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Resumo

A produção de scaffolds para engenharia de tecidos é uma área de investigação,

cujo interesse tem aumentado ao longo do tempo. A procura de métodos ”verdes”

que promovam tanto processos eficientes a ńıvel energético, como a redução de des-

perd́ıcios, tem requerido metodologias ótimas e que garantam qualidade.

Tomando como inspiração o exemplo de outras indústrias de produção, como a

indústria farmacêutica que tem promovido a adoção de abordagens de qualidade

pelo design para assim melhorar os seus processos, otimizando-os, este trabalho

enaltece a importância de adotar uma abordagem semelhante para o processo de

produção de um aerogel para engenharia de tecidos óssea.

Os dados que foram recolhidos para este processo não foram obtidos conforme uma

metodologia ótima, como é o caso do design de experiências e, como tal, foi mais

dif́ıcil extrair a máxima informação a partir de um número limitado de experiências.

Contudo, o objetivo principal foi o de encontrar uma forma de estimar os valores dos

parâmetros capazes de otimizar o processo. Para isso, em primeiro lugar propôs-se

uma divisão sistemática e rigorosa do processo. Assim, aplicou-se um método de

seleção de variáveis através de uma regressão passo-a-passo com seleção em frente

que levou à obtenção de modelos capazes de representar o processo em estudo.

Posteriormente, aplicou-se uma otimização multi-objetivo, com recurso a funções

desejáveis.

A abordagem mencionada foi capaz de otimizar várias respostas em simultâneo,

sendo estas propriedades espećıficas do aerogel. Consequentemente, com esta abor-

dagem foi posśıvel não só perceber como os parâmetros do processo influenciam o

produto final, mas também como estes podem ser geridos para produzir um aerogel

adequado a uma aplicação médica espećıfica. Para além disto, é também posśıvel

monitorizar a produção tendo em conta as limitações do processo e/ou dos recursos.

Keywords: Processo de Formação de um Aerogel, Regressão Passo-a-passo, Otimização

Multi-objetivo, Seleção de Modelos, Propriedades do Aerogel
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Abstract

The production of scaffolds for tissue engineering is a research area that has received

increasing interest through the course of time. The search for greener manufactur-

ing methods to promote energy-efficient processes, as well as waste reduction, has

demanded for both optimal and quality-assuring methodologies.

Inspired by the example of other manufacturing industries, such as the pharmaceu-

tical industry, which has promoted the adoption of quality by design approaches

to its processes in order to optimize them, this work highlights the importance of

adopting such an approach to the specific process of aerogel production for bone

tissue engineering.

The data collected for this process was not obtained according to an optimal method-

ology such as the design of experiments, making it more difficult to extract the max-

imum amount of information from a limited number of experimental runs. Nonethe-

less, the main goal was to find a way of estimating the best settings of the parameters

that optimized this process. Therefore, a rigorous and systematic division of the pro-

cess was initially proposed. On that account, a variable selection procedure using

stepwise regression with forward selection was applied, leading to models able to

mimic the process studied. Afterwards, a multi-objective optimization using desir-

ability functions was employed.

This approach was able to simultaneously optimize several responses which were

aerogel specific properties. Consequently, it was possible, not only to understand

how the process parameters affect the final product, but also how they can be

managed to produce aerogels fit for a specific medical application. Moreover, it can

also monitor the production with regard to the process and/or resources limitations.

Keywords: Aerogel Formation Process, Stepwise Regression, Multi-Objective Op-

timization, Model Selection, Aerogel Properties
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Introduction

1.1 Scope

Historically, tissue engineering developed into a concept in 1987 that is still what

defines it: ”Tissue Engineering is the application of the principles and methods of

engineering and life sciences toward the fundamental understanding of structure-

function relationships in normal and pathologic mammalian tissue and the develop-

ment of biological substitutes to restore, maintain, or improve function” [1].

Therefore, the goal of tissue engineering is tissue and organ reconstruction using

scaffolds, cells and biomolecules [1]. Herein, bone tissue engineering is a widely

studied branch, since the replacement or treatment of the damaged bone due to

trauma, injury or disease has been one of the main concerns in medical science [2].

Recently, one of the main focus of bone and tissue engineering investigation is on

developing greener methods for the synthesis of biomaterials, through the use of

safer and biocompatible materials or reducing waste materials, by improving the

manufacturing process [2].

In fact, this greener initiative has broader principles, described by Anastas et al

(1998) [3], called the 12 principles of green chemistry. The main goal of these and

other green principles is to generate energy-efficient processes in order to prevent

the formation of wastes, using safer solvents, renewable chemicals and reducing the

number of side products, while also economizing matter and energy [4].

Moreover, medical devices have to overcome several obstacles in regulatory agencies

such as the Food and Drug Administration (FDA), European Medicines Agency

(EMA) or the Therapeutics Goods Administration (TGA) in order to reach the

market [5]. Therefore, efforts have been made for monitoring and ensuring the

quality of this devices at early stages of their development so that errors will not

take place at later stages of the product lifecycle, where they can prove to be fatal
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1. Introduction

[5]. Herein is where a Quality by Design (QbD) approach might become essential.

The aforementioned approach was firstly named by Joseph M. Juran (1992) [6] and

it emphasizes the importance of planning quality into the process of developing a

product rather than testing it only when that final product is obtained (quality by

testing) [7, 8].

From a regulatory standpoint, only in the beginning of this millennium did the FDA

publish the Pharmaceutical cGMPS for the 21st century: a Risk-Based Approach [9],

with the FDA finally recognizing that what matters most for product development

is the knowledge of the product development process by integrating both science and

risk management in development and manufacturing activities [7, 9]. This initiative

was embraced by some pharmaceutical companies and by the International Council

for Harmonization (ICH), which also published a guideline in 2009 to facilitate the

quality control, by introducing the concept of Design Space (DS), which is considered

to be the combination and interaction of input variables that have demonstrated to

achieve the desired goals [10].

Hence, the QbD methodology was designed to help both the industry and regulatory

entities, through continuous improvement [7].

1.2 Motivation

Even though QbD has been increasingly applied in the pharmaceutical industry

and the benefits from it are notorious, it has not yet been fully embraced [7]. Fur-

thermore, the scenario is similar for tissue engineering, with the relatively recent

implementation of QbD requiring several opinions from researchers, designing en-

gineers and manufacturers to develop a more cemented quality process, since it is

also possible to establish a DS for clinical and product quality aspects of a product

[5, 11].

Implementing this methodology will translate into better understanding of both the

process and the product. It will also enable real-time quality control and reduce the

number of tests after the product manufacturing. Moreover, by monitoring every

stage of the development process it will be easier to check if the product is meeting

the specified regulations and to obtain faster approval times, as the probability of

it being rejected at later lifecycle stages is reduced.

The time has come for the tissue engineering industry to follow the recent example

of pharmaceutical industry and other industries, who adopted QbD methodologies,

2



1. Introduction

and start making use of the rich data that scaffold manufacturing industries can

provide. Besides, the cost and waste reduction that this approach can provide are

good enough reason to adopt it.

However, not all the companies and institutions have the resources or funds to

develop the necessary QbD statistical tools and procedures. Thus, there is still a

considerable gap in the market, especially in the production of aerogels for tissue

engineering.

Overall, the work developed at this master thesis aims to clearly define every step

of the aerogel formation process (or solvent exchange and supercritical drying) and

make use of all the information available to select the most important inputs of the

experiment and work within their design space to produce optimized outputs.

1.3 Goals and Contributions

The goal of this project was to optimize the production of an aerogel for bone tissue

engineering by building models that could accurately mimic that process. Although

the current literature has proved that there are effective ways of optimizing the

aerogel formation process, the development of a systematic and reliable methodology

remains an on-going challenge.

On that account, a comprehensive analysis of the process and every stage that it

involves is required. Additionally, the labeling of every parameter and the measure-

ment of every outcome plays a great role in the fullfilment of the QbD objectives.

Overall, optimization of the process by combining interdisciplinary knowledge of

experimenters, researchers and engineers was fundamental, considering that it pro-

vided the means to optimize all the steps inherent to this process.

Therefore, this work aimed at providing the best parameter settings for the aero-

gel solvent exchange and supercritical drying steps. And even though it was not

employed a Design of Experiments (DoE) methodology while the experiment was

developed, it was still possible to find those optimal settings. For that matter,

Exploratory Data Analysis (EDA) was employed to firstly scrutinize the dataset,

followed by the use of stepwise regression with forward selection for variable screen-

ing and a final Multi-Objective Optimization (MOO) to find the best parameter

combination so that all the responses are simultaneously enhanced.

Consequently, the proposed methodology is a significant contribution, since it pro-

vides a process optimization regardless of the dataset limitations.

3



1. Introduction

It also presents the perfect opportunity for the implementation of QbD approach

with DoE for the product formulation, as both these concepts are thoroughly de-

scribed, with QbD concepts in particular being introduced to this process.

Moreover, it was also desired to study the efficiency of the solvent exchange process,

and therefore it was introduced the possibility of quantifying the predictive relation

between the response and a given parameter.

Concluding, this work provides an opportunity for bridging the gap between the work

of experimenters and statisticians, by both finding the optimal settings to perform

validation experiments and establishing some important concepts and guidelines to

implement rigorous quality-based procedures for this process.

