

Guilherme Cardoso Gomes da Silva

OPTIMIZATION BY LEARNING

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Intelligent Systems advised by Prof. Nuno Lourenço and Prof. Francisco Baptista

Pereira and presented to the Faculty of Sciences and Technology / Department of
Informatics Engineering.

October 2020

This page is intentionally left blank.

Faculty of Sciences and Technology

Department of Informatics Engineering

Optimization By Learning

Guilherme Cardoso Gomes da Silva

gcsilva@student.dei.uc.pt

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Intelligent Systems advised by Prof. Nuno Lourenço and Prof. Francisco Pereira presented to

the
Faculty of Sciences and Technology / Department of Informatics Engineering.

October 2020

This page is intentionally left blank.

Acknowledgements

I would like to first and foremost thank my advisors, Professor Nuno Lourenço and Profes-
sor Francisco Pereira for their unrelenting support and constant guidance over the course
of the year. Their availability and guidance whenever I needed them were what made this
dissertation possible in the first place, and I can not thank them enough for the growth I
have experienced during this year, both professionally, and as a person.

Thank you to Artur, Diogo, Leonardo, Pedro and Tiago for their constant presence and
reassurance, for the infinite hours fun, for the incredible support, and for all the time we
spend, and hopefully will keep spending, together.

A huge thank you to the Lokos, António, André, Diogo, Henrique, Vaz, Jorge, JP, JA and
Bernardo, for being my friends for most of my life. For always being there for me, both
in good, and bad times, and being a second family I know I can always count on if I want
to have fun, or if I need a shoulder to rely on. I know that even when we are spread out
across the world we will still be just as united during the course of our lives.

A special thank you to Carolina for being my very best friend, and for proving to be the
most chaotic, supportive human being one could wish for. I would never have made it
through this without you.

Finally, but not least important, I want to thank my family, in particular my mother and
sister, for being the two strongest human beings to ever exist, and for giving me the world
whenever I needed them the most.

This year brought exceptional circumstances and hardships with it, which is why, from the
bottom of my heart, I really want to thank all the people mentioned here, for helping me
see through this journey until the end. Thank you.

iii

This page is intentionally left blank.

Abstract

Combinatorial optimization (CO) is a field that has been an object of study for many
years, and there are a multitude of different algorithms specialized in solving a plethora of
problems in the area. A typical CO problem consists of finding an optimal solution among
a set of candidates that maximizes/minimizes the given objective.

The field of Machine Learning has experienced a large growth in recent years for a multitude
of purposes, but of particular interest here is its usefulness in the automation of the process
of creating, adapting, and selecting optimization algorithms.

In this dissertation, we explore the usage of fitness landscape analysis metrics in a local,
stochastic, iterative exploration of the Travelling Salesman Problem, to train a Machine
Learning classifier that attempts to select the best possible operator given the proprieties
of the local landscape of a given solution. We create a dataset to train our model on, then
process to analyse the generated instances and the behavior of the extracted metrics. We
then test several different classifier configurations, explore the obtained results, and finally
test our solution against an hill climbing algorithm.

The results show the choice of promising operators utilizing a Machine Learning model
trained using fitness landscape analysis metrics is not a trivial task, due to difficulty in
discerning patterns both on operator behavior and on the landscape proprieties of the
studied TSP instances.

Keywords

Machine Learning, Classification, Combinatorial Optimization, Travelling Salesman Prob-
lem, Operator Selection, Evolutionary Computing, Fitness Landscape Analysis

v

This page is intentionally left blank.

Resumo

Optimização combinatória é uma área que é objecto de estudo há vários anos, onde ex-
istem inúmeros algoritmos diferentes que se especializam em resolver problemas dentro
do domínio desta. Um problema de optimização combinatória típico consiste em encon-
trar uma solução óptima entre um grupo de soluções candidatas com o intuito de maxi-
mizar/minimizar um dado objectivo.

O campo de Machine Learning observou recentemente um grande crescimento, de particular
relevância para este trabalho pela sua utilidade na automatização do processo de criação,
adaptação e seleção de algorítmos de optimização aplicados a optimização combinatória.

Nesta tese, é explorada a proposta de utilização de métricas de análise de fitness landscape,
em exploração local, estocástica e iterativa do Travelling Salesman Problem. Treinamos
um classificador de Machine Learning que tenta selecionar o melhor operador possivel
numa dada instância, observando as propriedades da landscape do local onde se encontra.
Primeiro criamos um dataset para treinar o nosso classificador, e analisamos as instân-
cias generadas e os padrões de comportamento das métricas retiradas. Depois testamos
diferentes configurações de classificadores, explorando os resultados obtidos, e finalmente
testamos a nossa solução em conjunto com um algoritmo trepa colinas.

Os resultados mostram que a escolha de operadores promissores utilizando um modelo
de Machine Learning treinado com métricas relativas à análise da fitness landscape não
é uma tarefa trivial, devido a dificuldades em distinguir padrões no comportamento dos
operadores e nas propriedades das landscapes dos problemas de TSP abordados aqui.

Palavras-Chave

Machine Learning, Classificação, Optimização Combinatória, Travelling Salesman Prob-
lem, Seleção de Operadores, Computação Evolucionária, Análise de Fitness Landscape

vii

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Objectives . 1
1.2 Main Contributions . 2
1.3 Document Structure . 2

2 Background 3
2.1 Combinatorial Optimization . 3
2.2 Machine Learning . 7
2.3 Related Work . 9

3 Approach 13
3.1 TSP Instances . 14
3.2 Solution Instance Generation . 14
3.3 Selected Operators . 15
3.4 Metrics . 16

4 Experimental Study 21
4.1 Exploratory Data Analysis . 21
4.2 Results . 42
4.3 Hill Climber Comparison . 48

5 Conclusion and Future Work 51
5.1 Future Work . 52

ix

This page is intentionally left blank.

Acronyms

CO Combinatorial Optimization. 2, 13, 51, 52

EA Evolutionary Algorithms. 6

FDC Fitness Distance Correlation. xiv, 17, 25, 31, 32, 39

ML Machine Learning. 1, 2, 7, 8, 11, 13, 25, 48, 51, 52

TSP Travelling Salesman Problem. 1–3, 7, 13, 52

xi

This page is intentionally left blank.

List of Figures

2.1 An example of a TSP map and its solution. 4
2.2 An example of a simple 2-opt move found in [44]. 5
2.3 Decision tree example . 8

3.1 Overview of the approach used in this work. 13
3.2 Evolution of initial solutions . 15
3.3 Swap operator . 16
3.4 Insert operator . 16
3.5 Inversion operator . 16
3.6 All metrics present on any given instance found in the dataset 18

4.1 Average fitness distribution across generated solutions on the three differ-
ent maps, with generation heuristics highlighted - blue represents randomly
generated solutions, red represents 2-opt generated solutions, and green rep-
resents nearest neighbour solutions. 22

4.2 Average distance to optimum across different maps, with different generation
heuristics highlighted - blue represents randomly generated instances, red
represents 2-opt generated examples, and green represents nearest neighbour
instances. 23

4.3 Average fitness variation distribution across different maps, with different
generation heuristics highlighted - blue represents randomly generated in-
stances, red represents 2-opt generated examples, and green represents near-
est neighbour instances. 24

4.4 Average fitness distance correlation value distribution across different map
instances, with different generation heuristics highlighted - blue represents
randomly generated solutions, red represents 2-opt generated solutions, and
green represents nearest neighbour solutions. 25

4.5 Progression of the local fitness distance correlation value across examples
on the eil76 map. 26

4.6 Average autocorrelation distribution across generated examples on the three
different maps, with generation heuristics highlighted - blue represents ran-
domly generated instances, red represents 2-opt generated examples, and
green represents nearest neighbour instances. 27

4.7 Progression of the autocorrelation values across extracted examples on the
eil51 map. 28

4.8 Distribution of the three different operators selected across the 4-step win-
dow on the eil76 map. 29

4.9 The labeled examples distribution across all maps, according to the heuristic
used to generate the original solution. 30

xiii

Chapter 0

4.10 Scatterplot of the relation between autocorrelation values (y axis) and Fit-
ness Distance Correlation (FDC) values (x axis) across the 4-step window
on the eil51 map. 31

4.11 Average autocorrelation versus fitness distance correlation values (eil51). . . 32
4.12 Scatterplot for the average autocorrelation values (y axis) in relation to the

average distance to optimum (x axis) for the eil51 map (4.12a), eil76 map
(4.12b) and ts225 map (4.12c). 33

4.13 Scatterplot for the average fitness values (y axis) in relation to the average
distance to optimum (x axis) for the eil51 map (4.13a), eil76 map (4.13b)
and ts225 map (4.13c). 34

4.14 Scatterplot for the average fitness values (y axis) in relation to the average
fitness variation values (x axis) for the eil51 map (4.14a), eil76 map (4.14b)
and ts225 map (4.14c). 35

4.15 Distribution of operators chosen as labels on the eil76 map, distributed by
average distance to optimum - Swap operators are displayed in blue, insert
operators are orange and invert operators are green. 36

4.16 Choice operator distribution per average fitness value of all solutions from
the eil76 map - Swap operators are displayed in blue, insert operators are
orange and invert operators are green. 37

4.17 Distribution of operators chosen as labels on all maps according to average
autocorrelation value - Swap operators are displayed in blue, insert operators
are orange and invert operators are green. 38

4.18 Feature ranking display for random forests with 200 decision trees. 41
4.19 Detail of a decision tree branch of depth 8 containing examples from all

maps. Note how some leaf nodes can label correctly with some certainty,
but there is a lot of indecision for a great amount of samples, even as depth
progresses. 43

4.20 Comparison of training/test accuracy across different maximum tree depths
on unscaled datasets. 45

4.21 Different normalized confusion matrices obtained from the testing results
for each of the map instances, with maximum tree depth of 50 and unscaled
data. Swap operator is labeled 0, insert operator is labeled 1 and invert
operator has label 2. 47

4.22 Comparison of the progression of average fitness results across 10 runs be-
tween a regular hill climber (red), and a hill climber with our incorporated
ML model for operator selection (green), across 150 000 iterations, on the
ts225 problem. 49

xiv

List of Tables

3.1 Overview of available features for every example. Note that every local
metric includes four features, as up to four steps of the solution are available
information. 19

4.1 Results for the fitness importance ranking on the combination of all maps,
with different numbers of trees in the random forest (RF). Lowest and high-
est values on each configuration are highlighted. 40

4.2 Results for the decision tree’s top three most relevant important features,
on each map and on the combined, standardized, dataset. 44

4.3 Resulting training and testing accuracy scores for the random forests, along-
side the parameters with best results on each map and tree depth. 46

4.4 Comparison of the average results obtained after 10 runs, including aver-
age lowest fitness value, percentage of operator selection, and average last
improvement step, between a regular hill climber and hill climber enhanced
with our solution, tested on the ts225 map. 48

xv

This page is intentionally left blank.

