
 
 
 
 

 
 
 
 
 
 

Guilherme Telo Rodrigues Catumba 
 
 
 
 

GLUON CORRELATION FUNCTIONS  
FROM LATTICE QUANTUM CHROMODYNAMICS 

 
 
 
 
 

Dissertação no âmbito do Mestrado em Física, ramo de Física Nuclear e de 
Partículas orientada pelo Professor Doutor Orlando Oliveira e pelo Doutor 

Paulo Silva e apresentada ao Departamento de Física da Faculdade de Ciências e 
Tecnologia. 

 
 
 
 

Outubro de 2020 





Gluon Correlation Functions from
Lattice Quantum Chromodynamics

Guilherme Telo Rodrigues Catumba

Supervisors:

Orlando Oliveira

Paulo Silva

A thesis submitted for the degree of
Master in Physics

Departmento de Física
Faculdade de Ciência e Tecnologia

Universidade de Coimbra

October 2020



ii



Abstract

This dissertation reports on the work developed in the past year by the author and in
collaboration with his supervisors, Prof. Dr. Orlando Oliveira and Dr. Paulo Silva. The
main topic of the thesis is the study of the gluon sector in pure Yang-Mills theories via
the computation of two, three and four point Landau gauge gluon correlation functions
evaluated using the lattice formalism of QCD. Monte-Carlo simulations reported herein
use the Wilson gauge action for lattice QCD.

The first goal was to understand and quantify the deviations, relative to the usual
continuum description of lattice correlation functions, introduced by using appropriate
lattice tensors. To achieve this we rely on different lattice tensor representations for
the gluon propagator in four dimensions to measure the deviations of the lattice prop-
agator from its continuum form. We also identified classes of kinematic configurations
where these deviations are minimal and the continuum description of lattice tensors is
improved. Other than testing how faithful our description of the propagator is, these
tensor structures also allow to study how the continuum Slavnov-Taylor identity for the
propagator is verified on the lattice for the pure Yang-Mills theory. We found that the
Slavnov-Taylor identity is fulfilled, with good accuracy, by the lattice data for the two
point function.

A second goal was the lattice computation of the three gluon vertex using large
ensembles of configurations. The so-called zero crossing, a property that is related with
the ghost dominance at the infrared mass scales and puts restrictions on the behaviour
of the three gluon vertex, was investigated. In addition, we also explore the possible
existence of a ghost mass preventing the infrared divergence of the vertex. In our study
of the three gluon correlation function we used functional forms to model the lattice
data and explore the two different possibilities for the behaviour of the function. For the
first case we provide an estimate of the mass scale associated with the zero-crossing and
search for a possible sign of the divergence. On the other hand, for the second case we
study the possible occurrence of a sign change and the finite value of the three gluon
vertex for vanishing momentum.

A last topic is the computation of the four gluon vertex. On the lattice this is a
particularly difficult calculation that requires the subtraction of contributions from lower
order correlation functions. A suitable choice of kinematics allows to eliminate such
unwanted contributions. Furthermore, large statistical fluctuations hinder the precise
computation of this object. Our investigation is a proof of concept, we show that the
lattice computation of the four gluon correlation function seems to be feasible with
reasonable computational resources. Nonetheless, an increase in statistics is necessary to
provide a clearer and precise signal on the complete correlation function and to compute
the corresponding one particle irreducible function.

Keywords: Lattice QCD, Gluon propagator, Gluon correlation functions, Lattice
tensor representations, Three gluon vertex, Four gluon vertex
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Resumo

Esta dissertação é o resultado do trabalho desenvolvido ao longo do último ano pelo
autor e juntamente com os seus orientadores, Prof. Dr. Orlando Oliveira e Dr. Paulo
Silva. A dissertação consiste no estudo do sector gluónico em teorias de Yang-Mills
através do cálculo de funções de correlação de dois, três e quatro gluões. Para isto
utilizou-se o formalismo da QCD na rede usando simulações de Monte-Carlo com a ação
de Wilson na gauge de Landau.

O primeiro tópico de estudo passou por analisar os desvios, relativamente ao contínuo,
introduzidos pela substituição do espaço-tempo por uma rede de quatro dimensões. Para
isso foram usadas representações tensoriais da rede para calcular o propagador de gluões
e comparadas com a descrição tensorial do contínuo. Com esta análise foram identificadas
classes de configurações cinemáticas para as quais os desvios relativamente à descrição
do contínuo são reduzidos. Além de testar a integridade da descrição do propagador,
é também possível investigar como a identidade de Slavnov-Taylor para o propagador
é validada nas simulações de Monte-Carlo. Os resultados das diferentes representações
tensoriais mostram que a identidade de Slavnov-Taylor é satisfeita na rede.

A função de correlação de três gluões também foi calculada usando dois conjuntos de
configurações na rede. O objetivo principal foi a análise do comportamento da função
de correlação no infra-vermelho, nomeadamente, a existência de uma possível troca de
sinal da função para baixos momentos. Esta propriedade relaciona-se com o domínio dos
campos ghost para baixas escalas de momentos e que induz uma possível mudança de
sinal assim como uma possível divergência. Além desta hipótese, também a possibilidade
da existência de uma massa para o campo ghost que previne a divergência para baixos
momentos foi estudada. Com o objetivo de melhorar a análise, foram usadas formas
funcionais para modelar o vértice de três gluões e estudar as duas possibilidades no
infra-vermelho. Em particular, através dos modelos, a escala para a mudança de sinal
foi avaliada assim como o comportamento geral da função para baixos momentos.

O último objetivo foi o cálculo do vértice de quatro gluões, que representa uma
dificuldade acrescentada, nunca tendo sido avaliado na rede. A dificuldade deve-se à
complexidade tensorial e às contribuições de vértices de ordem menor que surgem na
computação da função de correlação completa de quatro gluões. Estas contribuições
foram eliminadas através de uma escolha adequada da configuração cinemática. Além
disso, as flutuações estatísticas são grandes e dificultam a análise. Os resultados demon-
straram que o cálculo do vértice de quatro gluões é exequível com recursos computacionais
acessíveis. No entanto, é fundamental aumentar a precisão no cálculo para obter um
sinal mais definido e calcular o vértice sem propagadores externos.

Palavras-chave: QCD na rede, Propagador do gluão, Funções de correlação de gluões,
Representações tensoriais na rede, Vértice de três gluões, Vértice de quatro gluões
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Units and Conventions
In this dissertation we use natural units

~ = c = 1

where ~ is the reduced Planck constant and c the speed of light in the vacuum. In these
units energy, momentum and mass have the same units – expressed in MeV (1.6022 ×
10−13 J). Length and time also have common units, inverse of energy. To re-establish
units, the following conversion factor is considered

~c = 197.326 MeV fm = 1

and in SI units

1 MeV = 1.7827× 10−30 kg
1 fm = 3.3356× 10−24 s.

Greek indices (µ, ν, ρ, etc) are associated with space-time indices going through
(0, 1, 2, 3) or (1, 2, 3, 4) for Minkowski and Euclidean space, respectively. The gµν symbol
is reserved for the Minkowski metric tensor gµν = diag(1,−1,−1,−1) while the Kronecker
symbol δµν is the Euclidean metric tensor. Latin indices (a, b, etc) are usually reserved
for the colour degrees of freedom associated with the SU(N) algebra.

The Einstein summation convention for repeated indices

aµb
µ ≡

∑
µ

aµb
µ (1)

is used throughout the work, unless explicitly noted. This convention applies to both
space-time and colour degrees of freedom. The position of the indices is irrelevant when
considering colour, or Euclidean metric.
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Introduction

The modern description of the fundamental interactions in nature considers four inter-
actions: gravitational, electromagnetic, weak, and strong. Apart from the gravitational
interaction which does not have a proper quantum formulation, the last three are de-
scribed by quantum field theories. These three fundamental interactions define what
is called the Standard Model, a gauge theory associated with the symmetry group
SU(3)⊗ SU(2)⊗ U(1) describing current particle physics.

The SU(2) ⊗ U(1) sector of the Standard Model contemplates the electromagnetic
and weak interactions (electroweak) [1]. Perturbation theory accounts for most of the
phenomena occurring in this sector. When the physical processes involve hadrons through
the strong force (e.g. protons, neutrons, pions) for low energy processes, perturbation
theory fails. Hence, non-perturbative methods are necessary to study the SU(3) sector
which accounts for the dynamics of quarks and gluons. Quantum chromodynamics (QCD)
is the current description of the strong interaction.

Lattice field theory is a possible non-perturbative approach to formulate QCD. The
formulation of the theory on a discretized lattice with finite spacing and volume provides
a regularization, which renders the theory finite. When combined with the Euclidean
space-time, lattice field theories become formally equivalent to classical statistical theories.
Hence, other than serving as a regularized formulation of the theory it also serves as a
computational tool. In lattice quantum chromodynamics (LQCD), physical quantities
are computed using Monte-Carlo simulations that require large computational power.
Current simulations can reach a satisfying level of precision in the computation of several
quantities such as the strong coupling constant, hadron masses, and also the study of
some properties such as confinement and chiral symmetry (see [2] for a summary of the
current advances and investigations in the field).

All of the work developed in this thesis uses the pure Yang-Mills theory, where the
fermion dynamics is not taken into account – quenched approximation. This corresponds
to disregarding quark loops in the diagrammatic expansion. Although this approximation
seems too radical, the systematic errors involved are small [3].

A quantum field theory is defined by its correlation functions [4, 5], summarizing
the dynamics and interactions among fields. Despite not being physical observables
and not experimentally detectable, due to its gauge dependency, correlation functions
are important for they can be related to various phenomena of the theory. Indeed,
in supposedly confining theories such as QCD whose quanta (quarks, gluons, and the
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unphysical ghosts) do not represent physically observable states, correlation functions
should encode information on this phenomenon [6, 7]. Vertices can also serve to compute
the coupling constant and define a static potential between colour charges [8, 9], and
also explore properties of bound states [10]. Correlation functions are also the building
blocks of other non-perturbative continuum approaches such as the Dyson-Schwinger
equations (DSE) [11]. These frameworks usually partially rely on lattice data, and thus
a good comprehension of these objects is important.

This thesis addresses three different topics. Firstly, we investigate the lattice gluon
propagator relying on lattice tensor representations with the aim to understand the
deviations of correlation functions relative to the continuum theory [12, 13]. This has
become a relevant topic as modern computations of the gluon propagator use large
statistical ensembles of configurations.

The second objective is to compute the three gluon vertex and study its infrared
(IR) behaviour. The purpose of this analysis is to search for evidences and shorten the
estimated interval of the zero-crossing, corresponding to a possible sign change of the
three gluon one particle irreducible (1PI) function for low momentum. This property
can be traced back to the fundamental dynamics of the pure Yang-Mills theory, namely
the ghost dynamics as predicted by the DSEs [14, 15]. In this framework, the sign
change is necessary for the finiteness of the equations assuming a tree level form of the
ghost-gluon, and four gluon vertex [16]. Various DSE investigations [16, 17] as well as
other methods [18, 19] found the zero-crossing for the deep IR. Recent lattice SU(3)
studies [20–22] as well as SU(2) [23, 24] predict the zero crossing for the deep infrared
region, around 150− 250 MeV. Moreover, the exact momentum of the crossing seems to
be dependent on the group symmetry and dimensionality, being generally lower for the
four-dimensional case [14]. Additionally, general predictions come from pure Yang-Mills
theories and thus unquenching the theory could spoil this behaviour. However, several
DSE based references [16, 18, 25] argue this is a pure gluon phenomenon, and that the
presence of light mesons [26, 27] only shifts the zero-crossing momentum to a lower IR
region.

From the point of view of continuum frameworks, this property is highly dependent on
the approximations employed and thus should always be validated by lattice simulations.
The latter usually suffer from large fluctuations, or from difficult access to IR momenta.
Furthermore, a recent analytical investigation on both the gluon and ghost propagators
found evidence of the existence of a non-vanishing ghost mass which could regularize the
three gluon vertex, thus removing the divergence [28]. While the existence of a dynamical
gluon mass is properly established in previous investigations [29], the case of the ghost
field is undetermined. The existence of a finite dynamical ghost mass would in principle
remove the logarithmic divergence and thus we also explore this possibility.

The last objective of this work is to perform a first lattice computation of the four
gluon correlation function. General predictions for the IR structure of this vertex exist
only from continuum formulations [30, 31]. These are dependent on truncation schemes
and other approximations and again lattice results are needed to validate the predictions.
The four gluon vertex has four Lorentz indices and four colour indices, therefore its tensor
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structure is rather complex, allowing for a large number of possible tensors. The increased
statistical fluctuations are related to it being a higher order correlation function, involving
fields at four distinct lattice sites. Besides, as a higher order function, its computation
requires the removal of unwanted contributions from lower order correlation functions.
These can be eliminated by a suitable choice of kinematics.

The outline of this dissertation begins with a general introduction to the necessary
tools and theoretical basis to understand the lattice formulation and results. Chapter
1 begins with a brief description of the formalism for a general quantum field theory
with the QCD theory being introduced and its properties briefly reviewed. Correlation
functions and other objects of the theory are introduced.

The lattice formulation of QCD is presented in chapter 2. We motivate and construct
the discretization procedure and present the lattice version of various fundamental ob-
jects. This chapter also includes some computational aspects needed to perform lattice
simulations.

In chapter 3 the main work of this dissertation begins with an analysis of the correct
lattice symmetries and the construction of lattice adequate tensor bases. Additionally,
details about discretization effects, possible correction methods and tensor bases for the
three and four gluon correlation functions are introduced.

Results are shown in chapter 4 which is divided in three main sections, dedicated to
each of the three main objectives of this work. This is followed by final conclusions and
possible extensions for this work.
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Chapter 1

Quantum Field Theory

Quantum Chromodynamics is a SU(3) gauge theory. Historically, the colour quantum
number was introduced in order to reconcile Fermi statistics with the observed ground
state of strongly interacting particles. A new quantum number was needed to guarantee
the anti-symmetry of the wave-function [1]. Later, these new degrees of freedom were
found to be associated with a gauge theory.

In this chapter we give a brief overview of QCD and how the theory arises from the
principle of gauge invariance. Some important concepts in a quantum field theory are
also presented. Quantum field theories are well described in [5, 32, 33], and QCD is
thoroughly exposed in [34].

1.1 QCD Lagrangian – Gauge invariance

The Lagrangian of QCD involves the matter, quark fields ψ and the gluon fields Aµ. The
first form a representation of the group symmetry, namely the fundamental representation
of SU(3), while the latter are in the adjoint representation of the group (see appendix A).

The classical QCD Lagrangian arises when we impose gauge invariance to the Dirac
Lagrangian

LDirac = ψ̄ (iγµ∂µ −m)ψ. (1.1)

where ψ̄ = ψ†γ0 with γ0 being the zeroth Dirac matrix, γµ. For a general SU(N)
theory, the gauge principle requires the invariance of the Lagrangian under a local group
transformation

ψ(x)→ ψ′(x) = V (x)ψ(x) (1.2)

with V (x) an element of the fundamental representation of the group. When performing
a local transformation, the kinetic term of the Lagrangian breaks the invariance since it
compares fields at different points with distinct transformation laws

ψ(y)− ψ(x)→ V (y)ψ(y)− V (x)ψ(x). (1.3)
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In order to make comparisons at different points we introduce the group valued com-
parator U(x, y) satisfying U(x, x) = 1 and the gauge transformation

U(x, y)→ V (x)U(x, y)V †(y). (1.4)

With this object we may define the covariant derivative, using the following difference,

Dµψ(x) ≡ lim
εµ→0

1
ε

[U(x, x+ ε)ψ(x+ ε)− ψ(x)] . (1.5)

with y = x+ε, and ε an infinitesimal. With this definition, the new derivative transforms
similarly to the fields,

Dµψ(x)→ V (x)Dµψ(x). (1.6)

Introducing a new field, the connection Aµ(x), by

U(x, x+ ε) = 1− igεµAµ(x) +O
(
ε2
)
. (1.7)

where g is the bare strong coupling constant, we write the covariant derivative as

Dµψ(x) = (∂µ − igAµ(x))ψ(x). (1.8)

The transformation law for the newly introduced field Aµ(x) is

Aµ(x)→ V (x)Aµ(x)V −1(x)− i

g
(∂µV (x))V −1(x). (1.9)

An arbitrary group element V (x) can be expressed by the Lie algebra elements
through the exponentiation mapping

V (x) = exp(iαa(x)ta) (1.10)

with the algebra generators ta defined in appendix A and αa(x) a set of functions
parametrizing the transformation. The connection Aµ(x) is thus an element of the
algebra which can be written in terms of the fields Aaµ(x)

Aµ(x) = Aaµ(x)ta. (1.11)

Hence, to guarantee gauge invariance of the Dirac Lagrangian we replace normal
derivatives by the covariant. Furthermore, we need to introduce a kinetic term for the
new field that must depend only on the gauge fields Aµ and its derivatives. The usual
construction is the field-strength tensor

Fµν = i

g
[Dµ, Dν ] = (∂µAν − ∂νAµ)− ig [Aµ, Aν ] (1.12)

which can be written in terms of its components Fµν = F aµνt
a using the structure constants

of the group fabc,
F aµν = (∂µAaν − ∂νAaµ) + gfabcAbµA

c
ν . (1.13)
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The first equality in 1.12 gives a geometrical interpretation of the tensor, as it can be
seen as the comparison of the field around an infinitesimal square loop in the µ−ν plane,
indicating how much it rotates in the internal space when translated along this path
[5]. To obtain a gauge invariant scalar object from this tensor, we consider the trace
operation over the algebra elements and the following contraction

Tr
[
(F aµνta)2

]
= (F aµν)2/2. (1.14)

With these elements we write the classical QCD Lagrangian

LQCD = −1
4F

a
µνF

aµν + ψ̄
(
iγµ(∂µ − igAaµta)−m

)
ψ (1.15)

whose form, namely the gluon-quark interaction is restricted by gauge invariance1. The
matter field ψ(x) is a vector of spinors for each flavour of quark (f = u, d, s, c, t, b).
Each quark flavour has an additional colour index a = 1, 2, 3 in a three dimensional
representation of the SU(3) group. m is a diagonal matrix in flavour space containing
the bare quark masses for each flavour. The eight independent gluon fields associated
with the group generators are the gauge fields Aaµ(x) which also carry a Lorentz index,
labelling the corresponding directions in space-time, µ = 0, 1, 2, 3.

For the present work, we are interested in the pure Yang-Mills Lagrangian involving
the gluon dynamics only

LYM = −1
4F

a
µνF

aµν . (1.16)

1.2 Quantization of the theory
In the path integral quantization for a general quantum field theory [4, 5, 35], described
by a set of fields φa2, the theory is defined by the generating functional

Z[J ] =
∫
Dφei

∫
d4x(L+Ja(x)φa(x)) (1.17)

where Ja(x) is an external source, and the condensed notation was employed

Dφ ≡
∏
x,a

dφa(x). (1.18)

A quantum field theory is completely determined by its Green’s functions [4, 5] defined
as

G
(n)
i1,...,in

(x1, ..., xn) = 〈0|T
[
φ̂i1(x1)...φ̂in(xn)

]
|0〉 (1.19)

1Gauge invariance also restricts the gauge fields to be massless since the term AaµA
a
µ is not gauge

invariant.
2The index a may represent independent fields, different members of a set of fields related by some

internal symmetry, or the components of a field transforming non-trivially under Lorentz transformation,
e.g., a vector.
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i.e. by a time ordered vacuum expectation value of the product of n field operators at
distinct points. In this quantization procedure, Green’s functions are computed from the
generating functional by functional differentiation with respect to the sources

〈0|T
[
φ̂i1(x1)...φ̂in(xn)

]
|0〉 = 1

inZ[J ]
δnZ[J ]

δJi1(x1)...δJin(xn)

∣∣∣∣
J=0

. (1.20)

This vacuum expectation value can thus be written as〈
φ̂i1(x1)...φ̂in(xn)

〉
= 1
Z[0]

∫
Dφ

(
φi1(x1)...φ̂in(xn)

)
eiS (1.21)

with the notation
〈
φ̂in(xn)...φ̂in(xn)

〉
≡ 〈0|T

[
φ̂in(xn)...φ̂in(xn)

]
|0〉. Equation (1.21)

shows that Green’s functions are accessed by performing a weighted average over all
possible configurations of the system.

The path integral quantization carries some problems when applied to gauge theories.
The generating functional

Z =
∫
DAeiS[A]. (1.22)

involves the integral over the gauge fields Aaµ(x). For any field configuration Aµ we may
define a gauge orbit to be the set of all fields related to the first by a gauge transformation
α. All these configurations have the same contribution to the functional integral, and so
constitute an infinite contribution.

The over counting of these degrees of freedom need to be eliminated in order to
have a well defined theory. Faddeev and Popov [36] suggested the use of a hypersurface
to restrict the integration in configuration space. This is achieved by a gauge fixing
condition of the form F a[A] − Ca(x) = 03. This way we isolate the contribution over
repeated configurations by factorizing it as

∫
Dα

∫
DAµ expiS[A], being eliminated by the

normalization.
To impose this integration restriction we insert the following expression in the gener-

ating functional,

1 =
∫
Dαδ(F a[Aα]− Ca(x)) det

(
δF a[Aα]
δα

)
(1.23)

where Aα represents the gauge transformed field A, δ(F [Aα]) is a Dirac δ over each
space-time point, and the determinant is due to the change of variables. The generating
functional reads

Z =
∫
DA

∫
Dαδ(F a[Aα]− Ca(x)) det

(
δF [Aα]
δα

)
eiS[A]. (1.24)

Performing a gauge transformation from Aαµ to Aµ we can eliminate the dependence on
the gauge transformation from the integrand. For this we use the gauge invariance of the

3F [A] is a field dependent term. Ca(x) is a set of functions also determining the gauge fixing condition.
F [A] = ∂µA

µ(x) and Ca(x) = 0 in the Landau gauge.
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action and of the volume element in group space Dα [37]. Also, an unitary transformation
leaves the measure DA and the determinant unchanged

Z =
∫
Dα

∫
DAδ(F a[A]− Ca(x)) det

(
δF [A]
δα

)
eiS[A]. (1.25)

This way we factorized the infinite factor, which is eliminated by normalization. In
addition, we may multiply Z by a constant factor∫

DC exp
[
− i

2ξ

∫
d4xCa2

]
(1.26)

corresponding to a linear combination of different Gaussian weighted functions Ca. The
generating functional now reads

Z =
∫
DA det

(
δF [A]
δα

)
exp

{
iS[A]− i

2ξ

∫
d4xF [A]2

}
. (1.27)

The Faddeev-Popov determinant is defined as

detM = det
(
δF ([A], x)
δα(y)

)
, Mab([A], x, y) = δF a([A], x)

δαb(y) (1.28)

Using Grassmann, anti-commuting variables it is possible to define the Faddeev-Popov
determinant as a functional integral over a set of anti-commuting fields – ghost fields η̄, η

detM =
∫
Dη̄Dη exp

(
−i
∫
d4xη̄aMabη

b
)
. (1.29)

With this, we have a final form for the generating functional,

Z =
∫
DAµDη̄Dηei

∫
d4xLeff , (1.30)

expressed with an effective Lagrangian

Leff = L − F 2

2ξ − η̄Mη. (1.31)

These new anti-commuting fields can be interpreted as new particles contributing to the
dynamics of the system. However, being scalars under Lorentz transformations while
anti-commuting fields, ghosts do not respect the spin-statistics theorem [38] and cannot
be interpreted as physical particles – only contributing to closed loops in Feynman
diagrams and never as external fields. They are a mathematical artifact resulting from
the gauge fixing procedure.
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1.3 Propagator and vertices
The effective Yang-Mills Lagrangian is

L = 1
2(∂µAaν∂νAaµ − ∂µAaν∂µAaν)− 1

2ξ (∂µAµ)2

− 1
2gf

abcAbµAcν(∂µAaν − ∂νAaµ)

− 1
4g

2fabcfadeAbµAcνAdµA
e
ν

− η̄a∂µ(∂µ − gfabcAaµ)ηb. (1.32)

Analytically, the computation of the complete correlation functions (Green’s functions)
is not possible. However, perturbation theory can provide some information on the form
of these functions. For this we need to know the Feynman rules for the theory, which
can be read off from the Lagrangian at tree level and are summarized in this section. Its
derivation can be consulted in [5, 39].