1.4 Document Structure

In order to develop the present work, the following structure was adopted: Chapter 2

provides a description of experimental concepts important to understand the process

described, as well as optimized ways of developing experiments. It also goes through

variable selection procedures that can be used to better achieve the experimental

goals. In Chapter 3 the given dataset for the aerogel formation process along with the

specifications for building the models to optimize it are mentioned. Furthermore,

Chapter 4 describes all the methodology developed to achieve this work’s goals

and how it was implemented. The results of the aforementioned methodology are

described in Chapter 5, as well as the discussion on its strengths and limitations for

achieving the optimal settings for the process studied. Finally, Chapter 6 provides

an important reflection on all the results achieved, as well as some of the remaning

key issues to improve this process in future work.
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2

State of the Art

In order for the reader to understand the context of the present study, this chapter

comprises a description of QbD’s important concepts, which lays the foundation for

the optimization of the aerogel formation process that this project aims at. It is

important to note that for this QbD methodology to be correctly implemented, the

experimental process must be planned in advance with every step of the way being

carefully analysed. Therefore, two opposed ways of experimenting are mentioned,

with special focus on the experimental design, considering its symbiotic relationship

with QbD.

Moreover, some variable selection techniques will be contemplated. Herein it is

desired to familiarize the reader with procedures that are able to reduce the number

of predictors to build models, especially when the process has more predictors than

experimental runs, which was the case of this work. Besides, some insight will be

given on how further optimization of manufacturing processes can be induced.

Finally, as the aerogels are the biomaterials demanding property optimization, the

historical evolution of this biomaterial is described, with emphasis on the aerogels

with similar composition to the one used in this study. Common aerogel properties

along with tissue engineering specific properties are also mentioned.

2.1 Quality by Design Methodology

The first step for a QbD methodology is to identify the Quality Target Product

Profile (QTPP), which involves describing how the product will be used by the end-

user [12]. This is a teamwork effort based on the expertise of scientists, engineers and

medical specialists in order to help setting a clear goal for the product, preventing its

failure at later development stages, and ultimately accelerating its time to market,

as it also facilitates the communication between companies and regulatory agencies

[5, 13].
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Identifying a QTPP involves selecting a Critical Quality Attribute (CQA) as well,

since it is fundamental to guide the product development process [10]. These CQAs

are physical, chemical, biological or microbiological characteristics of the product

that should be within an appropriate range to ensure product quality and they are

identified through risk assessment and experimentation [10].

However, even though it is possible to identify the CQAs at an early stage of the

product, the proper definition of their limits requires more knowledge of the devel-

oped process [5].

Furthermore, it is essential to identify the process parameters and material attributes

that influence the CQAs [10]. A Critical Process Parameter (CPP) is defined by

ICH Q8(R2) [10] as a parameter whose variability influences the CQAs. Although

there is no definition of Critical Material Attribute (CMA) by the ICH, it can be

defined similarly to the CQA, as chemical, physical, biological or microbiological

properties of an input material that should be within a certain limit to ensure the

quality of the product [14].

Once the CQAs, CPPs and CMAs are identified, it is helpful to create a process flow

diagram, which will provide more accuracy regarding the most important processes,

while also providing a way to control and monitor quality [5].

As described earlier, risk assessment and experimentation help understanding the

relationship between CPPs (and CMAs) and CQAs and it screens the variable ranges

that achieve consistent quality [10]. This relationship between inputs and outputs

are described in the DS [10]. Consequently, it is of utter importance to describe a

DS.

Pharmaceutical products and medical devices are frequently manufactured by a

combination of unit operations [14]. For instance, aerogel formation involves gela-

tion, solvent exchange, supercritical drying and final sterilization. In these cases,

the output of the first unit operation becomes the input for the subsequent unit

operations and, therefore, the process can be analysed from the perspective of each

unit operation or as a combination of the unit operations [14].

2.2 The Importance of Experimentation

Science evolves with experimental observation. However, to actually understand

the importance of a certain factor to an experiment, the best way of doing so, is by

changing it. It is through observation that one can formulate theories or hypothesis,
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but those can only be confirmed if experiments are performed [15].

An experiment can be defined as a series of runs or a test, in which some input

factors are deliberately changed in order to evaluate the impact of those changes

on a specific response or output [15, 16]. Therefore, the inputs are independent

variables and the outputs are dependent variables.

Frequently, the goal of experimentation is to identify which input variables are fun-

damental to optimize a system or to achieve other specific goal [15].

Furthermore, to study the effect of a factor in a response, it is necessary two or more

values of the factor. These values are also called levels or settings [16].

It is also important to note that there are two different types of factors: quantitative

factors and qualitative factors. On the one hand, quantitative factors are the ones

that can assume any value within a continuous range, which gives a certain flexibility

to a factor. On the other hand, qualitative factors assume values between a discrete

number of values. Hence, these factors bring less flexibility to an experiment [16].

However, this notion of flexibility can be rather tricky, as choosing the number of

values of a factor can also be influenced by cost and some practical constraints. For

instance, if reducing the number of levels represents a cheaper experimental plan,

or if some factor levels combined at the same time can lead to harmful results,

adjustments shall be made in order for the experiment to prosper [16].

Thus, not all the factors impact the experiment in a significant way and the ones with

a significant effect on the system’s outputs are the active factors. The individual

effect of a factor in an experiment is a main effect, whereas the joint effect of N

factors is a N factor interaction [17]. Subsequently, whenever the effect of a factor

on the response depends on the level of another factor, it means that there is an

interaction effect between those factors [15, 18].

2.2.1 One-Factor-At-a-Time Approach

The traditional One-Factor-At-a-Time (OFAT) method is an extensively used ap-

proach for experimentation. In this method, a baseline set of levels is defined,

establishing a baseline value for each and every factor. After that, each factor is

varied within its range of levels, while the others are held constant at their baseline

values [15]. However, this method suffers from major setbacks. Firstly, as it depends

highly of the baseline or starting point, it does not cover the optimal settings and

only gives a local knowledge (where the experiments are performed), as opposed to
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the experimental design that promotes knowledge in the whole experiment domain

(global knowledge) [18, 19].

Additionally, this approach is not good to distinguish between “noise” and actual

improvement unless a significant amount of runs under the same conditions is made

[19].

Finally, OFAT is not able to identify any possible interactions between factors [15].

In fact, in comparison to the DoE approach, this method is less efficient, since DoE

requires fewer runs to achieve the same statistical power and this difference only

gets more pronounced as the number of factors on the design increases [20].

2.2.2 Design of Experiments

The Design of Experiments (DoE), or experimental design, as it may sometimes be

named, is the strategy of experimentation used to extract the maximum information

from the collected data with the fewest experimental runs possible [21].

The experimental design plays a major role on product realization, as it improves

product manufacturing, reduces product cost and shortens both the design and

development time. Some areas where DoE is widely implemented besides science and

engineering, are marketing, market research, transactions and service operations,

and general business operations [15].

According to Wass (2010) [22], the DoE methodology consists of three main stages:

Screening; Response Surface Methodology (RSM); Model Validation.

Firstly, the factor screening stage shows what factors influence the response(s) the

most, providing more information about the overall process. Then, with RSM,

these screened factors are used in order to define the optimal result space. Finally,

the model validation stage provides conclusions and recommends a course of action

[15, 22].

Moreover, in order for DoE to be applied, three basic principles need to be respected.

At first, the design needs to make sure that the allocation of materials and the order

to perform the experimental runs are random. This randomization also assures that

the observations are independently distributed random variables, which is required

for performing statistical methods. Secondly, by replicating an independent run of

each factor combination, the experimenter can obtain an estimate of the experi-

mental error. At last, to reduce the variability transmitted by the nuisance factors

(factors that can influence the system’s response, but are not of interest) blocking
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is a valuable tool. A block is a set of homogeneous experimental conditions and

running an experiment in blocks, with each level of a nuisance factor corresponding

to a block, reducing the “unwanted” variability [15].

Wass (2010) [22] describes how the DoE process starts, describing the screening

designs. Usually, two levels are considered in such a design, with the representation

adopted being “+1” for the high level and “-1” for the low level [22]. This might be

often called orthogonal coding or the effects coding [15].

Therefore, these designs require fewer runs and promote a positive relationship be-

tween cost and information [22]. However, one of the problems that might be en-

countered is regarding the linearity assumption. Even though in many cases of the

2k design (design of k factors with 2 levels) the linearity assumption will hold very

well in approximation, the interactions between the factors might introduce some

curvature and lack of fit to the model [15].

Consequently, it can be of great interest to test the linearity of the model and,

because of that, some points known as “centre points”, represented by “0” are

introduced, as they detect curvature in a rather simple and inexpensive way [22].

It is also stated that three or four centre points should be included in a design, as

repetition allows the determination of confidence intervals [23].

When centre points are added to a design, it is assumed that the k factors are

quantitative, but it can also be the case that most of the factors are quantitative

and a few are qualitative [15].

All in all, when it comes to selecting designs to kick-start the DoE methodology,

there are several options, but the more employed ones are the two-level factorial

designs: both the full factorial designs and fractional factorial designs [7].

2.2.3 Full Factorial Designs

In a full factorial design, it is possible to study all experimental factors and interac-

tions between factors and how they all influence the responses. In the case of having

only two levels and k factors, the full factorial design will consist of 2k experiments.

Therefore, as the number of factors increases, the number of experiments affordable

will be exceeded [23].
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2.2.4 Fractional Factorial Designs

This resource limitations might mean that using a full factorial design is impossible.

Consequently, investigators will look for experimental designs that require fewer

experiments [12]. In fractional factorial designs, the experiments cover as much of

the experimental domain as possible, without the necessity of doing an excessive

number of experiments [23]. For instance, assuming that some interactions will

not have much influence on the outputs and that some factors might be “inert”

locally, i.e., inactive in the current space of experimental interest, it is possible to

investigate three factors with four experiments, seven factors with eight experiments,

fifteen factors with sixteen experiments and so on and so forth [23, 24]. In order to

characterize a two-level fractional factorial design, the notation used is 2k−p, being

a
1

p
fraction of a 2k full factorial design, with 2k−p runs [24].

