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Abstract

In the context of computer networks, node mobility can pose challenges to data delivery.
Particularly, it increases the likelihood of disruptions to the connections, making it unlikely
for an end-to-end path from the source to the destination to ever exist. Given that the
architecture and protocols of today’s Internet depend on such paths, they are likely to
perform poorly under such conditions.

Delay-Tolerant Networks handle these challenging conditions by assuming the existence of
disruptions, which can be compensated by having some storage in each node. This allows
nodes to store data as soon as it is received, carrying it with them as they move, and being
able to later forward it to another node they come into contact with. Therefore, in this
store-carry-forward paradigm, mobility is seen as something to be exploited for the benefit
of the network. Each node forwards and manages its data according to a certain routing
strategy, which has a major impact in the network’s performance.

In this dissertation, a simplified model of a urban sensing scenario is proposed, where Data
Collecting Units gather sensor data which is to be delivered to Road Side Units by entities
that move between them. A finite-state discrete-time homogeneous Markov chain is used
to describe this Delay-Tolerant Network. In that context, mobility, communication and
routing are modelled separately, permitting the usage of different implementations of each.
We also introduce an analysis framework for this model, which describes how to calculate
multiple network performance metrics. With this, a specific real-world scenario can be
analysed, enabling a certain type of routing strategy to be optimized.

Keywords

Delay-Tolerant Network, Store-Carry-Forward, Mobility Model, Communication Model,
Routing Strategy, Urban Sensing.
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Resumo

No contexto de redes de computadores, a mobilidade dos nós pode causar desafios à en-
trega de dados. Particularmente, isso aumenta a probabilidade de quebras nas conexões,
tornando improvável a ocorrência de caminhos de ponta a ponta desde a origem até ao
destino. Sendo que as arquiteturas e protocolos usados pela Internet de hoje em dia de-
pendem da existência de tais caminhos, estes terão provavelmente mau desempenho sob
estas condições.

As Redes Tolerantes a Atraso lidam com estas condições difíceis assumindo a existência
de quebras, que podem ser compensadas pela existência de armazenamento em cada nó.
Isto permite aos nós armazenar dados assim que são recebidos, transportá-los enquanto
se movem, e mais tarde encaminhá-los para outro nó com que entre em contacto. Assim,
neste paradigma de Armazenamento-Transporte-Encaminhamento, a mobilidade é vista
como algo que pode ser explorado para o benefício da rede. Cada nó encaminha e gere os
seus dados de acordo com uma certa estratégia de encaminhamento, que tem um impacto
significativo no desempenho da rede.

Nesta dissertação, propomos um modelo simplificado de um cenário de sensores em ambi-
ente urbano, em que Unidades de Recolha de Dados reúnem dados de sensores que têm que
ser entregues a Unidades de Beira de Estrada, por entidades que se movem entre elas. Para
descrever esta Rede Tolerante a Atraso, usamos uma Cadeia de Markov homogénea, de
tempo discreto, e de estados finitos. Neste contexto, a mobilidade, comunicação e encami-
nhamento são modelados separadamente, permitindo o uso de diferentes implementações
para cada um deles. Também introduzimos um quadro de análise para este modelo, que
descreve como calcular múltiplas métricas de desempenho da rede. Com isto, analisamos
um cenário real específico, permitindo-nos otimizar a estratégia de encaminhamento.

Palavras-Chave

Redes Tolerantes a Atraso, Armazenamento-Transporte-Encaminhamento, Modelo de Mo-
bilidade, Modelo de Comunicação, Estratégia de Encaminhamento, Sensores em Ambiente
Urbano.
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Notation

Representation Meaning
a variable
A random variable
A generic set
A set of states
a row vector
ai ith element of row vector a
A matrix
ai ith row of matrix A
aij element on the ith row and jth column of matrix A

Table 1: General notation used for all equations in this dissertation.

Representation Meaning
X State space
s Number of states in X
E Set of entities in the model
m Number of entities in E
n Number of locations
t Data’s time-to-live
c Contact range
τ Sampling period
r Replacing ratio
lxi Location of entity i ∈ E on state x ∈ X
dxi Data of entity i ∈ E on state x ∈ X
P Transition probability matrix
π Stationary state probability vector

Table 2: Notation for parameters and concepts used on the models defined in Chapter 4.
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Chapter 1

Introduction

Delay-Tolerant Networks (DTNs) [8] arise in situations where nodes in a network are
not permanently connected, but may connect to one another at discrete time intervals in
predictable or unpredictable ways. Under these circumstances, an end-to-end path between
a source of data and its intended destination is not guaranteed to occur at any interval,
and data transfer may have excessive delays or simply never happen. These characteristics
contradict some of the assumptions of the current Internet architecture and protocols [12],
and thus a different architecture is required. DTN architectures typically feature nodes
with persistent storage (buffer), allowing them to save the data that they receive, and
to forward it to other nodes when a connection is made. This approach is known as
Store-and-Forward (SF) operation and it allows the network to accommodate delays and
disruptions.

The interruption of connectivity between nodes can be a consequence of many different
scenarios (such as limited energy resources or noisy connections), but a particularly inter-
esting one occurs when the network is composed of sparse mobile nodes. In this scenario,
disruption of connections takes place when nodes move in such a way that the receiving
node is no longer within a certain contact range of the transferring node. Whenever a
mobile node with data is within contact range of another, it must decide whether to for-
ward the data to the other or not, and also whether to keep carrying it, making this a
Store-Carry-Forward (SCF) operation. The policies behind these decisions are the basis of
the network’s routing protocol, which may or may not take into account prior knowledge
regarding the mobility of its nodes (mobility model), or some sort of network topology
information; the more information this protocol has access to, the more likely it is for data
to reach its intended destination sometime in the future.

A possible real-world application of a scenario akin to the one described above is con-
sidered in the MobiWise project, where sensors located at certain points in a city collect
various types of environmental data (such as temperature, humidity and pollution), which
ultimately needs to be delivered to some device through the Internet. Each set of sensors
is directly connected to a Data Collecting Unit (DCU), which can store the data being
generated but has no direct connection to the Internet. In order for data to be delivered, it
needs to eventually be transmitted to Road Side Units (RSUs), which are located in other
points in that city and have a direct connection to the Internet; these are essentially data
sinks which function as the end node in this scenario. Both DCUs and RSUs are capable of
communicating remotely with nearby devices. However, they are never sufficiently close to
each other to allow direct communication between them. Mobile nodes (e.g., cars, bicycles,
buses, drones or others) in the area have an On Board Unit (OBU) which allows them to
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receive, carry and transmit such data. They are, therefore, able to receive data from the
DCU and eventually forward it either to other mobile nodes or directly to an RSU. When
within contact range of other units, OBUs are faced with the challenge of deciding which
units they should communicate with and what data should be transmitted between them.
These routing decisions have consequences on the performance of the network, which may
be reflected on network metrics such as the likelihood of delivering data or the delivery la-
tency. Anticipating how changes in routing strategies influence the network’s performance
is, therefore, one of the main interests of this dissertation.

While most of the literature that investigates similar applications focuses on analysing the
results of simulations of certain scenarios [3], we are mostly interested in exploring the
possibility of building an analytical model which would allow us to calculate the expected
network metrics under any condition. In order to have tractable calculations, it is necessary
to model a simplified version of a real-world scenario which is still detailed enough to
replicate real behaviours. We aim to achieve this by separating the scenario into smaller
components that are simpler to model. Having defined this model, we can then use it to
produce a simplified model of a real-world scenario and study how it behaves under certain
scenarios and how different parameters change the network’s performance.

The remainder of this document is laid out as follows: In Chapter 2 we provide an overview
of mobility in the context of data delivery, introducing DTNs as a specific approach that can
be described in three different layers. Chapter 3 introduces some mathematical concepts
that are needed for later chapters. Then, in Chapter 4, we propose and fully describe a
simplified model for a particular urban sensing scenario, and we also study how to analyse
and implement such a model. In Chapter 5, we employ the proposed model to analyse
a specific real-world scenario and describe its optimization considerations. Finally, in
Chapter 6 we present our main conclusions and put forward some possible approaches for
future work.
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Chapter 2

Background

In the previous chapter we introduced the topics which will be the focus of this dissertation,
as well as a possible application of interest. In this chapter, we will introduce the necessary
background which will help contextualizing the issue at hand, as well as further defining
and detailing some concepts that were used. Moreover, we will reference works in related
areas which helped guiding the development of our research. Namely, on Section 2.1 we
will review the usage of mobility for data delivery in general. Then, on Section 2.2 we
will present DTNs as a specific instance of this approach, exploring aspects of its mobility
(2.2.1), communication (2.2.2) and routing (2.2.3).

2.1 Mobility as a Means of Carrying Data

As previously mentioned (Chapter 1), the conventional Internet architecture and protocols
are not well suited to deal with the challenges resulting from the mobility of nodes in a
network. Mobile Ad Hoc Networks (MANETs), which were among the earliest approaches
to dealing with networks of this type, assume the existence of mobile nodes with wireless
networking capabilities which allows them to communicate with one another without the
need for a supporting infrastructure, while being able to self-configure and self-organize [59].
While MANET concepts have been successfully used in many real-world applications (such
as smart home devices [2, 21, 68] and military networks [42, 67]), the traditional MANET
Routing Protocols (namely link-state [34] or distance-vector routing [20]) assume that we
can, at some point in time, establish end-to-end paths through which packets are sent
[44, 58]; this is unlikely to occur in sparsely connected mobile networks and, consequently,
node mobility is usually seen as having undesirable effects on network performance [69].

While mobility in those architectures is mostly seen as an obstacle, the literature also
describes a wide variety of other approaches in which mobile entities (e.g., vehicles [40],
humans [6], animals [26, 50]) are seen as desirable elements that carry data either as a
replacement for conventional communication channels or as an extension to them. This
method of physically transferring information through the movement of entities constitutes
an alternative communication channel (sometimes informally referred to as Sneakernet [30])
which can be described in ways that are analogous to normal communication channels;
therefore, network metrics such as delay, delivery ratio and throughput still apply. Chan-
nels of this kind can achieve higher throughput than conventional channels (since petabytes
of data can be carried at once, e.g. large-scale data transfer to cloud services [9, 35, 45]),
but usually at the cost of higher latency or a lower delivery ratio due to the nature of their
entities. As a result, they are better suited to use-cases that are not time-sensitive, being
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particularly unsuited to real-time communications. Besides this, since they do not use the
Internet infrastructure, these channels can be employed in places where there is a lack of
coverage (such as developing countries [40, 46]), while also allowing lower implementation
costs and avoiding network capacity limitations.

In a 2018 survey, Baron et al. [3] propose a classification system for different methods
of data transfer with mobile entities, which takes into account the characteristics of the
entities being used and also how the data is delivered; we believe that it provides helpful
abstractions which we will be using in this section. Mobile entities can be categorized as
Instrumentalized, Controlled or Contracted. The first category, commonly known as data
mules [47], describes a scenario in which we exploit the pre-existent movement of an entity
(e.g., an animal [73] or public transportation [4]), which can either be random, predictable
in some way, or follow a certain schedule. The second category, also known as data ferries
[71], refers to entities which we deliberately move through a trajectory that suits our data
delivery purposes (e.g., unmanned aerial [19] or underwater vehicles [1, 38]). The final
category refers to delivery services which we do not control directly, such as airplanes or
delivery trucks. Data mules are generally the preferred type of mobile entity, due to the
lower associated implementation costs, but they are not always feasible in practice, since
a scenario might not have exploitable mobility or there might be a need for increased
reliability.

Data delivery may be direct, if it occurs through entities that carry the data directly from a
source to a destination, or indirect, if it occurs as a result of data being forwarded through
multiple entities until it reaches a destination. For the purpose of this dissertation, direct
data deliveries are not particularly interesting, since it is assumed that they are unlikely
for the application being studied, and we are mainly concerned with understanding entity
interactions; therefore strategies for direct data delivery will not be explored. Regarding in-
direct data delivery strategies, entities can exchange data synchronously or asynchronously.
Synchronous transmissions occur when entities exchange data directly with one another by
being within contact range, and this may be possible at any location (in the case of "float-
ing" compositions) or only at certain predefined locations (in the case of "pre-positioned"
compositions). As for asynchronous transmissions, these occur when entities drop off data
at a certain intermediate nodes, from which other entities can obtain data later, which
may be stationary (throwboxes [72]) or mobile (e.g., data ferries).

