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Abstract

In this paper we propose a new class of Hermite series-based direct plug-in bandwidth se-

lectors for kernel density estimation and we describe their asymptotic and finite sample be-

haviours. Unlike the direct plug-in bandwidth selectors considered in the literature, the pro-

posed methodology does not involve multistage strategies and reference distributions are no

longer needed. The new bandwidth selectors show a good finite sample performance when the

underlying probability density function presents not only “easy-to-estimate” but also “hard-

to-estimate” distribution features. This quality, that is not shared by other widely used band-

width selectors as the classical plug-in or the least-square cross-validation methods, is the most

significant aspect of the Hermite series-based direct plug-in approach to bandwidth selection.
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1 Introduction

If X1, . . . ,Xn are independent real-valued absolutely continuous random variables with common

and unknown probability density function f , the Parzen-Rosenblatt estimator of f (Rosenblatt,

1956, Parzen, 1962) based on the observed sample is defined, for x ∈ R, by

fn,h(x) =
1

n

n∑

i=1

Kh(x−Xi),

where Kh(·) = K(·/h)/h, for h > 0, with K a kernel in R, that is, K is a bounded and integrable

function such that
∫
K(u)du = 1, and the bandwidth h = hn is a sequence of strictly positive real

numbers converging to zero as n tends to infinity (see Devroye and Györfi, 1985, Silverman, 1986,

Bosq and Lecoutre, 1987, Wand and Jones, 1995, Simonoff, 1996, and Tsybakov, 2009, for general

reviews on density estimation). Unlike the selection of the kernel, the choice of the bandwidth is

crucial to the performance of the estimator, this being one of the most studied topics in kernel

density estimation, and several data-based approaches have been proposed for selecting h (see

Wand and Jones, 1995, pp. 58–89, and also Tenreiro, 2017, p. 3440, where more recent bandwidth

selection methods are mentioned).

The direct plug-in method, which dates back to Woodroofe (1970), Nadaraya (1974) and De-

heuvels and Hominal (1980), is a very simple data-dependent method for choosing the bandwidth.

It is based on asymptotic approximations of the bandwidth h0 that minimizes the mean integrated

square error MISE(f ;n, h) = E(ISE(f ;n, h)) = E||fn,h−f ||22, where || · ||2 denotes the L2 distance:

h0 = argmin
h>0

MISE(f ;n, h).

For a square integrable density f , the existence of this exact optimal bandwidth can be established

whenever the kernel K is continuous at zero with k0 < 2K(0), where k0 = ||K||22 (see Chacón et

al., 2007). Under some moment and regularity conditions on K and f , respectively (see Section

7.2), two asymptotic approximations of the optimal bandwidth h0 are given by

h1 = c1,K θ
−1/5
2 n−1/5,

and

h2 = c1,K θ
−1/5
2 n−1/5 + c2,K θ

−8/5
2 θ3 n

−3/5,

where θr, r = 0, 1, . . . , denotes the quadratic functional

θr =

∫
f (r)(x)2dx = ||f (r)||22,

with f (r) ∈ L2 the rth derivative of f , and the constants c1,K and c2,K depending on K and given

by

c1,K = k
1/5
0 k

−2/5
2 and c2,K =

1

60
k
3/5
0 k

−16/5
2 (3k2k4 − 2k23), (1)
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with kj =
∫
ujK(u)du for j = 1, 2, . . . (see Hall and Marron, 1987, 1991). These asymptotic

approximations of h0 reduce the problem of estimating the optimal bandwidth to that of esti-

mating the quadratic functionals θ2 and θ3, this being the idea of the direct plug-in approach to

bandwidth selection.

Although several methods for estimating the functionals θr, for r = 0, 1, . . . , have been studied

in the literature (see the references given in Tenreiro, 2011, p. 534, and Chacón and Tenreiro,

2012, p. 524), the class of kernel estimators of θr proposed by Hall and Marron (1987) and Jones

and Sheather (1991) is widely used in a bandwidth selection context. However, for these kernel

estimators the asymptotically optimal bandwidth for estimating θr depends on θr+2 (whenever

a nonnegative and symmetric kernel is used). This makes the selection of the bandwidth into a

somehow cyclic process. Although a multistage strategy could be used to overcome this problem

(see Chacón and Tenreiro, 2013, for a detailed description of such a multistage procedure), the

standard approach is to use a two-stage procedure with normal reference distribution leading

to the popular two-stage direct plug-in bandwidth selector described in Wand and Jones (1995,

pp. 71–72) and implemented by the function dpik of the R-package ‘KernSmooth’ (Wand, 2019,

pp. 7–8).

When the support of the underlying density function f is known to be contained within a

finite interval [a, b], an alternative approach was followed by Tenreiro (2011) who proposed direct

plug-in bandwidth selectors for the kernel density estimator based on the Fourier series estimators

of θr studied by Laurent (1997). Prompted by the good practical performance of the proposed

bandwidth selectors, the main purposes of this paper are: 1) to use estimators of θr based on

the orthogonal projection of f (r) on the Hermite basis to extend the previous results to the case

where the support of f is the whole real line; 2) to examine, from an asymptotic and finite sample

point of view, the quality of the proposed Hermite series-based direct plug-in bandwidth selectors.

Unlike the standard direct plug-in approach, the new implementation of the plug-in method does

not involve multistage strategies and reference distributions are no longer needed.