Figure 2.1 shows an example of the representation of a 23−1 fractional factorial on

the left side of the figure. This design uses a 22 full factorial model, which is a half

fraction of the 23 design, to obtain the points represented in the figure. Furthermore,

when the design was expanded to a three factor format, the experiments form a

tetrahedron, which corresponds to the largest volume occupied by four points in

three dimensions. In comparison to the right side of the figure, where a 23 full

factorial design is represented, it is clear that a fractional factorial design covers as

much experimental domain as possible [23].

Figure 2.1: Fractional and full factorials. Adapted from [23].

This positive trade-off between information and less experimental runs is only pos-

sible by confounding the factors’ main effects with interaction effects. In order to

know what effects will be confounded, it is necessary to introduce a new term in the

design: the generator of a fractional factorial [23].
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To that end, the effect coding of a higher-order interaction will be perfectly corre-

lated with a main effect (positively or negatively) [12, 24]. Thus, we cannot sepa-

rately distinguish the interaction effect from the main effect, i.e., what is obtained

is a sum of both effects and one effect is an alias of the other [24].

For instance, if we think of a column of plus signs, I (Identity column), when we

multiply another column for I we will have the same coding as in the original column

and if we multiply a factor column by itself, we will have I. With a design with three

factors such as the one in figure 2.1 and imagining x3 = x1x2, then x3.x3 = x1x2.x3

, which means that I = x1x2x3. This is the generating relationship or defining

relationship for the design. Since the defining relation is composed of the “word”

x1x2x3, which has the “length” 3, the design is of resolution III [16, 23, 24].

This concept of a design’s resolution is of greater importance, because as the resolu-

tion increases, the main effects and second-order interactions become less confounded

with higher-order interactions. As a matter of fact, for designs of resolution III or

higher, no main effects are alias of other main effects [12].

However, if the goal is to have all the second-order interactions not confounded with

each other, the resolution of the design needs to be V or higher. The problem with

these designs is that as the number of factors increases, it may become unfeasible

to perform the amount of runs necessary to develop the design [25].

2.3 Effects Principles

Li et al. (2006) [17] identified three key principles to understand the factorial designs:

effect sparsity, hierarchical ordering and effect heredity.

According to the sparsity of effects principle or the Pareto Principal of Experimental

Design, when there are several factors, the system’s responses are likely to be driven

primarily by some main effects and low-order interactions [15, 17]. In fact, most

investigations assume that third-order interactions or higher are negligible and can

be excluded from the model [23].

Furthermore, the sparsity effect promotes the design efficiency through the pro-

jection property, since the DoE techniques allow the design to have the desired

properties when dimensions of the experimental domain are collapsed [17]. The pro-

jection property is well represented in Figure 2.2. This practical use of the design

projectivity can be explained for a fractional factorial design of resolution R, as be-

ing defined by P = R− 1, which means that for any subset of P factors, a complete
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factorial can be produced and, therefore, if P or fewer factors are active, there will

always be a complete factorial design to study them [24].

Figure 2.2: Representation of the projectivity property. Taken from [24].

Hierarchical ordering or effect hierarchy states that the main effects tend to be larger

than the two factor interactions and these last ones tend to be larger than higher

order interactions, suggesting that when resources are limited, the priority is the

estimation of lower order effects [16, 17].

Finally, the effect heredity claims that for an interaction to be significant, at least

one of its precedent factors needs to be significant as well [16].

2.4 Variable Screening Procedures

When there are many experimental variables, it can be hard to make precise regres-

sion models for the outputs [26]. Thus, several variable screening procedures will be

described bellow, as they might play a fundamental role on the process being studied

in order to extract valuable information about the most significant parameters for

the outputs.

2.4.1 Subset Selection Approaches

Recently, a different type of design has been increasingly analysed: the supersatu-

rated design.

This design has the particularity of having at least as much factors as experimental

runs [27]. Consequently, as least squares methods cannot be used with more factors
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than runs, a subset of the factors must be selected.

Sonoda et al. (2007) [26] proposed a stepwise multiple regression method for variable

screening in a MOO of electric machinery. It was stated that when there are many

independent variables being studied, a screening procedure to reduce the DS is

required. Therefore a three-step stepwise multiple regression was employed: firstly,

a regression model was chosen; secondly, the significant independent variables were

either added or removed according to the F-test; finally the procedure stopped when

a specific criterion was met and the best model was found or a pre-defined threshold

for the number of iteration steps was reached.

Although stepwise selection methods are efficient for unsaturated and saturated

designs, they were found ineffective for supersaturated designs, as they often select

many inactive factors as well as missing the active ones [28, 29].

Abraham et al. (1999) [27] studied the possibility of using all-subsets for effect

screening at supersaturated designs and the results obtained showed that this ap-

proach identified better models. Nevertheless, this is a time-consuming approach,

since for “k” factors, it will evaluate 2k models, also making it infeasible when the

number of factors is very large [29].

Even so, supersaturated designs should be treated carefully, since even all-subsets

regression can be ineffective revealing which factors are active, urging caution and

follow-up experimentation [27].

2.4.2 Penalized Least Squares Approaches

These statistical methods were specifically tailored for the analysis of high-dimensional

data, i.e. in which the number of factors is bigger than the number of experimental

runs [30]. Thus, they are indicated for the aforementioned supersaturated designs.

Hence, it is fundamental to mention the ridge regression which, like OLS includes all

the predictors in the model, but with smaller coefficients that minimize a penalized

sum of squares [31].

Both the subset selection and ridge regression improve the OLS estimation model.

However they have disadvantages: On the one hand, the subset selection is a dis-

crete process and, therefore, small changes in the data can lead to very different

models being selected reducing the prediction accuracy. On the other hand, the

ridge regression is a continuous process that shrinks coefficients, but does not set

any coefficient to zero and consequently, the model interpretation is not easy [32].
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Therefore, this last method will not be discussed in detail in this section due to the

fact that, as all coefficients become nonzero, it is not suited for variable selection

[31]

Herein lies the reasons for the appearance of the different approaches: the Least

Absolute Shrinkage and Selection Operator (LASSO) and elastic net.

2.4.2.1 Least Absolute Shrinkage and Selection Operator - LASSO

The LASSO approach shrinks some coefficients, while setting others to zero, com-

bining the best of both the subset selection and ridge regression approaches [32].

Mueller-Using et al. (2016) [33] built a predictive model which linked demographical,

socio-economical, clinical and immunological factors to a public health response, in

this case the co-infection of HIV patients with tuberculosis and used the LASSO

method for pre-selection of predictors.

Since classical LASSO treats the candidate variables individually, as it selects an

interaction term, it might not select both of its parent factors. Therefore, Choi et

al. (2010) [34] extended the LASSO method so that it simultaneously fitted the

regression model and identified interaction terms obeying to the strong heredity

principle. The model produced by this approach proved to be more effective for

prediction performance than the classical LASSO method.

Moreover, Usai et al. (2009) [35] took advantage of the LASSO’s ability to produce

a model with only a subset of explanatory variables, each being a Single Nucleotide

Polymorphism (SNP). To that effect, LASSO was implemented using a modification

of the Least Angle Regression (LARS) [36] and a cross-validation step to define the

best size of subset SNPs.

Nevertheless, the LASSO approach is still not very satisfactory when the number of

predictors is much bigger than the number of observations [37].

2.4.2.2 Elastic Net

This procedure is similar to the LASSO, as it does automatic variable selection

and coefficient shrinkage and it can select groups of correlated factors [37]. When

predictors are highly correlated, the Elastic Net adds a quadratic penalty term to

the LASSO penalty that accounts for the correlation between predictors [30].

In the specific case of a microarray data set, with thousands of genes (predictors)

and usually less than 100 samples, genes with the same biological “pathway” might
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be highly correlated, belonging to the same group. Therefore, the Elastic Net is

ideal in this situation since it can select the whole group of genes if one of them is

selected [37].

For instance, Cho et al. (2009) [38] used a simple stepwise approach with Elastic

Net regularization in order to account for the correlation structure of SNPs when

selecting disease-causing genes of rheumatoid arthritis. To that effect, firstly a

screening step to eliminate noise SNPs using logistic regression is performed and,

afterwards, predicted disease-causing SNPs are identified through an Elastic Net

based variable selection.

2.5 Optimization

Now that it was mentioned several ways of screening important factors for build-

ing significant models in order to improve processes, it is also important to briefly

mention how the tissue engineering research has optimized its processes.

2.5.1 Multi-Objective Optimization

Often, in optimization studies, there is the need to reconcile conflicting objectives

in MOO problems, whether it is in pharmaceutical processes or other medical ap-

plications [39].

In tissue engineering applications there is frequently the need to address different

objectives, such as biocompatibility, different mechanical properties and biodegrad-

ability. These multiple objectives are often contradictory, as the maximization of one

property might be detrimental to another [40]. Therefore, there should be a tradeoff

between the objective targets and their importance to the formulation process of a

certain product.

Bukzem et al. (2016) [41] studied the synthesis of Carboxymethyl Chitosan (CMC),

which has numerous applications in cosmetics, foods and pharmaceuticals. They de-

veloped their work with a DoE approach, using a Central Composite Design (CCD)

with subsequent RSM and creation of a global desirability function that graphically

shows the parameter values that can maximize this function, thus optimizing the

carboxymethylation process.

More specifically, the formation of collagen elastin-like polypeptide composite scaf-

folds for bone tissue engineering was investigated in order to find the factor settings

that maximize the mechanical properties of the scaffolds [40]. For this purpose,
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once again a CCD was adopted to study the best settings of 2 factors to maximize 3

outputs, with RSM being used to identify the optimal composition of the scaffolds.

Then, with Analysis of Variance (ANOVA) the significant factors or interaction be-

tween factors were identified and the following optimization of the responses was

performed with a two factor-three objective optimization giving equal weights to all

the three responses.

This last work by Gurumurthy et al. (2018) [40] is particularly interesting since

it also studies the formation process of a scaffold for bone tissue engineering even

though its composition is different from the one studied in this thesis. However, it is

worth mentioning that they chose to employ desirability functions to optimize their

process, which will be a methodology further described in this work at Chapter 4.

