for classification and the availability of high-

performance computing resources has motivated the use of artificial intelligence

techniques for drug discovery. These algorithms are able to predict relationships

between the molecular structure and physicochemical parameters with the biologi-

cal activity observed during their interaction with a given target molecule. These

relationships help in the discovery of new candidate compounds starting from the

identification of patterns to the extraction of important features that model the

drug-target interaction. The high predictive power of these algorithms lies in their

ability to identify patterns in the molecular structure with a pivotal role in the

interaction with the active site of the identified target molecules [43].

Artificial neural networks (ANNs) are widely used in several research fields due to

their ability to extract features and develop powerful predictive models. Deep learn-

ing methods model non-linear systems of compound prediction and can be applied

as non-linear regression models used in QSAR. These systems learn patterns and

local dependencies which model the relation between molecular and structural de-

scriptors and compound biological activity through an iterative process of learning

and prediction [44]. ANNs learn different representations to develop structural in-

formation that gives a general perception or belief about data. However, despite the

high predictive power of these inner representations and the diversity of molecular

structures to be learned, all neural networks require a large amount of training data

to predict novel compounds with the desired pharmacological activity [45].

The neuron is a unique biological unit consisting of a cell body, an axon and multiple

dendrites. Typically, neurons receive an input signal from the dendrites and send

a response signal along the axon that is transmitted to the dendrites of the next

neuron. The signal travels along the axon of the input neuron and communicates the

output response by synapses with other neurons. Mathematically, a neuron sends

a signal x to the next neuron through a specific synapse of weight w. Different

synapses between two different neurons i and j have different weights wij. The

weight of a synapse returns its influence in the signal transmission between neurons

and indicates the direction of the signal. A positive signal means an excitatory

synapse, while a negative signal corresponds to an inhibitory synapse. Once the

signal is transmitted, all the signals are multiplied by the corresponding synaptic

weights and get summed, returning an output signal y. The neuron returns a signal

if the sum is above a certain threshold. An activation function a(x) at the end
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modulates the frequency of the signals transmitted [46].

The output yi of a given neuron is given by,

yi = a(
∑
j

(wij ∗ xj) + bi) (2.2)

Neural networks are different sets of neurons organized in layers where the outputs

serve as an input to another set of neurons in the next layer.

A neural network consists on the following components:

1. An input layer, X ;

2. A set of hidden layers H;

3. An output layer, Y ;

4. A set of weights W describing the weight of the connection of each neuron in

one layer with each one of the neurons in the next layer;

5. A set of biases B describing the bias terms of set of neurons.

The input layer X of the network receives an input vector x. Each element in

x corresponds to the number of neurons in the input layer. The output layer Y

returns the vector y of the output values of the network. The values of y represent

a probability distribution over the k output classes. y is returned by propagating x

through the hidden layers H between X and Y . W is the weight matrix representing

the connections between neurons in different layers. The number of entries in W is

equal to the number of connections between neurons.

Therefore, the value of a neuron in a layer results from the linear combination of

the neuron values from the previous layers weighted by the values wij in W . The

weights represent the strength of specific connections between neurons. The weight

matrix W is updated by changing their values and, consequently, the strength of

the connections between neurons. Non-linearity is introduced in the output layer

through the activation function, which transforms the output of the weighted sum

computed in the previous layer into the final prediction p [46].

Considering p the vector of predictions and l the vector of labels, the loss function

is defined as a function which depends on the difference between both vectors. The

smaller the difference between them, the lower the loss and, the higher the accuracy
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Figure 2.2: Neural network training: feedforward propagation and backpropaga-
tion.

of the prediction. An example is the quadratic loss:

Loss(x) =
1

2
. (p(x)− l(x))2 (2.3)

The output is modulated by both weights in W and biases in B. The strength of

the prediction is given by the right values of weights and biases which minimize the

loss value. The training process consists of multiple iterations where the output

vector y is calculated (feedforward propagation) and weights and biases are updated

(backpropagation).

Figure 2.3: Neural network training: loss function

In the context of the standard classification, deep neural networks have become

state-of-the-art methods in drug discovery. Deep neural networks are capable of

learning multiple-level representations based on the diversity present in training

data. Feature complexity is distributed throughout the layers, the feature space of

a layer being the result of a combination of simpler features of the previous layers.

This increase in complexity translates into an output feature space whose size is

proportional to the size of the filters that connect a layer to those that precedes it.

The addiction of complexity induces the high-level layers to classify more complex

structures by learning patterns and local dependencies within data [47].
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2.4 Deep Learning in Ligand-Based CADD

The ligand-based methodology takes into account analogous compounds with biolog-

ical activity or physicochemical parameters relevant for predicting the drug-target

interaction. Structure descriptors and the physicochemical profile are features used

to establish relationships of interest between the molecular structure and its biolog-

ical activity.

Lusci et al. [48] (2013) predicted the solubility of compounds of different datasets

using a deep learning approach based on recursive neural network architecture. The

prediction was based on the learning of graph representations of the compounds

(UGRNN) that allowed the extraction of features during each learning iteration.

This work achieved outstanding results outperforming the state-of-the-art methods

in the accurate prediction of the aqueous solubility.

Under the Tox21 Data Challenge, Unterthiner et al. [49] (2015) designed a deep

neural network architecture able to predict different toxic effects associated with the

binding to nuclear receptors and related with stress response pathways from Tox21

dataset. The proposed models were built based on key-features as the similarity

with existing analog compounds, toxicophores and other molecule descriptors. The

deep learning models developed with different combinations of layers, hidden units

and learning rates outperformed other model approaches.

Graph convolutional networks were developed by Ohue et al. [50] (2019) to rep-

resent, in a more consistent way, the differences associated with the interatomic

distance between different molecule conformations. This was achieved by correcting

the distances between atoms in a ring system and by correcting atom pairs which

improved the performance of the proposed models in comparison with a graph con-

volutional network. This study showed that representing tridimensional effects from

sequential structures may improve the model’s performance in the accurate predic-

tion of biological activities.
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2.5 Deep Learning in Structure-Based CADD

The structure-based methodology considers the importance of the three-dimensional

structure of the target molecules in modelling their biological activity and in predict-

ing compounds capable of producing the response to the identified pharmacological

target. This type of approach uses the knowledge of the interactions verified in the

ligand-receptor complex through the use of scoring functions that rank a set of hit

molecules and interaction fingerprints capable of describing the atomic interactions

between pairs of molecules.

Wallach et al. [51] (2015) developed a deep learning model that outperformed the

Smina scoring function by implementing a convolutional 3D layer model. Descriptors

derived from the ligand-target interaction, as the presence or absence of certain

molecular groups and atom types in the target’s binding site, were used to generate

the model.

DeepVS, a deep learning model approach developed by Pereira et al. [52] (2016),

was proposed to distinguish different compounds from inespecific molecules that

act as decoys in drug-target interaction. This model uses molecular docking results

to train a neural network extracting features as types of functional groups, amino

acid residues, intermolecular/interatomic distances, atom types, etc. The results

achieved by the model outperformed the standard docking programs producing great

AUC results which validated its use on virtual screening applications.
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2.6 One-Shot Learning: A low-data deep learning

approach in Ligand-Based CADD

Despite the high predictive power of deep learning methods one of its biggest lim-

itations is the requirement of a huge amount of labelled data. The feasibility of

recognizing new lead-like drugs with a reduced set of biological data available for

training remains an important challenge in compound prediction for drug discovery

applications. The applicability of these deep learning techniques has been limited

by the scarcity of labelled information available for training and the costs associated

with data collection and processing [53]. Moreover, the identification of the class

whenever a new group of molecules is observed, without requiring periodic retraining

and using only a few training examples per class, is crucial in drug discovery tasks.

One-shot learning is a deep learning strategy that aims to face the problem of low-

data in the accurate and reliable prediction of novel compounds for drug discovery

applications.

Humans learn multiple representations from a small number of examples, and then

use the knowledge acquired to distinguishing new concepts, even if only observed

once. This ability of one-shot learn different representations, by observing a concept

and generate meaningful and diverse variations, is important when classifying new

instances of unknown concepts. This idea of one-shot generalization gave rise to

one-shot learning methods [54].

In deep learning standard classification, an input is propagated through a series of

layers and finally, the output is a prediction containing the probability distribution

over multiple classes. Therefore, if we try to classify an input in one of k distinct

classes, k different probabilities are generated at the output indicating the proba-

bility of the input belonging to each one of the k possible labels. To perform an

accurate prediction, a large number of examples of each class is needed for the net-

work’s training and, if the model is trained considering each one of this k classes it

is not possible to test the prediction on any other class. To perform a prediction

given this new label we must re-train the model considering a certain amount of

examples of the new class.

In drug discovery applications, the size of the datasets is dynamically changing once a

new compound is discovered and some classes of molecules are less-represented than

others in training. Thus, to perform an accurate prediction we must periodically

retrain the model and collect more examples of the less-represented classes which
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Figure 2.4: One-shot learning classification versus a deep learning standard clas-
sification.

might not be feasible.

