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Abstract

The optimization of aircraft maintenance has been a focal point for airlines for many
years, mainly due to the high costs associated with it. Currently, most airlines adopt
preventive maintenance strategies to reduce the number of unexpected failures. However,
some strategies have some flaws due to the possibility of over-maintenance and the inability
to predict failures. The aim of the Real-time Condition-based Maintenance for Adaptive
Aircraft Maintenance Planning (ReMAP) project is to use a predictive strategy, namely
Condition-Based Maintenance (CBM), to deal with these problems. The idea is to monitor
the condition of components with data gathered from sensors to compute Remaining Useful
Life (RUL) values, which can be used in the maintenance decision process.

This work is part of the ReMAP project, and the goal is to use Reinforcement Learning
(RL) to optimize the scheduling of aircraft maintenance. In the first stage, two formulations
are proposed to optimize the scheduling of checks for a specified time horizon using the Deep
Q-Learning (QL) algorithm. In the second stage, the Asynchronous Advantage Actor-Critic
(A3C) algorithm is used to optimize a task packaging solution, while considering relevant
aircraft maintenance factors, such as manpower resources and unscheduled maintenance.
Moreover, a predictive task scheduling algorithm is proposed, using prognostic information
to adapt the existing maintenance plan.

The proposed algorithms in both stages are tested and validated using real maintenance
data from a fleet of 51 aircraft. The quality of the maintenance plan obtained is evaluated
according to several Key Performance Indicators (KPI). The results are very positive and
promising, which indicates the potential of RL to solve this type of problem.

Keywords

Aircraft Maintenance, Artificial Intelligence, Predictive Maintenance, Maintenance Schedul-
ing, Reinforcement Learning
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Resumo

A otimização da manutenção de aeronaves tem sido um ponto essencial para as companhias
aéreas durante muitos anos, principalmente devido aos elevados custos que lhe estão asso-
ciados. Atualmente, a maioria das companhias aéreas adotam estratégias de manutenção
preventivas para reduzir o número de falhas inesperadas. Contudo, algumas destas estraté-
gias apresentam alguns defeitos devido à possibilidade de realizar manutenção em excesso
e à incapacidade de prever falhas. O projeto Real-time Condition-based Maintenance for
Adaptive Aircraft Maintenance Planning (ReMAP) tem como objetivo usar uma estratégia
preditiva, tal como a Condition-Based Maintenance (CBM), para lidar com estes proble-
mas. A ideia é monitorizar a condição de componentes com dados recolhidos de sensores
para calcular valores de Remaining Useful Life (RUL), que podem ser aplicados posterior-
mente no processo de decisão de manutenção.

Este trabalho está inserido no projeto ReMAP, tendo como objetivo o uso de Reinforcement
Learning (RL) para otimizar o agendamento de manutenção para aeronaves. Na primeira
etapa, são propostas duas formulações para otimizar o agendamento de checks para um hor-
izonte temporal especifico usando o algoritmo Deep Q-Learning (QL). Na segunda etapa, o
algoritmo Asynchronous Advantage Actor-Critic (A3C) é usado para otimizar uma solução
de empacotamento de tarefas, considerando alguns fatores importantes na manutenção de
aeronaves, tais como recursos humanos e manutenção inesperada. Além disso, um algo-
ritmo de agendamento preditivo de tarefas é proposto, usando informação de prognóstico
para adaptar o plano de manutenção existente.

Os algoritmos propostos para ambas as etapas são testados e validados com dados reais de
manutenção de uma frota de 51 aeronaves. A qualidade do plano de manutenção obtido é
avaliado de acordo com vários Key Performance Indicators (KPI). Os resultados são muito
positivos e promissores, indicando o potencial de RL para resolver este tipo de problemas.

Palavras-Chave

Manutenção de Aeronaves, Inteligência Artificial, Manutenção Preditiva, Agendamento de
Manutenção, Aprendizagem por Reforço
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Chapter 1

Introduction

This document presents a report of the work developed in the Master’s Dissertation in
Informatics Engineering presented in the Department of Informatics Engineering of the
Faculty of Sciences and Technology of the University of Coimbra.

The study is done in the context of the Real-time Condition-based Maintenance for Adap-
tive Aircraft Maintenance Planning (ReMAP) project (H2020 ReMAP) and follows the
work done previously by Pedro Ferreira in his Master’s Dissertation (Ferreira, 2019).

This chapter presents the context of the research in Section 1.1, the motivation in Section
1.2, and the global goals of the thesis along with an overview of the developed work in
Section 1.3. Finally, the general structure of the document is explained in Section 1.4.

1.1 Context

According to the European Committee for Standardization, maintenance can be defined
as the “combination of all technical, administrative and managerial actions during the life
cycle of an item intended to retain it in, or restore it to a state in which it can perform the
required function” (European Committee for Standardization, 2017). Over the last decades,
as a result of the technological advancements, the equipment and systems in the various
industry areas have become much more complex, which massively increases the number
of possible failures. This increase in complexity has direct implications in maintenance,
forcing the industry to adopt new strategies to achieve goals such as higher reliability,
availability, and safety while attempting to reduce the cost. In the specific domain of
aviation, where a failure in a critical system may have catastrophic effects, maintenance is
of the utmost importance and is especially aimed at maximizing reliability.

There are three essential strategies of maintenance: corrective maintenance (also called
reactive maintenance), preventive maintenance, and predictive maintenance. The first one
is only performed when a failure occurs, thus it may be viewed as repair work. This strategy
leads to high maintenance costs and huge risks, mainly when applied in critical systems. In
preventive maintenance, the equipment or systems are maintained in predefined intervals
of time. These intervals are, in most cases, defined by the manufacturers, the maintenance
staff, or by legal factors and are usually based on the number of working hours or times
of the equipment or system (Li et al., 2016b). This strategy aims at reducing the number
of unexpected failures caused by deterioration and other factors during the life cycle of an
equipment or system, thus reducing the overall cost of maintenance. Finally, predictive
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maintenance uses a combination of historical data regarding previous failures and real-time
condition monitoring (Condition-Based Maintenance (CBM)), to predict when a failure is
likely to occur and perform maintenance at an optimal time to prevent it.

Comparing with the other two strategies, predictive maintenance has some advantages,
increasing reliability and availability, reducing costs and time spent with maintenance and
extending the life of the equipment and systems (Wang et al., 2015). It also faces some
challenges, such as the capability to deal with big industrial data and the level of accuracy
associated with the equipment or system Remaining Useful Life (RUL) prediction, which
can lead to unnecessary maintenance or unexpected failures if not accurate (Li et al.,
2016b). Despite these challenges, with an industry continually evolving and the growing
need for maintenance optimization, it is expected that predictive maintenance will become
the go-to maintenance strategy for many companies and areas in the near future.

1.2 Motivation

One of the most critical aspects for any company is reliability. One day or, in some
cases, even one hour of downtime can be financially catastrophic financially and damage
the image of the company. An important factor in increasing reliability is a good product
design, however, as products age, they will always deteriorate in real environments, causing
failures or decreased efficiency. The solution is to perform maintenance and keep them at
a good operational level (Jardine et al., 2006).

Maintenance costs represent around 10-20% of the total operating costs of an airline (Peri-
yarselvam et al., 2013). Therefore it is imperative to improve the current existing proce-
dures and look towards maintenance optimization. An aircraft maintenance cost analysis
made by the Maintenance Cost Task Force (MCTF) from the International Air Transport
Association (IATA) reinforces the financial impact of maintenance in the aviation industry.
Globally, in 2016, airlines spent 67.6 billion dollars on Maintenance, Repair and Overhaul
(MRO), while in 2017 the value increased to 76 billion dollars (IATA’s Maintenance Cost
Task Force, 2016, 2017). This cost is expected to continue to grow over the years as the
systems and components tend to become more complex.

According to Luxhøj et al. (1997), 39% of the maintenance performed in the industry
corresponds to unplanned activities. In the aviation domain, the number is typically 50-
60% (Samaranayake, 2006). These numbers reveal a big problem for airlines since the cost
associated with unplanned maintenance due to failures is much higher.

Direct Maintenance Cost (DMC) is one of the most significant contributors to maintenance
costs, involving the labor and material directly used in maintenance. A few factors that
influence DMC are the fleet size, the frequency of maintenance intervals, and the aircraft
age and utilization (Periyarselvam et al., 2013). Therefore it is essential to design a main-
tenance plan considering these variables. In the specific case of maintenance intervals, if
these are defined by the equipment manufacturers, then there is a good chance they are not
optimal, due to the lack of knowledge and experience from those manufacturers in dealing
with failures in a real environment.

Ideally, the maintenance plan should be designed with these factors in mind, aiming at
performing maintenance at optimal times (when the equipment is reaching the end of its
life cycle). The goal of ReMAP is precisely to generate maintenance plans close to this ideal
scenario by replacing fixed-interval inspections with condition-based ones. The results are
an estimated benefit of 700 million euros per year for the airlines, obtained mainly through
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maintenance cost reduction and increased aircraft availability.

1.3 Goals and Approaches

This internship is embedded in the Work Package 6 (WP6) of the ReMAP (H2020 ReMAP)
project, entitled Maintenance Decision Support Tool (MDST), more specifically, in the
third task of WP6, which aims at developing efficient Machine Learning (ML) models (with
special focus on Reinforcement Learning) to deal with different equipment conditions, and
apply predictive maintenance based on them.

Therefore, the main goal of this work is to develop a learning model, using Deep Reinforce-
ment Learning (RL), that generates and optimizes maintenance plans for aircraft fleets for
a specified time horizon. Another goal is to include information about health prognostics,
such as RUL estimations, to cover different future health condition scenarios, allowing us
to develop predictive maintenance plans.

The work done in this thesis is divided in two stages. In the first stage, an approach to
schedule aircraft to maintenance slots is developed. Then, in the second stage, a task
packaging approach is developed to assign a set of maintenance tasks of each aircraft to
each of their scheduled slots, thus, creating a maintenance plan. This solution takes into
account relevant maintenance factors, such as the available manpower and unscheduled
maintenance ratios. Additionally, it is developed a predictive approach that uses RUL
estimations for aircraft components to produce a new maintenance plan by rescheduling
maintenance tasks to optimal times.

The baseline for the approaches developed in each stage consists on RL algorithms, namely,
the Deep Q-Learning (QL) and Asynchronous Advantage Actor-Critic (A3C) algorithms.
The models are applied to a dataset with real maintenance data from a fleet of 51 aircraft
of different types (A319, A320, A321). These approaches will be discussed with detail later
in this report, along with the obtained results and validation methods.

1.4 Document Structure

This document is structured in eight chapters.

Chapter 2 presents relevant background on related concepts and areas, which are impor-
tant to understand the context of this work.

Chapter 3 contains the study and research of the state of the art with respect to the
topics relevant in this work, such as CBM, maintenance scheduling, and RL.

Chapter 4 details the approaches proposed in the first stage of this work and the Deep
QL algorithm used for the optimization.

In Chapter 5, the algorithms developed in the second stage are explained, including
a task packaging solution, a predictive task scheduler, and the A3C algorithm used for
optimization.

Chapter 6 presents the experiments and the results obtained for both stages of the work.

Chapter 7 describes the validation methods used for all the proposed approaches.

Finally, Chapter 8 presents some conclusions from the developed work and provides an
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overview of future steps.

4



Chapter 2

Background

This chapter presents some important topics and gives an overview of some relevant areas
in the context of this thesis.

We start by presenting some current aircraft maintenance practices and a few problem
areas and challenges that airlines have to face every day in Section 2.1. Then, in Sec-
tion 2.2, we give an overview of the Real-time Condition-based Maintenance for Adaptive
Aircraft Maintenance Planning (ReMAP) project, presenting its goals, structure, parties
involved, and the estimated benefits. Some key concepts of Reinforcement Learning (RL)
are presented in Section 2.3, with a special focus on the strategies and algorithms used in
this thesis. This chapter ends in Section 2.4 with a summary of the discussed topics.

2.1 Aircraft maintenance current practices

Aircraft maintenance is a complex process heavily dependent on the fleet’s operating plan,
due to the need of knowing in advance the ground times for each aircraft, in which main-
tenance can be performed. Therefore, four steps can be considered in the maintenance
planning for an airline: (i) flight scheduling, (ii) fleet assignment, (iii) crew scheduling,
and (iv) aircraft maintenance routing (Liang and Chaovalitwongse, 2009). In the flight
scheduling phase, a flight schedule is built, typically some months in advance. The fleet
assignment aims to optimize the distributions of aircraft to different flights, based on fore-
casts of passenger demand. Crew scheduling attempts to optimize the crew distribution
over all flights. Finally, the maintenance routing consists of assigning each aircraft to a
sequence of flights while ensuring that each one of them has multiple opportunities to
perform maintenance during the time horizon of the plan (Liang and Chaovalitwongse,
2009).

The maintenance program of an aircraft has to go through several steps before being ap-
proved, as a consequence of all the standards and regulations in aviation. Initially, when
a new aircraft is introduced, the manufacturer must specify the initial minimum mainte-
nance requirements and include them in the Maintenance Review Board Report (MRBR),
which is then presented to a Maintenance Review Board (MRB). The MRB is composed of
members from the airline that is purchasing the equipment, the manufacturers, and the Na-
tional Aviation Authority (NAA) of the respective country, and the goal is to complement
the initial maintenance requirements (Ackert, 2010). Finally, the manufacturer gathers
this information and develops the Maintenance Planning Document (MPD), which must
be submitted to a certified international authority for approval. European Aviation Safety

5



Chapter 2

Agency (EASA), in Europe, and Federal Aviation Administration (FAA), in the United
States, are the top two international authorities and are responsible for the certifications
and regulations in civil aviation.

The MPD contains the final maintenance requirements for the aircraft, which means that
all maintenance tasks and respective intervals are described in this document. All these
tasks are allocated in maintenance checks of various types and intervals. The intervals in
which the checks occur are measured either in calendar days (DY), in Flight Hours (FH),
or in Flight Cycles (FC). A FC represents a complete take-off and landing sequence. The
number of different checks and their intervals depend on the airline and on the type of
aircraft. However, in most cases, four checks are defined (Van den Bergh et al., 2013):

• A-check: is performed biweekly and lasts approximately 10 hours. This check is
usually performed overnight.

