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Abstract
Purpose – Additive manufacturing (AM) technologies have recently turned into a mainstream production method in many industries. The adoption
of new manufacturing scenarios led to the necessity of cross-disciplinary developments by combining several fields such as materials, robotics and
computer programming. This paper aims to describe an innovative solution for implementing robotic simulation for AM experiments using a robot
cell, which is controlled through a system control application (SCA).
Design/methodology/approach – For this purpose, the emulation of the AM tasks was executed by creating a robot working station in RoboDK
software, which is responsible for the automatic administration of additive tasks. This is done by interpreting gcode from the Slic3r software environment.
Posteriorly, all the SCA and relevant graphical user interface (GUI) were developed in Python to control the AM tasks from the RoboDK software environment.
As an extra feature, Slic3r was embedded in the SCA to enable the generation of gcode automatically, without using the original user interface of the software.
To sum up, this paper adds a new insight in the field of AM as it demonstrates the possibility of simulating and controlling AM tasks into a robot station.
Findings – The purpose of this paper is to contribute to the AM field by introducing and implementing an SCA capable of executing/simulating
robotic AM tasks. It also shows how an advanced user can integrate advanced simulation technologies with a real AM system, creating in this way a
powerful system for R&D and operational manufacturing tasks. As demonstrated, the creation of the AM environment was only possible by using
the RoboDk software that allows the creation of a robot working station and its main operations.
Originality/value – Although the AM simulation was satisfactory, it was necessary to develop an SCA capable of controlling the whole simulation
through simple commands instructed by users. As described in this work, the development of SCA was entirely implemented in Python by using
official libraries. The solution was presented in the form of an application capable of controlling the AM operation through a server/client socket
connection. In summary, a system architecture that is capable of controlling an AM simulation was presented. Moreover, implementation of
commands in a simple GUI was shown as a step forward in implementation of modern AM process controls.
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1. Introduction

Nowadays, the industry is constantly searching for modern
approaches (Pires, 2007), as it is necessary to develop new
solutions and formulas for classical problems that may not
introduce new sets of challenges (Pires et al., 2006). This paradigm
shift happens in virtue of previous production methods, which
were based on application of a machine for each operation. Such
approaches are becoming outdated due to many reasons,
including but not limited to economic and environmental reasons.
The adoption of new solutions can be achieved by using non-

conventional working scenarios packed with machines, which
are capable of executing a wide range of operations. The main
goal of applying this concept is to decrease the production
costs, through the increase of the system efficiency, toward
saving resources such as prime materials and energy. Although

such scenarios are based on the economical revenue, the quality
should almost never be compromised.
There are several international initiatives (Pires and Azar,

2017, 2018a, 2018b) that are expected to make a significant
impact on industrial variables; examples are as follows:
� Production time: A decrease of at least 20 per cent is

estimated as the operations are optimized and fully
integrated into only one cell.

� Production costs: A decrease of at least 25 per cent is
estimated as all the former process integration into the
single working cell reduced the capex andmachinery costs.

� Resources costs: A decrease of at least 50 per cent is
estimated due to the technologies and architecture in this
process, in which it is important to highlight the usage of
hybrid manufacturing process, resulting in reduced lead-
time between operations.
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In this article, some considerations about the creation of a
virtual robot working cell, currently referred as digital twin, will
be presented. It is intended to simulate additive manufacturing
(AM) tasks, and the system control application (SCA)
responsible to control and adjust all the robot simulation
parameters.