The rest of this article is organised as follows. In Section 2 we consider Hermite series-based

estimators of the quadratic functional θr, where the number of Hermite terms included in the

estimators may depend on the observed sample, and we establish their consistency, probability

orders of convergence and asymptotic normality. In Section 3 these results are used to describe the

asymptotic behaviour of direct plug-in bandwidth selectors based on each one of the asymptotic

approximations h1 and h2 of the exact optimal bandwidth h0. In Section 4 we propose two

data-driven methods for selecting the number of terms to be included in the Hermite series based

estimators of θr, and in Section 5 we undertake a simulation study to analyse the finite sample

behaviour of the proposed direct plug-in bandwidth selectors. For K a symmetric probability

density the magnitude of the functional θ2 can be taken as a measure of how difficult a density is

to estimate (see Wand and Jones, 1995, pp. 36–39). Densities with distributional characteristics

such as strong asymmetry or multimodality lead to large values of θ2, the reason why they are

called “hard-to-estimate” densities. For densities without such features, called “easy-to-estimate”
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densities, the density estimation problem is easier because θ2 is lower. The very good finite

sample performance presented by the proposed bandwidth selectors for both “easy-to-estimate”

and “hard-to-estimate” densities, is the most significant aspect with potential practical interest

of the proposed methodology. This is a relevant attribute of the Hermite series-based bandwidth

selectors proposed in this paper which is not shared by the generality of the existing bandwidth

selector methods, which are usually high performing for “easy-to-estimate” densities, but, at the

same time, they may be quite inefficient for densities presenting hard distribution features as

high skewness or several modes. Finally, in Section 6 we provide some overall conclusions and in

Section 7 we gather all the proofs and some auxiliary results.

The simulations and plots in this paper were carried out using the R software (R Development

Core Team, 2019).

2 Hermite series estimators of θr

Let {hk, k = 0, 1, . . . } be the Hermite orthonormal basis of L2 defined by

hk(x) = (2kk!π1/2)−1/2Hk(x)e
−x2/2,

with x ∈ R, where Hk is the kth Hermite polynomial given by

Hk(x) = (−1)kex
2

(dk/dxk)e−x2

.

For r ∈ {0, 1, . . . }, if we assume that f (r) is square integrable, it is known that f (r) has the L2

representation f (r) =
∑∞

k=0 ar,khk, where ar,k =
∫
f (r)(x)hk(x)dx is the kth Hermite coefficient of

f (r), and the quadratic functional of interest θr = ||f (r)||22 can be written in terms of the Hermite

coefficients of f (r) as

θr =
∞∑

k=0

a2r,k.

Using the fact that the kth Hermite coefficient of f (r) can be rewritten as

ar,k = (−1)r
∫

h
(r)
k (x)f(x)dx = (−1)rE

(
h
(r)
k (X1)

)
,

whenever f has bounded derivatives up to order r, it can be estimated without bias as in Greblicki

and Pawlak (1984) by

âr,k =
1

n

n∑

i=1

h
(r)
k (Xi),

which leads to the estimator of θr given by

ˆ̄θr,m =

m∑

k=0

â2r,k, (2)
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where m = m(n) is a sequence of integers converging to infinity with n. A closely related alterna-

tive estimator of θr (see Section 7, Proposition 7.1), can be obtained by taking

ˆ̃
θr,m =

m∑

k=0

â2r,k, (3)

where â2r,k is the unbiased estimator of a2r,k given by

â2r,k =
2

n(n− 1)

∑

1≤i<j≤n

h
(r)
k (Xi)h

(r)
k (Xj).

As the choice ofm should be based on the observed sample, we assume thatm = m̂(X1, . . . ,Xn)

which leads to the automatic estimators ˆ̄θr,m̂ and ˆ̃θr,m̂ of θr. Next we describe the asymptotic be-

haviour of these estimators that we simply denote by θ̂r,m̂. For r, p = 0, 1, . . . let Dr,p be the set of

all densities f with bounded derivatives up to order r+ p, where the functions x 7→ xr+p−if (i)(x)

are assumed to be square integrable, for i = r, . . . , r + p. We denote by s = r + p the order of

smoothness of Dr,p.

Theorem 2.1. For r = 0, 1, . . . , assume that f ∈ Dr,p, for some p ∈ {0, 1, . . . }.
(a) Consistency. If m̂ is such that m̂

p−→ +∞ and n−1m̂max{1,r+5/6} p−→ 0, then

θ̂r,m̂
p−→ θr.

(b) Rates of convergence. Let m̂ be such that

P
(
Cnξ ≤ m̂ ≤ Dnξ

)
→ 1, (4)

with C,D > 0 and ξ > 0. If s > r and

0 < ξ <
1

max{1, r + 5/6} ,

then

θ̂r,m̂ − θr = Op

(
n−βr(p,ξ)

)
,

where

βr(p, ξ) = min
{
(1− ξη(r − p+ 5/6))/2 , 1− ξη(r + 5/6) , pξ

}
.

and η(t) = max{1, t}I(t ≥ 0).

(c) Asymptotic normality. Additionally, if s ≥ 2r + 1 and

1

2p
≤ ξ <

1

2max{1, r + 5/6} ,

then

n1/2
(
θ̂r,m̂ − θr

) d−→ N
(
0, 4Var(f (2r)(X1)

)
.
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Figure 1: Rates of convergence of θ̂r,m̂ to θr for r = 0 (left) and r = 2 (right), as a function of

ξ ∈ ]0, 1/max{1, r + 5/6}[ and p ∈ {1, 2, . . . , 6}.