Chapter 1

Introduction

Optimization is an area that has been the object of study of many scientific fields, from
computer science to economics, in which the objective is to select the best solution among
a pool of objects. At its core, an optimisation problem involves finding a solution that
maximizes (or minimizes, depending on the problem) its objective function. A particular
subfield of problems that we are interested in engaging with, is combinatorial optimization
(CO). Combinatorial optimization problems seek to find the optimum object in a finite set
of possible solutions. The number of objects in said problems is too big to effectively be
searched extensively, and as such, more creative solutions are needed to solve them [36].

One example of such problems, and perhaps the most famous, is the Travelling Salesman
Problem (TSP), which, given a list of cities and the distance between each pair, asks
what is the shortest possible route that visits all cities once, returning to the city where
it first started. This problem has garnered interest in the field of computer science since
its introduction [6], due to several factors, such as its applicability in real-world problems
([9], [20]).

In this work, we want to focus on local, iterative, and stochastic optimization algorithms.
In particular, iterative stochastic optimization. As the name implies, such methods incor-
porate a random component, be it in its initialization, on the search steps, or in both [17].
The application of operators to modify a given solution in stochastic methods typically
involves random elements, and there is often a need to define what are the best operators
to apply at a given step.

With the ever growing amount of data available, one area that has garnered interest over
recent years is that of Machine Learning (ML), which nowadays is incorporated in numerous
fields, including in aiding the process of designing optimization algorithms [10]. There is
a high number of decisions that have to be be hand-made, often empirically, in order to
tackle any particular problem. Introducing automated ways to ease some of these decisions
can, as such, be a valuable contribution to the field.

1.1 Objectives

The objective of this dissertation is to automatize the process of optimizing the selection
of operators in a given CO algorithm, incorporating ML elements in its solution, utilizing
fitness landscape analysis metrics. The focus will be the TSP, but one of the objectives
is to implement a framework that is broad enough to generalize to other optimization

1

Chapter 1

problems in the future. We will focus our attention on the usage of supervised learning
models, and as such, we start by creating a dataset of solutions for three distinct TSP
instances using different heuristics for the initial generation of the solutions. Each solution
is then modified by the application of perturbation operators. After a certain number of
steps we record a series of metrics concerned with the fitness landscape properties, and use
the generated examples to create a dataset which we train our ML model on.

Afterwards we perform an extensive analysis of the generated datasets, including the met-
rics used during their creation process, to extract relevant insight and evaluate the features
for their potential relevance, which we will then use to develop our ML solution. We then
attempt to develop a classifier that incorporates ML to tackle the TSP, by making an
informed decision on which operator to choose based on the gathered metrics. Finally,
we perform experiences with the resulting classifier, and assess its viability compared to
other standard local search algorithms. The resulting model shows low capability in distin-
guishing optimal operators to be used, due to difficulty in discerning patterns on operator
behavior.

1.2 Main Contributions

The main contributions of our work are as follows:

1. Proposal of a ML framework that utilizes metrics related to the properties of fitness
landscape, in order to aid local optimization algorithms in the prediction of the most
promising operator to be used at any step during its search.

2. Creation of a dataset from various TSP problems, with several generated instances
that gather local fitness landscape information of the problem, by performing a small
random walk across a given problem instance.

3. Exploration of the gathered data for behavioral patterns of the explored metrics and
their relations with one another, and the analysis of the distribution of operator
usage across the different metrics.

4. Creation of a Random Forest ML model that utilizes Random Forests, and is trained
on the created data to evaluate what operator to use, and comparison of created
model with a standard hill climbing algorithm.

1.3 Document Structure

From this point on, the document is structured as follows: Chapter 2 aims to provide
context on the different topics approached in this dissertation. In particular, Section 2.1
provides background information on Combinatorial Optimization (CO), and particularly,
the TSP. Section 2.2 describes a number of Machine Learning concepts necessary for later
chapters. Section 2.3 introduces current research on the topic of solving the TSP resorting
to ML solutions. Chapter 3 is used to provide information on the approach we used to
tackle the problem, how the dataset was built, what metrics were utilized and how the
tour generation was done. Chapter 4 encapsulates the analysis done on the generated
dataset, the exploration of ML solutions, and the comparison of our best solution to a
standard hill climbing algorithm. Finally, Section 5 is reserved for concluding remarks on
the dissertation, the discussion of results, and possible paths for the expansion of this work.

2

Chapter 2

Background

This chapter presents key concepts necessary to provide context and background to the
remainder of the thesis. As such, section 2.1 is dedicated to introducing combinatorial
optimization and the Traveling Salesman Problem in detail, including several different
algorithms and approaches to solve it. Section 2.2 explores the area of Machine Learning
and introduces concepts that are relevant to the implementation details of the thesis.
Finally, Section 2.3 details previous research that was deemed valuable and worthy of
mention to our work.

2.1 Combinatorial Optimization

Combinatorial Optimization (CO) is historically an area that impacts a large variety of
scientific fields, from bioinformatics to electronic commerce ([16]). The problems presented
in this area have the objective of finding a solution amongst a finite and discrete set of
candidates in order to maximize or minimize a given objective function. This function is
defined on candidate solutions, and its value is the measure of the solution’s quality [16].

Finding a solution among a set of candidates is not a trivial task, since the space of possible
solutions is usually too large. This particular characteristic makes the use of brute force to
find the optimal solution unfeasible, which makes the use of heuristic algorithms preferable.

Examples of famous CO problems include the Knapsack problem, for example, which given
a set of items with a weight w and value c assigned to them, and a knapsack of maximum
capacity C, seeks to find the subset of items that fit in the knapsack with the maximum
possible value [23]; and the Travelling Salesman Problem (TSP), which is described in
detail on the next subsection.

2.1.1 Traveling Salesman Problem

The TSP is a NP-hard problem, meaning it is at least as hard as the hardest NP problems.
NP (non-deterministic polynomial) is the set of decision problems for which their solution
is verifiable using a deterministic algorithm in polynomial time [3].

Starting from an initial city, the problem consists of finding the optimal route (or, in other
words, the shortest tour) by visiting a set of cities only once. As a more formal description,
the TSP can be described as a graph G = (C, E) where C are the vertices, representing
the cities the salesman has to travel through, and E is the representation of the edges that

3

Chapter 2

connect each city pair, with their weight representing the distance between the two cities
in said pair. The problem can then be described as finding an Hamiltonian cycle with the
least weight possible, by visiting each node c ∈ C only once.

Figure 2.1: An example of a TSP solution [38].

There are many variations of the TSP but we will focus exclusively on symmetric TSP
instances, where the weight of each city pair is the same in both directions.

The TSP has a large number of real world applications, ranging from X-Ray Crystallog-
raphy [9] to the design of cell manufacturing systems [20], which serves as a testament
to the flexibility and applicability of the TSP. This, combined with its relatively simple
premise and implementation difficulty, makes the problem an adequate starting point for
the development of the work found in this thesis.

While a relatively simple problem to state, a TSP with n cities has a set of candidate
solutions of (n - 1)!/2 tours, which is a number that grows exponentially as the number
of cities increases. As such, as is often the case with CO problems, solutions to find
the optimal tours other than exhaustive search were developed out of necessity. We will
mention some of the methods that are historically relevant in the following section, dividing
them into two distinct categories: exact algorithms and heuristic algorithms.

Exact Algorithms

Exact algorithms, as the name implies, guarantee an optimal solution as their output. His-
torically, the exact algorithms that had the most success in solving the TSP are cutting-
plane and facet finding algorithms [5]. The state-of-the-art solver Concorde [5], in fact,
applies cutting-plane methods iteratively to solve linear programming relaxations of the
problem, combined with a branch-and-bound approach, until it reaches the optimal solu-
tion.

These algorithms can be extremely complex, and take a long time to solve large instances
of the TSP, in addition to requiring large amounts of computational power, and as such
are often impractical. As such, heuristic algorithms were developed as alternatives that
seek an approximate solution using faster and more efficient methods.

Heuristic Algorithms

Heuristic algorithms, or approximation algorithms, do not guarantee an optimal solution,
but instead offer solutions that seek to approximate its quality to the optimal one.

On the TSP specifically, depending on their behavior, such algorithms can be further
divided in different subcategories as well, such as constructive heuristics, relating to the

4

Background

building of the tours, and iterative heuristics, related to the improvement of solutions over
the algorithms’ runtime.

For initial solution construction, commonly used constructors are random, which randomly
selects edges with no regard for their quality, as long as it considers the tour a valid one;
Nearest neighbour search, which starting at a random city, searches for a non-visited city
and picks the one closest to the current one, adding it to the tour, finally closing the tour
connecting the first city to the last chosen one [15]; Or multiple fragment, which, similarly
to the nearest neighbour heuristic, considers edges by increasing order of length, but unlike
the former, maintains a set of fragmented tours [8], hence its name.

Lin-Kernighan Heuristic

Notable examples of tour improvement heuristics are the k -opt methods, which exchange
k -edges on a TSP tour iteratively to create a new, shorter tour, until no more operations of
the sort can be applied to the solution. Figure 2.2 displays a basic example of a 2-opt swap,
where two edges are considered, and if swapping them results in a lower tour cost, then
the operation is performed. Such edge flipping methods are the basis of the Lin-Kernighan
heuristic, which is an heuristic that proved to be successful in solving a large number of
TSP instances with good results. The idea of the LK algorithm is to consider a growing
number of edge exchanges to be performed at each step, in such a way that a feasible tour
can be achieved at any step during the process [15]. By considering two sets of edges X
and Y, the objective is to replace edges X by the set of edges Y in a way that reduces
the overall cost of the tour [25]. The changes are performed iteratively until no further
improvements can be found, following a number of criteria that guarantee the feasibility
of the solution along every step of the way. This method is considered a local optimization
algorithm, a concept that will be expanded on further below.

Figure 2.2: An example of a simple 2-opt move found in [44].

Over the years, several refinements were introduced to the algorithm to improve its re-
sults for TSP instances with larger numbers of cities. For example, the introduction of
a measurement of nearness utilizing minimum spanning trees on [15], or the introduction
of "kicks" in a tour to act as a perturbation, as well as adjustments to the algorithm’s
backtracking capabilities and different heuristics used to generate the initial solution tours
on [4], all contributed to allow the algorithm to run in acceptable time and obtain good
results on large TSP instances.

Cristofides Heuristic

Another heuristic algorithm of great importance is the Christofides–Serdyukov algorithm.
It is an algorithm proven to find approximate solutions to symmetric TSP instances on
a metric space within a range of 50% of the optimal solution, provided it satisfies the
triangle inequality [11]. It is considered one of the best general heuristics for the TSP since
its formulation, with only very recent research improving on it, even if by an extremely

5

Chapter 2

small amount [21]. The way the algorithm is designed is described in Algorithm 1.

Algorithm 1: Christofides heuristic for tour generation. [14]
Construct minimum spanning tree, M, for a graph G ;
Generate sub-graph H from the vertices from G with an odd degree of vertices;
Create minimum-cost perfect matching P in H ;
Unite P and M to form Eulerian multigraph;
Calculate Euler tour;
Remove repeated vertices

Evolutionary Algorithms

Evolutionary Algorithms (EA) are, as the name suggests, loosely inspired on the theory
of evolution observed in the natural world [13]. EAs resort to a population of individuals
within a given search space which evolve across generations, according to a quality function
to be maximized. The population is randomly generated in the beginning and evolves using
the top individuals as seeds for the next generation through mutations and crossovers.
Crossovers are applied to two (or more) individuals and combine information from both
parents to generate offspring. Mutation is applied in one individual and results in a new
individual. The generic algorithm can be represented as seen in Algorithm 2.

