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But why, some say, the moon? Why choose this as our goal? And they may well ask

why climb the highest mountain? Why, 35 years ago, �y the Atlantic?

We choose to go to the moon. We choose to go to the moon and do the other things,

not because they are easy, but because they are hard, because that goal will serve to

organize and measure the best of our energies and skills, because that challenge is one

that we are willing to accept, one we are unwilling to postpone, and one which we

intend to win.

John F. Kennedy Moon Speech - Rice Stadium (adapted)





Abstract

From critical systems to entertainment, most computer systems have become dis-

tributed. Compared to standalone applications, distributed systems are more complex,

di�cult to operate and maintain, thus increasing the probability for outages or other

malfunctions. Properly monitoring the system is therefore even more important. How-

ever, recovering a complete image of the system is a herculean task for administrators,

who often need to resort to a large plethora of tools. Despite all these tools, the person

that many times identi�es the degradation or the system outage is the one that is some-

how disregarded in the monitoring chain � the client. Almost daily, we have examples

in the news from companies that had outages or system degradation perceived by the

�nal client with a direct impact on the companies' revenues and image.

The lack of client-side monitoring and the opportunity to improve current monitoring

mechanisms paved the way for the key research question in this thesis. We argue

that the client has information on the distributed system that monitoring applications

should use to improve performance and resilience.

In this work, we aim to evaluate the limits of black-box client-side monitoring and

to extend white-box with client information. Additionally, we are very interested to

understand what kind of information does the system leak to the client.

To evaluate this approach, we resorted to several experiments in distinct scenarios from

three-tier web sites to microservice architectures, where we tried to identify performance

issues from the client-side point-of-view. We used client pro�ling, machine learning

techniques among other methods, to demonstrate that using client information may

serve to improve the observability of a distributed system.

Properly including client-side information proved to be an interesting and challenging

research e�ort. We believe that our work contributed to advance the current state-of-

art in distributed system monitoring. The client has viable information that eludes

administrators and provides important insights on the system.

Keywords:

Monitoring, Black-box monitoring, White-box monitoring, Client-side monitoring, Ob-

servability, Analytics, Microservices.
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Resumo

Desde os sistemas críticos ao entretenimento, a maioria dos sistemas computacionais

tornou-se distribuída. Quando comparados a aplicações monolíticas, os sistemas dis-

tribuídos são mais complexos, difíceis de operar e manter, aumentando assim a proba-

bilidade de anomalias. A monitoria de um sistema distribuído é desta forma ainda mais

importante. Todavia, obter uma imagem completa do sistema é uma tarefa árdua para

os administradores, que frequentemente precisam de recorrer a uma grande variedade

de ferramentas. Mesmo com a superabundância de ferramentas, a pessoa que muitas

vezes identi�ca a degradação ou a interrupção do sistema é a mesma que de alguma

forma é desconsiderada no �uxo de monitoria: o cliente. Quase diariamente, temos

exemplos na comunicação social de empresas que tiveram interrupções ou degradação

no serviço prestado percebido pelo cliente �nal, com impacto direto nas receitas e na

imagem dessas empresas.

A falta de monitoria do ponto de vista do cliente e a oportunidade de melhorar a mon-

itoria atual abriram o caminho para a questão chave de pesquisa nesta tese. Argumen-

tamos que o cliente possui informação sobre o sistema distribuído que as ferramentas

de monitora devem usar para melhorar o desempenho e resiliência.

Neste trabalho pretendemos avaliar os limites de uma monitoria do lado do cliente de

uma forma �caixa-negra�, e extender as soluções de �caixa-branca� com informação do

cliente. Além disso, estamos também interessados em entender que tipo de informação

é que o sistema escapa para o cliente.

Para avaliar esta abordagem, recorremos a várias experiências em cenários distintos

desde sites de três camadas até arquiteturas de micro serviços, onde tentamos identi-

�car problemas do ponto de vista do cliente. Usámos técnicas de criação de pro�ling

do ponto de vista do cliente, técnicas de Machine Learning, entre outros métodos, para

demonstrar que o uso de informações do cliente pode servir para melhorar a observ-

abilidade de um sistema distribuído.