Remark 2.1. From part (b) of Theorem 2.1 we also conclude that (see Figure 1): 1) if s ≥ 2r+1

and 1/(2p) ≤ ξ ≤ 1/(2max{1, r + 5/6}) the rate of convergence of θ̂r,m̂ to θr has the semi-

parametric order n−1/2. Moreover, the variance 4Var(f (2r)(X1)) is the same as the information

bound for the nonparametric estimation of θr derived by Bickel and Ritov (1988). 2) if r < s ≤ 2r,

the best rate of convergence of θ̂r,m̂ to θr is obtained for ξ = 1/(s + 5/6) and has the order

n−(s−r)/(s+5/6). In the former case the same order of convergence can be obtained by the improved

kernel-based estimator ŜD,r of θr introduced in Jones and Sheather (1991) by employing a kernel

of order 2r. However, in the latter case the rate of convergence of θ̂r,m̂ to θr compares favourably

with that achieved for ŜD,r which is of order n−(s−r)/(4r+1).

3 Hermite series-based plug-in bandwidth selectors

In this section we describe the asymptotic behaviour of the relative errors associated to each one

of the plug-in bandwidth selectors defined by

ĥ1,m̂ = c1,K θ̂
−1/5
2,m̂ n−1/5 (5)

and

ĥ2,m̂ = c1,K θ̂
−1/5
2,m̂ n−1/5 + c2,K θ̂

−8/5
2,m̂ θ̂3,m̂ n−3/5, (6)

where θ̂r,m denotes either ˆ̄θr,m or
ˆ̃
θr,m defined by (2) and (3), respectively, c1,K and c2,K are

given by (1), and m̂ = m̂(X1, . . . ,Xn) is a random sequence of nonnegative integers. We will

always assume that the kernel K is a kernel of order 2, that is,
∫
u2|K(u)|du < ∞, with k1 = 0

and k2 6= 0. We also assume that K is continuous at zero with k0 < 2K(0). As mentioned
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earlier, under these assumptions the existence of an exact optimal bandwidth h0, in the sense of

the minimisation of the mean integrated square error, can be established whenever f is square

integrable (see Chacón et al., 2007, Theorem 1).

Theorem 3.1. Let K be a kernel satisfying the previously stated conditions with
∫
|u|5|K(u)|du <

∞. Assume that f ∈ D2,p, for some p ∈ {0, 1, . . . }, with bounded, integrable and continuous

derivatives up to order 4. Finally, let m̂ be such that m̂
p−→ +∞ and n−1m̂2+5/6 p−→ 0.

(a) Asymptotic behaviour of ĥ1,m̂. We have

ĥ1,m̂
h0

p−→ 1;

if p ≥ 1 and m̂ satisfies (4) with

0 < ξ <
1

3
· 18
17

, (7)

then
ĥ1,m̂
h0

− 1 = Op

(
n−min{β2(p,ξ) , 2/5}

)
,

where

β2(p, ξ) = min{(1 − ξη(17/6 − p))/2 , 1− 17ξ/6 , pξ}.

Moreover, if p ≥ 3 and

1

5
· 2
p
< ξ <

1

5
· 18
17

, (8)

then

n2/5

(
ĥ1,m̂
h0

− 1

)
p−→ −c−1

1,K c2,K θ
−7/5
2 θ3.

(b) Asymptotic behaviour of ĥ2,m̂. If p ≥ 1 we have

ĥ2,m̂
h0

p−→ 1;

if m̂ and ξ satisfy (4) and (7), respectively, we have

ĥ2,m̂
h0

− 1 = Op

(
n−β2(p,ξ)

)
.

Moreover, if p ≥ 3 and

1

2p
≤ ξ <

1

6
· 18
17

,

then

n1/2

(
ĥ2,m̂
h0

− 1

)
d−→ N

(
0, σ2(f)

)
,

with

σ2(f) =
4

25

(
E(f (4)(X1)

2)

E2(f (4)(X1))
− 1

)
.
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Remark 3.1. The order n−1/2 obtained for the rate of convergence of the relative error ĥ2,m̂/h0−1

by taking ξ = 1/6 when p ≥ 3, is, in a minimax sense, the best possible rate of convergence as

shown by Hall and Marron (1991). Moreover, the variance σ2(f) is the same as the best possible

constant coefficient for bandwidth selection derived by Fan and Marron (1992).

4 The automatic selection of m

We are interested in estimating the unknown probability density function f by using the kernel

estimator fn,h, where the bandwidth h is one of the data-dependent bandwidths ĥ1,m̂ and ĥ2,m̂,

defined by (5) and (6), respectively. As the estimator
ˆ̃
θr,m of θr defined by (3) may occasionally

produce poor, sometimes negative, estimates of θr when the size of the sample is small, and it

performs similarly to ˆ̄θr,m defined by (2) when the sample size is moderate or large, the data-

dependent bandwidths based on the estimators
ˆ̃
θr,m are not considered hereafter.

The bandwidths ĥ1,m̂ and ĥ2,m̂ depend on the integer random variable m̂ = m̂(X1, . . . ,Xn),

where m̂+ 1 is the number of Hermite terms included in the estimators of θ2 and θ3 that appear

in their definitions. In order to explore the distribution of ISE(f ;n, ĥi,m), for i = 1, 2, we consider

the case where K is the standard normal density, i.e., K(x) = (2π)−1/2 exp(−x2/2), x ∈ R, and

the density f is one of the fifteen mixtures of normal densities considered in Marron and Wand

(1992). For this kernel and class of densities there are fast and easy-to-implement formulas to

compute the exact ISE of the kernel estimator. This set of densities is very rich, containing

densities with a wide variety of distributional features. The first five densities, with numbers 1 to

5, represent different types of unimodal densities. Densities number 6 to 8 are bimodal densities

and density number 9 is a trimodal density. The remaining six densities, with numbers 10 to 15,

are strongly multimodal. For the definition, graphics and detailed description of these densities

see Marron and Wand (1992, pp. 716–720).