In the application being studied, we assume the existence of multiple entities with pre-
existing mobility that can be exploited for our goals. Given our lack of certainty about
which specific entities may pass by our desired locations, their movement is assumed to be
hard to predict and, consequently, will be described as random. Moreover, communication
can occur synchronously at any location. Therefore, the method of data transfer in this
application can be classified as an indirect data delivery with synchronous data passing
which occurs in floating locations between entities with random mobility. This type of
data transfer is particularly well suited to DTN approaches, largely due to its synchronous
communication; therefore, in the next chapter we will explore these approaches with greater
detail.

2.2 Delay Tolerant Networks

In Chapter 1, we have already introduced DTNs and some of the challenges related to them.
However, in this section, we intend to further explore their specification, applications and
modelling considerations.
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While sometimes described as a type of MANET, literature for DTNs differs significantly
in that disruptions to connections are assumed to be frequent and thus the transmission of
data is done via successive hop-by-hop exchanges, instead of waiting for an unlikely end-
to-end path to occur. This is the Store-and-Forward (SF) paradigm, in which nodes that
receive data simply store it in a buffer until there are opportunities to forward it to some
other node. These concepts make them successful at handling sparsely connected networks
such as the one being studied, as well as many other applications, including interplanetary
communication [36], Internet kiosks in areas without normal coverage [40, 46], sensor data
collection [1, 38, 47] and animal tracking [26, 50, 73]. However, these networks imply a high
likelihood of having large delivery delays and failed transmissions and thus are unsuited
for critical or urgent communications.

In DTNs, there are many possible sources of disruptions, such as limited energy resources
(nodes shutting down after running out of battery) or noisy connections, but a particularly
interesting scenario occurs when the disruptions are a result of the mobility of nodes. In
this case, a compelling instance of the SF paradigm is the Store-Carry-Forward (SCF)
paradigm, in which nodes are able to physically transport data while it is in its stored
phase [70]. This allows us to leverage the mobility of the nodes to improve the network’s
performance, making it particularly well suited for applications like the one being studied,
which are sometimes termed Intermittently Connected Mobile Networks or Opportunistic
Networks. In general, a SCF network can be broken down into three distinct components:
1) the mobility of its nodes, 2) how data is transferred between nodes and 3) how the
nodes decide which nodes they send data to and which data they keep. By formalizing
these components, we create a Mobility Model, a Communication Model and a Routing
Strategy, respectively, which are enough to fully describe the SCF network. In the following
sections, we explore these three layers in greater detail.

While much of the SCF literature focuses on simulations of specific scenarios [3], we are
interested in having an approach that is more analytical. In that context, some papers
have explored the possibility of describing SCF interactions through Markov Chain models
[32, 48, 66], which we believe to be a promising approach.

2.2.1 Mobility Models

The performance of a SCF network is typically highly dependent on the mobility of its
nodes and their resulting contacts [41]. Consequently, SCF scenarios are usually analysed
under the assumption of a certain mobility model.

When studying a real-world scenario, it is desirable to have a mobility model with proper-
ties that mimic the entities’ behaviour. Ideally, we would gather data from existing entities,
which could then be used either to directly emulate their behaviour or to deduce a fitting
model that could later be used for simulations (e.g., [26]). However, collecting mobility
traces from these real-world entities might be difficult or expensive; in Vehicular DTN
literature, a common alternative is to create mobility traces through the usage of traffic
simulators (e.g., [29]), though these typically require knowledge about the road topology
being considered.

For the application being studied, we have no information about the behaviour of real-
world entities or even which road topology is adequate. Therefore, as a first approach,
it would be highly desirable to build a simple mathematical model that does not depend
on any of these assumptions and that can be validated and analyzed from a theoretical
standpoint. It would also be important for us to be able to experiment how a network
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performs under different entity behaviours, by simply changing the model’s parameters.
The literature shows a wide variety of mobility models employed in the study of these
networks, with differing levels of realism (how accurately they represent a real scenario),
diversification (how well they can be adapted to different mobile nodes and environments)
and complexity (how computationally intensive they are) [49].

Although mobility models based on random behaviours suffer from poor realism, they
are extremely prevalent (particularly the Random Walk [39] and Random Waypoint [24]
models), due to their low complexity and easy diversification. This diversification capability
is particularly interesting to us, given the aforementioned lack of knowledge about the
scenario. The Random Walk Model is a simple mobility model in which every node in
the network moves independently and decides, at each moment, a random direction to
move towards and sometimes a random speed or distance, without any sort of memory of
previous movements. Some examples of its usage are [47, 54, 55, 56].

Another common way of studying road traffic is through the usage of models based on
Cellular Automata (CA). A Cellular Automaton [65] is a computational model which
typically consists of a grid of cells, each with a binary state ("on" or "off") [11]. Each
cell has a notion of its neighbourhood (that is, cells that are considered to be nearby) and
decides its state in the next instant based on those neighbours, according to some rule;
this "update" of a cell’s status typically occurs synchronously for all cells. In particular,
we are interested in stochastic cellular automata, which are CA in which the previously
mentioned rule is stochastic. Moreover, in the context of CA for road traffic, it is very
common to assume a one-dimensional grid; this will essentially represent a one-way street
in which each cell corresponds to a position on the road, and a "on" state represents a car
occupying that position. Consequently, such a simplification implies a one-way street where
overtaking cars is impossible. Although these models have a relatively low complexity, they
can still be realistic at describing macroscopic behaviours of traffic [33], and thus they may
be useful for our application.

2.2.2 Communication Models

In general terms, when modelling the communication of a network of this type, we are
mainly concerned with aspects related to node connectivity and data transfer. On DTNs,
nodes communicate using some device with wireless technology (such as Bluetooth or Wi-
Fi), which is typically the same for all nodes. The wireless device and protocols that are
used dictate factors such as communication range and data transfer rate. Communication
range (or contact range) is the maximum distance between two nodes that still allows them
transfer data to one another, while the data transfer rate is the amount of data that can
be transferred between these nodes per unit of time. Evidently, higher data transfer rates
and communication ranges are beneficial to a network’s performance, but an increase in
these capabilities typically also implies an increase in power usage. Given that the nodes
in this network have to be powered by some finite battery, this may be detrimental for the
network’s performance in the long-run [52].

In a real-world scenario, the performance of a wireless device may decrease due to factors
such as physical obstacles and signal interference; however, when analysing communication,
range and data rates may be simplified by assuming a fixed value based on average/typical
values. It may also be assumed that the devices are powered by a battery that has a
sufficiently large capacity to ensure that devices do not run out of battery under a typical
usage. Moreover, we may further simplify the communication by assuming that the data
transfer rate is large enough that a message (data packet) can be transferred practically
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instantly to multiple nodes simultaneously. These simplifications are quite common in the
DTN literature, as they allow researchers to reduce the number of variables in consideration
and focus on optimizing a system under certain assumptions. However, they may prove to
be an obstacle in achieving realistic results.

2.2.3 Routing Strategies

In DTNs, routing is essentially a sequence of independent decisions made in each node with
the information that they have locally. Good routing decisions become more important
the sparser the network is, but good performance can be achieved even without global
knowledge [22]. A routing strategy can be seen as a general term for a set of 4 different
policies, namely the forwarding policy, the replication policy, the dropping policy and the
scheduling policy [23]. We will describe what these policies are separately and talk about
routing strategies in general.

When a mobile node is carrying data and it comes across another mobile node, it has to
decide whether to forward that data or not; this is the forwarding policy and it is the
most commonly studied element of a routing strategy. This decision may be based on, for
example, some information about the other node or the overall state of the network, and in
general the more information a node has access to, the easier it is for it to make a "good"
decision. Typically, a decision is considered to be "good" when data is passed to a node
with a high likelihood of eventually delivering that data to the destination (or to another
node that will deliver it); on the other hand, if data is delivered to nodes where that
likelihood is low, the chances of it representing a waste of energy and/or storage resources
increase, making it a "bad" decision.

When a node decides to forward its data to another, after that transmission is finished,
the node may keep a copy of the data sent or simply drop it; this is the replication policy.
If data is never replicated, then there is at most a single copy of each message in the entire
network. This is usually referred to as forwarding-based routing, and it is typically less
resource-intensive and simpler to implement, as handling replicas of data is not necessary.
These protocols usually require information about the network topology in order to select
a good path, which is then followed hop-by-hop, that is, an approach which is similar to
traditional MANET protocols. While efficient, forwarding-based routing may not provide
enough guarantees in terms of delivery ratio and delays [55], since messages can easily get
lost when nodes disconnect or transmissions fail. Replication-based routing tries to solve
these issues by allowing nodes to keep copies of data when it is deemed necessary, creating
data redundancy in the network. While this may decrease the likelihood of data getting
lost, when this replication is excessive it may have downsides. Specifically, we may be using
more resources than necessary (that is, we could achieve the same performance with fewer
copies) and we also may be increasing the buffer utilization in the network to the point
where it would force some messages to be dropped (more on that later). Due to this, one
of the main considerations of replication-based protocols is how to minimize replication
without significantly affecting the delivery ratio or other network performance metrics.

In order for mobile nodes to carry data, they need to have some sort of storage mechanism,
known as a buffer. While in theoretical models the buffer is frequently assumed to be
infinitely large [53], it is clear that in a real world scenario there is always some storage
limitation, which can significantly affect the performance of a network. Therefore, it is
important to consider the situation in which a node may receive new data without having
the necessary space to store it, which is particularly common when replication is possible.
When this occurs, the node has to decide which data it must keep and which data it must
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drop, that is, it must have a dropping policy. This policy is the centerpiece of an active
topic of research in the context of DTNs called buffer management (some examples are
[28, 43, 53]). Interestingly, while a larger buffer may provide better delivery guarantees, it
may also cause bufferbloat [15]; this is a common network phenomenon where increasing
the size of the buffers simply provides more latency for no benefit [13]. It follows that
buffer management is crucial, as it cannot be avoided by simply increasing the available
storage.

As previously mentioned in Section 2.2.2, the duration of contact between two nodes has
direct consequences on the amount of data that can be transmitted in that period, partic-
ularly if the data transfer rates are not very high. Given that contact duration is typically
short in this type of networks, it may be important to estimate how many messages we can
exchange during the next contacts, so that we can choose to prioritize certain messages
in advance. The scheduling policy deals with issues of this sort and we may, for example,
prefer to prioritize messages that are shorter or that contain newer data. These decisions
may have an impact in multiple performance metrics such as delivery ratio and latency
[57].

With the challenges of implementing these policies in mind, it becomes clear that there
are three main considerations when developing a routing strategy for DTNs: whether we
have information about future contacts, whether mobility can be exploited and what is
the resource availability [63, page 20]. While in our case we assume the possibility of
exploiting mobility, it is still important to adapt the routing strategy to the underlying
mobility model while not using resources in excess. In other words, the routing strategy
ends up being a trade-off between resource utilization and network performance under a
certain mobility model [51].

A very commonly studied routing strategy is Epidemic routing [60]. In its simplest form,
Epidemic routing is a flooding technique in which nodes send copies to every node they
contact and keep a copy to themselves, that is, its forwarding policy is to always send, while
its replication policy is to always replicate. No dropping or scheduling policy is defined in its
general characterization, though the optimization of these policies is a common concern in
the literature (e.g., [5, 10]). Assuming an infinite buffer, this approach guarantees a delivery
in the minimum amount of time, though at the cost of excessive resource consumption due
to its exponential growth [25]. Given that an infinite buffer may be an unreasonable
assumption (as previously discussed), the literature shows a substantial effort in finding
ways to reduce the resource consumption of an Epidemic model (e.g., [17, 27, 31, 37]).
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Preliminaries

Our approach to the problem at hand utilizes some mathematical concepts which need to
be defined clearly beforehand, in order to facilitate an unambiguous interpretation. There-
fore, this chapter aims to lay the necessary groundwork for the later chapters. Specifically,
in Section 3.1 we will describe Markov Chains and the related concepts of Markov prop-
erty, transition probabilities, stationary state probability vector (3.1.1), unichains (3.1.2)
and ergodicity (3.1.2), while in Section 3.2 we will define the Kronecker Product and its
properties.

3.1 Markov Chains

A Markov Chain [7] is a model that aims to describe stochastic behaviour by defining the
probability of transitioning from any current state to each possible future state. These
transitions possess the Markov property, meaning that their probability depends solely on
the current state and not on any past sequence of states (also known as the memoryless
property).