• B-check: is performed every 300 to 600 FH and lasts between 10 to 24 hours.

• C-check: occurs once every year and lasts one to two weeks.

• D-check: is a structural check and is performed every 4 or 6 years, lasting for 3
weeks to 2 months.

In some airlines, B-checks do not exist. Instead, they are replaced by A-checks that assume
their interval and duration. Furthermore, there is also a transit check, which is performed
every time the airplane stops in between flights. This check involves visual inspection to
verify if the Minimum Equipment List (MEL) is in good condition. The MEL corresponds
to the mandatory list of equipment that allows a plane to fly (Van den Bergh et al., 2013).

C and D checks are considered heavy maintenance and are performed in a hangar or an
overhaul facility. A and B checks are also usually done in a hangar or at the gates, while the
transit check is part of what is generally called line maintenance. This type of maintenance
occurs on the aircraft operating environment and is usually done in between flights, lasting
1 to 2 hours. The main goal is to perform minor maintenance tasks that got postponed,
visual inspections, minor fixes and repairs, or tasks that have lower intervals than the
hangar checks and, thus, have to be performed outside of them (for example, lubrication
tasks).

When creating a maintenance plan, several decisions have to be made to try and optimize
it. For instance, in the peak seasons, airlines try to avoid significant maintenance checks
to allow most of the fleet to be ready to fly, and, in most airlines, the heavy maintenance
work is interrupted on weekends and public holidays. Additionally, if an A or B check is
planned to occur close to a heavy check (C or D), then the lighter check is canceled and
merged to the heavier check. This decreases the ground time of the aircraft, consequently
increasing availability and revenue (Cook and Tanner, 2008).

The personnel involved in aircraft maintenance needs to have a valid license and certificate.
Usually one person can only be certified to work with a limited number of aircraft types,
and can only perform a limited amount of maintenance tasks depending on his technical
skills (Van den Bergh et al., 2013). Each maintenance task possesses a task card, containing
general information such as the task interval, the aircraft type, the required technical skills,
the materials needed, etc. The task card also includes information on the procedures
involved in the execution of the task, which must be strictly followed by the workers.

There are some known problem areas regarding current maintenance practices, and airlines
face new challenges every day. Two examples are related to inventory management (Asif,
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2013) and hangar limitations, which result in a limited amount of maintenance checks per
day, due to the available physical space and human resources (Van den Bergh et al., 2013).
Another problem for the airline occurs when important and experienced personnel leave
the company. The knowledge and experience from maintenance engineers and technicians
are valuable to a company because they can easily identify problems just by sense, based
on past experiences. Their replacement is not always easy (Li et al., 2016a).

However, the main challenge in aircraft maintenance is related to the associated uncer-
tainty. Flight arrival delays, maintenance check duration, manpower, material availability,
and unexpected failures are some examples of variables, with a certain uncertainty level,
that are essential for maintenance planning.

2.2 ReMAP Project

The H2020 ReMAP (https://h2020-remap.eu/) project is a European project, which
started in June of 2018 and will last four years. The goal is to create a solution for
aircraft maintenance, the Integrated Fleet Health Management (IFHM) system, that aims
at replacing fixed-interval inspections with condition-based interventions (H2020 ReMAP).

ReMAP seeks to be one of the first major contributors to start shifting from preventing
maintenance to Condition-Based Maintenance (CBM), using health prognostics and diag-
nostics to calculate the Remaining Useful Life (RUL) of aircraft components, which will be
ultimately used to develop maintenance plans. Another big focus of ReMAP is to address
the regulatory barriers with the legislation in aviation maintenance, and perform a risk
assessment of the proposed IFHM approach, to try moving towards the certification of
CBM as a maintenance standard.

The process of ReMAP can be summarized in the following steps (H2020 ReMAP):

1. Leverage the existing aircraft sensors and develop new ones to monitor the system
and structure conditions.

2. Gather the data from the sensors and perform preprocessing techniques on the data.

3. Use Machine Learning (ML) to translate the data into prognostics and diagnostics
of the systems and structures.

4. Develop a Maintenance Decision Support Tool (MDST) that combines prognostics
and diagnostics information with other maintenance required items, such as flight
plans and resource availability, to develop an optimized maintenance plan.

The project has 13 partners involved, from 7 European countries, and it will be tested in
more than 12 systems from two aircraft fleets. Those systems include Cabin Air Condi-
tioning and Temperature Control System, Air Cycle Machine, Variable Frequency Starter
Generator, and Wheels & Brakes.

ReMAP has several Work Packages (WP) with different roles in the project. This thesis is
embedded in Work Package 6 (WP6), which aims at developing the MDST. The motivation
of this WP is to, for the first time, include RUL estimations in a maintenance management
solution.

The benefits of the proposed approach are estimated to be more than 700 million e per
year. These results are due to a direct decrease in maintenance costs and unscheduled
maintenance and increased aircraft availability (H2020 ReMAP).
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2.3 Reinforcement Learning

RL is an area of ML that aims at making a series of subsequent decisions to reach a
particular goal. An agent acts on a certain environment and receives a reward (positive or
negative) depending on the action taken. The motivation is that the agent will continuously
learn from his decisions and, over time, take actions that maximize the reward and achieve
the specified goal. Besides the agent and the environment, there are other important
elements related to RL (Sutton and Barto, 2018):

• State: a state is a representation of the environment. For example, if an agent is
learning to play chess, the state could be an 8×8 matrix with information about the
pieces.

• Reward: is a number that is sent to the agent each time it acts. This number
allows the agent to identify good and bad actions, and the key goal of the agent is
to maximize the total amount of reward received over time.

• Value: while the reward only identifies good immediate actions, the value allows
the agent to identify good actions in the long run, because it takes into account the
next states and their possible rewards. A state can yield a low immediate reward
but have a high value if it is followed by states which give a higher reward (Sutton
and Barto, 2018).

• Policy: the policy represents the agent’s behavior in the environment. In other
words, the policy is a function that takes a state as input and outputs either an
action or a probability distribution of all actions in that state.

• Model: the model represents the inner working of the environment, allowing for
example to make predictions or inferences about the next states and rewards. Since
the model may not be available in some scenarios, it is possible to ignore it and rely
on learning by trial-and-error. This strategy is called model-free RL.

In RL, the agent learns from his own decisions, which means that in order to achieve a
big reward and, at the same time, avoid converging to a local minimum, he must perform
the largest number of decisions possible. This is known as the exploration-exploitation
trade-off, where the exploration corresponds to the agent choosing a random action, and
the exploitation corresponds to the agent selecting the best action in the current state,
based on his experience (Sutton and Barto, 2018). A widely used strategy to ensure
a proper exploration of the search space is the ε-greedy. The variable ε represents the
probability of choosing a random action and is usually initialized to 1 with a decay rate
over time. This ensures high exploration at the beginning, and exploitation rising over
time (Arulkumaran et al., 2017).

2.3.1 Markov Decision Process

Formally, RL can be described as a Markov Decision Process (MDP) (Arulkumaran et al.,
2017). An MDP can be defined as a tuple (S, A, P, R, γ), where S represents the set of
states, A is the action set, P is the state transition probability matrix, R is the reward
function, and γ is the discount factor, representing the value of future rewards in compari-
son to immediate rewards. At each time step t = 0, 1, 2, ... the RL agent interacts with the
environment, choosing an action to take in the current state, St. After taking the selected
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Figure 2.1: Interaction between the agent and the environment (from Reinforcement Learn-
ing: An Introduction, Sutton and Barto (2018))

action, the result comes one step later in the form of a numerical reward, Rt+1, and the
agent moves to a new state, St+1. This interaction is represented in Figure 2.1.

As mentioned previously, the RL agent tries to maximize the cumulative reward over time.
Thus, it is essential to have a balance between immediate and future rewards. Sometimes
it may be best to choose the worst action in the present to achieve greater future rewards.
There is also the concept of discounting that is used to give less relevance to rewards
that occur far into the future. The goal of RL is to maximize the expected return, which
represents the sum of discounted rewards over time, and can be computed with the following
equation (Sutton and Barto, 2018):

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1, (2.1)

where γ ∈ [0, 1] is the discount factor. If γ is equal to 0, only the immediate reward is
considered. If γ is equal to 1, it means that all future rewards have the same importance
when choosing the action to take in a given state.

When formulating an RL problem as an MDP, we have some flexibility to choose the
basic elements, such as the state representation, the reward function, and the action set.
It ultimately comes down to our interpretation of the problem, however, it is important
to define a good reward function to ensure that the agent achieves the intended goals.
Sutton and Barto (2018) give an interesting example of using RL in chess. While the
state, represented by a matrix with the position of all pieces, and action set, represented
by all available moves, would be straightforward to define, the reward function is more
complicated. The natural idea is to give a positive reward for each piece captured, although,
as the authors point out, this may lead to problems, since the agent might capture a big
amount of pieces and achieve a good reward but still lose the game. A better solution is
probably to give a reward only at the end of the game, which will be positive if the agent
wins or negative otherwise.

A central concept in RL is the Markov property stating that: “the future is independent
of the past given the present.” In other words, the current state contains all the relevant
information from the past, meaning that the transition from state St to state St+1 is
completely independent of past states. Therefore, the state transition probabilities can be
defined with:

p(s′, r|s, a) = Pr{Rt+1 = r, St+1 = s′ |St, At}, ∀ s′, s ∈ S, r ∈ R, a ∈ A (2.2)

With equation 2.2 it is possible to compute the expected reward for any state-action pair
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(Sutton and Barto, 2018):

r(s, a) = E[Rt+1 |St = s, At = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a) (2.3)

This information is essential to advance and to introduce the concept of value and value
functions, which have a significant influence over the learning of the agent, and conse-
quently, in achieving its goals.

2.3.2 Value Functions

In RL, the value functions are defined alongside a policy. As mentioned before, a policy π
defines the behavior of the agent. In other words, a policy “is a mapping from each state,
s ∈ S, and action, a ∈ A, to the probability π(a|s) of taking action a when in state s”
(Sutton and Barto, 2018). There are two types of value functions: state-value function
and action-value function.

The state-value function defines “how good” a state really is. Formally, it is the expected
return of starting in state s and following a policy π. This function is denoted vπ and can
be defined by:

vπ(s) = Eπ [Gt |St = s ] = Eπ

[ ∞∑
k=0

γkRt+k+1 |St = s

]
, (2.4)

where Eπ represents the expected value when following a policy π, and t is a time step.

The action-value function defines “how good” it is to take an action on a specific state.
Formally, it is the expected return of starting in state s, taking action a and following a
policy π. This function is denoted by qπ and can be defined by:

qπ(s, a) = Eπ[Gt |St = s,At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1 |St = s,At = a

]
, (2.5)

Both value functions 2.4 and 2.5 use the expected return to calculate the value, which
considers the immediate reward and the discounted future rewards of taking an action in
the current state. Thus, the Bellman equation assumes a key role in computing the value
of a state, since it uses the value of the next states. This equation is defined by:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s

′)
]
, (2.6)

where p(s′, r|s, a) is the probability of s′ being the next state, and r being the reward if
action a is taken in state s. This function specifies that information about the value is
transferred back to a state from its successors, allowing to update the state and action
values, and consequently lead to better decision making by the agent.

2.3.3 Optimal Policy

A policy is considered to be optimal if the expected return is greater or equal to the
expected return of all other policies. If a policy π is optimal, then there is also an optimal
state-value function and an optimal action-value function associated with that policy, called
the Bellman optimality equations (Sutton and Barto, 2018).
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Bellman’s optimal state-value function, denoted v∗, is defined by:

v∗(s) = max
a∈A

∑
s′,r

p(s′, r|s, a)
[
r + γv∗(s

′)
]

(2.7)

Bellman’s optimal action-value function, denoted q∗ is defined by:

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)
[
r + γmax

a′∈A
q∗(s

′, a′)

]
(2.8)

The Bellman optimality equations indicate that the value of a state, when following an
optimal policy, is equal to the expected return for the best action to take in that state
(Sutton and Barto, 2018).

Finally, we need to know the strategy to use the value function in the search for an
optimal policy. There are two algorithms to achieve this goal: policy iteration and
value iteration.

Policy iteration aims at continuously improving the policy until it converges to an optimal
one. For this purpose two additional concepts are used: policy evaluation and policy
improvement. The first one is used to evaluate a policy, and it is an iterative process of
computing successive new state-value approximations using the Bellman equation 2.6 as
an update rule:

vk+1(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvk(s

′)
]
, (2.9)

for all s ∈ S, where k is the iteration step. This process usually starts with the state-values
initialized to zero, and visits all the states in multiple iterations, updating them (using
2.9) until convergence. The policy improvement phase takes as input the state-values from
the evaluation phase and finds a new policy by acting greedily, that is, choosing the best
action to take in every state:

π′(s) = argmax
a∈A

∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s

′)
]
, (2.10)

for all s ∈ S, where argmaxa is the action, a, that maximizes the expression that follows
it. Policy iteration works by using a sequence of policy evaluation and policy improvement
multiple times until convergence. At that time the optimal policy is found.