Instead of directly classifying a given instance, a one-shot learning model learns a

similarity function that accepts two inputs and returns a score that denotes the

similarity between them. The learnt similarity rule predicts instances whose classes

are unknown at the training stage. Therefore, instead of returning a probability

distribution of a given test instance belonging to any of the output classes, it learns

a distance metric capable of distinguishing two different inputs and highlight the

similarities between them [55].

In the context of drug discovery, the application of a one-shot classification strategy

improves the prediction of novel compounds whose classes are less-represented, and

only requires few examples per class for training. Despite the size of the training

set, a single molecule per class is needed for training. This molecule is used as

a reference instance to compute the distance with any other molecule to predict

a novel compound in one-shot, according to the output similarity score generated

between them. This similarity measure is the probability of both inputs belonging

to the same class of molecular structures.

One of the first applications of one-shot learning was focused on the identification

of characters. The objective was to find meaning for the observed images’ structure

by decomposing them into successively smaller components, using a method called

Hierarchical Bayesian Program Learning (HBPL) (Lake et al. [56] (2013)). This

novel approach by considering one training example and decomposing it can clas-

sify new examples outperforming the standard models in character prediction and

modelling the structures captured by the human perception in the identification of

visual concepts.
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Figure 2.5: One-shot learning approach. Image from “Matching networks for one
shot learning” [57].

Wu et al. [58] (2012) proposed a one-learning based approach capable of classifying

human gestures using only one example per class for training using RGB and depth

information collected from various sensors. Multi-view Spectral Embedding was used

to merge gesture modalities in a physically meaningful manner and an extended-MHI

(Extended-Motion-History-Image) acted as a motion descriptors of the gestures.

Under the CHALEARN Challenge, this approach allowed the classification of human

gestures with a single learning example per class and achieving good performances

(less than 0.3 in Levenshtein distance achieved in the challenge). One-shot learning

and a maximum correlation coefficient approach reduced the overfitting problem

related to the application of complex models with an extensive amount of parameters

to learn.

In a novel one-shot learning approach, Vynials et al. [57] (2016) developed a deep

learning model based on the nearest neighbour classifier, training directly on each

one-shot task and consequently, applying one-shot learning in NLP tasks. The

proposed neural network architecture outperforms the baseline models improving

the predictions made on Omniglot and ImageNet datasets. This study proposes the

learning of a model that maps a support set of known class labels and an unseen

input example whose class is predicted by a KNN-based classifier through a one-shot

learning classification strategy.
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Figure 2.6: N -way one-shot learning example: 9-way one-shot learning.

To explore the relation between one-shot learning and a meta-learning approach,

Santoro et al. [59] (2016) trained a memory augmented network for character clas-

sification on Omniglot dataset. This study proposed a set of deep learning models,

Memory Augmented Neural Networks (MANN), with flexible memory resources that

store important information about newly observed tasks and encode background

information about previously seen tasks. This model can store new data and ma-

nipulate the assimilated data to make accurate predictions considering only a few

examples per class for training.

To learn a certain task according to a human demonstration Duan et al. [60] (2017)

developed a neural net trained with pairs of human demonstrations to reproduce

one task of the pair as a function of the other, setting a promising path to the

development of learn-based robots. The network considers one demonstration of

the pair as an input for training, and a state of the second demonstration and can

predict that same state for the first demonstration of the pair. A one-shot learning

approach maximizes the performance of the model in reproducing a learned task

when facing a new and previously unseen demonstration of that task.

More recently, Altae-Tran et al. [61] (2017) developed a new LTSM model called

Iteratively Refined LSTM (IterRefLSTM), capable of optimizing the prediction of

novel compounds on the lead-optimization step of drug discovery tasks. This method

removes data dependencies by iteratively co-evolving compound structures in an iter-

ative process. The study made a comparison between 4 convolutional neural network

architectures with a random forest model using circular fingerprints as an input in

the prediction of multiple datasets (SIDER, Tox21 and MUV). The convolutional

models performed better predictions for the SIDER and Tox21 datasets, however
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for the MUV dataset random forest model performed better. On the other hand,

the authors tried to apply a transfer learning approach with the models trained on

Tox21 dataset to predict a set of patient observations from SIDER dataset. This

study highlighted the high predictive power of convolutional models using a one-shot

learning approach given the low-data available in the lead-optimization step of drug

discovery tasks (Figure 2.7).

Figure 2.7: One-shot learning approach for compound prediction. Image from
“Low-Data Drug Discovery with One-Shot Learning” [61].
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Data Preparation

3.1 Data Processing

The molecular structure of drugs consists of a set of atoms, chemical bonds and

functional groups important for the interaction with specific target molecules. Each

drug has a molecular structure that varies either in size or in the molecular arrange-

ment of its atoms. SMILES are representative sequences of characters which directly

describe the molecular structure and the chemical bonds between atoms [62]. This

data structure contains important features that represent specific patterns of the

molecular sequences.

In this study, the SMILES will serve as input to a set of predictive models capable of

inferring the compound structural analogs. These representations identify patterns

related to multiple compound classes according to the differences in the molecular

structures. The SMILES processing is performed in such a way that the strings are

treated as images representing the molecular structure of drugs.

Since different drugs correspond to different character sequences, it was established a

threshold for the minimum and the maximum number of characters. The minimum

size of the sequences was considered to be the size of the shortest SMILES sequence

and the maximum as the size of the longest sequence of characters. SMILES are

encoded into binary matrices with an equal number of rows and columns as binary

matrices with the same amount of features and dimensions. For sequences smaller

than the maximum threshold, a padding operation is performed. This operation

represents the missing characters in the SMILES, as an additional line of ‘0s’ in the

corresponding binary matrix. The padding operation produces equivalent represen-

tations of the molecular structures prepared for the classification by the predictive

models.

The SMILES processing method is described in Figure 3.1.
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Figure 3.1: Processing methodology applied for SMILES based on a length thresh-
old.
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3.2 Data Representation and Encoding

SMILES are representations not well suited to serve as an input for a convolutional

model. Instead of using the characters sequences directly, the SMILES are con-

verted into numeric representations (integer-based encoding). The integer-based

representations of the SMILES are encoded into binary matrices capable of acting

as consistent and unambiguous representations of the molecular structures prepared

to be used by the predictive models (one-hot encoding) [63].

Integer-based encoding (Figure 3.2) performs the transformation between the char-

acter sequence and the numerical representation where each character corresponds

to a distinct integer value.

Figure 3.2: Integer-based encoding.

The one-hot encoding was carried out by converting the character sequences into

binary matrices with the number of lines equal to the maximum threshold and

the number of columns equal to the number of distinct characters identified in the

SMILES.

Drugs are treated as images in the form of binary matrices by assigning a binary

variable to each distinct character. Thus, to each distinct character used for the

representation, a distinct integer is assigned using a dictionary. Each integer value

is converted into a binary vector that assigns ’1’ to the corresponding integer and

’0’ to the others.

In the one-hot encoding operation, we consider each one of the features in the

molecule sequences as a categorical variable, whose corresponding integer value in

the dictionary is converted into a binary vector representative of each one of the

characters observed in the SMILES.

3.2.1 SMILES Encoding

The one-hot encoding was performed in order to match each of the different charac-

ters with an integer value which is later converted into a binary vector. This binary

vector integrates a binary matrix which is used to represent the whole sequence of

characters.
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A dictionary consisting of 54 different categories was used to represent the different

characters identified in the SMILES (Table 3.1). Binary matrices establish a con-

sistent and uniform representation of compound structure and the preservation of

structural information suitable for classification by the predictive models.

Table 3.1: SMILES char-integer dictionary.

Character Integer

I 1
... ...
C 9
... ...
t 54
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3.3 Data Grouping

The model used to predict different compounds through the learning of a given

similarity function is trained with a set of examples of different classes. Nevertheless,

the dataset used does not allow to identify classes according to a common structure.

Therefore, it was necessary to process the SMILES with the objective of forming

groups according to their chemical structure. This procedure enables the identifica-

tion of categories that could be predicted by a model designed for that purpose.

Siti Asmah Bero et al. (2018) [64] identified distance metrics (Tanimoto distance and

Euclidean distance) capable of inferring the dissimilarities observed between classes

of molecules as an inter-class differentiation, based on the common characteristics

within molecular fingerprints. These distance metrics applied to drug fingerprints

allow the identification of multiple classes of compounds according to the structural

differences observed between sequences. Thus, molecular structures belonging to the

same class should present a smaller Tanimoto distance. Thus, it is possible to infer

that structurally identical compounds tend to present identical biological activities

and pharmacological properties. Zhang et al. (2015) [65] and Maggiora et al. (2014)

[66] state that similarity value distributions such as Tanimoto depend on the classes

of bioactive compounds as well as on the chosen metrics and descriptors. Zwierzyna

et al. (2015) [67] revealed class-specific differences between active compound classes.