A inclusão de informações do cliente provou ser um tópico de pesquisa interessante e

desa�ador. Acreditamos que o nosso trabalho contribuiu para avançar o atual estado

da arte de monitoria em sistemas distribuídos. O cliente possui informações viáveis que

escapam ao controlo dos administradores e fornece conhecimento importante sobre o

sistema.
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Chapter 1

Introduction

From video streaming to entertainment, from machine-to-machine frameworks to health

applications, distributed systems lie at the heart of modern businesses. Users de-

mand responsive systems, which in turn depend on resilience (Laprie, 2008) and elas-

ticity (Herbst et al., 2013; Manifesto, 2019). A complete component monitoring, in-

cluding relationships between services, is key to ensure system resiliency. However,

e�cient monitoring has proven to be a di�cult task, especially in highly dynamic sys-

tems (Halpern, 1987).

Distributed systems may fail due to component problems or due to successive accumu-

lated failures causing a waterfall e�ect (Gray; Oppenheimer et al., 2003). To be useful, a

monitoring technique should have the following properties: high accuracy and coverage,

few false-alarms, deployability and maintainability. Monitoring systems may operate in

three distinct layers (MonitoringTools, 2015; SemaText, 2019): low-level (e.g. machine

and protocol tests, such as heartbeats, pings, and HTTP error code monitors), ap-

plication performance monitoring (APM) and real-user monitoring (RUM). Normally,

a monitoring solution is the combination of several low-level monitors (to check the

overall status of the machine), some application monitor (that may be out-of-the-box

or customized), and even some client tracking.

This is the main subject of this thesis � monitoring �, a key aspect to a proper admin-

istration and operation of distributed systems. In a highly dynamic distributed system,

we are forced to instrument and monitor applications to have the overall status of the

infrastructure. In current solutions, there are two main unwanted problems: �rst, the
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overall monitoring application is reactive, meaning that operators must act to already

occurring incidents; secondly observing and monitoring the system is only possible if

developers and administrators work together to instrument every single point-of-failure.

Hence, it is interesting to understand the feasibility of timely inferring system status

with as few data as possible.

1.1 Problem Statement and Motivation

Monitoring distributed systems is not easy. Leslie Lamport mentioned that �A dis-

tributed system is one in which the failure of a computer you did not even know

existed can render your own computer unusable.� (Lamport, 1987). This sentence has

some important aspect to our work: distributed systems have components that will

fail and cause an overall system degradation or outage. Additionally, creating a larger

ecosystem of components may increase the di�culty to monitor and prevent failures.

This may lead to failure events with enormous impact on companies' reputation, often

with consequences for business.

For example, Target Corporation su�ered a system outage that prevented customers

from making purchases in their stores, due to a technical issue (CNBC, 2019). U.K.

mobile telecommunication operator O2 removed all Ericsson's technology from their

network after two outages that left more than 2 million persons without communications

for an entire day (Whittaker, 2012). Many other cases exist, such as Facebook and

WhatsApp outages due to miscon�guration and technical problems (DailyMail, 2015;

Engadget, 2019; Verge, 2019).

What is the common aspect in the previous examples? All of them had a direct impact

in the client, and some of them were �rstly detected by clients, before being acknowl-

edged by companies.

Monitoring thus aims to help systems and networks to achieve high resilience standards.

Additionally, several studies have con�rmed that the lack of investment in monitoring

may cause economic and image damage to a company (Gartner, 2013; Owezarski et al.,

2013; Rimal et al., 2009; Verizon, 2013).

In Oppenheimer et al. (2003), three of the largest-scale Internet services, �operate their

own 24x7 System Operations Centers sta�ed by operators who monitor the service and
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respond to problems�. For Joyce, �monitoring of distributed systems involves the col-

lection, interpretation, and display of information concerning the interactions among

concurrently executing processes.� (Joyce et al., 1987). Almost two decades since Op-

penheimer' statement and three decades after Joyce's, very little has been made to

change this approach to system administration (Ewaschuk and Beyer, 2016; Spotify,

2018; Vector, 2018). We still resort to alarms, dashboards, agents, and a plethora of

other tools to assist administrators in the task of �nding patterns and failures in dis-

tributed systems. Interestingly, with all these tools, the client continues to be somehow

disregarded in the monitoring �ow. The client or machine outside of the monitored

system may contribute with information that eludes system operators, but improves

system monitoring.

A signi�cant part of recovery time (and therefore availability) is the time required

to detect and locate service failures. Quickly detecting the root cause of a problem

can be the the most important hurdle to improve availability of the system. Classic

techniques su�er from false positive alarms, thus reducing the operator con�dence in

the tool. Dashboards, for example, put the responsibility to �nd any kind of problem

on the operator (Bodic et al., 2005; Kiciman and Fox, 2005; Padmanabhan et al., 2006).