1.1 Additivemanufacturing overview
In the 1980s, the rapid prototyping method was developed as a
way to produce 3D objects, layer by layer, directly from CAD
packages. It was a significant advance in industry as models and
prototypes could be easily produced.
AM extended significantly this concept, just by introducing a

set of technologies that allow a 3D object to be built by the
simple process of adding layer upon layer of material until
reaching the desired shape (ASTM-International, 2012). The
main advantage of the AM is the versatility of the concept,
which allows to create virtually any 3D shape as they are all
bases in layer-by-layer manufacturing. Consequently,
modeling and prototyping were the first applications. But
quickly it started to be applied to manufacturing of small series,
tricky parts, etc., and are now seriously considered for the
production of large metal parts that are difficult to manufacture
in traditional manufacturing plants, i.e. using traditional
manufacturing technologies. Also, producing complex 3D
parts, for several industries, including aeronautics and space,
seems easier and more efficient if AM is included in the
manufacturing process. In fact, AM has grown significantly in
the past years, especially because of the industrial interest on
the subject. However, it is important to clarify that AM is not
just limited to the commonly used printers, optimized to build
plastic parts. The ASTM committee (ASTM-International,
2012) published a set of standards which describe all the
current seven classes of AM technology.
As in the conventional technologies, each AM technology

uses specific materials as genetics of the processes does not
allow a full material coverage. Consequently, as explained in
the study conducted by Bourell et al. (2009), the materials used
in AM technologies can be grouped into two categories;
homogenous and heterogeneous materials. In addition, some
studies about the practical application of these materials have
been done, such as the ones in the following table (Table I).
Accordingly to Bourell et al. (2009) and Mueller (2012), it

will be possible to see AM technologies in industries such as
aerospace, military, automotive and motorsport, electronics,
biomedical, jewelry, collectables, dentistry, food, education
and toys in the near future.
According to Espacenet (Ménière et al., 2017), the number

of patented intellectual properties regarding AM are facing an
exponential growth since a few years back, a behavior that is
expected to keep its tendency justified by the increase of
investment from big companies and countries, that are inserted
in the program Industry 4.0.
AM promises to overcome many boundaries imposed by

conventional manufacturing technologies such as the
production limitations of components with complex
geometries/shape, and the excessive waste of material due to
excessive wall thickness or the type of the technological process.

However, it is important to notice that in an industrial
environment, all of these AM technologies are only possible
due to the integration ofmultidisciplinary areas.
Industrial robot manipulators have been allied with AM

technologies due to the fact that they are machines with a huge
potential in this field as they have natural characteristics that
make them enabled to perform AM tasks such as the ability to
perform repetitive tasks, a high reliability and performance,
easy to program and control, and, the ability to fabricate large
components, an option that is challenging for common AM
machines.
A recent study conducted by Evjemo et al. (2017) shows some

projects that are impractical by using a traditional 3D-printing
machine due to physical limitations Most of the common
machines only have 3 degrees of freedom (DoF), which only
allows translations along X, Y or Z. In the worst-case scenario, a
robot manipulator has more than 5 DoF, allowing execution of
rotational movements in addition. Such setups make difference in
a 3D-printing task because it allows keeping the extruder nozzle
correctly oriented during themovements.
Some of the recent crucial developments could be

challenging to realize if the advanced robot manipulators were
not in use; examples are as follows:
� Concrete printing: The aim is to produce full-scale

constructions and architectural components such as walls,
bridges and houses (Bos et al., 2016).

� MX3D bridge: This project aims to build strong, complex
and gracious structures in steel, by a combination of AM
technologies and advanced robots.

State-of-the-art summaries about AM and related technologies
can be found inGardan (2016) and Lehmhus et al. (2018). These
two papers introduce the various AM technologies currently
available, namely, laser, flash, extrusion, jet, lamination & cutting,
etc., and discuss their major advantages and drawbacks, including
an overview of the manufacturing processes that can take
advantage from their basic characteristics.
Incorporating simulation of the AM process into the system,

improving in this way the quality of the printing process, the
capacity to do it right the first time and achieve autonomy, was
also proposed recently by several authors (Azar and Pires,
2018; Seidel et al., 2014; Zadpoor, 2018; Witvrouw et al.,

Table I Important AM projects in each type of material

Type of materials

Important studies about
applications which use AM
technologies

Homogenous materials
Polymers, such as epoxies and
thermoplastics

Odom et al. (2017)

Natural materials, such as living
tissues, paper/adhesive, starch

Melchels et al. (2012)