The gluon propagator is read off from the quadratic terms in the gluon fields in the
Lagrangian. In momentum space, the propagator reads

Dab
µν(p2) = δab

p2

[
gµν + (ξ − 1)pµpν

p2

]
. (1.33)

Note that ξ = 0 in the Landau gauge.
The ghost fields also have associated Feynman rules. In the chosen gauge the func-

tional derivative (1.28), obtained with the infinitesimal version of (1.9),

A′aµ = Aaµ + fabcAbµα
c + ∂µα

a, (1.34)

is of the form Mab = ∂µDµ
4, resulting in a lagrangian contribution

Lghost = −η̄a∂µ∂µηa + gfabcη̄a∂µ(Abµηc). (1.35)

The ghost will have an associated tree-level propagator, fig. 1.1,

∆ab(p2) = δab

p2 (1.36)

and a ghost-gauge field coupling vertex −gfabcpµ represented in figure 1.2.
The gluon self ‘interaction’ vertices result from the second and third line of the

Lagrangian. Their form, however, is written considering the Bose symmetry of the
objects, which allow us to interchange each particle (pi, ai, µi) without affecting its form.
The Feynman rule for the three gluon vertex in momentum space, shown schematically
in fig. 1.2, reads

Γ(0)a1a2a3
µ1µ2µ3(p1, p2, p3) = gfa1a2a3 [gµ1µ2(p1 − p2)µ3 + gµ2µ3(p2 − p3)µ1 + gµ3µ1(p3 − p1)µ2 ]

(1.37)
4Note that Dµ here is written in the adjoint representation with the generators (ta)bc = −ifabc.
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whereas for the four gluon vertex the corresponding tree level expression is given by

Γ(0)a1a2a3a4
µ1µ2µ3µ4(p1, p2, p3, p4) = −g2[fa1a2mfa3a4m(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

fa1a3mfa2a4m(gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3)
fa1a4mfa2a3m(gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)

]
. (1.38)

pa b

µ ν

pa b

Figure 1.1: Gluon and ghost propagators.

p
a

q

b

c µ

(p1 a1 µ1)
(p2 a2 µ2)

(p3 a3 µ3)

(a1 µ1)
(a2 µ2)

(a3 µ3)
(a4 µ4)

Figure 1.2: Ghost-gluon coupling vertex (top) and three and four gluon vertices with all momenta
defined inwards.

1.4 Complete vertices

In a non-perturbative framework, we aim to have access to the complete correlation
functions whose tensor structure ought to be different from the simple bare vertices
obtained at zero order in perturbation theory. Hence, we must build the most general
structure for each correlation function under the symmetries of the theory.

13



The tensor structure for the gluon propagator is completely defined by the Slavnov-
Taylor identity5 and the gauge condition – see [5, 39]. The Landau gauge Slavnov-Taylor
identity for the gluon propagator reads [40]

∂µx∂
ν
y

〈
T{Aaµ(x)Abν(y)}

〉
= 0 (1.39)

which fixes the orthogonal form of the propagator. Therefore, in the Landau gauge, this
results in

Dab
µν(p) = δabD(p2)

[
gµν −

pµpν
p2

]
(1.40)

with its coefficient differing from the tree-level form by a form factor D(p2).
For higher order correlation functions we distinguish the gluon correlation functions

Ga1...an
µ1...µn obtained with (1.20) from the pure gluon vertex Γa1...an

µ1...µn obtained with the
removal of the external propagators. For the three gluon vertex we thus define〈

Aa1
µ1(p1)Aa2

µ2(p2)Aa3
µ3(p3)

〉
= (2π)4δ(p1 + p2 + p3)Ga1a2a3

µ1µ2µ3(p1, p2, p3) (1.41)

Ga1a2a3
µ1µ2µ3(p1, p2, p3) = Da1b1

µ1ν1(p1)Da2b2
µ2ν2(p2)Da3b3

µ3ν3(p3)Γa1a2a3
ν1ν2ν3 (p1, p2, p3). (1.42)

Analogous expressions can be considered for the four gluon vertex. Notice that the

Γa1a2a3
ν1ν2ν3 (p1, p2, p3) Γa1a2a3a4

ν1ν2ν3ν4 (p1, p2, p3, p4)

Figure 1.3: Three and four gluon vertices with external propagators removed.

average for the three gluon correlation function is computed as

〈
Aa1
µ1(x1)Aa2

µ2(x2)Aa3
µ3(x3)

〉
=
∫
DAAa1

µ1(x1)Aa2
µ2(x2)Aa3

µ3(x3)ei
∫
d4xL∫

DAei
∫
d4xL

. (1.43)

To compute these higher order correlation functions we construct their tensor structures
by taking into account the symmetries of the system, namely Bose symmetry allowing
to freely exchange each pair of indistinguishable particles and their associated quantum
numbers. Proceeding this way we construct the most general form for these objects.
This construction will be presented in chapter 3.

5These are relations between the correlation functions which come from the gauge invariance of the
theory. They express the symmetries of the classical theory through the quantum expectation values.
Also called generalized Ward identities.
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It is also important to make a further distinction between the pure (gluon) vertices
G and the one particle irreducible (1PI) functions, Γ which do not have the contribution
from disconnected diagrams and cannot be reduced to other diagrams by removing a
propagator – see [5, 39]. These are the objects we are interested in obtaining from the
lattice – further details will be given when considering the four gluon vertex in section 3.7.

1.5 Regularization and Renormalization
In general, quantum field theories involve divergences other than the ones solved by the
Faddeev-Popov method. These divergences need to be taken care of.

The theory is first regularized, making it finite. This is done, in general, by introducing
parameters in the theory which absorb the divergences. In a perturbative approach, this
could be done by an ultraviolet momentum cut off or dimensional regularization for
example. The introduction of a finite space-time lattice with spacing a is a common
regularization procedure with the advantage of allowing to perform numerical simulations.

The theory is then renormalized by rescaling the parameters and fields of the theory
in a way that the removal of the divergences is not spoiled when the regularization
parameter is eliminated.

The rescaling is performed on a finite number of parameters such as the fields, and
the fundamental constants of the theory. Following [4] a possible rescaling procedure for
QCD would be

Aaµ → Z
1/2
A Aaµ, m→ ZmZ

−1
ψ m, (1.44)

ψ → Z
1/2
ψ ψ, g → Zgg, (1.45)

ηa → Z1/2
η ηa, ξ−1 → ZξZ

−1
A ξ−1 (1.46)

where the various Zi are the necessary renormalization constants to render the theory
finite.

Green’s functions have associated rescaling rules constructed from the ones above.
Considering gauge fields only, the Green’s functions renormalization involve ZA. For
instance, the renormalized gluon propagator G(2)

r relates to the bare object as G(2)
r =

ZAG
(2).

Performing a renormalization procedure involves choosing a point where the quantities
are fixed by some given, standard values. The momentum subtraction MOM scheme is
a usual choice, it fixes the renormalized Green’s function to match the tree level value
for a given momentum scale µ. Again, using the gluon propagator, the constant ZA is
found from

D(p2 = µ2) = ZADL(µ2) = 1
µ2 (1.47)

where D(p2) is the renormalized form factor and DL(p2) the non-renormalized form
factor. See [41] for more details, and [42] for a lattice dedicated description.
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Chapter 2

Lattice quantum chromodynamics

In this chapter the formulation of quantum chromodynamics on a finite discretized lattice
will be presented. Lattice QCD provides a formulation which allows to study the non-
perturbative regime of QCD and a regularization of the theory. This framework preserves
gauge invariance and serves as an explicit computational tool.

This chapter begins with the introduction of the lattice formalism, constructing
all objects in the discretized framework. After this, attention will be given to some
computational aspects of this work which are necessary to compute lattice quantities.
Lattice theories, with emphasis on LQCD are presented in [37, 42, 43].

2.1 Euclidean formulation

The Minkowski space-time is not convenient to study functional path integrals due to
the oscillatory behaviour of the exponential in the action. We use imaginary time thus
becoming an Euclidean space. This is accomplished by a Wick rotation, where the real
time t is rotated by π/2 into the complex plane, τ = it. The exponential becomes similar
to the Boltzmann factor on the partition function of statistical mechanics,∫

DφeiS[φ] →
∫
De−SE [φ].

The object SE is the Euclidean version of the action, obtained by performing the change
of variables above. This transformation establishes the formal connection with statistical
mechanics, allowing its methods to be applied on lattice field theories, notably Monte-
Carlo methods to obtain correlation functions. In the forthcoming analysis we consider
the Euclidean formulation of QCD and the metric is thus equivalent to δµν .

2.2 Discretization

In the lattice formulation the continuous space-time is replaced by a 4-dimensional
Euclidean lattice Λ with spacing a whereby each point is labelled by four integers,
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n = (n1, n2, n3, n4). We consider n4 to be the imaginary time direction. In this work we
consider hypercubic lattices, each side having the same number of points, ni ∈ [0, N − 1].

All objects appearing in the continuum theory must be rewritten on the lattice
formulation. For a general quantum field theory with fields φ, the degrees of freedom
are the classical fields φ(an) in the discrete lattice sites. The lattice action must be built
in a way that preserves all possible properties of the continuum theory. However, the
discretization procedure is not unique which can be seen by the structure of the discrete
derivative, taking various possible forms,

∂µφ(x) = 1
a

(φ(x+ µ̂a)− φ(x)) +O(a) (2.1)

∂µφ(x) = 1
2a (φ(x+ µ̂a)− φ(x− µ̂a)) +O

(
a2
)
. (2.2)

This freedom in obtaining the lattice form can be used to minimize the appearance of
lattice artifacts1.

On the lattice, all possible space translations are restricted to be at least one lattice
unit in size. This results in the discretization of the allowed momenta. To see this,
consider the usual continuum Fourier transform,

φ(x) =
∫

d4p

(2π)4 φ̃(p)eipx.

Since x = an is an integer multiple of the spacing a we get

eipµxµ = ei(pµxµ+2πnµ) = ei(pµ+2π/a)xµ ,

hence the momentum pµ is equivalent to pµ+2π/a, allowing us to restrict the momentum
integration to the Brillouin zone, −π/a < pµ ≤ π/a. This removes high frequency modes
and regularizes the theory. Thus, in infinite volume we would write

φ(x) =
∫ π/a

−π/a

d4p

(2π)4 φ̃(p)eipx.

To perform numerical simulations, however, the volume of the lattice is finite, where we
impose boundary conditions, φ(x + µ̂Nµa) = eiθµφ(x). The finite volume imposes the
additional discretization of momentum. Applying the Fourier transform to this condition∫ π/a

−π/a

d4p

(2π)4 φ̃(p)eipµ(xµ+µ̂Nµa) =
∫ π/a

−π/a

d4p

(2π)4 φ̃(p)eipµxµ+iθµ

⇔ eipµNµ = eiθµ (no sum)

where µ̂ is an unitary lattice vector in the direction µ. We work with periodic boundary
conditions, thus θµ = 0 and we get the discrete momentum values,

pµ = 2πnµ
aNµ

, nµ ∈ {−Nµ/2 + 1, ..., Nµ/2}. (2.3)

1This freedom opens the possibility for improvement schemes which modify the action in a way to
reduce lattice artifacts [44] – these are not considered in this work.
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Notice how the use of a finite volume relates to the lowest non-zero momentum accessible
on a given lattice and also to its resolution. Having a finite number of available momenta,
the discrete Fourier transform becomes the sum,

φ(x) = 1
V

∑
n∈Λ

φ̃(pn)eipn·x

where V = N4 is the volume of the space-time grid for the hypercubic lattice.
Other than the discretized momentum (2.3), in this work we will also consider the

lattice perturbation theory [45] improved momentum defined by

p̂µ = 2
a

sin
(
apµ
2

)
= 2
a

sin
(
πnµ
N

)
. (2.4)

This form comes from the tree-level propagator of a massless scalar field on the lattice.
The general path integral quantization scheme is built analogously to the continuum

formulation. The partition function is constructed

Z =
∫
Dφe−SE(ψ) (2.5)

with the field measure replaced by a finite product

Dφ =
∏
n∈Λ

dφ(n) (2.6)

and the expectation value of an observable is computed as

〈O〉 = 1
Z

∫
Dφe−SE(φ)O(φ). (2.7)

2.3 Lattice Quantum Chromodynamics
We consider the discretization of the pure Yang-Mills sector of the QCD Lagrangian. On
the lattice the gluon fields appear in order to preserve gauge invariance in local gauge
transformations, ψ(n)→ V (n)ψ(n), where V (n) are SU(3) group elements on the lattice
sites. In the continuum, we considered the covariant derivative to ensure the gauge
invariance of the action, and this was implemented such that the comparison of fields at
different points was properly defined. To this end, we used the concept of a comparator.

On the lattice, two fields in neighbouring points have corresponding transformations
V (n) and V (n + aµ̂). We define the link variables as a comparator Uµ(n), connecting
both points. These oriented group elements live in the links between sites and are the
fundamental fields in this framework. These satisfy an analogous gauge transformation
as the continuum counterpart

Uµ(n)→ V (n)Uµ(n)V †(n+ aµ̂). (2.8)
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The inverse link from the same lattice point is given by the adjoint operator U †µ(n− aµ̂)
– see figure 2.1.

Uµ(n)U−µ = U †µ(n− aµ̂)

n− aµ̂ n+ aµ̂nn

Figure 2.1: Link variables between n, n+ aµ̂ and n− aµ̂.

The simplest lattice action, such that the Yang-Mills form is restored when the limit
a→ 0 is taken, can be built from the product of comparators in a closed loop. Namely,
we consider the plaquette, fig. 2.2, which is the simplest loop on the lattice

Uµν(n) = Uµ(n)Uν(n+ aµ̂)U †µ(n+ aν̂)U †ν (n). (2.9)

The gauge transformation of this product depends on a single lattice point,

Uµν(n)→ V (n)Uµν(n)V †(n). (2.10)

Hence, applying the trace we obtain a gauge invariant term

TrU ′µν(n) = Tr
(
V (n)Uµν(n)V †(n)

)
= TrUµν(n), (2.11)

n

n+ aν̂ n+ aµ̂+ aν̂

n+ aµ̂

U †ν (n)

Uµ(n)

Uν(n+ aµ̂)

U †µ(n+ aν̂)

Figure 2.2: Schematic representation of the
minimal planar lattice loop, plaquette in the
plane µ− ν.

Due to the form of the continuum action we need a relation between the link variables
and the continuum gauge fields Aµ(x). Hence we establish a relation between lattice and
continuum comparators Uµ(n) = U(n, n + µ̂) + O(a). For this purpose, we introduce
algebra valued lattice gauge Aµ fields by

Uµ(n) = eiagAµ(n+aµ̂/2) +O(a). (2.12)

We rewrite2 eq. (2.9) using (2.12) to relate the plaquette with Fµν(n)

Uµν = eia
2(∂µAν(n)+∂νAµ(n)+i[Aµ(n),Aν(n)])+O(a3)

= eiga
2Fµν(n)+O(a3). (2.13)

2Using the Baker-Campbell-Hausdorff formula for the product of exponentials of matrices

eAeB = eA+B+ 1
2 [A,B]+....
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Hence, the Wilson Landau gauge action is obtained by

SG[U ] = β

2Nc

∑
n

∑
µ,ν

Re Tr(1− Uµν(n)) (2.14)

= a4

2g2

∑
n

∑
µ,ν

Tr
(
F 2
µν(n)

)
+O

(
a2
)

(2.15)

where we defined the inverse bare lattice coupling β = 2Nc/g
2. This action was formu-

lated by Wilson in 1974 – see [43].
In this work we consider only the gauge part of the QCD action. This approximation,

disregarding the quarks dynamics is called quenched approximation. Fermions are repre-
sented by Grassmann variables and its contribution to the generating functional can be
written as a fermion determinant. The quenched approximation consists in replacing the
determinant by a constant which diagrammatically consists in neglecting fermion loops
contributions. Typically, quenched lattice calculations of the hadronic spectra shows
differences around 10 to 20% relative to experimental data [3].

2.4 Gauge fixing
While physical observables are gauge independent, the computation of correlation func-
tions requires to choose a gauge. In fact, they can be shown to vanish if no gauge is fixed
– Elitzur’s theorem [46].

In this work we consider the Landau gauge which in the continuum reads ∂µAµ(x) = 0,
or equivalently pµAµ(p) = 0 in momentum space. On the lattice, it can be shown [37]
that this is equivalent to finding a stationary point of the following functional

FU [V ] = 1
V NdNc

∑
n,ν

Tr
[
V (n)Uµ(n)V †(n+ µ̂)

]
, (2.16)

where Nd and Nc the dimensions and colour number, respectively, and V is the volume
of the lattice – not to be confused with the gauge transformation V (n).

However, in general the functional eq. (2.16) has many extrema – this problem
arises already in the continuum formulation. Ideally, we want the gauge condition
(hypersurface defined in section 1.2) to intersect each gauge orbit uniquely, and thus a
single representative is chosen from each gauge orbit.

However, Gribov [47] found3 that the Faddeev-Popov procedure alone is not suffi-
cient, and that there are multiple solutions for the gauge condition still related by a
gauge transformation. These multiple solutions due to the multiple intersections of the
hypersurface within each orbit are the so called Gribov copies.

The presence of the copies implies the existence of various stationary points of the
functional. Gribov suggested additional constraints to the gauge field configuration space,

3Gribov considered non-abelian gauge theories in the Coulomb gauge ∂iAi = 0. This was later
generalized for a 4-dimensional hypercubic and periodic lattice for any SU(Nc) gauge theory [48].
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restricting the region to the maxima of (2.16). However, this Gribov region4 is still not
free of Gribov copies. Further restrictions define a subspace containing only the global
maxima of FU – called fundamental modular region. It can be shown that on the lattice
this restriction guarantees the absence of Gribov copies in this region [49]. Numerically,
the search is limited to a local maximum – in this work we used the steepest descent
method, described in [50]. The computer code uses both the Chroma [51] and PFFT
[52] libraries.

A review of the gauge fixing on the lattice can be found in [53]. It is worth referring
that the effect of the Gribov copies was studied for the gluon propagator on the lattice
[54, 55] concluding that its effect are small – less than 10%. In this work we do not
consider the effect of the Gribov copies.

2.5 Correlation functions from the lattice

We are interested in computing correlation functions involving gauge fields Aµ. On the
lattice, the gluon field can be computed from the links eq. (2.12)

agAµ(x+ µ̂/2) = 1
2i
[
Uµ(n)− U †µ(n)

]
− 1

6i Tr
[
Uµ(n)− U †µ(n)

]
(2.17)

up to O
(
a2) corrections. The second term ensures that the field is traceless, TrAµ = 0.

The momentum space lattice gauge field is obtained with the discrete Fourier transform
defined before,

Aµ(p) =
∑
x

e−ip·(x+µ̂/2)Aµ(x+ µ̂/2) (2.18)

with p = 2πn/aN and x = an where nµ ∈ [−N/2 + 1, N/2].
The gluon two point function is extracted from the average over gauge field configu-

rations by 〈
Aa1
µ1(p1)Aa2

µ2(p2)
〉

= Da1a2
µ1µ2(p1)V δ(p1 + p2). (2.19)

In our numerical framework, we have access to algebra valued gauge fields Aµ(p) from
eqs. (2.17) and (2.18). To form a scalar in the colour sector we consider a trace and a
suitable Lorentz contraction for the space-time indices. Considering the usual continuum
tensor description for the gluon propagator eq. (1.40), the form factor D(p2) is obtained
by

D(p2) = 2
(N2

c − 1)(Nd − n)
∑
µ

〈Tr [Aµ(p)Aµ(−p)]〉 (2.20)

where n = 0 if p = 0, or 1 otherwise.
4This subspace contains all local maxima of the functional.

Ω = {A : ∂µAµ = 0,M [A] ≥ 0}

where M is the Faddeev-Popov matrix eq. (1.28).

22



For the gluon propagator, the analysis of the colour indices is simple, since only δab
can be used. For the three and four gluon vertices we again access the product of gauge
fields to which we apply the trace to obtain a scalar in colour space,

〈Tr [Aµ1(p1)Aµ2(p2)Aµ3(p3)]〉 = V δ(
∑
i

pi)Gµ1µ2µ3(p1, p2, p3) (2.21)

〈Tr [Aµ1(p1)Aµ2(p2)Aµ3(p4)Aµ4(p4)]〉 = V δ(
∑
i

pi)Gµ1µ2µ3µ4(p1, p2, p3, p4). (2.22)

The G’s represent the Green’s functions with colour indices absorbed by the trace
operation and whose form depends on the Lorentz tensor basis considered – these will
be properly defined in chapter 3.

2.6 Computational aspects
2.6.1 Expectation values on the lattice
In the Euclidean formulation of the theory, the expectation value of some field dependent
operator is given by

〈O〉 = 1
Z

∫
DUO(U)e−SE [U ]. (2.23)

To obtain numerical results we consider only a finite number of field configurations. This
is done by importance sampling considering the weight of the Boltzmann factor in the
Euclidean action, and the integrals estimated by Monte-Carlo methods, [56].

A set of gauge field configurations5 {Ui}, i = 1, ..., n is generated according to the
probability distribution

P (U) = e−SE(U)/Z. (2.24)
The sequence is obtained by a Markov chain which generates the configurations, one
after another according to a transition amplitude P (Ui → Uj)6 depending solely on the
predecessor configuration. This transition amplitude should create a sequence distributed
according to P (U) in the large n limit.

When the set {Ui}, i = m, ..., n is distributed according to P (U), it is said to be
thermalized. From the thermalized set we chose N configurations, each separated from
the former by k Markov steps in order to reduce correlations among them. The set
{Ui}, i = 1, ..., N is the one used for the computation. The configurations considered in
this thesis [20] were obtained using a combination of the over-relaxation and the heat
bath methods according to [37].