From this point on, we will only address a specific subset of Markov chains, the finite-state
discrete-time homogeneous Markov chains. This type of chain is essentially a sequence of
random variables X1, X2, X3, ..., each being an element present in the state space X , which
has size s. Transitions from one state to another occur at time instants 0, 1, 2, ..., with a
fixed probability. Therefore, a transition from any state x ∈ X to a next state y ∈ X at
any instant k ∈ N0, has a conditional probability that can be represented as

pxy ≡ P [Xk+1 = y|Xk = x]. (3.1)

This representation stems from the fact that the probability is independent of any past
state history (Markov property) and of the instant in which the transition occurs (time-
homogeneous). Given this, we can describe the probability of all state transitions through
a square matrix (one row and column for each state) of non-negative terms in which the
sum of each row is equal to 1. This is the transition probability matrix P ≡ [pxy].

Additionally, the probability of finding the chain on a certain state x ∈ X at instant k ∈ N0

(known as state probability), is described as

πx(k) ≡ P [Xk = x] (3.2)

and consequently we can define a state probability vector, which is a probability distribu-
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tion described as

π(k) = [π0(k), π1(k), ...]

π(k + 1) = π(k) ·P (3.3)

It follows that, given the initial state probability vector π(0), we can use the recursive
equation (3.3) to calculate the state probability vector for any instant.

Taking all this into account, it becomes apparent that a chain of this type can be uniquely
described by specifying its state space, transition probability matrix and initial state prob-
ability.

3.1.1 Stationary State Probability Vector

As mentioned previously, by having a fully described Markov chain we are able to analyse
future behaviour of the model, and thus it is possible to calculate the probability of being
at a certain state at some point in time (that is, we know the value of πx(k) for any
x ∈ X , k ∈ N0). This type of analysis in which we focus on the behaviour of the chain over
a finite period of time is called transient analysis.

However, it would also be interesting to analyse how a model behaves in the “long run”,
that is, after operating for a period of time which is long enough that the probability of
being in each state of the chain will no longer change with time [7]. In other words, we are
carrying out a steady state analysis of the chain at a k ∈ N0 large enough such that

π(k + 1) = π(k). (3.4)

Once the scenario in (3.4) is met, the state probabilities will no longer change over time,
that is, they are stationary. In that case, these state probabilities form the stationary state
probability vector π. More formally, it can be described as:

πx = lim
k→∞

πx(k) (3.5)

π = [π1, ..., πs] (3.6)

where πx ≥ 0 ∀ x ∈ {1, . . . , s} and π is independent of the initial state probability vector.

While π is of particular interest for our analysis, in practice it is evidently impossible
to calculate it by operating the model infinitely and, in addition, the convergence is not
guaranteed to be the same regardless of the initial state, or to even occur. However, we
know that π stays unchanged after one instant and that the sum of its elements is equal
to one (because it is a probability distribution). Therefore, we can easily deduce that π
will be a solution of the following system of linear equations{

πP = π
πeT = 1

(3.7)

with e being a row vector with the appropriate dimensions where every element is equal
to one and T being the transpose operator.1

Given that the chain being considered is finite, the system of linear equations at (3.7) is
guaranteed to have at least one solution, although it might not be unique [14]. Another

1For computational reasons, it is convenient to express this system in the matrix form Ax = b, with
A being a square matrix. Therefore, this system can also be represented as

π[P eT] = [π 1] (3.8)
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important consideration is that, if the limits (3.5) exist, then (3.6) is guaranteed to be
a solution to the system (3.7), but the inverse is not necessarily true; that is, finding a
solution to this system does not imply that the limits (3.5) exist. Taking all this into
account, the calculation of a stationary state probability vector is only guaranteed if the
chain being analysed has certain characteristics which force the system (3.7) to have a
unique solution, to which the state probabilities converge regardless of initial conditions.

The literature indicates that if we have a unichain we are guaranteed to obtain a unique
solution for this system, which is independent of the initial state probability distribution,
and, if that unichain is also ergodic, then the state probabilities are guaranteed to converge
to this solution [14]. Therefore, being an ergodic unichain is a sufficient condition to have a
stationary state probability vector which is computable. In the next section we will explore
this type of Markov chain.

3.1.2 Unichains

In order to define unichains, we first need to introduce some Markov chain concepts. A
class is a non-empty set of states in which each state in the set can communicate with any
other state in the set but cannot communicate with any state outside of that set. We say
that the states x and y communicate if x is accessible from y and y is accessible from x,
that is, the chain can eventually reach one state starting from the other and vice-versa.
Consequently, by definition, a state always belongs to one class, since it is guaranteed to at
very least belong to a class composed by only itself. Classes are classified as either recurrent
or transient. A recurrent class is a class in which every one of its states is recurrent, that
is, if the chain is at one of these states we are sure that it will eventually return to that
same state. A transient class is a class in which every one of its states is transient, that is,
there are no recurrent states.

A unichain is a finite Markov chain that contains a single recurrent class plus, perhaps,
some transient states [14]. In a unichain, after a long enough run, states in the recurrent
class have a non-zero probability of being visited eventually, while all other states have zero
probability. Summing up, we can interpret a unichain as being a Markov chain which may
have some initial transient behaviour, but that will inevitably enter the recurrent class in
the future; thus, its long term behaviour will be the same as if it did not have its transient
states, that is, it will act as an irreducible Markov chain (a chain in which all states of its
state space are recurrent), which has desirable properties for a steady state analysis.

Let’s consider a certain finite-state Markov chain in which we have one state x which is
accessible from all other states but does not necessarily communicate with them. It is clear
that x is recurrent and therefore it is part of a recurrent class A. If a certain state y 6= x is
accessible from x, then x and y communicate and therefore y ∈ A. On the other hand, if
y is not accessible from x, then y is part of a certain class B, which is composed of states
that are not accessible from any state in A. Given that A is accessible from all states in
B, it is clear that if the chain is at a state in B it will eventually reach a state in A and
never be able to return to a state in B, meaning that every state in B is transient. Thus,

which is equivalent to
[(P− I) eT]TπT = [0 0 ... 0 1]T (3.9)

with I being the identity matrix and [A B] representing the horizontal concatenation of matrices A and
B. The system at (3.9) is now in the intended matrix form (with A = [(P − I) eT]T, x = πT and
b = [0 0 ... 0 1]T), but A is a (s + 1) × s matrix and therefore not square as is preferred. Given that
the first sth rows of A are linearly dependent, we can obtain a square system of linear equations without
modifying the solution x by removing one of those rows, as well as the corresponding row of b.
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we conclude that if a Markov chain has at least one state such as x, then there is a single
recurrent class and possibly some transient classes, that is, it is a unichain. Consequently,
if we can demonstrate that, for a certain chain there is one state which is accessible from
all other states, then we prove that it is a unichain (conversely, if we prove that no such
state exists, we also prove that it is not a unichain). This conclusion will be useful in the
future for us to determine the characteristics of our models.

Ergodicity

An ergodic unichain is a unichain for which the recurrent class is ergodic [14], that is,
all of its recurrent states are aperiodic positive recurrent. Since this recurrent class is
(by definition) a finite closed irreducible set of states, then all of its states are positive
recurrent [7, theorem 7.6] and they have the same period [7, theorem 7.7]; consequently,
proving that a state of the recurrent class is aperiodic also proves that the unichain is
ergodic. As mentioned previously, if the chain is at a state in the recurrent class, then it
is guaranteed return to that state in the future. There may be many different sequences
of transitions which lead to this return, possibly with different numbers of transitions (at
least one), that is, different return times; If, for a certain state, we form a set of all these
possible return times, and calculate the greatest common divisor d of this set, then that
state is aperiodic if d = 1 and periodic with period d if d > 1.

An interesting situation arises when a unichain is not aperiodic. In this case, (3.7) will
still result in a unique state probability vector, which is "stationary" in the sense that it
stays unchanged with iterations of (3.3), that is, the state probabilities do not change over
time. However, because the states are periodic, the limit (3.5) does not exist, given that if
we start the chain at any state, in the long run the state probabilities will keep alternating
between d different vectors. This occurs because the recurrent class can be divided into
d mutually exclusive subsets, which can be arranged in a cycle so that states from each
subset can only transition to states of the next subset. Intuitively, it is clear that, in
the long run, the chain will spend the same amount of time in each of these subsets and,
therefore, the proportion of time spent on each state is simply the arithmetic mean of these
d different state probability vectors. Conveniently, this result is equivalent to the solution
of (3.7). This means that, when dealing with a periodic unichain, long-term properties
that are dependent on this proportion of time can still be analysed.

3.2 Kronecker Product

The Kronecker product [61] is an operation between a matrix A = [aij ], with dimensions
x× y, and another matrix B, with dimensions u× v, which can represented as

A⊗B =

a11B · · · a1yB...
. . .

...
ax1B · · · axyB

 (3.10)

with x, y, u, v ∈ N and the result being a xu × vy matrix. It is important to note that
while this operation is associative, it is not commutative and therefore A⊗B 6= B⊗A in
the general case.

A particularly interesting property occurs when these matrices have a single row, essentially
being the row vectors a and b, of lengths y and v respectively. In this case, the Kronecker
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product can be represented as

a⊗ b =
[
a1b · · · ayb

]
=
[
a1b1 a1b2 · · · a1bv a2b1 · · · · · · ayb1 ayb2 · · · aybv.

] (3.11)

resulting in a row vector of length yv. The interest in this resulting vector lies in the fact
that its elements essentially correspond to a Cartesian product between the sets of elements
of a and b, respectively; therefore, if vectors a and b represented probability distributions
(each element representing the probability of an event), the result of this operation would
be the probability distribution of all event intersections, assuming that the events of one
vector are independent from the events of the other vector. This is particularly useful when
constructing a transition probability matrix of a Markov chain if each state of that chain
corresponds to a combination of events.

Another useful property of the Kronecker product of row vectors is that it allows us to
simplify some operations, for examplea⊗ b

a⊗ c
a⊗ d

 = a⊗

bc
d

 (3.12)

with a of length y and b, c, d of length v. This is extremely useful for computational
purposes, as it allows us to describe multiple Kronecker products between two row vectors
as a single Kronecker product between a row vector and a matrix composed by multiple
row vectors.
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Modelling a Urban Sensing Scenario

Having introduced all the necessary concepts in previous chapters, this Chapter will be
focused on exploring a model that we have designed to analyse a certain type of DTN
scenarios. Therefore, in Section 4.1 we will describe the assumptions and simplifications
of our model along with details regarding its states (4.1.1) and transitions (4.1.2). Then,
in Section 4.2 we will detail an analysis framework which allows us to calculate multiple
network metrics for our model. Afterwards, in Section 4.3 we will exemplify how we could
implement other mobility models without significantly changing our general model. In
Section 4.4, we will also explore a change to the model which would allow us to describe
some scenarios with greater detail, and we will discuss how that would affect the properties
of our model (4.4.1) and consequently its analysis (4.4.2). Section 4.5 has an overview of
how the necessary calculations were implemented and the main considerations that were
taken into account. Finally, in Section 4.6 we will discuss the verification of this model,
while in Section 4.7 we will run some small experiments to understand how the system
behaves with different parameters.

4.1 Model Description

As mentioned in Chapter 1, one interesting application of a DTN with a SCF paradigm
emerges in a urban sensing scenario, where sensors collect data to be gathered in a DCU,
which then forwards such data to nearby mobile entities carrying an OBU (mobile nodes).
The goal is for this data to eventually be delivered to an RSU (end node). Since this
application is described in a very general form, in order to tackle the challenge of modelling
it is necessary that we simplify some of its elements and make some assumptions about it.

We will start by assuming that all units (that is, one DCU, one RSU and multiple OBUs)
are located on a line segment (a street) of a certain length. To simplify the analysis, we
will discretize the system spatially, by dividing this segment into n − 1 intervals of equal
length, so that the ends of these intervals represent n possible locations for units to be in.
Increasing the number of positions being considered implies that the intervals are smaller,
which logically increases the spatial resolution of the model. We assume that the DCU is
always in the first location, while the RSU is always in the last location. In this context,
the contact range of all units is assumed to be c, such that, if the absolute difference
between the positions of two units is no greater than c, then communication is possible.
Moreover, n and c have to be such that the direct communication between the DCU and
the RSU is impossible (otherwise communication would not require entities, making it a
trivial scenario).
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It is assumed that entities can be at any position, including where there are other entities;
this is analogous to entities passing by each other in a real-world scenario. While we do
not assume anything about the nature of the entities themselves, it is assumed that all
entities move in a similar way, that is, according to the same mobility model. Moreover,
we assume that the number of entities present within this segment is always m.