Algorithm 2: Generic Evolutionary Algorithm
initialize population;
evaluate quality;
while termination condition not met do

select parents;
crossover pairs of individuals;
mutate offspring;
evaluate new individuals;
replace individuals for next generation;

end
return best individuals;

While standard EAs started as defined in Algorithm 2, many variants have since appeared,
such as Genetic Programming (GP), that uses trees as chromosomes for its representa-
tion, and can be used in syntax of arithmetic expressions, formulas, or even code written
in a programming language [13], among others.

EAs are described in much greater detail in [13].

Evolutionary algorithms have historically been used as an attempt to solve the TSP ([40],
[47]), and prove to be reliable in finding an approximate solution in an efficient time frame,
with the most promising results being the works of [32], which will be further expanded
upon below.

Local Search

Local search algorithms, as the name implies, focus on applying local changes to solutions
in the search space until no more changes are found (reached a local maximum), or the
maximum number of iterations has been reached. An example of a local search algorithm is
the previously mentioned 2-opt algorithm that works on specific edges of a given solution.

Local search methods have been used on the TSP as a testing ground for many decades
([34], [27]). Hill climbing algorithms are a local search method that start with an arbitrary

6

Background

solution, and then attempt to apply incremental changes to it. A fitness function is used
to determine if the quality of the solution improved or declined, and if it presents higher
quality than the previous solution, the new solution is chosen and the process repeats until
no new improvements are found, or the maximum allotted time for the algorithm to run
reaches its end [35].

Hill climbers have a simple implementation and are widely used in a variety of problems,
but are not without their issues. It is very easy for a hill climber to fall into local optima,
and as such they often present sub optimal results in problems with an irregular search
space, meaning there are a lot of local optima and plateaus where a solution can get stuck,
which is often the case in problems such as the TSP.

Variations to this algorithm that seek to attenuate this problem include simulated anneal-
ing, for example, which involves accepting seemingly worse solutions while first searching
the solution space, allowing for a more extensive exploration, and decreasing the probabil-
ity of accepting worse solutions as time goes on, in order to converge on better solutions
while escaping local traps regular hill climbers tend to fall into.

The modification and improvement of such algorithms with perturbations to the solutions
and “kicks” to avoid local maxima found in the search space are explored in Iterated Local
Search (ILS), a meta-heuristic that explores different ways to build upon local search
algorithms to improve their performance [26].

2.2 Machine Learning

Machine Learning (ML) is an area of Computer Science that attempts to optimize a com-
puter’s performance by having it learn from past examples and already available data. It
is used to build mathematical models, using statistical data, to either predict future events
or further explore available information [35]. The area rose in prominence in recent years,
and has found success in a wide variety of fields, such as veichle automation (see [28] as
an example).

The objective of this section is to give a brief description of different Machine Learning
concepts, in order to provide context on topics that are explored in this dissertation.

Supervised Learning

Supervised learning is a Machine Learning (ML) area that accepts a set of data instances
that are correctly labeled, referred to as training data, to learn relations and behaviors of
the features that describe the given instances. The task is then to infer a function from the
training data and apply said function to correctly predict the values of the testing data,
composed of unlabeled instances, and categorizing them correctly. Supervised learning is
the most commonly used type of learning for classification and regression [30], and is the
most appropriate for the work presented here.

Statistical Classification

Classification problems are related to the task of identification, and categorization of un-
labeled instances, sorting them into appropriate classes, according to a set of rules con-
structed on previously observed patterns and behaviors found in already explored, and

7

Chapter 2

properly labeled, data [2].

ML algorithms that deal with the task of classification are known as classifiers. Of partic-
ular importance to us are decision tree classifiers, which we will describe below in greater
detail.

Decision Trees

A decision tree is a supervised, predictive model that attempts to predict the correct class of
unlabeled instances of a given item, observing its features and attributing a label according
to previously constructed decision rules based on labeled data. A tree is built top-down,
starting with its root node. At every node the features of the dataset are evaluated and
a split condition is decided based on a gain measure that quantifies the improvement on
said split [37]. The gain measure we use in this work is the Gini Impurity, which we briefly
describe below. Such process is done iteratively until the tree is complete, which is when
the leaf nodes cannot be split further, or doing so does not add significant value to the
labeling of examples, meaning a criterion cannot be found on which to further increase
the tree’s labeling capacity, thus an example that falls on said leaf is classified with the
majority class present in that node. A simple example of a decision tree is found on Fig.
2.3.

Figure 2.3: An example of a decision tree built to determine if a papaya is tasty or not
from [37]. Note the top-down order of the analysed features, from most to least relevant
in identifying the correct label.

Decision trees can present some disadvantages, such as a tendency to overfit on the training
set, and might display lower predictive accuracy than some other classification methods
[18]. However, methods such as random forest creation can attenuate such issues, and
their interpretability, and overall good performance with large datasets [18], make them a
powerful tool that fits the framework of this dissertation.

Gini Impurity

As previously mentioned, a decision tree bases the splitting of its internal nodes on a
specific criteiron called the gain value. One of the used criteria on this dissertation is the
Gini Impurity measure. Equation 2.1 describes how to calculate the Gini Impurity, which
measures the probability of an element in the dataset being incorrectly labeled according
to the class distribution in the dataset, assuming C is the total number of classes, and p(i)

8

Background

is the probability of labeling an instance with class i.

G =
C∑
i=1

p(i) ∗ (1− p(i)) (2.1)

A decision tree bases its splits on maximizing information gain. At every split the weighted
Gini Impurity of each side of the split is calculated, and the results are then subtracted
to the original impurity. The higher the gain, the better the split is considered, and the
node’s split rule is decided based on the best possible split.

Random Forests

Random forests are an ensemble method that reduce the danger of overfitting by creating
an ensemble of trees, and then allowing each tree to classify unlabeled instances of a
problem with only a subset of the features of the instances to inform their decisions on
split nodes. This, coupled with sampling subsets of the data to train the different trees
on, allows the model to predict unlabeled data by aggregating the results of different trees
in the forest. Typically, m features are chosen from the whole set of feature p as m ≈ √p
[18]. Random forests are an improvement over single decision tree predictions because of
their capability to homogenize the different trees’ predictions and reduce variance on the
results, making for more robust predictors overall and substantially attenuating problems
found on decision tree classifiers like overfitting [18]. As such, we will implement random
forests in our work as a way to smoothen the obtained results.

2.3 Related Work

This section is dedicated to tying recent research with our work, showing the advancements
done in recent years when it comes to combining machine learning and combinatorial
optimization. As such, in this chapter we discuss papers that are relevant to our dissertation
in the area of fitness landscape analysis, machine learning techniques, algorithm selection,
and evolutionary algorithms.

When it comes to current research in evolutionary algorithms solving the TSP, works such
as [32] are important to highlight. In it, the authors introduce a genetic algorithm (GA)
that utilizes an edge assembly crossover (EAX), originally developed in [31], and enhance
it further by introducing additional improvements such as local-search methods to the
EAX operator to increase its efficiency and running time, and maintenance of population
diversity via adaptation of the notion of entropy on a given population. The resulting GA
is capable of finding optimal or best-known solutions for TSP benchmark instances with
up to 200 000 cities. Notably, it does not use the LK heuristic in its implementation, which
marks a remarkable achievement in the exploration of heuristic approaches to the TSP.

Another important contribution to our work is the notion of fitness landscape. A term
originally coined by Wright ([46]), fitness landscape analysis attempts to describe the
search space as a landscape to be traversed by an algorithm. This spanned a number of
different works in numerous areas that seek to use said metrics to further improve algorithm
performance.

One particular work we want to highlight is [41]. This paper utilizes the concept of fitness
landscape to help predict the performance of an evolutionary algorithm on a Multidimen-
sional Knapsack problem. The focus of the work is then to study the behavior of the fitness

9

Chapter 2

landscape using different representations for a set of operators typically used in problems
of such nature, and evaluate the results of said landscapes.

While its focus is the discovery of optimal combinations of representation, operators and
heuristics using landscape analysis, of particular relevance to our dissertation is how the
combination of several landscape features such as distance to optimum, fitness distance
correlation and autocorrelation of solutions is used to aid in the exploration of results. We
will make use of these features, describing them in greater detail in Chapter 3.

When it comes to the exploration of the TSP landscape, works such as [39], serve as early
examples of capturing the properties of different TSP landscapes. More recently, the works
of [42] examine a large number of properties such as the local search operator, the number
of local optima, and the distance between optima, on different instances of the problem in
order to aid in the choice of proper algorithm selection based on a given problem.

On the topic of Machine Learning, we can highlight works such as Bello et al.’s article
[7], which combines a Reinforcement Learning (RL) approach with a Neural Network, to
create a framework to tackle combinatorial optimization problems such as the TSP, based
on policy gradient approaches, and achieves close to optimal results on up to 100 nodes.
The authors consider two approaches: the first uses a training set to optimize a Recurrent
Neural Network (RNN), which uses the expected reward as the objective. Based on [43]
Pointer Networks, it encodes each city as an input. At each step it then produces a
distribution of what city to visit next in the tour, using a pointing mechanism, which is
then again passed as an input for the next step. They then use such an architecture to learn
the best stochastic policy parameters that, given a set of points, assign high probabilities
to short tours and low probabilities to long tours. The second approach, which the authors
call active search uses model-free policy based RL to optimize the parameters of the Pointer
Network, and then resort to policy gradient methods and stochastic gradient descent to
fine tune parameters. Starting from a random policy, it iteratively optimizes the RNN
(using the expected reward objective again), keeping track of the best solution sampled at
the same time.

Another RL based approach is that of Deudon et al. [12], which investigates a framework to
learn heuristics for combinatorial tasks, via training a Neural Network using reinforcement
learning policies, further enhancing the heuristics learned by the model with 2-opt local
search to improve running time. The model is tested on TSP maps with 20, 50 and
100 cities. The results are close to the state of the art Concorde solution and present a
reasonable speedup compared to Bello et al.’s work mentioned previously, which reinforces
the notion that Machine Learning tools are powerful when capturing problem structure on
CO problems, being capable of producing good quality solutions in a reasonable amount
of runtime.

The combination of the study of algorithmic selection coupled with Machine Learning is
also an important research topic. The works of Kotthoff et al. [24] and their follow up [22]
focus on introducing algorithm selection techniques on a per-instance basis of the TSP,
resorting to machine learning techniques to select exactly one algorithm per TSP instance.
The work utilizes an elevated number of features (114 features on [24] and 405 on [22]),
ranging from features related to the spatial distribution of nodes on an Euclidean plane,
to features introduced in recent years such as edge lengths of convex hulls ([33]), and then
uses three supervised learning strategies, classification, regression and paired regression,
to select the appropriate algorithms for a given TSP instance. The results show that the
higher performing selectors are two Support Vector Machines (SVM), that highlight the
features from [33] as the most relevant features for a basis to the selection of algorithms.