These structural differences identify compound categories given the properties of the

molecule chemical structures.

RDKit was used to access the SMILES fingerprint representation [68] in order to

form clusters according to the Tanimoto distance [69].

Considering two molecular fingerprints A and B, the Tanimoto coefficient Tc is given

by the following equation:

Tc(A,B) =
NAB

NA +NB −NAB

, (3.1)

with NAB the number of ’on’ bits in A and B, NA the number of ’on’ bits in A and

NB the number of ’on’ bits in B [70]. Overall, the data was organized into groups

according to the common chemical structures among the SMILES fingerprints. On

that account, it was possible to establish categories of predictable compounds.
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Model

4.1 Encoding Layer

The set of SMILES representing the molecular structure of drugs underwent a series

of processing operations which converted the characters into numerical sequences

(character-integer encoding) unambiguously representing the compound structures.

After this transformation, the SMILES are treated as images represented by matrices

encoding the molecular sequences. The one-hot encoding operation normalizes the

contribution of each categorical value, each of the different characters in the SMILES,

in the network’s training. In particular, this is illustrated in Figure 4.1 with respect

to serotonin.

Figure 4.1: One-hot encoding of SMILES.
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4.2 Convolutional Neural Networks (CNNs)

Convolutional neural networks inherit many of the properties of artificial neural

networks (ANNs) and consist of a set of layers containing multiple neurons and a

set of learnable parameters, representing the strength of the connections between

neurons. A CNN treats the input as an image, returning a score that denotes the

probability of a given input belonging to each one of the output classes.

Like a conventional neural network, CNNs consist of a set of hidden layers that

propagate a given input through the network. These layers are made up of neurons,

each one connected to each neuron of the previous layer. The output is given by a

fully-connected layer that returns a probability distribution over each of the different

output classes (Figure 4.2).

Height, width and depth are the 3 dimensions of the neurons. A convolutional

neural network transforms an input image into an output feature map applied to a

given activation function. A convolutional neural network can stack up to different

types of layers, in particular, convolutional layers, pooling layers, ReLU layers and

fully-connected layers [71].

Thus, the architecture of CNN may contain:

1. Input Layer: Displays the neural network input as an array of pixels of dimen-

sion (width, height, depth);

2. Convolutional Layers (Conv): Returns the output of the convolution operation

between the weight matrices of each neuron and the regions to which they are

connected in the input. If the convolutional layer has a total of n filters the

size of the output corresponds to: (width,height, n)

3. ReLU Layer (ReLU): Performs an operation that transforms the values of a

given input to non-negative values. The operation max(0, input) does not

change the size of the output;

4. Pooling Layer (Pool): The pooling layer performs an operation that reduces

the dimension of the input in the two-dimensional space (downsampling). This

operation changes the size of the output.

5. Fully-Connected Layer (FC): Returns the probability distribution of the input

belonging to each of the k output classes.

The convolutional layer is a set of convolutional filters capable of extracting local

features from an input. The input is propagated through the convolutional layers
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(forward propagation) while the convolutional filters slide through the spatial di-

mensions of the input. The two-dimensional output feature map returns the result

of the convolution operation of the filter for each position in the two-dimensional

space (width, height). Convolutional neural networks learn a set of convolutional

filters capable of extracting important features for the network prediction. As we

progress to deeper convolutional layers, the greater the ability to distinguish more

complex patterns by converting low-level features into more complex abstract con-

cepts. Each convolutional layer presents a given set of filters and each one of them is

responsible for returning a two-dimensional feature map which produces the output

of that same layer [72].

Convolutional layers have the ability to restrict the connections with neurons to a

small region of the input. The connection defines the size of the filters used in the

convolution operation and the length of the connections corresponds to the depth of

the input of the convolutional layer. Thus, in the spatial dimension, there is a local

connection, which is not the case with the input depth.

Figure 4.2: Convolutional neural network.

Three fundamental parameters determine the size of the output of a convolutional

layer and they are defined as hyperparameters of the network architecture:

1. Depth: Number of filters chosen for the convolution operation. In each filter,

the neurons of the convolutional layer operate on different regions of the input.

2. Stride: Number of positions in the input image over which the filter slides

through in the convolution operation. The application of a larger stride pro-

duces a smaller output feature map;

3. Zero-Padding: Operation that adds zeros at the edges of the spatial dimension

of the input. This parameter preserves the spatial dimension of the output

feature map generated in the convolution operation. This property allows the

existence of inputs and outputs with the same spatial dimension after the

convolution.
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The output size of the output feature map is a function of the input size, the number

of filters, the amount of padding performed and the stride applied in the convolution

operation:

output size =
input size− filter size+ 2 ∗ padding

stride
+ 1 (4.1)

This value must be an integer value so that the neurons in the next convolutional

layer can fit into the output feature map.

The convolution operation (Figure 4.3) consists in a set of multiplication operations

and later sum between the elements of the filter and the elements of an input image

over which this filter slides, resulting in a feature map of convolutional outputs.

Figure 4.3: Convolution operation.

The ReLU (Rectified Linear Unit) Layer applies a function that normalizes the

values present in a given input volume to non-negative values: max(0,x). This

function sets a threshold at 0, where the negative values are nullified. This layer

accelerates the process of convergence of the predictive model when compared to

functions like the tanh or sigmoid functions due to the linear profile of the max(0,x)

function. On the other hand, ReLU layers involve less computationally demanding

operations and less time for the model to converge [73].

A very common strategy is the placement of pooling layers interspersed with convo-

lutional layers by inserting them between consecutive convolutional layers. Pooling

layers (Figure 4.4) are responsible for reducing the spatial dimension of the outputs

[74]. This operation reduces the computational cost associated with convolutional

operations and prevents overfitting. These layers act independently along the depth

of the input, reducing the size of each depth slice in the two-dimensional space.
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Convolutional networks develop structure in a feature space where the complexity

stratifies along with the different layers. The lower layers allow the detection of

small motifs and the extraction of low-level features. The increase in the number

of filters with an increase of the combinatorial size of the feature space results in

the learning of representations of increasing complexity converting low-level features

into more complex abstract concepts.

Figure 4.4: Max-pooling and global max-pooling operations.
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4.3 Model Overview

In this study, starting from a reduced set of candidate molecules, a set of parallel

convolutional neural networks is adapted to predict novel compounds, according to

the structural similarities observed between molecules.

SMILES are processed based on the length of the character sequence, as previously

mentioned in Section 3.1. A char-integer encoding is performed, transforming the

SMILES characters in the corresponding integer values, as mentioned in Section 3.2.

The integer values are encoded into binary vectors, converting the SMILES into

binary matrices representing the compound molecular structures. The one-hot en-

coding operation normalizes the contribution of each character identified in the

SMILES.

The proposed model accepts different pairs of molecules and learns a similarity func-

tion, which returns a similarity score between two input molecules. Thus, according

to the learned similarity rule, the network predicts the similarity score in one shot.

A Siamese neural network built upon two parallel and identical convolutional neural

networks is introduced as the proposed model approach. This network is compatible

with a set of pairs of compounds provided for training. The model learns a similarity

function and returns a distance metric applied to the output feature vectors from

both Siamese twins. This similarity measure allows the model to predict novel com-

pounds based on a reduced set of candidate molecules available for training. Both

Siamese twins are indistinguishable since they are two copies of the same network

and share the same set of parameters [75]. Parallel neural networks present a dense

layer structure where the output feature vector of the last layer serves as an input to

a sigmoid function, which condenses the prediction into a probability value between

0 and 1.

These parallel convolutional neural networks reduce their respective inputs to in-

creasingly smaller tensors as we progress to the high-level layers. The absolute dif-

ference between the output feature vectors is used as an input to the learnt similarity

function [76]. This metric returns a similarity score between two input molecules.

In a one-shot learning approach, one compound is established as a reference molecule

and compared with different compounds expressing the probability of both belonging

to the same class, according to a given similarity score score. The Siamese twins are

symmetric neural networks, which means that the probability P of a given instance

d1 belonging to the same class as d2 is equal to the probability d2 belonging to the
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same class as d1. Thus, if d1 and d2 are compounds of the same class, we represent

this relation as d1 ∗ d2. If the network is symmetric, d1 ∗ d2 and d2 ∗ d1 represent the

same, which means that if we switch the order of the inputs of the Siamese network,

the returned output prediction would be the same:

P (d1 ∗ d2) = P (d2 ∗ d1) (4.2)

This symmetry property is very important when learning a similarity metric:

score (d1 ∗ d2) = score (d2 ∗ d1) (4.3)

If we chose to concatenate the Siamese inputs, the final input is concatenated bi-

nary matrix which is propagated through the layers of a single convolutional neural

network. Each element is convoluted with a different set of filters, which breaks the

symmetry required to compute a similarity score between two molecular sequences.