Having a finite number of configurations following the exp(−SE(U))/Z probability
distribution, the expectation value (2.23) is estimated by the sample mean

Ō = 1
N

N∑
i=1
O(Ui), (2.25)

5 By a gauge field configuration we mean that each site of the lattice is attributed a value of the field
U , i.e. a Lorentz vector of SU(3) matrices.

6The precise form of the amplitudes depends on the chosen method [42].
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which corresponds to the correct average 〈O〉 in the large N limit.
If all configurations in the sample are statistically independent, having no correlations,

then the sample average is normally distributed around the true expectation value, and
the error estimate would be 〈O〉 = Ō + 1/

√
N . To estimate the uncertainty of an

average over the configurations without assuming a statistical distribution inherent to
the variables, we use the Bootstrap method defined below.

Setting the scale

Lattice quantities are, in general, dimensionless with the values given in terms of the
lattice spacing a. To obtain physical values we need to set this scale by choosing a
suitable value for a which is not an input parameter of the formulation.

To do this we match a given dimensionless lattice object, amg, with an experimental
value (mg,phys). The lattice spacing is then obtained by

a = amg

mg,phys
. (2.26)

The lattice spacing of the configuration ensembles used in this work were computed
from the string tension data in [8]. The string tension is defined from the quark-antiquark
potential which is related to the large n4 behaviour of the lattice expectation value of a
planar rectangular loop (analogous to the square loop, eq. (2.9)), see [37].

2.6.2 Bootstrap method

In this thesis, all statistical errors from the simulations are estimated using the bootstrap
method. The bootstrap is a distribution independent method that can be used to estimate
the statistical error of any quantity S. A review of the method can be found in [57].

Considering a given initial sample of N elements {Ui}, i = 1, ..., N obtained from an
unknown distribution (in our case the sample is the set of gauge field configurations).
We are interested in obtaining the statistical error associated to a quantity S(U) which
in this work corresponds to a mean value of some quantity over the configurations.

The method considers the empirical distribution for the original sample, assigning
the probability 1/N to each of the observed elements. A bootstrap sample is constructed
by random sampling with replacement from this probability distribution. We obtain
Nb random samples U jb = (U j1 , ..., U

j
N ) from the original, of the same size N . For each

sample j, the quantity is computed to be Sj ≡ S(U j). The idea of the method is that
now, we have a proper random variable Sj with a known distribution – the empirical.

To obtain confidence intervals without assuming the underlying distribution, the
bootstrap method provides asymmetric boundaries around the expectation value. Having
Nb values Sj , from which we obtain S̄, the upper and lower errors are estimated using
confidence intervals,

σup = Sup − S̄, σdown = S̄ − Sdown (2.27)
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where Sup and Sdown are found in a way that they satisfy

#{Sj < Sup}
Nb

= 1 + C

2 ,
#{Sj < Sdown}

Nb
= 1− C

2 (2.28)

where C is the coefficient chosen for the confidence interval, C ∈ [0, 1] and #{} represents
the cardinality of a given set.

In this work, C was chosen to be C = 0.675 representing a 67.5% probability of the
true estimator falling in the interval. The uncertainty was taken to be the largest of the
two errors.
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Chapter 3

Gluon tensor bases

In this chapter we describe how the discretization of space-time affects the tensor repre-
sentations of the gluon propagator. Although we consider these structures for the gluon
propagator, we will find that there are special kinematic configurations for which the
lattice structures provide similar results as those obtained using the continuum tensor
basis.

Some general aspects of discretization effects and possible corrections methods will
be also introduced. Finally, the three and four gluon vertices will be discussed, and
corresponding tensor bases will be shown.

3.1 Tensor representations on the lattice

The O(4) symmetry of the Euclidean continuum theory is replaced by the H(4) group
when space-time is discretized using an hypercubic group. This group consists of powers
of π/2 rotations around the coordinate axes and parity transformations of the whole
lattice, i.e. inversions of the axes (corresponding operators are shown in appendix B).

The definition of a tensor has an underlying group of transformations that for the
lattice is the H(4). Gluon correlation functions are tensors with respect to the H(4)
group and, therefore, identifying the tensor bases for this group is crucial to achieve a
proper description for the gluon Green’s functions. These tensor structures differ from
the continuum tensors due to lessened symmetry restrictions.

To see how this affects the construction of tensors we consider an Nd-dimensional
vector space with a given transformation having matrix representationM . A given vector
p in this space transforms as1

p′ = Mp, p′µ = Mµνpν . (3.1)

with components pµ defined with respect to a given coordinate basis. The generalization
to higher order vector spaces is given by the definition of tensors with respect to the given

1The summation convention over repeated indices is used throughout this chapter.
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transformation. A k-rank tensor is a quantity described in general by Nk
d components

Tµ1...µk in a given coordinate basis with the following transformation law

T ′µ1...µk = Mµ1ν1 ...MµkνkTν1...νk . (3.2)

This definition includes vectors (k = 1), as well as scalars (k = 0) which are unchanged
by the group transformations.

In an O(Nd) symmetric space, scalar products of vectors are unchanged under the
group transformations, employed by orthogonal Nd × Nd matrices, Mµν = M−1

νµ . To
see how the definition (3.2) restricts the form of tensors, we consider the case of a
scalar quantity S depending on a vector p. As a scalar, it remains unchanged by the
transformation, S(p′) = S(p). These two transformations restrict the dependence of S
on p through the scalar product, S(p2), since p2 is an O(Nd) group invariant.

If instead of a scalar we consider a vector valued function ~V (p) also depending on
the vector p. By using its transformation law V ′µ(p′) = MµνVν(p) we conclude that the
most general form for its components is

Vµ(p) = V (p2)pµ (3.3)

where V (p2) is a scalar of the vector p, [58].
An important case for this work are second rank tensors Dµν(p) depending on a

single vector p. From (3.2) its transformation law is D′µν(p′) = MµρMνσDρσ(p). Hence,
the most general form for this quantity is of the form

Dµν(p) = A(p2)δµν +B(p2)pµpν . (3.4)

This tensor will be considered for the description of the gluon propagator to evaluate
how the Landau gauge Slavnov-Taylor identity, eq. (1.39), acts on the lattice. With these
three examples we see that continuum vectors have a simple, linear structure imposed
by the continuum symmetry. We are interested in performing a similar construction
considering the lattice symmetry.

The H(Nd) group is a discrete subgroup of O(Nd) in an Nd-dimensional space. It
consists of π/2 rotations as well as parity inversions for each of the axes. However, it
can be shown [12] that each group transformation can be written as a composition of
permutations and inversions of the components – signed permutations2. The reason why
it is worth to decompose the H(Nd) group into these two smaller subgroups is that they
are disjoint3, and thus can be analysed independently. Hence, to find objects transforming
properly under the H(Nd) group it is sufficient to find those which transform properly
according to both permutations and inversions.

2This is seen by considering a 2-dimensional example: performing a clockwise π/2 rotation of a
vector c = (c1, c2) to c′ = (c2,−c1) can be achieved by the composition of the inversion of the first
component followed by a permutation of both components. Generalizations for higher dimensional spaces
are straightforward since these transformations may be independently applied to each hyperplane.

3In fact, permutations correspond to transformations with determinant +1 while inversions to trans-
formations with determinant −1.
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3.1.1 Scalars under the hypercubic group

Proceeding as for the continuum case, we start with the scalar functions on the lattice
depending on a single momentum vector p. We inspect the vector dependence of these
objects which must be invariant under permutations and inversions of components. It
can be easily seen that the class of objects

p[2n] ≡
∑
µ

p2n
µ , n ∈ N (3.5)

satisfies this property, and each of them is an hypercubic invariant4. Hence, we would
think that in general a momentum dependent scalar function would depend on all of these
objects. It was shown in [59], however, that only Nd invariants are linearly independent,
thus creating a minimal set of invariants.

The interesting cases for this work are the scalar functions depending on a 4-
dimensional vector p which will generally change to

S(p2)→ SL(p2, p[4], p[6], p[8]) (3.6)

when passing to the lattice. The choice of the four lowest mass dimension independent
invariants is done for practical reasons, but is nonetheless arbitrary.

3.1.2 Hypercubic vectors

We now generalize the vector notion for the hypercubic symmetric space. As referred,
we find its properties by analysing the permutations and inversions independently.

Starting with the permutations, and given that any general transformation of this
kind can be written as a product of exchanges of only two components – transpositions
[58] – we focus on those. Hence, an object transforming as a vector under arbitrary
transpositions will also transform as a vector under a general permutation. Performing
a transposition of components σ ↔ ρ, the transformation for the vector components pµ
in an Nd-dimensional space is

p′ν = pν , ν 6= σ, ρ

p′σ = pρ,

p′ρ = pσ. (3.7)

This is the fundamental transformation rule for a vector, however we are interested in
finding the most general structure satisfying this rule. Indeed, any polynomial of the
vector, (pµ)n also transforms as a vector under transpositions (a brief proof is shown in
appendix B.1.1)

However, to be a proper vector underH(Nd) it also needs to satisfy the transformation
under inversions. Taking the same Nd-dimensional vector p and applying an inversion

4The case p[2] = p2 is the only invariant in the continuum, i.e. for O(Nd).
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on its σ-th component, the transformed components are

p′µ = pµ, µ 6= σ,

p′σ = −pσ. (3.8)

To be a vector, the polynomial should transform exactly as (3.8)

(p′µ)n = (pµ)n, µ 6= σ,

(p′σ)n = −(pσ)n, (3.9)

and for this to be true, n is necessarily an odd integer, otherwise an even integer would
spoil the transformation by eliminating the minus sign of the inversion. Therefore the
most general structure satisfying the vector transformation is

vnν = p2n+1
ν , n ∈ N. (3.10)

Moreover, we also note that any linear combination of these vectors is also a vector
(by linearity) and thus any function whose Taylor expansion includes only odd powers
of a vector also constitutes a lattice vector. We now see that the sinusoidal, improved
momentum

p̂µ = 2 sin
(
apµ
2

)
(3.11)

arising from lattice perturbation theory is a proper lattice vector, since it transforms
correctly under the H(4) group.

A general lattice vector is then composed of a linear combination of Nd vectors from
the infinite possible vectors of the form (3.10)

Vµ(p) =
Nd∑
n=1

Vnv
2n+1
ν (3.12)

where Vn(p2) are lattice scalar functions. The sum is limited by the dimension of
space since in a Nd-dimensional space only Nd linearly independent basis vectors can be
constructed.

3.2 Lattice basis – Gluon propagator
We now consider the gluon propagator – a second order tensor depending on a single
vector, the momentum p. In colour space the lattice gluon propagator is a two dimensional
tensor having the same form as in the continuum formulation. Indeed, δab is the only
second order SU(3) tensor available. Thus we focus on the space-time structure of the
propagator. Being a second order tensor depending on a single momentum Dµν(p), the
gluon propagator transforms as

D′µν(p) = MµσMνρDσρ(p). (3.13)
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where M ∈ H(4) is a matrix representation of an arbitrary group element.
Following [12] we consider the splitting of the tensor basis in the diagonal and off-

diagonal terms. This is related with the way the hypercubic transformations act on the
lattice tensors, not mixing the aforementioned groups of elements Dµµ and Dµν , µ 6= ν
(see appendix B.1.2 for a proof of this property). Accordingly, the diagonal and off-
diagonal tensor elements will be parametrized differently, i.e. by different form factors.

The most general objects to construct the tensor basis are {δµν , pmµ pnν}. However, for
the second element, since the transformation rule for the tensor applies independently
for each momentum, a similar argument as the one used for the vectors in section 3.1.2
restricts m and n to be odd integers. Thus, we obtain a set of the most general possible
tensor basis elements

{δµν , p2k+1
µ p2s+1

ν }, k, s ∈ N. (3.14)
For the propagator itself, notice that a symmetric second order tensor has only

Nd(Nd + 1)/2 free parameters, i.e. for 4-dimensional space it is fully described by 10
form factors5. However, for reasons that will be evident when analysing the results, we
consider only two reduced bases for the propagator with three and five form factors.

Consider the case of approximating the tensor by three form factors. The possible
choices for diagonal and off-diagonal terms are {δµµ, p2

µ, p
4
µ, ...}, and {pµpν , p3

µpν , ...},
respectively. Choosing the parametrization with the lowest mass dimension terms we
obtain the form

Dµµ(p) = J(p2)δµµ +K(p2)p2
µ, (no sum)

Dµν(p) = L(p2)pµpν , µ 6= ν. (3.15)

We also consider an extended tensor basis using five form factors. Performing the
same construction as before and considering an explicit symmetrization on the space
indices for the higher order non-diagonal terms, we obtain

Dµµ(p) = E(p2)δµµ + F (p2)p2
µ +G(p2)p4

µ, (no sum)
Dµν(p) = H(p2)pµpν + I(p2)pµpν(p2

µ + p2
ν), µ 6= ν (no sum). (3.16)

The extraction of the form factors involves the computation of its projectors, these
are built in appendix B.2. In chapter 4 these form factors will be obtained from the
lattice and there we will introduce continuum relations among them that follow from
both the Slavnov-Taylor identity and gauge condition on the lattice.

Notice that the tensor basis can be built with normal momentum pµ or the lattice
perturbation theory improved momentum p̂µ which may serve as a further improvement.
However, structures mixing both types of momenta are not considered.

Notice that the tensor parametrization by the bases is independent of the chosen
gauge, however this choice will entail different relations among the form factors. We
work with the Landau gauge, implying orthogonality of the gauge fields in the continuum,
pµAµ(p) = 0.

5In principle, however, further conditions implied by the Slavnov-Taylor identity and gauge fixing
further reduce the number of independent parameters.
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Generalized diagonal kinematics

Having the general form of the lattice basis, it is important to consider configurations for
which the basis is reduced to a simpler form, closer to the continuum tensor basis. To
those we call generalized diagonal kinematics and its form is specified by a single scale
or vanishing components. Of this group belong the full diagonal, (n, n, n, n), the mixed
configurations (n, n, n, 0) and (n, n, 0, 0), and on-axis momenta (n, 0, 0, 0).

For these configurations, the inclusion of certain tensor elements is redundant for
they become linearly dependent, thus reducing the possible independent terms. Namely,
for diagonal momenta (n, n, n, n) we get p2

µ = n2δµµ. Therefore only a reduced number of
form factors is extracted. Details on the changes of the lattice basis for these kinematics
and how the form factors are extracted are shown in appendix B.

3.3 Reconstruction of tensors
To analyse how accurately a tensor basis describes the correlators from the lattice, we
perform a reconstruction procedure [12, 13]. This consists in extracting a given set of
form factors, associated to the corresponding basis element, from the lattice correlation
function and with these functions rebuild the original tensor. If the rebuilt function is
different from the original we can infer that the basis is not complete and information
was lost during the projection process. To do this we consider the following quotient

R =
∑
µν |Γorig

µν |∑
µν |Γrec

µν |
(3.17)

given by the sum of absolute values6 of the original tensor and the reconstructed one. A
value of R = 1 indicates that the basis is complete.

The procedure follows by assuming that the correlator is described by its basis
elements τ j with corresponding form factor γj

Γ =
N∑
j=1

γjτ j . (3.18)

One starts by computing each form factor γj using the respective projector – this step is
the one where information may be lost if the basis is not complete, since in this case there
are not enough form factors to fully represent the object. This extraction is performed on
the original vertex Γorig, which in the case of this work comes from the lattice simulation.
Using eq. (3.18) we reconstruct the vertex and obtain Γrec.

3.4 Z4 averaging
In the continuum formulation, having rotational invariance means that the form factors
depend only on the magnitude of the momenta, i.e., that exists some sort of rotational

6The absolute value was considered in order to prevent possible unintentional cancellations among
the tensor components.
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‘degeneracy’ on the contribution from those points of the momentum space. On the
lattice, the continuum symmetry is broken into a discrete subgroup, more generally,
the Poincaré invariance is reduced to π/2 rotations, inversions and also fixed length
translations (considering periodic boundary conditions) [60].

All points connected by these symmetry transformations have the same H(4) invari-
ants which label the orbits of the group, and are invariant under the transformations.
Therefore, these points should have the same contribution when computing lattice corre-
lation functions7.

Hence, to help suppressing statistical fluctuations we consider equally the contribution
from all points in the subspace defined from all possible group transformations on a given
lattice point. This is accomplished by averaging all computed quantities over all points in
the same orbit which amounts to 4!× 42 = 384 points for each momentum configuration
in four dimensions.

3.5 Lattice artifacts and Correction methods
In order to properly evaluate the form factors that characterize the correlation functions
it is necessary to account for the artifacts arising from the discretization of space. These
systematic errors become noticeable when the precision associated with a computation
becomes high enough such that the statistical errors are small compared with these
‘defects’. Since the gluon propagator is computed with a good degree of precision, the
removal of these artifacts becomes relevant.

We distinguish two types of artifacts related to the introduction of the lattice. Firstly,
finite size effects due to the use of a finite spacing a as well as volume V . These were
studied in [61] where it was found for the gluon propagator that the interplay between
these two effects were far from trivial. Secondly, what we call hypercubic artifacts arise
from the breaking of O(4) symmetry, and the appearance of multiple H(4) orbits from
each O(4) orbit. We consider the latter in this section.

Since we are interested in extracting scalar form factors, we consider the behaviour
of lattice scalar functions and how they relate to the corresponding continuum objects.
Any scalar function with respect to a given symmetry group is invariant along the orbit
generated by the corresponding group symmetry applied to a given point. For the H(4)
group each orbit is specified by the four group invariants

{p[2], p[4], p[6], p[8]}.

The simplest example of this is given by comparing with the continuum symmetry. In
this case, an orbit is simply labelled by the invariant p2. For instance, both momenta
p1 = (2, 0, 0, 0) and p2 = (1, 1, 1, 1) have p2

1 = p2
2 = 4 in the same O(4) orbit. However,

these two points have different H(4) invariants, p1
[4] = 16 and p2

[4] = 4 belonging
to distinct H(4) orbits, thus should not be averaged equivalently. We see that the
dependence of the scalars on the p[4] invariant spoils the continuum symmetry.

7The contribution of these points may not be exactly the same due to statistical fluctuations.
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Clearly, hypercubic artifacts would be eliminated if all higher order invariants n > 2
vanished since we would only have a p2 dependence as in the continuum8. Another way
to understand why the finiteness of the higher order invariants relates to hypercubic
artifacts is seen by considering the improved momentum arising from lattice perturbation
theory. By looking at the improved invariant p̂2 expanded in orders of a

p̂2 = (2 sin(ap/2))2 = p2 − a2

12p
[4] + a4

360p
[6] + ... (3.19)

we see that it differs from the naively discretized continuum momentum by terms which
are proportional to the invariants. Therefore, we can minimize the lattice invariants in
order to suppress hypercubic artifacts depending on non O(4) group invariants, i.e. by
reducing the first higher order invariant p[4] we are effectively reducing the artifacts. To
perform this correction two distinct methods are considered.

3.5.1 Momentum cuts

The simplest method consists in applying cuts to the momenta. This arises by noticing
that the further a momentum is from the diagonal, the higher are its non O(4) invariants
for a fixed O(4) invariant p2. This was seen for the example considered before with
(2, 0, 0, 0) being on-axis momentum with higher p[4].

An empirical way to deal with higher invariants coming from these kinematics is
to directly discard these momenta from the data. The usual choice is to consider only
momenta inside a cylinder directed along the diagonal of the lattice as defined in [62].
This selects the largest momenta with the smallest components, i.e. with the lowest H(4)
invariants. The radius of the cylinder is chosen as to maintain a good amount of data
while reducing the artifacts, and in general a radius of one momentum unit (ap = 2π/N)
is considered.

This cut, however, does not remove low momentum on-axis points. To improve the
method we consider further conical cuts, i.e. we consider only momenta falling inside
a conical region around the diagonal of the lattice (1, 1, 1, 1). Throughout the work we
consider an angle of 20°.

In addition, the cuts may be applied only to momentum above a given threshold
since for the IR region most of the data falls far from the diagonal and some information
should be kept. The main problem with this method is that it only keeps a small fraction
of the original data.

3.5.2 H4 method

The H4 method [63, 64] is more involved as it attempts to entirely eliminate the contri-
bution of the invariants p[n] with n > 2 by performing an extrapolation. In this work we
consider only the extrapolation for the first invariant p[4], however, this method can be
improved with higher order corrections (given that enough data is available). Examples

8Note that finite size effects still affect the result after this correction.
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of the applications, improvements and general considerations on the method can be found
in [63, 65, 66].

We consider a given scalar function under the lattice symmetry ΓL(p[n]), n = 2, 4, 6, 8
obtained by a proper averaging over the whole group orbit O(p[n]),

ΓL
(
p2, p[4], p[6], p[8]

)
= 1
NO

∑
p∈O(p[n])

Γ(p) (3.20)

where NO corresponds to the cardinality of the orbit. We want to study how it relates
to the continuum counterpart Γ(p2).

Assuming that the scalar is a smooth function of the invariants, we may extrapolate
to the continuum by

Γ(p2) ≡ lim
p[4]→0

ΓL(p2, p[4]) (3.21)

neglecting higher order invariants which vanish as O
(
a4). In fact, to O

(
a4) the same

extrapolation is possible for the improved momentum

lim
p[4]→0

ΓL(p2, p[4]) = lim
p̂[4]→0

ΓL(p̂2, p̂[4]) (3.22)

although in practice this extrapolation is not easily feasible.
To implement the extrapolation in practice, we assume that the dependence on the

invariants is smooth, and also that the lattice is close to the continuum limit (small a)
to use the expansion

ΓL
(
p2, p[4], p[6], p[8]

)
= ΓL(p2, 0, 0, 0) + ∂ΓL

∂p[4] (p
2, 0, 0, 0)p[4] +O

(
a4
)
. (3.23)

Thus we may identify ΓL(p2, 0, 0, 0) as the continuum function Γ(p2) in finite volume
and up to higher order lattice artifacts. In practice this is applied only when several
H(4) orbits exist with the same O(4) invariant p2. The extrapolation is done by a linear
regression in p[4] at fixed p2, taking the results as p[4] → 0.

Since several H(4) orbits should exist, this restricts the range of momentum to which
the method is applicable. Normally, only the mid range of momentum contains enough
data to perform the extrapolation, thus the deep infrared and high ultraviolet are not
considered in this correction. The H4 method can be generalized for cases with more
than a single independent momentum. In this work, both for the propagator and three
gluon vertex, the simplest case of a single scale momentum is considered.

3.6 Three gluon vertex
While the gluon propagator in the continuum is described by a single scalar function,
D(p2), under the symmetries of the theory, higher order correlation functions admit an
increased number of form factors for a general kinematic configuration. Thus we must
consider the most general form under the required symmetries.
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For the three gluon vertex the colour structure is restricted to be antisymmetric

Γabcµ1µ2µ3(p1, p2, p3) = fabcΓµ1µ2µ3(p1, p2, p3) (3.24)

due to the charge invariance of the QCD Lagrangian [67, 68]. This guarantees the
vanishing contribution from the symmetric term dabc. We then require that the complete
object obeys Bose symmetry, and since the colour structure is established by the anti-
symmetric structure constants, this requires Γµ1µ2µ3(p1, p2, p3) to be anti-symmetric to
the interchange of any pair (pi, µi).