Metals such as alloy compositions Tan et al. (2017)
Ceramics such as glasses, cement Guo and Leu (2013)

Heterogeneous materials
Polymeric matrix composites (PMC) Tekinalp et al. (2014)
Metallic matrix composites (MMC) Murr et al. (2012)
Ceramic matrix composites (CMC) Eckel et al. (2016)
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2017). The idea is to fully transform the AM process, just by
adding mechanisms to better plan the manufacturing process
and to dynamically resolve the problems as they arise. This
means creating a data-driven AM system with the capacity of
dynamic trajectory planning, taking information from near real-
time process data and updated simulations (Azar and Pires,
2018).
In summary, the robot-assisted AM technologies are paving

theway to become an eminent part of the factories of the future.
It is hard to ensure that by implementing these technologies,
the challenges will be settled. Nevertheless, it is undeniable that
it will help to reach a commonly acceptable resolution. In this
line, the major contribution would be in terms of elevating the
grade of these machinery to reach the level of plug-and-play
and higher autonomy, with the objective of eliminating the
inconveniences and challenges in programming of these
advanced machines for executing a sophisticated printing task.
In this article, an innovative method for creation of a virtual
working cell using RoboDK and Slic3r software and a new
design of SCA and interface using Python high-level
programming is delineated.

1.2 Software
1.2.1 RoboDK
RoboDK is an industrial robot software which has the possibility
to perform offline/online robot programming and simulation
(Nubiola, 2015).
The following are the advantages of this software package for

becoming the choice of this study:
� For sake of conceivable object-oriented programming, it is

necessary to add visual perspective during the simulation
of the process. RoboDK provides a graphical presentation
of the cell and it is possible to perform offline robot
programming.

� A wide range of robot manipulator brands and tools are
available in RoboDK. Therefore, it is possible to create a
generic task that can be executed on more than 200 types
and brands of robots.

� RoboDK offers a built-in gcode interpreter for execution of
tool-path related projects.

1.2.2 Slic3r
Slic3r is an open-source software launched in 2011 by the
RepRap community, with the objective of making self-replicating
machines freely available for the benefits of the users. Following
the rules of this community, Slic3r is used to convert 3Dmodels
into printing instructions by generating gcode, which is a
programming language used to create numeric instructions that
make amachinemoving in Cartesian coordination system.
The input of the program is a pre-designed CAD file and the

output is the gcode, which is used for path generation in the
robotic printing technology.

1.2.3 Python
Python is an interpreted high-level programming language created
by Guido van Rossum in 1991, and designed to work in a wide
range of domains (General purpose programming language).
Python is known for its versatility, for being a fast

development environment, an open-source software and also a
“clean” and “clear” programming language (Peters, 2004).

In this research Python 3.6 was used because of the following
reasons:
� The RoboDK source code was developed in Python and it

offers a specific library that allows controlling all the robot
station operations called Robolink. This library s used for
offline/online programming and simulation.

� Python is one of the most applied programming languages
in the world, and it is also experiences one of the highest
growth rate (StackOverFlow, 2018).

� Python has a wide range of libraries such as Asyncio,
threading, subprocess and kivy, which allow the creation of a
comprehensive SCA.

1.3 Additive manufacturing simulation
One of the goals of the developments in this study is the
development of an AM simulation, and this section will reflect
all the work done to achieve it by using RoboDK and Slic3r.
Basically, the system starts with the CAD file of the part to 3D
print and follows the following steps:
� The user must slice the part to be printed, i.e. generate the

code containing the robot trajectories required to
manufacture the part. Slic3r is used to generate gcode. A
generic configuration file is given for each to work with
each user application.

� Automatic robot code is obtained from the gcode taking in
consideration the AM process selected, along with the
type of AM process adopted.

� There is the option to upload the generated code to the
robot controller and control the operation of the robot.

� There is also the possibility to include mechanisms to
observe online the quality of the process under study and
perform, also online and in real-time, the parameters of
the AM process under study (Azar and Pires, 2018).

These aspects will be described in detail in the rest of the paper.