In each graph of Figure 2 we show 40 boxplots describing the empirical distribution of

ISE(f ;n, ĥ1,m) based on 500 simulated samples from densities #2,#3, and #13 of the Marron

and Wand (1992) set, for m ∈ {0, 1, ..., 10, 20, ..., 300}. Similar behaviours can also be observed for

the bandwidth selector ĥ2,m, but the corresponding graphs are not included here to save space.

Also, we include a polygonal line going through the sample mean values of these distributions,

thus giving an approximation of EISE(m) := E(ISE(f ;n, ĥ1,m)). The solid red circle is used to

point out the optimal value of m in the sense of minimising the approximation of the EISE func-

tion. Similar graphs were generated for all Marron and Wand (1992) densities and sample sizes

n = 25 · 2k, k = 0, 1, . . . , 8. Densities #2 and #3, whose empirical distributions of ISE(f ;n, ĥ1,m)

are shown at the top of Figure 2, are representative members of two groups of densities we can

identify among our 15 test densities. The pattern displayed by distribution #2 is shared by other

densities having easy-to-identify features such as densities #1,#6,#7,#8 and #9, for which a

small value of m seems to be the best choice. The same occurs for other hard-to-estimate densities

only when the sample size is small or moderate. This is the case of densities #10,#13 and #15 for
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Figure 2: Empirical distribution of ISE(f ;n, ĥ1,m) depending on m for densities # 2 (n = 200),

# 3 (n = 200) and # 13 (n = 100, 800) from the Marron and Wand (1992) set of normal mixture

densities. The number of replications is 500.

n ≤ 50, #13 for n ≤ 400, and #11 for n ≤ 1600. As pointed out by Chacón and Tenreiro (2013,

p. 2204) in a similar context, the reason for the good performance of a low value of m for such

combinations of densities and sample sizes is that they present distribution features that are not

revealed until the sample size is above some threshold. This situation is illustrated by the graphs

at the bottom of Figure 2 where the empirical distribution of ISE(f ;n, ĥ1,m) for density #13 is

shown for sample sizes n = 100 and n = 800. The pattern displayed by distribution #3 is shared

by other test densities for which using a large value of m seems to be highly advisable. Other than

density #3, this second group of densities includes densities #4,#5 and #14, and depending on

the sample size also densities #10,#12,#13 and #15 for moderate and large sample sizes, and

#11 for very large values of n.

Based on these considerations, we conclude that if we want to deal with a wide set of dis-

tribution characteristics, any reasonable data-based selector m̂ of m should take values on a set

including small as well as large values of m. Two methods for selecting m will be considered. In
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both cases the value m̂ = m̂(X1, . . . ,Xn) is obtained by minimising a certain criterion function

over a set of integers

Mn = {Ln, Ln + 1, . . . , Un},

where Ln < Un are deterministic sequences of nonnegative integers whose asymptotic behaviour

determines that of the bandwidth selectors ĥ1,m̂ and ĥ2,m̂. Assuming that the underlying density f

satisfies the conditions of Theorem 3.1 for some p ≥ 3, we will take Ln = ⌊Cnξ⌋ and Un = ⌊Dnξ⌋,
with C = 0.2, D = 80 and ξ = 1/6. This leads to Ln = 0 and 117 ≤ Un ≤ 330 for 10 ≤ n ≤ 5 ·103.

Taking into account that choosing m among the set Mn is equivalent to selecting one of

the bandwidths ĥi,m, for m ∈ Mn, where i = 1, 2, and that for a squared integrable density

function f the mean integrated square error of fn,h is given by E||fn,h−f ||22 = W (h)+ ||f ||22, with
W (h) = k0

nh+
∫
Lh(x−y)f(x)f(y)dxdy, where L = (1−n−1)K ∗K̄−2K, with K̄(u) = K(−u) and

∗ denotes the convolution product, we can adapt the strategy followed in Chacón and Tenreiro

(2013) in order to propose a first data-dependent method for selecting m. For i = 1, 2, it is defined

by the first integer m̂i,Wγ satisfying

m̂i,Wγ = arg min
m∈Mn

Ŵγ

(
ĥi,m

)
,

where Ŵγ(h) is the weighted cross-validation function defined, for h > 0, by

Ŵγ(h) =
k0
nh

+
γ

n(n− 1)

∑

1≤i neqj≤n

Lh(Xi −Xj),

where 0 < γ ≤ 1 needs to be chosen by the user. We refer the reader to Tenreiro (2017) for

the weighted least-squares cross-validation bandwidth selector for kernel density estimation. For

γ = 1, Ŵγ(h) is the standard least-squares cross-validation function proposed by Rudemo (1982)

and Bowman (1984). Hearafter the bandwidths ĥi,m̂i,Wγ
will be simply denoted by ĥi,m̂Wγ

.

The second method we consider for selecting m was used in the context of Fourier series-

based plug-in bandwidth selectors by Tenreiro (2011). In this case the selection of m does not

depend on the considered bandwidth selector. The idea is to take m in such a way that f can

be well approximated, in the sense of the mean integrated squared error, by the Hermite series-

based estimator of f defined by f̂n,m =
∑m

k=0 â0,khk. For a squared integrable density function

f , Schwartz (1967, p. 1263) proves that the mean integrated square error of f̂n,m is given by

E||f̂n,m − f ||22 = H(m) + ||f ||22, where H(m) = 1
n

∑m
k=0

∫
hk(x)

2f(x)dx −
(
1 + 1

n

)∑m
k=0 a

2
0,k.