An architecture based on two parallel neural networks propagates two inputs through

the same set of weights and the difference between the output feature vectors serves

as an input to a similarity metric. This symmetry-based approach is less expensive

and leads to a pairwise training which improves the model prediction accuracy.

43



4. Model

4.4 Pairwise Training

A training set in which half are pairs of the same class and another half of different

classes was considered. Since the Siamese neural network accepts pairs of molecules,

the dataset size increases, given the number of possible combinations for the pairs of

molecules available for training. This number quadratically increases which prevents

the Siamese model to overfit.

If we have D examples of drugs of C classes of compounds, there are D.C molecules

in total which leads to a number of pairs of:

number of pairs =

(
D . C

2

)
=

(D . C)!

2! . (D . C − 2)!
(4.4)

However, we consider half of the pairs of the same class and half of the different

classes for training. Therefore, the maximum number of possible combinations for

compound pairs is the total number of possible pairs with compounds of the same

class.

If there are L examples each of Q classes, the total number of possible pairs of the

same class is given by,

max number of pairs = L .

(
Q

2

)
=

L . Q!

2! . (Q− 2)!
(4.5)

Thus, the number of training instances increases in Q of a square factor and in L

of a linear factor. The increase in the size of the training set reduces the effect of

overfitting [77].

The increase in the maximum number of possible combinations for the pairs of

molecules available for training is important in the learning of a similarity function.

Thus, the maximum number of combinations for the pairs of molecules is calculated

in order to obtain a ratio of 1:1 for these two types of pairs. This approach is

consistent with the training of a Siamese model which learns a distance metric

capable of discriminating very identical compounds and compounds with very high

disparities in an equally effective and accurate manner.
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4.5 Hyperparameter Optimization Approach

To optimize the network performance, the one-shot learning accuracy of the model

on the validation set was established as a guiding criteria. Additionally, a set of 500

one-shot tasks was considered for each of the epochs that took place at the training

stage. Therefore, instead of the standard k-fold cross-validation, two methods were

used to determine the best model, early stopping and model checkpoint. When we

verified that there was no significant increase in the accuracy values over a certain

number of epochs, we stopped training and saved the parameters for which the

model returns the best value for one-shot learning accuracy on the validation set.

For a higher number of iterations, the model tends to adjust to the training data

and memorizing it, losing its generalization capacity. Early stopping and model

checkpoint allow to determine the best set of weights that lead to the best accuracy

values in the validation set. Thus, it is possible to stop the training of the model

before it has the chance to overfit, identifying the inflexion point where the loss in

the testing data starts to increase over the loss in the training data (Figure 4.5).

Figure 4.5: Hyperparameter optimization: model checkpoint and early stopping.

amsmath systeme
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Experimental Setup

5.1 Dataset

5.1.1 SMILES Dataset

MoleculeNet [78] is a benchmark commonly used in the application of machine

learning methods in the study of the molecular structures. It was used to extract

SMILES (Simplified Molecular Input Line Entry System) for compound represen-

tation and encoding. Tox21 was the dataset used, which contains, approximately,

8000 compounds [79, 80].

The canonical form of the SMILES was considered as a consistent representation of

the molecular structures, in which each character is considered as feature useful for

the model prediction.

Originally, the dataset contained some missing and duplicated values and, was pro-

cessed so that all these entries were removed completely.

In order to restrict the study to small molecules, the dataset was reduced according

to a length threshold based on the character distribution of the SMILES (less than

100 characters). Therefore, the dataset was reduced from 7831 valid SMILES to

7074 (Table 5.2). The reduction of the dataset based on this criteria allows not only

to carry out this study on small molecules, but also to evaluate the performance and

behavior of the proposed model with a reduced set of training data, which is one of

the main objectives of this study.

Table 5.1: Training and testing datasets: number of samples.

Total Reduced
Training 5873 5305
Testing 1958 1769

7831 7074
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5.2 Model Architecture

The proposed Siamese Neural Network model aims to predict novel compounds

by learning a similarity function capable of identifying compound analogs with in-

creased biological activity. The network’s training is based on SMILES representing

the compound molecular structures. The optimization of a convolutional model

involves the fine-tuning of several network parameters. Five different network pa-

rameters were selected in order to optimize the model such as: the number of filters

in each convolutional layer, the size of the convolutional filters, the number of units

in the dense layers and the learning rate.

The parallel neural networks intercalate 4 convolutional layers with 3 pooling layers.

The use of a higher number of dense layers does not necessarily result in a significant

improvement of the model performance. Conversely, a higher number of dense layers

may increase the tendency to overfit due to the memorization of local patterns

learned from the training data. The optimization of the model allows the adjustment

of the network parameters without the need of adding more convolutional layers.

On the other hand, the selection of the activation and optimization functions is an

important step when optimizing the model prediction.

The activation function allows the transformation of the output of the weigthed sum

of a given set of neurons. Some activation functions are capable of introducing the

non-linearity that best describes the complexity of patterns and local dependencies

present in deep representations extracted from the input sequences of a deep neural

network [81].

The sigmoid activation function accepts a given input x and returns a score repre-

senting a probability value between 0 and 1. The function allows the cancellation

of highly negative values and returns a unit value for highly positive inputs, rep-

resenting the behavior of a biological neuron that changes from an inactive state

(sigmoid(x) = 0) to a saturated state (sigmoid(x) = 1), according to different

stimulus.

sigmoid (x) =
1

1 + e−x
(5.1)

The ReLU activation function, as referred to in previous sections, sets the activation

threshold to 0, applying the function f(x) = max(0,x). This function accelerates

the model convergence through a stochastic gradient descent optimization (SGD)

due to its unsaturated profile and linear shape. However, ReLU neurons are fragile
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and susceptible to inactivation, when a high gradient crosses a given set of ReLU

units. The inactivation of neurons happens in such a way that the update of the

weights in each iteration prevents their reactivation leading to the ‘death’ of the

ReLU neurons [82].

R(x) = max(0,x) (5.2)

Figure 5.1: Activation functions: sigmoid and ReLU
funtions. Image from "www.saugatbhattarai.com.np/

what-is-activation-functions-in-neural-network-nn/reluvssigmoid".

The loss function returns a value that translates the difference between the predic-

tion and the label which contains the values to be predicted by the model. The

objective is to minimize the loss function which depends on the difference between

the prediction and the vector of labels in order to maximize the performance of the

model and obtain a more accurate prediction.

The vector of predictions f(x,W ) depends on a given input x and a set of weights

W . The loss function depends on the difference between two vectors, f(x,W ) and

the vector of labels y. In the proposed model a binary cross-entropy loss is applied

between the target and the prediction:

L(W,x) =
1

n

n∑
i=1

y(i).log(f(x(i),W )) + (1− y(i)).log(1− f(x(i),W )) (5.3)

Thus, the smaller the difference between both distributions f(x,W ) e y, the lower

the value returned by the loss function and the higher the accuracy of the prediction.

In order to reduce the noise of the weights throughout the learning process and
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improve the model generalization capacity, a regularization factor was added to our

classifier.

L(x1, x2, t) = t.log(p) + (1− t).log(1− p) + λ.||w||.2, (5.4)

where t is y(x1,x2), that is equal to 1 if x1 and x2 are compounds of the same class

and equal to 0 if they are from different classes. p is p(x1,x2), the predicted similarity

score between x1 and x2. λ is a regularization term that allows the network to learn

increasingly less noisy weights w, leading to improved generalization.

The mathematical method that allows to minimize the loss function and to optimize

the model prediction is the gradient descendent method. This method uses the

variation of the loss function derivative, that is, its gradient, in the optimization

of the weights of a neural network. Thus, there is a certain set of weights W for

which the loss function reaches a global minimum corresponding to the point where

the model prediction is equal to its label. The objective of the gradient descent

method is to update the set of weights of the neural network in order to minimize

the value returned by the loss function. This method finds the set of weights that

results in a higher loss value and calculates the opposite gradient, since it returns

the direction of the loss function decrease towards its global minimum. The size of

the steps required for the convergence towards the global minimum is determined

by the learning rate parameter α [83].

As gradient descendent method, we chose the Adam optimizer [84] which combines

the effectiveness of two other extensions of gradient descendent methods, AdaGrad

and RMSProp. This method, instead of adapting the learning rate according to the

mean of the first moment of the gradient, makes use of the averages of the second

moments. On the other hand, this method calculates the moving average of the

gradient and the β1 and β2 parameter values, in order to control the decay of the

moving average.

The construction of a model capable of discriminating different classes of molecules

and predicting novel compounds starting from a very small set of molecular struc-

tures is, as previously mentioned, the main objective of this study. The main model

consists of a Siamese Neural Network based on convolutional neural networks. The

inputs consist of two twin input vectors with a corresponding hidden vector in each

convolutional layer. The model architecture that maximizes the network perfor-

mance is the one whose number of convolutional layers is 4 and the number of filters

in each layer is a multiple of 16. A ReLu activation function thresholds the output
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feature maps at zero and a maxpooling layer reduces the spatial dimension of the

outputs of each convolutional layer (Figure 5.3).