10

Background

These works highlight the state of current research in the field of TSP optimization. As we
can see, the combination of machine learning tools and algorithm selection have seen plenty
of use, and there is a history of analysis of the fitness landscape of the TSP. However, there
seems to exist an opportunity in the current literature to explore the possibility of making
use of ML methods combined with the fitness landscape metrics we are utilizing, to create
classifiers that choose an operator to be applied to an instance at a given step based on
previously observed patterns, in a reasonable runtime.

11

This page is intentionally left blank.

Chapter 3

Approach

The main goal of this work is to gauge the value of combining features related to the
fitness landscape analysis and ML for the task of deciding optimal operator usage, using
information retrieved by locally exploring the landscape of a given Combinatorial Opti-
mization (CO) problem. Figure 3.1 shows an overview of the steps taken to gain a deeper
understanding of how to reach our objective.

The problem we set out to solve is the automation of operator selection. In order to do
this, there is a need to choose a problem in order to explore and retrieve metrics relevant
to our work. To this end, we use the TSP as the testing ground for our framework.

In order to study the behavior of the fitness landscape metrics, three different instances of
TSP problems were chosen. We create a set of initial tours with different heuristics, and
perform a random walk with each in order to explore the properties of the local landscape
of the TSP instance, by applying three different mutation operators successively on every
generated solution. This allows us to gather information about the fitness landscape prop-
erties of the different maps. The goal is then to tie the patterns observed in the extracted
metrics with the chosen mutation operators, and use such information alongside a ML
solution, and have the resulting model be capable of making informed decisions on what
operator to use at a given step based on the local properties of the landscape where the
solution being evaluated is found.

Figure 3.1: Overview of the approach used in this work.

13

Chapter 3

This chapter is thus dedicated to the detailing of the dataset creation and example gener-
ation. Section 3.1 details the used TSP instances, 3.2 describes the different methods used
for tour generation, Section 3.3 explores the selected operators to be analysed. Finally,
Section 3.4 goes into detail on what metrics were extracted from the generated examples
and how they are presented in the dataset.

3.1 TSP Instances

The basis for our example generation were three TSP maps from the TSPLIB library
[1], a library consisting of various instances of Symmetric Travelling Salesman Problems.
Each instance includes a number of cities with their respective coordinates on each file.
We selected three instances of the problem, eil51, eil76 and ts225, each with 51, 76. and
225 cities respectively. These instances were chosen based on several different factors -
Firstly, testing on different instances of the TSP was considered a priority, so we would
able to explore the obtained metrics on landscapes with different properties to maximize
information gain, which is why three distinct sets were chosen; Secondly, the presented
instances include the optimal found solution, which is necessary for some of the metrics
we want to analyze (see section 3.4). If the optimal solution is not available or known, an
estimate of the optimal solution using known heuristics should suffice as a starting point,
but for simplicity we chose maps with already available optimal tours in this dissertation;
Thirdly, the solutions are of an acceptable length to allow a high number of possible tours,
while still being of small enough length to be explored in a reasonable amount of time,
even with computational limitations. We choose permutation representation for the tours,
as it facilitates the application of the selected operators described in Section 3.3; Finally,
the ts225 problem instance is atypical as it features a large number of local optima [29],
and is suitable to test our solution in less conventional maps.

3.2 Solution Instance Generation

To generate solutions for our dataset, we initially create tours based on three different
heuristics: random, 2-opt and nearest neighbour heuristics. Randomly generated tours
have no regards for the quality of the solution, and a simple random distribution of the
cities is used to generate one tour; With the nearest neighbour heuristic, initially a city
is chosen at random and the nearest city is chosen as its neighbour, and removed from
the pool of available cities. This cycle is repeated until cities are no longer available and
the entire tour is generated. Finally, 2-opt generated tours use the complete 2-opt method
extensively, where a random tour is given to the algorithm, and then a slice is inverted. If
the new tour is an improvement the result is kept and the algorithm is applied to the new
tour. Because of computational constraints, the algorithm has a maximum of 1 million
improvements, after which point it returns the best found tour.

At the end of this step, 1000 tours are generated with each heuristic, in each map, which
means a total of 9000 initial examples are created at the start. This was done in order to
have a balanced dataset with a large range of solution qualities to be able obtain as much
information as possible from the generated solutions.

Afterwards, we take each of these solutions and perform a small random walk by applying
the three operators described in Section 3.3 to each. All operators are always applied to
any given solution, to two random cities in the permutation, branching it out as a tree with

14

Approach

three new tours generated from the original solution. This process is done iteratively until
each tour has generated a tree with eight levels of depth, and the leaves of said tree are
saved, alongside the metrics mentioned in Section 3.4, as examples to be used on the final
dataset. Figure 3.2 shows an overview of how the random walk every solution performs is
done, and where the final examples are extracted from.

Figure 3.2: An overview of the how the random walk on every generated solution is per-
formed.

The possibility of using examples from not only the tree “leaves” but also from different
depth levels was discussed, but after a brief exploratory analysis done to compare both
the inner levels and the leaves we concluded that the impact these examples have on the
results is negligible and therefore decided to focus only on the latter.

The resulting dataset consists of a total of roughly 5 900 000 generated examples, across
the three different maps, each with 25 features available. It is an extremely large dataset
and as such, very computationally expensive to study. Therefore, the decision was made
to only use about 300 000 examples from each map, approximating 900 000 examples for
experimentation and analysis of results. We find this is an appropriately large number of
solutions to achieve consistent results, while easing the load of exploring the entirety of
the available data at once.

3.3 Selected Operators

Swap Operator

A simple operation where we take two randomly selected cities in the permutation and
swap their position. This operator breaks four city connections and, as such, is the most
destructive operator amongst the selected three as it changes the most city connections
out of the three chosen operators (see Fig. 3.3 for an example).

15

Chapter 3

Figure 3.3: Swap operator as seen in [13].

Insertion Operator

An insertion operator selects two random cities in the tour and puts the second city next
to the city that was selected first and the other values in-between are "pushed" to the side
(see Fig. 3.4), breaking three city connections.

Figure 3.4: Insert operator as seen in [13].

Inversion Operator

Finally, with an inversion operator we select two random cities again, and everything
between said cities (including the chosen) are inverted in order. While it seems to be the
most destructive operation at first glance, it realistically only changes two links in the
cities, and as such is considered the smallest change to be made in an adjacency-based
problem [13].

Figure 3.5: Inversion operator as seen in [13].

3.4 Metrics

As previously mentioned, this work seeks to utilize fitness landscape related metrics, and as
such, our focus when creating the dataset is to retrieve information based on these metrics.
This section is dedicated to detailing each of the features included in every example of the
dataset.

Fitness

The fitness function measures the quality of a given solution. In our work, we consider
the euclidean distance between city pairs as the fitness function of a generated instance,
which means that, the lower the distance, the better the quality of a tour and as such,
lower fitness values directly correlate to a smaller tour.

16

Approach

By considering an instance x an ordered list of city indexes [x0, x1,..., xn] of length n+1,
each with coordinates xnxy , then the fitness function f(x) can be described by equation
3.1.

f(x) = (
n−1∑
i=0

√
(xi+1x − xix)2 + (xi+1y − xiy)2) +

√
(x0x − xnx)2 + (x0y − xny)2 (3.1)

As we can see, the euclidean distance is calculated for every pair, with the last city con-
necting to the first one in the list.

Fitness Variation

In addition to fitness, we also keep track of the fitness variation at every step the solution
takes throughout the random walk, by registering the change in fitness from the last step
to the new one after applying an operator to it, as can be seen in equation 3.2.

∆fi = fi − fi-1 (3.2)

Distance to Optimum

The distance to optimum metric chosen is the Hamming distance, obtained by measuring
the distance d of the adjacency matrix generated from a given tour to the adjacency matrix
generated by the optimal solution. The adjacency matrix Aij is a square nxn matrix of
zeroes, where an element Aij on each row takes the value of one, meaning city i has an
edge that connects to city j. The distance is then measured by the number of rows that
are the same in both matrices, with the best value being zero, indicating a solution that
is exactly the same as the optimum, and the worst value being n, indicating a solution
without any city pair in common.

Fitness Distance Correlation

Fitness Distance Correlation (FDC) is a way of assessing the difficulty of a problem, by
measuring the relation between fitness value and distance to the optimum of the search
space. The FDC was first described by Jones et. al [19] and is defined as % and described
as seen in Equation 3.3.

%(f, d) ≈ 1

σfσdm

m∑
i=1

(fi − f̄)(di − d̄) (3.3)

Where, m is the length of the random walk at the given solution, fi is the fitness of solution
i, di is the distance to the optimum of solution i, f̄ and d̄ are the average fitness and distance
to optimum across the whole random walk, and σf and σd the standard deviation of the
fitness and distance, respectively. Because we are in the context of a minimization problem,
when % is close to 1.0, it indicates a strong correlation and as such, an easier search space.
On the other end, a value of % = - 1.0 indicates little correlation, and a harder landscape,
suggesting a more difficult search [19].

17

Chapter 3

Autocorrelation Function

The autocorrelation function gives us the structure of the landscape by measuring the
degree of correlation between points in a random walk. The autocorrelation function, first
coined by Weinberger et al. [45], is defined as ρ(s), and is described by Equation 3.4,

ρ(s) ≈ 1

σ2f (m− s)

m−s∑
i=1

(f(i)− f̄)(f(i+ s)− f̄) (3.4)

which defines the correlation of two points s steps away from each other on a given m-
long random walk. The bigger the difference in fitness, the less correlation there is in the
landscape and the harder it is to search for a solution. For the results we present, we
consider s=1, or, in other words, the adjacent solutions in a given random walk.

Operators

In addition to the previously mentioned metrics, we include as a feature the previous
operators used when generating a random walk. Any given example has the previous four
operators that were applied applied during the walk featured as a metric. See section 3.3
for an in-depth description of the used operators.

Local Exploration versus Global View

An important topic that is also worthy of analysis is the importance of metrics global
to the path the generated tours took while exploring the landscape, and the more local
information that can be obtained from the walk. As such, the features that were extracted
from the results can be separated into two categories: features that relate to the local
state of the walk, where we can retrieve local information up to four steps back ; and
information related to the general state of the walk, which contains metrics pertaining
to the overall performance of the walk taken by the tour. Table 3.1 gives an overview
of the features included in each extracted example, including their name, and whether
they contain continuous values or are categorical variables, and Figure 3.6 shows what any
example in the generated datasets looks like. Op stands for operator used, fit var stands
for fitness variation metrics, dist. opt. refers to distance to the optimum, fdc is related to
fitness distance correlation measures, and auto corr describes autocorrelation values. T -
x refers to the step in time the metric was taken in. For instance, auto corr t-4 stands for
the autocorrelation value the example displayed four steps ago on the random walk.

Figure 3.6: All metrics present on any given instance found in the dataset.