Therefore, the second data-dependent method for selecting m we consider is defined by the first

integer m̂Hγ satisfying

m̂Hγ = arg min
m∈Mn

Ĥγ(m),

where

Ĥγ(m) =
1

n

m∑

k=0

1

n

n∑

i=1

hk(Xi)
2 − γ

(
1 +

1

n

) m∑

k=0

â20,k,
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for some 0 < γ ≤ 1. Although the motivation for this second method for selecting m can be

considered less convincing than the previous one, because it is not related with the kernel density

estimator of f we are interested in nor with the Hermite series-based estimators of θ2 and θ3 we

are using, we will see that it performs quite well in practice, being less time consuming than the

method based on Ŵγ especially for large sample sizes.

The inclusion of the correction parameter γ in the previous criterion functions is crucial

for the good performance of both methods. To the best of our knowledge, a similar idea was

for the first time suggested by Hart (1985) for selecting the number of terms to be used in a

Fourier series-based density estimator. As the considered set Mn of possible values of m includes

large values of m, some simulation experiments performed for all normal mixture densities of

Marron and Wand (1992) reveal that taking γ = 1, in which case Ŵγ(h) and Ĥγ(m) are unbiased

estimators of E||fn,h − f ||22 − ||f ||22 and E||f̂n,m − f ||22 − ||f ||22, respectively, does not prevent the
user from getting excessively large values of m, which leads to very poor results especially for

densities with easy-to-estimate distribution features. In fact, excessively large values of m might

lead to an overestimation of the quadratic functional θ2, and therefore to an underestimation of

the optimal bandwidth h0. This is an undesirable situation since, as is well known, the kernel

density estimator is penalised much more by excessively small than excessively large bandwidths.

Taking into account that the functions γ 7→ ĥi,m̂Wγ
are nonincreasing (i = 1, 2), and the function

γ 7→ m̂Hγ is nondecreasing with probability one, we may expect to soften the above mentioned

problems by including a correction parameter strictly less than one in the considered criterion

functions. As suggested by these properties, the simulation results support the idea that small

values of γ are more appropriate for easy-to-estimate densities, whereas large values of γ are more

adequate for hard-to-estimate densities. In order to find a compromise between these two extreme

situations, we decide to follow Tenreiro (2011) suggestion of taking γ = 0.5.

5 Simulation study

We present in this section the results of a simulation study carried out to analyse the finite

sample behaviour of the Hermite series-based direct plug-in bandwidth selectors introduced in

the previous sections, namely ĥ1,m̂Wγ
, ĥ1,m̂Hγ

, ĥ2,m̂Wγ
, and ĥ2,m̂Hγ

, with γ = 0.5. Two other

bandwidth selectors are included in the study: the two-stage direct plug-in bandwidth selector

(PI), implemented by the function dpik of the R-package ‘KernSmooth’, and the standard least-

square cross-validation bandwidth selector (CV). We take for K the standard normal density and

we use as test densities the fifteen normal mixture densities of Marron and Wand (1992) that

we referred to in Section 4. It is well known that the PI method performs quite well for “easy-

to-estimate” densities (e.g. #1,#2,#6,#8,#9), whereas the CV method performs exceptionally

well for “hard-to-estimate” densities (e.g. #3,#4,#5,#14,#15), these being the main reasons

for including these bandwidth selectors in our study.

For different sample sizes and for each one of the 15 test distributions the quality of each one
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ĥCV

Density #5

sample sizes ÷ 25

L 2
 −

no
rm

 o
f I

S
E

1 2 4 8 16 32 64

0.
00

0.
10

0.
20

0.
30
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ĥCV

Figure 3: Empirical L2–norm of ISE(f ;n, ĥ) associated to the bandwidths ĥ2,m̂Wγ
, ĥ2,m̂Hγ

(γ =

0.5), ĥPI and ĥCV, for test densities #1 to #6. The number of replications is 500.
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ĥ2, m̂Wγ
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Figure 4: Empirical L2–norm of ISE(f ;n, ĥ) associated to the bandwidths ĥ2,m̂Wγ
, ĥ2,m̂Hγ

(γ =

0.5), ĥPI and ĥCV, for test densities #7 to #12. The number of replications is 500.
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ĥPI
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Figure 5: Empirical L2–norm of ISE(f ;n, ĥ) associated to the bandwidths ĥ2,m̂Wγ
, ĥ2,m̂Hγ

(γ =

0.5), ĥPI and ĥCV, for test densities #13 to #15. The number of replications is 500.

of the considered bandwidths is analysed through the measure of stochastic performance defined

by

L2–norm of ISE(f ;n, ĥ) =

√
Var(ISE(f ;n, ĥ)) + E2(ISE(f ;n, ĥ)).

This performance measure takes into account not only the mean of the ISE(f ;n, ĥ) distribution,

but also its variability. As the behaviour shown by the bandwidths ĥ1,m̂Wγ
and ĥ1,m̂Hγ

is close

to that one of the bandwidths ĥ2,m̂Wγ
and ĥ2,m̂Hγ

, respectively, only the behaviour of these two

last bandwidths is reported in Figures 3, 4 and 5. In these figures the empirical L2–norm of

ISE(f ;n, ĥ), based on 500 replications, is shown for the bandwidth selectors ĥ2,m̂Wγ
, ĥ2,m̂Hγ

, ĥPI

and ĥCV and sample sizes n = 25 · 2k, k = 0, 1, . . . , 7.