As a further simplification, we will also discretize the advance of time. New data is gen-
erated at each instant, such that the DCU always carries data that was created in that
instant. In order to distinguish data generated at different points in time, we will associate
each copy of data with its age, that is, the number of instants that have passed since that
data was generated at the DCU. Therefore, entities carrying data of the same age are car-
rying copies of the exact same data, and data that is older by one unit in the next instant
is still the same data. However, in order to keep this model finite, we will assume that all
data in the system has a time-to-live denoted by t, such that when data reaches an age
of t it is considered to be expired; this represents the maximum amount of time that the
RSU is willing to wait to receive data after its creation.

While in the real world it could be possible for units to have enough storage to carry more
than a data packet simultaneously (buffer), we will simplify the scenario to assume that
every unit has a storage that fits exactly one packet of data. Consequently, some sort of
buffer management will be necessary.

In order to reach our goal, entities within contact range of one another may transmit data
between one another, depending on the data that they are currently carrying and on the
routing strategy; entities carrying non-expired data within contact range of the RSU will
only transmit to it and they will discard the data afterwards (since our goal is only to
deliver each data packet once).

We assume that data transmission occurs instantly, and therefore if two entities initiate
a transfer on a certain instant, by the next instant it will have been completed, the data
will be one time unit older and the entities may be in different positions. In practical
terms this means that, between instants, this sequence of processes occurs: 1) the data is
shared between units according to the communication model, routing strategies, and the
entities’ current position and data; 2) all data is aged; 3) the position of the mobile entities
is updated according to the mobility model.

Due to these simplifications, we are describing behaviours that do not change over time
and can be defined in a discrete and finite way. Therefore, this can be modelled with a
homogeneous discrete-time Markov chain, as described in Section 3.1. In the following
sections we will describe the state space and transition probability matrix. However, as it
will be described in Section 4.2, our analysis will be focused on long-term behaviour, and
therefore we do not need to define an initial state probability vector.

4.1.1 State Space

In this scenario, we have a set of m mobile entities, which we will map onto the set of
positive integers such that E = {1, 2...,m − 1,m}. Each entity can move and carry data,
therefore the state of the system can be uniquely described by a vector containing the
location and data of each entity, that is, a vector x = (lx1 , ..., l

x
m, d

x
1 , ..., d

x
m), x ∈ X , in

which lxi is the location of entity i ∈ E on that state and dxi is the age of the data being
carried by entity i ∈ E on that state. It is assumed that the states in X are sorted in
lexicographic order and are mapped onto the set of positive integers.
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At any given instant, each entity is at one of n different locations, and multiple entities can
be at the same location simultaneously, therefore lxi ∈ {1, 2, ..., n− 1, n}. Given that there
is no functional difference between carrying data that is expired or not carrying any data
at all, we can represent both situations in the same way. Therefore, dxi ∈ {1, 2, ..., t− 1, t},
and dxi = t represents expired data or no data being carried.

Given that each of the m entities can be in n different locations and carry data of t
different ages, the state space X contains s = (n · t)m different states. Since this model
is only reasonable with at least one entity, different locations for the DCU and the RSU
and the possibility of having non-expired data, from here on we assume m ≥ 1, n ≥ 2 and
t ≥ 2.

4.1.2 State Transitions

Given that the state of the network is a combination of the location and data of each
entity, we can describe all state transitions by first describing how an entity’s location and
data changes from one instant to another. Therefore, we will first explore the mobility and
communication in our model separately, which will then allow us to describe all transition
probabilities.

Entity Mobility

We will start by describing how an entity moves between locations. In our model we
assume that this movement is stochastic and only depends on the current location of each
entity, meaning that the movement of one entity at a given instant is independent of the
movement of every other entity at that same instant. Therefore, given an entity i ∈ E in
a state x ∈ X , we want to describe gxib which details the probability of that entity going
from its current location lxi to a location b ∈ {1, ..., n} in the next instant. This is referred
to as a mobility model.

A specific instance of gxib is one in which the entities perform a Random Walk. In this
mobility model, entities have a certain probability of staying at their current position (α∗),
moving one position towards n (α+) or moving one position towards 1 (α−), with the
moves past the edges being impossible. Therefore, we have

gxib =



α−, if 1 ≤ b = lxi − 1

α+, if b = lxi + 1 ≤ n
α∗, if 1 < b = lxi < n

α∗ + α−, if b = lxi = 1

α∗ + α+, if b = lxi = n

0, otherwise

(4.1)

with α∗, α+, α− > 0 and α∗ + α+ + α− = 1.

Entity communication

We are also interested in describing how the model behaves regarding data. In other
words, given an entity i ∈ E in a state x ∈ X , we want to describe uxia which details the
probability of that entity transitioning from carrying data of age dxi to a carrying data
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of age a ∈ {1, ..., t} in the next instant. These transitions are direct consequences of the
communication model and the routing strategies being used.

Regarding the communication model, it is important to note that the contact range c is
at least 0 (meaning that entities can only communicate with other entities in the same
location) and we will not consider scenarios in which the range is large enough to allow
the DCU to communicate directly with the RSU, therefore 0 ≤ c < n− 1.

A specific instance of uxia is one in which we consider a routing strategy similar to epidemic
routing. In that case, entities will generally send their data to nearby entities whenever
possible and keep a copy of that data. However, given that our buffer is limited to having
a size of 1, the entity has to make decisions regarding which data to keep, if it has multiple
choices (buffer management). We will assume that if an entity does not receive data that
is newer than the one it is carrying, it will keep it; otherwise there is a chance r (replacing
ratio, 0 ≤ r ≤ 1) that it will replace its current data with newer data. Intuitively, low
values of r may cause newer data to get lost before it has a chance to replicate throughout
the network, while high values of r may reduce the variability of the data being delivered,
thus the best value of r should depend on the specific situation.

With that in mind, the data that an entity will have in the next instant is either the one it
is currently carrying or the newest data that it can receive from other entities. For a state
x ∈ X and an entity i ∈ E, the age of the data in these options are kxi and rxi (keeping
and receiving), respectively. In a situation where neither the data it can keep nor the data
it can receive have expired, and the data it can receive is newer than than the one it can
keep (that is, rxi < kxi < t), the entity has a probability r of picking the new data and
1 − r of doing otherwise. In every other scenario (that is, kxi = t or kxi ≤ rxi ), an entity
will always pick the option that grants it the newest data. Therefore, this instance of uxia
can be described as

uxia =


1, if (a = min(kxi , r

x
i )) ∧ ((kxi = t) ∨ (kxi ≤ rxi ))

1− r, if (a = kxi ) ∧ (rxi < kxi < t)
r, if (a = rxi ) ∧ (rxi < kxi < t)
0, otherwise

(4.2)

Since entities discard their data if they transmit it to the RSU, kxi is t for every entity in
contact range of the RSU. In every other instance, the data being carried will simply age
by 1, until it expires, therefore:

kxi =

{
t, if (n− lxi ) ≤ c
min(dxi + 1, t), otherwise

(4.3)

When it comes to receiving data, since transmissions are only completed between instants,
data received will always be 1 time unit older than at the time of contact. If contact with
the DCU is possible, an entity will simply receive new data from it (since it is guaranteed
to be the newest data), and therefore rxi is 1 for all entities in contact range of the DCU.
Otherwise, an entity will receive the newest possible data out of the set Cxi , which has the
data age of all entities in contact range that are not already contacting the RSU, thus:

rxi =

{
1, if (lxi − 1) ≤ c
minCxi , otherwise

(4.4)

with Cxi being described as

Cxi = {dxj + 1 : j ∈ E, j 6= i, |lxi − lxj | ≤ c, (n− lxj ) > c} ∪ {t} (4.5)

and with t being part of Cxi since, in a worst case scenario, nothing will be received.
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Transition Probability Matrix

Let’s consider Gx ≡ [gxib], a m × n matrix, and Ux ≡ [uxia], a m × t matrix, with gxi and
uxi representing the ith rows of Gx and Ux, respectively. For a certain state x ∈ X , these
matrices contain the probability of, at the next instant, each entity being at a certain
position and having data with a certain age, respectively. Since the state of the system
is described entirely by the positions and data of each entity, these matrices have enough
information to enable us to calculate, given the current state, the probability of the system
being in any given state at the next instant.

For each entity, the transition of position and data depends solely on the current state,
meaning that these transitions are independent from one another. Therefore, the probabil-
ity of having any combination of positions and data at the next instant can be calculated
simply by multiplying the probability of each individual transition occurring. As a result,
the probability of state x ∈ X transitioning to each state can be calculated as the Kro-
necker Product between every row of the matrices Gx and Ux, resulting in a row vector
of length s (as defined in Section 4.1.1), that is:

gx1 ⊗ gx2 ⊗ ...⊗ gxm ⊗ ux1 ⊗ ux2 ⊗ ...⊗ uxm =

(
m⊗
i=1

gxi

)
⊗

(
m⊗
i=1

uxi

)
= γx ⊗ µx

(4.6)

This vector contains one element for each state in the state space, meaning that the yth
element is the probability of transitioning from state x to state y. Therefore, if we calculate
this vector for each x ∈ X and stack the results vertically in order, the outcome is the
transition probability matrix P, as follows:

P =


γ1 ⊗ µ1

γ2 ⊗ µ2

...
γs ⊗ µs

 (4.7)

As intuitively expected, P is a s× s matrix.

Given that the mobility of entities depends solely on the entities’ current position (as
described in Section 4.1.2), states in which entities have the same position result in the
same probabilities of transitions, that is, ∀x, y ∈ X :

(
m∧
i=1

(lxi = lyi )

)
=⇒ (γx = γy) (4.8)

Since states are first sorted by the entities’ position (as described in Section 4.1.1), we
know we can divide the state space into nm groups, each with tm consecutive states, in
which states in the same group have their entities in the same position. Thus, states that
are part of the same group have the same γ, and therefore we can simplify the calculation
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of P as such:

P =



γ1 ⊗


µ1

µ2

...
µt

m



γt
m+1 ⊗


µt

m+1

µt
m+2

...
µ2tm


...

γ(nm−1)tm+1 ⊗


µ(nm−1)tm+1

µ(nm−1)tm+2

...
µs





(4.9)

4.2 Analysis Framework

The system that was previously defined has a set of parameters that allow us to model
multiple configurations of a urban sensing scenario. When implementing such a scenario
in a real-world setting, there will be some aspects of the system that are inherent to that
specific setting (e.g. how the entities move in that location), while other aspects will
be entirely dependent on the specific implementation (e.g. how we want the entities to
communicate). It follows that, when using our approach to model a setting, some of the
parameters will have to be chosen in a way that replicates the physical characteristics and
constraints that have been determined to exist, while the other parameters can be freely
defined to suit one’s needs. Logically, it is interesting to define the latter parameters in a
way that somehow optimizes the system, for example, maximizing the "performance" of
the network while reducing the "cost" of the implementation.

In this section, we will be mostly interested in issues that relate to the performance of
the network. A network’s performance can be evaluated in many ways, depending on
one’s goals. Therefore, we need to define a set of network metrics which will serve as
criteria for optimization. Since the urban sensing scenarios being described are intended
to be implemented with a fixed configuration that is used continuously, it is intuitive to
understand that we are mostly interested in studying how certain configurations behave,
on average, over a long period of time. Therefore, in this chapter we will define metrics
that measure different aspects of the long-term behaviour of the network.

As previously described in Section 3.1.1, the concept of a stationary state probability vector
is extremely important for the study of long-term behaviour of a Markov Chain. However,
before using it, we need to ensure that our model allows its calculation. As mentioned
previously, the model being studied has a finite state space, thus the first condition of being
a unichain is met. Let’s assume we are using the mobility model described in Equation
(4.1) and the communication model and routing strategy described in Equation (4.2). It
is clear that, no matter what position or data entities start with, there is a chance that
all of them eventually reach the last position and deliver all non-expired data to the RSU.
This means that the state in which all entities are at the last location without any data
can eventually be reached starting from any state, which is enough to guarantee that we
are dealing with a unichain. One way to ensure that a state is aperiodic is to allow it
to return to itself in one transition, since 1 would be part of the set of return times (as
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described in 3.1.2) and thus the greatest common divisor would necessarily be 1. In the
chain being studied, a state transitions to itself if (and only if) all entities stay at the
same location, have no data (otherwise it would age) and are outside the contact range of
the DCU (otherwise they would receive new data). Given that our model guarantees that
there is at least one location outside the contact range of the DCU (due to constraints on c
as described in 4.1.2), as long as the mobility model being used has a non-zero probability
of the entities staying at such location, then our Markov chain is guaranteed to be an
ergodic unichain. This is the case with the mobility model described in Equation (4.1) and
therefore we can calculate π.

In the following sections, we will describe how to calculate performance metrics based
on the stationary state probability vector. The analysis techniques presented here were
intentionally designed to be applicable for any model as defined in 4.1 and therefore it
provides a framework for analysing any system of this kind.