1.3.1 Robot offline programming
The robot offline program is an essential part of this research
toward emulating the real working cell environment, as well as
all the AM tasks (e.g. extrusion control and control of the
heating systems). In addition, the advantages of using this way
of programming are tremendous (Nubiola, 2015; Montaqim,
2015):
� There is no break or pause in the production flow.
� It is safer because there is no involved risk of damage to

the working cell and its operator because of its virtual
nature.

� All the simulated processes can be reproduced in the real
working cell as the virtual environment replicated the real
case scenario.

To make the virtual developments useful in the physical robot
cell, the design has to follow some important considerations:
� The robot must move freely, without any restriction or

obstacle, otherwise it will stop the operation with error
messages (collision control).

� The robot must have a tool for simulating the material
deposition that can be replaced by any other tool in a short
instance.

� All the deposited parts are built on an appropriate region
such as a substrate on a workbench.
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Before presenting the working cell architecture, it is important
to discuss some details in the process of creating the presented
working cell. As a good practice, inRoboDk, the working station
should always follow a hierarchy in terms of sequence of
introducing tools. The reason for following the hierarchical
sequence is to make a reference frame, which allows the objects
and tools to be oriented correctly. This is a delicate subject as it
is the only way to ensure that all the generated paths and
simulated operations will keep the same reference frame and to
avoid problems such as singularities or wrong tool orientation.
Hence, the robot base was adopted as a reference frame

because all the subsequent operations will be executed by the
robot.
The hierarchy construction rule implies that all the other

frames are dependent on the reference frame, as can be seen in
Figure 1.
After this brief and important consideration, the working cell

was designed following the previously presented requisites. In
terms of design, the final solution consists of a table which
supports a robot equipped with an extruder and a bed plate.
The selected robot model is ABB IRB140, which is available in
theRoboDK library, as well as the extruder and the work bench.
The substrate was built in a CAD editor with dimensions of
250 � 250 � 10 mm and imported to the software
environment.
Table II lists the vectoral positions (x, y, z, u 1, u 2, u 3) of the

used objects. The position of the extruder is not mentioned as it
is attached in the robot flange.
Figure 2 shows the designed virtual cell. The generation of

the robot program for executing the AM simulation is
presented and discussed in the next section.

1.3.2 Robot programs
An AM simulation gcode is composed of millions of points.
Thus, the task of translating these connected points into a robot
language is a critical step toward warranting the significance of
all themovements.

The RoboDK software offers possibility of compiling
information about the simulation, such as the robot flange
velocities, paths, types of movements and controlling the active tool
operation from gcode into robot-specific program. In this
research, programs created through both manual and
automatic approaches as presented below.

1.3.3Manual programming
Manual programming is similar to teaching by showing
presented by Lozano-Peres, where targets and operations are
defined by demonstration (Lozano-Perez, 1983).
Targets are the space coordinates of each position and

orientation occupied by the robot flange, which will be
interpolated into a linear, joint or circular movement in the
backstage. In addition, parameters such as robot flange velocity
ormaterial deposition conditions are also definedmanually.
In this research, manual programming is used to define the

following AMoperations:
� approaching the robot flange and the mounted tool, close

to the substrate surface; and
� returning the robot to a home position, after the AM

simulation.

Both approaching and homing operations were performed by
joint movements only as a high movement pace was envisaged.
The velocity was set to 150 mm/s and the precision was set to
high. Figure 3 shows the two aforementioned targets.

1.3.4 Automatic programming
RoboDK can generate automatic programs using the
incorporated projects. The presented automatic programming
in this research, which is responsible to simulate an AMprocess
for building a simple CAD model, uses a project called
machining/welding project.
This project only requires a gcode file to generate the

toolpath, extruder function controller and the robot flange
velocities. To simulate the material deposition, a Python script
was developed, that is executed once the robot program is
called.
To generate the gcode, Slic3r software was used. As the AM

task is assumed to be fused deposition modeling (FDM), the
printer configurations from Lulzbot[1] was used to define the
slicing conditions.