2.6 Aerogels

This section is destined to familiarize the reader with the aerogel evolution and its

wide range of applications, so that the transition to the next chapters is smoother.

2.6.1 Historical Perspective

The concept of an aerogel was firstly introduced by Kistler in 1931 [42]. It can be

defined as a dry gel with a large pore volume, even though the value depends on the

solid’s characteristics [43]. Typically, these materials are produced through sol-gel

processes, with the liquid part of the gel being replaced by gas without the collapse

of its porous nanostructure, using a proper drying technique [44, 45].

Historically, for about 70 years after its invention, aerogel research was limited

mainly to silica and other inorganic compounds [45]. It was only in 1989 that Pekala

published the discovery that Resorcinol-Formaldehyde (RF) gels were not affected by

solvent exchange and could be supercritically dried to produce low density aerogels,

which translated onto the first “organic aerogels” [46].

The discovery above was what really paved the way for the “investigation boom”

that occurred in the aerogel industry on the 21st century [45]. The technology

development enabled the improvement of the former “organic gels”. For instance,

Graphene Oxide (GO) was used as a nanofiller to prevent the shrinkage and collapse

of the nanopores of RF aerogels when dried, mainly at ambient pressure [47]. Even

Carbon Nanotubes (CNTs) can be incorporated into a Graphene Aerogel (GA)

producing a 3D Composite Graphene-CNTs Aerogel (GCA) that is ideal for oil
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adsorption, as it is green, ultralight and has high adsorption and mechanical strength

[48].

The aforementioned examples denote the evolution of the aerogel technology all the

way to the usage of both CNTs and GAs. Moreover, carbide or even carbonitride

aerogels were added to the aerogel portfolio [49, 50].

2.6.2 Applications

Although the silica aerogels are the most broadly studied, their application is limited

due to low mechanical strength and to their hygroscopic nature [45].

However, there were recent advances to benefit from the high porosity, low density

and low thermal conductivity for thermal insulation in aerospace applications, by

reinforcing silica aerogels with polymers, improving both the aerogel’s load bearing

capacity and elastic response [51].

When it comes to life sciences and biomedical applications (especially when biodegrad-

ability is required), polysaccharide aerogels can present a suitable alternative to silica

aerogels [44]

For instance, Quignard et al. (2008) [52], presented ways of preparing polysaccharide

aerogels as catalysts.

Other major applications of these aerogels are as drug delivery systems, with starch

and alginate aerogels being successful drug carriers [53]. Moreover, hybrid aerogels

composed of both polysaccharide (organic) and inorganic components can combine

the better mechanical properties of the inorganic part with the biodegradability of

the organic [54]. Hence, these ideal properties, allied to the nanostructured porosity

in the aerogel and the interconnectivity of the pores that allow the diffusion of

nutrients and oxygen, makes these aerogels ideal for tissue engineering, especially

for developing scaffolds for bone tissue repairment [44, 54, 55].

Furthermore, organic aerogels are also used for blood compatible implants and ex-

hibit properties that make them suitable for several cardiovascular applications [56].

Finally, polysaccharide aerogels have showed promise regarding being cost-effective

and providing a biocompatible and biodegradable solution for food preservation and

food processing technologies [57].
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Process Definition and Dataset

3.1 Process Definition

3.1.1 Aerogel Formation

Considering that the aim of this work is to produce an aerogel suitable for tissue

engineering applications, the path chosen was to produce a polysaccharide-based

aerogel composed of both alginate, which is a polysaccharide widely studied due

to its biocompatibility and relatively low cost [58] and gelatin, which is a collagen-

derived material suitable for scaffolds for cartilage tissue engineering [59].

In order for an aerogel to become a scaffold for tissue engineering, it has to go

through the following steps: gelation, which induces the formation of a hydrogel,

i.e., a gel swollen by water or other aqueous solution; solvent exchange, which leads

to the formation of an alcogel and is essential, since the water must be replaced with

a solvent with high affinity for the supercritical fluid (Ethanol is the one used in this

specific case); and supercritical drying to arrive at the aerogel end product [54].

Figure 3.1: Aerogel formation process.

The steps of the aerogel formation that will be further described were performed by

Agostinho (2019) [60] and a sample of the final product can be seen in Appendices.

Thus, the data available for this study and that was subject of a thorough analysis,

was obtained according to the aforementioned work.

Consequently, the steps of the aerogel formation process explored in depth will be
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the solvent exchange and supercritical drying.

3.1.2 Solvent Exchange

Within the solvent exchange step, two different approaches are established and both

were performed for comparison purposes [60].

Firstly, the solvent exchange step was based on Baldino et al. (2015) [61] work,

being performed at ambient temperature and pressure, while varying the solvent

concentration.

Then, the solvent exchange step was modified as it was done under high pressure

and temperature conditions by combining it with the drying step. Some variations

of both temperature and pressure were also introduced as the solvent concentration

changed. Moreover, the solvent flow had dynamic periods where it had fixed values

rather than just being static. This methodology was based on Raman et al. (2015)

[62] work.

For analysis purposes, this step was clearly divided into 5 stages, with each of these

stages being characterized by 5 variables: Pressure; Temperature; Time; EtOH

(Solvent) flow; [EtOH] (Solvent concentration). However, it is important to bear in

mind that not all the experimental runs went through these 5 stages, since in some

experimental runs there were only 4 stages and only in 2 experimental runs were

there 5 stages.

Nevertheless, all the experimental runs went through at least 3 stages of solvent

exchange, henceforth being the necessary number of stages to arrive at a functional

alcogel.

The process flow diagram in Figure 3.2 clearly represents the scenario described

above.

3.1.2.1 Alcogel Formation Evaluation

Furthermore, in order to evaluate the alcogel formation process, the analysis already

proposed by Agostinho (2019) [60] of calculating the water presence in the alcogel

was complemented. In the stated work, it was verified that the Refractive Index

(RI) is a simple and reliable method for estimating the ethanol concentration in the

sample and thus providing a measure of the amount of water that left the system.

Moreover, the Differential Scanning Calorimetry (DSC) was used to measure the

mass of water in the sample, hence establishing a relation between the mass of
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water and the ethanol concentration.

To validate these relations and further study of the solvent exchange efficiency, an

attempt of predicting the mass of water in the sample from the RI was made.

3.1.3 Supercritical Drying

The supercritical drying technique is an alternative to the conventional drying tech-

niques, which is assisted by the use of supercritical fluids, scCO2 in this case, since

it has the advantage of preserving the pore structure and textural properties of the

gel [63].

Generally, supercritical drying can be classified into two types regarding the contact

between the gel and the supercritical fluid: static, if the gel contacts with the

supercritical fluid in different cycles or dynamic, if the gel is continuously in contact

with the supercritical fluid [54]. Agostinho (2019) [60] developed her work with the

dynamic procedure.

Thus, CO2 Flow, which is one of the variables of the supercritical drying step, does

not vary within experimental runs. There are 3 more variables related to this step,

which are: Drying Time; Drying Pressure; and Drying Temperature. Figure 3.2 also

provides the representation of this step and its role on the overall aerogel formation

process.
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3.1.4 Process Flow Diagram

For better process understanding, the process flow diagram is represent in Figure 3.2.

Figure 3.2: Solvent exchange and supercritical drying steps of the aerogel forma-
tion process.

3.1.5 Dataset

3.1.5.1 Description of the Dataset

Two steps of the aerogel formation process will be analysed as described before:

the solvent exchange and the supercritical drying. From a “step” standpoint, the

solvent exchange can be divided into 5 unit operations, which will be further named

as stages. Whereas for the supercritical drying, which can be considered as only 1

unit operation, it will continue to be mentioned as a single step.

However, none of the unit operations produces unit-specific responses or CQAs.

The CQAs are from now on primarily named as responses or outputs, being only

measured at the end of the process (after both steps were performed).

Process Inputs

These steps of the aerogel formation are characterized by 29 process parameters

or input factors. As previously described in sections 3.1.2 and 3.1.3, a total of

25 factors were measured in the 5 stages of the solvent exchange and 4 factors in

the supercritical drying step. The inputs for this process are clearly represented in

Figure 3.3.
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Figure 3.3: Representation of all the process inputs.

It was interesting to see how a QbD methodology could be adapted to the parameters

of the process studied:

• CMAs: Concentration from all the 5 stages of the solvent exchange step.

• CPPs: Temperature, Pressure, Time and Solvent flow from all the 5 stages of

the solvent exchange step; Time, Temperature, Pressure and CO2 flow from

the supercritical drying step.

Nevertheless, as mentioned before the solvent exchange step combined static solvent

flow for some samples, whilst for others the flow was dynamic, and therefore, it is

not quantifiable. The inputs were regrouped accordingly, omitting from now on the

solvent flow factor from the list presented in Figure 3.3.

Process Outputs

When it comes to the process outputs or CQAs, none of the unit operations produces

unit-specific responses, being only measured at the end of the process (after both

steps were performed).

• CQAs: Density; Surface Area; Pore Diameter; Young’s Modulus; Tensile

Strength; Humidity; Porosity.

These responses are essentially aerogel properties and all of them are continuous

variables. Table 3.1 provides all the important information about the specific out-

puts of the aerogel, in order to make the data analysis.

Taking a look at the desired characteristics for polysaccharide-based aerogels and
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the specifications of the responses available in the dataset, a brief guide on how the

responses were optimized is provided:

• Density: All the densities reported in the dataset have a low value (bellow 1,45

g/cm-3) which is in complience with the statement that aerogels are typically

low density materials [44]. Furthermore, the measured density is the skeletal

density or true density, which is the mass of the particle, divided by its volume,

excluding the porosity [64]. Consequently, the goal was to minimize the density

values.