4.2.1 Calculating the Probability of Sequences of States at Steady State

Some interesting metrics regarding the long-term behaviour of the model can be deduced
by calculating the probability of a certain sequence of states occurring in the future, under
the assumption that the sequence starts at a point where the state probability vector is
stationary. We will introduce a method for calculating all metrics of this type.

If we consider k to be a sufficiently large number so that the state probability vector is π,
we have that the probability of the chain being in state x is

P [Xk = x] = πx (4.10)

for any x ∈ X . We can generalize this result to obtain the probability of the chain being in
any state belonging to a certain set A. Given that the chain cannot be in different states
at the same instant, these events are mutually exclusive and thus we have

P [Xk ∈ A] =
∑
x∈A

P [Xk = x]

=
∑
x∈A

πx
(4.11)

with A ⊆ X .

Similarly, we can define the probability of the chain having a certain sequence of three
states as

P [Xk = x ∧Xk+1 = y ∧Xk+2 = z]

= P [Xk = x]P [Xk+1 = y|Xk = x]P [Xk+2 = z|Xk+1 = y ∧Xk = x]

= P [Xk = x]P [Xk+1 = y|Xk = x]P [Xk+2 = z|Xk+1 = y]

= πxpxypyz

(4.12)

with x, y, z ∈ X .1 This can again be generalized to consider the probability of a sequence
in which each element may be any state belonging to a certain set. Since the chain cannot
follow different sequences of states simultaneously, the probability of any such sequence

1The third line in (4.12) is a result of the Markov property, as introduced in Section 3.1.
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occurring is simply the sum of each individual probability, that is

P [Xk ∈ A0 ∧Xk+1 ∈ A1 ∧Xk+2 ∈ A2]

=
∑
x∈A0

∑
y∈A1

∑
z∈A2

P [Xk = x ∧Xk+1 = y ∧Xk+2 = z]

=
∑
x∈A0

∑
y∈A1

∑
z∈A2

(πxpxypyz)

(4.13)

with A0,A1,A2 ⊆ X . The results (4.12) and (4.13) can clearly be generalized for sequences
of any length, by simply adding or removing the corresponding terms. Moreover, given
that the state space is finite, guaranteeing that the chain is not in a state that belongs to
a certain set is equivalent to guaranteeing that the chain is in a state that belongs to the
set of all states that do not belong to A, that is, Xk /∈ A ⇐⇒ Xk ∈ (X \ A) ⇐⇒ Xk ∈
A. Therefore, this approach to calculating probabilities of sequences can also be used in
scenarios which involve guaranteeing that, at certain instants, the chain is not at a state
belonging to a certain set .

For computational reasons, it would be convenient to represent (4.13) as a result of matrix
operations using P and π. Let’s consider ZA ≡ [zAxy] to be a binary diagonal s× s matrix
such that

zAxy =

{
1, if x = y ∧ x ∈ A
0, otherwise

(4.14)

The interest in such a matrix lies in the fact that, if a state probability vector is multiplied
by ZA, the result is that same vector but with the elements of index not contained in A
having been replaced by 0. This means that the probability of being in a state belonging
to set A0 is ∑

x∈A0

πx = π · ZA0 · eT (4.15)

and, similarly, the probability of being in a state belonging to A0 and, in the next instant,
being in a state belonging to A1 is∑

x∈A0

∑
y∈A1

(πxpxy) = π · ZA0 ·P · ZA1 · eT (4.16)

Thus, for a sequence of sets (A0,A1, ...,Av) ⊆ X , we have

P [Xk ∈ A0 ∧Xk+1 ∈ A1 ∧ ... ∧Xk+v ∈ Av] = q(v) · eT (4.17)

with q being a row vector such that:

q(i) = q(i− 1) ·P · ZAi (4.18)

q(0) = π · ZA0 (4.19)

Therefore, we now have a framework that allows us to calculate, for any sequence of sets
of states, the probability of the chain going through a sequence of states contained in each
of those sets, through matrix operations.

Data Loss

As detailed on 4.1.1, at any given instant the DCU generates data, that may be spread
and copied between entities. However, a certain data generated at an instant k may not
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have any copy delivered to the RSU at any point in time. This is called a data loss and
the probability of it occurring is a useful metric for the performance of the network.

In order to guarantee that a certain data is never delivered, it is only necessary to guarantee
that it is not delivered before it expires. Therefore, this metric can be calculated through
the analysis of the sequence of states that occurs after the creation of the data and before
its expiry. It is important to note that any data of age a, 1 ≤ a < t− 1 on an instant k is
the exact same as any data of age a+ 1 at an instant k + 1.

Whenever we are in a state in which data of age a, 1 ≤ a < t is delivered to the RSU, we
say that we are in a delivery state of a and therefore the set of delivery states of a is:

Da = {x ∈ X : ∃i ∈ E, dxi = a ∧ (n− lxi ) ≤ c} (4.20)

That is, Da contains all the states in which at least one entity has data of age a and is
within contact range of the RSU.

We can therefore describe data loss simply as a sequence of states in which, ∀a : 1 ≤ a < t,
the state at instant k + a is not part of Da, that is:

loss = P

[
t−1∧
a=1

(Xk+a /∈ Da)

]
(4.21)

Therefore, we can calculate this probability as described in 4.2.1, using the sequence
(D1,D2, ...,Dt−1).

In general, loss of data can occur in one of two circumstances, namely (i) the DCU does
not deliver a copy of that data to any entity at any instant (ii) the DCU delivers a copy of
that data to at least one entity, but no copy reaches the RSU. We name the former "loss
at the DCU" and the later "loss in transit". While both circumstances contribute to the
same final result, they indicate different challenges in the delivery.

As described in 4.1.2, at every instant the DCU generates new data which replaces the data
it held previously. If this data being replaced was not received by at least one entity, then
it is guaranteed to be lost. Since having entities in range of the DCU does not guarantee
that a copy will be delivered (unless r = 1), it is necessary to look at the instant following
the generation of the data to verify if a copy was delivered. That is, for data generated at
an instant k, the probability of it being lost at the DCU is equivalent to the probability
of, at instant k + 1, the system not being in any state in which an entity is carrying data
of age 1, which is represented as:

loss_at_DCU = P [Xk+1 /∈ C1] (4.22)

with Ca being the set of states in which at least one entity has data of age a, which can be
described as:

Ca = {x ∈ X : ∃i ∈ E, dxi = a} (4.23)

and therefore, we can calculate this probability as described in 4.2.1 with simply (C1).
Losses at the DCU occur when the DCU is generating data at a faster rate than it has
available entities within its contact range. In a scenario where losses at the DCU are exces-
sive, it is logically possible to reduce the losses at the DCU by increasing the probability
of having entities in range (either by having more entities or changing the mobility model)
or by increasing r and/or c. That said, in a real-world scenario, we would only be able to
adapt r to the circumstances and, given that r also significantly affects the losses in transit,
this might prove to not be enough to enable us to configure a network efficiently. Therefore,
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it would be interesting to be able to configure the rate at which the DCU generates new
data; this alternative will be studied later on.

In contrast, a loss in transit occurs when all existing copies of certain data get eventually
replaced (with newer data) and/or discarded (due to expiry) before the entities carrying
those copies ever get in range of the RSU. Given that losses at the DCU and in transit are
mutually exclusive events, we can simply calculate the probability of losses in transit as:

loss_in_transit = loss− loss_at_DCU (4.24)

A high probability of losses in transit indicates that, for some reason, the entities are prone
to lose the data that they are carrying before getting close enough to the RSU. We believe
this to be a good indicator of the performance of the entities as carriers and replicators of
data under a given set of parameters. Given that a decrease in this metric might just be a
consequence of an increase of losses at the DCU (as that results in less data in transit), it
would be interesting to analyse the probability of losses in transit assuming the data was
not lost at the DCU, that is:

loss_received = P

[
t−1∧
a=1

(Xk+a /∈ Da) | Xk+1 ∈ C1

]
(4.25)

=
loss_in_transit
1− loss_at_DCU

(4.26)

Average Latency

Another way of evaluating the performance of this network is measuring, on average, how
much time passes between the creation of data and the first delivery of that same data to
the RSU, assuming that data will be delivered. This is essentially the average data age on
first delivery, which can be interpreted as the network’s delivery latency.

We can describe a first delivery as essentially a delivery occurring at an instant k+a (with
1 ≤ a < t) in which every prior instant k + q (with 0 ≤ q < a) has no deliveries of that
same data. Since we are not interested in what may happen after the first delivery, the
probability of having a first delivery with age a is given by fa, a probability mass function
such that

fa = P

a−1∧
q=1

(Xk+q /∈ Dq)

 ∧ (Xk+a ∈ Da)

 (4.27)

This is very similar to the calculations in 4.2.1, but instead of having a sequence of non-
deliveries throughout the data’s entire lifespan, we have a sequence of some non-deliveries
followed by one delivery. Therefore, we can calculate this in a similar way; for example,
calculating f3 can be done as described in 4.2.1, using the sequence (D1,D2,D3).

After calculating fa for all a, 1 ≤ a < t, determining the average age on first delivery is
achieved by calculating an average weighted by the age of delivery, that is:

latency =

∑t−1
a=1(a · fa)∑t−1
a=1 fa

(4.28)

=

∑t−1
a=1(a · fa)
1− loss

(4.29)

It is important to note that under certain conditions deliveries may be impossible and
therefore the latency will be undefined.
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Probability of Delivering a Single Copy

In an ideal scenario, the RSU would receive exactly one copy of all data generated by the
DCU, since extra copies provide no further information and therefore represent wasted
resources. As such, it would be interesting to calculate the probability of a data point
being delivered just once. Let’s consider Oa which is a set of all delivery states of age a,
1 ≤ a < t, in which only one copy of such age is delivered, that is:

Oa = {x ∈ X : ∃!i ∈ E, dxi = a ∧ (n− lxi ) ≤ c} (4.30)

Note that Oa differs from Da in that the latter also contains states in which there are
multiple deliveries of data of age a (and therefore Oa ⊆ Da).

In order for only one copy to be delivered, the chain has to be in a state x ∈ Oa at the
instant k + a (for any a ∈ {1, ..., t − 1}), while also not being in any delivery state of
that same data at any other instant during the data’s lifespan. Since this scenario cannot
happen simultaneously for different a, the overall probability of delivering a single copy
can be calculated by simply summing the probability for each different a, that is:

single =
t−1∑
a=1

P

a−1∧
q=1

(Xk+q /∈ Dq)

 ∧ (Xk+a ∈ Oa) ∧

 t−1∧
q=a+1

(Xk+q /∈ Dq)

 (4.31)

where each term of this sum is essentially a sequence of sets of states, which can be
calculated as described in 4.2.1.

Given that we can calculate the probability of no delivery with (4.21), and now the proba-
bility of a single copy being delivered with (4.31), we can also calculate the probability of
delivering two or more copies of the same data as 1− (loss+ single).

4.2.2 Data Age Distribution

Knowing the age distribution of data in the network is important, as it allows us to calculate
useful metrics like how much time data tends to stay in the network, or how many entities
are carrying data on average. In order to understand the distribution, we will calculate,
for all ages a ∈ 1, ..., t, the proportion of entities carrying data of that age at steady state.

This is achieved by calculating, for each state x ∈ X , the proportion of entities carrying
data of age a multiplied by the stationary state probability of being on that state, which
is essentially a weighted average as described below:

wa =
∑
x∈X

(
πx

∑
i∈E[d

x
i = a]

m

)
(4.32)

This is essentially a probability mass function, with [p] representing the Iverson bracket
[16, Section 2.1: Notation], where:

[p] =

{
1, if p is true
0, otherwise

(4.33)

It is important to note that wt is the proportion of entities that do not carry any data (or
carry expired data). Therefore, the proportion of entities carrying data (in other words,
the overall utilization of the network’s storage) is:

utilization = 1− wt (4.34)
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We can also calculate the average age of non-expired data, which is essentially a weighted
average considering the proportion of each age a, 1 ≤ a < t, that is:

average_age =

t−1∑
a=1

(wa · a)

1− wt
(4.35)

Note that the sum is divided by the utilization, as we are only considering non-expired
data.

4.3 Mobility Models

The mobility model previously described in Equation (4.1) served as a simple starting
point for the analysis, but it is unrealistic in terms of describing real-world behaviour.
This is due to the fact that vehicles usually move with a certain purpose and thus are
unlikely to have the wandering path that is common for random walks. Therefore, it may
be interesting to design mobility models that better mimic the behaviour of a real-world
scenario. If designed according to the principles established in 4.2, these alternatives of gxib
can still be analysed in the same way.