Figure 1 Reference frame and all the dependencies

Table II Robot and objects position in the working cell

Object Position

Robot base (0,0,0,0,0,0)
Table (310,0,0,0,0,0)
Plate (600,0,0,0,0,0)

Figure 2 Working cell design
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Figure 4 shows the milling project user interface, and the
toolpath that will simulate the AM task.
At the end of this operation, all programs were grouped in an

eventual solution that performs AM simulation on the robot.
This program is responsible to make predefined sequential calls
of the robot programs simulate all the essential robot
movements/actions during simulation. The details about the
sequence of command execution are as below:
� Approach: This module is the manually defined robot

program that approaches the mounted deposition tool
close to the substrate.

� 3D: This module is the automatic robot program which
contains all the information related to the toolpath.

� Filament on/off: This module is the Python program which
simulates the material extrusion.

� Return home: This is a manual robot program module that
moves the robot to the predefined home position at the
end of the AM simulation (Figure 5).

2. System Control Application

SCA is a user-interface mechanism that enables the interaction
between a user and the virtual/real robot station. The importance
of allowing SCA in simulation environments, namely by providing
interface mechanisms with the system, is related to the fact that it

allows users to control the operations through a previously
designed and user-friendly application. The user-friendliness
arises from a user interface that is intended to be intuitive and
logical. These characteristics are achieved by creating the
application with a simple design and clear commands, addressing
the average factory floor staff independent of their experience.
As described previously, the SCA in this work was developed

in Python through available libraries. Therefore, to understand
the functionalities of the developed SCA, the applied libraries
will be contextualized and explained accordingly to their
objective of usage and the way they were combined to build a
complete application.
The basis for the developed SCA are (Figure 6):

� Asynchronous transport control protocol/internet protocol
(TCP/IP) – Server/client.

� Robot Station Control.
� Generation of gcode.
� Graphical user interface,GUI.

2.1 Asynchronous transport control protocol/internet
protocol – Server/client
Principally, it is important to recognize that the robot and the
computer are two devices that do not perceive how to share and
communicate information as they do not have an implemented
native protocol, capable of being interpreted by both.
Consequently, a TCP was implemented and combined with the

Figure 3 Robot flange approaching the plate surface through a joint
movement

Figure 4 Milling project user interface and the tool paths generated

Figure 5 Final look of the working cell, which is ready to perform an
AM simulation

Figure 6 Flow of information in the developed SCA
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IP, also known as TCP/IP, to establish the communication
protocol.
The development of the SCA began with the creation of an

asynchronous server and client, addressing the required SCA
tasks in the AM simulation.
From a computer science perspective, the server and a client

are part of a software architecture, where the objective is to
establish and maintain inter-communication that the clients
always sent requestswhile the server always responds the received
requests. It is also responsible for executing and scheduling the
client’s request (Oluwatosin, 2014). Therefore, these two
programs can be seen as a symbiosis case as they need each
other to remain operational.
In the developed SCA, the clients represent all the

operations requested by a user, while the server is the
program responsible to receive the requests, and then,
accessing the AM robot’s station to set up the requested
operation by the user, through sockets that are responsible for
establishing the connection between the end nodes (Xue and
Zhu, 2009) (Figure 7).
It is also important to ensure that the system is asynchronous,

or else it is impossible to perform multiple simultaneous tasks
(e.g. request position, extruder flow and bed temperature) as
the system is blocked while it is performing an operation and it
is only available at the end nodes.
The usage of asynchronous programming enables the system

to interleave tasks, by suspending and returning through I/O
control. This is called a concurrent programming, where all the
tasks can start, run and complete at overlapping time periods.
The biggest advantage of such strategy is the fact the system is
always responsive and independent of the end of each operation
to progress (Ghezzi, 1985) (Figure 8).
The implementation of an asynchronous TCP/IP server/

client was implemented in Python, as it was mentioned before,
using theAsyncio library (Rossum, 2012).