• Surface Area: The surface area is intimately related to the porous structure

of the aerogels, since a high surface area (surface to volume ratio) promotes

protein adsorption as well as cell adherence and migration through the porous

network [1]. Polysaccharide-based aerogels are characterized by having high

surface areas, between 70 and 680 m2/g [45]. As expected, the values in the

dataset are mainly within this threshold and the objective was to maximize

them.

• Pore Diameter: The application of a scaffold can vary greatly depending on

its pore size. For pore widths not above 2 nm, the pores are considered micro-

pores, whereas pores between 2 and 50 nm are designated as mesopores and

lastly, macropores have their pore size above 50 nm [65]. This dataset com-

prises only mesopores, hence the primary goal was inducing macroporosity in

the aerogel.

Larger pores and pore interconnectivity are essential for cell attachment and

adhesion, as well as subsequent nutrition and proliferation. Nevertheless, for

medical applications such as the developed aerogel, there should be a balance

of different pore sizes as larger pores also affect the scaffold stability and,

therefore, there should be a tradeoff between cellular and mechanical needs

[1].

• Young’s Modulus: Defined by the ratio between tensile stress and tensile strain

[1]. For instance, the Young’s Modulus for the cortical bone is between 3000

and 30000 MPa [66], but the target value for this response depends on the scaf-

fold exact application. Nevertheless, as the dataset comprises values between

3 and 13 MPa, the goal for this response was maximization.

• Tensile Strength: As it corresponds to the maximum tensile stress handled by

the aerogel, its increase implies capability of supporting higher tensions [1]. It

was reported that the maximum tensile strength for the bone was 200 MPa
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[67]. As an aerogel for bone tissue engineering, the goal was to maximize the

tensile strength.

• Humidity: Essentially measures the efficiency of the solvent exchange step and

the experimenters established a desired value of less than 5% for it, whereas

the values obtained for the dataset (bellow 19%) might imply incomplete alco-

gel formation [60]. Therefore, minimization for the humidity response was

proposed.

• Porosity: The aerogels are differentiated by their highly porous structure and

open porosity, with higher mesoporosity than the native extracelular matrix

[68]. This statement is supported by the around 80% porosity observations

in the dataset, which is similar to the tabulated value for the trabecular

bone porosity (79,3%) [69]. However, similarly to the Pore Diameter response,

macroporosity is required and therefore porosity’s maximization was desired.

Table 3.1: Summary of the optimization goals for the process outputs.

Response Goal

Density Minimize
Surface Area Maximize
Pore Diameter Maximize
Young’s Modulus Maximize
Tensile Strength Maximize
Humidity Minimize
Porosity Maximize

Even though the data was not extracted according to a DoE methodology, it is

appropriate to mention that in order to produce a full factorial design, it would

require 229 runs. Besides, this scenario would only be possible with each factor

having 2 levels, which does not occur in the context of the work developed.

Nevertheless, with only 16 experimental runs, the dataset needed cutting on every

redundant factor for the design in order to understand which effects are significant

for the process and to even learn what changes and adjustments would be needed

to be made for a future adoption of a QbD methodology.

Moreover, as reported in Chapter 2, in experiments such as the one performed,

interactions between factors are of utmost importance. Specially the two-way inter-

actions.
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3.2 Model Preparation

In order to overcome all the setbacks of having a dataset with the described condi-

tions, some efforts were made to simplify it.

Firstly, the dataset was separated by solvent exchange stage to analyze the influence

of each stage combined with the supercritical drying step. Therefore, since there

were 5 stages for the solvent exchange process and the supercritical drying was

considered a single step, 5 different model proposals could be analysed.

However, for the 4th and 5th stages there are not enough runs to evaluate the effect

of these stages on the process responses. Notwithstanding this, the first 3 stages

were individually analyzed and the models were created considering the above spec-

ifications, overall summarized in Figure 3.4.

Figure 3.4: Representation of the stage-wise model creation process, in which the
responses are analyzed based on the values of each stage of the solvent exchange
step individually, plus the supercritical drying step.

Then, since the goal was to study and optimize the entire process of solvent exchange

and supercritical drying of the aerogel, the first 3 stages that were analyzed sepa-

rately before, were all combined for evaluating their effect together on the responses,

making a global model. Furthermore, as the supercritical drying was a single step

it could be analyzed with the combination of the 3 stages of solvent exchange like

the Figure 3.5 demonstrates.

For this combination of stages, notwithstanding the fact that the responses remained

the same, the inputs had to change for the solvent exchange step. Since the first 3

solvent exchange stages were combined, the variables were built differently.

Hence, the inputs changed so that all the parameters related to the solvent exchange

steps became an average of all the 3 stages of that process except for the Total Time,
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Figure 3.5: Representation of the global model creation when all the first 3 stages
of the solvent exchange are combined, plus the supercritical drying.

which corresponds to the sum of the time for each stage. Since the supercritical

drying was a single step, it did not need to be further adapted.

• Inputs: Average temperature; Average pressure; Average Concentration; Total

time; Drying time; Drying temperature; Drying pressure; CO2 flow

• Outputs: Density; Surface Area; Pore Diameter; Young’s Modulus; Tensile

Strength; Humidity; Porosity

By opting for this approach, the goal was to verify if the models selected for both

the stages individually and all of them combined were characterized by the same

significant factors. Furthermore, the selected values of those factors to optimize the

process also had to make sense for both the approaches aforementioned.

Concluding, it was tested whether the global approach for the combination of stages

was a generalization of the stage-wise approach. With this generalization, it was

possible to obtain the best and simplest models that achieved the optimum operating

conditions for the experimental parameters, given the studied dataset.
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Methods

4.1 Exploratory Data Analysis (EDA)

Before going deeper into the data analysis methodology, it is essential to have an

overview of the dataset and its main variation patterns and relevant features for the

analysis goals.

Hence an EDA stage was considered since it uses techniques, such as summary

statistics and graphical tools, to find patterns in the data, check assumptions and

find anomalies [70].

Statistically speaking, the term correlation is related to whether an association of

two variables exists or not. This association is measured by a unit-free correlation

coefficient, which can assume values between -1 and +1 [71]. For perfectly positive

correlations, the coefficient assumes the +1 value, whereas -1 implies a perfectly neg-

ative correlation between the variables. When there is no correlation, the coefficient

value is 0. There are two main types of correlation coefficients: the Pearson’s prod-

uct moment correlation coefficient and the Spearman’s rank correlation coefficient

[72]. The Pearson’s coefficient is suited for the assessment of normally distributed

variables, linearly related. On the other hand, when the relationship in non-linear,

but monotone (increasing or decreasing), the Spearman’s coefficient is the most

appropriate [72, 73].

The Pearson’s coefficient is computed with the formula:

r =

∑n
i=1[(xi − x̄)(yi − ȳ)]√

[
∑n

i=1(xi − x̄)2][
∑n

i=1(yi − ȳ)2]
(4.1)

The Spearman’s rank correlation coefficient can be obtained by the following ex-
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pression:

rs = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
(4.2)

With di being the difference between ranks for x and y.

Nonetheless, correlation does not necessarily mean causation and caution must be

taken when interpreting correlations [71].

4.2 Multiple Linear Regression

Multiple linear regression is the extension of simple linear regression to multiple

predictors (or input variables) [74].

Consequently, the model for a response is now represented as:

yi = β0 + β1xi1 + ...+ βpxip + εi (4.3)

For each observation represented by i, i = 1, ..., n and n being the number of ob-

servations. p represents the number of independent variables. εi represents an error

term, which is a random variable that introduces noise in the relationship between

the dependent variable and the predictors.

4.3 Parameter Estimation through Ordinary Least

Squares (OLS)

The method used for estimating the model regression coefficients was OLS. The OLS

finds the best fit to data points so that the sum of squared deviations from the line

(squared residuals) is minimal [75].

Based on equation 4.3, it was possible to estimate the regression function:

yi = β̂0 + β̂1xi1 + ...+ β̂pxip + ε̂i = ŷi + ε̂i (4.4)

Where ŷi is the estimated value of yi and ε̂i is the difference between the actual

and the estimated values, from now on mentioned as residuals. Furthermore, OLS
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adopts the least squares criterion, which states that the sum of squared residuals

should be as small as possible [75].

Hence the sum of squared residuals is a function of the parameter estimates and was

estimated as follows:

n∑
i=1

ε̂2i = f(β̂0, β̂p) =
n∑

i=1

(yi − ŷi)2 (4.5)

The optimal values for the parameter estimates are the ones that minimized the

sum of squared residuals.

To clearly demonstrate how the parameter estimates are obtained, matrix notation

is more convenient, with equation 4.5 assuming the following form:

i∑
n=1

(yi − xTi b)2 = (y −Xb)T (y −Xb) (4.6)

Where b is a candidate coefficient vector for the OLS parameters, (β0, β1, ..., βp)
T

while X is the n× (p+ 1) matrix with each row being an input vector and y being

the n-vector of the responses [76].

Consequently, the unique global minimum at b was obtained by:

b̂ = argmin
b

{
n∑

i=1

(yi − ŷi)2
}

= (XTX)−1XTy (4.7)

However, in order for the model parameters to be estimated by OLS, certain sta-

tistical assumptions regarding multiple linear regression had to hold no matter how

the data was generated [75]. More specifically, the errors should have zero mean, as

well as being independent (no autocorrelation) and homoscedastic. The last means

that the error term has constant variance in each observation. Finally, these errors

are assumed to be normally distributed [77].

4.3.1 Model Fitting Evaluation

4.3.1.1 Coefficient of Determination

The coefficient of determination (R2) is a dimensionless goodness-of-fit measure that

assumes values between 0 and 1 and corresponds to the variance in the data that
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can be explained by the model, with higher values indicating a better model fit [78].