The output feature vectors returned by the last convolutional layer of the Siamese

twins serves as an input to a fully connected layer with 1024 units. This layer learns

a similarity function between two feature vectors by applying a distance metric to

the learned feature maps. It is followed by a dense layer that computes the absolute

difference between the two output feature vectors. This value serves as input to a

sigmoid function in the last layer.

Figure 5.2: Siamese neural network model: absolute difference between the output
feature vectors.

The predicted similarity score is given by,

score = sigmoid (
∑
i

| vi1,l − vi2,l | ), (5.5)

v1 and v2 are the output feature vectors of the last convolutional layer of each

Siamese twin, l the index representing the dense layer, i the index i in each output

feature vector and sigmoid the activation function. This defines a fully-connected

layer which joins the two Siamese twins and computes a distance metric returning

the similarity score between both feature vectors.

The first Siamese twin returns the output feature vector for a given query molecule

and the other returns an output feature vector for a molecule representing each one

of the compound classes. The differences observed between them are proportional to

the dissimilarity between both compounds. If both compounds belong to the same

class then the feature vectors must be similar, otherwise they must have significant
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differences. For both cases, the differences vectors are quite different, which results

in a similarity score that is also different.

This similarity measure is a probability, assuming a value between 0 and 1. If

score is equal to 1, the probability of both compounds belonging to the same class

is maximum. If score = 0, this probability is minimum according to the learnt

similarity rule.

Python 3.7.3 and Keras with Tensorflow back-end [85] were used to develop the

proposed model.

Figure 5.3: Siamese neural network architecture of the proposed model.
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5.3 Hyperparameter Optimization

As previously mentioned, in order to perform the hyperparameter optimization, in-

stead of the standard k-fold cross-validation, we used other strategies in order to

determine the best set of parameters that resulted in the best model performance,

early stopping and model checkpoint [86]. Therefore, to optimize the network per-

formance over the one-shot tasks, we established the accuracy of the model on the

validation set as a guiding criteria. We considered a set of 500 one-shot tasks for

each of the epochs that took place at training stage. Thus, when there was no signif-

icant increase in the accuracy values, we stopped training and saved the parameters

for which the model returns the best value for one-shot learning accuracy on the

validation set. If an increase in this value wasn’t verified during the entire learning

procedure, we accepted the parameters of the final state of the model generated

during the entire learning schedule.

We chose to vary the size of the filters from 2x2 to 20x20, considering a number of

filters that allowed us to optimize performance. Moreover, we found that a number

of filters multiple of 16 returned the best performance, so we considered values

between 64 and 256 for the convolutional layers and between 256 and 1024 for the

fully connected layer. Since we found that a higher learning rate would result in a

longer time for the model to converge, this value was kept low in an interval between

10−6 and 0.1.

Table 5.2: Network parameter settings for the Siamese model * Initial number of
epochs, however early stopping and model checkpoint were applied.

Parameter Value
Number of convolutional layers 4
Number of dense layers 2
Number of filters [64,128,128,256]
Filter length [10,7,2,2]
Epochs* 100
Batch size 50
Optimizer Adam
Learning rate 0.0001
Number of neurons (FC) 1024
Activation function (CNN) ReLU
Activation function (FC) ReLU
Activation function (Output) Sigmoid Function
Loss Function Binary Cross Entropy
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5.4 N-way One-Shot Learning Approach for Clas-

sification

The reduced amount of biological data available for training led us to adopt a new

strategy to train and predict novel compounds using the proposed model. A N -way

one-shot classification strategy is applied to demonstrate the discriminating power

of the learned features.

The Siamese network earlier described accepts pairs of compounds from a small set

of molecules D with a given number of N examples of encoded matrices of equal

dimension and label l:

D = (d1, l1), ... , (dN , lN) (5.6)

The data for classification is organized in pairs, one example from a support set and

the other from a test set. The support set consists of set of molecules representing

each class selected at random whenever a one-shot learning task is performed. The

support set has compounds representing each one of the compound categories and

the test set has the test molecule provided for classification. In order to access the

ability to make accurate predictions, a test instance di of unknown class is selected.

Knowing that only one instance dj in our support set corresponds to that same class,

the objective is to predict that class l belonging to D as the label li of an instance

di.

Note that for every pair of input twins, the model generates a similarity score be-

tween 0 and 1 in one shot. Therefore, to evaluate whether the model is really able

to recognize similar molecules and distinguish dissimilar ones, an N -way one shot

learning strategy is used (Figure 5.4). The same molecule is compared to N differ-

ent ones and only one of those matches the original input. Thus, the model returns

N different similarity scores p1, ..., pN denoting the similarity between the test

molecules and the support set molecules. If the pair of compounds of the same class

gets the maximum score, the model prediction is correct. This process is repeated

across multiple trials, the network accuracy being determined as the percentage of

correct predictions.

In practice, for model validation a test instance is selected and compared to each

one of the molecules in the support set.

Subsequently, the test instance is paired with each one of the compounds in the
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Figure 5.4: N -way one-shot learning approach.

support set and the compound with the highest similarity score according to the

learned similarity rule is selected. The prediction is correct, if the maximum score

corresponds to the pair of molecules of the same class, that is, if the test instance

and the support set instance are from the same class. Thus, in each trial, the first

pair corresponds to a pair of molecules of the same class, with the remaining pairs

formed by molecules of different classes, as illustrated in Figure 5.5.

At each time a one-shot task is performed, the model verifies which of the molecules

of a given class is more similar to a given test compound and predicts a similarity

score according to the learnt similarity metric. Over multiple trials, in each one-shot

task the Siamese network predicts which of the compounds present in the support

set S most closely resembles the given test molecule in the test set T . Thus, the

learned similarity function uses an argmax function, since the model returns the

maximum similarity score score(di,dj) of the pairs of compounds di,dj of the test

set T and support set S, respectively. The output prediction is given by,

pred(di,S) = argmax(score(di,dj)) , dj ∈ S (5.7)
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The prediction corresponds to the highest similarity score between the pairs of

compounds in comparison in a given trial, in each of the N one-shot tasks per-

formed. The value N refers to the number of comparisons (test molecule, support

set molecule) at each trial. It is possible to verify that increasing this value, more

challenging it becomes to obtain a correct prediction and lower is the accuracy of

the model. This is due to the fact, that it is more difficult to obtain the maximum

similarity score for the first pair due to the presence of a greater number of pairs in

comparison at each trial.

Figure 5.5: N -way one shot learning strategy for classification.
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5.5 Model Comparison

The comparison of a given complex model with a set of simpler base models is a com-

mon strategy when assessing performance. Since methods such as Random Forest

or Support vector machine are used across many machine learning applications and

are the most popular approaches to solve both classification and regression prob-

lems, it was crucial to compare the proposed model with these traditional machine

learning approaches. On the other hand, the model comparison allowed to evaluate

the discrepancies between the application of deep learning techniques and tradi-

tional machine learning methods. This approach highlighted the capacity of deep

neural networks in extracting features with high discriminating power and learning

deep representations capable of describing the complexity of hidden patterns and

local dependencies relevant to the prediction of novel compounds in drug discovery

applications.

A training set in which half are pairs of the same class and another half of different

classes was considered. To ensure a consistent and meaningful comparison, the

accuracy was determined using a N -way one-shot learning strategy. A set of N -way

one-shot tasks was established to compare N concatenated pairs across 500 trials.

Python 3.7.3 and Keras with Tensorflow [85] back-end were used to develop the

standard convolutional model. Scikit-learn was used to implement some of the other

models for comparison purposes [87].
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5.5.1 K-Nearest Neighbour Classifier

The first model suggested for comparison is the K-Nearest Neighbour classifier [88].

KNN takes a test instance as an input and compares it with the k nearest neighbours.

Each of these neighbors votes according to its label, returning the most voted label

as the final prediction.

However, in the proposed model approach the compounds are organized in pairs and

each test instance in each one-shot task has only 1 neighbor, its pair selected from

the support set representing a given class of compounds. Therefore, in an N -way one

shot learning approach, the test compound is compared with N different compounds

selected from a support set, returning the pair with the highest similarity score as

the final prediction. This type of classification is identical to the application of a

KNN classifier, where the number of neighbors is equal to 1 (K = 1, the pair of the

test instance in a one-shot task.

The Euclidean distance d, or L2 distance, was used to compute the distance between

two input vectors a and b [89]:

d(a, b) = ||a− b|| =

√√√√ n∑
i

(ai − bi)2 (5.8)

However, since the inputs of the classifier are binary matrices, encoded representa-

tions of the molecules, it is necessary to convert these representations into vectors

on which a distance metric can be applied.

Figure 5.6: K-nearest neighbour: L2 distance applied to a pair of flattened encoded
vectors A and B.