18

Approach

Local Metrics (4 Step Window) Global Metrics (averages) Target
Name Type Name Type Name Type
used operator category avg. fitness continuous

target operator category
fitness variation continuous avg. variation continuous
dist. to opt. continuous avg. dist. opt. continuous
fdc continuous avg. fdc continuous
autocorrelation continuous avg. autocorrelation continuous

Table 3.1: Overview of available features for every example. Note that every local metric
includes four features, as up to four steps of the solution are available information.

Labeling

Lastly, because we decided on a supervised learning approach to classification, all the
generated solutions were labeled with the optimal target. This target is decided by applying
each of the three available operators in a random tour once, and choosing as the label the
operator that most decreases the fitness of the solution, or, at the very least, is
the less destructive on the quality of the solution. A display of the metrics present on a
generated solution can be found on Table 3.1, showing all the collected metrics and label
found on every generated solution found in the dataset.

An in-depth analysis of the target distribution results is found in the next chapter, as well
as the detailing of the exploratory analysis done on the extracted data, including studies
on the importance of each feature and observation of classification results using decision
trees.

19

This page is intentionally left blank.

Chapter 4

Experimental Study

This chapter is dedicated to the exploration of the data obtained in the previous chapter.
We start by presenting the summary of the statistics obtained from the observation of
the different metrics extracted from the generated solutions on Section 4.1, studying each
feature and their relation with one another, then drawing conclusions from said analysis.
Observations such as the distribution of targets, and the relevance of each feature for
the building of classifiers are also found here. Following that, we summarize the results
obtained in the classification tasks in Section 4.2, and then compare our model against a
regular hill climber in Section 4.3.

4.1 Exploratory Data Analysis

Here, we present the results of the analysis of the obtained metrics, and draw conclusions
from the generated examples. For that effect, we performed univariate analysis on each
observed feature to find patterns and describe the behavior of the found results. We then
try to understand the relation between different features and how they interact with one
another, as to gain insight into the relevance of different features, and highlight their
usefulness in selecting different operators.

4.1.1 Univariate Analysis

In this section, we present the results of observing each feature’s behavior across the
different instances, aiming to discuss emerging patterns found across the different metrics.

Fitness

Figure 4.1 displays the distribution of fitness from example solutions extracted from the
dataset, according to their average fitness value.

The observed fitness values show that 2-opt and nearest neighbour tours present generally
better quality solutions, while random tours have notably worse fitness values. An excep-
tion to this is the 225 city map, where 2-opt generated tours are only a slight improvement
over randomly generated tours. This is a common pattern found in the data, which is to
be expected, as this map in particular is purposefully a difficult map to solve, due to the
combination of a higher number of city pairs than the other two, and due to the deceptive

21

Chapter 4

(a) Avg. fitness example count for eil51. (b) Avg. fitness example count for eil76.

(c) Avg. fitness example count for ts225.

Figure 4.1: Average fitness distribution across generated solutions on the three different
maps, with generation heuristics highlighted - blue represents randomly generated solu-
tions, red represents 2-opt generated solutions, and green represents nearest neighbour
solutions.

difficulty inherent to the map [29]. This fact, alongside the fact that the number of im-
provements applied to 2-opt tours is limited to a million per tour, contribute to the results
displayed in Fig. 4.1c.

Distance to Optimum

The average distance to the optimum across the different map instances is displayed in
Figure 4.2, and is within the expected values - as observed above, tours generated with
nearest neighbour and 2-opt exhibit similar behavior and present better results overall,
with 2-opt tours having a more even distribution of values (except for the 225 city map,
as discussed above).

The presented Figures 4.2 and 4.1 hint at an existing correlation between distance and
fitness, as the observable results parallel each other when directly compared. However, it
is important to note that the distribution of both metrics does not entirely overlap (for
example, Fig. 4.2c presents a wide range of solution distribution according to distance to

22

Experimental Study

optimum on nearest neighbour generated tours, while Fig.4.1c shows the same solutions
presenting a similar fitness value), which exemplifies that just because an solution’s fitness
is improving, it does not directly correlate to a convergence to the optimal solution, which
leads us to conclude that we cannot solely rely on fitness to look for the best possible
operator.

The two shown metrics together however, display a common pattern when it comes to
solution quality, which we will assume true from this point forward - randomly generated
tours are generally worse initial solutions, while nearest neighbour and 2-opt tours (on the
51 and 76 city maps, at least) should be considered better quality initial solutions.

(a) Avg. distance example distribution for eil51. (b) Avg. distance example distribution for eil76.

(c) Avg. distance example distribution for ts225.

Figure 4.2: Average distance to optimum across different maps, with different generation
heuristics highlighted - blue represents randomly generated instances, red represents 2-opt
generated examples, and green represents nearest neighbour instances.

Fitness Variation

From the fitness variation plots found in Fig.4.3, we can observe that most operations
applied to already good solutions are detrimental to their quality, and mutations applied
to randomly generated tours seem to be evenly distributed in positive/negative changes.
Another observation worthy of note is that, as expected, the swings in fitness quality are
much steeper as the number of cities increases, as per Figure 4.3c.

23

Chapter 4

(a) Avg. fitness variation example count for
eil51.

(b) Avg. fitness variation example count for
eil76.

(c) Avg. fitness variation example count for ts225.

Figure 4.3: Average fitness variation distribution across different maps, with different gener-
ation heuristics highlighted - blue represents randomly generated instances, red represents
2-opt generated examples, and green represents nearest neighbour instances.

As such, we can conclude that fitness variation can aid in determining the quality of the
tour when looking at its average value, and seems to be especially useful when combined
with distance and fitness measures to find out the appropriate operator to be applied on a
given solution.

Fitness Distance Correlation

The plots presented in Figure 4.4 tell us that the vast majority of solution with a random
initialization has a fitness distance correlation value of near zero, which suggests that most
of the randomly generated examples does not present significant variation on fitness and
distance values across their random walk, based on Equation 3.3, which indicates a difficult
search for the optimum on these solutions. Additionally, the 2-opt and nearest neighbour
generated tours, present a similar pattern on correlation distribution, with very disperse
values across the whole dataset, with a slight tendency to increase to a peak of counts
at the 0.6 to 0.8 interval, which would indicate a stronger correlation between fitness and
distance on these solutions, and an easier search for the optimum.

24

Experimental Study

(a) Avg. fitness distance correlation example
count for eil51.

(b) Avg. fitness distance correlation example
count for eil76.

(c) Avg. fitness distance correlation example count for ts225.

Figure 4.4: Average fitness distance correlation value distribution across different map
instances, with different generation heuristics highlighted - blue represents randomly gen-
erated solutions, red represents 2-opt generated solutions, and green represents nearest
neighbour solutions.

The progression of FDC values across the last four steps of the random walk of the gener-
ated solutions can further be evaluated in Fig. 4.5. Of particular note here is the reduction
of examples with a FDC value of zero as the time window progresses towards the current
solution, and the bigger spread of fitness distance correlation values observed as a result.
This is beneficial, as more variety in the examples of the dataset leads to more information
gathered from the available metrics, and a more informed decision can be made by our ML
model to select an operator. However, the large spread of featured values of FDC across
the generated solutions indicates that the degree of difficulty in the search for an optimum
is highly dependant on where the solution is situated on the search space, suggesting an
uneven landscape across the different maps, and as such, might be an unreliable metric for
operator prediction in our work.

25

Chapter 4

Figure 4.5: Progression of the local fitness distance correlation value across examples on
the eil76 map.

Autocorrelation

From the observation of the autocorrelation results, some conclusions can be drawn. Worse
initial solutions seem to be dispersed across a wide range of values, as evidenced by Fig.
4.6, and furthermore, tend to have, on average, lower values. The opposite is verified on the
majority of higher quality examples, which tend to not only feature a much higher example
count of solutions with higher values of average autocorrelation, but also a much smaller
range of values. This tells us that higher autocorrelation values are generally most likely
to be tied to higher quality examples. Additionally, the progression of the autocorrelation
values over the four-step window observed in Fig. 4.7 shows that as the walk is performed,
the count of solutions with higher autocorrelation also increases, further converging in
the upper end of possible values, which reinforces that better initial solutions are more
likely to also have higher values of autocorrelation. Autocorrelation directly ties with the
landscape properties of the problem instance - higher autocorrelation values translate to
a more rugged landscape, and a harder search for the solution [41], and therefore, the
results suggest the search is increasingly harder as we get closer to the optimum, as weaker
solutions display lower values of autocorrelation, and solutions with better fitness/distance
to optimum present higher autocorrelation metrics.

Operator Usage

As mentioned in section 3.2l, the dataset features an extremely large number of generated
solutions. Because we do not work with all the examples in the dataset as that would
require more computational resources than what was available, we use a subset of solutions

26

Experimental Study

(a) Avg. autocorrelation value example count for
eil51.

(b) Avg. autocorrelation value example count
for eil76.

(c) Avg. autocorrelation value example count forts225.

Figure 4.6: Average autocorrelation distribution across generated examples on the three
different maps, with generation heuristics highlighted - blue represents randomly generated
instances, red represents 2-opt generated examples, and green represents nearest neighbour
instances.

extracted from each different map instance to work on. Therefore, an analysis to determine
how many times each operator is used across all generated examples at all steps of the 4-
step window is done, to guarantee we are working with a dataset with a balanced example
count. As shown in Figure 4.8, the operator usage is practically even across all steps. While
only the results for the 76 city map are displayed, all instances display similar patterns, and
therefore we can safely state that the operator usage is entirely even across all examples,
which guarantees we are working with data that has has an even distribution of random
walk exploration using the chosen operators. Furthermore, this also shows there is little to
be gained in evaluating the previous operators when selecting a new one, something that
we look at more closely at in Section 4.1.4.

Label Distribution

Finally, the label class distribution plot observed in Figure 4.9 is a good indication that the
operators are behaving as expected. As stated in Section 3.4, the examples are classified

27

Chapter 4

Figure 4.7: Progression of the autocorrelation values across extracted examples on the
eil51 map.

based on the application of all three operators on the given instance on two random cities,
and compares the fitness variation of all three generated solutions, choosing as a label
the operator that most improved (or, least damaged), the original solution. The results
show that swap operator is used as a label with more frequency by randomly generated
tours than by better heuristics. Interestingly enough, randomly generated solutions have
an almost equal number of different operators used as a target across all maps. Nearest
neighbour and 2-opt generated solutions follow a similar pattern of target selection across
instances, with insert and invert operators being used more frequently when the heuristic
for original tour generation has better quality, which is expected behavior, except at the 225
city map, where we can observe that 2-opt tours follow the behavior observed in random
tours, as expected from the quality of the tours generated with that heuristic on said map.

In short, swap operator labeling is found in near even number across all examples and
maps, while inversion and insert operators are used much more commonly on better quality
heuristics, with these having a smaller amount of solutions labeled with swap operator
overall. A more extensive analysis of target distribution can be found in Section 4.1.3.

28

Experimental Study

Figure 4.8: Distribution of the three different operators selected across the 4-step window
on the eil76 map.

29

Chapter 4

(a) Labeled class example count for eil51. (b) Labeled class example count for eil76.

(c) Labeled class example count for ts225.

Figure 4.9: The labeled examples distribution across all maps, according to the heuristic
used to generate the original solution.