4.3.1 Forward Walk

One possible approach to describing the mobility of the entities is assuming that they are
moving in a one-way street, that is, they can only move in the direction from the DCU to
the RSU. In simple terms, entities either move one position forward or stay in the same
position. Given that there is a finite number of locations in our model, the entities would
have to eventually stop at the last position, which would not create an interesting long-
term behaviour. Therefore, we will consider that, if an entity moves forward at the last
position, it will go back to the first position. Given that, this model can be described as:

gxib =


1− α+, if b = lxi

α+, if b = (lxi mod n) + 1

0, otherwise

(4.36)

with 0 < α+ < 1.

4.3.2 Cellular Automaton

It is also possible to create a mobility model that describes more complex traffic behaviours.
One approach we studied was to use a model akin to a stochastic traffic cellular automata.
In this context, we also consider the positions to be cyclic and we suppose that each entity
knows the distance to the closest entity ahead of them and uses that information to decide
how it moves. In simple terms, an entity will not move forward if there is another entity
in the next location, but the probability of moving forward increases with the distance to
the entity ahead.

To better mimic cellular automata, each position can only hold one entity and therefore
any state in which there are at least two entities at the same location is considered invalid.
Since the specification of our model does not enforce this limitation, we have to guarantee
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that the mobility model is able to immediately transition from an invalid state to a valid
state, making those invalid states transient and consequently not relevant for the long-term
behaviour of the chain. This also means that the choice of the valid state to which invalid
states transit to does not affect our analysis in any way.

Moreover, given that entities cannot overtake each other in this model, we can have a
sparser transition probability matrix without affecting the metrics being analysed by as-
suming that the entities are always in the same order. In this case, we will impose that for
any i ∈ E, entity i follows entity (i mod m) + 1. This limitation can similarly be enforced
by considering invalid any state in which the entities do not follow this order.

Given the previously mentioned limitations, the set of invalid states I can be described as:

I1 =
{
x ∈ X : ∃i, j ∈ E, i 6= j, lxi = lxj

}
(4.37)

I2 =

{
x ∈ X :

∑
i∈E

(
(lx(i mod m)+1 − l

x
i ) mod n

)
6= n

}
(4.38)

I = I1 ∪ I2 (4.39)

and thus the mobility model is described as:

gxib =



1
(lxj−lxi ) mod n , if (x /∈ I) ∧ (b = lxi )

1− 1
(lxj−lxi ) mod n , if (x /∈ I) ∧ (b = (lxi mod n) + 1)

1, if (x ∈ I) ∧ (b = i)

0, otherwise

(4.40)

with j = (i mod m) + 1, that is, j is the entity in front of entity i.

4.4 Sampling Period

As discussed in section 4.2.1, losses at the DCU could be reduced by allowing the DCU to
generate data at a slower rate and to keep the same data for some period of time. This
period will be referred to as "sampling period", denoted by τ , and the age of the data at
the DCU in state x ∈ X will be denoted by δx. Up until this point, we were considering
that new data is generated at every instant, that is, τ = 1; this meant that the data being
carried by the DCU in any state x ∈ X always had age 0 (δx = 0) and therefore entities
could only receive data of age 1 from the DCU. As a result, we would lose data every single
time that there is no entity in contact range of the DCU. In a decently sized scenario, it is
extremely unlikely for entities to always be near the DCU, and thus under such scenarios
data loss was extremely prevalent. This is problematic because, unless the scenario was
trivial, the network never had an acceptable performance.

Essentially, having a sampling period allows us to age data at a frequency which is different
from the positional updates. This allows a finer control of the discretization of space and
time. Thus, from now on, we will consider that τ ∈ N, τ < t and consequently for any
state x ∈ X , δx ∈ N0, 0 ≤ δx < τ .

4.4.1 Model Considerations

In order to add this sampling period, it is necessary to change the definition of a state
in this chain. Therefore, a state is now defined by a vector x = (lx1 , ..., l

x
m, d

x
1 , ..., d

x
m, δ

x),
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x ∈ X . The states are still sorted in lexicographic order and mapped onto the set of
positive integers. Consequently, there are now s = (n · t)m · τ different states.

Since the movement of the entities is completely independent of any data considerations,
this change does not affect the mobility models. However, the communication has to be
updated in regards to the reception of data from the DCU, that is, we simply need to
change (4.4) as such:

rxi =

{
δx + 1, if (lxi − 1) ≤ c
minCxi , otherwise

(4.41)

that is, entities in range of the DCU receive whatever data is currently stored there, instead
of always assuming the DCU stores data of age 0; everything else can be kept unchanged.

It is also necessary to define the transitions of δ. Given any state x ∈ X and a next state
y ∈ X , we know that δy = (δx + 1) mod τ . Therefore we have εx, a vector of size τ , in
which the δyth element is equal to 1, while all the other elements are equal to 0. We can
then describe the Transition Probability Matrix as

P =



γ1 ⊗


µ1 ⊗ ε1

µ2 ⊗ ε2

...
µτt

m ⊗ ετt
m



γτt
m+1 ⊗


µτt

m+1 ⊗ ετt
m+1

µτt
m+2 ⊗ ετt

m+2

...
µ2τtm ⊗ ε2τt

m


...

γ(nm−1)τtm+1 ⊗


µ(nm−1)τtm+1 ⊗ ε(n

m−1)τtm+1

µ(nm−1)τtm+2 ⊗ ε(n
m−1)τtm+2

...
µs ⊗ εs





(4.42)

4.4.2 Analysis Considerations

Steady State

Given that the introduction of a sampling period affects the what was described in 4.1.2
(and therefore also the state transitions), not everything described in 4.2 is still applicable.
Namely, when τ > 1, the states are guaranteed to have periodic behaviour and thus the
chain is no longer ergodic (though it still is a unichain). That said, as explained in Section
3.1.2, this is not necessarily an issue as long as our analysis is simply based on the overall
proportion of states. Given that we are only interested in the average behaviour of the
system, this result is completely suitable for the metrics that we are analysing. This means
that the introduction of periodic behaviours in our system is not sufficient to invalidate
the results of our analysis framework.

Metrics

Although the metrics being gathered are not invalidated by the periodic behaviour of our
Markov chain (as discussed above), the introduction of a sampling period does affect the
definition of some metrics and therefore they may have to be calculated differently.
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The loss function defined in Equation (4.21) assumes that there is new data to be received at
every instant. This is no longer accurate given that, whenever τ > 1, it would overestimate
the amount of data being created and consequently also overestimate the losses. In fact,
when τ > 1, the result of that equation is equivalent to calculating the average of τ − 1
times 100% loss and one time the actual loss we are trying to calculate; that is, if we have,
for example, τ = 4, under the previous equation we are guaranteed to have at least 3

4 of
lost data, plus whatever data is lost out of the remaining 1

4 . In other words, the probability
being calculated would always be at least τ−1

τ . Therefore, to compensate for this, we can
define this function as such:

loss = P

[
t−1∧
a=1

(Xk+a /∈ Da)

]
· τ − (τ − 1) (4.43)

Moreover, the calculation of losses at the DCU on (4.22) assumed that entities could only
receive data from the DCU in the instant that it was created. Given that the data may
now stay on the DCU for longer than one instant, loss at the DCU it can be adapted in a
similar way to the previous equation, as shown below:

loss_at_DCU = P

[
τ∧
a=1

(Xk+a /∈ Ca)

]
· τ − (τ − 1) (4.44)

Finally, the calculation of the probability of delivering a single copy is also affected. Simi-
larly to the situation described for the loss function, whenever τ > 1 we are overestimating
the amount of data that is possible to deliver and therefore underestimating the probability
of delivery of a single copy. This can be adjusted by multiplying the final result at (4.31)
by τ .

All the other metrics can be used without any changes, as either they are not affected by
this change or their calculation depends solely on other metrics that have already been
adjusted.

4.5 Implementation Aspects

Since the calculations required to analyse this model are far from trivial, and given that
we were unable to find any tool or framework that could be easily adapted to our model,
we needed to program our own solution. To do this, we opted to use Python 3 [62] as the
programming language, particularly due to its inherent rapid prototyping and extensive
support for scientific computation libraries.

Due to the way this model was designed, s (the size of X ) can increase significantly with
a small increase in some parameters; in fact, increasing m (number of entities) results in
an exponential increase of s (as seen in 4.1.1). As a consequence, even on a modestly sized
scenario, X can grow to contain millions of elements, especially if more than 2 entities are
being considered. On top of that, the number of elements in P grows quadratically with
s (as described in 4.1.2). Therefore, our purpose-built implementation had to assume the
necessity of having to deal with large numbers of states efficiently. Moreover, given that
this model was designed to handle any choice of parameters, it had to be implemented in a
way which allowed a user to make these changes without rewriting code; additionally, it had
to allow the implementation of alternatives for gxib and uxia via some sort of standardized
interface.
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The Python scripts developed for this implementation can be accessed at https://github.
com/kYwzor/DTNRoutingMarkov. In the following sections we will go over the main design
choices that were taken to deal with the requirements and limitations described above.

4.5.1 Sparse Matrices

As mentioned before, P is likely to have an extremely large number of elements; in that
case, it would be implausible to be able to keep all elements accessible in random-access
memory (RAM) without running out of memory. Thankfully, for all gxib and u

x
ia that have

been described, each state is only able to transition to a maximum of 6m other states.
This means that, in general, the overwhelming majority of elements of P will be zeros;
in fact, even for a relatively small scenario with m = 2, s = 36000, P is guaranteed to
have a sparsity of over 99.9% and this value will intuitively increase with larger values of
s. Therefore, instead of storing every element of this matrix, we could save a substantial
amount of memory by only storing non-zero elements; this is the concept behind sparse
matrices. Figure 4.1 shows an example of a sparsity plot for a scenario with 12500 states.

Figure 4.1: Sparsity plot for P of a scenario with m = 2, n = 5, t = 10, c = 1, τ = 5,
Forward Walk (a+ = 2/3), Epidemic Routing (r = 0.5). Each point represents a possible
transition between two states

While we use NumPy [18] to handle all dense arrays, throughout the program we use two
different implementations of sparse matrices by SciPy [64]. Specifically, for all intermediate
operations before the construction of P, we are using a coordinate list format, since it is
relatively efficient for constructing matrices and for calculating Kronecker products. In
this format, the matrix is described by an array with the values of all elements, and two
more arrays for their corresponding row and column indices, with these values being sorted
first by row and then by column. After P is built, it is converted to a compressed sparse
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row format which is used for all future operations (mainly matrix multiplications), since
it is particularly efficient for them. While the coordinate list format has three arrays with
a length equal to the number of non-zero elements, compressed sparse row manages to
reduce the size of the array for the row indices, by creating an array with one element per
row where it stores the number of non-zero values "seen" up until that row.

Sparse matrices have properties that allow some operations to be less computationally
intensive than they would be for the equivalent dense matrix; for example, multiplying
any number by 0 will always return 0 and thus a matrix multiplication algorithm made for
sparse matrices can be designed to make use of these shortcuts. SciPy’s implementation
has multiple optimizations of this kind, and thus we can achieve significant speed ups by
making calculations in matrix form whenever possible. This was the goal of expressing
most calculations in a matrix form in previous chapters. However, given that the creation
of sparse matrix objects is significantly more computationally intensive than the creation
of dense arrays, we avoid creating sparse matrix objects in some intermediate calculations
that are critical to the performance. We achieve this by directly creating and handling
the three dense arrays that internally describe a sparse matrix (as explained previously),
allowing us to only create the sparse matrix object after these intermediate steps have been
concluded.

4.5.2 Parallelism

When analysing this model, many of the necessary calculations are made on a state-by-
state basis, with each calculation being independent of the others; this mainly occurs while
building P, but also on the calculation of auxiliary sets for some metrics, for example,
(4.20), (4.23), (4.30) and (4.32). Given the previously mentioned large number of states,
this type of operations represent a significant computation time. However, given their
independence from each other, these calculations can be made in parallel, as long as the
system being used has the support for parallelism.

Specifically, we have implemented this through Python’s multiprocessing module, which
allows us to create a pool of worker processes (one for each available logical core) and then
iterate the states by passing the correspondent jobs to the worker processes, as the workers
become available. The construction of P is particularly interesting in that we are able to
calculate it by creating a separate job for each different value of γx in (4.42); as for the
previously mentioned auxiliary sets, they can be calculated prior to all metric calculations
and then stored in a dense matrix format to be used as needed for each metric.