As we can see from the graphics, the two Hermite series-based direct plug-in bandwidths per-

form similarly for all the test distributions. Although the PI method shows a better performance

for some of the densities when the sample size is small, the proposed methods present a good
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overall performance against the PI and CV methods. For some of the considered test densities,

the new bandwidth selectors seem to mimic the behaviour of the best of these two classic band-

widths, retaining the good performance of the PI bandwidth for “easy-to-estimate” densities and

sharing the superior performance of the CV bandwidth for “hard-to-estimate” densities. It is

particularly interesting the cases of densities #10 and #12, where the new bandwidth selectors

behave similarly to the PI selector for small sample sizes, and similarly to the CV selector for

moderate and large sample sizes.

6 Conclusion

We suggest here a class of Hermite series-based direct plug-in bandwidth selectors for kernel

density estimation. Unlike the classical plug-in bandwidth selectors, the proposed selectors do

not need multistage strategies or a reference distribution. The simulation results suggest that

the new bandwidth selectors present a very good performance for both “easy-to-estimate” and

“hard-to-estimate” densities. This is a quality that is not shared by other widely used bandwidth

selectors as the direct plug-in or the least-square cross-validation methods. Based on this evidence,

we expect that the new bandwidth selectors might present a good overall performance for a wide

range of density features, which is a distinctive quality in particular when no information about

the underlying density shape is available or when a complex data structure is suspected.

7 Proofs

7.1 Proof of Theorem 2.1

We recall that ˆ̄θr,m̂ and
ˆ̃
θr,m̂ are defined by (2) and (3), respectively, where m̂ = m̂(X1, . . . ,Xn)

is a random sequence of nonnegative integers. We will first set three preliminar propositions that

will prove usefull.

Proposition 7.1. For r = 0, 1, . . . and n ≥ 2 we have

ˆ̃
θr,m̂ =

n

n− 1
ˆ̄θr,m̂ −Rr,m̂, (9)

where

0 ≤ Rr,m ≤ Brn
−1mmax{1,r+5/6},

and Br is a constant independent of m. Moreover, if m1 = m1(n) and m2 = m2(n) are sequences

of nonnegative integers such that m1 ≤ m̂ ≤ m2, then

ˆ̃θr,m1
−Rr,m2

≤ ˆ̃θr,m̂ ≤ ˆ̃θr,m2
+Rr,m2

. (10)

Proof: From the definitions of ˆ̄θr,m and ˆ̃θr,m we easily see that equality (9) holds with

Rr,m =
1

n(n− 1)

m∑

k=0

n∑

i=1

h
(r)
k (Xi)

2.
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Taking into account that there exist constants Cr > 0, independent of k, such that

sup
x∈R

|h(r)k (x)| ≤ Cr(k + 1)r/2−1/12, (11)

for k = 0, 1, . . . and r = 0, 1, 2, . . . (see Walter, 1977, pp. 1259–1260), we conclude that

0 ≤ Rr,m ≤ 1

n(n− 1)

m∑

k=0

n∑

i=1

(
Cr(k + 1)r/2−1/12

)2

≤ 2C2
rn

−1
m∑

k=0

(k + 1)r−1/6 ≤ Brn
−1mmax{1,r+5/6},

for some constant Br > 0 independent of m. Finally, the double inequality (10) follows straight-

forward from (9) and the fact that Rr,m is a nondecreasing function of m. �

Proposition 7.2. For r = 0, 1, . . . , assume that f ∈ Dr,p, for some p ∈ {0, 1, . . . }. Then for all

n,m ∈ N we have

E
( ˆ̃
θr,m − θr

)2 ≤ D1n
−1mη(r−p+5/6) +D2 n

−2m2η(r+5/6) +D3 m
−2pνm,

where D1,D2,D3 > 0 are constants independent of n and m, νm ≥ 0 is such that νm → 0, as

m → ∞, and η(t) = max{1, t}I(t ≥ 0).

Proof: In order to establish the stated result, we use the classical decomposition

E
( ˆ̃
θr,m − θr

)2
= Var(

ˆ̃
θr,m) +

(
E
( ˆ̃
θr,m

)
− θr

)2
.

We first examine the bias term. For f ∈ Dr,p we observe that the real-valued function x 7→
(x−d/dx)pf (r)(x) is square integrable and its (k+p)th Hermite coefficient, we denote by br,p,k+p,

is related to the kth Hermite coefficient of f (r) by the expression

br,p,k+p = (2(k + p))1/2(2(k + p− 1))1/2 . . . (2(k + 1))1/2ar,k,

for k = 1, 2, . . . (see Walter, 1977, pp. 1261). Thus we have

|ar,k| ≤
(
2(k + 1)

)−p/2|br,p,k+p|, (12)

for k = 0, 1, 2, . . . , which leads to

(
E
( ˆ̃
θr,m

)
− θr

)2
=

( ∞∑

k=m+1

a2r,k

)2

≤
∞∑

k=m+1

(
2(k + 1)

)−p|br,p,k+p|2 = O
(
m−2pνm

)
, (13)

where νm =
(∑∞

k=m+1 |br,p,k+p|2
)2

converges to zero as m tends to infinity.