30

Experimental Study

4.1.2 Multivariate Analysis

In this section we analyse the different metrics in relation to one another, in order to try
and find patterns and relations that are not apparent at a first glance. Note that for the
most part, nearest neighbour generated examples (marked green on the scatterplots) are
barely visible, mostly due to their similar behavior to 2-opt generated examples (in red),
meaning that in most cases they are simply hidden behind the latter.

Autocorrelation And Fitness Distance Correlation

Figure 4.10 tracks the evolution of the FDC/autocorrelation values on the four-step win-
dow. What is interesting to observe here is how noticeable the convergence of higher
quality solutions to higher values of autocorrelation is compared to randomnly generated
solutions. Other than that, the change in FDC values seems to be more negligible, with
only a slight increase in their values over time.

Figure 4.11 presents the scatterplots for the average values of both metrics in a single map,
with similar results to what was gathered before. It is apparent there is no real correlation
between the two features, as the displayed values are very disparate: average FDC values
are very scattered across the graphs, while average autocorrelation values tend to be higher
the better the solution quality, as was observed previously in Fig. 4.6.

Figure 4.10: Scatterplot of the relation between autocorrelation values (y axis) and FDC
values (x axis) across the 4-step window on the eil51 map.

For both figures only the results for one map are displayed, as all feature similar patterns
in data distribution.

31

Chapter 4

Figure 4.11: Scatterplot of the average autocorrelation values (y axis) and the average
FDC values (x axis) found in eil51 generated solutions.

Distance to Optimum and Autocorrelation

The scatterplots comparing these two metrics are found in Figure 4.12. From here, we
can conclude that distance to optimum and autocorrelation are tied to one another to
some degree. While it is true that examples that are further away from the optimum
present big disparity on autocorrelation results, it seems that as a general rule, tours that
present shorter distances to the optimal solution generally display higher values of average
autocorrelation.

Distance to Optimum and Fitness

The scatterplots shown in Figure 4.13 further strengthen the hypothesis that fitness and
distance are not linearly correlated - just because a solution displays lower fitness values it
does not equate to a solution that is close to the optimum. However, despite this, there are
no solutions with low distance to the optimum and high fitness, which means that, while
not directly tied to one another, one can draw the conclusion that better solutions always
have better fitness values.

Another interesting observation to be had, is that the 2-opt generated tours seem to have
a higher disparity of fitness in relation to the distance to the optimum, especially in the 76
city map. This is a good indication of how fitness can be a deceptive measure on its own,
as higher fitness values can sometimes equate to better quality solutions too, and as such
is important to not rely solely on it as a metric for solution quality.

Fitness Variation and Fitness

The plots displayed in Figure 4.14 show what is to be expected. Tours generated with
better heuristics have overwhelmingly worse average variation due to the operators applied

32

Experimental Study

(a) Average autocorrelation/distance to opti-
mum scatterplot for eil51.

(b) Average autocorrelation/distance to opti-
mum scatterplot for eil76.

(c) Average autocorrelation/distance to optimum scatterplot for ts225.

Figure 4.12: Scatterplot for the average autocorrelation values (y axis) in relation to the
average distance to optimum (x axis) for the eil51 map (4.12a), eil76 map (4.12b) and
ts225 map (4.12c).

not being discriminatory. Also as expected, the tours with the highest fitness also tend to
improve slightly or not worsen as much as others. Also noticeable, is how fitness variation
is observably tied to the fitness of a solution, and furthermore, the number of cities in
the map and the tour length both affect the swings in fitness, with bigger average fitness
variation value changes from one solution to another displayed as the cities in the map
increase. This also ties back to autocorrelation values being generally higher on solutions
with a higher fitness quality, with the bigger swings in fitness reflecting the increased jumps
in fitness across a random walk and increase in autocorrelation as a consequence.

33

Chapter 4

(a) Average fitness/distance to optimum scatter-
plot for eil51.

(b) Average fitness/distance to optimum scatter-
plot for eil76.

(c) Average fitness/distance to optimum scatterplot for ts225.

Figure 4.13: Scatterplot for the average fitness values (y axis) in relation to the average
distance to optimum (x axis) for the eil51 map (4.13a), eil76 map (4.13b) and ts225 map
(4.13c).

34

Experimental Study

(a) Average fitness/fitness variation scatterplot
for eil51.

(b) Average fitness/fitness variation scatterplot
for eil76.

(c) Average fitness/fitness variation scatterplot for ts225.

Figure 4.14: Scatterplot for the average fitness values (y axis) in relation to the average
fitness variation values (x axis) for the eil51 map (4.14a), eil76 map (4.14b) and ts225
map (4.14c).

35

Chapter 4

4.1.3 Target Distribution Analysis

This section is dedicated to observing how the different features interact with the operators
used as labels. Through it we will explore the distribution of values among the different
features while keeping in mind the target operator choice of the generated tours, instead of
the heuristic used to generate the initial instances, to find patterns and information about
which operator is preferred and under what conditions.

Targets According to Distance to Optimum

This visualization of target distribution present across distance in Figure 4.15 gives us fur-
ther glimpses at what was already hypothesized above: as distance to optimum decreases,
the preference tends towards operators that are less destructive to the tour (insert and
invert), while examples with poor quality have a near even distribution of operator choice
as a label.

Figure 4.15: Distribution of operators chosen as labels on the eil76 map, distributed by
average distance to optimum - Swap operators are displayed in blue, insert operators are
orange and invert operators are green.

Targets According to Fitness Value

The graph visualized in Figure 4.16 further corroborate what was observed in the target
distribution by distance graphs - while solutions that choose swap as their target exist on
some capacity on lower fitness values, the other operators are vastly preferred among the
solutions of better quality.

Targets According to Autocorrelation Value

The plots displayed in Figure 4.17 further corroborate what was stated before, highlighting
how evaluating the autocorrelation values can be important to determine the quality of

36

Experimental Study

Figure 4.16: Choice operator distribution per average fitness value of all solutions from the
eil76 map - Swap operators are displayed in blue, insert operators are orange and invert
operators are green.

a given solution - higher autocorrelation values indeed tie to stronger solutions and thus
prove to be an important metric to determine the correct operator to be chosen.

37

Chapter 4

(a) Label distribution according to average au-
tocorrelation in eil51.

(b) Label distribution according to average au-
tocorrelation in eil76.

(c) Label distribution according to average autocorrelation in ts225.

Figure 4.17: Distribution of operators chosen as labels on all maps according to average
autocorrelation value - Swap operators are displayed in blue, insert operators are orange
and invert operators are green.

38

Experimental Study

4.1.4 Feature Importance Ranking

Introduction

This subsection is dedicated to analysing the different features’ importance in the task of
discovering the most promising operator, and ranking them in order of their score. First
we go over the chosen approach in the analysis, and then we display the obtained results.

Approach

We decided on the utilization of random forests for the analysis of the feature ranking
importance. Implementation is done using sklearn’s RandomForestClassifier. In order
to test results under different conditions, we use forests with either one hundred or two
hundred generated trees.

When it comes to the criteria for information gain, Entropy and Gini Impurity, they
indicate roughly the same when ranking features by order of importance, and as such their
difference in analysing the dataset is negligible. With that said, we choose to use Gini
Impurity as our criterion.

The trees are built with default parameters, and the feature ranking analysis was performed
in the dataset for the three maps separately, and for all the maps combined as well. In the
combined dataset, data was normalized using sklearn’s StandardScaler implementation,
which is applied independently on each feature of each different map and then joined
together for analysis. The results can be found on the section below.

Results

The obtained results can be found on Table 4.1. The feature importance analysis shows
similar patterns across all maps and combinations, therefore we choose to display the
results of the combination of the three maps as a representative that can be generalized to
other results. The values are normalized and pertain to the total reduction of the criterion
brought by that feature.

Figure 4.18 show a visualization of the values found within the table for the random
forest with two hundred trees. As was previously hypothesized during the operator usage
exploratory analysis, past operator usage is considerably less valuable than the rest of the
features. Local distance to optimum metrics also display relatively low importance. FDC
display middle of the road results. Autocorrelation related values display good results in
importance on predicting a correct operator, and follow closely average fitness and fitness
variation metrics, which are consistently classified as the most valued metric, displaying
the overall highest scores.

39

Chapter 4

Configuration
Feature
Indexes Features RF 100 RF 200

0 Op T-4 0.016581 0.019445
1 Op T-3 0.016617 0.019241
2 Op T-2 0.016652 0.019660
3 Op T-1 0.017140 0.019657
4 Fit Var T-4 0.052538 0.051527
5 Fit Var T-3 0.052503 0.051696
6 Fit Var T-2 0.053090 0.052184
7 Fit Var T-1 0.053720 0.052620
8 Dist T-4 0.027013 0.028249
9 Dist T-3 0.025279 0.027242
10 Dist T-2 0.025155 0.027461
11 Dist T-1 0.026860 0.028775
12 FDC T-4 0.040732 0.039882
13 FDC T-3 0.040187 0.039026
14 FDC T-2 0.041019 0.039916
15 FDC T-1 0.043469 0.042323
16 A. Corr T-4 0.050867 0.050020
17 A. Corr T-3 0.050136 0.049219
18 A. Corr T-2 0.050454 0.048837
19 A. Corr T-1 0.051317 0.049671
20 Avg. Fit. 0.056000 0.054583
21 Avg. F. Var 0.053299 0.052141
22 Avg. Dist. 0.042042 0.041771
23 Avg. FDC 0.044885 0.043627
24 Avg. ACorr. 0.052446 0.051225

Table 4.1: Results for the fitness importance ranking on the combination of all maps, with
different numbers of trees in the random forest (RF). Lowest and highest values on each
configuration are highlighted.

40

Experimental Study

Figure 4.18: Feature ranking display for random forests with 200 decision trees.

41

Chapter 4

4.1.5 Discussion

From the gathered results we can make some observations and extrapolate information
pertaining to the importance of the features in the dataset. Before we move on to the
classification task, it is important to draw some conclusions based both on the exploratory
analysis done, and the feature classification work:

1. Previously used operators do not add to the information gained from any given
example, and as such, from this point on we choose to disregard these features for
the rest of the work;

2. Distance related features consistently rank on the lower half of usable metrics as well,
and therefore has a lower impact on the overall information gained;

3. Fitness correlation distance metrics also rank on the lower half of the feature ranking
and often present similar ranking to distance related features, which is expected due
to the noticeable lack of patterns in its distribution;

4. Autocorrelation values place on the higher half of the feature ranking, which indi-
cates that such features have relevant information to our goal and should be taken
into consideration when analysing the best operator to choose. Average autocorrela-
tion values often rank in proximity with local fitness variation values, which further
corroborates the importance of said metrics;

5. Fitness variation and fitness both consistently rank at the top as the most important
features to take into account, which is expected, considering they measure the quality
of the solution itself and can evaluate if the operators used are straying (or not) from
the correct path, as evidenced by the analysis above.

As such, with the knowledge gathered in these sections, we are now ready to discuss the
obtained results below.

4.2 Results

In an early phase, several different classifiers were chosen to test the accuracy of the clas-
sification task of unlabeled instances. Preliminary tests with different classifiers„ show low
accuracy values, ranging from 35% to 40%, when tasked with choosing correct operators.
Because of this, we opted for using decision trees to perform an analysis of the results and
understand why the accuracy scoring was low, presenting our findings on the next chapters.