2.1.1 Asynchronous server creation
The first step in any Asyncio program is the creation of an event
loop, which in this case should run forever() as the server should

always be ready to perform any operation or to receive a new
client. The usage of a loop that will run forever means that it
will only stop when a stop() command is triggered. However, it
is fundamental to have in mind that after stopping the loop it is
impossible to start it again.
After implementing the loop, it is necessary to create a

coroutine, which can be performed together with a task. The
coroutine is responsible to return a tuple with two objects: a
StreamReader, which is responsible to interpret the message
received by the client, and a StreamWriter, which is responsible
to send information to the client. One important characteristic
about this coroutine is the fact that it only executes once a new
connection is established as each client’s connection requires a
new socket or else, the application may be blocked or even
result inmixed ormissed information.
The final step was to fire the loop to start the server, making it

able to receive the client requests. The main code of the server
can be seen. Each line of the code is commented for
clarification. Server code snippet:

import asyncio

class Server:

def_init_(self):
“This class is used to create
the server”
self.loop = asyncio.get_
event_loop()
self.loop.run_until_complete
(self.coro) #runs everytime there
is a client
self.run_forever()

async def_coro(self):
“Asyncio Coroutine that defines the
TCP/IP protocol to start the
server”
await asyncio.start_server
(self.handle_echo, `localhost,
port = 8888, loop = self.loop)
#ensure

server is created

async def handle_echo (self, reader,
writer):

“Asyncio coroutine which creates
the StreamReader and StreamWriter
self.reader = reader
self.writer = writer

del decisions(self):
“Method used to decode the receives
message and interact with the AM
simulation” pass

if__name__ = `__main__’:
Server()

2.1.2 Asynchronous client creation
The client is not supposed to keep connections alive forever
as it will lead to a high consumption of the computer resources,
which affects parameters such as connection velocity, as well as

Figure 7 Schematic representation of a sock

Figure 8 Illustration of how the tasks are interleaved in a concurrent
programming
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tasks and app performance. Problems can be easily avoided if
the client is killed at the end of each socket. In other words, the
client should run until complete, whereas the server will run
forever.
It is important to note that if the server is asynchronous, the

client also needs to be in the same scheme. Otherwise, the code
will be blocked until the end of the client’s work, due to the lack
of concurrent tasks. The client was created with theAsyncio library,
which has specific documentation about implementation ofTCP/
IP client (Rossum, 2012).
The first step toward creating a server is implementation of

the event loop, which always needs to be prepared to generate a
new client when sending a request to the server and also to kill it
whenever the work is finalized.
After creating the loop, the next step is to enable the client

generation without waiting until the end of the previous task.
The objective of the latter approach is to eliminate the blocking
risk and to allow parallel requests. The solution to these
problems was the creation of a task that will run the thread safe
coroutine. By running this coroutine, the loop will be able to
perform the creation of a new client, because it will prepare the
loop to start a coroutine, which was not scheduled before firing
the loop, which has initial running conditions without breaking
the loop.
The source code of the scrutinized client can be seen. Each

line of the code is commented for clarification. Client code
snippet:

import asyncio

class Client:

def__init__(self):
“This class is used to create the
server”
self.loop=asyncio.get_
event_loop()
self.message=None

asyncdefcreate_cleinte(self):
“AsyncioCoroutinethatdefinesthe
TCP/IPprotocoltocreatea
client”
reader,writer=await
asyncio.open_connection
(`localhost,port=8888,
loop=self.loop)

#createstheclientasalsotheStreamReader
andtheStreamWriter

self.reader=reader
self.writer=writer
awaitasyncio.ensure_future
(self.connection)#waitsuntilthe
endoftheclient

asyncdefconnection(self):
“Asynciocoroutinetosendand
receiveinformation”
self.writer,write(self.message)
#Writesonserver
server_message=await
self.reader.read(100)#Receives
theserver’smessage
awaitself.writer.drain()

defnew_request(self,message):
“thismethodcreatesanewclient
self.message=message.encode()
asyncio.run_coroutine_threadsafe
(coro=self.create_client(),
loop=self.loop)

if__name__=`__main__’:
client=Client()
client.new_request(message=“HelloWorld”)