It was formulated as:

R2 = 1− SSresidual

SStotal

=

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(4.8)

In which the SSresiduals is the residual sum of squares and SStotal is the total sum

of squares. According to equation 4.8 and the aforementioned definition of R2, it

can be deducted that the difference between SStotal and SSresiduals is the variation

explained by the model [79].

However, when several predictors are added to a model, the R2 will increase accord-

ingly. That being said, adjusted R2 allows the comparison of models with different

numbers of predictors, introducing a penalization to each additional predictor intro-

duced [79]:

Adj.R2 = 1− (1−R2)
n− 1

n− k − 1
= 1− SSresidual/DFresidual

SStotal/DFtotal

(4.9)

So that n is the number of observations and k the number of predictors. Hence, the

adjusted R2 can be negative and will never be bigger than R2.

4.3.1.2 Root Mean Square Error

The Root Mean Square Error (RMSE) is one of the most common methods for

evaluating model performance and the smaller its value, the better the model’s

performance [80]. It can be formulated as:

RMSE =

√
SSresidual

DF
=

√∑n
i=1(yi − ŷ)2

DF
(4.10)

From 4.10 it can be seen that RMSE is the square root of the Mean Square Error

(MSE), in which DF represents the degrees of freedom of the error.

4.4 Stepwise Regression

The stepwise regression method aims at selecting a subset of input factors that

explains the response efficiently [26].

This method combines two variable selection approaches: the forward selection and

the backward elimination [81].

32



4. Methods

4.4.1 Forward Stepwise Selection

In this work, the forward stepwise selection was implemented. It started with a

model with only the intercept. Then, the first variable entered in the model was the

one with the smallest p-value (the most significant value) [82]. Afterwards, the most

significant terms to improve the model are added, with only one term being added

at each step. In stepwise methods, if a predictor is found to be no longer significant

after the addition of others, it can be removed. At last, the best model according

to a stopping rule is the chosen one. For this procedure, the chosen stopping rule

was the minimum corrected Akaike’s Information Criteria (AICc), as the best model

was the one with lowest AICc.

Besides, in a process such as the one analyzed, interactions between factors play a

fundamental role. Still, when an interaction term is added to a model, it is important

to note that its parent factors should also be included in the model, since they are

also significant terms according to the effect hierarchy principle.

Thus, the Combine option of JMP Pro [82] was employed. This option calculates

2 p-values for separate tests. The first p-value, p1, groups the interaction term

with its parent factors, calculating a joint F-test. The second value, p2, reflects the

significance of the interaction term for entering the model, after its parent factors

are already in the model. Finally, the final significance probability to the entry of

the interaction term is max(p1,p2), thereby avoiding the inclusion of non-significant

interaction terms.

4.5 Model Selection

In a process like the one addressed in this work, where there are many factors

to be considered, a model selection from a set of competing models with different

numbers of factors derived from the dataset, is required. This approach has received

greater attention, since the best model is the least complex and that can provide

most information about the process [83]. For model selection, an important concept

is the likelihood function, L(θ), which is the product of the probability density

functions f(x|θ) at the obtained data values [82]:

L(θ) =
n∏

i=1

f(xi|θ) (4.11)
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For the data values obtained, the maximum likelihood estimation finds the values

for the parameters that optimize L(θ) [83].

4.5.1 Akaike’s Information Criteria

The Akaike’s Information Criterion (AIC) [84] provides an estimate of the distance

between the fitted model and the unknown true mechanism of the process that is

responsible for the collected data [85]. The aforementioned criterion is based on the

maximum likelihood concept since it is formulated as:

AIC = −2logL(θ) + 2k (4.12)

With the log(L(θ)) being the loglikelihood and the goal the minimization of the

negative loglikelihood [83].

However, if the number of factors (k) is large relatively to the number of replicates

n with a ratio n/k < 40, then a AICc fits the models better [85]. Therefore, the

AICc was used at this work:

AICc = −2logL(θ) + 2k(
n

n− k − 1
) (4.13)

Consequently, this value was used to compare several models within the dataset to

determine the best fitting one. And although the model with the smallest AIC was

often the preferred one, it were the AIC differences that mattered most in selecting

the most significant model.

This AIC difference can be computed as ∆i [85]:

∆i = AICi − AICmin (4.14)

In order to evaluate a model, it is argued that models with ∆i ≤ 2 have substantial

evidence of being a good fit for the process [85].

4.6 Multiple Response Optimization

In manufacturing processes, it is common to have several responses. Although each

response requires specific levels of the input factors in order to optimize it, relation-

ships between the different responses may lead to trade-offs that lead to sub-optimal

individual performances, but a better overall behaviour [86]. Therefore, the set of
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experimental conditions that lead to the best overall response is called the optimum

condition for the process [86].

To obtain the optimum condition for the process, one can use the multiple response

optimization techniques.

Generally, in DoE the optimization of the process/product is an inherent phase of

the RSM [87]. However, in this work RSMs are not followed from the beginning.

Therefore, the path chosen for the multiple response optimization was by using

desirability functions.

4.6.1 Desirability Functions

The desirability function was introduced by Harrington (1965) [88] and is a transfor-

mation of the estimated response models (ŷ) to a 0 to 1 scale [87]. These desirability

functions (d) can have different shapes and 0 represents a completely undesirable

response, as opposed to 1 which represents a perfectly desirable response [86].

These individual desirability functions were modified by Derringer and Suich (1980)

[89], which promoted their use in this optimization, since they are smooth piecewise

functions with three defining points. For instance, when the goal was to maximize

the response, the individual desirability function one-sided transformation was:

di =


0, ŷ < L

ŷ−L
T−L

, L 6 ŷ 6 T

1, ŷ > T

(4.15)

On the contrary, to minimize the response, the one-sided transformation corre-

sponded to:

di =


0, ŷ > U

ŷ−U
T−U

, T 6 ŷ 6 U

1, ŷ < T

(4.16)

For the cases of maximization and minimization above, L stands for lower bound

and U for upper bound, while T is the target values desired so that L 6 T 6 U .

Besides, the curve for the minimization function will be the maximization curve

flipped along an horizontal line that passes through a center point in the plot [90].

In order to optimize multiple responses, an overall desirability function (D) was cre-

ated. This function corresponds to the geometric mean of the desirability functions

for the individual responses [90].
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Representing the k responses’ individual desirability functions by d1, ..., dk, the over-

all desirability function will take the form:

D = k
√
d1...

k
√
dk (4.17)

In this work, all the responses being optimized were assumed to have the same

importance, thereby being equally weighted.

Therefore, by choosing the optimum condition for the process, the overall desirability

function is maximized, with the individual desirability functions all being optimized

simultaneously.

Furthermore, since all the responses studied were continuous, the optimization al-

gorithm used for maximizing the overall desirability function was a gradient descent

algorithm [90].

4.7 Significance Level

For this work, a significance level (α) of 0,05 was considered. However, as the

number of experiments is limited, p-values close to this significance value were also

considered as relevant for the analysis.

4.8 Software

Data analysis was entirely performed with JMP-Pro 15, including EDA [91], variable

selection using stepwise forward selection [82] and MOO [90].
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Results and Discussion

In this chapter, the results of the exploratory data analysis will first be presented,

followed by the results of the methodology proposed in Chapter 4. Finally, the

global optimization of the process parameters selected for the best models will be

presented and all the required tradeoffs between responses for this procedure will be

analysed.

However, since this aerogel formation process was not performed following a sys-

tematic DoE approach, the models produced in order to achieve this project’s main

goal were not obvious and data analysis was adapted in order to take the most out

of the existing experiments.

Furthermore, it is important to mention that, throughout the remaining of this

work, the input factors were also named as inputs, factors or predictors, whereas

the outputs were also mentioned as responses.

5.1 Exploratory Data Analysis

As an overview of the entire process, it was important to analyse both the inputs

(independent variables) and the outputs (dependent variables).

5.1.1 Inputs

Due to the fact that 29 factors was a large number of factors to analyse, even so when

they were not collected according to a DoE methodology, the overview provided by

the EDA shed some light regarding possible connections and patterns in the dataset

and, consequently aided in its simplification and comprehension.

Through correlation analysis it was identified that in each and every stage of the 5

that compose the solvent exchange step, the temperature and pressure are perfectly

correlated, since their correlation coefficient (r) was 1 within every stage.
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Thus, it was verified that the temperature and pressure are confounded, i.e. one is

an alias of the other, hence indistinguishable. Consequently, after deciding with the

experimenters, for further analysis only the pressure was used.

Furthermore, the factor values for Drying Temperature, Drying Pressure and CO2

Flow of the supercritical drying step did not vary throughout the experiments and,

consequently their contribution to the regression models could not be assessed.

Therefore, they were omitted from the model building for the rest of this thesis.

5.1.2 Outputs

Table 5.1: Spearman’s rank correlation coefficients for the dataset’s responses.

Responses Density Surface Area Pore Diameter Young’s Modulus Tensile Strength Humidity Porosity

Density 1
Surface Area 0,6990 1

Pore Diameter 0,0162 0,2324 1
Young’s Modulus 0,0107 -0,0500 0,0214 1
Tensile Strength -0,0321 -0,1179 0,1393 0,6786 1

Humidity -0,1854 0,0706 0,2382 0,1143 -0,1393 1
Porosity 0,4091 0,6471 -0,3559 -0,1929 -0,3071 -0,1441 1

In Table 5.1, the Spearman’s rank correlations between the responses are repre-

sented. Visualizing the values obtained, it is important to mention that the corre-

lations between responses that were significant were the following:

• Correlation between Density and Surface Area: rs = 0,6990; p−value = 0,0026

• Correlation between Surface Area and Porosity: rs = 0,6471; p − value =

0,0067

• Correlation between Young’s Modulus and Tensile Strength: rs = 0,6786;

p− value = 0,0054

Therefore there is a significantly positive correlation between the responses men-

tioned above. On that account, when one of the responses changed according to

certain process parameters, the correlated response followed the same pattern. How-

ever, it is important to remember that the displayed results do not support the theory

of the variation of a response being caused by the variation of the other.