4.2.1 Decision Tree Analysis

Because of the inherently deterministic nature of decision tree classifiers, the first step
taken was performing initial tests with different tree depths to understand if the choice
metrics on the split nodes were aligned with the feature importance metrics obtained in
the previous section. To this end, we used the sklearn DecisionTree implementation, and
tested for the feature importance metrics, with differing maximum tree depths. We used
a fixed seed both in dataset sample extraction, and in tree generation in order to have
reproducible results. To guarantee dataset balance when it comes to labeled data, from
each map we select an even number of classified examples (about 13 000 labeled instances

42

Experimental Study

per class, per map), which totals a number of about 120 000 examples used on the analysis
of the combined dataset.

The resulting top features used in decision nodes can be consulted in Table 4.2, for each
map instance and depth. As previously stated, the featured instances do not have operator
related metrics included, as previous analysis suggested they would not add value to the
classification task. As we can observe from Table 4.2, in combination with the metric
exploration, the most important features to be used in decision nodes coincide with the
previous results for the most part. A very interesting observation, however, is how, when
combining examples from all maps, the preferred features turn from average fitness and
variation metrics to autocorrelation and distance metrics. This is also somewhat displayed
in the ts225 decision trees, which for lower depths prefer to use average distance as the
primary discrimination factor.

We can observe an example of the built trees in Figure 4.19. Because the trees become hard
to read on increasingly large depths, we opt to show a detailing of a decision tree branch as
to examplify observed behavior. The coloring of the leaf nodes indicates the specificity of
said node - for example, nodes with deep purple color indicate examples that fall under the
specified conditions have a very high likelihood of being labeled with the "insert" operator
class. The observation of the trees immediately root out a big problem: there is very
low specificity found on many leaf nodes, which translates to difficulty in identifying the
correct class, even with the most discriminatory features used to make a decision. This is
something that holds true even as the depth of the tree increases. This highlights the issue
that the collected metrics simply are not discriminating enough to properly label tours
solely based on them, even though all metrics play a part in selecting the correct label.
This is also evidenced by the very similar Gini value present on the observable nodes,
revealing uncertainty in the classification of operator choice. While discrimination can and
does increase the deeper the tree goes, a right balance has to be struck between depth and
capability of generalization of the tree, because it can easily fall into overfitting if simply
left unchecked.

Figure 4.19: Detail of a decision tree branch of depth 8 containing examples from all maps.
Note how some leaf nodes can label correctly with some certainty, but there is a lot of
indecision for a great amount of samples, even as depth progresses.

This topic, alongside additional analysis, like utilizing random forests instead of single trees,
is continued below. Furthermore, we compare results for scaled and unscaled data, and
checking for potential overfitting that may happen when fitting the trees for classification.

43

Chapter 4

Map
Instances

Max.
Tree Depth

Most
Relevant
Feature

2nd Most
Relevant
Feature

3rd Most
Relevant
Feature

2 Avg. Fit Avg. Var Var. T-4
5 Avg. Fit Avg. Var Var. T-1
10 Avg. Fit Avg. Var Var. T-1
15 Avg. Fit Avg. Var Var. T-1
25 Avg. Fit Avg. Var Var. T-1
50 Avg. Fit Avg. Var Var. T-1
100 Avg. Fit Avg. Var Var. T-1
500 Avg. Fit Avg. Var Var. T-1

eil51

None Avg. Fit Avg. Var Var. T-1
2 Avg. Fit Var. T-4 Var. T-3
5 Avg. Fit Avg. Var Var. T-2
10 Avg. Fit Var. T-3 Avg. Var
15 Avg. Fit Avg. Var Var. T-2
25 Avg. Fit Var. T-2 Var. T-1
50 Avg. Fit Var. T-1 Var. T-2
100 Avg. Fit Var T-1 Avg. Var
500 Avg. Fit Var T-1 Avg. Var

eil76

None Avg. Fit Avg. Var Var. T-1
2 Avg. Dist Avg. Fit Var T-4
5 Avg. Dist Avg. Fit Acorr T-1
10 Avg. Dist Var T-1 Avg. Fit
15 Avg. Dist Avg. Fit Avg. Var
25 Avg. Dist Var T-1 Avg. Fit
50 Avg. Fit Var T-1 Var T-3
100 Avg. Fit Var T-1 Avg. Var
500 Avg. Fit Var T-1 Avg. Var

ts225

None Avg. Fit Var T-1 Avg. Var
2 Avg. Acorr Var T-4 Var T-3
5 Avg. Acorr Dist T-1 Dist T-3
10 Avg. Acorr Dist T-2 Dist T-3
15 Avg. Acorr Dist T-2 Dist T-3
25 Avg. Acorr Dist T-3 Dist T-1
50 Avg. Acorr Dist T-1 Dist T-4
100 Avg. Acorr Dist T-1 Dist T-4
500 Avg. Acorr Dist T-1 Dist T-4

all

None Avg. Acorr Dist T-1 Dist T-4

Table 4.2: Results for the decision tree’s top three most relevant important features, on
each map and on the combined, standardized, dataset.

44

Experimental Study

Random Tree Analysis

For this section, we opt on random forests instead of single decision tree classifiers. Simi-
larly to above, we test different maximum depths for the forests, measuring both training
and testing accuracy. Standard training/testing split is applied (70% of examples are used
in training, and 30% of examples are used for testing). About 150 000 examples are used
on each map, which makes for about 105 000 labeled instances and 45 000 unlabeled in-
stances for testing. All operator classes are represented equally, with 50 000 of each being
present on the evaluated set. We once again do this for all three maps, separately and
combined. The random forests contain 100 estimators, and a grid search is done at every
run to determine the best minimum samples required to be on a leaf node, and the mini-
mum number of samples required for a split to happen, and use the selected configuration
for display.

Furthermore, we additionally wanted to verify the impact of data scaling in our work,
and as such, all instances are presented, both scaled, and unscaled, for comparison. Data
scaling is done in order to standardize the range of feature values within a certain range.
The results can be found on Table 4.3, and on Figure 4.20.

(a) Unscaled training accuracy results for all
datasets.

(b) Unscaled testing accuracy results for all
datasets.

Figure 4.20: Comparison of training/test accuracy across different maximum tree depths
on unscaled datasets.

From the observation of the both the table and the figures, we can draw several conclusions:
It is immediately apparent that eil51 and eil76 maps are more prone to overfitting, as
training accuracy increases greatly with tree depth on both map instances, as is evidenced
by Fig. 4.20a. There is an observable discrepancy between the training accuracy score and
testing accuracy, which is a clear symptom of overfitting.

When it comes to the importance of data scaling, the results are very similar across all
tests made, and we can conclude that scaling the dataset does not meaningfully affect the
configurations in an impactful way.

We can further understand the classifier’s behavior by looking at the normalized confusion
matrices of the results, presented on Figure 4.21. While 51 and 76 city maps show a
higher percentage of true positives on invert and insert operator labeling (classes 1 and
2, respectively), the 225 city map presents slightly higher accuracy, due to showing a bias
toward predicting a label of swap operator (class 0) most of the time. The classifier for
all the maps combined displays behavior similar to 51 and 76 city maps, with the a slight
decrease on wrong predictions on swap operators, but showing a bigger spread of guesses
when trying to predict an insert or invert operator.

45

Chapter 4

Unscaled Scaled

Map
Max.
Tree
Depth

Min.
Sample
Leaf

Min.
Sample
Split

Train
Acc.
(%)

Test
Acc.
(%)

Train
Acc.
(%)

Test
Acc.
(%)

5 100 100 38,74 36,52 38,95 36,16
10 500 50 40,8 36,39 40,69 36,28
15 500 500 41,72 36,28 41,7 36,3
25 500 500 41,87 36,43 41,83 36,15
50 1000 5 39,96 36,37 39,81 36,2
100 500 25 41,77 36,43 41,73 35,92
500 1000 10 50,18 36,32 50,09 35,91

eil51

No Limit 500 5 41,94 36,3 41,74 36,16
5 50 100 39,56 37,39 40,04 37,92
10 500 100 41,17 37,56 41,07 38,04
15 1000 10 40,45 37,59 40,36 37,88
25 100 25 49,46 37,63 49,35 37,67
50 500 2 42,14 37,58 42,11 37,87
100 100 500 46,68 37,62 46,61 37,81
500 100 100 49,93 37,71 49,62 37,72

eil76

N/A 100 500 46,54 37,75 46,25 37,77
5 1000 5 40,7 40,07 40,45 39,52
10 250 500 42,36 39,73 42,36 39,49
15 500 25 41,85 39,99 41,8 39,55
25 500 250 41,91 39,88 41,74 39,65
50 500 500 41,98 39,94 41,79 39,58
100 500 500 41,95 39,89 41,84 39,55
500 250 25 43,17 39,86 42,93 39,6

ts225

N/A 1000 10 41,17 39,9 40,92 39,52
5 500 25 38,51 38,01 38,91 38,14
10 500 250 40,13 37,94 40,72 38,03
15 1000 25 40,26 38 40,49 38,17
25 1000 25 40,27 37,89 40,52 38,09
50 1000 100 40,27 37,89 40,52 38,09
100 1000 5 40,27 37,89 40,52 38,09
500 1000 500 40,27 37,89 40,52 38,09

All Maps

N/A 1000 100 40,27 37,89 40,52 38,09

Table 4.3: Resulting training and testing accuracy scores for the random forests, alongside
the parameters with best results on each map and tree depth.

46

Experimental Study

Figure 4.21: Different normalized confusion matrices obtained from the testing results for
each of the map instances, with maximum tree depth of 50 and unscaled data. Swap
operator is labeled 0, insert operator is labeled 1 and invert operator has label 2.

With that said, this analysis further evidences that invert and insert operators display sim-
ilar behavior with one another, as is made clear by the near even distribution of incorrect
labeling on both classes across all matrices displayed. Swap operator is used more often
across all tests as well, evidencing that it is the operator that most promotes change in
a given permutation. The low scores obtained when analyzing the results lead us to con-
clude that the metrics gathered throughout the work, coupled with the behavior of chosen
operators makes for an unreliable model, suggesting features that further discriminate the
operators is required.

47

Chapter 4

Algorithm Average
Fitness

Average
Swap Op.
Usage (%)

Average
Insert Op.
Usage (%)

Average
Invert Op.
Usage (%)

Last Avg.
Improv.

Step
Regular HC 144438.59 33.32 33.34 33.34 149907.4

HC w/ ML Model 202571.12 6.68 92.99 0 149893.9

Table 4.4: Comparison of the average results obtained after 10 runs, including average
lowest fitness value, percentage of operator selection, and average last improvement step,
between a regular hill climber and hill climber enhanced with our solution, tested on the
ts225 map.