Value iteration combines policy evaluation and policy improvement into a single operation.
The goal is to overcome a drawback of policy iteration, related with the fact that the
optimal policy is only obtained with exact convergence. Since each iteration requires
updating the entire state space, it may take a long time to reach that convergence point.
Value iteration is based on the following equation:

vk+1(s) = max
a∈A

∑
s′,r

p(s′, r|s, a)
[
r + γvk(s

′)
]
, (2.11)

for all s ∈ S. The iterative application of this equation through all states results in the
optimal value function, v∗. The optimal policy can be easily obtained with v∗, by choosing
to take the best action in each state.
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2.3.4 Q-Learning

Q-Learning (QL) is a model-free RL algorithm with the goal of finding an optimal policy.
This algorithm is called off-policy because it uses two different ones: a target policy, used
to calculate the value functions and achieve optimality, and a behavior policy, used to
control the agent behavior (Sutton and Barto, 2018). The target policy is an absolute
greedy policy, and the behavior policy is usually a ε-greedy policy. QL uses a Q-table,
which is, in most cases, defined by a matrix with the shape [states, actions]. Each number
in the Q-table represents the value of taking an action, a, in a state, s, and it is named
as the Q-value, Q(s,a). The RL agent, at each time step, observes the current state and
chooses to perform the action with higher Q-value in that state. After acting, the agent
receives a reward, that will be used to update the Q-table using the following equation,
called the Q-function:

Q(St, At) = Q(St, At) + α

[
Rt+1 + γ max

a∈At+1

Q(St+1, a)−Q(St, At)

]
, (2.12)

where Q(St, At) is the Q-value of the state-action pair corresponding to state S and action
A, α is a learning rate, Rt+1 is the immediate reward received, γ is the discount factor,
and maxa∈At+1 Q(St+1, a) represents the estimated value of the next state, St+a, which
corresponds to the value of taking the best action in that state.

In QL and RL in general, the path taken by the agent from the initial state to a final state
is called an episode. The training of the agent is done in the course of multiple episodes.

To better understand how this algorithm works, let us look at a simple example. The
agent is in an environment represented by a 3×3 grid, which indicates the existence of 9
possible states, and the goal is to reach the cheese while trying to avoid the traps. The
reward function consists of a penalty of -1 each time the agent walks into a trap, and a
positive reward of +1 if it manages to reach the cheese. There are four possible actions:
go up, down, right, or left. Initially, we create the Q-table and initialize the Q-values to
0. In this case, let’s consider moves that would get the agent out of the grid as impossible
moves. Figure 2.2 shows the initial representation, along with the initial Q-table:

Figure 2.2: Environment representation and Q-table at time step 0.

Since all Q-values of the available actions on the state 1 (initial state) are equal to 0, the
agent chooses randomly the action to take. Assuming it takes the action “go right”, he will
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go to state 2. At this point, a reward of -1 is received, and the Q-table is updated by using
equation 2.14. With the learning rate, α = 0.1, and the discount factor, γ = 0.95:

Q(S = 1, A = “right′′) = 0 + 0.1 [−1 + 0.95 ∗ 0− 0] = −0.1 (2.13)

After updating the Q-table, the next time the agent visits state 1, either in the same
episode or in a new one, it will always choose the action “down” because it is the action
with higher Q-value. This scenario is illustrated in Figure 2.3:

Figure 2.3: Environment representation and Q-table at the second visit of state 1.

This trivial example shows the learning process of the agent and the potential of this
algorithm in achieving an optimal policy after multiple iterations. However, it is important
to note that always taking the action with the biggest Q-value can result in achieving a
local minimum, thus it is essential to introduce some exploration into the problem and
ensure that all actions are tested a sufficient number of times (Glorennec, 2000). Also,
this algorithm is not scalable, and for more complex problems and environments, it is
not feasible to have a matrix representation of the Q-values. The solution is Deep Q-
Learning.

A large and complex state space does not limit deep Q-Learning since it uses a Neural
Network (NN) to handle the Q-values. While in QL, given a state S and an action A, we
obtain the corresponding Q-value from the Q-table, in Deep QL, given a state S as input
to a NN, we obtain approximations for the Q-values of every action in that state.

An important aspect of Deep Q-Learning is the use of experience replay for training the
agent. Instead of training the agent with the sequence of experiences as they occur during
the simulation, those experiences are saved in what is usually called the replay memory.
After the agent acts, a random batch of experiences is sampled from the replay memory
and used for training. This method increases the training efficiency because it trains
multiple times with the same experiences and helps to overcome two problems of Deep
Q-learning. One of them is the fact that as time passes, the agent tends to forget about
past experiences. The second problem is the high temporal correlation that exists between
two consecutive experiences, due to the fact that, most of the times, the state does not
change much between two consecutive time steps (de Bruin et al., 2015).
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2.3.5 Actor-critic methods

Actor-critic methods have two different memory structures to represent the policy inde-
pendent of the value function: the actor and the critic (Sutton and Barto, 2018). The
actor determines what action is taken in a given state by following a policy, while the critic
evaluates the selected action by computing the Temporal Difference (TD) error:

δt = Rt+1 + γVt(St+1)− V (St) (2.14)

This TD error is used for the learning of both the actor and the critic as shown in Figure 2.4.
If it is positive, the selection of the same action by the actor should be encouraged in the
future. If it is negative, the selection of that action should be discouraged.

Figure 2.4: Actor-critic architecture (from Sutton and Barto (2018)).

Typically, RL algorithms use the sum of discounted rewards (Gt) to evaluate the quality
of selecting an action. A different option, used in the Advantage Actor-Critic (A2C),
is to use the advantage function:

A(s, a) = Qπ(s, a)− V π(s), (2.15)

where A(s, a) is the advantage of choosing action a in state s, Qπ(s, a) is the expected
reward of taking action a in state s and following policy π thereafter, and V π(s) is the
expected reward of starting in state s and following policy π thereafter. By using the
advantage value, the actor learns how much better it is to take a specific action compared
to the others in each given state, thus, improving the learning process.

Another variant is theAsynchronous Advantage Actor-Critic (A3C) algorithm (Mnih
et al., 2016), in which the key difference for A2C is the asynchronous part. In A3C, a set
of agents interact with their own environment. The agents are trained in parallel and inde-
pendently update a global network (hence “asynchronous”). After each update, they reset
their parameters to those of the global network. An important benefit of this algorithm
is the increased diversity in the training data, which allows for more efficient exploration
and removes the need for an experience replay buffer.
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2.4 Conclusion

Aircraft maintenance is a very complex challenge, mainly due to a large number of variables
that must be considered, which generates a high uncertainty level. The development of
a maintenance plan is also dependent on the fleet’s operation plan, which consists of the
flight scheduling and the routes of each aircraft for a time horizon. The combination of all
these elements, along with the current preventive strategy, leads to sub-optimal decisions,
making it difficult for maintenance planners to develop optimized plans, which results in
substantial economic losses for the airline. The ReMAP project aims to overcome these
issues by introducing CBM as a new maintenance strategy, in which the RUL of aircraft
components is used in the maintenance decision process. A second important goal of
ReMAP is to contribute towards the standardization of CBM in aircraft maintenance
planning by addressing the existing regulatory barriers. The MDST of ReMAP aims at
generating optimized maintenance plans using this new maintenance strategy by developing
a learning model based on Reinforcement Learning.

RL is an area of ML that has been around for many years. An agent interacts with an
environment by performing actions and receives numerical rewards based on the quality
of the actions performed. The aim is to achieve a predefined goal by maximizing the
sum of rewards. Instead of deciding what actions the agent must take, the idea is to
allow it to discover the ones that yield greater rewards by trying them out and gather
different experiences (Sutton and Barto, 2018). Two of the most well known RL algorithms
were analyzed: the QL algorithm, which aims at finding an optimal policy, and the A3C
algorithm, which uses an actor-critic architecture with several independent agents. Both
of these algorithms are used in this work.

The concepts addressed in this chapter are essential to understand the context of this work
and correspond to a baseline for the state of the art approaches, which are presented next
in this thesis.
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Chapter 3

State of the Art

An important step to better understand and get familiar with the methodologies and
procedures that will be used is the study of the state of the art. This chapter presents the
research and study of related work in multiple contexts.

Some Condition-Based Maintenance (CBM) approaches in different scenarios are presented
in Section 3.1. Then, Section 3.2 presents maintenance scheduling problems applied in dif-
ferent areas with various optimization goals. Previous work using Reinforcement Learning
(RL) is described next in Section 3.3, with a special focus on maintenance scheduling
problems. Finally, Section 3.4 presents some conclusions from all the research on related
work.

3.1 Condition-Based Maintenance

CBM is a maintenance strategy that aims to reduce unnecessary maintenance actions by
monitoring the equipment condition using sensors of various types. With a reduction of
preventive maintenance actions, the total cost associated with maintenance is also reduced.
Other benefits of CBM include the increased availability, reduction of unexpected failures,
and a higher security. There are three main steps involved with a CBM model: (i) data
acquisition, (ii) data processing, and (iii) maintenance decision making (Jardine et al.,
2006).

In an attempt to optimize the scheduling of maintenance in a fleet of twenty fighter aircraft,
Li et al. (2016a) developed a maintenance model based on prognostic information, while
taking into account real environment uncertainties, such as the maintenance duration and
the incoming airplanes at a given time. The goal was to maximize aircraft availability and
resource utilization by incorporating the remaining flying hours using probability distribu-
tions. Another study by Ahmad and Kamaruddin (2012) compares the practical challenges
of implementing Time-based Maintenance (TBM) and CBM, concluding that the latter is
more realistic since, in most cases, equipment show specific signs or conditions indicating
that failure is going to occur.

Yam et al. (2001) developed an Intelligent Predictive Decision Support System (IPDSS)
to evaluate the deterioration level of equipment and make decisions based on it. The
authors take advantage of the learning ability associated with a Recurrent Neural Network
(RNN) to predict the Remaining Useful Life (RUL) of equipment. The model was tested
with critical equipment in a power plant, having achieved good predictive results, which
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allowed to perform maintenance actions at convenient times, to avoid major production
losses as well as equipment failure, resulting in a maintenance cost reduction.

Koomsap et al. (2005) try to unify a machine’s process control with CBM scheduling to
increase production efficiency. The proposed architecture involves a CBM controller that
has a lifetime estimator and a maintenance scheduler. The lifetime estimator takes the cur-
rent operating parameters and the current machine conditions (based on multiple sensors)
and outputs the RUL of that machine. This RUL value is then fed to the maintenance
scheduler that, based on the machine conditions, will output new recommended operating
parameters or recommend shutting down the machine for maintenance. This model is
tested in a carbon dioxide laser system, with promising results in maintaining productivity
at good levels.

Fischer et al. (2010) present a comparison between visual inspections, condition monitoring
inspection, and online CBM, applied to wind turbine blades. They produce a Monte Carlo
simulation to generate different scenarios over a finite time horizon. The evaluation of the
different strategies is based on the total maintenance cost over the considered time period.
Results indicate that both condition-based techniques are superior to visual inspections,
which are done approximately once every year.

The related work presented in this section involves the application of various forms of CBM
to solve different problems. In all of them, the authors have found benefits in using this
maintenance strategy. Despite adding a level of uncertainty when compared to preventive
strategies, due to it being condition-based, the resulting economic gains obtained with a
higher maintenance efficiency, and the increased reliability obtained by predicting failures
indicate the potential of CBM in dealing with maintenance scheduling problems.

3.2 Maintenance Scheduling

Feo and Bard (1989) presented a model to locate the best maintenance stations and build
flight schedules that better meet maintenance demands. The authors use a two-phase
heuristic to solve the model. In the first phase, a flight schedule for the entire fleet is
generated over a small period of time, and the base locations are chosen in a way to
minimize total cost. The idea was to choose locations with a higher number of aircraft
that stayed overnight. This process is repeated N times. The second phase selects a
K number of schedules from the previous phase and evaluates them at a greater time
period. This approach was applied to real data from a fleet of Boeing 727, and the results
proved that it was possible to substantially reduce costs by eliminating up to 5 of the 22
maintenance bases.

Nguyen and Bagajewicz (2008) developed a maintenance model to optimize preventive
maintenance in a process plant, using a Monte Carlo simulation along with a Genetic
Algorithm. The model takes into consideration three elements: the different types of fail-
ure for each equipment (different failures may have different cost and repair time), the
equipment ranking according to the consequences of failure (used to assign maintenance
priorities) and material and labor availability. The Monte Carlo simulation has an objec-
tive function corresponding to the total cost of maintenance plus economic loss (due to
downtime or reduced efficiency), which is to be minimized. During the simulation, the
failure times of each equipment are sampled based on their reliability (described by the
mean time between failures), and the type of failure is sampled based on the probability
of occurrences, which is obtained from historical data. The Monte Carlo simulation is
optimized with a standard Genetic Algorithm.
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With the goal of optimizing maintenance in Thailand airlines, specifically in relation to
inventory management, Pleumpirom and Amornsawadwatana (2012) developed a multi-
objective optimization model that aims at minimizing the lead time and the cost with
material and components needed for maintenance, while maximizing its quality. The idea
is that sometimes it is better to buy/loan materials or components from a supplier with a
lower quality certificate to prevent an aircraft from being grounded awaiting the necessary
resources to proceed with maintenance.

A study carried out by Başdere and Bilge (2014) aimed to develop a fast methodology
to generate feasible maintenance routes for each aircraft in a fleet over a weekly planning
horizon. The goal was to maximize the utilization of the remaining flying times of the
fleet. This is equivalent to minimizing the unused flying times, which is directly related
to cost. The authors formulate an Integer Linear Programming (ILP) model and use two
methods to solve it: Compressed Annealing and branch-and-bound with different branching
priorities to identify important variables.

Witteman (2019), in his master thesis, proposes a two-stage framework to solve the task
packaging and allocation problem for an aircraft fleet. In the first stage, is determined the
workforce to be allocated per day to each aircraft under maintenance. In the second stage,
the task packaging and allocation problem is solved independently for each aircraft, with
the tasks being allocated at the work shift level. Information about specific workforce skills
and access panels are also taken into consideration. For both stages, an exact method is
used and compared to an approximation algorithm based on bin packaging techniques. The
methods are formulated using Mixed-Integer Linear Programming and the results indicate
that the approximation algorithm runs up to 26 times faster than the exact method.
The study was tested with data from 45 aircraft from a European airline, in which the
maintenance tasks to be scheduled consisted of all the routine tasks required during A and
C-checks.

The scheduling of aircraft maintenance is a complex problem, which involves multiple
variables. As a result, most times, only a subset of these variables is considered to optimize
the scheduling of maintenance. It ultimately depends on the optimization goal, which
can be to increase efficiency and availability by improving resource utilization, optimize
inventory management, or take into consideration other factors that optimize maintenance
plans and bring benefits to the airline.