Finally, it is important to mention that an outlier analysis was also performed in

the next section (see also the Graphics presented in the Appendices).
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5.2 Model Selection

Taking into consideration the limitations of the dataset, it was tested if the global

model approach was indeed consistent with stage-wise models. Therefore, for the

stage-wise approach, the 1st, 2nd and 3rd stages’ best models and subsequent esti-

mated parameter coefficients were obtained. Additionally, the analysis of the best

model and subsequent parameter coefficient estimation was also developed for the

global approach, which combined the 3 stages.

It is worth mentioning that even though the supercritical drying step is not always

mentioned in model descriptions since it did not vary, it was always taken into

consideration in the model building process.

Moreover, for both the stage-wise and global approaches, the variable selection was

performed by stepwise regression with forward selection, using the Combine option

to enforce effect heredity. For this procedure, both the main effects and interaction

effects were considered.

Besides, the best models for each response, which are the ones presented in the

next section, were the ones with the lowest AICc, whereas the model parameters’

coefficent estimation was carried out by OLS. In this model analysis, out of the

7 responses, for only 4 of them were the models obtained composed by at least

one relevant main effect, which was the case of Density, Young’s Modulus, Tensile

Strength and Humidity.

5.2.1 1st Stage

At first, only the 1st stage of the solvent exchange along with the supercritical drying

step was analysed. The analysis consisted of an initial variable selection performed

by the stepwise regression with forward selection, followed by an OLS parameter

estimation.

Table 5.2: Best model obtained for each response using forward stepwise selection
with OLS parameter estimation, when only the 1st stage of the solvent exchange
and the subsequent supercritical drying were considered.
* relevant term

Response Significant Terms Estimates p-value R2 Adj. R2 RMSE

Density Drying Time 0,066 0,020 0,33 0,28 0,11
Young’s Modulus Time 1st Stage 0,045 0,023 0,34 0,29 2,39
Tensile Strength [EtOH] 1st Stage* 0,782 0,060 0,25 0,19 10,01
Humidity Drying Time -0,996 0,024 0,31 0,26 1,71
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Table 5.2 shows the responses that were able to produce models with relevant terms

with its parameter estimations and significance value, as well as the models’ R2,

adjusted R2 and RMSE.

Furthermore, only one relevant term for each response was obtained: for the Density,

Drying Time was the significant term; in the case of Young’s Modulus it was the

Time 1st stage; in the Tensile Strength case, the [EtOH] 1st stage was not significant,

but was considered relevant (p−value = 0,060), being fitted into a regression model

to better understand this response; and finally, for Humidity the significant term

was again the Drying Time.

(a) Actual by predicted plot for the
Density response.

(b) Actual by predicted plot for the
Young’s Modulus.

(c) Actual by predicted plot for the
Tensile Strength.

(d) Actual by predicted plot for the
Humidity.

Figure 5.1: Actual by predicted plots of the responses for the 1st stage alone with
the supercritical drying step.
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In Figure 5.1 it was displayed that the portion of predictors related to the 1st stage

produced models with low R2 and Adj. R2. Moreover, in Figure 5.1c the RMSE

was high since the predictor was not significant.

5.2.2 2nd Stage

As described above, the 2nd stage of the solvent exchange step was also analysed

separately, along with the subsequent supercritical drying. Therefore, stepwise re-

gression with forward selection for variable selection and OLS parameter estimation

were performed.

Table 5.3: Best model obtained for each response using forward stepwise selection
with OLS parameter estimation, when only the 2nd stage of the solvent exchange
and the subsequent supercritical drying were considered.

Response Significant Terms Estimates p-value R2 Adj. R2 RMSE

Density Drying Time 0,066 0,020 0,33 0,28 0,11

Young’s Modulus Pressure 2nd Stage -0,057 0,003 0,51 0,47 2,05

Tensile Strength Pressure 2nd Stage -0,175 0,029 0,32 0,26 9,53

Humidity
Time 2nd Stage

Drying Time

0,026

-1,742

0,040

0,003
0,51 0,43 1,50

From Table 5.3, the significant terms that provided the best model fits for the

responses are displayed as well as their R2, adjusted R2 and RMSE.

At this stage, the best model fits were obtained with the terms: for Density, Drying

Time was once again significant; for both Young’s Modulus and Tensile Strength

it was the Pressure 2nd Stage; and for Humidity, there were two significant main

effects, the Time 2nd Stage and Drying Time.

From Figure 5.2 and the values of R2 and Adj. R2, it was clear that both Humidity

and Young’s Modulus were fitted good models. The Density response was fitted

the same model from the 1st Stage. Moreover, the Tensile Strength had a potential

outlier, motivating further residual graphical analysis and Cook’s D represented

at Appendices. Nevertheless, after debating with experimenters, this value was

considered a legitimate part of the data and in cases such as this one, the researcher

with its training and experience in the matter has the final say [92]. Therefore, the

observation was not removed from the dataset for further analysis.
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(a) Actual by predicted plot for Density. (b) Actual by predicted plot for Young’s
Modulus.

(c) Actual by predicted plot for Tensile
Strength.

(d) Actual by predicted plot for
Humidity.

Figure 5.2: Actual by predicted plots of the responses for the 2nd stage alone with
the supercritical drying step.
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5.2.3 3rd Stage

Similarly to the two approaches above, when it came to the last considered stage of

the solvent exchange step (3rd stage), the analysis was also performed individually,

followed by the supercritical drying step.

Afterwards, for data analysis, stepwise regression with forward selection was imple-

mented for variable selection and OLS for parameter estimation.

Table 5.4: Best model obtained for each response using forward stepwise selection
with OLS parameter estimation, when only the 3rd stage of the solvent exchange
and the subsequent supercritical drying were considered.
* relevant term

Response Significant Terms Estimates p-value R2 Adj. R2 RMSE

Density Drying Time 0,066 0,020 0,33 0,28 0,11
Young’s Modulus Time 3rd Stage 0,003 0,015 0,37 0,33 2,33
Tensile Strength [EtOH] 3rd Stage* 0,522 0,060 0,25 0,19 10,01
Humidity Drying Time -0,996 0,024 0,31 0,26 1,71

Table 5.4 sums up the performed analysis, with the relevant parameters estimates,

as well as the its p-values. It was also described the R2, adjusted R2 and RMSE

values for the best models fitted.

Once again, the models for the responses were obtained with only one significant

term: for Density, it was the Drying Time; for Young’s Modulus it was the Time

3rd stage; [EtOH] 3rd stage was included in the model for Tensile Strength, but was

again not significant; finally, for Humidity, it was the Drying Time.

(a) Actual by predicted plot for Density. (b) Actual by predicted plot for Young’s
Modulus.
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(c) Actual by predicted plot for Tensile
Strength.

(d) Actual by predicted plot for
Humidity.

Figure 5.3: Actual by predicted plots of the responses for the 3rd stage alone with
the supercritical drying step.

From Figure 5.3, it can be seen that the models for Density, Young’s Modulus and

Humidity are models with R2 in the range of the [0,30 - 0,40]. Oppositely, the

Tensile Strength model has a high RMSE once again, due to the fact that [EtOH]

3rd stage is not significant.

Final remarks for the models obtained in the stage-wise approach:

• For the Density in specific, the best models were the same for every individ-

ual stage. This was mainly due to the fact that Drying Time was the only

significant parameter and it is independent of the solvent exchange step, since

it is a CPP of the supercritical drying step. However, as Figures 5.1a, 5.2a

and 5.3a demonstrate, there is also a potential outlier. Once again, after de-

bating with the experimenters, it was concluded that the particular value of

Density was a legitimate part of the data and, based on their intuition and

process understanding, the decision was to maintain it [92].

• For the response models in general, as each stage-wise model for the responses

was produced with different portions of the dataset, it was not possible to

compare the models for the same responses across individual stages, regarding

their R2, Adj. R2 or RMSE.
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5.2.4 3 Stages Combined

For both comparison and generalization purposes, the combination of the 3 men-

tioned stages for the solvent exchange was analysed along with the supercritical

drying step. This comprised the global approach for model building.

It is important to note that since the temperature at each stage was not further

considered for analysis purposes, the average temperature of the global approach

was also not considered for model building.

Similarly to the stage-wise analysis, the model building for the 3 stages combined,

plus the supercritical drying step consisted of variable screening by stepwise regres-

sion with forward selection and OLS parameter estimation.

Table 5.5: Best models obtained for the global approach using forward stepwise
selection with OLS parameter estimation for the global approach.

Response Significant Terms Estimates p-value R2 Adj. R2 RMSE

Density Drying Time 0,0665 0,0196 0,33 0,28 0,11
Young’s Modulus Average Pressure -0,0665 0,0034 0,50 0,46 2,09

Tensile Strength

Average Pressure
Average Concentration
Total Time
Average Pressure*Total Time

0,3462
1,4530
0,0271

-0,0012

0,0007
<0,0001
<0,0001
<0,0001

0,94 0,92 3,09

Humidity Drying Time -0,9955 0,0240 0,31 0,26 1,71

Table 5.5 shows the significant parameters estimates and p-values, as well as the

models’ R2, adjusted R2 and RMSE.

Although the results for the model fitting measures could not be directly compared

between the stage-wise approach and the global one, since the set of predictors is

different, the significant parameters for each model were compared.