For the space-time part of the tensor representing the three gluon vertex we consider
a continuum basis which consists of 14 independent tensors. Throughout the work we
use the basis constructed in [69] which considers a separation between terms orthogonal
to all momenta, and longitudinal terms. The general tensor is given by the transverse
and longitudinal terms

Γµ1µ2µ3(p1, p2, p3) = Γ(T )
µ1µ2µ3(p1, p2, p3) + Γ(L)

µ1µ2µ3(p1, p2, p3). (3.25)

The first consists of four tensors

Γ(T )
µ1µ2µ3(p1, p2, p3) = F (p2

1, p
2
2; p2

3)
[
gµ1µ2(p1 · p2)− p1µ2p2µ1

]
B3
µ3

+H(p2
1, p

2
2, p

2
3)
[
− gµ1µ2B

3
µ3 + 1

3(p1µ3p2µ1p3µ2 − p1µ2p2µ3p3µ1)
]

+ cyclic permutations, (3.26)

with the definition,
B3
µ3 = p1µ3(p2 · p3)− p2µ3(p1 · p3). (3.27)

The scalar form factors F (p2
1, p

2
2; p2

3) are symmetric under interchange of the first two
arguments, evidenced by the used of the semi-colon, while H(p2

1, p
2
2, p

2
3) is symmetric

under the interchange of any of its arguments. The remaining 10 longitudinal elements
are of the form

Γ(L)
µ1µ2µ3(p1, p2, p3) =A(p2

1, p
2
2; p2

3)gµ1µ2(p1 − p2)µ3

+B(p2
1, p

2
2; p2

3)gµ1µ2(p1 + p2)µ3

+ C(p2
1, p

2
2; p2

3)(p1µ2p2µ1 − gµ1µ2p1 · p2)(p1 − p2)µ3

+ 1
3S(p2

1, p
2
2, p

2
3)(p1µ3p2µ1p3µ2 + p1µ2p2µ3p3µ1)

+ cyclic permutations (3.28)

where both A(p2
1, p

2
2; p2

3) and C(p2
1, p

2
2; p2

3) are symmetric in their first two arguments
while B(p2

1, p
2
2; p2

3) is anti-symmetric. S(p2
1, p

2
2, p

2
3) is completely anti-symmetric.

With this form we have a proper description of the correlation function extracted
from the lattice, with the right hand side of (2.21) being replaced by

Gµ1µ2µ3(p1, p2, p3) = Nc(N2
c − 1)
4 Dµ1ν1(p1)Dµ2ν2(p2)Dµ3ν3(p3)×

× (Γ(L)
ν1ν2ν3(p1, p2, p3) + Γ(T )

ν1ν2ν3(p1, p2, p3)) (3.29)
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where the colour factor comes from the trace operation and Nc = 3. The extraction of a
general form factor is done by suitable projectors built analogously to those considered
for the propagator.

Kinematical configuration (p, 0,−p)

The kinematics used in this work is defined by (p1, p2, p3) = (p, 0,−p) which due to
having a single scale p allows only the longitudinal terms. This is because contractions
with external propagators eliminate the transverse terms with

pµiΓ(T )
µ1µ2µ3(p1, p2, p3) = 0 (3.30)

for any i = 1, 2, 3. The explicit expression for eq. (3.29) becomes

Gµ1µ2µ3(p, 0,−p) = V
Nc(N2

c − 1)
4 D(p2)2D(0)Γ(p2)pµ2

(
δµ1µ3 −

pµ1pµ3

p2

)
(3.31)

with
Γ(p2) = 2

(
p2C(p2, p2; 0)−A(p2, p2; 0)

)
(3.32)

a dimensionless form factor. We see that for this specific configuration, only a combination
of form factors can be extracted. Finally, the 1PI form factor Γ(p2) can be projected by
the following contraction

Γ(p2)p2 = 4pµ2δµ1µ3Gµ1µ2µ3(p, 0,−p)
V Nc(N2

c − 1)D(p2)2D(0)(Nd − 1) (3.33)

for non-vanishing momentum.

3.7 Four gluon vertex

The four point correlation function in QCD is the most complex elementary correlation
function arising in the Yang-Mills theory. Having three independent momenta, four
Lorentz and colour indices, it generates a large amount of possible structures [70]. On
the other hand, being a higher order correlation function, its signal from the Monte-
Carlo simulations is strongly affected by noise. This last problem justifies the absence of
previous four gluon lattice studies.

A further complication arises for this higher order correlation function. We are
interested in computing the four gluon 1PI function, i.e. the pure four gluon vertex.
While for the three gluon vertex this is simply obtained by the removal of external
propagators from the complete correlation function, the four gluon correlation function
carries additional contributions from lower order Green’s functions. Namely, disconnected
terms and the three gluon vertex enter in the computation of the complete correlation
function – see fig. 3.1. Thus the object we have access in the lattice for a general
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momentum configuration reads

G(4)a1a2a3a4
µ1µ2µ3µ4 (p1, p2, p3, p4) =

Dµ1ν1(p1)Dµ2ν2(p2)Dµ3ν3(p3)Dµ4ν4(p4)Γ̄(4)a1a2a3a4
ν1ν2ν3ν4 (p1, p2, p3, p4)

− iDµ1ν1(p1)Dµ4ν4(p4)Γ(3)ma1a4
σν1ν4 (p1 + p4, p1, p4)×

×Dσρ(p1 + p4)Γ(3)ma2a3
ρν2ν3 (p2 + p3, p2, p3)Dµ2ν2(p2)Dµ3ν3(p3)

+Da1a3
µ1µ3(p1)Da2a4

µ2µ4(p2)δ(p1 + p3)δ(p2 + p4)
+ cyclic permutations. (3.34)

Only the first term, that includes the four gluon 1PI function is of interest to us and the
remaining ought to be removed.

= +3 +3

Figure 3.1: Diagrammatic representation of the connected and disconnected terms contributing
for the full, four-gluon correlation function.

We wish to remove lower order contributions without affecting the quality of the
signal. Hence, we do not directly subtract the unwanted contributions in the simulations
since other than requiring a heavier computation, the statistical fluctuations would be
increased. To carry out this extraction we consider a suitable choice of kinematics.

To see how this removes the unwanted contributions we notice that momentum
conservation constrains the possible kinematic configuration for each vertex. Moreover,
the orthogonality of external gluon propagators eliminates terms when contracted with
the corresponding momentum

pµDµν(p) = 0. (3.35)

The disconnected terms without interaction (last line in eq. (3.34)) are eliminated by
a suitable kinematic configuration, that while allowed by momentum conservation for the
four gluon vertex, it is not permitted for the two propagators. Whereas the cancellation
of disconnected terms is straightforward, the three gluon contributions requires to notice
that the most general rank-3 continuum tensor necessarily involves a momentum factor.
They are either linear, gµ1µ2p1µ3 or cubic in the momenta p1µ2p2µ3p3µ1 – see section 3.6.
Therefore we can eliminate the three gluon contribution by eliminating each of these
terms appearing in Γ(3) above. If we choose a single scale momentum configuration
(p1, p2, p3, p4) = (ap, bp, cp, dp)9, each external propagator will be of the form Dµν(p)
thus eliminating each of the three gluon tensor structures by orthogonality.

9Of the coefficients a, b, c, d only three are independent, by momentum conservation.
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We see that a proper choice of kinematic configuration provides access to the pure
four gluon vertex in the lattice

G(4)a1a2a3a4
µ1µ2µ3µ4 (ap, bp, cp, dp) =

Dµ1ν1(ap)Dµ2ν2(bp)Dµ3ν3(cp)Dµ4ν4(dp)Γ̄(4)a1a2a3a4
ν1ν2ν3ν4 (ap, bp, cp, dp)) (3.36)

using the complete correlation function only, i.e. without additional operations involving
lower order functions.

3.7.1 Tensor bases
Having access to the four gluon 1PI function we need to construct a tensor basis in which
this function will be projected. This basis involves a large number of possible structures.
At the level of Lorentz tensors, there are three types of structures allowed that are built
with the metric tensor and momenta. These are linear, quadratic or quartic in momenta,

{gµ1µ2gµ3µ4 , gµ1µ2pµ3qµ4 , pµ1qµ2rµ3kµ4}. (3.37)

which for a general momentum configuration make up 138 possible structures [71]. How-
ever, due to practical reasons, in the present work we consider a reduced basis limited
to the first elements using the metric tensor only10. With this choice, only a smaller
number of independent tensors will contribute to the vertex.

For the colour sector we can use the SU(3) antisymmetric structure constants fabc,
the symmetric terms dabc as well as δab to construct all possible structures

{fma1a2fma3a4 , dma1a2dma3a4 , dma1a2fma3a4 , δa1a2δa3a4}. (3.38)

However, various group identities reduce the number of possible terms, see appendix A.
Due to the complexity associated with the tensor basis for a general kinematic

configuration, in the following we restrict the construction to a specific, single scale
configuration.

Kinematical configuration (p, p, p,−3p)
We work with the configuration (p, p, p,−3p) which was considered in the continuum
investigations [30, 31]. The most complete basis within our approximation to metric
structures consists of three possible Bose symmetric tensors. These are the tree-level
tensor, written again for convenience

Γ(0)a1a2a3a4
µ1µ2µ3µ4 = −g2[fa1a2mfa3a4m(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

fa1a3mfa2a4m(gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3)
fa1a4mfa2a3m(gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)

]
, (3.39)

10Although this approximation cuts a large number of possible tensor structures, previous investigations
found that the tree-level tensor seems to provides the leading contribution in comparison with the rest
of tensor structures [31]. This behaviour is also found in the three gluon correlation function [16].
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a fully symmetric tensor (in both colour and Lorentz sectors)

Ga1a2a3a4
µ1µ2µ3µ4 = (δa1a2δa2a3 + δa1a3δa2a4 + δa1a4δa2a3)(gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3)

(3.40)
which is orthogonal to Γ(0) in both spaces

Γ(0)b1b2b3b4
µ1µ2µ3µ4G

a1a2a3a4
µ1µ2µ3µ4 = 0, Γ(0)a1a2a3a4

ν1ν2ν3ν4G
a1a2a3a4
µ1µ2µ3µ4 = 0. (3.41)

And finally, the third independent tensor is

Xa1a2a3a4
µ1µ2µ3µ4 =gµ1µ2gµ3µ4

(1
3δ

a1a2δa3a4 − dma1a2dma3a4

)
+gµ1µ3gµ2µ4

(1
3δ

a1a3δa2a4 − dma1a3dma2a4

)
+gµ1µ4gµ2µ3

(1
3δ

a1a4δa2a3 − dma1a4dma2a3

)
. (3.42)

With this tensor basis, we construct the general structure with three symmetric form
factors as

Γa1a2a3a4
ν1ν2ν3ν4 = V ′Γ(0)(p2)Γ(0)a1a2a3a4

µ1µ2µ3µ4 + V ′G(p2)Ga1a2a3a4
µ1µ2µ3µ4 + V ′X(p2)Xa1a2a3a4

µ1µ2µ3µ4 . (3.43)

with scalar form factors V ′i depending on the single momentum scale p. This in turn
is related to the complete correlation function by the contraction with four external
propagators. To extract each form factor from the lattice we again apply the trace
operation in the colour space. This operation involves the structures in eq. (3.38) which
make for more intricate operations than the one found for the three gluon vertex. For
these the group identities in appendix A were used. Using the notation

Tr [Gµ1µ2µ3µ4 ] = Dµ1ν1(p1)Dµ2ν2(p2)Dµ3ν3(p3)Dµ4ν4(p4)
∑
ai

i∈1,2,3,4

Tr (ta1ta2ta3ta4) Γa1a2a3a4
ν1ν2ν3ν4

(3.44)
with the arguments of Gµ1µ2µ3µ4(p1, p2, p3, p4) and Γµ1µ2µ3µ4(p1, p2, p3, p4) omitted, and
after performing the three non-vanishing Lorentz contractions we obtain

gµ1µ2gµ3µ4 Tr [Gµ1µ2µ3µ4 ] = 6AnVΓ(0) + 15GnVG + 3(4Xn +X ′n)VX (3.45)
gµ1µ3gµ2µ4 Tr [Gµ1µ2µ3µ4 ] = −12AnVΓ(0) + 15GnVG + 3(2Xn + 3X ′n)VX (3.46)
gµ1µ4gµ2µ3 Tr [Gµ1µ2µ3µ4 ] = 6AnVΓ(0) + 15GnVG + 3(4Xn +X ′n)VX (3.47)

where the Vi are related to the pure vertex form factors by

Vi(p2) = V ′i (p2)D(p2)3D(9p2), (3.48)
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and the following colour coefficients resulting from the trace and sum operation are

An = N2
c (N2

c − 1)
8 , (3.49)

Gn = N2
c − 1
4N2

c

(2N2
c − 3), (3.50)

Xn = 1
3

(N2
c − 1)2

4Nc
− (N2

c − 1)(N2
c − 4)2

8N2
c

, (3.51)

X ′n = −1
3

(N2
c − 1)2

4Nc
− (N2

c − 1)(N2
c − 4)

2N2
c

. (3.52)

Our interest is to obtain each form factor V independently, however by looking at
eqs. (3.45) to (3.47) we see that only two contractions are linearly independent and
thus only two objects can be extracted. Hence, following [30] the X structure will be
disregarded. With this further approximation the equations simplify to

gµ1µ2gµ3µ4 Tr [Gµ1µ2µ3µ4 ] = 6AnVΓ(0) + 15GnVG (3.53)
gµ1µ3gµ2µ4 Tr [Gµ1µ2µ3µ4 ] = −12AnVΓ(0) + 15GnVG (3.54)

and each form factor is obtained by

VΓ(0) = 1
18An

(gµ1µ2gµ3µ4 Tr [Gµ1µ2µ3µ4 ]− gµ1µ3gµ2µ4 Tr [Gµ1µ2µ3µ4 ]) , (3.55)

VG = 1
45AGn

(2gµ1µ2gµ3µ4 Tr [Gµ1µ2µ3µ4 ] + gµ1µ3gµ2µ4 Tr [Gµ1µ2µ3µ4 ]) . (3.56)

These complete form factors are obtained in lattice Monte-Carlo simulations by comput-
ing the corresponding linear combinations of the complete correlation function Gµ1µ2µ3µ4 .
In section 4.3, Monte-Carlo results for this kinematic configurations will be presented.
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Chapter 4

Results

In this chapter we investigate lattice tensor representations of the gluon propagator
by considering the tensor structures introduced in the previous chapter. In addition
we study the IR behaviour of the three gluon correlation function and report a first
computation of the lattice four gluon correlation function. All results were obtained in
a Landau gauge, 4-dimensional pure SU(3) Yang-Mills theory from the Wilson action,
eq. (2.15).

a (fm) 1/a (GeV) β N V (fm4) #config pmin (GeV)

0.1016(25) 1.943(47) 6.0 80 (8.128)4 550 0.153
64 (6.502)4 2000 0.191

Table 4.1: Lattice setup for both ensembles used in the computation of the gluon correlation
functions.

The lattice setup used in this work can be seen in table 4.1. We used two ensembles
with the same lattice spacing but different volumes. The smaller volume lattice also has
a larger number of configurations.

The results shown are either dimensionless or expressed in terms of lattice units.
However, these are shown as a function of the physical momentum, p = plata

−1 GeV
with a−1 = 1.943(47) GeV. Additionally, all results represent bare quantities, i.e. non-
renormalized values. Renormalized values would differ only by an overall constant factor
which does not affect the conclusions.

A complete H(4) group averaging is applied for all quantities as defined in section 3.4.
An average of the quantity is taken over all group equivalent points for each gauge field
configuration. Only then the ensemble average is taken. Also, the reader should be
aware that scalar functions on the lattice have the four H(4) invariants as arguments
although represented herein with p2 only. The exception is the case of the extrapolated
values where the dependence is partially corrected.

The error bars shown correspond to a tenfold bootstrap sampling from the original
set of configurations. For H4 corrected data, error bars result from an initial bootstrap,
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followed by the linear regression propagation. Regarding the correction methods, we
will use the following convention through all results (unless explicitly stated) – p[4]

extrapolated data is shown always as a function of the usual lattice momentum p while
momentum cuts are generally reserved for the improved momentum data p̂.

4.1 Gluon propagator – Tensor description

In this section we consider the lattice description of the gluon propagator, compared
with the usual continuum tensor structure. For most of this section we analyse the 804

lattice exclusively. The 644 lattice will be considered in the end in order to search for
possible finite volume effects on the results.

4.1.1 Discretization correction methods

We begin by illustrating the correction methods defined in the previous chapter to
illustrate its advantages and setbacks. We use the gluon propagator as a test, but the
conclusions should be applicable to other correlation functions as well as other tensor
structures.

All results shown in this analysis are for the continuum tensor eq. (1.40) with form
factor D(p2) and dimensionless dressing function d(p2) = p2D(p2).

D(p2) = 1
(N2

c − 1)(Nd − 1)
∑
µ

Dµµ(p). (4.1)

Notice that the extraction of D(p2) is independent of the use of the normal or improved
momentum for the basis.

In fig. 4.1 results for the correction methods are shown – use of the improved momen-
tum; momentum cuts; and the H4 extrapolation. In a) and b) the complete data and
after momentum cuts is shown in terms of lattice and improved momentum, respectively.
The complete set of data shows structures created by the hypercubic artifacts which
are much more pronounced when using lattice momentum. This is expected since, as
introduced in the section 3.5, p̂ partially accounts for hypercubic errors up to O

(
a2).

The use of the complete momentum cuts (cylindrical and conical) are also shown, and
create a much smoother curve.

The curves in terms of lattice and improved momentum after cuts do not agree for
momenta above ∼ 2.5 GeV, this is visible in fig. 4.1 c). In this plot, the p[4] extrapolated
data is also shown, and we see that it matches the data with cuts as a function of
improved momentum for a large range. An advantage from the extrapolation method is
that it offers a higher density of points for a large range when compared with the curve
surviving the cuts. However, other than the loss of information for lower momentum,
the high momentum region is also problematic due to the lack of different H(4) orbits,
hence the extrapolation is not reliable. This becomes noticeable for p ∼ 5 GeV where
the discrepancy can be related to the decline in quality of the extrapolation.
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Figure 4.1: Gluon dressing function d(p2) from the continuum basis as a function of lattice
momentum (top left), and as a function of the improved momentum (top right). The momenta
surviving cylindrical and conical cuts are shown for the each plot. The comparison between
the data in terms of the improved and lattice momenta after complete momentum cuts against
the H4 corrected data with lattice momentum is shown in the bottom plot. Results from the
β = 6.0, 804 lattice.

4.1.2 Lattice basis – General kinematics

In this section we compare the behaviour of the usual continuum tensor, eq. (1.40), with
two lattice descriptions given in eq. (3.16) and eq. (3.15). The most general continuum
basis, eq. (3.4), will also be considered. We disregard, for now, the generalized diagonal
configurations and other kinematics for which the extraction of all form factors is not
possible (details in appendix B.2).

The dimensionless form factors p2Γ(p2) will be considered due to their appearance
in the continuum relations, defined below. These are p2E(p2), p4F (p2), p4H(p2) for
the larger basis. The only exception is for the terms p4G(p2), and p4I(p2) which are
expressed in lattice units.

Continuum relations

To probe the accuracy of our results we consider a benchmark result. We use the data
published in [72] from a precise continuum basis computation of the propagator using
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improved momentum and additional cuts. This result comes from a partial Z4 averaging
procedure, i.e. only using momentum permutations. This data will always be referred
as D(p̂2) or d(p̂2) = p̂2D(p̂2) and shown as a function of improved momentum only.

In addition to this benchmark, we consider continuum relations that relate form
factors among themselves and also with the continuum tensor basis result, D(p2). These
relations are expected to be properly satisfied for the infrared region where hypercubic
effects are smaller1. The reproduction of the continuum basis, eq. (1.40), by the extended
basis, eq. (3.16), for low momentum implies

E(p2)→ D(p2) (4.2)
− p2F (p2), −p2H(p2)→ D(p2) (4.3)
G(p2), I(p2)→ 0. (4.4)

while for the reduced lattice basis, eq. (3.15), the continuum relations are

J(p2)→ D(p2) (4.5)
− p2K(p2), −p2L(p2)→ D(p2) (4.6)

In addition, for the most general continuum second order tensor, eq. (3.4), we obtain

A(p2), −p2B(p2)→ D(p2). (4.7)

The reproduction of these relations can be verified in figs. 4.2 to 4.4 where the form
factors are reported as a function of lattice momentum p after a p[4] extrapolation (left
column), and as a function of improved momentum with momentum cuts (right). In
fig. 4.2, we compare only the form factors associated with the metric tensor E(p2), J(p2),
and A(p2).

The functions represented in figs. 4.2 and 4.4 are such that in the continuum limit
they all should become equal, thus satisfying eqs. (4.4), (4.6) and (4.7). It can be seen
for figs. 4.2 and 4.4 that within one standard deviation, continuum relations are satisfied
for improved momentum with additional cuts, although with increased fluctuations when
compared with the H4 corrected data on the left. The latter, however, have a restricted
range of compatibility with the benchmark result. In addition, for fig. 4.4 the two H4 form
factors F and H for the extended basis seem to deviate from the expected behaviour. The
same happens for the smaller lattice basis, and this should be related to the limitations
of the extrapolation for low and high momentum. Despite the fluctuations, the fact that
the continuum relations are satisfied for a large range of momentum indicates that the
lattice is fine and large enough to obtain results close to continuum.

In fig. 4.3, the form factors p4G(p2)/a2 and p4I(p2)/a2 are reported. In the bottom
row, results are shown after the correction methods are applied for both form factors.
The appearance of the larger fluctuations for G and I are expected due to its values
being closer to zero and the increased mixing among a larger number of form factors

1Note that this does not guarantee that we are extracting proper continuum physics for the IR region.
There are still finite volume and finite spacing effects – see [61].
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Figure 4.2: p2E(p2), p2J(p2), and p2A(p2) dressing functions as a function of the lattice mo-
mentum after a p[4] extrapolation (left) and as a function of the improved momentum p̂ after
momentum cuts. The results come from the β = 6.0, 804 lattice and the benchmark continuum
dressing function p̂2D(p̂2) is plotted as a function of the improved momentum.

when extracting each function. This is also why I(p2), which only mixes with H(p2),
shows less fluctuations when compared with G(p2).