3.3 Reinforcement Learning: current approaches

Over the years, RL has been used with impressive results in the domain of the games. In
Tesauro (1995) the author applies RL in the Backgammon game and was able to beat top
professional players at the time. Szita and Lorincz (2006) use RL to play Tetris while Block
et al. (2008) use it in Chess, both achieving good results. However, one of the most known
applications is AlphaGo, a program capable of playing the board game Go. AlphaGo was
able to beat various professional players using a combination of “value networks to evaluate
board positions and policy networks to select moves” (Silver et al., 2016). The networks
were trained with supervised learning using games from expert players and with RL. One
year later, a new and superior version came out, named AlphaGo Zero (Silver et al., 2017).
This time the training was based only on RL, using the moves done by AlphaGo. The
results were even more impressive, with AlphaGo Zero beating the previous version by
100-0 and becoming the top player in the world.

Atari games are also heavily used to test the performance of RL agents. In this context,
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various RL approaches have been formulated. Mnih et al. (2015) developed a Deep Q-
learning agent with experience replay, which was tested in a set of 49 games, achieving
results comparable to professional game testers. Hasselt et al. (2016) formulated an ap-
proached that improved the results obtained by Mnih et al. (2015) using Double Q-learning.
This approach has a new Neural Network (NN) (target-network) to estimate target values
used to train the main network. The goal is to reduce the Q-value overestimation problems
that are known to occur in Deep Q-learning. A second variation is proposed by Wang et al.
(2016b), and it involves a Dueling Network Architecture. In this new architecture, the last
fully connected layer of the network is divided into two: one representing the state value
and another representing the advantage of taking each action. The idea was to learn the
value function more efficiently since, at every update, all the action values are updated
instead of only updating one action value.

Schaul et al. (2016) formulate a Prioritized Experience Replay, which aims at replaying
the important experiences more frequently. This approach outperforms the standard ex-
perience replay Deep Q-learning in 41 of the 49 Atari games.

With a regular Deep Q-learning algorithm applied in an Atari game, the input consists of
the last four game screens, which might not be enough to master games that require more
distant knowledge. To tackle this problem, Hausknecht and Stone (2015) proposed Deep
Recurrent Q-learning. This approach consisted of replacing the first fully connected layer
of the network with a recurrent Long Short-Term Memory (LTSM).

Mnih et al. (2016) introduce the Asynchronous Advantage Actor-Critic (A3C) algorithm.
Unlike traditional Deep Q-learning in which there is a single agent, in A3C, there are
several agents, each one with a separate NN, and all of them contribute to a single global
network. Since every agent acts on its own environment, the experiences are independent of
each other, resulting in a better state-space exploration. The author tested this approach
with the same set of Atari games, and the obtained results surpassed previous algorithms.
Another important aspect of this method is the decrease in training time, which may be
important in more complex scenarios.

Schulman et al. (2015) propose a new algorithm for policy optimization called Trust Region
Policy Optimization (TRPO). The algorithm was used to learn tasks such as swimming,
hopping, and walking in a robotic simulator, having outperformed prior generic algorithms,
and proving to be robust in a wide variety of tasks. A policy gradient method called Prox-
imal Policy Optimization (PPO) is presented in Schulman et al. (2017). It allows multiple
epochs of stochastic gradient ascent updates per sample of data. This method keeps the
reliability of the TRPO methods and, at the same time, is much more straightforward to
implement.

Despite the achievements in the gaming domain over the years, RL also produced good
results in various applications from different areas. For example, Bu et al. (2009) used
RL in the autonomic configuration of online web systems. In the chemistry domain, Zhou
et al. (2017) applied state-of-the-art RL algorithms to optimize chemical reactions. Zhang
et al. (2018) produced an intelligent traffic light signal control with RL using a simulated
environment and testing under various road networks and traffic flow rates. Huang et al.
(2018) used Q-learning to detect anomalies in different datasets composed of labeled data.

3.3.1 Reinforcement Learning for scheduling of maintenance

Knowles et al. (2011) used Q-Learning in a maintenance scheduling problem to decide at
each step if a maintenance job should be performed or not. They define some scenarios and
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do some simulations, which involve two elements: a plant-model, that provides information
about the current state condition, and the RL module, that chooses to perform maintenance
or do nothing based on the information received. The reward is directly related to the cost,
which is higher in case of failure than in the case of preventive maintenance. Thus, at each
decision step, the RL has to decide between performing maintenance and accepting the
respective moderate cost or do nothing, risking a much bigger penalty if a failure occurs.
Despite the obvious limitations in the proposed scenarios, namely the fact that the current
state condition was only determined by the elapsed time since previous maintenance, not
taking into account important factors such as the age and historical data, the RL agent
produced good results, achieving convergence in all scenarios.

In the aviation domain, Mattila and Virtanen (2011) apply RL to optimize maintenance
with fighter aircraft during conflict situations. The authors present two formulations to
describe two different scenarios. The first formulation aims at maximizing aircraft avail-
ability by choosing when to start each maintenance activity. Each aircraft has a feasible
maintenance window, and it must go to maintenance before the end of that window. The
reward function involves a negative reward corresponding to the number of aircraft in
maintenance. This formulation describes a situation where the number of aircraft avail-
able needs to be kept high for an extended period of time. The second formulation aims
at keeping the fleet availability above a certain target level while maximizing the number
of maintenance activities performed. In this formulation, the maintenance can be delayed
to after the feasible maintenance window to preserve the level of availability. The reward
function involves a positive reward each time maintenance is started and a negative re-
ward if the availability decreases below the target level. This second formulation describes
a scenario where the opponents are expected to make a move, being important to keep a
high level of the fleet ready and in the best conditions possible. In both formulations the
authors used RL to learn optimal policies, by using the Q-learning variants λ-SMART and
SARSA with ε-greedy for exploration. The policies obtained for both formulations proved
to be efficient.

Wang et al. (2016a) studied an approach to solve a maintenance problem in a flow line
system composed of two series machines with a buffer in between. Since both machines
deteriorate as they age, they have different condition states, which are defined by the yield
level. The goal is to find a policy to perform preventive maintenance at optimal times. The
authors formulate a semi-Markov decision process to model the system and use a multi-
agent RL algorithm to solve it. Because the agents act independently from each other in the
same environment, the local decisions taken by them need to be merged to achieve a global
optimization goal, which corresponds to the cost. The proposed method was compared
with other literature approaches, namely a sequential preventive maintenance algorithm
and an independent RL algorithm. The obtained results for different costs and probabilities
of failure proved that the proposed approach is superior to the other algorithms.

Barde et al. (2019) use on-policy first visit Monte Carlo to obtain the optimal replace-
ment policy that minimizes the downtime of military trucks, composed of different types
of components with random time-to-failure. The authors present four different strategies.
The first strategy is based on corrective maintenance, meaning that each component is
replaced at failure. The remaining three are based on preventive maintenance. The second
strategy involves the addition of regular replacement intervals for each equipment (deter-
mined based on historical data). The third strategy adds a scheduled overhaul, where the
whole system is replaced. The fourth strategy uses the concept that the time to replace
components in the same physical area of the truck is lower than the time it takes to replace
each one individually (due to the time wasted to open and close the panels of access to
those components), thus when replacing a component, its neighbors are also replaced. The
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possible actions at a given state are to perform preventive maintenance or do nothing (for
each truck). The reward function involves a penalty equal to the total downtime, which
is bigger when replacing a failed component than replacing the same component with pre-
ventive maintenance. The obtained results show a reduction in the downtime of up to
36%.

3.4 Conclusion

Over the years, many approaches have been studied on how to improve and optimize
maintenance scheduling in industry and specifically in the aviation domain, most of them
with the goal of cost reduction in mind. Although, this is not as simple as it may sound due
to the complexity level associated with this problem. The maintenance intervals for every
task from each class of aircraft, along with material, spare parts, human resources, and the
number of hangars available at any given time as well as general information about peak
seasons, weekends, and public holidays are all variables that influence the maintenance
plan, creating a difficult optimization problem.

CBM has been a focal point in many studies regarding maintenance optimization due to
its achievements in reducing the total maintenance time and optimizing equipment usage,
which leads to increased availability and reliability and, ultimately, to maintenance cost
reduction. This strategy also poses some challenges, namely the need for large amounts
of data, which may result in high initial costs if there is not already an infrastructure
to support it, for example, with condition monitoring sensors (Ahmad and Kamaruddin,
2012). Another challenge is the uncertainty associated with the predicted RUL of the
equipment, which must be properly dealt with (Li et al., 2016b). Despite these challenges,
CBM approaches have already produced promising results, which is a good indicator that
it can become the basis of maintenance scheduling in the future. In fact, the Advisory
Council for Aeronautics Research in Europe (ACARE) estimates that by 2035 CBM will
be accepted as the standard maintenance policy, and by 2050 all new aircraft and systems
will be designed for CBM (ACARE - Strategic Research and Innovation Agenda - Volume
2).

The study of state of the art regarding RL revealed that despite the multiple applications
in the gaming department, this Machine Learning (ML) division could also be applied in
other areas with good results, including in scheduling of maintenance. With RL, a three
year maintenance plan can be optimized in a matter of minutes, while it can take days
or even weeks for the maintenance planners and managers to develop an ideal program
for the same time horizon. Also, with the basic functioning of RL we can explore a large
part of the uncertainty space by encouraging the agent to do so, which allows the system
to handle a substantial amount of possible future scenarios. Therefore, RL is a suitable
approach to deal with the uncertainty, both related to the aircraft maintenance scheduling,
and the health condition introduced by CBM.
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Scheduling Maintenance Checks

As mentioned previously, this work is divided in two stages. This chapter presents a
detailed description of the problem and the proposed approaches for the first stage, with
a special focus on the optimization goal and constraints. These constraints, along with
other maintenance information for a set of aircraft, are part of the dataset used, which is
explained in Section 4.1.

To solve this problem, a Deep Reinforcement Learning algorithm is used and described
in Section 4.2. This algorithm serves as a baseline for the two formulations defined: a
Conflict Solver (CS), which is presented in Section 4.3, and an Aircraft Scheduler
(AS), which is presented in Section 4.4.

4.1 Problem description

The problem to solve consists of scheduling a set of maintenance checks for a time horizon
of four years. This problem is composed of multiple constraints. For the A-checks:

• every A-check lasts one day;

• there is one A-check slot on Mondays and Thursdays and two slots on Tuesdays and
Wednesdays;

• in public holidays, Fridays, and weekends there are zero A-check slots;

• it is possible to merge an A-check into a C-check to avoid the aircraft being grounded
two times in a short period of time. This does not affect the duration of the C-check
or the available A-check slots.

For the C-checks:

• the C-check duration varies between 5 and 23 days;

• there are three C-check slots every day except on weekends and public holidays, in
which the C-check work is interrupted. Also, in some periods when the airline expects
higher C-check requirements, there are 4 slots available;

• it is not possible to schedule C-checks during commercial peak seasons. These seasons
consist of three weeks during Christmas and New Year period, two weeks in the Easter
period, and the summer period between the 1st of June and the 30th of September;
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• the start dates of two consecutive C-checks must be spaced three days apart, due to
resource availability.

A dataset with real aircraft maintenance data is used. The dataset contains information
from a fleet of 51 aircraft of different types (A319, A320, and A321). The information, for
each aircraft, consists of the time elapsed since the previous A and C-check, the intervals
in which the A and C-checks must occur, and the average daily utilization in terms of
Flight Hours (FH) and Flight Cycles (FC). The combination of these variables allows us to
compute the due date of each check, that corresponds to the limit date when the aircraft
must be grounded for maintenance.

Every aircraft has an A-check interval of 120 calendar days (DY) (four months), 750 FH,
and 750 FC. The C-check intervals are either 730 DY (two years), 7500 FH, and 5000 FC,
for most aircraft, or 1096 DY (three years), 12000 FH, and 8000 FC, for a small number
of aircraft. In case a maintenance check cannot be scheduled before its due date, there
is a tolerance of 12 days, for A-checks, and 60 days, for C-checks, after the due date, to
schedule it. Additional details regarding the dataset can be found in Appendix A.

The basic architecture of this check scheduling stage is illustrated in Figure 4.1.

Figure 4.1: Check scheduling basic architecture.

To solve this problem, two formulations were developed, both solved with Deep Reinforce-
ment Learning (RL), using the Deep Q-Learning (QL) algorithm. These elements are
explained in detail in the following sections.

4.2 Deep Q-Learning

A Deep QL algorithm was used to solve the maintenance optimization problem described.
Multiple combinations of hyper-parameters and Neural Network (NN) architectures were
tested to achieve good results and will be discussed later.

Along with the base Machine Learning (ML) algorithm, some strategies have been used to
increase its performance. Experience replay was used to enhance training efficiency and
remove the correlation between subsequent decisions, and the ε-greedy strategy was used
to ensure the proper exploration of the state-space.

In addition, the concept of Double QL is used. This method is proposed by Hasselt (2010)
and aims at removing over-estimations in the action values. According to the author, these
over-estimations occur because, in Deep QL, the same values are used to select an action
and evaluate it. The solution decouples the selection and evaluation by using a second
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network, generally called the target network. The target network is used to estimate the
action values while the online network is used to select the action greedily. Periodically
the weights of the target network are updated by replacing them with the weights of the
online network.

The pseudo-code for the Deep QL algorithm is presented in Algorithm 4.1. Initially, the
replay memory and the online and target networks are initialized. At the beginning of each
episode, the current state is set to the initial state. Then, for each step, an action is chosen
either randomly or greedily with a certain probability. The chosen action is simulated,
the reward and next state are collected and stored in the replay memory, and the current
state advances to the next one. A minibatch is sampled from the replay memory and used
to train the online network by computing the target value and respective loss. Finally,
the target network can be updated to the online network. This update occurs periodically
after a certain amount of steps.