2.2 Robot station control
The server needs to perform tasks in the robot station; yet the
server does not conceive how it shall be done as the source code
is only able to accept clients andmanage requests.
Therefore, it is necessary to implement a solution that will be

called each time the server receives a request related to the
robot station. In such way, the server is capable of performing
the station related tasks and translating and sending back the
information from the robot station to the user.
This controller was implemented using Python and RoboDK

library (RoboDK, 2018) as all the functionalities are well
integrated.
The implementation of all the mentioned concept was

realized in two main parts; the station recognition and the station
tasks. Both parts are methods of the Subclass ValidateRobodk
(Robolink).

2.2.1 Robot station recognition
The station recognition is a method that is responsible to detect
all the objects in the cell, such as the robot, the working tool, the
working frame and the final robot program. The recognition of
the robot station is very important as the SCAmust have access
to the information about all the cell objects or else they will be
uncontrollable from the application. A snippet view of the
station recognition is presented. Code snippet showing the
robot stationDetection:

from robolink import �

class ValidateRobodk(Robolink):
“““RobotDk Class that makes possible manage
robotDK, for this we use the Parent Class
RoboLink”””

def __init__(self):
self.Render(True)
self.ShowRoboDK()
self.robot = self.Item
(0 0, ITEM_TYPE_ROBOT) # This detects
the robot
if not self.robot.Valid():

raise Exception(’No robot selected or
available’)

2.2.2 Robot station tasks
The station tasks are responsible for interacting with the robot
station to perform all the user’s requests. The following are a
list of tasks:
� Get_position(): A method responsible to get the real

position of the robot flange.
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� Go_home(): A method that sends the robot to a predefined
home position.

� Start_printing(): A method that starts the robot
simulation.

� Pause_printing(): A method that pauses the robot
simulation.

� Stop_printing(): A method that stops the robot simulation.
� Check_collisions(): A method that checks if there is any

collision.
� Calibrate_robot(): A method that performs an automatic

robot calibration.
� Station_ready(): A method which verifies if the station is

ready to perform.
� Simulation_time(): A method that calculates the

simulation time during the simulation.

A snippet view of the code, which has all the methods referred
above, is illustrated. Code Snippet showing the robot station
task:

from robolink import �

class ValidateRobodk(Robolink):
“““RobotDk Class that makes possible manage
robotDK, for this we use the Parent Class
RoboLink”””

def get_position(self):
“““This is a method that gets the real
position of the robot flange”””
position = Pose_2_TxyzRxyz
(self.robot.Pose())
position_final = [round(position[elem],
2) for elem in range(len(position))]
return position_final[:3]

def go_home(self):
“““This is a method that sends robot to
home position”””
Robolink().RunCode(‘Return Home’, True)
return str(“Robot at Home position”)

The listed methods represent all the client requests, which are
performed by RoboDK and launched by the server. As it was
mentioned before, such AM-specific class is crucial for
enabling the system to collect information about the real-time
status of the robot station and launching the required user
operation.

2.3 Generation of gcode
The SCA should easily generate executable gcode that runs
conditionally on the AM setup. When it comes to the Slic3r’s
software, it is possible to execute the slicing tasks from the
command line, which makes it easy to implement it in another
programming language platform (Gary, 2013). Therefore, by
launching the Slic3r executable in the Python shell, generation of
the gcode can be performed.
If the commands in the documentation of the Slic3r software

is implemented with care, there should not be any difference
between the gcode generated from the command prompt and
the gcode generated in the user interface.

The slicing command implementation was done by Python,
using the subprocess library as it is necessary to execute
command lines on the shell.

2.4 Graphical User Interface
GUI allows users to configure the operations in the system as it
is usually simple and intuitive. In the SCA, GUI was developed
to control the robot station through a series of simple
interactions with the application, such as clicking buttons or
draging bars and intuitive generation of the gcode. TheGUIwas
designed and constructed using Python’s Kivy library as it
allows creation of elegant interfaces easier and faster than
Python’s native GUI developer called TkInter. Moreover, Kivy
has a better compatibility with several operating systems.