For low momentum, both correction methods and functions satisfy the continuum
relations within statistical fluctuations in fig. 4.3. However, for momenta above ∼
2 GeV the H4 extrapolation results deviate from zero. This is already visible before the
extrapolation is applied. To see this, in the top row p4I(p2) is shown for all available
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Figure 4.3: Dimensionless form factors p4G(p2) and p4I(p2). G is shown only after the correction
methods. The original data is shown in the top row for the lattice momentum p (left) and
improved momentum p̂ (right) for a restricted range of momenta. Below, p4G(p2) and p4I(p2)
after the corrections are applied are presented, namely the H4 extrapolated results and momentum
cuts. All data from the β = 6.0, 804 lattice.

configurations without corrections, but for a restricted range of momentum (p4G(p2)
was disregarded due to having large fluctuations). p4I(p2) is much closer to zero for the
improved momentum basis than for lattice momentum before any correction is applied.
This result can be viewed as a another improvement in the tensor description after the
change of variables to the momentum p̂ when building the tensor basis.

In fact, the change of variables from p to p̂ also provides an improvement for the
remaining form factors E(p2), −p2F (p2), and −p2H(p2). However, this is concealed by
the complete set of data, thus specific momentum configurations are helpful in exposing
this effect. In fig. 4.5 these three form factors are shown for two different kinematics for
both the normal and improved momentum bases in the left and right columns, respectively.
The continuum relations are much better satisfied for the improved momentum case. In
regards to reproducing the expected result, D(p̂2), the form factor E(p2) shows the best
results for lattice momentum.

The combination of the results from figs. 4.2 to 4.4 means that the continuum relations
are properly reproduced for a large range of momenta. This can be interpreted as the
survival (at least to some extent) of the Slavnov-Taylor identity and Landau gauge
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Figure 4.4: Dressing functions for the different tensor bases as a function of the lattice momentum
after a p[4] extrapolation (left) and as a function of the improved momentum p̂ after momentum
cuts. These come from the β = 6.0, 804 lattice. The improved continuum tensor form factor
D(p̂2) is also shown.

condition on the lattice that fix the form of the gluon propagator to be orthogonal. This
also confirms the improvement obtained from the change of variables p→ p̂ with respect
to the description of lattice correlation functions.

Other than allowing to check the continuum relations, figs. 4.2 to 4.4 allow to compare
the three extended tensor bases from the point of view of the general description of the
gluon propagator. With this analysis we inspect the difference between the reduced and
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Figure 4.5: E(p2), −p2F (p2), and −p2H(p2) from the improved momentum lattice basis (right)
and from the normal momentum lattice basis (left). Data from the β = 6.0, 804 lattice. The
standard result for D(p̂2) is also shown as a function of the improved momentum.

extended lattice bases in regards to reproducing the gluon propagator – this will be
complemented by the reconstruction analysis below. Turning again to figs. 4.2 and 4.4,
all results portray p̂2D(p̂2) within one standard deviation, although with increased
fluctuations as one increases the basis elements (bottom to top in the right columns).
Nonetheless, all three sets of functions seem define a single curve compatible with the
benchmark result when represented in terms of the improved momentum p̂. However,
even with the momentum cuts large fluctuations appear for the larger tensor basis, due
to the mixing of different elements in the projection of form factors. In fact, for p4F (p2)
in terms of improved momentum in fig. 4.4 the fluctuations are present through a larger
range, starting around 1.5 GeV.

The same form factors, but in terms of the normal momentum bases (left column
of both figures) and after the p[4] extrapolation also reproduce the benchmark result
d(p̂2) although in a limited range. The H4 extrapolation seems to remove most of the
statistical fluctuations when compared to the data in the right column. For this method
there is a clear distinction between the metric, p2E(p2), p2J(p2), and p2A(p2) in fig. 4.2
and the remaining non-vanishing form factors in fig. 4.4. The range of agreement with
the benchmark result is larger for the metric form factors with the deviation appearing
for p ∼ 5 GeV. On the other hand, the curves in the left column of fig. 4.4 have a
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smaller range of agreement (except for the basis {A,B}) with deviations starting for
lower momenta.

Regarding the fluctuations appearing for larger tensor bases, this problem can be
overcome by using a binning procedure, where points inside each momentum bin are
averaged using a weighted average. Although with this we are summing non equivalent
points with respect to the group symmetry, this procedure is allowed by noting that the
uncertainty in the scale setting (choice of a) is around 2.5%. This uncertainty allows
us to define the bins in which the average is performed. For data in terms of lattice
momentum, the averaging is taken only for the H4 corrected values.

To understand the reliability of this procedure we start by considering the effect
of binning the data for the benchmark result. In fig. 4.6 the data published in [72] is
shown with the usual momentum cuts, as well as the binned results (right plot). The
binning seems to introduce deviations from the results after cuts for a range between
p̂ ∼ 2 − 5 GeV. This deviation can be accounted for in the following figures since it
should be related to the use of the complete set of data in terms of improved momentum
which still carries some hypercubic artifacts.
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Figure 4.6: Gluon dressing function d(p̂2) as a function of the improved momentum for the
continuum basis published in [72]. The left plot shows the complete set of data and the curve
surviving momentum cuts. Additionally, the right plot shows the averaged data in each bin –
description in the text.

The binned versions of figs. 4.2 to 4.4 are shown in figs. 4.7 to 4.9. The binning of
the data defines smoother curves with smaller statistical errors which allow for better
analysis of the deviations from the benchmark result. For fig. 4.9 some small fluctuations
are noticed for p ∼ 1.2 GeV for the extrapolated data. This should be related to the
fluctuations noticeable in the non-binned counterpart, fig. 4.4.

The data as a function of the improved momentum in the right columns of figs. 4.7
and 4.9 shows a good agreement with d(p̂2) while the large statistical fluctuations have
been absorbed by the averaging procedure. The visible deviation for the mid range of
momentum do not appear in non-binned results and should be associated with the binning

51



0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0 1 2 3 4 5

H4 extrapolation

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0 1 2 3 4 5 6 7 8

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0 1 2 3 4 5
0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0 1 2 3 4 5 6 7 8

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0 1 2 3 4 5
0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0 1 2 3 4 5 6 7 8

p
2
Γ(
p

2
)

p2E(p2)
d(p̂2)

p2E(p̂2)
d(p̂2)

p
2
Γ(
p

2
)

p2J(p2)
d(p̂2)

p̂2J(p̂2)
d(p̂2)

p
2
Γ(
p

2
)

p (GeV)

p2A(p2)
d(p̂2)

p̂ (GeV)

p̂2A(p̂2)
d(p̂2)

Figure 4.7: Dressing functions p2E(p2), p2J(p2), and p2A(p2) from the β = 6.0, 804 lattice as
a function of the lattice momentum after a p[4] extrapolation (left) and as a function of the
improved momentum p̂. The data is shown after a binning of 2.5% in momentum was performed.
The continuum dressing function p̂2D(p̂2) is shown with momentum cuts.

procedure. For the H4 corrected data, the binning procedure results in a reduction of
fluctuations and allows to better recognize the deviations from the benchmark result. In
general, for the extrapolated data, the best agreement with the expected result seems to
be obtained by the smaller tensor basis {A,B}. For the improved momentum bases the
situation is not so clear, the best match with d(p̂2) seems to be obtained for p2H(p2).

For the form factors G(p2) and I(p2), also shown after a binning procedure in fig. 4.8,
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Figure 4.8: Form factors for the higher order terms of the extended basis p4G(p2) and p4I(p2) in
terms of the usual momentum after the p[4] extrapolation (left) and as a function of the improved
momentum (right) without any correction applied. Both cases are shown after a 2.5% binning is
applied in the momentum axis. Data from the β = 6.0, 804 lattice.

the interpretation given for fig. 4.3 is now much clearer. Large fluctuations for low
momentum are expected due to the smallness of ∆1, ∆2 in the extraction of both
terms – appendix B.2. The improved momentum basis shows a better agreement with
the continuum relations, while the normal momentum after the extrapolation shows
deviations for higher momenta.

From the above analysis we would conclude that the use of larger bases does not
improve the description of the gluon propagator. In fact, the use of larger bases introduces
fluctuations in the computations. This, together with the fact that the continuum
relations are obtained through the complete range of momentum restrains us from
considering further additions to the lattice basis. The use of a more complete tensor
basis would require an increase in the statistics to counteract the fluctuations coming
from the mixing with a larger number of terms.

Regarding the results obtained in [12] using a similar approach, the continuum
relations are only satisfied for low momentum (or close to diagonal configurations) while
in our case the relations are satisfied through all range of momentum, namely when using
p̂. Note, however that the referred work uses only 2 and 3-dimensional SU(2) lattices
with a larger lattice spacing, and thus the comparison is to be taken with care.

Completeness of the tensor bases

The analysis of the form factors alone does not offer the full picture for how the lattice
bases affect the description of the tensor2. Indeed, form factors alone do not allow to
perceive how faithful the tensor description with a given basis is. The most evident case
is for the continuum description which returns the exact same form factor using normal
or improved momentum while the latter reproduces the original tensor with greater

2It is important to distinguish the description of the gluon propagator D(p2), from the description of
the original lattice tensor Dµν(p) which is the focus when exploring the completeness of a basis.
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Figure 4.9: β = 6.0, 804 lattice non-metric dressing functions for three tensor bases as a function
of the lattice momentum after a p[4] extrapolation (left) and as a function of the improved
momentum p̂, both after a 2.5% binning procedure applied to the momentum. The continuum
dressing function p̂2D(p̂2) is shown with momentum cuts.

accuracy. This will be analysed below.
We consider the reconstruction introduced in section 3.3 applied to the tensor bases

that have been studied, namely the extended and reduced lattice bases, eqs. (3.15)
and (3.16), and also the continuum basis with a single form factor D(p2). The recon-
struction ratio

R =
∑
µν |Γorig

µν |∑
µν |Γrec

µν |
(4.8)
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is computed using the previously shown form factors.
We begin by consider H4 corrected data shown in fig. 4.10. From its analysis we notice

an improvement in the reconstruction when adding tensor elements. In fact, the larger
basis has the best result when compared to the other three structures, with the results
being in general closer to one. The comparison between the two continuum tensors is
not very informative since the differences appear to be negligible.

To understand the differences in tensor descriptions from the lattice bases we consider
specific momentum configurations to evaluate the reconstruction ratio in eq. (4.8). The
use of specific momentum configurations also helps to reinforce the existence of special
kinematics for which the continuum description is approached.
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Figure 4.10: Reconstruction ratio for the normal momentum bases after the H4 extrapolation.
Each plot is labelled by the corresponding form factors for each basis. Data from the β = 6.0, 804

lattice.

In fig. 4.11 the ratio for six different momentum configurations is shown. The range of
momentum was chosen for each plot in order to evidence the essential behaviour for each
kinematics. The continuum basis {A,B} is not shown since the results exactly match
the ones from the single form factor basis. This could be explained by the orthogonality
of the propagator on the lattice, that further restricts the {A,B} basis, ending with a
single effective form factor. In addition, to study the differences in using improved or
lattice momentum we consider the usual continuum basis in terms of both momenta.
Conversely, both lattice tensors are shown as a function of p̂ only.
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Figure 4.11: Reconstruction ratio R for various single scale momentum configurations using
two lattice bases, eqs. (3.15) and (3.16), and the continuum tensor (1.40) using the improved
momentum and lattice momentum. Results from the β = 6.0, 804 ensemble.

The general behaviour in fig. 4.11 shows that the most complete lattice basis is better
at portraying the original tensor, having lower ratios across most of the configurations
and for a large range of momentum. There are, however, special kinematic points for
which the remaining tensor bases match the result from this basis.

Another striking feature comes from the comparison between the two continuum
bases using normal and improved momentum. The latter shows better ratios and thus a
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better description of original tensor3.
The first row in Figure 4.11 displays two similar kinematics, only distinguished by

its distance from the diagonal, with (4n, n, n, 0) being farther from it. The same general
behaviour is obtained for both kinematics, although with a significant improvement for
the left case whose R values are closer to 1 for the whole range of momenta.

The second row in fig. 4.11 also represents two similar configurations, again with
the one on the left being closer to the diagonal, thus having an overall better ratio
among all bases. Additionally, there is an effect common to both, namely the angle
from the diagonal is not constant through all momenta. Instead, it depends on n like
θ = arccos

√
1/(1 + 1/(2n2)). This dependence dictates the behaviour of the ratio,

decreasing for increasing n.
The bottom row shows two distinct configurations. The case (40, n, n, 0) has an

expected minimum for large n, when approaching the configuration (40, 40, 40, 0) from
the left. The one on the right has a constant ratio, but very different descriptions among
the basis with the extended lattice basis having a much lower ratio.

In general, we conclude that with respect to the description of the gluon propagator
tensor, Dµν(p) the use of more complete bases provides a better result. In addition, the
improved momentum is again reinforced as the better momentum vector to use. Note
that the purpose of considering larger bases is not only to obtain a better description of
the scalar functions characterizing the propagator, but also to properly understand its
lattice tensor structure, and how it deviates from the continuum form (these deviations
should be more evident for coarser lattices, with a larger lattice spacing).

In addition, our analysis provides results differing from those in [12]. Namely, in
this work the reconstruction from the three form factor lattice basis4 shows better
reconstruction results than in our case. This, however is related to the use of a lower
dimensional lattice for which the tensor is fully described by less form factors5. This
results in the structure {J,K,L} being a more complete basis for Nd < 4 than for our
4-dimensional case. Again, comparisons with these results should be considered with
care.

Orthogonality of the tensor basis

The Landau gauge condition is expressed by the orthogonality of the gluon field, pµAµ(p) =
0. This condition, together with the Slavnov-Taylor condition, constrains the tensor form
of the gluon propagator in the continuum. It is important to study how this condition
affects the form of the two gluon correlation function on the lattice.

It is also relevant to notice that the gauge fixing on the lattice cannot be implemented
with infinite precision. In our simulations the condition satisfies |∂A| . 10−7. It is
also worth referring that we have explicitly tested orthogonality of the gluon fields by

3Notice that although the extraction of D(p2) is independent of the use of p ou p̂, the use of both
momenta changes the description of the full tensor.

4The extended tensor basis with five form factors was not considered in this previous work.
5The gluon propagator is described in general by Nd(Nd + 1)/2 independent tensor structures, de-

pending on the dimension of the lattice Nd.
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computing the correlation functions after applying the projection operator

Aort
µ =

(
δµν −

pµpν
p2

)
Aν(p) (4.9)

where Aµ(p) are the original gauge fields. Yet, the analysis after this demand does not
change neither the form factors nor the ratios R. This serves as a good test of the
orthogonality on the lattice.

Also, in lattice simulations for general kinematics the Landau gauge condition is much
better realized for the improved momentum rather than normal momentum, p̂µAµ(p)�
pµAµ(p), with the results differing by several orders of magnitude. The exception occurs
for kinematics having a single momentum scale for which we can establish p̂µAµ(p) ∝
pµAµ(p), with the proportionality constant given by sin(n)/n.

In the continuum, the orthogonality of the propagator is ensured by its tensor struc-
ture by the transverse form (δµν − pµpν/p2). However, for the extended bases this is not
the case, and the orthogonality should manifest in relations among the form factors. For
the extended lattice basis, the following relation is expected∑

µ

pµDµν(p) = 0

= E(p2) + p2
νF (p2) + p4

νG(p2) + (p2 − p2
ν)H(p2) +

(
p[4] + p2p2

ν − 2p4
ν

)
I(p2) (4.10)

for momentum pν 6= 0.
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Figure 4.12: Orthogonality condition, eq. (4.10) shown for the normal momentum basis after H4
extrapolation from the β = 6.0, 804 lattice. Right plot shows the result using the improved basis
result without corrections and also with momentum cuts in terms of the improved momentum.
For all data the p4 component was considered.

We look for deviations from this relation which, following the previous discussion, are
expected to be more perceptible for the lattice momentum p. In fig. 4.12 the orthogonality
condition is shown for the fourth component of momentum, p4 (the conclusions from the
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remaining components are the same). The orthogonality relation, eq. (4.10), is shown
for the H4 extrapolated data (left) where we see that the condition is satisfied only for
lower momenta although with increased fluctuations. Contrarily, the improved basis
(right) shows a much better realization of the orthogonality for the full momentum range.
The low momentum region involves higher statistical fluctuations that can be partially
eliminated by cutting momenta farther from the diagonal.

Note that this analysis of the orthogonality serves also as a complementary verification
of the continuum relations and the completeness of the basis. Indeed, imposing G, I → 0
and −p2F,−p2H → E the relation (4.10) is immediately satisfied.

4.1.3 Lattice basis – Generalized diagonal configurations

Throughout the previous analysis we excluded the generalized diagonal kinematics for
which the complete set of lattice form factors is not possible to obtain. However, it was
hinted that these are special regarding the description by the continuum tensor and for
the orthogonality condition. In this section these configurations are studied, and some
quantitative arguments are laid to support previous claims. The generalized diagonal
configurations were introduced in section 3.1. These are defined by a single scale, thus
include on-axis momenta with a single non-vanishing component, full diagonal momenta
(n, n, n, n), and mixed configurations (n, n, 0, 0) and (n, n, n, 0).
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Figure 4.13: Reconstruction ratio for all four generalized diagonal configurations from the β =
6.0, 804 lattice considering the most complete lattice basis (left) and the usual continuum tensor
basis (right). Also shown is the reconstruction for the kinematics (n, 1, 1, 0) using the same two
bases.

We start by analysing the reconstruction results for the four generalized diagonal
configurations in fig. 4.13. Firstly, there is a clear hierarchy in the faithfulness in
the description among the four configurations. The closer to the diagonal, the better
description. This should be related to softer discretization artifacts along the diagonal, as
opposite to the ones farther from it. The ratio deviates considerably from unity, reaching
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differences of about 40% for on-axis momenta.
The other striking feature is the correspondence between both bases. Although neither

basis is complete, it would be expected that having more independent terms would result
in a better description. This apparent conflict can be explained by the special properties
of these kinematics. Although we are using five form factors, the degeneracy of the tensor
allows only to extract a reduced number (two or three depending on the configuration –
see appendix B) hence reducing the freedom in the tensor description. In addition, the
combination of the gauge condition and Slavnov-Taylor identity on the lattice further
restricts the tensor by establishing relations among the form factors. Therefore, for these
kinematics, both bases provide the same effective degrees of freedom.

In fig. 4.13 a momentum configuration close to on-axis momentum is also shown.
It represents the same configuration as in fig. 4.11 f). It should be noticed that for
this kinematic configuration, the complete extraction of 5 form factors is possible. The
ratio for (n, 1, 1, 0) is much smaller when using the lattice basis than for the continuum
structure which is closer to the result from (n, 0, 0, 0) and again shows that the lattice
basis is better at describing the original tensor for a general configuration.

Continuum relations

In the above analysis we referred that the diagonal kinematics are special regarding
its reproduction of the continuum relations. To sustain these claims, we verify that
these are exactly satisfied for these kinematics. We consider the full diagonal momenta
p = (n, n, n, n), for which only two objects may be extracted,

E(p2) + n2F (p2) + n4G(p2) = 1
Nd

∑
µ

Dµµ(p) (4.11)

n2H(p2) + 2n4I(p2) = 1
Nd(Nd − 1)

∑
µ 6=ν

Dµν(p). (4.12)

Since we want to establish relations among the continuum and lattice parametriza-
tions, we consider the right side of eqs. (4.11) and (4.12) expressed by the continuum
tensor Dc

µν = D(p2)(δµν − pµpν/p2). By carrying out this replacement, the expressions
reduce to,

4E(p2) + p2F (p2) + p4G(p2) = 3D(p2) (4.13)

−p2H(p2)− 1
2p

4I(p2) = D(p2) (4.14)

which by considering G, I → 0 precisely reduce to the continuum relations

E(p2),−p2F (p2),−p2H(p2) = D(p2). (4.15)

In fact, this last step was unnecessary since due to the form of the basis, p2F (p2)+p4G(p2)
could just be replaced by a new form factor p2F ′(p2). In this case it is irrelevant how
the form factor is defined since only the combination of the two can be extracted. An
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analogous argument can be made for the off-diagonal terms. Thus, for diagonal momenta,
the extended lattice basis exactly reduce to the continuum description. In fact, this is
the rationale for the argument given above on the decrease in independent form factors
in the case of diagonal kinematics.

For on-axis momenta only diagonal terms can be attained

Dµµ(p) = E(p2) + p2
µF
′(p2) (4.16)

where we used the simpler notation, F ′(p2) = F (p2) + n2G(p2). For this configuration
the continuum parametrization has the following form

Dc
µµ =

{
D(p2) µ = 2, 3, 4
0 µ = 1.

Extracting each lattice form factor with eqs. (B.47) and (B.48) and replacing the tensor
elements by the continuum parametrization gives

E(p2) = 1
3
∑
µ

Dc
µµ(p) = D(p2)

p2F (p2) = Dc
11(p)− E(p2) = −D(p2),

thus confirming the continuum relations for this configuration. The treatment for the
mixed configurations (n, n, 0, 0) and (n, n, n, 0) is analogous and does not alter the con-
clusions – it can be seen in appendix C.1.1.

We confirm that the continuum relations are satisfied for single scale configurations
and thus the description with the lattice or continuum tensor is equivalent. Hence, we
see that if we want to have a proper description of lattice objects the continuum tensor
basis provides a good result if one focus on the diagonal kinematics. This serves also
to again validate the conventional approach to the computation of the propagator using
momentum cuts.

We confirm this numerically in fig. 4.14 which shows the previous continuum relations.
The three expressions show a very good agreement. The left plot shows the two possible
form factors for (n, n, n, n) which other than satisfying the continuum relations among
them also have a very good agreement with the benchmark result d(p̂2). For on-axis
momentum the continuum relations are also confirmed among the two lattice form factors
and the continuum scalar D(p2). However, hypercubic artifacts render this configuration
problematic from the perspective of the reproducing the expected result6.

Regarding the orthogonality for generalized diagonal configurations, these are the
same as continuum relations. In fact, for the case (n, n, n, n) the orthogonality condition
is

pµDµν(p) = n(E(p2) + n2F (p2) + n4G(p2)) + 3n3(H(p2) + 2n2I(p2)) = 0
6Note that the benchmark result consists of data surviving momentum cuts, and on-axis momenta

do not survive the cuts. This is the reason the result deviates quite considerably for momentum above
∼ 0.5 GeV.
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Figure 4.14: Form factors from the lattice basis for the diagonal configuration p = (n, n, n, n) (left)
and for the on-axis momentum p = (n, 0, 0, 0) (right) both as a function of improved momentum.
Results from the β = 6.0, 804 lattice. Shown for comparison is the benchmark result d(p̂2).

which is the same as obtained above for the continuum relations. Thus, following the
previous conclusions, both orthogonality and continuum relations are guaranteed when
studying the generalized diagonal kinematics.

4.1.4 Finite volume effects

We explore possible finite volume effects by analysing results from a 644 lattice with the
same inverse coupling, β = 6.0. Having a larger ensemble (2000 configurations) results
in lessened statistical fluctuations. On the other hand, a smaller volume restricts the
access to low momenta.