When using Python’s multiprocessing module, communication between processes is typ-
ically handled through serialization/de-serialization of data (pickling). While this is ad-
equate for small amounts of data, it may represent a significant slowdown when child
processes need to access large shared resources. Given that Python creates these processes
based on the program’s global state, one way to bypass this communication is to create the
necessary shared resources globally, prior to the creation of the worker pool. To achieve
this, we use singleton-like patterns; while these are typically discouraged, we believe them
to be better than the alternative (using global variables), as class attributes provide some
degree of encapsulation.
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4.5.3 Linear System Solver

The linear system seen in (3.7) can be expressed in matrix form, as described in a prior
footnote. In our case, these matrices will be sparse and there are solving algorithms that
were designed particularly for them. In general, there are two major types of solvers:
solvers based on direct methods and solvers based on iterative methods. The first type in
theory is able to calculate the exact solution; to do that it first transforms the matrix (LU
decomposition) in order for it to get certain useful properties which then allow it to directly
calculate the solution. However, due to the necessary floating-point arithmetic the results
are not guaranteed to be exact in practice and this transformation process is not easily
parallelized; moreover, for our particular matrices, it is common for the decomposition to
significantly reduce the sparsity of the matrix, to the point where system memory is not
sufficient. Due to all this, direct methods are not well suited for solving this particular
type of linear system. On the other hand, iterative methods are well suited for large sparse
matrices and they can usually be easily parallelized. These methods work by starting with
some solution which is then improved iteratively until the requested precision is reached;
therefore, this allows us to have a trade-off between computation time and precision. With
all this in mind we decided to use iterative methods in our calculations, particularly, SciPy’s
implementation of the LGMRES algorithm with tolerances of 10−14.

4.5.4 Performance

By optimizing many aspects of the implementation we were able to significantly decrease
the overall runtime of our program. Our program has 3 main phases: calculation of the
Transition Probability Matrix (P), calculation of the stationary state probability vector
(π) and calculation of the performance metrics. While scenarios with more states generally
increase the overall runtime, the runtimes of some phases are affected more than others
depending on which specific parameter is being changed. For example, on Figure 4.2, we
can compare two scenarios with the same number of states (400 000) but with different
values of t and n (the sparsity is mostly the same). This plot clearly demonstrates that

Figure 4.2: Comparison of the runtime of each phase when the values of t and n are
changed but s stays the same (average over 5 runs).
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the calculation of metrics is particularly affected by t. This is due to the fact that most
metrics analyse the chain over the period that a packet of data may exist, which is t,
therefore affecting the amount of computation needed; particularly, Equation (4.31) scales
quadratically with t. On the other hand, the calculation of P seems mostly unaffected
by these changes. As for the calculation of π, since we did not implement the algorithm
ourselves, we are not sure of what causes the decrease in runtime with a bigger t and
smaller n, but it likely is related to the matrix’s structure being easier to solve. In fact,
due to its iterative nature, the runtime for the calculation of π seems to depend heavily
on the specific scenario, making it hard to generalize its behaviour. Another interesting
way to look at the runtimes is to see how they behave with a linear increase in the number
of states. Particularly, we know that τ causes a linear increase in s and thus Figure 4.3
shows its effects. As this figure demonstrates, we believe that our calculations scale mostly

Figure 4.3: Comparison of the runtime of each phase when only τ is changed, representing
a linear increase in s (average over 5 runs).

linearly with increases in the number of states (for similar scenarios), though the increase
in computation time for π is significantly steeper.

Overall, we are satisfied with the performance we achieved, since currently the main lim-
itation is the amount of memory required for the calculation of π, which we did not
implement. For example, we can calculate P for a scenario with 10 million states in just
about 31 seconds, but the iterative algorithm completely exhausts all available memory
before it manages to return π. Therefore, we consider that at this point the biggest im-
provements to the performance of our program would come from a more careful choice of a
system solver and respective tolerances; however, since this is not the focus of our research,
we did not pursue it.

4.6 Verifying the Analysis

Given that the approach defined in Section 4.2 was not based on any existing framework,
simply verifying that the metrics have been implemented as they have been defined is not
sufficient; it is particularly important to verify that these definitions produce results that
mean what we intend them to. Therefore, we made an effort to verify our calculations in
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a few ways, which will be described in this section.

4.6.1 Simulation based on the Transition Probability Matrix

Firstly, we wanted to verify our calculations with the assumption that the Transition Prob-
ability Matrix was correctly defined in (4.42). To do that, we built a simulator which aimed
to create a long sequence of states, resulting from successive state transitions. Specifically,
the simulation starts in a random state. Then, on every simulation step, we generate a
random number between 0 and 1 and start a cumulative sum along the row vector of P
correspondent to the current state. When this cumulative sum surpasses the randomly
generated number, the column in which it did corresponds to the state that the simulation
will now transition to. The simulation stops after a predefined number of steps.

When this simulation is finished, we can analyse the sequence that was generated and
extract metrics from it. Specifically, we can count the occurrences of each state and divide
them by the total number of steps, and we expect these results to be a good estimate
for the corresponding elements of the calculated π. Given that Equation (4.35) depends
solely on π, this is enough to verify that calculation. The rest of the calculations depend
on analysing the probability of certain sequences of states. To verify them, we can simply
calculate how often these sub-sequences occur, by analysing the generated sequence with
a sliding window of the appropriate size. Once again, we expect that these results will be
good estimates for the equivalent calculations.

Increasing the number of simulations steps has a tendency to approximate the simulated
results to the calculated results, and larger scenarios require longer simulations for the
same precision. From our testing, with a million simulation steps, the results for a scenario
with 7200 states matched with the calculations up to the third decimal place. This gives us
confidence that the calculations are defined correctly as long as the transition probability
matrix is correct.

4.6.2 Simulation based on Entity Behaviour

We were also interested in verifying our results with the least amount of assumptions
regarding our model. To achieve this, we designed a simulation that aimed to describe the
exact same behaviour of our model but without any notions of Markov chains, states or
transitions. Instead, the simulation is operated from the perspective of the entities, with
each moving and communicating independently (although synchronously). Each entity
has a certain location and certain data. At the start of the simulation, each entity is
placed in a random position without any data. At each simulation step, the age of the
data being carried by entities is incremented, then the DCU contacts any entity in range,
and then each entity tries to contact the RSU, if it is in range, or all entities in range,
otherwise. Every time an entity is contacted, it only takes that contact into consideration
if the contacting entity has the newest data it has seen in that step. After all these contacts
occur, each entity compares the newest data from contacts with its current data and one of
three situations occur: 1) If there is no data from contacts or the data from contacts is not
newer than the one it is carrying, the entity keeps its current data; 2) Else, if it is carrying
no data, it takes the newest data from contacts; 3) Else, it generates a random number
between 0 and 1, taking the newest data from contacts if the generated number is smaller
than r, and keeping its current data otherwise. After these comparisons are finished, each
entity moves to a new position by randomly choosing between moving forwards, backwards
or not moving (the probability of each depends on the mobility model) and a simulation
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step is considered to be finished. The simulation runs for a predefined number of steps.

While this simulation is very distant from our model in the ways that it processes changes
in the simulation state, its overall behaviour should be exactly the same, as the entities
move and communicate with the exact same rules as described in our model. Therefore,
this simulation is a great tool for the verification of our model. Particularly, while the
simulation is running, it is keeping track of relevant data such as the age of data in all
entities, occurrences of first-hits (delivery of a certain data for the first time), lost data,
amount of deliveries and repeated deliveries. When the simulation finishes, we can divide
these counters by the number of simulation steps, allowing us to calculate all the metrics
that we have defined.

Once again, we expected these results to be good estimates for the ones that can be
calculated by our model. From our testing, with a million simulation steps, the results for
a scenario with 7200 states matched with the calculations up to the second decimal place.
This was a very satisfying result given the significant difference in the approach.

4.7 Parameter Sensitivity

Before moving on to analyse a real-world scenario, it is important to understand how the
model behaves with changes to its parameters. Therefore, we will explore artificial scenarios
were we change some of the parameters and analyse the corresponding results. This allows
us to better understand the model, and it will help creating an accurate model for a real
scenario and interpreting future results. Additionally, it can help us verify that the changes
in the parameters alter the performance of the network in a way that is intuitively expected.
We will mostly study the scenarios from the standpoint of minimizing data loss, though
obviously there are other possible approaches, such as minimizing delays or the utilization
of the network. Every scenario will assume a Forward Walk with a+ = 0.5 and Epidemic
Routing.

4.7.1 Number of entities

We will start by comparing the outcome of data in two scenarios that are equal with the
exception of the number of entities. We varied the replacing ratio and created a plot of
data outcomes for each scenario, which is shown in Figure 4.4. An obvious result is that
increasing the number of entities gives the network a better chance of delivering data.
More interestingly though, this effect gets much more pronounced with higher values of
r. Not only that, but the value of r that minimizes overall data loss is also higher for the
scenario with 3 entities. This is due to the fact that higher values of r mean that entities
share their data more frequently, and thus the increased number of entities becomes more
relevant. However, a clear downside of having more entities is that it disproportionately
increases the amount of data that is delivered more than once. This is due to the fact that
it is now possible to have more copies of data in the network.

4.7.2 Time-to-live

We will now consider the scenario with 2 entities as our base scenario, on top of which we
will change other parameters. In this case, instead of t = 10, we will now analyse the cases
for t = 4 and t = 16, the results of which are shown in Figure 4.5.
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Figure 4.4: Both plots show the outcome of all data that is generated, divided in two types
of loss and two types of deliveries. The plot on the left shows the results for m = 2, while
the one on the right does the same for m = 3.

Figure 4.5: Both plots show the outcome of all data that is generated, divided in two types
of loss and two types of deliveries. The plot on the left shows the results for t = 4, while
the one on the right does the same for t = 16.

36



Modelling a Urban Sensing Scenario

When t = 4, it is fairly hard for a single entity to carry data all the way from the DCU to
the RSU. Due to this, the importance of sharing data increases, resulting in the optimal r
for decreasing data loss being the maximum value possible (r = 1). However, given that
the value of r is only relevant when entities are carrying data, and given that reducing
t also reduces the overall probability of entities carrying data (since it is more likely to
expire), when t is smaller the choice of r also has a smaller influence in the overall network
performance. This results in the scenario with the smaller t having almost no change to
the overall loss when t is changed. Interestingly though, for low values of r, the network
has a better performance for the t = 4 scenario than for t = 16. This result is not very
intuitive, but it can be easily explained by analysing the plot. The reduction of t directly
results in an increase to the average number of entities that are available to receive data
from the DCU (as their data expires more easily), which in turn significantly reduces the
losses that occur at the DCU when compared to the scenario with larger t. Although this
also results in significantly more losses in transit, the reduction in losses at the DCU is
large enough that it is overall an advantageous trade-off.

Looking at the case with t = 16, we can make a few interesting conclusions. Firstly, when
comparing it to the base scenario (t = 10), we notice that their plots are very similar
despite the significant change in the parameters. In fact, the results for t = 16 are slightly
worse for lower values of r, leveling out to be indistinguishable from t = 10 with higher
values. This can be explained by the fact that most deliveries in the original scenario were
already occurring way before data reached its maximum age, due to the relatively small
distance the entities had to cover, which can be observed in Figure 4.6. This means that
increasing t can only reduce the losses on a network up until a certain point, after which
it can actually cause more losses or simply have a negligible effect.

Figure 4.6: This plot shows, for the base scenario, the average age at delivery (latency)
and in the network (overall), along with the utilization as a percentage of entities carrying
data (different y-axis). The average age on delivery is smaller than 5 at any value of r.

Secondly, its minimum point for data loss (which occurs at r = 0.68) is slightly lower than
the the minimum point for the t = 4 scenario. This is an intuitive result, since we expect
that, under the right conditions, a bigger t allows us to deliver more data. Specifically,
the data loss for t = 16 is lower than the t = 4 scenario for all 0.33 < r < 1, with r = 1
resulting in approximately the same loss for both of them; this is due to the fact that,
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when r = 1, we always replace the data that entities currently have and thus having a
larger t is mostly meaningless as data is very likely to be replaced before it expires.

4.7.3 Sampling Period

If we reduce or increase τ by 1, the behaviour of the network changes significantly. This can
be seen in Figure 4.7. The results for τ = 1 show very clearly why we opted to introduce a

Figure 4.7: Both plots show the outcome of all data that is generated, divided in two types
of loss and two types of deliveries. The plot on the left shows the results for τ = 1, while
the one on the right does the same for τ = 3.

sampling period in our model; new data is created simply too frequently when compared to
how often entities move. Due to this, the loss is extremely high regardless of r, making it
hard to create any interesting scenario. As for τ = 3, when compared to the base scenario
(τ = 2), the biggest difference lies in a significant reduction in data lost at the DCU, which
is intuitive given that it is producing less data. This also shifts the optimal values of r
towards 0, because, by increasing the time a certain data stays at the DCU, entities can
afford to refuse it more frequently.