Algorithm 4.1: Pseudo-code for the Deep Q-Learning algorithm
Initialize replay memory D;
Initialize the online network QA with random weights;
Initialize the target network QB with random weights;
for episode = 1,M do

st = s1;
for t = 1, T do

at = random action with probability ε, otherwise,
at = argmaxaQ

A(st, a);
Simulate action at and observe the reward rt and the next state st+1;
Store the tuple (st, at, rt, st+1) in D;
st = st+1;
Sample a minibatch of (sj , aj , rj , sj+1) from D to train QA;
Compute the target value, yj ={
rj , if the episode terminates at step j+1
rj + λmaxaQ

B(sj+1, a), otherwise
;

Calculate the loss using (yj −QA(sj , aj))2 and update the weights of QA;
if Update(QB) then

Replace QB weights with QA weights;
end

end
end

Both formulations described in the following sections use this algorithm as a baseline. The
only modifications made are related to the state representations, reward function, and the
set of actions for the RL agent.

4.3 First formulation: Conflict Solver

The first formulation was adapted from Ferreira (2019), whose initial idea was to solve
conflicts between maintenance checks. The intention comes from the fact that, in the real
world, the manual approach to maintenance planning consists precisely of shifting checks
in conflict to earlier slots (Deng et al., 2019). Our CS extends this work by introducing
the constraints discussed previously, which were not being considered in Ferreira (2019).
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The CS works as follows: in the beginning, all the A and C-checks for the time horizon
considered are calculated by computing their due dates, and they are then scheduled, one
by one, to the closest possible day to the due date. When scheduling each check, a conflict
may arise. For instance, if an A-check is scheduled to a Monday and there is already one
A-check occupying the slot available. In this case, the RL agent comes in and chooses
one of the maintenance checks involved in the conflict, moving it back until the conflict is
solved. The shifting of a maintenance check can cause yet another conflict, and if so, the
same process is repeated (Figure 4.2). The algorithm ends when all maintenance checks
are scheduled, and there are no conflicts in the calendar.

Figure 4.2: Steps of the Conflict Solver.

There is another important aspect to consider after moving a maintenance check. If there
are any other checks of the same type that are already scheduled after the one being moved,
those checks may also need to be moved back to ensure the maximum interval between
checks is satisfied. For example, let’s assume that an aircraft has two A-checks scheduled,
and the interval between them is already the maximum interval allowed. Then, if the first
A-check is shifted back due to a conflict with another aircraft, the second A-check also
needs to be moved the same amount of days.

The pseudo-code for the CS is presented in Algorithm 4.2. Initially, the list of checks and
an empty queue of conflicts are created. Then, for each check, schedule it to the closest
possible day to its due date, check for new conflicts, and update the queue. While the
queue is not empty, the RL agent chooses a check and moves it. The following checks
for the same aircraft are also moved when the maximum interval is exceeded. Again, the
queue is updated by checking for new conflicts.

4.3.1 Maintenance checks ordering

One of the most impacting factors in the outcome of the algorithm is the order in which
the maintenance checks are scheduled. This order is important because it determines
which checks will be in conflict first, influencing the path taken by the RL agent and the
maintenance plan generated by his decisions.

To test this factor, two different methods to order the maintenance checks were applied to
the CS:

• Time-based ordering: this method orders the checks by their due dates. In prac-
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Algorithm 4.2: Pseudo-code for the Conflict Solver algorithm
Create the list of checks C;
Set N = total number of checks;
Create an empty queue of conflicts X;
for i = 1, N do

Schedule ci as close as possible to its due date;
Verify new conflicts and update X;
while X not empty do

cj = check chosen by the RL agent;
move cj ;
move next checks for the same aircraft;
Verify new conflicts and update X;

end
end

tice, this means that in the exact moment a check is being scheduled, the maintenance
calendar only has checks scheduled before or on its due date.

• Aircraft-based ordering: this method orders the checks by aircraft. In practice,
this means that all checks from aircraft j must be scheduled before scheduling the
first check of aircraft j+1.

When a check is being scheduled with the aircraft-based ordering method, the previously
scheduled checks are well distributed on the calendar. This means that the probability of
the new check generating a conflict is higher. Therefore, it is expected that, in the long
term, this method will create more conflicts than time-based ordering.

4.3.2 Reinforcement Learning Environment

The simulated environment is a crucial element in an RL problem since it is responsible
for establishing and evaluating the behavior of the agent. The main components to define
in the RL environment are the scheduling function, the state representation, the reward
function, and the action set.

Scheduling Function
As mentioned before, the scheduling function tries to schedule a maintenance check to its
due date. If there is no maintenance work on that day (due to it being a public holiday,
for example), then the check is scheduled before it, to the closest day that does not violate
the constraint.

In a re-scheduling operation, the check is moved back to the closest day that ends the
conflict. If there is no day available before the due date, then the tolerance is used. For
instance, since an A-check lasts one day, when solving a conflict, the A-check only needs
to be moved back one day to solve it (providing that the day before does not violate a
constraint). This re-scheduling only solves the current conflict and may generate new ones
in the new check date.

State Representation
In this formulation, since the RL agent selects one of the actions to move and solve a
conflict, it is important that the state contains information about all the checks involved in
that conflict, as well as the remaining checks that are not on the conflict but are scheduled
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to the neighboring days. Therefore, the state is represented by a matrix, in which the
columns represent the calendar days, the first n rows represent the checks in the conflict,
and the row n+1 represents the sum of the remaining neighboring checks. To decrease
training time, only a partial calendar, composed of 100 days, is used to represent a state. A
section of a state is presented in Figure 4.3. This section represents two A-checks scheduled
to the same day and two additional A-checks outside the conflict.

Figure 4.3: State representation of the Conflict Solver.

Reward Function
The reward function is presented in 4.1 and involves three different penalties:

R =


d− dd, if d ≤ dd
10 ∗ (dd− d), if d > dd

−800, if d = −1
(4.1)

where dd corresponds to the check due date, and d corresponds to the scheduled day. The
days in the calendar assume an integer sequence, with the first day corresponding to day 0.
The first and second conditions punish the agent for each day that the check is scheduled
before the due date and after the due date, respectively. This penalty is multiplied by 10
in the second condition to avoid the use of tolerance. Finally, the third condition inflicts a
very high penalty in the scenario where a slot was not found before the due date or in the
tolerance. The value of -800 ensures that the third condition always represents the highest
penalty since the tolerance can be at most 60 days.

Action Set
The RL agent is responsible for selecting a check in a conflict to be re-scheduled. The
action set to achieve consists of the following four actions:

• Shortest Length First (SLF): chooses the check with the lowest duration;

• Longest Length First (LLF): chooses the check with the highest duration;

• Earliest Scheduled Day (ESD): chooses the check with the earlier scheduled day;

• Tardiest Scheduled Day (TSD): chooses the check with the tardiest scheduled
day;

Since in the constraints we know that an A-check only lasts for one day, this action set
is only applicable to the C-checks. Thus, when the agent acts and selects an A-check, in
practice, that check is chosen randomly.
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4.4 Second formulation: Aircraft Scheduler

As mentioned before, the problem solved in Ferreira (2019) was defined without all the
constraints. For instance, the public holidays, weekends, and peak seasons were not yet
being considered. As more constraints started to be added into the problem, the CS
became inefficient and started to produce worse results than those previously obtained
without considering constraints. This behavior occurs because, with the introduction of
days with no maintenance work, the number of conflicts rises, which results in many re-
schedules and, in turn, creates even more conflicts.

Therefore, a second formulation is developed. The idea behind this formulation is to find an
optimal sequence of aircraft to have its next check scheduled in the calendar. At each time
step, the RL agent chooses an aircraft, and the next check for that aircraft is scheduled
to the best available day, which does not create any conflict and does not violate any
constraint. Since the position of a check after being scheduled on the calendar is final, the
next due date for the aircraft is calculated immediately after scheduling a check, and the
aircraft is ready to be selected again by the agent (Figure 4.4).

Figure 4.4: Steps of the Aircraft Scheduler.

It is common for a lighter check to be merged to a close heavier check. This prevents the
same aircraft from being grounded for maintenance twice in a short period. To accomplish
this factor, the C-checks are scheduled first, which allows to verify if it is beneficial to
perform a merging, based on the distance between the A-check and the closest C-check
before it. When the next due date for the A-checks is beyond the time horizon considered,
the aircraft becomes unavailable for the agent to choose. The algorithm ends when all
aircraft are unavailable, meaning that all maintenance checks have been scheduled on the
calendar.

The pseudo-code for the second formulation is presented in Algorithm 4.3. First, the
aircraft list, total aircraft number, and time horizon are initialized. Also, the number of
unavailable aircraft is set to 0. At each step, while the unavailable aircraft is lower than
the total aircraft number, the RL agent chooses an aircraft. Then, if not all the C-checks
for the chosen aircraft are scheduled, the next C-check is scheduled for the best possible
day, and the following C due date is calculated. Otherwise, the next A-check is scheduled
for the best possible day, and the following A due date is calculated. If the due date of the
next A-check is higher than the time horizon, the aircraft is finished and the unavailable
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counter is increased by 1. Each step ends with the update of the aircraft in the global list.

Algorithm 4.3: Pseudo-code for the Aircraft Scheduler algorithm
Initialize the aircraft list A;
N = total number of aircraft;
unavailable = 0;
H = time horizon;
while unavailable < N do

RL agent chooses an available aircraft aj ;
if not all C-checks of aj are scheduled then

Schedule the C-check of aj to the best possible day;
Calculate the due date of the next C-check of aj ;

else
Schedule the A-check of aj to the best possible day;
Calculate the due date of the next A-check of aj ;

end
if due date of the next A-check of aj > H then

unavailable = unavailable+ 1;
end
Update aj in the aircraft list;

end

4.4.1 Reinforcement Learning Environment

The RL simulated environment is also an important element to consider in this formula-
tion. Similarly to the first formulation, the same 4 components are defined. The reward
function is the same function from the CS since the agent goal is also the same. Therefore,
the remaining three components will be the focus.

Scheduling Function
As mentioned before, the scheduling function in the second formulation aims to find the
best slot available before the due date or, if not possible, after the due date by using the
tolerance. While this behavior is similar to the scheduling function of formulation one,
a key difference is that in this formulation, all constraints are taken into consideration,
including the number of slots already being used. Thus, it is not possible to create any
conflict when scheduling a maintenance check.

State Representation
In the AS, the goal of the agent is to choose an aircraft at each time step, which at the
end of multiple episodes of training will result in one or more optimal aircraft scheduling
sequences. Then, the state should contain information about the number of checks already
scheduled for each aircraft, at that specific time step. To separate the A and C-checks,
the state is represented with a matrix with two rows: the first one for C-checks and the
second for A-checks. Each column represents a single aircraft. Thus, the total number of
columns is equal to the total number of aircraft. An example of the initial portion of a
state is represented in Figure 4.5.
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Figure 4.5: State representation of the Aircraft Scheduler.

Action Set
The RL agent chooses an aircraft to have its next check scheduled, at each time step.
Therefore, the action set in this formulation consists of choosing each aircraft. If we have
in total 51 aircraft, the agent has 51 possible actions. The action performed by the agent
is chosen with an ε-greedy strategy, using the approximations of the Q-values for each
action-state pair given by a NN, as explained in previous sections.

4.5 Conclusion

The problem that we are aiming to solve consists in the scheduling of aircraft maintenance
checks for a time horizon of four years while taking into account several constraints. The
goal is to optimize this process by scheduling maintenance checks as close as possible
to their due dates, which increases the fleet availability and results in higher resource
utilization.

We make use of a dataset containing real maintenance data, and propose two formulations
to solve this problem. Both of them are based on the Deep QL algorithm. The first formu-
lation aims at simulating the same methodology used by humans to develop maintenance
plans, which consists of scheduling maintenance checks to their due date, or at least, to the
closest day possible, and solving conflicts as they start to appear. The second formulation
aims at finding a sequence of aircraft to be scheduled for maintenance by scheduling their
next check to the best day available.
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Chapter 5

Packaging Maintenance Tasks

This chapter presents a description of the work developed in the second stage of this thesis.
The problem being solved is detailed in Section 5.1. In Section 5.2, the Asynchronous Ad-
vantage Actor-Critic (A3C) algorithm used for the optimization of the proposed approaches
is presented. A task packaging approach is explained in Section 5.3, and a Condition-
Based Maintenance (CBM) approach, which uses Remaining Useful Life (RUL) values in
the maintenance decision process, is presented in Section 5.4. The chapter ends with a
brief summary of the discussed topics in Section 5.5.

5.1 Problem Description

The problem to solve consists of packaging a set of maintenance tasks into predefined
maintenance slots to produce a maintenance plan for an aircraft fleet. There are some
constraints to consider:

• A task requires a specific skill to be performed.

• It is possible that a task can only be performed in a specific type of maintenance slot
(for instance, only in a C-check).

• Each maintenance slot has a maximum number of hours allocated that depends on
the number of aircraft under maintenance at that time.

• In each day there is a limited amount of manpower available for maintenance.

Another aspect to consider is the time to allocate for non-routine maintenance. Typically,
when performing a maintenance task there is a certain amount of additional work that
needs to be done. For instance, the detection of another malfunction or the need for more
extensive testing of the equipment. Therefore, this unscheduled work also needs to be
considered when packaging maintenance tasks.

The dataset used in this stage is composed of four types of data: general task information,
manpower availability, aircraft utilization, and non-routine rates. The general task infor-
mation contains several task attributes, such as the unique code, skill required, duration,
interval, and the last date it was performed. The manpower data contains historical data
of the number of maintenance technicians available on each day of 2017. The aircraft
utilization data contains the average daily utilization of each aircraft in each month of the
year. Finally, the non-routine rates data contains rates that need to be multiplied with the
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required man-hours of each task to have a more accurate representation of the actual work
necessary to perform a task. Samples from the used data files can be found in Appendix A.

Similarly to the checks, the maintenance task intervals can be defined in three formats:
DY, FH, and FC. This interval along with the last execution date of each task and the
average utilization of the respective aircraft can be used to calculate the next due date for
the task.

The aircraft fleet represented in this dataset is the same as the one from the first stage.
Thus, the maintenance checks obtained with the previous check scheduling algorithm are
used as an input for the task packaging algorithm.

The basic architecture of this task packaging stage is illustrated in Figure 5.1.

Figure 5.1: Task packaging basic architecture.