To compute the L2 distance between compounds the matrices are converted into

flattened vectors and the distance metric is applied to each pair in comparison

(Figure 5.6).

The Euclidean distances d1, d2, ..., dN between pairs of test set and support set
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molecules are compared. Similarity is inversely proportional to a distance mea-

sure thus, a shorter distance corresponds to a greater similarity. That is, when the

distance between a molecule and its pair is minimum, the similarity between both

is maximum, and the class of the molecule pair is the classifier prediction. If a given

compound in the support set belongs to the same class as the test molecule and,

the distance obtained between them is the minimum, then the prediction is correct,

as illustrated in Figure 5.7. Otherwise, it will be incorrect. This procedure was

repeated over multiple trials with the accuracy determined as the average of correct

predictions.

Figure 5.7: K-nearest neighbour model prediction.
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5.5.2 Support Vector Machine

The purpose of Support Vector Machine (SVM) is to define a set of hyperplanes

in a multidimensional space that can be easily used for classification purposes [90].

Thus, the objective is to find a hyperplane in an n-dimensional space that maximizes

the separation margin between data points of different classes. For that purpose,

a set of support vectors is defined. The support vectors influence the orientation

and position of the hyperplane and maximize the separation margin of the classifier.

The increase of the separation margin returns a higher probability of a correct

prediction and a higher degree of confidence in the classification. The predicted

label is the class next to the separation margin on which the test instances fall. In

addition to the linear classification, an SVM model uses kernel functions to perform

a non-linear classification, mapping a given input to an high-dimensional feature

space. Therefore, SVM represents a given set of molecules by mapping them across

different sides of a separation margin of a linear decision surface. (Figure 5.8).

The regularization parameter C represents a tolerance to misclassifications and es-

tablishes the number of misclassifications allowed. A higher value of C establishes a

small separation margin that reduces the number of misclassifications, increasing the

number of correct predictions. The gamma parameter establishes the set of data

points that are involved in the calculation of the separation line. High values of

gamma consider the points closest to the line in the calculation, low values consider

also the points far away from the separation line. Kernel functions represent com-

plex decision surfaces efficiently, calculating the separation lines in high-dimensional

feature spaces. Thus, non-linearly separable features are converted to linearly sep-

arable features when mapped to a high-dimensional space.

Table 5.3 describes the parameter settings for the SVM model.

Table 5.3: Parameter values for the SVM Model.

Parameters Value

C 1.0
kernel RBF
gamma scale
tol 0.001

The Radial Basis Function [91], an exponential kernel function, was used in the
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implementation of the SVM model:

K(x(i), x(j)) = φ(x(i))T .φ(x(j)) =

= exp(−γ.||x(i) − x(j)||2), γ > 0
(5.9)

Thus, it is not necessary to determine the feature mapping φ(x(i)) of the input x(i)

directly, since the kernel trick maps to a larger dimensional space where features are

linearly separable.

In this case, Scikit-learn [87] was used to implement the SVM classifier.

Figure 5.8: Support vector machine: hyperplanes and separation margin.
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5.5.3 Random Forest

Random forest (RF) is an ensemble learning method that generates a set of indi-

vidual classifiers returning the mode of the predictions of each individual decision

tree [92]. Each individual tree returns a prediction that follows a set of ’if-then’

rules through multiple decision splits. The selected splits generate less impurity and

more information gain. The algorithm starts by randomly selecting a given subset

of features, calculating the nodes by defining a split point. The node is divided into

daughter nodes in a process that is repeated multiple times until we obtain a given

set of nodes. The previous steps are repeated a number of k times, until we get

a total number of k individual decision trees. Each decision tree corresponds to a

different classifier, returning a prediction for the given set of test features. The final

prediction of the algorithm will correspond to the most voted label given all the

predictions made by each one of the individual trees (Figure 5.9).

In model training, each individual tree is trained using a randomly generated subset

of data instead of the entire dataset. On the other hand, in each decision split only

a randomly generated subset of features is considered. These techniques reduce the

correlation and variance of the model while decreasing noise sensitivity and prevent-

ing overfitting, making the model more robust to features that greatly influence the

model prediction. By injecting randomness into forests, it allows to decouple errors

when considering an average of the predictions of the individual trees as the final

result of the model.

Table 5.4 describes the parameter settings for the RF model.

Table 5.4: Parameter settings for the random forest model.

Parameters Value

n estimators 150
max features 100
imp metric Gini
max depth None
min split 2
min node 1
limit leaf nodes None

Parameters as the number of individual decisions trees (n estimators), minimum

number of samples needed for splitting and to form a node (min split and min node,

respectively), maximum number of nodes (limit leaf nodes), the maximum number

of features selected randomly at each decision split (max features), evaluation crite-
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ria to measure the impurity (imp metric) or the maximum depth of the individual

trees (max depth) are some of the RF main hyperparamaters to fine-tune before

training.

Scikit-learn [87] was used for the implementation of the RF classifier.

Figure 5.9: Random forest model.
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5.5.4 Näıve Model

The Näıve model was implemented in order to demonstrate that the results obtained

outperform a random prediction. Thus, random numbers were generated for each

pair of molecules in each trial of a one-shot task (Figure 5.10).

This random number represents a randomly generated similarity score that denotes

a similarity score between the test molecules and the support set molecules. As

previously mentioned, the first pair of a one-shot task represents a pair of molecules

of the same class. If the number generated for the first pair is maximum then the

prediction is correct, else it is incorrect.

This procedure was also repeated over multiple trials with the accuracy determined

as the average of correct predictions.

Figure 5.10: Näıve model prediction.
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5.5.5 Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) is a simple neural network with the following struc-

ture: input layer, a set of hidden layers and an output layer [93] (Figure 5.11). This

model is a simple neural network model capable of modeling input-output depen-

dencies and learning useful correlation relationships. Thus, an MLP model with

only one hidden layer between the input and output layer allows to model any con-

tinuous function and is the basis for the development of more complex models such

as CNNs.

Figure 5.11: Multi-layer perceptron: simple perceptron model with 1 hidden layer.

The implementation of MLP allowed the comparison between the proposed model

and a simpler deep learning model with a smaller set of hidden layers. For the MLP

architecture 3 hidden layers with 100, 50 and 30 neurons were considered.

Table 5.5 describes the parameter settings for the MLP model.

Table 5.5: Network parameter settings for the MLP model.

Parameter Value
Number of hidden layers 3
Number of neurons [100,50,30]
Epochs 100
Optimizer Adam
Learning rate 0.001
L2 penalty parameter 0.0001
Activation function ReLU

Scikit-learn [87] was used for the implementation of the MLP.

65



5. Experimental Setup

5.5.6 Convolutional Neural Network (CNN)

Finally, the performance of a standard convolutional neural network is evaluated in

order to analyse the differences when compared to a pair of identical parallel con-

volutional neural networks with the same structure. In this case, a neural network

architecture identical to each one of the Siamese twins of the proposed Siamese model

is considered (Figure 5.6). The convolutional model is prepared to receive a con-

catenated pair of molecules for classification. The compound pairs are propagated

through a single network in order to extract deep representations from SMILES

useful for compound prediction.

The comparison of the proposed model with a convolutional model highlights the

differences when learning a similarity metric applied to pairs of compounds. The

proposed model propagates two input molecules through identical neural networks

with the same set of parameters and learns a distance metric applied to both in-

puts. However, the convolutional model learns a single set of weights applied to a

concatenated input, where each encoded molecule is convolved with a different set

of filters and applied to a different set of neurons in each iteration of the training

process, breaking the symmetry property of the Siamese model.

Table 5.6 describes the parameter settings for the CNN model.

Table 5.6: Network parameter settings for the CNN model * Initial number of
epochs, however early stopping and model checkpoint were applied.

Parameter Value
Number of convolutional layers 4
Number of dense layers 2
Number of filters [64,128,128,256]
Filter length [10,7,2,2]
Epochs* 100
Batch size 50
Optimizer Adam
Learning rate 0.0001
Number of neurons (FC) 1024
Activation function (CNN) ReLU
Activation function (FC) ReLU
Activation function (Output) Sigmoid Function
Loss Function Binary Cross Entropy
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5.6 Statistical Significance Analysis

The choice of a statistical hypothesis test to compare the results of multiple classifiers

is a challenging issue in machine learning. Since it was very expensive and time-

consuming to train multiple deep learning models, we chose the McNemar’s Chi-

Square test [94] to analyse the statistical significance of the results as recommended

by Dietterich et al. (1998) [95]. The proposed Siamese model considers multiple

combinations of pairs of molecules to train a similarity metric learnt by a set of

parallel convolutional neural networks requiring a lot of training time for the network

to converge to an accurate and reliable prediction. McNemar’s Chi-Square test is a

statistical hypothesis test that operates over the results of multiple classifiers models

considering only one test dataset.

Normality and statistical correlation tests were conducted in order to validate the

use of a Chi-Square non-parametric test to evaluate the model results. Shapiro-Wilk

test [96] was used to evaluate normality and Spearman correlation coefficient [97] to

test correlation. Both were applied to the model prediction results in comparison.