Turning now to the variance term, we notice that ˆ̃θr,m is a U-statistics as it can be written in

the form
ˆ̃θr,m =

2

n(n− 1)

∑

1≤i<j≤n

Hr,m(Xi,Xj),
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where Hr,m is the symmetric function

Hr,m(x, y) =

m∑

k=0

h
(r)
k (x)h

(r)
k (y). (14)

From Hoeffding’s formula for the variance of a U-statistics (see Lee, 1990, Theorem 3, p. 12),

we have

Var
( ˆ̃
θr,m

)
=

2

n(n− 1)

(
2(n− 2)σ2

1,r,m + σ2
2,r,m

)
, (15)

where σ2
1,r,m = Var(Gr,m(X1)) and σ2

2,r,m = Var(Hr,m(X1,X2)), with

Gr,m(y) = E(Hr,m(X1, y)) =

m∑

k=0

E
(
h
(r)
k (X1)

)
h
(r)
k (y) = (−1)r

m∑

k=0

ar,kh
(r)
k (y). (16)

From (11), (12) and the triangular inequality, we have

σ2
1,r,m ≤ E

(
Gr,m(X1)

2
)
≤

( m∑

k=0

|ar,k|
(
E
(
h
(r)
k (X1)

2
))1/2

)2

≤ C2
r 2

−p
∞∑

k=0

b2r,p,k

m∑

k=0

(k + 1)r−p−1/6 = O
(
mη(r−p+5/6)

)
. (17)

Regarding σ2
2,r,m, from (11) and the Cauchy-Schwarz inequality, we have

σ2
2,r,m ≤ E

(
Hr,m(X1,X2)

2
)
=

m∑

k,l=0

(
E
(
h
(r)
k (X1)h

(r)
l (X1)

))2

≤
( m∑

k=0

E
(
h
(r)
k (X1)

2
))2

= O
(
m2η(r+5/6)

)
. (18)

Therefore, from (15) we get

Var
( ˆ̃
θr,m

)
= O

(
n−1mη(r−p+5/6) + n−2m2η(r+5/6)

)
,

which concludes the proof. �

Proposition 7.3. For r = 0, 1, . . . , assume that f ∈ Dr,p, for some p ∈ {r + 1, r + 2, . . . }. If

m = m(n) is a deterministic sequence of nonnegative integers such that n−1/2mmax{1,r+5/6} → 0

and n1/2m−p = O(1), then

n1/2
( ˆ̃θr,m − θr

) d−→ N
(
0, 4Var(f (2r)(X1)

)
.

Proof: From the Hoeffding’s decomposition (see Lee, 1990, Theorem 1, p. 26), we have

ˆ̃
θr,m − E(

ˆ̃
θr,m) =

2

n

n∑

i=1

{Gr,m(Xi)− E(Gr,m(Xi))}+ Ur,n,
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where the degenerated U-statistics Ur,n is defined by

Ur,n =
2

n(n− 1)

∑

1≤i<j≤n

H̄r,m(Xi,Xj),

with H̄r,m(x, y) = Hr,m(x, y) − Gr,m(x) − Gr,m(y) + E(Hr,m(X1,X2)), and Hr,m and Gr,m are

given by (14) and (16), respectively. From (17) and (18) we get

Var(Ur,n) = O

(
n−2

(
E
(
Gr,m(X1)

2
)
+ E

(
Hr,m(X1,X2)

2
)))

= O
(
n−2mη(r−p+5/6) + n−2m2η(r+5/6)

)
.

Using (13) and the assumptions on the sequence m = m(n), we conclude that

n1/2
( ˆ̃
θr,m − θr,m

)
=

2√
n

n∑

i=1

{Gr,m(Xi)− E(Gr,m(Xi))}+ op(1).

The stated asymptotic normality follows now from the central limit theorem, whenever we

prove that supm∈N supx∈R |Gr,m(x)| < ∞, and limm→∞Gr,m(x) = (−1)rf (2r)(x), for all x ∈ R,

where Gr,m is given by (16).

The first property follows from (11), (12) and the fact that p ≥ r + 1. In fact, we have

sup
m∈N

sup
x∈R

|Gr,m(x)| ≤
∞∑

k=0

|ar,k| sup
x∈R

|h(r)k (x)|

≤ 2−p/2Cr

( ∞∑

k=0

(k + 1)r−p−1/6

)1/2( ∞∑

k=0

b2r,p,k+p

)1/2

.

The pointwise convergence of Gr,m to (−1)rf (2r) follows from the differentiation theorem

under the integral sign and the fact that the rth derivative of f can be expressed as f (r)(x) =∑∞
k=0 ar,khk(x), for all x ∈ R (see Greblicki and Pawlak, 1985, Lemma 1). �

Using the results established before, we may now prove Theorem 2.1. From the first part of

Proposition 7.1, it is enough to consider the estimator ˆ̃θr,m̂.

Proof of part (a) of Theorem 2.1: It follows from the assumptions on m̂ that P
(
An(M,N)

)
→ 1,

as n → ∞, for all M ∈ N and N > 0, where An(M,N) =
{
M ≤ m̂ ≤ ⌊(Nn)1/max{1,r+5/6}⌋

}
, with

⌊x⌋ the integer part of x. Using Proposition 7.1 withm1(n) = M andm2(n) = ⌊(Nn)1/max{1,r+5/6}⌋,
for ǫ > 0 we have

P
(
|ˆ̃θr,m̂ − θr| ≥ ǫ

)
≤ P

(
| ˆ̃θr,m1

− θr| ≥ ǫ/2
)
+ P

(
| ˆ̃θr,m2

− θr| ≥ ǫ/2
)

+ 2P
(
Rr,m2

≥ ǫ/2
)
+ P(An(M,N)c),

where

0 ≤ Rr,m2
≤ Brn

−1m
max{1,r+5/6}
2 ≤ BrN,
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and Br is a constant independent of n. Moreover, from Proposition 7.2 and Markov’s inequality

we get

P
(
|ˆ̃θr,m1

− θr| ≥ ǫ/2
)
≤ 4

ǫ2

(
D1n

−1Mη(r−p+5/6) +D2n
−2M2max{1,r+5/6} +D3M

−2pνM

)

and

P
(
|ˆ̃θr,m2

− θr| ≥ ǫ/2
)
≤ 4

ǫ2

(
D1N +D2N

2 +D3n
−2p/max{1,r+5/6}νm2(n)

)
.