The results presented provided important generalizations: similarly to the stage-

wise approach, the global models obtained for Density and Humidity were produced

with the Drying Time parameter; for the Young’s Modulus, the Average Pressure

was the only significant term and, even though in the 1st and 3rd stages it was the

Time of each stage the significant parameter, in 2nd stage, the Pressure 2nd stage

produced a fairly good model; besides, for the Tensile Strength there were three

significant main effects, which were the Average Pressure, Average Concentration,

Total Time and one two-factor interaction between the Average Pressure and the

Total Time. For the last, the pressure and concentration were significant factors in

the stage-wise models, which supported that in order for Total Time to be significant,
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the interaction between Average Pressure and Total Time was entered before its

precedent factors.

All in all, it can be verified that the global significant effects for all the responses

are consistent with the significant parameters for the singular stages of the solvent

exchange step, along with the supercritical drying.

(a) Actual by predicted plot for Density. (b) Actual by predicted plot for Young’s
Modulus.

(c) Actual by predicted plot for Tensile
Strength.

(d) Actual by predicted plot for
Humidity.

Figure 5.4: Actual by predicted plots of the responses for the 3 stages combined,
plus the supercritical drying step.

The Actual by predicted plots in figure 5.4 showed a similar fit for the Density com-

pared to the stage-wise approach, which makes sense since the significant parameter

for the model is part of the supercritical drying step and therefore doesn’t vary with

the solvent exchange stage. Besides, for Young’s Modulus the fit had a solid R2

46



5. Results and Discussion

value, whereas for the Tensile Strength, it was fitted a model with both very high

R2 and Adj. R2, indicating the advantages of the global approach. Finally, the

Humidity produced a model similar to the one of the 1st and 3rd stages of solvent

exchange.

5.3 Multiple Response Optimization

Although the significant parameters obtained for the global approach were similar

for the stage-wise one, it remained to be seen whether the values of the parameters

also fitted accordingly.

It was with MOO through desirability functions that the multiple response opti-

mization was achieved. In order to do it, the limits in Table 5.6 were established.

Table 5.6: Established limits for the outputs of the dataset.

Response Lower Bound Upper Bound

Density 1,2 1,4

Young’s Modulus 4 9,5

Tensile Strength 35 80

Humidity 13 16,5

Therefore, the values for the parameters obtained for the best models were described,

as well as the overall desirability for further evaluation on whether the global ap-

proach could be in fact a generalization of the stage-wise approach.

1st Stage

Table 5.7: Best values for each significant factor at the 1st stage, so that the overall
desirability function’s value is maximum.

Factor Value Overall Desirability (D)

Drying Time (h) 3,02
0,51Time 1st Stage (min) 120

[EtOH] 1st Stage (%) 40
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2nd Stage

Table 5.8: Best values for each significant factor at the 2nd stage, so that the overall
desirability function’s value is maximum.

Factor Value Overall Desirability (D)

Drying Time (h) 3,63

0,59Time 2nd Stage (min) 30

Pressure 2nd Stage (bar) 1

3rd Stage

Table 5.9: Best values for each significant factor at the 3rd stage, so that the overall
desirability function’s value is maximum.

Factor Value Overall Desirability (D)

Drying Time (h) 3,02
0,51Time 3rd Stage (min) 1440

[EtOH] 3rd Stage (%) 100

3 Stages Combined

Table 5.10: Best values for each significant factor at the stage-combined approach,
so that the overall desirability function’s value is maximum.

Factor Value Overall Desirability (D)

Drying Time (h) 3,02

0,54
Average Pressure (bar) 1
Average Concentration (%) 70
Total Time (min) 1680

As it can be seen, from the Table 5.10 in comparison to the Tables 5.7 to 5.9, it was

concluded that for:

• Drying Time: the value for the global approach is between the interval of

values obtained by the stage-wise approach.

• Average Pressure: the value for the global approach is the exact same seen for

the 2nd stage, as it was the only situation where the pressure was a significant

term modeling a response.

• Average Concentration: the value for the global approach is the average of the

values obtained for the stage-wise approach.
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• Total Time: the value for the global approach exceeds the sum of the time of

the solvent exchange step obtained for each of the individual stages. However,

it corresponds to the situation where the experimental runs only had 3 stages

of solvent exchange.

This last conclusion about the Total time only highlighted the fact that it was only

possible to come to conclusions regarding the influence of the first 3 stages of the

solvent exchange step, plus the supercritical drying one, even though there were 4

and 5 stages at times.

Furthermore, Figure 5.5 represents the individual desirability functions (di) for each

response in the last column of the figure. These were set according to the specifica-

tions of the aerogel applications and the values were represented at Table 5.6. Thus,

it can be seen that Density and Humidity were set to be minimized as opposed to

Young’s Modulus and Tensile Strength which were set to be maximized, by look-

ing at the inverted slopes of the functions. Consequently, the overall desirability

function, which value is in the last row of the figure, was the result of the tradeoff

between the responses’ specifications mentioned above.

Moreover, this optimization was developed under the assumption that all the re-

sponses were equally important and thereby equal weights were attributed. Hence,

if the optimization goal was a specific one, such as improving a certain aerogel

response or minimizing for instance a certain parameter, the adjustments in the

weights of the responses could be arranged so that the desired specifications would

be met.
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Figure 5.5: Representation of the responses individual desirability functions and
the parameters that optimize them simultaneously. Subsquently, the overall desir-
ability function is also displayed.
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Conclusion

The main goal of this work was to optimize an aerogel formation process, specifically

its solvent exchange and supercritical drying steps, by building models that could

accurately find the significant parameters for the process and, subsequently the

values that would optimize it.

By looking at the dataset available for this process, which was not collected according

to a DoE methodology, the main goal was harder to achieve. Some efforts were

made to understand how the data could be arranged so that the different steps of

the process were clearly defined and, for that reason a process flow chart was the

first step to properly organize all the important factors and responses.

Afterwards, it was decided to opt for a variable selection procedure to make the most

out of our data. Besides, as the dataset was not collected according to an optimal

design, a simple way of producing models to represent the process was required.

Since the process was hard to represent, a variable selection method was required

and hence was the stepwise method for variable selection with forward regression

employed. The fact that this method also had the property of enforcing heredity

was fundamental, since interactions between factors are of utmost importance in

processes like the one studied.

However, to perform the analysis described above, some stages of the solvent ex-

change step had to be removed from the analysis, since they did not have enough

observations to be studied. Therefore, the 4th and 5th stages of the solvent exchange

were not further analyzed for the purpose of this research. Moreover, not only was

the dataset a non-optimal one, but also had limited observations, with only 16 exper-

imental runs. All of these specifications led to a decision of first testing a stage-wise

approach where the dataset would be divided by stages and each stage parameters

would be tested along with the supercritical drying step parameters to evaluate the

models produced. Then, a global approach was developed combining the 3 stages
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of the solvent exchange plus the supercritical drying step for a combined analysis.

The aforementioned analysis of both the stage-wise approach and the global one

led to the conclusion that the same parameters that were relevant to the responses’

models for the individual stages, were also relevant for the same responses’ models

for the global approach. Consequently, by proving that the generalization of the 3

stages produced models with the same relevant parameters, it was easier to represent

the process being studied and obtaining the optimal settings for the parameters that

optimized the given responses.

Nevertheless, out of the 7 responses studied, only 4 were able to produce significant

models and these were the Density, Young’s Modulus and Humidity. And even

though such an important property as the Porosity was not possible to study, it was

proved that if in further experiments the Surface Area produces significant models, it

might also affect the Porosity values, as these two responses are positively correlated.

Finally, a MOO was employed to simultaneously optimize the 4 responses aforemen-

tioned, by assigning them desirability functions which were combined in an overall

desirability function. This overall desirability function took into consideration the

individual optimization objectives for each response and promoted the necessary

tradeoffs to optimize all of them at the same time.

Subsequently, not only was the main goal achieved, but also was the ground set for

a more optimized methodology to develop this aerogel formation experiment. In

order to promote the development of such a methodology, an introduction of the

QbD methodology to this process was employed and it is expected to be further

developed in future studies.

6.1 Future Work

Bearing in mind the limitations of this project, there is much that can be improved

so that this process becomes an optimal one. However, it is expected that these

analysis will promote validation experiments, so that more data can be gathered

and the aerogel efficiently produced.

It can only be beneficial to implement a QbD approach that promotes building

quality into the product. Therefore, carefully establishing the process CQAs, CPPs

and CMAs is already a good start. Additionally, risk assessment diagrams might be

something to explore and, most importantly the need to employ a DoE methodology

to optimally build designs, so that the best combination of factors according to the
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number of available runs is explored. This is also a way of saving resources and of

allocating them to the desired process in a rigorous manner. This approach perfectly

fits the Juran’s Trilogy: Quality planning; Quality control; Quality improvement

[93].

Nonetheless, it was not possible to develop the prediction of the the mass of water

in the alcogel, using the RI measures as a predictor. Future studies will need to

address this issue, as it can be an effective way of assessing the alcogel formation

process.

Moreover, a connection between the remaining steps of the aerogel formation process,

namely the gelation and sterilization can be something interesting to do in order to

have a global view of the process and to be able to incorporate the results of this

study in the overall process.
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A

Aerogel

A.1 Aerogel Sample

Figure A.1: Picture of a sample of an aerogel, obtained by Agostinho (2019) [60].

A.2 Microscopic Section

Figure A.2: Microscopic representation of the monolith (SEM), obtained by
Agostinho (2019) [60].
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A. Aerogel
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B

Outlier Analysis

B.1 Density Model - 1st Stage; 2nd Stage; 3rd Stage;

3 Stages Combined

Figure B.1: Residual Normal Quantile Plot for the Density response.

Figure B.2: Studentized residuals for the Density response.

Figure B.3: Cook’s Distance Influence for the Density response.
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B. Outlier Analysis

B.2 Tensile Strength Model - 2nd Stage

Figure B.4: Residual Normal Quantile Plot for the Tensile Strength response.

Figure B.5: Studentized residuals for the Tensile Strength response.

Figure B.6: Cook’s Distance Influence for the Tensile Strength response.
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