5.2 Asynchronous Advantage Actor-Critic

The A3Cs algorithm was used for the optimization of the developed task packaging ap-
proach. A single global network is used to represent the policy (critic), which must be
followed by a set of actors working together in their own independent environment. Each
actor has its own copy of the global network that is used to make decisions on the environ-
ment. When an actor reaches a terminal state, which corresponds to the end of an episode,
it asynchronously updates the global network based on the experiences collected during the
episode. Each experience contains information about the current and next state, action
taken, and reward received. This information is used to compute the advantage values that
are used for training. Before proceeding to the next episode, the actors also reset their
copy of the network to the global one.

The pseudo-code for an actor thread of this algorithm is presented in Algorithm 5.1. First,
the local network is initialized. At the beginning of each episode, the local network is
synchronized with the global one, the current state is set to the initial state, and the step
counter is set to 0. Then, at each step, until a terminal state is reached, an action is
chosen and performed according to a certain policy, and the reward and next state are
collected. After the episode ends, the respective counter is increased by 1, the sum of
discounted rewards is computed and used to calculate advantage estimations. Finally, the
global network is asynchronously updated with these advantages.

This algorithm is used to optimize the task packaging algorithms proposed in this chapter.
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The parameters considered will be discussed with more detail later in the report.

Algorithm 5.1: Pseudo-code for an actor thread of the A3C algorithm
θ = global network;
e = global episode count;
M = max episodes;
Initialize local network θ′ ;
while e < M do

synchronize local network: θ′ = θ;
set st to initial state;
set step counter t = 0;
while st non terminal do

perform action at according to policy π(at|st; θ
′
);

receive reward rt and state st+1;
t = t+ 1;

end
M =M + 1;
set discounted rewards R = 0;
for i ∈ {t− 1, ..., 0} do

R = ri + γR;
end
calculate advantage estimations using R;
perform asynchronous update of θ;

end

5.3 Proposed approach

The developed approach for packaging maintenance tasks requires various types of input
data, such as individual task data, manpower availability, aircraft utilization, and unsched-
uled ratios. Also, the list of checks obtained with the check scheduling algorithm is used
to represent the maintenance slots needed to package the tasks. This list contains A and
C-checks for the entire fleet for a time horizon of 4 years.

Before the actual packaging process begins, two steps need to be done. The first step
is to calculate the maximum manpower allocated to each maintenance check. The input
manpower availability contains historical data of the number of technicians available on
each day of 2017. This data is used to calculate an estimation of the number of technicians
in each weekday of each month. The manpower allocated to a maintenance check corre-
sponds to the sum of the estimated technicians available on each day of the check. If more
than one check is scheduled in a day, then the manpower on that day is divided equally
between the checks. The second step is to cluster tasks that grant advantages if performed
together in the same maintenance slot. The idea is to group tasks with the same interval,
required skills, and more importantly, that were performed together in the past. This is
an important phase that maintenance planners consider when deciding what tasks must
be done in each maintenance slot since it is more efficient to perform tasks with equal or
similar due dates and skill requirements. Although tasks are still packaged individually
in our proposed approach, this clustering phase will allow us to assess how good it is to
package a specific task in a slot, as well as the quality of the final maintenance plan.

Then, the packaging process begins. The idea is to find an optimal sequence of tasks to
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Figure 5.2: Task packaging algorithm flow model.

be packaged for each aircraft. Starting in the first aircraft, the RL agent selects a task
that is not yet packaged. If there is at least one maintenance slot available, the task is
scheduled to the best one, which corresponds to the one closest to its due date. If not,
a new slot is created and the task is scheduled in it. Next, a new due date for the next
execution of this same task is calculated and if this due date is lower than the horizon
limit, the task is packaged again. When the due date is higher than the horizon limit, the
task is successfully scheduled in the entire horizon and the RL agent chooses the next task.
The algorithm ends when all tasks have been packaged for every aircraft. At that point, a
maintenance plan is obtained, consisting of a set of maintenance slots with the package of
tasks that need to be performed in them. This process is represented in Figure 5.2.

The creation of new maintenance slots is an important step in the algorithm. These new
slots are created if there is no other available option for a task to be packaged. The reason
for this to happen can either be because there are no slots scheduled before the next due
date of the task, or because there is no slot with sufficient manpower left to accommodate
the task. When this happens, a new maintenance slot is created in the closest working day
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before the task due date. It is important to note that the aim with these new slots is to
represent smaller maintenance opportunities that are typically done at the line in between
flights and usually only last for 1-4 hours.

In some situations, even if a task has a due date that is beyond the limit horizon of four
years, it may only be possible to schedule it in a slot before that limit. To solve this
problem, the actual maintenance plan was reduced to three years and the maintenance
slots scheduled to the fourth year are considered to be fictitious checks, used to ensure the
balance of the plan, specifically in the final months.

5.3.1 Reinforcement Learning Environment

As mentioned previously, the RL algorithm A3C is used to optimize the proposed packaging
approach. The goal is to find an optimal sequence of tasks to be packaged for each aircraft.
A crucial part is to define some elements of the RL environment: the state representation,
the reward function, and the action set.

State Representation

The packaging of tasks is independent for each aircraft. Therefore, the representation of
the environment contains several elements of the aircraft under consideration:

• The unique identifier of the aircraft.

• The list of tasks to be packaged.

• The list of maintenance slots scheduled for the aircraft during the entire horizon.

It is relevant to note that newly created slots during execution are continued to be added
to the list of maintenance slots. Also, each slot has a list of the tasks that are already
packaged into it (identified by their unique code).

Reward Function

The reward function used contains a penalty equivalent to the cost of packaging a task in
a specific maintenance slot. This cost is defined by the following function:

Cost = task duration× 1

task usage
× 1

No. of tasks from same cluster
(5.1)

The task duration represents the amount of time (in hours) needed to perform the task.
The task usage represents how far the task was scheduled from its due date. The usage can
assume values in the interval ]0, 1]. A task usage of 1 means that the task was packaged to
a maintenance slot occurring in its due date. The number of tasks from the same cluster
represents how many tasks with the same cluster are scheduled in that maintenance slot.
At the very minimum, this value is equal to 1 if the task is the only one from its cluster
that was packaged in that slot.

Action Set

At each decision step, the RL agent chooses a task to be packaged. Therefore, the action
set in this case consists of choosing each one of the tasks, meaning that the number of
actions available to the agent is equal to the number of tasks of the aircraft.
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5.4 Predictive Task Scheduling

With the proposed task packaging algorithm we obtain the fleet maintenance plan for a
time horizon. Although, only the predefined intervals are used to compute the due date of
tasks, which means that one of the goals of this work is still not satisfied: the predictive
feature.

A predictive task scheduling approach is proposed to meet this goal by using the same
A3C algorithm for optimization. Creating a new maintenance plan to deal with prognostic
data is not viable. There are flights, crew assignments, and other maintenance details that
were defined according to the initial plan and that cannot be changed. Therefore, the idea
is to operate small modifications to the already defined maintenance plan in response to
new prognostic information, such as new RUL values.

During this work we did not have access to real prognostic data of aircraft components or
systems. Thus, the solution found was to produce our own synthetic data to be used in
the predictive task scheduling algorithm. A simulation is performed to produce new RUL
values using the maintenance plan obtained with the task packaging algorithm. In each
iteration, a random day from the plan is chosen. Then, every task that is scheduled after
that day has a certain probability of having its due date modified by a new RUL value.
This value is calculated using the task interval and the observed remaining lifetime on the
chosen day. The RUL values are also computed with the goal of having a more accurate
representation of the real environment, in which drastic changes are much less likely than
smaller ones. The final step is to calculate the new due dates of the tasks updated by a
new RUL, which are then used to modify the plan. More details of this simulation are
explained later in the report.

The predictive task scheduling approach takes as input the original maintenance plan and
the updated task due dates obtained in the simulation. The first step is to verify for
each updated task if it became invalid, that is, if the new due date is now smaller than the
scheduled date. If so, the task is removed from its slot and set as an “open” task. Then, the
rescheduling process begins. The next “open” task is chosen and all possible maintenance
slots are obtained, that is, all slots that are scheduled between the last execution of the
task and its due date. If there are no slots available, a new one is created in the closest
working day of the due date and the task is scheduled to it. If there are one or more slots
available, the RL agent chooses one of them to reschedule the task. In case the selected slot
does not have enough allocated manpower, one or more tasks are removed from that slot
to free sufficient resources for the scheduling of the new task. The removed tasks are set as
“open” so that they can be rescheduled later. Every time a task is rescheduled, it is verified
if its next execution is still within the maximum interval allowed. If not, this next instance
of the task is removed from the corresponding slot and set as “open”. The algorithm ends
when all “open” tasks have been rescheduled. A new maintenance plan is obtained along
with a history of changes made to the original one. This process is represented in Figure 5.3

In a situation that tasks need to be removed from a slot in order to free resources for
the scheduling of another one, the goal should be to remove the smallest number of tasks
possible. To accomplish this, it is computed the necessary amount of manpower to free
and the task that requires the closest manpower to that value is removed. This process is
repeated until enough resources are available.

The history of all changes made to the original plan provides useful information to under-
stand each decision made. For each decision, it includes the task that was updated, the
original slot in which it was packaged, its new slot, and the motive that led to this change.
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Figure 5.3: Predictive task scheduling flow model.

There are three possible motives for a task to be rescheduled: (i) a new RUL obtained
that caused the task to become invalid, (ii) the need to free resources in a slot to schedule
another task, and (iii) the maximum interval to its previous execution is violated.

5.4.1 Reinforcement Learning Environment

The optimization of the predictive task scheduling algorithm is done with the same A3C
algorithm discussed previously. In this case, the goal of the agents is to choose, at each
decision step, a maintenance slot to reschedule a task. Again, the three elements necessary
for the RL environment need to be defined.

State Representation

The representation of the environment includes several variables:

• The unique identifier of the aircraft.

• The “open” task being rescheduled.

• The list of possible maintenance slots to schedule the task.

Similarly to the task packaging solution, each slot has a list of tasks that are already
packaged into it.

Reward Function
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The reward function is the same as the one discussed in the task packaging algorithm,
which uses the task cost as a penalty.

Action Set

At each decision step, the RL agent chooses a slot in which the current “open” task must
be scheduled. There are three actions available to the agent:

• Choose the slot closest to the task due date.

• Choose the slot with the highest amount of manpower still available.

• Choose the slot which contains the higher number of tasks from the same cluster as
the task being scheduled.

5.5 Conclusion

In this chapter, a solution to solve the packaging of aircraft maintenance tasks was pro-
posed. The RL algorithm A3C is used to optimize this process, in which the goal is to find
an optimal sequence of tasks to be packaged for each aircraft. This approach uses a dataset
with real maintenance data from an aircraft fleet along with the list of checks produced by
the maintenance check scheduling algorithm discussed previously. The output corresponds
to the maintenance plan for the fleet, that is, the list of maintenance slots and packages of
tasks to execute in each one.

Also, a predictive task scheduling algorithm is proposed. This solution takes into account
prognostic information to update the original maintenance plan by rescheduling the neces-
sary tasks. Since no real prognostic information was available, it was decided to develop a
simulation in which new synthetic RUL values are generated. The same A3C algorithm is
used for the optimization of the algorithm. The output corresponds to a new updated plan
along with the history of changes made, which contains useful information to understand
why certain decisions were made.
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Experiments and Results

In this chapter, the experiments and results obtained for all the proposed approaches
are presented. The developed models are tested with maintenance data from 51 aircraft.
These models were coded in Python 3.7 and two main libraries were used: the OpenAI
Gym library to build the RL simulated environments, and Tensorflow for training the RL
agents.

The solution parameters used along with results for the check scheduling stage are presented
in Section 6.1. The same information is detailed in Section 6.2 for the task packaging stage.
Finally, Section 6.3 presents some conclusions on this topic.

6.1 Check Scheduling Stage

The input for the check scheduling algorithm corresponds to the maintenance check dataset
described previously. This input is in the form of an Excel file and contains, for each
aircraft, the intervals, tolerance, duration, and previous execution dates of A and C-checks.
It also includes information on the average daily utilization in FH and FC, for each day
of the year, and the problem constraints, such as the weekends, public holidays, and
commercial peak seasons for a time horizon of 6 years. The output of the system consists
of a JSON file with information about all scheduled checks, particularly their starting
and ending day, type of check (A or C), and the corresponding aircraft. A second output
corresponds to an Excel with an easier visualization of the maintenance calendar. An
example of these files can be visualized in Appendix B.

To evaluate the results, a set of Key Performance Indicators (KPI) is defined and consists
of: the number of A and C-checks scheduled, the average FH for the airline, and the
computation time. The average FH corresponds to the FH usage in between maintenance
checks. For the first formulation, to compare the two different methods of ordering the
maintenance checks, the average number of conflicts per episode was also considered as a
Key Performance Indicator (KPI).

The NN and the hyper-parameters for the Deep QL algorithm were obtained using a grid
search technique. For each parameter, several values were defined and individually tested
to see the ones that produced better results. The final architecture chosen for the NN
consists of a multilayer perceptron with two fully connected hidden layers, the first with 500
neurons and the second with 100 neurons, both using sigmoid as the activation function.
The optimizer used is the Adam optimizer (Kingma and Ba, 2014). The remaining hyper-
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parameters are presented in Table 6.1.

Hyper-parameter Value Description
Episodes 500 Total number of training episodes
Max steps 10000 Maximum number of agent steps per episode
Replay memory size 100000 Size of the queue containing the agent experience
Batch size 32 Number of samples taken from replay memory
Discount factor 0.99 Discount factor of future rewards
Learning rate 0.00001 Learning rate used by the optimizer
Initial ε 1 Initial value for exploration
Final ε 0.01 Final value for exploration
Target update 10000 Step frequency to update the target network

Table 6.1: Hyper-parameters for the Deep Q-Learning algorithm.