4.7.4 Discretization

As previously mentioned in Section 4.4, we can have different levels of discretization for
this model, for both space and time. Specifically, we can increase the spatial resolution by
increasing the number of locations n and proportionately increasing the contact range c
and the speed of the entities in the mobility model. Similarly, we can increase the temporal
resolution by increasing the sampling period τ and proportionately increasing the data’s
time-to-live t and decreasing the speed of the entities in the mobility model (since their
position is now being updated more frequently). While the discretization of a real-world
scenario always reduces the realism of the model, it is intuitive to think that bigger spatial
and temporal resolutions can help approximate the model to the behaviour of the network
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in the real-world. Therefore, if we keep increasing the resolution of our model we expect
the results to change significantly (but not completely) at first, but we also expect the
effects of successive increases to be less notable as they go on.

In order to observe this, we created a small scenario and then we increased its spatial and
temporal resolution by 2, 3 and 4 times. It is important to note that if we wanted to double
the spatial resolution we would need to halve the length of the intervals between locations,
or in other words, double the number of intervals. Given that the number of intervals is
n− 1, this means that multiplying the resolution by x is achieved by using a new value of
n such that new_n = (old_n− 1)x+1. Moreover, if we increase the spatial and temporal
resolution simultaneously, the speed of the entities in the mobility model must be kept
unchanged.

The result of this exploration can be seen in Figure 4.8. As we expected, changing the

Figure 4.8: These 4 plots show the same scenario, but with increased spatial and temporal
resolution. The resolution increases first from left to right and then from top to bottom.

resolution of the model does not change the results completely, which we believe to be
a good sign that the interactions between the different parts of this model make sense.
Moreover, as we predicted, doubling the base resolution achieved somewhat notable changes
in the results, but the changes are less notable with each increase in resolution. We believe
that this indicates that the results tend towards a limit, as the resolution increases, but
we cannot further verify this experimentally due to model size constraints.
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Analysis of a Real-world Scenario

In this chapter we will apply the model defined in Chapter 4 to a simplified real-world
scenario. This will allow us to demonstrate how this conversion can be achieved (Section
5.1) and how the resulting model can be analysed. Particularly, in Section 5.2 we will
visualize the behaviour of the model from multiple perspectives and draw conclusions from
it.

5.1 Modelling Process

We are interested in providing an example of the process of modelling a system starting
from a real-world-like scenario. Let’s consider we have the following scenario:

• We have a one-way street in which cars travel at an average speed of 60km/h and
are able to overtake each other;

• The DCU and RSU are placed on this street, 500 meters apart from each other, with
the cars moving from the DCU to the RSU;

• On average, there are 2 cars moving within these 500 meters;

• The DCU samples its sensors every 20 seconds and the data it generates is only
relevant for 40 seconds.

• Communication can occur at a distance of up to 100 meters.

Since our model is only able to deal with discrete time and distance, both will have to
discretized. Ideally we would use extremely small discrete units, since by decreasing the
scale of the units being used we approximate the system to a continuous behaviour, which
is better adjusted to a real-world scenario. However, a decrease in scale also results in a
increase in the number of states, which may make the calculations intractable due to the
time and memory it requires. Therefore the discretization should find a balance between
these situations. With that in mind, we chose 50 meters and 2 seconds as our units of
distance and time, respectively.

Given that we will only consider a 500 meter stretch of the road, this means we have
10 different intervals of 50 meters and therefore we have 11 different locations (n = 11).
Moreover, the entities have a communication range of 2 intervals (c = 2). The DCU
generates data every 10 units of time (τ = 10), which has a time-to-live of 20 units of time
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(t = 20). Given that the cars only travel in one direction, we will model their movement
using the Forwards Walk model. A car travelling at a velocity of 60km/h, covers 50 × 2

3
meters in 2 seconds, therefore α+ = 2

3 . Finally, we will consider the average number of
cars (m = 2). All things considered, this model is composed of 484000 different states.

5.2 Analysis

Let us say that, under this scenario, we decide to use a communication model and routing
strategy like the ones described by Equation (4.2). This equation allows us to adjust
r according to our needs and therefore we are interested in knowing what is the "best"
possible value for it. Ideally, we would like to find a value of r that minimizes data loss
and delivery latency while not wasting a lot of resources, that is, also minimizing storage
utilization and deliveries of two or more copies of the same data. Intuitively, these goals
seem to be hard to reconcile, but some values of r may be more interesting than others.
Therefore, we decided to test this network for 101 equally spaced values of r, between 0
and 1. This will allow us to understand how different aspects of the network behave as r
varies and ultimately make a decision on what r to pick.

We will start by creating a plot showing the probabilities of delivering different numbers of
copies of the same data, as shown in Figure 5.1. By analysing these plots, it is clear that

Figure 5.1: Both plots show how data delivery changes with different replacing ratios, but
the plot on the right side focuses solely on loss to better highlight its curve.

out of all tested values of r, 0.76 is the optimal choice for reducing the data loss. However,
the number of repeated deliveries strictly increases with the increase of r.

We can now try to understand what is causing these changes in the probability of data loss.
To do that, we can create a plot distinguishing losses at the DCU from losses in transit,
allowing us to evaluate what is causing most losses. Moreover, we can join this data with
the data from the previous plots to create a stacked plot which shows a general overview
of the outcome of data generated, separated by type of loss and type of delivery. Both of
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these plots can be seen in Figure 5.2. As we can see, increasing the replacing ratio results

Figure 5.2: The plot on the left shows how the causes of loss change with r, while the plot
on the right shows the outcome of all data that is generated, divided in two types of loss
and two types of deliveries.

in lower losses at the DCU, which is an intuitive result as it allows the DCU to have more
available entities nearby. However, this decrease comes at the cost of an increase in losses
in transit, as entities are more likely to lose a packet along the way. Therefore, in this
case, the optimal choice for reducing data loss is essentially a point where we are able to
decrease the loss at the DCU, while not increasing the loss in transit as much.

Let us now look at the behaviour of the model for other metrics. It is interesting to analyse
how r influences the age of the data in the network, as well as the average percentage of
entities carrying data (utilization). We can display these values on a plot, shown in Figure
5.3. This plot shows that an increase in r not only strictly decreases the overall age of data
in the network, but also specifically of the data being delivered. In fact, these two values
seem to be fairly correlated, which we believe to be an intuitive result. However, a clear
downside is that the utilization of storage resources rises significantly.

These results are in line with our expectations that it would not be easy to reconcile our
multiple interests. However, it now becomes clear that we need to study the problem
as a multi-objective optimization problem. We will specifically be looking at data loss,
delivery latency and repeated deliveries. We have already established that this problem is
non-trivial, that is, there is no value of r that simultaneously optimizes all the metrics we
are considering. Therefore, it becomes especially interesting to visualize the Pareto front
of our problem. This front is the set of all nondominated solutions, that is, solutions to
which there is no alternative which improves the value of one of our metrics (objectives)
without degrading the value of another metric. In Figure 5.4, we show our objectives in
pairs and then simultaneously in a 3D representation. As a reminder, we want to minimize
all of our three metrics. Therefore, when analysing loss versus latency, we notice that for
any r < 0.76 the solutions obtained have larger latency and loss than the solution obtained
with r = 0.76 and thus they are clearly not interesting for these objectives. On the other
hand, solutions obtained for 0.76 ≤ r ≤ 1 improve the value of one of our objectives while
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Figure 5.3: This plot shows the average age at delivery (latency) and in the network
(overall), along with the utilization as a percentage of entities carrying data (different
y-axis).

Figure 5.4: The first three plots represent the pairwise Pareto fronts between our opti-
mization goals, while the last plot (lower right) is a 3D representation of the Pareto front
between these goals.
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degrading the value of the other, and thus these solutions are nondominated. Similarly,
when taking into consideration loss and repeated deliveries, the solutions obtained for
0 ≤ r ≤ 0.76 constitute the Pareto front. As for the last pair-wise comparison, all solutions
are nondominated. This means that, when considering all of our three objectives, all
solutions are nondominated.

The biggest challenge in this optimization has now become clear: in this scenario it is im-
possible to lower latency without causing an increase in the deliveries of repeated copies.
Therefore, any value of r is a potentially good choice depending on our goals and, conse-
quently, the decision falls squarely on the decision maker’s shoulders.

For example, upon analysing all this data, the decision maker may conclude that, when
it comes to latency, it is only fundamental to keep it below a average of 12, but further
decreases are not relevant. In that case, we would now only be interested in analysing
the relation between data loss and repeated deliveries, but the solution space would be
reduced, as the latency became a constraint on the possible solutions; this is represented
in Figure 5.5. With this, the decision maker has reduced the set of nondominated solutions

Figure 5.5: This plot compares Loss and probability of repeating deliveries, with the
restriction of keeping latency under 12.

to values of r between 0.47 (minimum value of r that keeps the average latency below 12)
and 0.76 (optimal value of r for minimum loss), with any choice between these values being
a simple trade-off between our two objectives.
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Conclusion

The mobility of nodes in a network provides both challenges and opportunities for com-
munication. While traditional networking approaches struggle to deal with the resulting
disruptions in connectivity, DTN approaches are designed to resist them and also adopt
SCF paradigms which allow the performance of the network to benefit from the mobility.
In this context, DTNs open the possibility of establishing communication in scenarios with
little to no infrastructure, enabling a wide range of new applications.

While interesting, DTNs also come with challenges of their own, having particular difficulty
in providing guarantees about data delivery. On top of that, they are complex to study and
predict, given that their performance depends heavily on the interactions between the way
nodes move, communicate and route messages. At the same time, such analysis is crucial
to allow the implementation of real-world systems that are well-optimized, and thus there
is a significant interest in exploring ways of assisting it.

We proposed a model based on a finite-state discrete-time homogeneous Markov chain that
aims to describe the behaviour of a DTN in a urban sensing scenario. This model separately
describes a mobility model, a communication model and a routing strategy, which together
form the behaviour of the network, allowing us to easily change each of these independent
components. Although the model simplifies some aspects of a real-world scenario, we have
shown that we can still extract many relevant network performance metrics from it, such
as delivery ratios and delays, which can help us make decisions regarding optimal routing
strategies. We have also implemented a program that handles the necessary calculations
for the analysis of this model, carefully designing it so that its computation is viable. On
top of that, we verified the proposed calculations by comparing our results with the results
of two different simulation-based models.

We then applied the proposed model to a real-world scenario and extracted all the previ-
ously described metrics, visualizing them in a way that facilitates the analysis. The model
proved to be robust enough to provide results that are interesting from an optimization
perspective (non-trivial). We approached the results from a multi-objective optimization
standpoint, exemplifying how a decision maker might decide on a optimal parameter for
the routing strategy.

We believe our work provides a good foundation for future research in this topic, as the
model was designed in a way that can easily accommodate extensions, allowing it to have
increased realism and adaptability to different scenarios.
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Future Work

One of the biggest limitations of our model is that it requires an extremely large number of
states to properly analyse a non-trivial real-world scenario. One possible way of avoiding
this would be by changing from a mobility model based on discrete values for locations,
to a continuous model that is based on the estimated time between entity contacts. This
could potentially reduce the amount of information that is needed to describe each entity
and, consequently, significantly reduce the overall number of discrete states.

Another limitation of our model is that we consider the existence of a single DCU and a
single RSU. In practice, roads may contain several of each, and may even contain some
other units that behave as throwboxes. This would greatly increase the complexity of the
system being studied, but also its realism.

A future work opportunity that would be worth exploring is the possibility of creating
mobility models and routing strategies with increased realism. For example, a second-order
Markov chain could allow for interesting properties such as inertia in entity movement and
knowledge of an entity’s current direction, which could allow for more realistic movement
and better routing decisions. Another possibility is to base a routing strategy on an entity’s
knowledge of its current location. Moreover, our current mobility models are based on
a one-dimensional space, but a two-dimensional (or even three-dimensional) space would
allow for an increase in degrees of freedom of movement, which has the potential to increase
realism. The system could also be expanded to consider the possibility of all units having
larger buffers, though that would significantly increase the state space and require a change
in the current routing strategies.

Finally, it would be extremely interesting to build these scenarios in the real-world and
gather data for the relevant network metrics. This would allow us to properly validate the
results of our model and have a better grasp on how closely it can describe reality.
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