The p − value results (p − value ≤ 0.05) for Shapiro and (p − value > 0.05) for

Spearman coefficient, indicate that a non-parametric test must be used to perform

the statistical significance analysis of the classifier model results. McNemar Chi-

Square test is a paired non-parametric test that operates upon a contingency table

(Table 5.7).

The contingency table operates over 2 categorical variables (binary variables) which,

in this case, correspond to the correct and incorrect predictions in each N -way one-

shot learning task over a number of k trials. For each set of paired molecules in each

trial the classifier prediction is evaluated returning a correct of incorrect prediction.

The number of k predictions of the classifier model in each one-shot task over k

trials is used to build the contingency table.

Table 5.7: Mcnemar’s contingency table.

Classifier 2 Correct Classifier 2 Incorrect
Classifier 1 Correct Yes/Yes Yes/No
Classifier 1 Incorrect No/Yes No/No

The contingency table is a result of the comparison between two distinct classifier

results given the number of correct predictions per an N -way one shot task done over

multiple trials. Since we are comparing pairs of independent and mutually exclusive

predictions from two different classifiers for each N -way one shot classification task
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and the pairs selected from the test set and the support set are chosen at random,

this was the most appropriate statistical test selected for the significance analysis of

the model results.

The McNemar’s Chi-Square test analyses the contingency table values and evaluates

the homogeneity of the prediction results for both classifier models in comparison,

inferring about the disagreement between the results. The test statistic is based on

a Chi-Square distribution with only 1 degree of freedom.

Mcnemar’s Chi-Square test statistic is given by,

statistic =
(Y es/No−No/Y es)2

(Y es/No+No/Y es)
(5.10)

The test statistic is based on the disagreement between both classifier results and

on the difference between the correct and incorrect predictions returned, capturing

the differences in the proportion of the errors. Therefore, the accuracy and the error

of the individual classifier does not influence the disagreement or the statistical test

assumptions. The null hypothesis H0 is that the two cases disagree to the same

amount. If we reject the null hypothesis, it suggests that there is evidence that

the cases disagree in different ways and there is a statistical significant difference

between the model results. The p− value can be interpreted as follows:

1. p > α: fail to reject H0, no difference in the disagreement, the models have a

similar proportion of errors.

2. p ≤ α: reject H0, significant difference in the disagreement, there is a different

proportion of errors between the models.

In Table 6.3 in the next section, we display the p− value results for the statistical

significance of the proposed Siamese model results considering N <= 10. A level

of significance of 1% is considered with α = 0.01. The statistical hypothesis tests

for the significance analysis were performed using SciPy [98] and Statsmodels [99]

libraries.
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Results and Discussion

In the context of the prediction of promising lead molecules, identifying different

classes of compounds with a small set of candidate molecules should be the main

focus of this study. Nonetheless, the model must be able to discriminate new classes

of compounds unknown at the training stage, eliminating the need for periodic re-

training of the model and leading to the prediction of novel compounds for drug

discovery applications. Additionally, the proposed model which learns a one-shot

similarity metric must be able to discriminate very identical compounds and com-

pounds with very high disparities in an equally effective and accurate manner. Thus,

the model should be able to distinguish between organized pairs of compounds ac-

cording to the dissimilarities observed in the structure and molecular descriptors

and predict a given set of structural analogs with increased biological activity and

therapeutic function.

In this study, a convolutional Siamese model is proposed to predict novel compounds

according to a degree of similarity between molecules. The similarity rule is com-

puted by a similarity function learnt by a one-shot Siamese neural network built

upon two parallel and identical convolutional neural networks capable of extracting

deep representations from SMILES.

As highlighted in Section 5.5, the proposed model is compared with the traditional

machine learning approaches most commonly used in classification and regression

problems. A comparison with a set of simple deep learning models and standard

machine learning approaches highlights the discriminating power of the one-shot

structural features extracted by the Siamese model.

To measure the model performance, the accuracy was determined using a N -way

one-shot learning strategy, described in the previous sections.

accuracy (%) =
number of correct predictions

number of trials per one− shot task
. 100 (6.1)
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The differences in performance between the traditional machine learning models,

standard deep learning models and the proposed Siamese model can be interpreted

as a result of the reduced training set, the attempt to classify novel compounds

whose classes are unknown at training stage and the ability to propagate a set of

compound pairs along two parallel neural networks. Therefore, in the context of the

prediction of promising lead compounds using a one-shot Siamese model, there are

4 different questions that need to be answered:

1. How useful is the application of a set of parallel convolutional neural

networks using a one-shot learning strategy?

In this study, we validate the potential of learning a similarity metric capable of

classifying a set of compound pairs using a one-shot Siamese deep neural network.

This type of neural network accepts data organized in pairs, increasing the size of the

dataset, given the total number of possible combinations for the pairs of molecular

structures available for training, preventing overfitting. Since the Siamese model

accepts a set of compound pairs, the dataset size increases, given the total number

of possible combinations for the pairs of molecules. This number quadratically

increases with the number of classes and linearly with the number of examples per

class available for training.

The performance results of the Siamese model highlight its ability to propagate a

pair of input molecules along two parallel and identical neural networks with the

same structure (achieved the highest accuracy (94%) for N = 2 and the accuracy

does not fall bellow 60% for N ≤ 10) (Table 6.1). Therefore, rather than propagating

a concatenated and denser input across a single network, the same set of weights is

propagated along two identical twin neural networks, making the learning task more

effective and less computationally expensive. The Siamese model propagates two

inputs across the same set of weights and the difference between the output feature

vectors serves as an input to a similarity metric. This symmetry-based approach is

less expensive and leads to a pairwise training which improves the model prediction

accuracy. Therefore, the model generalization capacity increases when assuming the

existence of a higher number of examples since there is a large and more diverse set

of structures to be learned.

Conversely, considering a single convolutional neural network for the training of a

similarity metric, there is a concatenated and denser input, which is propagated

through the layers, each element is convoluted with a different set of filters, which

breaks the symmetry required to compute a similarity score between two molecular

structures. It is possible to verify the effect of symmetry breakdown on final accuracy
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values obtained by the standart convolutional neural network (above 50% only for

N ≤ 3 and dropping abruptly for N > 3).

Table 6.1: N -way one-shot learning accuracy results for the Siamese model.

N
2 3 4 5 7 10

Siamese Neural Network (validation) 94% 90% 84% 78% 70% 65%
Siamese Neural Network (training) 95% 92% 86% 84% 72% 70%

2. What is the main reason behind the drop in the accuracy results for

higher values of N?

The final prediction corresponds to the pair of compounds with the highest similarity

score in a one-shot trial. The value N refers to the number of pairs of molecules at

each trial in a N -way one-shot task. It is possible to verify that increasing this value,

more challenging it becomes to make a correct prediction and lower is the accuracy

of the learnt similarity rule. This is due to the fact that it is more difficult to obtain

the maximum similarity score for the first pair of compounds in comparison due to

the presence of a greater number of pairs at each trial.

Therefore, if the number of comparisons N in a one-shot trial increases, there is a

greater chance that the model fails the prediction. This is due to the fact that a

higher number of classes is assigned to each test instance. This behavior increases

the probability of a failed prediction which is visible in the accuracy results as we

progress to higher values of N . As a consequence, we observe a drop in the network’s

performance for higher values of N . However, the Siamese Network achieved the

highest accuracy (94%) for N = 2 and it does not fall below 60% for N ≤ 10 (Table

6.4).

3. How discriminating is the proposed model in comparison with the

traditional machine learning models and simple deep learning methods?

Traditional machine learning as SVM and Random Forest models present accu-

racy results that highlight the effectiveness of deep learning models in extracting

useful features for compound prediction over these conventional machine learning

approaches. The accuracy achieved by these methods remains above 50% for lower

values of N . However, it drops abruptly when N increases since it is more difficult to

make a correct prediction (Table 6.2). These machine learning algorithms consider

the sequence as a whole, disregarding specific regions in the molecule structure and

structural inter-dependency relations between them. These molecular segments are

crucial to recognize different classes of compounds and to identify local dependencies
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related with class-specific segments of the compound chemical structure.

CNN and MLP return a more consistent performance among the models built for

comparison, achieving higher accuracy results for N ≤ 10. The multi-layer percep-

tron achieves an accuracy above 60% for N ≤ 3. However, it drops abruptly for

higher values of N . These performance results highlight the inability to outperform

the proposed set of parallel convolutional neural networks compatible with the set

of compound pairs provided for training (Table 6.2).

The proposed one-shot Siamese model presents a set of parallel convolutional neu-

ral networks that propagate 2 compound SMILES and extract features from deep

representations whose complexity increases as we progress to deeper layers. The ex-

traction of low-level features supports the extraction of patterns and local dependen-

cies of increasing complexity. These high-level representations identify patterns of

the molecular structures shared among compounds and certain classes of molecules.