Due to the momentum restriction on the extraction of the five form factors for a
general kinematics, we cannot reach the lowest momentum points where the finite volume
effects should be noticeable. For the rest of momentum range the continuum relations
for the form factors show the same general behaviour as the 804 lattice, figs. 4.2 to 4.4,
as thus we do not consider its analysis.

We turn our attention to the reconstruction – the finite volume of the lattice is not
taken into account in the basis construction and thus it could affect the reconstruction
of the original tensor. The comparison among the two lattices is shown in fig. 4.15 with
the extended and continuum basis shown in terms of the improved momentum. The first
thing to notice is that the reconstruction is better for the 804 lattice, showing a smaller
ratio, except for special points such as diagonal kinematics. This is perceptible for the
high momentum region of a), c), and d). In b), both lattices show the same ratio for the
extended basis while the continuum basis shows a slight difference with the 804 ensemble
having a higher ratio.

Despite both lattices provide similar results for special kinematic points, the remaining
configurations differ, and the completeness of the bases seems to be reduced for the smaller
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volume lattice. In fact, in fig. 4.15 c) and d) even the 804 continuum tensor provides a
better reconstruction than the 644 extended lattice basis.
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Figure 4.15: Reconstruction ratio for the extended lattice basis and the usual continuum descrip-
tion both in terms of the improved momentum. These are shown for the two different lattices
with 804 and 644 sites, and same spacing 1/a = 1.943(47) GeV−1. Four distinct momentum
configurations are shown.

To complete the reconstruction analysis it is worth to reproduce fig. 4.13 for the two
different lattices, see fig. 4.16. We consider only the largest basis and confirm that the
reconstruction for diagonal kinematics is independent of the lattice volume. Therefore,
other than having a better description by the continuum form, these kinematics seem also
to be insensitive to the volume of the lattice regarding its tensor description. With this
analysis we confirm that the momentum cuts, namely choosing the diagonal momenta
seems to be an appropriate methodology for lattice computation of correlation functions.

4.2 Three gluon vertex

The focus of this section is the analysis of the three gluon correlation function. In
particular, we look for a possible sign change and subsequent logarithmic divergence
which are expected to occur in the infrared region for some specific kinematic limits
and for some form factors of the three gluon correlation function. The zero-crossing
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Figure 4.16: Reconstruction ratio for all four generalized diagonal configurations considering the
most complete lattice basis for the (6.502 fm)4 lattice (left) and the (8.128 fm)4 lattice (right).
Both lattices having the same lattice spacing 1/a = 1.943(47) GeV−1.

and IR divergence are related to the concept of dynamical mass generation [14, 73, 74]
whereby the gluon acquires an effective momentum dependent mass m(p2), while the
ghost seems to be transparent to this process thus remaining effectively massless. This
property should also affect different gluon correlation functions, particularly the IR form
of the gluon propagator [11, 75].

This behaviour has been predicted by various DSE analysis employing different
truncation schemes and approximations for the three gluon vertex [16, 18, 25, 67]. The
basic mechanism for the appearance of the zero-crossing and subsequent logarithmic
divergence in the three gluon vertex is reviewed in [14]. It boils down to the appearance
of a diverging ghost loop in the Dyson-Schwinger equation for the propagators which in
turn affects the three gluon vertex – see [16] for a thorough analysis. From a qualitative
point of view we can justify the divergence due to the supposedly ghost masslessness and
its loop contributing with a term of the form ∼ ln

(
q2), which diverges for p2 → 0. On

the other hand, the gluon loop is associated with a term ∼ ln
(
q2 +m2), remaining IR

finite due to the momentum dependent effective gluon mass7, m(0) > 0.
Since the DSE formalism requires approximations for the propagators/vertices enter-

ing the truncated equations, its results require validation, usually coming from lattice
simulations. However, the study of the IR region is constrained by the finite volume
of the lattice and also by large statistical fluctuations associated with the vertices. Al-
though the zero-crossing and the three gluon vertex divergence have been observed for
3-dimensional SU(2) theory, its degree of divergence seems to be lower than the one
expected from the DSE framework [24]. Other lattice investigations in both SU(2) and

7Note that in these schemes the divergence occurs in a theory with a finite gluon propagator D(0) ≥ 0
and finite ghost propagator (as is the case of lattice results). Therefore, the origin of the divergences
is not related to the inherently divergent ‘scaling’ solutions appearing in the DSE formalism. These
solutions and its properties are discussed in [11].
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SU(3) and in three and four dimensions [20–23] suggest the presence of the zero-crossing
albeit failing to observe the divergence. Contrarily, a recent analytical study of the gluon
and ghost propagators using lattice data suggest the presence of a mass regularizing the
ghost propagator in the deep IR [28]. This could in turn remove the infrared divergence
for the three gluon vertex.

The zero-crossing provides a non-trivial constraint on the behaviour of gluon vertices
which due to its logarithm divergence makes the effect difficult to observe8 in small volume
lattices. This effect also strongly depends on the kinematic configuration. In this work
we focus on the ‘asymmetric’ configuration with a vanishing momentum (p1, p2, p3) =
(p, 0,−p) for which we extract a single form factor Γ(p2) that is expected to display the
sign change in the IR region. This kinematic was considered in other lattice studies [9,
21, 22] as well as continuum approaches [15, 16]. In [14] the ratio

R(p2) =
Γ(0)a1a2a3

µ1µ2µ3(p, 0,−p)Ga1a2a3
µ1µ2µ3(p, 0,−p)

Γ(0)a1a2a3
µ1µ2µ3(p, 0,−p)Da1b1

µ1ν1(p)Da2b2
µ2ν2(0)Da3b3

µ3ν3(p)Γ(0)b1b2b3
ν1ν2ν3(p, 0,−p)

= Γ(p2)
2
(4.17)

was related to the diverging ghost loop appearing in the DSE for the gluon propagator
(under the chosen truncation scheme).

Other than (p, 0,−p), other kinematics are generally considered in the literature,
namely the ‘symmetric’ configuration (p2

i = p2, pi · pj = −p2/2, i 6= j) [21, 22] for
which the zero-crossing is easier to observe due to smaller fluctuations, thus having a
more defined range for the sign change. The asymmetric configuration, on the other
hand, is associated with increased statistical fluctuations due to the vanishing momentum
component p2 = 0 [22].

Therefore we aim at investigating the possible occurrence of the zero-crossing and
narrowing the range of momentum where it is expected to occur under both possible
hypothesis for the ghost behaviour, namely the existence or absence of a dynamical
ghost mass that regularizes the vertex. In addition we look for possible signs of the
divergence for vanishing momentum. This work follows the investigation from [20] albeit
with increased statistics due to the use of a larger configuration ensemble and also due
to the use of the full group symmetry – complete Z4 averaging.

For the three gluon vertex we restrict the analysis to the larger lattice, with 550
configurations, see table 4.1. The reason is the need of deep IR momentum points to
study the structures introduced before. The larger ensemble has a smaller volume and
thus its smallest momentum is higher than the corresponding for the 804 lattice. This
ensemble will be considered as comparison for the general behaviour of the data in the IR.
The reader should also be aware that all quantities shown below are not renormalized,
which again amounts to a constant factor.

8In three dimensions the corresponding effect is a ∼ 1/p divergence favouring its detection [76, 77]
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4.2.1 Three gluon correlation function
We start by analysing the complete correlation function, i.e. the vertex with external
propagators, extracted with the following contraction

G(p2) ≡ δµ1µ3pµ2 〈Tr [Aµ1(p)Aµ2(0)Aµ3(−p)]〉

= V
Nc(N2

c − 1)
4 D(p2)D(0)D(p2)Γ(p2)p2. (4.18)

It is important to notice the difference in the statistical accuracy obtained by consider-
ing the complete Z4 averaging as opposed to the partial (permutation only) case. A look
at fig. 4.17 allows to perceive the change induced by the use of all H(4) equivalent points
for the averaging, which enhances the signal to noise ratio. Statistical fluctuations are
lessened through all range of momentum for the complete Z4 case and the data defines
a smoother curve, with decreased error bars. Given the lessened statistical precision
found in lattice computation of vertices when comparing with the results for the gluon
propagator in the last section, it is crucial to consider possible ways of increasing the
statistics. For this reason, the rest of this section considers the complete Z4 averaged
data.
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Figure 4.17: Three gluon correlation function from the β = 6.0, 804 ensemble contracted with,
and as a function of the improved momentum. All data is shown without correction methods
using a partial Z4 averaging with permutations only, and also for the complete Z4 averaging.

Regarding the p[4] extrapolation, we notice that this procedure can be extended to a
higher momentum than the one used for the gluon propagator without loss of integrity of
the method. The H4 method uses the H(4) orbits to ‘reconstruct’ the continuum object –
extrapolating data to p[4] → 0. While for the gluon propagator the structures formed by
the orbit points are well defined and with small uncertainty associated, the three gluon
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orbit structures are concealed by large fluctuations. Hence, the extrapolated function
for the three gluon maintains a momentum dependence close to the original data but
with increased precision. Notice, however that this is not an advantage of the method
for the three gluon vertex, but a consequence of the reduced precision associated with
this vertex which allows us to extend the range, within the original uncertainty.

To support these claims on the extension of the method we compare the effect of
extending the extrapolation for both the gluon propagator and the three gluon vertex.
In fig. 4.18 the H4 extrapolation for the propagator was extended to all momentum
and compared with diagonal configurations due to its lessened hypercubic artifacts.
The dressing function for (n, n, n, n) momentum is shown as a function of improved
momentum as it was observed in the previous section to produce a better match with
the expected behaviour. We see that for momenta above p ∼ 5 GeV the difference
between both results is large, evidencing the inaccuracy of the extrapolation for this
momentum scale. In fact, the extrapolation for momenta above p ∼ 6 GeV becomes
unstable, producing a less smooth curve.
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Figure 4.18: H4 extrapolated data for the gluon propagator dressing function d(p2) compared
with full diagonal momenta (n, n, n, n) as a function of improved momentum. Data from the
β = 6.0, 804 ensemble.

Contrarily to this case, if we extend the p[4] extrapolation for the three gluon vertex,
the disagreement is only obtained for larger momenta. In fig. 4.19 the H4 corrected vertex
is again plotted against the diagonal kinematics. We see that the general behaviour of the
curve is maintained after the correction (with additional precision), and that it follows the
diagonal curve. Therefore, for the three gluon vertex an extension of the extrapolation is
possible within the statistical accuracy. Notice however that the extension is not complete
since for momenta above p ∼ 8 GeV large fluctuations arise and the extrapolation is not
reliable. In fact, for the highest momenta, the extrapolation is not possible due to the
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lack of H(4) orbit elements, analogously to the IR region.
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Figure 4.19: Original and p[4] extrapolated data for the three gluon correlation function from the
β = 6.0, 804 ensemble as a function of the lattice momentum p. The H4 correction was applied
for the full momentum range. The configuration (n, n, n, n) is shown for comparison.

Perturbative UV prediction
Although we are interested in the infrared behaviour of the correlation function, we begin
by probing how the continuum perturbative predictions match lattice results for high
momenta. To perform this comparison we apply the H4 extrapolation as well as conical
cuts with improved momentum. Following [20], to study the ultraviolet region of our
results we use the one-loop renormalization group improved result for the propagator

D(p2) = Z

p2

[
ln
(
p2

µ2

)]−γ
(4.19)

with Z a global constant, µ = 0.22 GeV and γ = 13/22 the gluon anomalous dimension.
For the three gluon vertex a similar expression is obtained,

Γ(p2) = Z ′
[
ln
(
p2

µ2

)]γ3g

(4.20)

with the anomalous dimension γ3g = 17/44. These two expressions can be combined to
construct the corresponding three gluon correlation function computed above, eq. (4.18)

GUV(p2) = Z ′′

p2

[
ln
(
p2

µ2

)]γ′
(4.21)
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with γ′ = γ3g − 2γ = −35/44 the overall anomalous dimension. This result is expected
to be valid for high momentum.
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Figure 4.20: χ2/d.o.f. obtained from the fit of the functional form (4.21) to the β = 6.0, 804

lattice data as a function of the momentum range cut off, p > p0 GeV. Left plot shows the result
of the fit for the H4 corrected data while the right plot with diagonal momenta as a function of
the improved momentum.
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Figure 4.21: Three gluon correlation function G(p2) after the H4 extrapolation as a function of the
lattice momentum (left) and as a function of the improved momentum after cuts for p̂ > 1 GeV.
The perturbative prediction, eq. (4.21) is also represented after a fit to the extrapolated and
diagonal configurations, respectively. All results shown are from the β = 6.0, 804 ensemble.

To better understand the validity of the perturbative prediction, the fits were per-
formed with Gnuplot [78] for various momentum ranges [p0, 8] GeV with varying p0. The
upper bound at 8 GeV is considered also for H4 corrected data due to large errors in the
lattice data. The fit was applied to H4 corrected data as a function of lattice momenta,
and also for the data as a function of improved momentum. To evaluate its quality we
compute the χ2/d.o.f.9 taking into account the uncertainty in the data, and which ought
to be minimized for various values p0, this is shown in fig. 4.20.

9This function measures the deviation of the approximated curve obtained by the fit to the data
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For H4 corrected data, the best fit is obtained for momentum p ∼ 6.5 GeV. However,
for momenta above p ∼ 2.5 GeV the fit already shows a stable match with the lattice data.
Above this scale the fit maintains a χ2/d.o.f. below ∼ 1.15. The fit for p0 = 2.5 GeV is
shown in the left plot of fig. 4.21 for which χ2/d.o.f. = 1.14. The data seems to follow
the perturbation theory prediction for p above ∼ 2.5 GeV.

The fits for the data as a function of improved momentum surviving the cuts show
similar χ2/d.o.f. values for most fitting ranges. However the values seem to oscillate
less smoothly, and in fact become high for p0 above 6 GeV. In the right plot of fig. 4.21
the fit for p0 > 3 GeV is shown, having χ2/d.o.f. = 1.09. This curve also shows a good
agreement with the lattice data thus validating the perturbative prediction for high
momenta.

To compute the pure three gluon vertex we need to explicitly remove the contribution
of the external propagators by dividing by its form factorD(p2), eq. (4.18). Hence, we also
compare the lattice computation of D(p2) with the perturbative result, eq. (4.19). The
increase in accuracy for this object allows only a fit to higher momenta and in addition,
we do not consider the extrapolated data due to its restrictions to high momentum for
the propagator. This is shown in fig. 4.22 as a function of the improved momentum.
A good match with the lattice data is obtained, with χ2/d.o.f. = 1.10 for the range
p > 5 GeV. Again, the perturbative result is confirmed for sufficiently high momentum.

4.2.2 Three gluon one particle irreducible function

Although the possible sign change associated with the three gluon vertex should be
noticeable for the complete correlation function shown before, this carries high statistical
fluctuations for momenta below p ∼ 1 GeV, hindering the IR analysis of the curve. In
addition, since continuum investigations work with the 1PI function we need to remove
the propagators if we want to properly compare lattice and continuum results. In this way
we isolate the pure one particle irreducible function, which for the (p, 0,−p) kinematics
and the tensor basis considered is described by Γ(p2), eq. (3.33).

Firstly, we notice that the comparison with the UV perturbative prediction from
eq. (4.20) is not possible for Γ(p2) due to large statistical fluctuations dominating the
high momentum region. These arise due to the high momentum form of the gluon
propagators, where for a general kinematic configuration they behave as D(p2) ∼ 1/p2.
This induces a p6 factor in Γ(p2) when dividing by D(p2)10. In turn, this factor enlarges

points. It is defined as,

χ2 =
∑
i

(
Gi − f(pi)

δGi

)
where Gi and δGi are the data points and corresponding error, while f(pi) is the fitted curve evaluated
at the momentum of Gi. The degrees of freedom (d.o.f.) are the number of data points to be adjusted
deducted by the number of adjustable parameters. A good fit to the data is obtained by a reduced χ2

close to unit, i.e. χ2/d.o.f. ∼ 1.
10The poor signal to noise ratio for Γ(p2) for high momentum is a common complication for general

lattice computed 1PI functions with more than two external legs. This problem is not completely solved
by the increase in the number of configurations since it is inherently associated with the high momentum
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Figure 4.22: Gluon propagator D(p2) from the β = 6.0, 804 lattice as a function of the improved
momentum after cuts abover 1 GeV. The renormalization group improved perturbative result,
eq. (4.21) was fitted to the data for p ∈ [5, 8] GeV, resulting in a fit with χ2/d.o.f. = 1.10.

the uncertainty associated with Γ(p2) – this can be noticed by a simple Gaussian error
propagation, see [20]. For the kinematics in consideration the factor is softened to p4 due
to the vanishing momentum p2 = 0,D(0) > 0. However, the p4 factor combined with large
fluctuations in D(0) create strong fluctuations in the ratio pµGνµν(p, 0,−p)/D(p2)2D(0)
for high momenta.

Regarding the detection of the zero-crossing this is not a problem since D(p2) is
essentially constant for the deep IR region and thus the signal has a more stable behaviour
and higher precision. Additionally, the H4 extrapolation is not useful for it disregards
points in this region.

In fig. 4.23 both the complete set of data for Γ(p2), and the points surviving momen-
tum cuts after 1 GeV are shown as a function of improved momentum. This result matches
the momentum dependence obtained in other lattice studies, namely it follows the results
from [20] although with an improved signal to noise ratio. As expected, large statistical
fluctuations arise for momenta above ∼ 1.5 GeV. The two lowest momentum points are
both compatible with zero within one standard deviation. The lowest non on-axis mo-
mentum is compatible with zero within the uncertainty, Γ(p = 0.216 GeV) = 0.176(182),
while the lowest on-axis momentum is also compatible with zero although having a larger
error associated Γ(p = 0.152 GeV) = 0.477(479). However, these two points do not
provide a statistically relevant signal of the possible zero-crossing.

In order to improve the analysis of the infrared behaviour of the 1PI function we

behaviour of the propagators.
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Figure 4.23: Complete set of data from the β = 6.0, 804 lattice for the three-gluon 1PI, Γ(p2) as
a function of the improved momentum. The data surviving momentum cuts above 1 GeV is also
shown.

consider three different functional forms to fit the data in fig. 4.23,

Γ1(p2) = a1 + z1 ln
(
p2

µ2

)
, (a1, z1) (4.22)

Γ2(p2) = a2 + z2 ln
(
p2 +m2

µ2

)
, (a2, z2,m) (4.23)

Γ3(p2) = 1 + cp−d, (c, d); (4.24)

the adjustable parameters appear in parenthesis. The first functional form, eq. (4.22),
comes from a simple Landau gauge, four-dimensional QCD toy model for asymptotically
low momentum [14, 22]. The second logarithm, eq. (4.23) has an additional constant m2

to account for the possible dynamical ghost mass predicted in [28]. This mass could in
principle remove the three gluon divergence by regularizing the ghost loop, nonetheless a
sign change is possible depending on the value of the parameters. Both constants a1, a2
serve to partially take into account the non-leading terms which become relevant for
higher momenta.

The third form for Γ(p2), eq. (4.24), is a power law ansatz [24] which allows to study
the degree of the possible divergence in the IR and also estimate the position of the
zero-crossing. In [14, 21, 22] more appropriate curves, obtained by solving the DSEs for
this momentum configuration are considered and fitted to lattice data.

To better understand the validity of the functional forms, the range of the fit was
tested for the limits [pi, pf ] with variable pf while pi is the lowest, non-zero momentum
value. The value of pf was restricted to 2 GeV, above which Γ(p2) is involved in large

72



fluctuations, in fact these are noticeable already in the upper momenta of fig. 4.23. As
a lower bound, we consider pf above 0.5 GeV since not enough data exists below this
threshold.

Since we want to explore the quality of the fit with varying range pf we consider the
analysis for the complete set of data in fig. 4.23. In addition, we compare the result of
the fits with the data surviving momentum cuts above 1 GeV to try to overcome the
problem of large fluctuations for higher momenta. The quality of the fit was controlled
with the χ2/d.o.f. shown for all functional forms and both sets of data in fig. 4.24.
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Figure 4.24: χ2/d.o.f. of the three fits from eqs. (4.22) to (4.24) (top left, top right and bottom,
respectively) for the varying momentum range p ∈ [pi, pf ]. Both fits with and without momentum
cuts were considered.

The results for the χ2/d.o.f as a function of the fitting range, in fig. 4.24 are similar
for both logarithms, Γ1 and Γ2. The quality of the fit seems to be highly dependent on
the range for pf below 0.8 GeV, with χ2 rapidly oscillating. Above 1 GeV the momentum
cuts are applied and thus the results for both sets of data become different. The reduced
χ2 oscillates around χ2/d.o.f = 1.3 for the complete data in the range pf ∼ 1− 1.4 GeV.
For larger momentum ranges, pf > 1.4 GeV, the fit with the complete data provides
reduced χ2 values closer to one, indicating a better match to the data.

Although the quality of the fit has a similar behaviour for both logarithms, the
one with an additional mass shows χ2/d.o.f values closer to unity. This value remains
between 0.9− 1.1 for pf > 1.1 GeV for the complete data using Γ2 while for the form Γ1
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the reduced χ2 stabilizes around 1.2 for this range.
For the data surviving momentum cuts the behaviour is simpler. Both functional

forms provide a stable χ2 around χ2/d.o.f = 1.3 for pf > 1 GeV. This should be a good
indication of the smoothness of the data created by the cuts, and also that the curves
match the results, within the uncertainty. It is important also to notice that although in
general the complete data provides a fit with better quality, the data after momentum
cuts is associated with lessened lattice artifacts and thus this prediction should also be
considered.

The behaviour of the fit for the third functional form Γ3 is different than the one
described above. From the bottom panel in fig. 4.24 we see that the best fit is obtained for
pf in the range 0.6− 0.8 GeV and that the reduced χ2 grows rapidly for momenta above
this region. Since the quality of the fit becomes worse above 0.9 GeV the momentum
cuts were applied for p > 0.7 GeV instead. Notice that in addition, the fit was restricted
to pf = 1.2 GeV, above which the fits become worse. In fact, since this functional form is
considered to probe the degree of the possible divergence in Γ(p2) it should be valid for
lower momentum11 when compared with the first two models. This is why the quality
of the fit rapidly decreases when reaching pf ∼ 1 GeV. The quality from the data with
cuts remains practically constant above 0.9 GeV with a value around χ2/d.o.f = 1.5.

To better understand how each form matches the lattice data we analyse each model
independently and show the result of the fits for a specific value of pf . We choose pf above
1 GeV in order to distinguish between the complete data and the one surviving momentum
cuts. For the Γ1 logarithm the choice pf = 1.7 GeV provides fits with χ2/d.o.f. = 1.14
and χ2/d.o.f. = 1.28 for the complete and the data after cuts, respectively. It is important
to refer that the parameters of this curve and the corresponding uncertainty do not vary
significantly for the range 1.3 < pf < 2 GeV which further supports the quality of the
fit – more on this below. The resulting curves and corresponding uncertainty (computed
assuming Gaussian propagation of the error) are shown in fig. 4.25. The fit for the data
surviving momentum cuts seems to provide a better match with the three gluon vertex
Γ(p2) for the lowest momentum range, namely for p ∼ 0.2 − 0.8 GeV. However, the
uncertainty in the curve parameters is slightly higher. The use of the complete lattice
data seems to shift the position of the possible sign change for higher momenta, with
p0 = 0.249(3) GeV and p0 = 0.160(12) GeV for the complete data and for the data after
momentum cuts, respectively.