2.4.1 Graphical user interface’s development
The first step to develop the GUI is the creation of the Kivy’s
loop, and KV file.This was done simultaneously to visualize the
construction of theGUI. It shows a piece of theKivy class code.
Code snippet of kivy class responsible to generate the loop:

class InterfaceApp(App):

def build(self):

“Method used to build the loop and the
User interface”
return GenerateSlide()

if __name__ == ‘__main__’:
InterfaceApp().run()

In terms of design, the GUI was projected using
straightforward features such as buttons, selectors and bars,
which only require one touch to interact with the
EventDispatcher.
As it was explained previously, the server and the client are

asynchronous programs that require an Asyncio Event loop to be
executed, which should not be suspended to keep the server
and the client alive. This requirement entails a serious problem
as it turns Kivy and Asyncio into incompatible libraries because
they do not allow the execution of simultaneous looping.
The rationale behind this is related to the fact that both loops

operate in the same thread, causing in suspension of one loop
during the execution of another. This leads to lack of resources
that are necessary to keep both sides alive. Therefore, the
solution for this problem is launching the Asyncio’s event loop in
a new thread, using the multithreading library, which allows
parallel execution without breaking (Noller and Oudkerk,
2008). In addition, the Kivy’s loop will be launched in a lower-
level thread, which represents themainthread of execution.
However, the threads will have to communicate with each

other, otherwise, controlling the AM simulation may not be
feasible as the mainthread only triggers the callback that will
imply a client generation and the respective messages in the
upper-level thread.
To handle this situation, a worker was created to act as an

intermediate character between each thread-lever. Its working
principle is based on a callback that is triggered every time the
EventDispatcher creates an event. A message will be sent after
the worker has been created, containing the operation to be
executed to the Asyncio thread. However, the opposite working
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flow must happen as the GUI must be updated, according to
the user requests in the server.
Finally, the last step in the GUI development was to enable

the application to generate the gcode. This feature was also
implemented by launching another thread as the gcode program
blocks during operation when it is required to waits() until the
generation of gcode.
A complete view and description of the GUI can be seen in

Figure 9.
It should be clarified that with this approach the user can run

the simulation in real-time, fully controlling its behavior, and
access an instance of RobotDK that handles the simulation
process. Other work, from the same authors, explored the
possibility of using other platforms, like ABB Robotstudio (Pires
and Azar, 2018a, 2018b), including the possibility to have
simulation and real production in parallel. The authors show a
comprehensive demonstration of that possibility in Pires and
Azar (2017, 2018a, 2018b), using a real test-case and showing
full implementation details.

3. Conclusion

AM technologies are seen as one of the most influential area in
research and development because of their positive impact on
the industrial routines. However, these technologies still have a
long way to reach maturity as the field is highly
multidisciplinary.
The purpose of this paper is to contribute to the AM field by

introducing and implementing an SCA capable of executing/
simulating robotic AM tasks. It also shows how an advanced
user can integrate advanced simulation technologies with a real
AM system, creating in this way a powerful system for R&D
and operational manufacturing tasks.
As demonstrated, the creation of the AM environment was

only possible by using the RoboDk software that allows the
creation of a robot working station and itsmain operations.
Although the AM simulation was satisfactory, it was

necessary to develop a SCA capable of controlling the whole
simulation through simple commands instructed by users. As
described in this work, the development of SCA was entirely
implemented in Python, using official libraries. The solution
was presented in the form of an application, capable of

controlling all the AM operation through a server/client socket
connection.
In addition, the SCA is also capable of automatic generation

of gcode, through as simple operation as clicking a button.
In summary, a system architecture was presented that is

capable of controlling an AM simulation. Moreover,
implementation of commands in a simple GUI was shown as a
step forward in implementation of modern AM process
controls.

Note

1 TAZ PLA Profile –Medium PLA 0,35 mmNozzle.
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