Therefore, as νm → 0 when m tends to infinity, we easily conclude that for all ǫ > 0 and δ > 0

there exist M ∈ N large enough, N > 0 small enough, and n0 ∈ N such that P(| ˆ̃θr,m̂−θr| ≥ ǫ) < δ,

for all n ≥ n0. �

Proof of parts (b) and (c) of Theorem 2.1: Let m1 = m1(n) and m2 = m2(n) be two sequences

of nonnegative integers such that Cnξ − 1 ≤ m1 < Cnξ and Dnξ < m2 ≤ Dnξ + 1, for n large

enough. As P
(
m1 ≤ m̂ ≤ m2

)
→ 1, from Proposition 7.1 we also have

P
( ˆ̃θr,m1

− θr −Rr,m2
≤ ˆ̃θr,m̂ − θr ≤ ˆ̃θr,m2

− θr +Rr,m2

)
→ 1,

where Rr,m2
= Op

(
n−1m

max{1,r+5/6}
2

)
= Op

(
n−(1−ξη(r+5/6))

)
. Thus, part (b) of Theorem 2.1 fol-

lows from Proposition 7.2 as
ˆ̃
θr,mj

− θr = Op

(
n−min{(1−ξη(r−p+5/6))/2 , 1−ξη(r+5/6) , pξ}

)
, for j = 1, 2,

and part (c) of Theorem 2.1 follows from Proposition 7.3 as Rr,m2
= op(n

−1/2) and n1/2
( ˆ̃θr,mj

−
θr
) d−→ N

(
0, 4Var(f (2r)(X1)

)
, for j = 1, 2. �

7.2 Proof of Theorem 3.1

The asymptotic behaviour of the relative errors ĥi,m̂/h0 − 1, for i = 1, 2, where the plug-in

bandwidth selectors ĥi,m̂ are defined by (5) and (6), relies on Theorem 2.1 and on the following

expansion of the exact optimal bandwidth

h0 = c1,K θ
−1/5
2 n−1/5 + c2,K θ

−8/5
2 θ3 n

−3/5 +O(n−4/5),

which holds whenK is a kernel of order 2 with
∫
|u|5|K(u)|du < ∞, and f has bounded, integrable

and continuous derivatives up to order 4 (see Hall et al., 1991, sec. 2).

Proof of part (a) of Theorem 3.1: As

ĥ1,m̂
h0

− 1 =
c1,K

(
θ̂
−1/5
2,m̂ − θ

−1/5
2

)

n1/5h0
− c2,Kθ

−8/5
2 θ3 n

−2/5

n1/5h0
+O(n−3/5),

where n1/5h0 → c1,K θ
−1/5
2 , n → +∞, the stated convergence and order of convergence for the

relative error ĥ1,m̂/h0 − 1 follow from parts (a) and (b) of Theorem 2.1 with r = 2 and the fact

that β2(p, ξ) > 2/5 iff p ≥ 3 and ξ satisfies (8). �
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Proof of part (b) of Theorem 3.1: We have

ĥ2,m̂
h0

− 1 =
c1,K

(
θ̂
−1/5
2,m̂ − θ

−1/5
2

)

n1/5h0
+

c2,K
(
θ̂
−8/5
2,m̂ θ̂3,m̂ − θ

−8/5
2 θ3

)

n1/5h0
n−2/5 +O(n−3/5),

where

θ̂
−8/5
2,m̂ θ̂3,m̂ − θ

−8/5
2 θ3 =

(
θ̂
−8/5
2,m̂ − θ

−8/5
2

)
(θ̂3,m̂ − θ3) +

(
θ̂
−8/5
2,m̂ − θ

−8/5
2

)
θ3 + θ

−8/5
2 (θ̂3,m̂ − θ3).

From the part (a) of Theorem 2.1 with r = 2 we know that θ̂2,m̂− θ2 = op(1). The convergence to

zero of the relative error ĥ2,m̂/h0 − 1 follows now from the convergence n−2/5(θ̂3,m̂ − θ3) = op(1),

which can be established by reasoning as in the proof of part (a) of Theorem 2.1 using the fact

that f ∈ D3,p−1 with p− 1 ≥ 0.

If m̂ satisfies (4), from Theorem 2.1 we have θ̂2,m̂ − θ2 = Op

(
n−β2(p,ξ)

)
, and θ̂3,m̂ − θ3 =

Op

(
n−β3(p−1,ξ)

)
. Therefore, the stated order of convergence for the relative error ĥ2,m̂/h0 − 1

follows from the fact that β2(p, ξ) < β3(p− 1, ξ) + 2/5, for p ≥ 1 and 0 < ξ < 6/17. Finally, from

part (c) of Theorem 2.1 we have n1/2
(
θ̃
−1/5
2,m̂ − θ

−1/5
2

) d−→ N
(
0, θ

−2/5
2 σ2(f)

)
, whenever p ≥ 3 and

1/(2p) ≤ ξ < 3/17, from which we deduce the stated asymptotic normality of the relative error

of ĥ2,m̂. �
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