For the second logarithmic form, eq. (4.23), a similar reasoning is considered for the
choice of pf . The range pf = 1.7 GeV provides a good fit to the data with χ2/d.o.f. =
0.984 and χ2/d.o.f. = 1.21 for the complete set and the data after cuts, respectively. The
corresponding curves are shown in fig. 4.26. Although the quality of the fit indicated
by the χ2 seems to be better for the logarithm with additional mass, the uncertainty in
the parameters is larger. Nonetheless, both curves in fig. 4.26 have a similar form and
suggest a good match with the data for the full range of momenta.

Regarding the possible sign change, the fit with the complete data suggests a positive
11This was thoroughly explored in [24] for both 3 and 4-dimensional cases and found that the power

law is compatible with the data for momenta below ∼ 1 GeV only.
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Figure 4.25: Γ(p2) from the β = 6.0, 804 ensemble as a function of improved momentum. The
data after momentum cuts is also shown. Two fits using eq. (4.22) and pf = 1.7 GeV were
adjusted considering the complete data, and the set after momentum cuts.

IR value for Γ(0) and an absent sign change, within the uncertainty of the curve. On the
other hand the curve using momentum cuts allows for a possible sign change. However,
although we predict that within this model p0 should occur below 0.35 GeV, the existence
of a sign change is not guaranteed by the predictions made from the curve and the
substantial uncertainty carried by the resulting curve does not allow further conclusions.

For the power law form, eq. (4.24), a good balance in the quality of the fit and
a reasonable uncertainty is obtained for pf = 0.85 GeV for which the complete data
provides a better fit with χ2/d.o.f. = 1.12 as opposed to χ2/d.o.f. = 1.29 for the data
surviving momentum cuts. The analysis of the corresponding curves in fig. 4.27 shows
that both fits have a comparable form, barely changed by the change in the set of data
(this is expected due to the small range considered above 0.7 GeV, above which cuts were
applied). Both results are compatible with a sign change, with p0 = 0.189(31) GeV for
the curve using the complete data and p0 = 0.179(48) GeV for the other set.

Since this last functional form is expected to match the data for low momentum
only, where the divergence is supposed to occur, the curve fails to match lattice data
for momenta above ∼ 1 GeV. For lower momenta the curve seems to provide a good
match with the data, although with decreased precision when compared with the results
from fig. 4.25. The exponents d from the fits are d = 0.940(135) and d = 1.01(10) for
the complete and partial sets, respectively. These seem to be compatible with previous
findings for both SU(2) and SU(3) lattice investigations [24, 79]. However, since we do
not find a clear numerical evidence for the divergence due to the lack of points in the
deep IR region, this result is not reliable and should be taken with care.

Both the first and last functional forms, eqs. (4.22) and (4.24), are considered in order
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Figure 4.26: Γ(p2) from the complete set as a function of improved momentum from the β =
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Figure 4.28: Prediction for the sign change p0 from the fits using eq. (4.22) (left) and eq. (4.24)
(right) for varying fitting ranges [0, pf ].

to study the possible zero-crossing with subsequent divergence. Despite not having a
clear signal on the divergence, we can study how the estimated position and uncertainty
for p0 varies with different fitting ranges12. The p0 values for Γ1 and Γ3 are shown in
fig. 4.28 as a function of pf for both the complete and partial sets of data. From the
analysis of this figure we notice that p0 is associated with smaller uncertainty when
computed with the first form, eq. (4.22) and using the complete set of data. In addition,
the complete data seems to shift the position of the zero-crossing for higher momentum
when compared to the partial data.

For the logarithmic case, p0 varies very little for the range pf < 1 GeV, showing values
around 0.1 − 0.15 GeV. Above 1 GeV the data surviving momentum cuts maintains a
constant value around p0 = 0.15 GeV. This prediction lies in a region where in fact the
lattice results are compatible with zero within the uncertainty. On the other hand the
prediction from the complete data grows for pf > 1 GeV reaching a seemingly constant
value of p0 = 0.25 GeV above pf = 1.6 GeV. We see that both sets of data seem to
approach a constant value for large fitting ranges, however the values are not compatible
within one standard deviation.

For the power law, right plot in fig. 4.28, although the same tendency as for Γ1 is
observed for p0, the uncertainty in this model is much larger. The result from the data
surviving cuts seems to remain constant for the whole range of momenta, while the
complete result increases for larger pf . However, in this case the intervals predicted by
the two sets are compatible within the uncertainty. The combination of these results
indicates a possible value for the zero-crossing position at an interval 0.1− 0.25 GeV.

Although a similar analysis for the form Γ2 is not possible, it is important to refer
that the fit with eq. (4.23) maintains a stable behaviour, similar to the one found in
fig. 4.26 for a large range of pf . This is a good indication of the model describing the
data. However, an increase in the precision of the results is needed to better understand

12Although a sign change can also be observed for the form (4.23), as seen in fig. 4.26, its existence
strongly depends on the momentum range of the fit. Besides, the uncertainty associated is much larger
and therefore its explicit computation as a function of pf is not shown.
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the possibility of the sign change and IR finiteness of the three gluon vertex.

Finite volume effects
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Figure 4.29: Γ(p2) from the β = 6.0, 804 ensemble compared with the results from [20] using the
β = 6.0, 644 lattice with 2000 configurations. Above 1 GeV only data surviving momentum cuts
is shown.

To complete the analysis of the three gluon vertex we compare the results obtained
from the 804 lattice using 550 configurations and those from the 644 lattice with 2000
configurations and partial Z4 averaging13. Since both lattices have the same spacing,
this comparison allows to search for possible finite volume effects for the three gluon
vertex.

The dimensionless form factor Γ(p2) is shown for both lattices in fig. 4.29 where
momentum cuts were applied above 1 GeV. Although the 804 lattice data is noisier
and shows larger error bars, as a result of the difference in the size of the ensembles,
both sets of data seem to have the same general behaviour approaching the infrared
region. However, the current data suggests a possible shift enhancing the Γ(p2) for the
804 lattice in comparison with the 644 results. The curve produced by the 804 lattice
data seems to be above the 644 results for momenta below 1.5 GeV, above which the
fluctuations become larger and the results become compatible within the uncertainty.
This enhancement could result from the difference in lattice sizes and suggests a finite
volume effect for low momentum.

Finite volume effects for the gluon propagator were studied in [61], which was found
to have an IR decrease with the increase of lattice size at a fixed spacing a. However,

13The data from the 644 was previously computed in [20] using momentum cuts above 1 GeV.
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the relevant momentum scales for this effect seem to be different for the three gluon
vertex, with the enhancement extending to higher momenta than for the propagator. If
we consider this effect for the propagator, and disregard a possible, independent finite
volume effect on the complete three gluon correlation function G(p2), the pure vertex
Γ(p2) is enhanced for low momentum when dividing by the product D(p2)2D(0). Indeed,
the lattice data seems to be compatible with an increase for low momentum, however
this is a rather rough estimate of the effect and we should have in mind that the finite
volume can also directly affect the complete correlation function.

644 804

χ2/d.o.f. p0 (GeV) χ2/d.o.f. p0 (GeV)
Γ1 1.09 0.180(14) 1.28 0.156(18)
Γ2 1.06 1.19
Γ3 1.12 0.209(43) 1.18 0.180(43)

Table 4.2: Fit parameters for the 644 and 804 lattice using the three models in eqs. (4.22) to (4.24).
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Figure 4.30: Γ(p2) with momentum cuts above 1 GeV for the 804 and 644 lattice. The curves
result from the fits with eq. (4.22) (top left), eq. (4.23) (top right), and eq. (4.24) (bottom plot)
with fitting ranges pf = 1.7 GeV for the first two, and pf = 0.85 GeV for the latter.
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Regarding the position of a possible sign change, assuming the previous hypothesis for
the finite volume effect, the change in the propagator amounts to an overall multiplicative
factor and thus the position of the zero-crossing is untouched. However, again we notice
that the complete effect on the three gluon correlation function may induce further
changes and can in fact change this value. Besides, since no statistically relevant signal
of the zero-crossing is found for neither of the ensembles, we cannot probe how the
volume affects this property.

To better understand the possible finite volume effect we reproduce the fits with the
three models, eqs. (4.22) to (4.24) for the same momentum ranges as in the previous
analysis for each corresponding model. The results are shown in fig. 4.30 for the three
models and the fit parameters are summarized in table 4.2. We see that in general the χ2

is lower for the 644 due to the smoothness of the data computed from a larger ensemble.
Moreover, the position of the possible zero-crossing for both Γ1 and Γ3 seem to be shifted
for slightly higher momenta in the 644 lattice, however both estimates for the sign change
are compatible within the uncertainty. The form Γ2 seems to have lower p0 for the 644

lattice, however a large uncertainty is associated with the results for momenta below
∼ 0.3 GeV which hinders the analysis of a possible sign change.

4.3 Four gluon vertex

In this section we report on the four gluon correlation function computed from the two
ensembles in table 4.1. As referred in section 3.7, on a lattice simulation we have access
to the full Green’s functions only. However, the four point correlation function involves,
besides the pure four gluon 1PI function, also the disconnected terms contributions and
those associated with the three gluon irreducible diagrams. All these contributions can
be removed by a proper choice of the kinematics.

Even after discarding these contributions, a lattice simulation returns the four gluon
Green function that combines the corresponding irreducible diagram with external gluon
propagators, eq. (3.36). Then, to measure the four point 1PI function the full Green’s
function requires the removal of the gluon propagators. However, this operation enhances
the fluctuations, specially at large momenta, where the propagator becomes small, and
adds a further difficulty to the measurement that we aim to perform. Due to increased
fluctuations for the pure vertex we only show the complete correlation function.

Regarding previous investigations on the IR properties of the four gluon vertex only
continuum studies have been conducted [30, 31], also establishing a possible zero-crossing
for some form factors. Some qualitative relations may be established between lattice and
continuum results. However, these comparisons should be considered with care due to a
weak signal conveyed by the lattice four gluon correlation function.

In general, the fluctuations of higher order functions in a Monte-Carlo simulation are
larger and the computation necessarily calls for the use of large ensembles of configura-
tions. To try to overcome the problem of statistical fluctuations, in all cases we perform
a Z4 average, as done in the previous sections. Unfortunately, although increasing the
quality of the Monte-Carlo signal, the Z4 averaging is not sufficient to produce results
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with small or relatively small statistical errors for the statistics that we are using. Cer-
tainly, an increase in the number of gauge configurations will allow to overcome, at least
partially, the problem of the statistical fluctuations.

Additionally, only a restricted class of momentum points will be shown, namely the
generalized diagonal kinematics. These allow to reach lower momentum values and carry
lessened hypercubic artifacts. However, of the four types of diagonal momenta only the
mixed cases will be shown. The reason is again related with the effort to increase the
signal to noise ratio. On-axis momenta are disregarded for involving higher hypercubic
artifacts, and generally larger error bars due to smaller statistics. On the other hand,
fully diagonal kinematics of the form (n, n, n, n) are disregarded due to having a smaller
set of possible distinct H(4) averaging points. Both (n, n, n, 0) and (n, n, 0, 0) retain a
good balance in ‘non–equivalent’ Z4 averaging points while not being strongly affected
by H(4) artifacts when compared with on-axis momenta.

As a starting point we are interested only in obtaining a proper signal of the four
gluon correlation function. A detailed analysis of the infrared behaviour of the functions
is difficult due to the uncertainty associated with the data. The 644 lattice with 2000
configurations provides a much better result and will be analysed. The 804 lattice with
550 configurations allows access to lower momenta, however substantial fluctuations in
the data inhibit its analysis. For the latter, only points above a given momentum will
be shown and compared with the results from the larger ensemble.

4.3.1 Four gluon correlation function

We now show the results for the four gluon correlation function from the β = 6.0, 644 and
804 ensembles. As introduced in section 3.7, for the configuration (p, p, p,−3p) only two
form factors are possible to extract, VΓ(0)(p2) and VG(p2) associated with the tree-level
and the G tensor, respectively.

For this particular kinematics the results for the 644 lattice are shown in figs. 4.31
and 4.32. Only the two mixed diagonal configurations are shown with VG(p2) and
VΓ(0)(p2) on the first and second figure, respectively. Notice these are not the pure,
dimensionless form factors due to the presence of the external propagators, i.e. we are
using

Vi(p2) = V ′i (p2)(D(p2))3D(9p2), (4.25)

where V ′i (p2) corresponds to the pure vertex form factor, as defined in section 3.7.
A smaller plot is shown in each figure with a narrower range to facilitate the analysis

of the behaviour of the function for the mid-momentum range. Both sets of data
(n, n, 0, 0) and (n, n, n, 0) seem to follow a similar curve although with enlarged statistical
fluctuations in the IR region. The fact that two sets of non-equivalent kinematics produce
similar curves should be an evidence of this result being a proper signal of the four gluon
correlation function.

VΓ(0)(p2) shown in fig. 4.31 seems to oscillate quite smoothly near 1.1 GeV where it
reaches a minimum. It subsequently grows for low momentum and seems to approach a
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Figure 4.31: Four gluon vertex form factor VΓ(0)(p2) with external propagators from the β =
6.0, 644 lattice. Only mixed diagonal configurations are considered. The smaller plot shows
a restricted range of momentum to better visualize the mid momentum region. All data was
rescaled by a factor of 1000.

finite value near the origin. However, the considerable amount of uncertainty associated
with the first two points hinders the interpretation of the IR behaviour.

The values for VG(p2) in fig. 4.32 have larger uncertainty compared to VΓ(0)(p2).
Nonetheless, both kinematics seem to follow the same behaviour, suggesting a local
maximum for p ∼ 1 GeV (see the small plot), followed by a minimum around p = 0.6 GeV
with a possible growth for low momentum. Notice that the uncertainty involved does
not allow to properly confirm this.

From the comparison of both form factors in fig. 4.33 for the same momentum
configurations we notice that the contribution from VΓ(0)(p2) is slightly larger than the
contribution from VG(p2) for the range 0.5 − 1.5 GeV. This possible difference in the
weight of the contribution from each structure was also explored in [31] with the results
following the same pattern. Again, the large uncertainty affecting lattice results allows
only for a qualitative and limited comparison.

A further evidence for this result being a proper signal of the four gluon correlation
function is found from the comparison with the 804 lattice. In figs. 4.34 and 4.35
both VΓ(0)(p2) and VG(p2) are shown for mixed diagonal configurations (n, n, 0, 0) and
(n, n, n, 0) and for both lattices. A smaller range of momentum was considered discarding
the two lowest momenta (these show large fluctuations, mainly for the larger lattice).

The form factor VΓ(0)(p2) is compared for both lattices in fig. 4.34. Looking only at
the 804 data we notice a possible similar structure to that found in fig. 4.31 (see the small
plot). The 804 results suggest a decrease for negative values and a subsequent growth
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for lower momentum. However, a discrepant point appears around p = 0.8 GeV and
the errors associated with the data are much larger than those from the 644 lattice. In
addition, if we compare both sets of data in fig. 4.33 from both lattices we notice a shift
in the momentum scales where these structures are found. The possible minimum occurs
for higher momentum in the 644 lattice. Although the general structure of the curve
seems to provide the same oscillation, the shift in the data and the large uncertainty in
the 804 results could be a sign of inconsistent data and restrains us from making further
claims.

The data for VG(p2) in fig. 4.35 also suggests an agreement between the results from
both lattices. However, albeit the curves created by both sets of data are compatible
and have the same general structure within the uncertainty, the error bars associated
with the 804 lattice are large and thus this comparison is unreliable. In this case, we do
not observe a shift in the structure of the curve14. Both the local highest point, around
p = 0.9 GeV and the minimum near p = 0.6 GeV seem to occur at the same scales in
both ensembles. However, while the minimum for the 644 lattice seems to have a negative
value, the same cannot be claimed for the larger lattice due to the large error bars.

Despite the large uncertainty, it is remarkable that two distinct lattices seem to
provide the same general behaviour for the form factors with similar structures for the
curves. This should be an evidence that we are indeed computing a valid (albeit weak)
signal of the four gluon correlation function. Nonetheless, a significant increase in the
precision of the signal is required to establish reliable conclusions.

Comparison with continuum results

Despite the large statistical fluctuations, we try to compare our results with previous
continuum predictions – these are currently the only source of possible comparison. For
this we compare only the smaller, 644 lattice having a higher precision.

The four gluon vertex was studied in a DSE analysis employing the same tensor
basis and kinematic configuration, [30] where it was argued that only the form factor
VG(p2) shows a possible divergent behaviour in the IR, while VΓ(0)(p2) remains finite.
The original data for the pure vertex form factors V ′i (p2) from this investigation is shown
in figs. 4.36 and 4.37. We are interested in comparing our results with the black curves,
representing the complete contribution (within the truncation scheme)15.

Although on the lattice we can only access the complete vertex with some reasonable
statistical accuracy, we can establish some general comparisons with the continuum
results by considering the smooth, and practically constant behaviour of the gluon
propagators in the IR. In addition to this approximation, both the large uncertainty
associated with lattice results and the approximations involved in the DSE approach call
for careful conclusions from the following comparisons.

Comparing the results for the tree-level form factor in figs. 4.31 and 4.36 we notice a
discrepant shift in the overall functions, namely the DSE curve sets in at unit values for

14Notice that the momentum points do not perfectly match due to the different lattice size, N . The
definition of lattice momentum is ap = 2πn/N .

15The remaining curves are the individual contributions from one-loop diagrams in the DSE formalism.
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Figure 4.36: Original data from [30] for the DSE computation of the pure four gluon vertex
associated with the tree-level tensor V ′Γ(0)(p2). The ‘total’ result in black is the relevant structure
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Figure 4.37: Original data from [30] for the DSE computation of the pure four gluon vertex
associated with the tree-level tensor V ′G(p2). The ‘total’ result in black is the relevant structure
for comparison.

large momenta, while the lattice data seems to approach zero. Notice, however that this
could be an effect of the external propagators. Nonetheless, the general structure of the
lattice data seems to follow the behaviour of the continuum prediction within the large
uncertainty. Namely, the pattern of oscillations is similar, showing what seems like a
local minimum for p ∼ 1 GeV followed by a sign change for positive values below 1 GeV.
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For smaller momentum the data is less reliable due to larger uncertainty, however it
seems to approach a finite IR value, which again follows the continuum prediction.

Another DSE study, using the tree-level tensor only, [31] obtained a similar result to
that in fig. 4.36. Due to the orthogonality between both tensors Γ(0) and G, eq. (3.41),
the results assuming only the tree-level tensor for the basis should have the same general
behaviour as the one found in fig. 4.31. Therefore, this serves as a further connection
between lattice and continuum results due to the same qualitative structure in VΓ(0)(p2).

The results for VG(p2) in figs. 4.32 and 4.37 are also compatible within the large
uncertainty of the lattice results. In this case no shift is observed between continuum
and lattice data. The form factor computed from the lattice shows a decrease to negative
values for p ∼ 0.6 GeV in the 644 ensemble, which is also noticeable in the DSE result
around the same momentum scales. For lower momentum the data suggests a possible
sign change and subsequent IR growth, again compatible with previous continuum results.
Notice, however that the error bars for low momenta provide limited confidence in these
observations. Also, the finite volume of the lattice does not allow to reach sufficiently
low momenta to better evaluate the IR behaviour.
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Conclusion

In this thesis we computed and analysed three different gluon correlation functions of
the pure Yang-Mills theory in Landau gauge using the lattice formalism of QCD. Two
lattices were considered with the same lattice spacing and different physical volumes –
see table 4.1.

In the first part of the work we investigated the gluon propagator to understand how
the use of continuum tensor bases affects the knowledge of lattice computed tensors in a
4-dimensional theory. To date, only 2 and 3-dimensional studies have been conducted
on this topic [12, 13]. To this end we constructed suitable lattice tensor bases respecting
the corresponding lattice symmetries.

Continuum relations among lattice and continuum form factors were identified and
evaluated for every tensor structure. We found that, within the uncertainty, continuum
relations are satisfied for a large range of momentum which seems to indicate that
the lattice data is compatible with the Slavnov-Taylor identity. Furthermore, to probe
the quality of our results we used the data from a precise lattice computation [72] as
a comparison. The results obtained with various bases match this benchmark result
although with increased fluctuations for larger bases.

The completeness of each tensor basis in describing the lattice tensor Dµν(p) was
studied. Specific kinematics were considered independently for a detailed analysis and we
found that, in general, the most complete bases (larger number of form factors) provide a
better reproduction of the original lattice tensor and the use of a continuum tensor basis
for the propagator leads to non-negligible loss of information of the lattice correlation
function. The orthogonality of the propagator using lattice tensors was also studied and
it serves as a complementary analysis of the completeness for each basis.

The analysis of the reconstruction for specific kinematics hinted about the existence
of special points for which the continuum basis matches the description from lattice bases.
These are single scale momenta which were then investigated exclusively. Although for
these points the continuum and lattice tensors provide the same quality in the description
of the tensor, the results are substantially better for configurations closer to the diagonal
of the lattice. Moreover, continuum relations are exactly satisfied by these kinematics
and constrain the number of independent form factors describing the tensor. This is in
turn related with the similar completeness from lattice and continuum bases.

With this work we provide additional validation for the traditional method to compute
vertex functions using points near the diagonal of the lattice. We conclude that diagonal
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data not only reduce hypercubic artifacts in the form factors (lattice scalars) but also in
the tensor structures that form the basis. This is noticeable in the good reconstruction
results obtained for diagonal configurations. We also confirm that, in general, the
use of improved momentum provides a better description of lattice objects than the
naively discretized lattice momentum. In fact, this change of variables improves also the
fulfilment of both continuum and orthogonality conditions, as well as the match with
the benchmark result.

Although we did not consider a fully complete tensor to describe the gluon propagator,
we found that an increase in the degrees of freedom is accompanied by a considerable rise
in statistical fluctuations in the form factors. This restricts the number of independent
tensor structures used due to limited statistics.

The effect of a finite volume lattice was also explored. We found that the gener-
alized diagonal configurations seem to be insensible to the finite volume regarding its
reconstruction. For the remaining configurations we observed that, in general, the larger
lattice provides lower ratios for the reconstruction for both continuum and lattice bases.

The finiteness of the space was not taken into account in the construction of lattice
tensors, and the search for proper bases with respect to the symmetries as well as the size
of the lattice should improve the description of the propagator. Moreover, mixed terms
involving both improved and lattice momentum could be considered as well as continuum
vanishing terms, depending explicitly on the lattice spacing. Identically, the behaviour
of different tensor bases with varying spacings could be explored. Finally, proper tensor
structures respecting lattice symmetries for higher order correlation functions are yet
to be constructed, and would allow to probe how the use of continuum bases affects its
description.