4.3 Hill Climber Comparison

Finally, in this section we compare our classifier to a hill climber algorithm. To this end
we implement a hill climbing algorithm that is initialized with a random tour. At each
iteration, one of the three available operators is applied randomly, and if it improves the
quality of the tour, the new solution is kept, and the process is repeated iteratively until
the algorithm reaches the maximum allotted iterations. For comparison, we create another
hill climber separately that, in addition to measuring the fitness quality of the solution,
also includes the fitness landscape metrics studied during the course of this paper. At each
iteration, instead of applying a random operator, we predict which operator to use with
our ML classifier, a Random Forest classifier trained on all map instances (unscaled), due
to displaying a decent generalization capacity in operator selection as per Fig.4.21, even
if the ts225 classifier obtains better scores overall by applying swap operations almost
exclusively.

We then display the obtained results in Table 4.4 and Figure 4.22. Note that the results
are an average of 10 runs on both the simple hill climber and the hill climber enhanced
with our ML algorithm, across 150 000 iterations.

As evidenced by the obtained results, and expected from the low testing scores observed in
the previous sections, our ML model achieves results similar to randomly selected operators,
even achieving slightly worse results. The model chooses to use the invert operator a vast
majority of times, unlike what is suggested in Figure 4.21. Both of these facts combine
to further suggests that the operators do not behave in a distinctive enough way for our
model to be able to correctly identify when to use them, and more work needs to be done
before we can properly generalize operator selection in a satisfactory manner.

As a closing remark, we can thus conclude that the model built has insufficient information
to be able to make accurate predictions. This is a result of operator behavior not showing
distinct enough behavior on the studied maps coupled with the obtained fitness landscape
metrics, which leads us to conclude that while the observed metrics are informative in the
gauging of a solution’s quality, the operator to be chosen is hard to discern based on the
landscape analysis alone.

48

Experimental Study

Figure 4.22: Comparison of the progression of average fitness results across 10 runs between
a regular hill climber (red), and a hill climber with our incorporated ML model for operator
selection (green), across 150 000 iterations, on the ts225 problem.

49

This page is intentionally left blank.

Chapter 5

Conclusion and Future Work

CO problems are a challenging area studied for decades by a number of fields. In particular,
the widespread rise of ML solutions in modern years has given a fresh perspective on the
tackling of these problems, but as a trade-off come with a set of challenges specific to the
area that need to be addressed.

Within this context, local optimization algorithms see some use, but often fall in local
optima due to the complex nature of the search space found within CO problems and
a number of decisions when it comes to the configuration of said algorithms are often
empirically made.

In this dissertation, we explored the proposal of a framework that utilizes a ML model that
takes into consideration the proprieties of the local fitness landscape of an optimization
problem, and attempts to predict the best operator to be used based on that information,
in order to aid an optimization algorithm in the search of an optimum.

To this end, we created a dataset composed of different instances that have metrics detailing
local information on the landscape of select TSP problems. We then analyzed the behavior
of the generated instances, and designed a ML model that uses Random Forests to predict
operator usage, and then incorporate our model in a hill climbing algorithm and analyse
the results.

Correct operator selection proved to be a complex task, as the ML displayed low capacity
to correctly predict the most promising operator to be used at a given step. Furthermore,
the behavior of the hill climbing algorithm shows that our solution displays results very
akin to a random operator selector. This suggests a limitation not only on the metrics
themselves but also on the operators used, as their behavior is not distinctive enough to
be able to make accurate predictions given the information obtained from the analysis of
the landscape structure.

However, we believe this work’s contributions can be valuable to the evaluation of the
behavior of fitness landscape metrics on their role in identifying solution quality, and in
the exploration of patterns observed in the used operators’ behavior, and can be further
expanded in a number of different ways, as it provides a solid foundation for work in this
topic.

51

Chapter 5

5.1 Future Work

Our ML model was limited to the exploration of small TSP problems, and further research
can be done by expanding the scope of the work. Data that better distinguishes which
operator to use is crucial to our framework and as such one possibility is is exploring a
bigger number of TSP maps with different sets of properties.

Additionally, the random walk we performed was relatively shallow, as it explores the
local landscape with a limited set of operators. As such, potentially useful information
could be gathered by applying the concept presented in our work further, by, for example,
having each generate instance perform a longer walk, in conjunction with a different and/or
expanded set of operators, which could potentially improve results.

Finally, the work done here was done with generalization in mind, and as such, there is
opportunity for research by eventually exploring this framework in the context of different
CO problems, and evaluate how it fares on situations other than the TSP.

52

References

[1] Mp-testdata-tsplib, 1997. URL http://elib.zib.de/pub/mp-testdata/tsp/tsplib/
tsplib.html.

[2] E. Alpaydin. Introduction to machine learning. MIT press, 2020.

[3] M. H. Alsuwaiyel. Algorithms: design techniques and analysis. World Scientific, 2016.

[4] D. Applegate, W. Cook, and A. Rohe. Chained lin-kernighan for large traveling
salesman problems. INFORMS Journal on Computing, 15(1):82–92, 2003.

[5] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Concorde tsp solver, 2006.

[6] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The traveling salesman
problem: a computational study. Princeton university press, 2006.

[7] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial opti-
mization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[8] J. J. Bentley. Fast algorithms for geometric traveling salesman problems. ORSA
Journal on computing, 4(4):387–411, 1992.

[9] R. G. Bland and D. F. Shallcross. Large travelling salesman problems arising from ex-
periments in x-ray crystallography: a preliminary report on computation. Operations
Research Letters, 8(3):125–128, 1989.

[10] J. Caldwell, R. A. Watson, C. Thies, and J. D. Knowles. Deep optimisation: Solv-
ing combinatorial optimisation problems using deep neural networks. arXiv preprint
arXiv:1811.00784, 2018.

[11] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences
Research Group, 1976.

[12] M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M. Rousseau. Learning
heuristics for the tsp by policy gradient. In International conference on the integration
of constraint programming, artificial intelligence, and operations research, pages 170–
181. Springer, 2018.

[13] A. E. Eiben, J. E. Smith, et al. Introduction to evolutionary computing, volume 53.
Springer, 2003.

[14] M. T. Goodrich and R. Tamassia. Algorithm design and applications. Wiley Hoboken,
2015.

[15] K. Helsgaun. An effective implementation of the lin–kernighan traveling salesman
heuristic. European Journal of Operational Research, 126(1):106–130, 2000.

53

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

Chapter 5

[16] H. H. Hoos and T. Stützle. Stochastic local search: Foundations and applications.
Elsevier, 2004.

[17] H. H. Hoos and T. Stützle. Stochastic local search algorithms: an overview. In
Springer Handbook of Computational Intelligence, pages 1085–1105. Springer, 2015.

[18] G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to statistical
learning, volume 112. Springer, 2013.

[19] T. Jones, S. Forrest, et al. Fitness distance correlation as a measure of problem
difficulty for genetic algorithms. In ICGA, volume 95, pages 184–192, 1995.

[20] H. Kamoun, N. G. Hall, and C. Sriskandarajah. Scheduling in robotic cells: Heuristics
and cell design. Operations Research, 47(6):821–835, 1999.

[21] A. R. Karlin, N. Klein, and S. O. Gharan. A (slightly) improved approximation
algorithm for metric tsp. arXiv preprint arXiv:2007.01409, 2020.

[22] P. Kerschke, L. Kotthoff, J. Bossek, H. H. Hoos, and H. Trautmann. Leveraging tsp
solver complementarity through machine learning. Evolutionary computation, 26(4):
597–620, 2018.

[23] B. Korte, J. Vygen, B. Korte, and J. Vygen. Combinatorial optimization, volume 2.
Springer, 2012.

[24] L. Kotthoff, P. Kerschke, H. Hoos, and H. Trautmann. Improving the state of the
art in inexact tsp solving using per-instance algorithm selection. In International
Conference on Learning and Intelligent Optimization, pages 202–217. Springer, 2015.

[25] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations research, 21(2):498–516, 1973.

[26] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. In Handbook of
metaheuristics, pages 320–353. Springer, 2003.

[27] M. Malek, M. Guruswamy, M. Pandya, and H. Owens. Serial and parallel simulated
annealing and tabu search algorithms for the traveling salesman problem. Annals of
Operations Research, 21(1):59–84, 1989.

[28] C. M. Martinez, M. Heucke, F.-Y. Wang, B. Gao, and D. Cao. Driving style recog-
nition for intelligent vehicle control and advanced driver assistance: A survey. IEEE
Transactions on Intelligent Transportation Systems, 19(3):666–676, 2017.

[29] P. Merz and B. Freisleben. Memetic algorithms for the traveling salesman problem.
Complex Syst, 14, 07 2002.

[30] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning.
MIT press, 2018.

[31] Y. Nagata. Edge assembly crossover: A high-power genetic algorithm for the traveling
salesman problem. In Proc. of 7th Int. Conf. on Genetic Algorithms, 1997, 1997.

[32] Y. Nagata and S. Kobayashi. A powerful genetic algorithm using edge assembly
crossover for the traveling salesman problem. INFORMS Journal on Computing, 25
(2):346–363, 2013.

54

References

[33] J. Pihera and N. Musliu. Application of machine learning to algorithm selection for
tsp. In 2014 IEEE 26th International Conference on Tools with Artificial Intelligence,
pages 47–54. IEEE, 2014.

[34] Y. Rossier, M. Troyon, and T. M. Liebling. Probabilistic exchange algorithms and
euclidean traveling salesman problems. Operations-Research-Spektrum, 8(3):151–164,
1986.

[35] S. Russell and P. Norvig. Artificial intelligence: a modern approach. 2002.

[36] A. Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer Science & Business Media, 2003.

[37] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge university press, 2014.

[38] S. S. Skiena. The algorithm design manual: Text, volume 1. Springer Science &
Business Media, 1998.

[39] P. F. Stadler and W. Schnabl. The landscape of the traveling salesman problem.
Physics Letters A, 161(4):337–344, 1992.

[40] G. Tao and Z. Michalewicz. Inver-over operator for the tsp. In International Confer-
ence on Parallel Problem Solving from Nature, pages 803–812. Springer, 1998.

[41] J. Tavares, F. B. Pereira, and E. Costa. Multidimensional knapsack problem: A fitness
landscape analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 38(3):604–616, 2008.

[42] M.-H. Tayarani-N and A. Prügel-Bennett. An analysis of the fitness landscape of
travelling salesman problem. Evolutionary computation, 24(2):347–384, 2016.

[43] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, pages 2692–2700, 2015.

[44] L. WANG, A. Maciejewski, H. SIEGEL, V. Roychowdhury, and B. ELDRIDGE. A
study of five parallel approaches to a genetic algorithm for the traveling salesman
problem. Intelligent Automation & Soft Computing, 11, 01 2005. doi: 10.1080/
10798587.2005.10642906.

[45] E. Weinberger. Correlated and uncorrelated fitness landscapes and how to tell the
difference. Biological cybernetics, 63(5):325–336, 1990.

[46] S. Wright. The roles of mutation, inbreeding, crossbreeding, and selection in evolution,
volume 1. na, 1932.

[47] X.-s. Yan, H.-m. Liu, J. Yan, and Q.-h. Wu. A fast evolutionary algorithm for traveling
salesman problem. In Third International Conference on Natural Computation (ICNC
2007), volume 4, pages 85–90. IEEE, 2007.

55