The local patterns identified in the deep representations support the prediction of

pharmacological analogs outperforming the standart machine learning methods and

simple deep neural networks (Table 6.4).

Table 6.2: N -way one-shot learning accuracy results for standart machine learning
methods and simple deep learning approaches.

N
2 3 4 5 7 10

KNN 70% 55% 49% 43% 36% 30%
Näıve Model 61% 43% 34% 31% 22% 19%

SVM 56% 42% 30% 24% 16% 12%
Random Forest 71% 58% 60% 44% 34% 20%

Multi-Layer Perceptron 76% 60% 36% 34% 22% 13%
Convolutional Neural Network 81% 70% 58% 46% 41% 39%

4. What does the statistical significance analysis conducted demonstrate

and to what extent are the results obtained statistically significant?

The analysis of the statistical significance of the model results in comparison (Table

6.3) proves that there is evidence of a statistically significant difference between

model performances. The p-value results indicate a different proportion of errors

on the test set, which corroborates the validity of the results achieved. Considering

1% as the level of significance (α = 0.01), the results show a highly statistically

significant difference in the disagreements between the Siamese model against the

other model performances.

Therefore, the results achieved prove that the one-shot Siamese neural network
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outperforms the state-of-the-art models in the accurate and reliable prediction of

novel compounds for drug discovery applications.

Table 6.3: p− value results for statistical significance of the Siamese model.

N
2 3 4 5 7 10

Siamese
Model

CNN 5.684e-10 1.058e-14 2.700e-19 1.034e-23 2.024e-19 2.448e-15
MLP 9.052e-15 1.414e-27 2.416e-50 2.285e-44 1.343e-46 3.063e-59
KNN 1.00e-23 1.720e-35 3.748e-30 1.855e-27 5.620e-26 6.621e-28
Näıve 4.282e-37 1.580e-52 1.907e-55 2.764e-44 5.189e-49 9.457e-42

RF 8.098e-22 5.888e-30 2.709e-17 5.374e-28 9.322e-29 3.268e-42
SVM 1.172e-40 2.547e-53 8.606e-61 3.762e-58 1.519e-62 1.366e-60

The presence of a reasonable number of layers provides the ability of convolutional

neural networks to retain information and extract important features for the de-

tection of patterns relevant for the prediction. The use of parallel convolutional

neural networks implementing a one-shot learning approach is compatible with the

pairs of compounds in comparison. The learnt similarity rule leads to the discovery

of compound analogs with increased biological activity. This strategy enhances the

learning of a similarity function capable of inferring a set of promising lead molecules

from the structure and molecular descriptors of a small set of candidate molecules.

The discovery of new analogous compounds lies in the ability to identify patterns and

extract features capable of modelling the relationship between certain segments of

the molecular structure and the compound classes and, consequently, their biological

activity. Therefore, the high predictive power of one-shot Siamese neural networks

lies in their ability to identify patterns or local dependencies related with certain

segments of the molecular structure which play a pivotal role in the identification

of certain classes of molecular structures. The deep representations of compounds

Table 6.4: Final N -way one-shot learning accuracy results.

N
2 3 4 5 7 10

Siamese Neural Network (validation) 94% 90% 84% 78% 70% 65%
Siamese Neural Network (training) 95% 92% 86% 84% 72% 70%

KNN 70% 55% 49% 43% 36% 30%
Näıve Model 61% 43% 34% 31% 22% 19%

SVM 56% 42% 30% 24% 16% 12%
Random Forest 71% 58% 60% 44% 34% 20%

Multi-Layer Perceptron 76% 60% 36% 34% 22% 13%
Convolutional Neural Network 81% 70% 58% 46% 41% 39%

75



6. Results and Discussion

model non-linear relationships between the molecular structure and its biological

activity important for the prediction of structural analogs with high therapeutic

potential and increased pharmacological activity. The results highlight the efficiency

of using deep representations in compound prediction extracted from a set of parallel

convolutional neural networks using a one-shot learning strategy.
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Conclusion

7.1 Conclusion

Humans are able to one-shot learn complex concepts related to a given object,

image or symbol from the previous observation of multiple representations of other

similar and equally complex concepts. This representation learning helps in the

classification of newly observed instances of those concepts. However, it is difficult

to find a deep learning model capable of simulating this similarity learning from

very few training examples per class for training and in the absence of a previous

observation that leads to a correct prediction.

Deep neural networks are able to learn a wide range of functions and possible rep-

resentations from a large set of parameters. Deep learning methods are capable of

adjusting the designed model to complex data-structures while extracting multiple

sets of features valuable for the prediction. However, this set of parameters induces

the learning of a huge number of possible representations and mappings for the ob-

served instance. Thus, how is it possible to find a representation that generalizes

in order to correctly classify a given test instance when there is only one previously

observed example available?

A one-shot learning approach learns a small set of useful features from the simple

similarity measure between two distinct inputs. Thus, it is possible to learn a

similarity function from a set of pairs of instances by extracting deep representations

related with the dissimilarity between compounds according to the similarity score

returned by the learnt metric.

All deep neural networks develop structure and extract deep representations capable

of improving the model prediction. The set of layers of a neural network stratifies

the complexity of the extracted features, with the simplest features extracted from

low-level layers and the most complex from the high-level layers. In the context of
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drug-discovery, low-level layers emerge as detectors of small segments of the molec-

ular structures which characterizes the compound primary structure. The layers

that follow built upon the previous layers, are able to detect structural differences

between portions of the previously identified segments, as well as relevant combina-

tions of those segments. The increase in feature complexity results in the detection

of patterns and local dependencies related with the active binding sites or capable

of describing different compound classes.

One-shot deep neural networks extract relevant features for the prediction and ex-

trapolate to different classes of compounds according to a degree of similarity with

a given reference molecule representing each compound class, starting from a small

set of similar drugs.

In this study, we validate the potential of learning a similarity metric capable of

classifying a set of compound pairs using a one-shot Siamese deep neural network.

This type of neural network accepts data organized in pairs, increasing the size of the

dataset and preventing overfitting, given the total number of possible combinations

for the pairs of molecular structures available for training.

The discriminating power of the similarity rule improves the ability to extract fea-

tures related to specific regions of molecular structures useful for compound predic-

tion. The learnt one-shot structural features improves the ability to extract infor-

mation and to infer about complex concepts of the molecular structures. The high

discriminating power of the learnt features extracted from a reduced set of candidate

compounds is a property that results from the combination of a one-shot learning

approach and a model built as a set of parallel convolutional neural networks.

The performance of the proposed model outperforms the traditional classification

approaches such as KNN or a näıve model, the traditional machine learning methods

such as SVM and Random Forest and simple deep learning methods such as CNN or

MLP. Additionally, we validate the effectiveness of a one-shot learning approach in

the accurate and reliable prediction of novel compounds in low-data drug discovery

applications.

One-shot learning exploits the application of deep learning strategies into solving

problems where with only a few examples per class for training. In the context of

drug discovery, where high-quality data is scarce, the implementation of this strategy

represents a vital asset to significantly increase the predictive power when inferring

the properties and activities of small molecules and those of their pharmacological

analogs.
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7.2 Future Work

In future research, improvements could be made if the compounds in the test set

were compared to the support set as a whole, instead of considering its elements

individually. Therefore, it might be feasible trying to understand the influence of

the presence of a significant number of similar compounds in a support set while

predicting novel compounds in a test set, increasing the predictive power of the

proposed model.

Therefore, in a one-shot parallel neural network architecture, the vector embeddings

of both test and support set molecules, in each one-shot task takes into account only

the structure of each pair and not the support set as a whole. However, it would

be important to understand the influence that every support set element has on

the classification of each pair of compounds. A possible solution would be the

application of a full-context embedding, where the structure of the test molecule is

influenced by each one of the elements of the support set. This could result in an

improvement of the performance of the model, where for different one-shot tasks,

the vector embeddings of the test molecule change according to the structure of the

support set elements.

The one-shot learning approach used to train a similarity function capable of discrim-

inating between different classes of molecules is compatible with the development

of a model able to predict novel compounds and structural analogs with increased

biological activity. Thus, it is possible to insert the proposed model in the context

of the multi-class classification of compounds. Accepting different pairs of molecules

and, according to the score returned by the learnt similarity rule, it is possible to

predict the corresponding class and, consequently, its biological activity on an iden-

tified target molecule. The application of a parallel neural network architecture

capable of accepting different pairs of molecules can be implemented in the predic-

tion of structural analogs. Thus, starting from a set of reference molecules it may be

possible to predict, according to the dissimilarity between pairs of molecular struc-

tures, the pharmacological properties and biological activities of a set of compounds

from unknown classes. Additionally, it may be feasible trying to predict the optimal

molecular structure for a previously identified target molecule, leading to the dis-

covery of promising lead compounds capable of triggering the intended physiological

response in organs and tissues.
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