First Formulation
The results obtained for the first formulation show that the simulation of the work done by
maintenance planners in solving conflicts between checks is not efficient. The main reason
is that, while the A-checks are all scheduled successfully without violating any constraint,
the same does not apply for the C-checks. As the days available to perform C-checks
decrease, mainly due to the summer peak season, the number of conflicts hugely increases,
which leads to the agent being unable to schedule all C-checks. Therefore, the main focus
of this first formulation is to verify the quality of the agent in scheduling A-checks. The
time horizon for the planning is four years. The starting day is indicated in the dataset,
and corresponds to 20-03-2019. A comparison between the two methods for ordering the
checks concerning the predefined KPIs is presented in Table 6.2.

KPI Time-based order Aircraft-based order
A-checks avg. FH 716.5 715.2
Total A-checks 958 958
Avg. conflicts per episode 949 1287
Computation time (s) 1723 2142

Table 6.2: Results for the Conflict Solver.

As expected, the time-based order produces fewer conflicts per episode, and because of that,
it is also faster. The quality of the results in terms of the average FH for the A-checks is
very similar.

Second Formulation
In the second formulation, the RL agent can schedule both A and C-checks and generate
a full maintenance calendar for the four years without violating any constraint, including
all the C-check ones. Table 6.3 presents some results for the AS algorithm.
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KPI Time-based order
C-check avg. FH 7321.3
Total C-checks 89
A-checks avg. FH 716.5
Total A-checks 958
Computation time (s) 1070

Table 6.3: Results for the Aircraft Scheduler.

It is important to note that, while the majority of the fleet has a C-check interval of 7500
FH, there are 6 aircraft with a higher interval of 12000 FH, which increases the average
usage. An alternative to better understand the quality of the scheduling is to calculate the
average usage percentage, which corresponds to 92.1%.

The distribution of usages is shown in Figures 6.1, for the A-checks, and 6.2, for the
C-checks.

Figure 6.1: Distribution of the A-check usages.

Figure 6.2: Distribution of the C-check usages.
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The number of checks scheduled in each month is illustrated in Figure 6.3. This data shows
that in the summer peak season (June to September) there are no C-checks scheduled. Also,
in the first three months the total checks scheduled is slightly lower. This can be explained
by the fact that the initial day of the planning is 20 of March.

Figure 6.3: Number of checks scheduled in each month.

6.2 Task Packaging Stage

The task packaging algorithm takes as input several Excel files, containing information
about the available slots for maintenance, aircraft average utilization, manpower available,
unscheduled ratios, and general task data. The algorithm produces a 3-year maintenance
plan consisting of an Excel file for every aircraft, with information about the set of tasks to
be performed in each slot. A sample of the maintenance plan can be found in Appendix B.

After testing several combinations of parameters for the A3C algorithm, the final values
that achieved better results were chosen and are presented in Table 6.4. The architecture
of the global NN is similar to the one used in the Deep QL algorithm. It consists of a
multilayer perceptron with two fully connected hidden layers, the first with 300 neurons
and the second with 100 neurons. The sigmoid activation function is used in both layers
with the Adam (Kingma and Ba, 2014) as the optimizer.

Hyper-parameter Value Description
Agents 4 Number of agents (threads)
Episodes 100 Total number of training episodes
Max steps 10000 Maximum number of agent steps per episode
Batch size 32 Number of samples taken from the agents experiences
Discount factor 0.99 Discount factor of future rewards
Learning rate 0.0001 Learning rate used by the optimizer

Table 6.4: Hyper-parameters for the A3C algorithm.

The elements of the maintenance plan produced by the task packaging algorithm, such
as the manpower utilization per skill, number of tasks allocated, and the amount of RUL
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wasted can be visualized below. This information helps to assess the quality of the main-
tenance plan.

An important aspect of the algorithm is related to the manpower available per skill. There
are eight skill types, each one with different requirements. The skills 1-4 represent 78%
of the required manpower on average for each aircraft, because the majority of the tasks
need one of those skills to be performed. The eight skill types and the percentage required
for each one per aircraft are shown in Figure 6.4. It is also relevant to note that skills 6
and 7 are reserved for C-checks, meaning that tasks which need one of these skills must be
packaged in a C-check.

Figure 6.4: Percentage of manpower required per skill for each aircraft.

The manpower input file contains the number of technicians available per skill on each day.
Because the duration of the tasks is expressed in hours, it is necessary to also convert the
manpower value in hours. In the first phase, it was assumed that each technician works 8
hours per day. However, the results showed that the number of available hours unused in
each slot was very high. An example of this issue is shown in Figure 6.5 for aircraft 26,
in which the percentage of utilization per skill for every A-check is presented. The results
indicate that even after all the tasks have been packaged there are a lot of unused hours
in each slot, which suggests that the number of hours available is too high.

Figure 6.5: Percentage of manpower used per skill in each A-check of aircraft 26. Each
technician represents 8 hours of work per day.
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This issue has a relevant effect on the packaging algorithm because, with the high amount
of available manpower, each slot can probably contain a lot more tasks than it would
probably do in reality. To solve this problem, the number of hours that each technician
represents was reduced until the amount of unused manpower was minimal. Figures 6.6
and 6.7 show the percentage of manpower used in each A-check of aircraft 26 in which
a technician represents 6 and 4 hours of manpower, respectively. In the first case, the
amount of unused manpower is still considerably high, whilst in the second one there are
some checks close to maximum capacity.

Figure 6.6: Percentage of manpower used per skill in each A-check of aircraft 26. Each
technician represents 6 hours of work per day.

Figure 6.7: Percentage of manpower used per skill in each A-check of aircraft 26. Each
technician represents 4 hours of work per day.

If the available manpower is reduced even more, most checks start to reach full capacity in
some of the skills as illustrated in Figure 6.8, in which a technician represents 3 hours of
manpower. This is not always good because while the manpower wasted is very low, the
number of additional slots that are created to perform tasks that could not be packaged in
the checks will grow. Therefore, the decision was to consider that each technician represents
4 hours of manpower.
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Figure 6.8: Percentage of manpower used per skill in each A-check of aircraft 26. Each
technician represents 3 hours of work per day.

The tasks packaged in the predefined maintenance checks represent 90.1% of the total
packaged tasks, while the remaining 9.9% is packaged in the smaller slots created during
the execution of the algorithm. Figure 6.9 illustrates this data. There are three aircraft
with a much smaller number of tasks (aircraft 32, 33, and 35). The reason is that all of
them are phased-out early in the planning horizon, meaning that they will stop flying and
being maintained.

Figure 6.9: Total tasks scheduled by aircraft.

On average, from the tasks packaged in checks, 80.2% is packaged in A-checks and 19.8%
is packaged in C-checks, which was already expected because of the intervals of both
check types. Although, in most cases, C-checks are much heavier than A-checks, which is
exemplified in Figure 6.10 for aircraft 26.
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Figure 6.10: Number of tasks per check (aircraft 26).

The sum of task costs for each aircraft is represented in Figure 6.11. This data is heavily
affected by the total tasks packaged. For that reason, the phased-out aircraft (32, 33,
and 35) have a lower sum of costs than the remaining aircraft. A second element that
contributes to the task cost is the amount of RUL wasted by not performing a task on its
due date. Figure 6.12 presents the sum of RUL wasted for each aircraft.

Figure 6.11: Sum of task costs per aircraft.

The last relevant information also related with the RUL wasted is the task usage, which
indicates how much of the component lifetime was actually used. A task usage of 1 means
that the task was packaged in a slot occurring in its due date. Figure 6.13 illustrates the
distribution of task usage for the entire fleet.

48



Experiments and Results

Figure 6.12: Amount of RUL wasted (in years) per aircraft.

Figure 6.13: Distribution of task usages for the entire fleet.

To understand this usage data it is important to relate the task intervals with the predefined
check intervals. Table 6.5 presents the percentage of tasks whose intervals (in FH) differ
between certain ranges. As detailed in the table, half of the tasks have an interval between
750 and 800 FH. The A-check interval is also 750FH, meaning that half the tasks are
performed at every A-check and have a usage close to 1 as illustrated in the usage data.
Also, almost 20% of the tasks have an interval between 1000 and 1400 FH, which is less
than 1500FH (the ideal interval to perform a task every two A-checks). This means that
these tasks have usages ranging between 0.5 and 0.75 because, in most cases, they also
have to be performed every A-check.

Interval range (FH) Percentage of tasks
[750, 800] 50.2%
[1000, 1400] 19.6%
[1500, 3000] 15.9%

> 3000 14,3%

Table 6.5: Percentage of tasks per interval range (in FH).
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6.2.1 Predictive task scheduling

The predictive task scheduling algorithm performs some necessary updates to the prede-
fined 3-year maintenance plan in response to new RUL values. Due to the lack of real
prognostic data, these values were synthetically produced in a simulation. At each itera-
tion, one day from the 3-year plan is chosen as the new current day of the planning. Then,
each task scheduled after this current day has a 1% chance of having its RUL updated.
Because the average number of different tasks per aircraft is 994, each aircraft should have,
on average, 10 new RUL values per iteration. To compute a new RUL, four levels are de-
fined, which indicate the difference between the current lifetime value (calculated using
aircraft utilization estimations) and the new one. In each level, the new RUL is calculated
by multiplying the current lifetime by a random factor between two thresholds:

• Level 1: the new RUL is at most 0.1 times greater than the current estimated value.

• Level 2: the new RUL is at most 0.1 times less than the current estimated value.

• Level 3: the new RUL is between 0.1 and 0.2 times less than the current estimated
value.

• Level 4: the new RUL is between 0.2 and 0.5 times less than the current estimated
value.

These levels represent different degradation rates. Level 1 represents a situation in which
the component has degraded less than expected. The other 3 levels represent a situation
in which the component degraded more than expected, with increasing rates by each level.

The goal of this design is to have a representation of what happens in the real environment.
Therefore, the defined levels have different probabilities of being chosen to compute a new
RUL. These probabilities are 20% for level 1, 45% for level 2, 30% for level 3, and 5% for
level 4. The idea is that drastic changes in the lifetime of a component are less likely than
smaller ones.

The predictive task scheduling algorithm uses the same A3C algorithm discussed previ-
ously. Three scenarios were simulated to test every section of the plan, by fixing the chosen
day of each iteration. In the first scenario, the initial day chosen is 1/7/2019. The second
scenario starts at 1/7/2020, and the third scenario starts at 1/7/2021. In total, 50 itera-
tions were performed for each scenario and the averages regarding some KPI are presented
in Table 6.6. The cost of the plan corresponds to the sum of all task costs. Another indica-
tor is related to the motive that led to a decision, that is, to the rescheduling of a task. As
mentioned before, there are three possible motives: a new RUL obtained (motive 1), the
need to free manpower resources in a slot (motive 2), and the violation of the maximum
interval allowed for the last execution of the task (motive 3).

KPI Scenario 1 Scenario 2 Scenario 3
Old plan cost 36 342 20 942 5849
New plan cost 36 221 20 904 5841
Total checks 715 412 117

New created slots 29 22 25
Decisions by motive 1 158 116 81
Decisions by motive 2 391 215 85
Decisions by motive 3 81 39 2

Table 6.6: Results for the predictive task scheduling algorithm.
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The cost of the new plan in all scenarios is very similar to the cost of the old plan. Although,
it is important to note that these costs represent only the sum of task costs. There are also
new slots created that need to be considered to assess the overall quality of the plan. The
number of decisions made, that also represent the number of tasks rescheduled, decreases
from scenario 1 to 2, and from 2 to 3. This is expected since the number of slots and tasks
decreases over the scenarios due to their initial day chosen in the simulation.

6.3 Conclusion

The conducted experiments for the check scheduling approach described in this chapter
show different results for the two formulations. The CS failed to schedule all C-checks
due to a large amount of constraints that were added. The AS, which was developed to
overcome these problems, was able to schedule all A and C-checks with success. The check
calendar obtained with this formulation has good results in some important metrics, such
as the total number of scheduled checks and their average utilization.

In the task packaging stage, after running the algorithm for the first time, it became obvious
that the available manpower per day was too high. Therefore, one of the first steps was
to reduce it by decreasing the value of working hours that each technician represents. The
obtained distribution of task usage shows that most of the tasks have a usage close to 1.
This is relevant since a higher usage means that the amount of RUL wasted is low and
consequently, fewer tasks are performed in the long run. A big contribution to this result
is the fact that a high percentage of tasks have an interval close to the A-check interval.

A simulation was also developed to produce synthetic RUL data to be used in the pre-
dictive task scheduling algorithm, which aims at producing a new maintenance plan by
performing a sequence of adjustments to the original one. Three scenarios were designed
and simulated to test every section of the plan. Each one of them has a different starting
day, corresponding to the middle of each year of the plan. The results indicate that, in all
scenarios, the cost of the plan after the updates was slightly lower than the original one,
which is a sign that the algorithm is able to produce a good alternative plan by performing
the best possible adjustments.
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Chapter 7

Validation

The methods for the validation of all the proposed approaches are presented in this chap-
ter. The check scheduling algorithm is compared with a similar study in Section 7.1 and
the corresponding results are presented. In Section 7.2, the task packaging algorithm is
validated by ensuring that certain conditions on the produced maintenance plan remain
true. Also, the predictive task scheduling approach is compared to a new method, that
uses the packaging algorithm with the necessary adjustments to the initial conditions to
build an entirely new plan. Finally, in Section 7.3, a summary of the results and main
conclusions is presented.

7.1 Check Scheduling Stage

To evaluate the quality of the maintenance plans produced with the check scheduling
algorithm and validate this solution, it is performed a comparison with the work done in
Deng et al. (2019), in which the authors developed a practical Dynamic Programming (DP)
methodology to solve the same problem using the same dataset. Some parameters had to
be adjusted to match the DP approach, namely the start date of the planning, and the
total aircraft considered, which was reduced from 51 to 45, with 6 aircraft not used. The
time horizon considered is four years, and the generated plan is also compared with the
one created by the airline. However, the A-check metrics were not used in this comparison
because the airline only plans A-checks for the next year.

In Deng et al. (2019), additional KPIs are used to assess the quality of the results: tolerance
events, which correspond to the number of checks that are scheduled using the tolerance,
and the number of A-checks merged into C-checks. To determine when a merging can
occur, it is defined that if the due date of an A-check is less than 20 days away from the
end date of a previous C-check, then it is merged. Table 7.1 presents the comparison of
the three solutions.