In the second part we analysed the three gluon correlation function from the 804

lattice. We began by showing that the use of the complete set of group transformations
(Z4 average) provides an improved signal to noise ratio. This is crucial for the computation
of higher order functions. A comparison with the perturbative prediction for high
momenta was performed for both two and three gluon correlation functions, and was
confirmed by fitting both curves for sufficiently high momentum.

We analysed the IR behaviour for the three gluon 1PI function. Two different
hypothesis were considered, namely a possible zero-crossing occurring for low momenta
with a subsequent IR divergence. The effect is interpreted using the concept of dynamical
mass generation for the gluon which acquires a momentum dependent mass, whereas
the ghost is supposed to remain massless thus inducing a possible divergence. This
hypothesis is advocated by various continuum studies, however it is highly dependent
on the approximations employed. Conversely, an analytic investigation of the gluon
and ghost two point functions suggest a possible dynamical ghost mass which should
regularize the vertex and thus remove the IR divergence [28].

Since the IR data provides no clear evidence of the sign change, let alone the possible
divergence for lower momenta, we analysed the behaviour of the data by considering
three different functional models. The first form contains an IR unprotected logarithm,
eq. (4.22), which other than the zero-crossing also allows an subsequent divergence. Both

90



the complete set of data, and the points surviving momentum cuts above 1 GeV provide
good quality fits. The results of the fits for various ranges indicate a zero-crossing around
0.15− 0.25 GeV from this functional form. Notice, however, that while we try to model
the zero-crossing, the divergence is not sustained by lattice data, hence predictions for
this property are less reliable.

The second functional form, eq. (4.23), represents the case of a non-vanishing dynam-
ical ghost mass which is included in the logarithm and removes the IR divergence while
still allowing for a sign change. In this case the complete data provides a good fit with
the curve for the range of momenta considered. It is consistent with a positive IR value
for the vertex and an absent sign change. On the other hand, although the data after
momentum cuts also matches the data, this curve is associated with a larger uncertainty.
In this case a sign change is possible below 0.4 GeV but it is not guaranteed by the curve.

The last model, eq. (4.24) is a power law ansatz whose purpose is to probe the degree
of the possible divergence for low momentum, and thus the functional form is restricted
to lower momentum. This can be noticed by the decline in the quality of fit for momenta
above 1 GeV and by the poor match between the curve and lattice data for this region.
On the other hand, for momenta below ∼ 1 GeV the curve shows a good agreement with
lattice data. However, since the possible divergence lacks confirmation from lattice data,
no reliable conclusions can be established.

Although we do not yet have precise IR data to validate the zero-crossing, we tried to
establish a momentum range for the sign change using the analysis of the three models.
However, the possible divergence is currently out of our grasp due to the lack of data in
the very deep IR. The search for this property calls for a larger lattice, however to obtain
a sufficient amount of statistics with a large lattice requires a substantial increase in the
computational resources. This difficulty could be overcome by using large ensembles of
high volume but coarser lattices. This should be possible due to the seemingly negligible
effect of the discretization in the infrared region for this vertex found in [24].

For a possible finite IR value for the vertex, the data seems to be compatible with
the model despite the large uncertainty hindering a more detailed analysis. A better
description of the deep infrared region is necessary to make a more accurate study.

To conclude the study of the three gluon vertex, a comparison between the 804 and
644 lattice data was conducted to search for possible finite volume effects. The results
from the 804 lattice seem to be enhanced relatively to those from the 644 lattice, creating
a shift for momenta below ∼ 1.4 GeV. This can be partially explained by previous
investigations of the gluon propagator, which was found to decrease in the IR with
increasing volume, and thus inducing an enhancement in the three gluon vertex when
divided by the propagators. We also compared the predictions from the three models in
eqs. (4.22) to (4.24) with the results from the 644 lattice. While the curves are modified
due to the shift in the data, remarkably the prediction for the zero-crossing seems to
remain unchanged within the uncertainty. This is compatible with the finite volume
effect amounting to a multiplicative factor such as the one induced by the division of the
external propagators. However, in order to properly understand the effect, a detailed
analysis of both the complete and pure three gluon functions is necessary for different
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lattice volumes. For the second model, eq. (4.23), the fit with the 644 data follows the
same behaviour but with increased precision. The sign change seems to be predicted for
lower momenta, however this is not unambiguously confirmed within the error bars.

While we explored a single kinematic configuration, additional configurations could
be considered to analyse its IR behaviour. The use of different volume lattices for other
kinematics would also allow to improve the knowledge on the possible finite volume effect.
Another extension of this work could be related to the large statistical fluctuations
affecting the high momentum region of the three gluon 1PI function. However, as
discussed in section 4.2 this is not achievable by an increase in the number of gauge-field
configurations and thus other alternatives should be envisioned.

For the final topic we computed the four gluon correlation function. As a higher order
function, it is associated with larger statistical fluctuations which hinder the attainment
of a discernible signal. In fact, current precision allows only to study the complete
correlation function, while the 1PI function carries large fluctuations. Using a suitable
kinematic configuration we isolated the contribution of the pure four gluon 1PI function
with external propagators. In addition to the choice of kinematics, an approximation of
the Lorentz tensor basis reduced the number of possible structures to three. However,
for the kinematics (p, p, p,−3p) and the approximation employed, only two form factors
are possible to extract.

To improve the signal quality, we analysed the correlation function only for configura-
tions (n, n, n, 0) and (n, n, 0, 0). The points from both kinematics seem to define a single
and smooth curve, except for low momentum due to fluctuations and large error bars.
Additionally, the results from both ensembles have seemingly matching curves within
the uncertainty, with exception of some momentum points in the VΓ(0)(p2) form factor,
which show some discrepancies for the 804 data. Notice, however, that the 804 lattice
provides reduced statistics and the comparison is to be taken with care.

To complete the analysis we compared lattice results against the pure four gluon vertex
from previous continuum investigations [30, 31]. This is a very delicate comparison due
to the impossibility of the computation of the lattice four gluon 1PI function. Hence, only
a very qualitative connection between the continuum and lattice curves was established.
Nonetheless, this should be a good indication of the signal obtained.

Although the results are an evidence that we are indeed peeking at the four gluon
correlation function, the statistical relevancy of the signal is still very small and the
signal should be improved in order to properly analyse the vertex. From the previous
analysis, the main structures observed in the form factors should be noticeable for a
reasonable range of momentum achievable by our current lattices. Thus, an increase in
statistics for the current ensembles should help providing a clearer curve. Besides, the
pure 1PI form factors may only be computed accurately with increased precision.
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Appendix A

SU(N) generators and identities

SU(N) is the special unitary group of degree N whose elements U are N ×N unitary
matrices, U †U = 1, satisfying det(U) = 1. It is a Lie group, with its elements being
continuously generated by real parameters θa ∈ R. Each element can be written as

U = eiθ
ata (A.1)

where ta are the N2 − 1 group generators, corresponding to each parameter θa. The
generators are hermitian and traceless matrices

(ta)† = ta, tr(ta) = 0, (A.2)

that span a vector space underlying the corresponding Lie algebra, su(N). The generators
obey the commutation relation

[ta, tb] = ifabctc (A.3)

where fabc are the antisymmetric structure constants, specific for each group and non-zero
for a non-abelian group. A fundamental property of Lie groups is the Jacobi identity

[ta, [tb, tc]] + [tb, [tc, ta]] + [tc, [ta, tb]] = 0 (A.4)

implying
fadef bcd + f bdef cad + f cdefabd = 0. (A.5)

There are two main irreducible representations of the groups SU(N). The fundamen-
tal representation consists of N -dimensional complex vectors, with the group as well as
the algebra elements being N ×N matrices. For QCD, N = 3, this corresponds to the
representation of the 3-spinor quark field. The usual choice of the normalization of the
generators is

facdf bcd = Nδab (A.6)

from which we can derive for the fundamental representation,

Tr
(
tatb

)
= δab

2 . (A.7)
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The structure constants may be written as

fabc = −2i tr
(
[ta, tb]tc

)
(A.8)

and the product of two generators has the general form,

tatb = δab

2N + 1
2d

abctc + 1
2 if

abctc (A.9)

where the totally symmetric object is defined as dabc = 2 Tr
(
ta{tb, tc}

)
, making use of

the anti-commutator defined as

{ta, tb} = δab

N
+ dabctc. (A.10)

Additional identities may be obtained

Tr
(
tatbtc

)
= 1

4(dabc + ifabc) (A.11)

fabcfabc = N(N2 − 1) (A.12)

fabmf cdm = 2
N

(
δacδbd − δadδbc

)
+ dacmddbm − dadmdbcm (A.13)

fabmdcdm + facmddbm + fadmdbcm = 0 (A.14)

with a further relation for N = 3,

δabδcd + δacδbd + δadδbc = 3
(
dabmdcdm + dacmddbm + dadmdbcm

)
. (A.15)

The other important representation is the adjoint representation to which the gener-
ators belong and acts on the vector space spanned by the generators themselves – it is
an N2− 1 dimensional representation. In QCD, the 8 gluon fields live on the adjoint rep-
resentation of the group SU(3) and transform accordingly. The representation matrices
of the generators are given by the structure constants

(tb)ac = ifabc. (A.16)

A useful relation is the trace of four generators in the adjoint representation

Tr
(
tatbtctd

)
= δadδbc + 1

2
(
δabδcd + δacδbd

)
+ N

4
(
fadmf bcm + dadmdbcm

)
. (A.17)

In this representation, the covariant derivative

Dµη(x) = (∂µ − igAaµta)η(x) (A.18)

takes the component form

(Dµη(x))a = ∂µηa(x)− igAbµ(tb)acηc(x) (A.19)
= ∂µηa(x) + gfabcAbµηc(x). (A.20)
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Appendix B

Lattice tensors

B.1 Construction of the lattice basis
B.1.1 Momentum polynomial under a transposition
We consider a brief proof of the transformation of a polynomial of a vector p under a
transposition is given. A transposition is defined by an exchange of two components of
a vector, σ ↔ ρ, under the operation T σρ. A matrix form for this operator is

T
(σρ)
µν = δµν , µ 6= σ, ρ

T
(σρ)
σν = δρν

T
(σρ)
ρν = δσν

(B.1)

which reproduces the correct transformation on the vector p:
p′ν = pν , ν 6= σ, ρ

p′σ = pρ,

p′ρ = pσ.

(B.2)

Considering the transformation for an arbitrary order of p
(p′µ)n = p′µ...p

′
µ = T (σρ)

µν1 pν1 ...T
(σρ)
µνn pνn (B.3)

and considering the case µ 6= σ, ρ the correct transformation is immediate since all
components are left unchanged,

(p′µ)n = pµ...pµ = (pµ)n = T (σρ)
µν (pν). (B.4)

For µ = σ, ρ, the transformation is
(p′σ)n = T (σρ)

σν1 pν1 ...T
(σρ)
σνn pνn

= δσν1pν1 ...δσνnpνn

= T (σρ)
σν (pν)n = (pρ)n. (B.5)

This is the same transformation as for the vector p, and thus the polynomial transforms
accordingly.
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B.1.2 Second order tensors under H(4) symmetry
Here we show that there is no mixing among the diagonal and off-diagonal elements
under a general H(4) transformation, using the fact that these transformations can be
formed by products of transpositions and inversions.

The transposition operator for the exchange of components σ ↔ ρ was defined in B.1.
For the inversion of the component ρ, we define the operator as

P ρµν = δµν , µ 6= ρ (B.6)
P ρρν = −δρν . (B.7)

The transformation for a second order tensor under transpositions and inversions is

D′µν = T (σρ)
µτ T (σρ)

µε Dτε, (B.8)
D′µν = P (ρ)

µτ P
(ρ)
µε Dτε. (B.9)

Now we consider the transformation of diagonal elements µ = ν. For transpositions
there are three distinct situations,

D′σσ = δρτδρεDτε = Dρρ

D′ρρ = D′σσ
D′µµ = Dµµ, µ 6= ρ, σ

(B.10)

and we see that no off-diagonal terms appear.
A similar analysis can be considered for the inversions using B.9{

D′ρρ = (−δρτ )(−δρε)Dτε = Dρρ

D′µµ = Dµµ, µ 6= ρ
(B.11)

and again for this transformation, no off-diagonal terms appear for the diagonal trans-
formation.

We now consider the off-diagonal transformation, µ 6= ν. For the transpositions there
are again three distinct cases

D′σν = ∑
τ,ε δρτδνε = Dρν

D′ρν = D′σν
D′ρσ = Dσρ

(B.12)

and no diagonal terms are involved. On the other hand for inversions there are two cases{
D′µν = −Dµν , µ = ρ ∧ ν = ρ

D′µµ = Dµµ, µ 6= ρ ∧ ν 6= ρ.
(B.13)

We conclude that a general H(4) transformation does not mix the diagonal and off-
diagonal elements for second order tensors.
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B.2 General construction for projectors
The projectors Pk are necessary to extract form factors corresponding to each basis
element. Here we describe the general form of constructing projectors, for an arbitrary
vector space.

Given a general tensor Γ, this object will be described by a basis of N tensor elements
τ j ,

Γ =
N∑
j=1

γjτ j (B.14)

where γj are the corresponding dressing functions. Suppose we want to extract one of
the form factors γk by acting on Γ with an operator Pk (this operation involves the
necessary index contractions to build a scalar). The operation is of the form,

PkΓ = Pk
 N∑
j=1

γjτ j

 = γk. (B.15)

From this we may extract the relation

Pkτ j = δkj . (B.16)

using the completeness of the basis, and the linearity of the operator. Considering the
most general form of the projector Pk, constructed from basis elements

Pk =
N∑
i=1

Akiτ
i (B.17)

and substitute this into eq. B.16, to obtain

N∑
i=1

Akiτ
iτ j = δkj ⇔ Aki = (τkτ i)−1. (B.18)

This reduces the extraction of the form factors to a matrix inversion problem. We need
only to build the matrix with elements A−1

ki = τkτ i, where the contraction of indices
referred before is assumed, and obtain its inverse A

Pk =
N∑
i=0

(τkτ i)−1τ i. (B.19)

With this mechanism, it is straightforward to understand why it is impossible to build
well defined projectors when there are redundant basis elements that can be written as a
linear combination of the remaining elements. In this case, not all rows will be linearly
independent, and it is know from linear algebra that matrices with this property are
singular, i.e. non-invertible, and the projectors cannot be defined.
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B.2.1 Projectors for the lattice bases

We use the previous mechanism to build the projectors for the tensor bases considered
throughout the work. We begin with the general form for second order tensors in the
continuum

Dµν(p) = A(p)δµν +B(p)pµpν (B.20)

with the elements τ1 = δµν and τ2 = pµpν . The matrix A−1 for a Nd dimensional space
is

A−1 =
(
N2
d p2

p2 p4

)
, (B.21)

and its inverse

A = 1
p4(Nd − 1)

(
p4 −p2

−p2 Nd

)
. (B.22)

The projectors are built with eq. (B.17)

P1
µν = 1

Nd − 1

(
δµν −

pµpν
p2

)
(B.23)

P2
µν = 1

Nd − 1

(
−δµν
p2 +Nd

pµpν
p4

)
, (B.24)

and the extraction of the respective form factors follows immediately

A(p) = 1
Nd − 1

(∑
µ

Dµµ(p)− 1
p2

∑
µν

pµpνDµν(p)
)

(B.25)

B(p) = 1
Nd − 1

(
− 1
p2

∑
µ

Dµµ(p) + Nd

p2

∑
µν

pµpνDµν(p)
)
. (B.26)

This procedure can be simplified when considering the tensor form

Dµν(p) = D(p2)
(
δµν −

pµpν
p2

)
, (B.27)

with the form factor extracted with

D(p2) = 1
Nd − 1

∑
µ

Dµµ(p). (B.28)

We consider now the lattice basis 3.16. As referred in the construction of the basis,
the diagonal elements do not mix with off-diagonal, which allow us to analyse them
independently. The reducibility of the group representation splits the five dimensional
matrix into two square matrices of size two and three. It is thus important to use two
different index contractions, one considering only diagonal terms, ∑µ τ

i
µµτ

j
µµ, and the
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second considering only off-diagonal elements ∑µ 6=ν τ
i
µντ

j
µν . Starting with the diagonal

elements τ1 = δµµ, τ2 = p2
µ and τ3 = p4

µ. The contraction matrix A−1 is

A−1 =

Nd p2 p[4]

p2 p[4] p[6]

p[4] p[6] p[8]

. (B.29)

Hence, the diagonal form factors are

E(p) = 1
∆1

[∑
µ

Dµµ(p[4]p[8] − (p[6])2) +
∑
µ

p2
µDµµ(p[4]p[6] − p2p[8])

+
∑
µ

p4
µDµµ(p2p[6] − (p[4])2)

]
(B.30)

F (p) = 1
∆1

[∑
µ

Dµµ(p[4]p[6] − p2p[8]) +
∑
µ

p2
µDµµ(Ndp

[6] − (p[4])2)

+
∑
µ

p4
µDµµ(p2p[4] −Ndp

[6])
]

(B.31)

G(p) = 1
∆1

[∑
µ

Dµµ(p2p[6] − (p[8])2) +
∑
µ

p2
µDµµ(p2p[4] −Ndp

[6])

+
∑
µ

p4
µDµµ(p2p[4] −Ndp

[6])
]

(B.32)

with

∆1 = Nd

(
p[4]p[8] − (p[6])2

)
+ p2

(
p[4]p[6] − p2p[8]

)
+ p[4]

(
p2p[6] − (p[4])2

)
. (B.33)

Similarly we can repeat the procedure for the two dimensional, off-diagonal case,
obtaining both form factors,

H(p) = 2
∆2

[∑
µ6=ν

pµpνDµν(p[4]p[6] − p[10])−
∑
µ6=ν

p3
µp

3
νDµν(p2p[4] − p[6])

]
(B.34)

I(p) = 1
∆1

[∑
µ6=ν

pµpνDµν(p[8] − (p[4])2) +
∑
µ6=ν

p3
µp

3
νDµν(p4 − p[4])

]
(B.35)

with

∆2 = 2
(
p2p[4] − p[6]

) (
p[8] − (p[4])2

)
+ 2

(
p4 − p[4]

) (
p[4]p[6] − p[10]

)
. (B.36)

Having all projectors for the lattice basis, we need to consider the case of the general-
ized diagonal kinematics where these projectors are not possible to obtain. This analysis
is done for each individual configuration. Starting with the diagonal, (n, n, n, n), the
gluon propagator is

Dµµ(p) = (E(p) + n2F (p) + n4G(p))δµµ
Dµν(p) = n2H(p) + 2n4I(p), µ 6= ν (B.37)
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and in this case we can only extract two form factors, for the diagonal and off-diagonal
terms. These are extracted with

E(p) + n2F (p) + n4G(p) = 1
Nd

∑
µ

Dµµ(p), (B.38)

n2H(p) + 2n4I(p) = 1
Nd(Nd − 1)

∑
µ 6=ν

Dµν(p). (B.39)

The mixed configurations, (n, n, 0, 0) and (n, n, n, 0) have non-diagonal terms and the
gluon propagator reads

Dµµ(p) = E(p)δµµ + (F (p) + n2G(p))p2
µ

Dµν(p) = (H(p) + 2I(p)n2)pµpν , µ 6= ν. (B.40)

For these configurations we consider the parameter k representing the number of non-
vanishing components. The contractions of tensor basis elements are summarized by

A−1
diag =

(
Nd kn2

kn2 kn4

)
, A−1

Off-diag = k(k − 1)n4 (B.41)

with corresponding inverses

Adiag = 1
kn4(Nd − k)

(
kn4 −kn2

−kn2 Nd

)
, AOff-diag = 1

k(k − 1)n4 (B.42)

With this, the form factors follow easily

E(p2) = 1
kn4(Nd − k)

∑
µ

Dµµ(p)
(
kn4δµµ − kn2p2

µ

)
(B.43)

F (p2) + n2G(p2) = 1
kn4(Nd − k)

∑
µ

Dµµ(p)
(
−kn2δµµ +Ndp

2
µ

)
(B.44)

H(p2) + 2n2I(p2) = 1
k(k − 1)n4

∑
µ6=ν

Dµν(p)pµpν . (B.45)

Lastly, for on-axis momenta, (n, 0, 0, 0), only diagonal terms survive

Dµµ(p) = E(p) + (F (p) + n2G(p))p2
µ, (B.46)

and the form factors are extracted with

E(p) = 1
3
∑
µ 6=1

Dµµ(p), (B.47)

n2F (p) + n4G(p) = D11(p)− E(p). (B.48)
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Appendix C

Results – Additional figures

C.1 Gluon propagator

C.1.1 Continuum relations – mixed diagonal configurations

In this section the continuum relations for the momentum configurations (n, n, n, 0) and
(n, n, 0, 0) are computed. The procedure follows similarly as the other two diagonal
kinematics. For both cases the lattice gluon propagator reads

Dµµ = E(p2)δµµ + (F (p2) + n2G(p2))p2
µ

Dµν = (H(p2) + 2n2I(p2))pµpν , µ 6= ν. (C.1)

Using the extraction for the form factors built in appendix B.2 and also the continuum
parametrization

Dc
µν(p) = D(p2)

(
δµν −

pµpν
p2

)
the proof of the continuum relations is follows simply,

E(p2) = D(p2)
kn4(Nd − k)

∑
µ

(
δµµ −

pµpν
p2

)(
kn4δµµ − kn2p2

µ

)

= D(p2)
kn4(Nd − k)

∑
µ

(
kn4 − kn2p2

µ −
kn4

p2 p
2
µ + kn2

p2 p
4
µ

)
= D(p2)

F (p2) + n2G(p2) = D(p2)
kn4(Nd − k)

∑
µ

(
δµµ −

pµpν
p2

)(
−kn2δµµ +Ndp

2
µ

)

= D(p2)
kn4(Nd − k)

∑
µ

(
−kn2 +Ndp

2
µ −

kn2

p2 p
2
µ + Nd

p2 p
2
µ

)

= −D(p2)
p2
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H(p2) + 2n2I(p2) = D(p2)
k(k − 1)n4

∑
µ6=ν

−pµpν
p2 pµpν

= −D(p2)
p2 .

Notice that p2 = kn2 with the parameter k defined in appendix B.2 and Nd = 4 the
dimensionality of the lattice. In addition, this result is independent of the use o lattice
or improved momentum.
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Figure C.1: Form factors from the lattice basis for the mixed configurations p = (n, n, n, 0) (left)
and for p = (n, n, 0, 0) (right) both as a function of improved momentum. Shown for comparison
is the benchmark result d(p̂2).

The analysis of the continuum relations for these two configurations is seen in fig. C.1.
The continuum relations are exactly satisfied among all three form factors for both
configurations. The benchmark result was shown for comparison, and it is noticeable that
the further from the diagonal, the worse the correspondence becomes. The configuration
(n, n, 0, 0) deviates from the gluon propagator dressing function for higher momentum,
while the result for (n, n, n, 0) remains compatible through all range of momenta similarly
to the full diagonal momenta.
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