As the results suggest, the RL approach generates better maintenance plans than the
other two. This is only possible because the developed DP based approach is not an exact
method, mainly due to the very large outcome space that had to be reduced.

In regards to the C-checks, there is a clear improvement in the average usage, which leads
to 2 fewer C-checks scheduled in the four years. This result has great significance when
we know that each C-check represents several full days of ground time for the aircraft
without any profit for the company. In the A-checks, the usage results for the airline are
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KPI Airline DP RL
Total C-checks 96 88 86

C-check Average FH <6600 6615.2 7013.4
Tolerance Events 6 4 1
Total A-checks 895-920 877 879

A-check Average FH — 717.6 716.8
Tolerance Events — 0 0
Merged A-checks — 18 15

Computation Time (s) ≥ 3 Days 510.3 1023

Table 7.1: Results of the plans generated with the RL Aircraft Scheduler, compared with
a DP approach and the airline approach.

not considered, but the total number of A-checks scheduled with RL and the average FH
is very similar to the DP approach, which also helps validate the RL solution. Finally, the
computation time, while being higher than the time taken in the DP approach, it is still
nowhere near the time needed by the airline to develop the maintenance plan, which takes
a minimum of three days.

7.2 Task Packaging Stage

No similar studies could be compared with the task packaging algorithm. Therefore, in
order to verify that the obtained solution is valid, the following conditions need to be
satisfied:

• All aircraft have all of their tasks scheduled for the 3-year plan.

• The newly created maintenance slots are all scheduled in working days.

• The required manpower per skill in each slot is not higher than its maximum allocated
manpower.

• The required manpower per skill in each day is not higher than the maximum avail-
able manpower on that day.

• All tasks are packaged in a slot that starts before or on their due date.

• The maximum interval between two instances of the same task is always respected.

• The same task is not packaged twice in the same slot.

• Tasks that need to be performed in a specific slot type are only packaged in slots of
that type.

After verifying that these conditions are all satisfied, the next step is to validate the
predictive task scheduling algorithm. The maintenance plan obtained with this approach is
compared to the plan produced by a second method, which uses the task packaging solution
with the same initial conditions. This second method takes the simulation parameters as
an additional input, namely the new RUL values and the new start day of the plan, and
creates a new maintenance plan using the task packaging algorithm. The same three
scenarios defined previously are used to test every section of the planning. Scenario 1

54



Validation

starts at 1/7/2019, scenario 2 starts at 1/7/2020, and scenario 3 starts at 1/7/2021. The
results for both methods in each scenario are presented in Table 7.2.

Scenario KPI Predictive
Task Scheduler

Full Task
Packaging Diff.

1
Plan Cost 36 221 31 109 -14.1%

Number of slots 1578 1261 -20.1%
Number of tasks 104 237 97 682 -6.3%

2
Plan Cost 20 904 18 354 -12.2%

Number of slots 1032 860 -16.7%
Number of tasks 70 924 67 521 -4.8%

3
Plan Cost 5841 5657 -3.2%

Number of slots 260 245 -5.8%
Number of tasks 14 630 14 201 -2.9%

Table 7.2: Results of the plans generated with the predictive task scheduling algorithm
and with the full task packaging method.

It is expected that creating an entirely new plan from the start will produce better results
than performing a series of small modifications to an already existing plan. The main reason
is that every task rescheduled can originate new sub-optimal modifications, such as the
removal of other tasks to free up resources. The results confirm this idea, with the method
of performing a full task packaging having a lower plan cost, and fewer slots and tasks
than the predictive task scheduling algorithm, which only produces small modifications to
the existing plan. Although, in the third scenario the results between the two methods
are very similar, which suggests that the predictive task scheduling approach can produce
efficient plans with a shorter horizon.

It is relevant to note that, in reality, it would not be possible or viable to fully reset the
current plan to a new one every time new prognostic information is available. There are
flights already scheduled, material availability, manpower allocated, and other maintenance
items that are already planned for the following weeks or even months, and that can not
be changed. The time that it takes to do a full task packaging is also much higher than
to perform just the necessary updates to the existing plan. Therefore, the predictive task
scheduling algorithm could be used to produce an efficient plan for a shorter horizon, while
the full task packaging solution could be useful to obtain a baseline plan for a larger period
of time.

7.3 Conclusion

The check scheduling algorithm was validated by comparing it with another study done
in Deng et al. (2019), in which the same problem is solved using a DP approach. The
results of the developed RL approach are compared with the DP results and with aircraft
estimations. The RL approach is the more efficient to schedule C-checks, having achieved
a higher average FH usage and a reduction in the number of checks scheduled in the 4-year
calendar. The results for the A-check scheduling are very similar to the DP approach and
represent a great improvement over the airline method, which estimates a higher number
of A-checks. This comparison helps to prove that the proposed check scheduling algorithm
can be effective in solving this problem.
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For the task packaging algorithm, no similar studies could be compared. Therefore, a set
of conditions were defined to verify that the produced maintenance plan is valid. The
predictive task scheduling algorithm was validated by comparing it with a second method.
This new method corresponds to using the task packaging algorithm with modified initial
conditions, namely a new plan start day, and the new RUL values, which are used to update
the initial due dates of the corresponding tasks. The results of this comparison prove that
the predictive task scheduling, which produces a series of modifications to the existing
plan, can be almost as effective as doing a full task packaging for a shorter horizon.

56



Chapter 8

Conclusion

This thesis aimed at developing a learning model, using Deep Reinforcement Learning
(RL), to generate and optimize a maintenance plan for an aircraft fleet.

The main goal, in the first stage, was to optimize the scheduling of aircraft maintenance
checks for a specified time horizon. A Deep Q-Learning algorithm was used, and two
formulations were developed to achieve this goal. In the first formulation, the Conflict
Solver (CS), the aim is to solve conflicts between maintenance checks as they appear in
the planning. At each decision step, the RL agent chooses one conflicting check to be
rescheduled. In the second formulation, the Aircraft Scheduler (AS), the agent chooses
an aircraft, at each decision step, and the next check for that aircraft is scheduled to the
best date available. Both of these formulations were tested with a dataset containing real
maintenance data for a set of aircraft, and a set of constraints. To validate the obtained
solution, a comparison is performed with estimations made by the actual airline and with
the results of a Dynamic Programming (DP) approach. Based on this comparison, we can
conclude that the proposed RL approach is able to efficiently schedule aircraft maintenance
checks.

In the second stage, a task packaging approach was developed to package a set of mainte-
nance tasks of an aircraft in the respective maintenance slots. The Asynchronous Advan-
tage Actor-Critic (A3C) algorithm was used to optimize the packaging process by having
the agents choose the next task to be packaged. This approach was also tested with real
maintenance data, which includes general task information, estimations of aircraft utiliza-
tion, manpower availability, and unscheduled maintenance ratios. The maintenance checks
produced in the first stage of this work are used as the maintenance slots available to
package the tasks. Additionally, smaller maintenance slots are created if the tasks can not
be packaged in the predefined checks. The cost of packaging a task in a slot combines its
duration, usage, and the total number of tasks from the same cluster already packaged in
that slot. This clustering step is done at the beginning by grouping tasks with the same
interval, skill requirements, and that were performed together in the past.

Another contribution of this work was to use prognostic information in the maintenance
decision process by developing a predictive task scheduling algorithm, which uses the same
A3C algorithm for optimization. The goal is to perform a few modifications to the prede-
fined 3-year maintenance plan in response to due date changes caused by new simulated
Remaining Useful Life (RUL) values. This approach was compared to the method of doing
a full task packaging and it was proved that both of them produce similar results for a
shorter time horizon. Because it is not viable to create an entirely new maintenance plan
each time new prognostic data is obtained, the predictive task scheduling algorithm can be
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used to perform only the necessary adjustments to the already existing plan for a shorter
horizon. On the other hand, the task packaging algorithm can be used to periodically reset
the plan and ensure a lower overall cost in the long term. Nevertheless, the results of both
methods prove that RL can be an effective option in solving this maintenance optimization
problem.

8.1 Future Work

Regarding future work, the proposed approaches can be improved by considering other
maintenance variables. In reality, the maintenance plan is secondary when compared to
the operation plan, which contains the flights scheduled for each aircraft. The scheduling
of maintenance for an aircraft is always dependent on its operation and not the other
way around. There are other task related elements such as the required access panels and
material resources that could be used to produce a better and more accurate maintenance
plan.

The developed predictive task scheduling algorithm can also be improved to update the
maintenance plan according to new decisions or constraints proposed by maintenance en-
gineers, in addition to the updates that originate from new prognostic information. For
instance, it is common for a task to be anticipated or deferred to a different maintenance
slot due to some event, such as an unexpected failure, the benefit of performing it to-
gether with another task that requires the opening of the same access panel, or any other
convenience factor. The proposed approach could be extended to produce an updated
maintenance plan with multiple types of additional constraints.

The results obtained with the RL based approaches applied to the aircraft maintenance
scheduling problem were very promising, which encourages the continuation of the work
in the future.
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Appendix A

Maintenance Data

This chapter aims at detailing the real aircraft maintenance dataset by presenting samples,
from the Excel files, that display the variables considered in the problem. The data files
used in the check scheduling stage are presented in Section A.1, and the files used in the
task packaging stage are presented in Section A.2.

A.1 Check Scheduling Stage

The data used in the check scheduling stage includes general information about A and
C-checks, estimations of aircraft utilization, and the periods corresponding to maintenance
constraints. Figure A.1 presents information about the C-checks for a portion of the
fleet. The column A/C TAIL represents the tail number of the airplane and serves as a
unique identifier. The columns DY-C, FH-C, and FC-C represent the elapsed time since
the previous C-check with respect to calendar days (DY), Flight Hours (FH), and Flight
Cycles (FC), respectively. The columns C-CI-DY, C-CI-FH, and C-CI-FC are the check
intervals while C-TOL-DY, C-TOL-FH, and C-TOL-FC are the tolerance allowed (again
concerning the same three metrics). Figure A.2 presents the same information for the
A-checks.

Figure A.1: Information about the C-checks.
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Figure A.2: Information about the A-checks.

The duration of 5 future C-checks is presented in Figure A.3, with 5 values of Total
Estimated Time (TET). The value of -1 means that the aircraft is going to be phased-out,
that is, it will stop flying. An important note is that the values correspond only to working
days. On weekends and public holidays, the work is interrupted.

Figure A.3: Estimated duration of 5 future C-checks.

Figures A.4 and A.5 show the aircraft daily utilization in terms of FH and FC, respectively,
for each month of the year.

Finally, Figure A.6 presents the periods when the C-checks are interrupted. These include
3 weeks during Christmas and New Year, 2 weeks during Easter, and the commercial peak
seasons during the summer time.
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Figure A.4: Aircraft daily utilization for each month (in FH).

Figure A.5: Aircraft daily utilization for each month (in FC).

Figure A.6: Periods when the C-checks are interrupted.
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A.2 Task Packaging Stage

The data used in the task packaging stage includes general task information, manpower
availability, unscheduled ratios, estimations of aircraft utilization, and the check calendar
obtained in the check scheduling stage. Figure A.7 presents information about the main-
tenance tasks. Each line of the file corresponds to a single task. The column ITEM is the
task code, SKILL is the primary skill required, and MxH EST. is the estimated time to
execute the task (in hours). The columns PER FH, PER FC, and PER CALEND contain
the interval of the tasks. TASK BY BLOCK indicates if the task needs to be performed
in a specific check type. When this field is empty the task can be performed in any main-
tenance slot. The LAST EXEC DT column contains the task last execution date, and the
LIMIT EXEC DT corresponds to the task due date. If the due date is empty, it can be
computed using the last execution date and the task interval.

Figure A.7: Maintenance task information.

Figure A.8 presents historical data regarding the number of maintenance technicians avail-
able on each day of 2017 per skill type. The manpower with Heavy Maintenance (HM)
skills can only be allocated to C-checks, while the manpower with Light Maintenance (LM)
skills can be allocated to any other slot.

Figure A.8: Manpower availability per skill.

Figures A.9 and A.10 present the unscheduled maintenance ratios for A and C-checks,
respectively. Each skill in the SKILL GI column can generate additional work from multiple
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skills in the SKILL MDO column. For example, if a 2-hour task with Skill1 as the required
skill is packaged into an A-check, it will generate 2 × 0.1816... hours of additional Skill1
work, and 2× 0.0062... hours of additional Skill2 work.

Figure A.9: A-check unscheduled ratios.

Figure A.10: C-check unscheduled ratios.
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Appendix B

Algorithms Output Files

This chapter presents samples from the output files of the developed algorithms. The check
scheduling algorithm generates a JSON file with relevant information about all scheduled
checks, namely their code, type, due date, duration (in days), starting and ending day, a
merged flag, aircraft information, and the amount of interval lost in terms of DY, FH, and
FC.

Figure B.1: Sample of the check scheduling JSON output file.

A second output of the check scheduling algorithm is an Excel file with an easier visu-
alization of the check calendar. A sample of this file is illustrated in Figure B.2. The
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green cells correspond to C-checks, while the blue cells correspond to A-checks. The white
cells correspond to the available slots that were not used, and the gray cells represent the
constraints, such as the days of no maintenance work, and the days with limited slots
available.

Figure B.2: Sample of the check calendar output file.

The algorithms developed in the task packaging stage produce a maintenance plan for the
fleet consisting of an Excel file for every aircraft. Figure B.3 presents a sample of the
maintenance plan for aircraft 1. Each line represents a maintenance task and contains
information about the slot in which it was packaged, general task information, and the
usage and cost obtained by packaging the task in that particular slot.

Figure B.3: Sample of the maintenance plan for aircraft 1.

The predictive task scheduler also produces an Excel file with the history of all changes
made to the original maintenance plan. Figure B.4 shows a sample of this file. Each
line represents a modification made to the original plan, containing the code of the task
that was rescheduled, the original slot and the new slot in which it was packaged, and
the motive that led to the rescheduling. There is also an observation field to report some
special events, such as the creation of a new maintenance slot.
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Figure B.4: History of changes made to the original maintenance plan.
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