In spite of the numerous observation and monitoring tools available, building responsive

distributed systems remains a di�cult challenge. Part of the problem lies on the lack

of client-side information that could either complement or altogether replace existing

monitoring systems.

1.2 Main Objectives and Approach

There are a plethora of software solutions to monitor and alert system administrators

for problems occurring in the application. These tools are normally classi�ed as low-

level, application and user-level solutions. Internal monitoring solutions running at the

system or middleware layer, provide feedback for the overall status of the machine. In

this category, we have programs like agents, probes, and system tools such as Nagios

or Zabbix. Although very simple, these tools lack the application view that provides

other important insights to administrators.

At the application level, there is a large diversity of solutions. Some companies and

even academic research aim to create customized tools that �ll some monitoring gaps.
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Other implement more intrusive frameworks, such as tracing, to inspect correlation

among services, thus being able to create system-wide graphs or other complex system

visualizations. Other tools, mostly Application Performance Management tools (APM)

aim to create noti�cations or dashboards for the system (AppDynamics, 2017; Dyna-

Trace, 2017; NewRelic, 2017). Each APM competitor brings its own features to the

table, to enable the creation of a small (but precise) picture of the system. However,

they lack the most important part of the system: the �nal customer.

The previous systems do not take into consideration if the client is having some

technical di�culty, even when the system appears to be fully functional. Real user

monitoring suites (RUM), like Pingdom (Pingdom, 2017), Monitis (Monitis, 2017) or

Bucky (Bucky, 2017) do this to some extent, by relying on clients' data, but they mostly

serve to create dashboards and trigger noti�cations according to a set of rules, or are

more oriented to search engine optimization (SEO) tasks.

Even with all these monitoring solutions, problems regarding the status of the system

still persist. First, the majority of the monitoring solutions are intrusive, being di�cult

to operate and maintain in legacy systems. Secondly, they are closely coupled to

the system in terms of technology and infrastructure. Normally, we have white-box

solutions, intrusive and with internal access to the system. Unlike this, black-box

solutions have no access to the internal state of the distributed system. They must

use metrics observable from the exterior, e.g., from the client. A client-side black-box

solution could help decoupling the distributed system from monitoring, thus providing

independence between monitoring and infrastructure (e.g. language and technology).

Client-side information can also enrich current white-box solutions. Combining white

and black-box can improve monitoring solutions and the overall health of the system.

The main goal of this thesis is, therefore, to develop monitoring solutions that involve

the use of data collected by the client.

In the pursuit of understanding how would client-side monitoring work, we need to

address the following sub-objectives:

1. Automatically infer the internal state of the server, using only client reads (black-

box). For this, we aim to understand the e�ects of distinct bottlenecks on the

clients and how to improve the overall monitoring in more complex and real sce-

narios, with the purpose of having autonomous and online prediction mechanisms.
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2. Determine how to incorporate client reads in state-of-the-art monitoring tools

(white-box). With the insights and information collected from the client, we

aim to understand the viability of adding client data to monitoring tools. For

this reason, we explored the limits of this kind of solution and propose a hybrid

solution, where we can merge information collected and observed by the �nal

clients with system internal information.

3. Understand the limits of client-side monitoring. A full black-box monitoring

approach is di�cult, since we depend on information that the system may leak

to the client. We need to understand what kind of information is leaked by the

system in di�erent operational scenarios (e.g. system a�ected by some sort of

bottleneck) and identify patterns in observable metrics foreseen by clients such

as end-to-end request and response times.

1.3 Results and Contributions

This thesis aims at improving the current state of the art of distributed systems moni-

toring. The next chapters are the result of our endeavours.

Chapter 2 presents the current state of the art. This state of the art allowed us to

understand limitations and challenges of current tools that need to be addressed. Addi-

tionally, this chapter allowed us to understand what goals and results we might achieve.

In this chapter we summarize knowledge that is transversally used in the rest of the

thesis.

In our survey of Chapter 3, we analyze the most used web sites worldwide, based on

the majority of errors that a client can perceive, characterizing them by connection

errors, logical errors and JavaScript errors. The classi�cation is done by resorting to

standard tools and frameworks using only client-side data. In our survey we observe

that even the most used websites are bound to failures, therefore providing us with an

extra motivation to improve monitoring solutions.

Our e�orts to understand how performance issues and bottlenecks are identi�ed outside

of the system take us to Chapter 4. The work of this chapter allowed us to understand

patterns for distinct synthesized bottlenecks in a laboratory experiment. Using client-

side data makes this solution independent from the system. Additionally, we analyzed
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several web sites to understand if we could identify the same patterns in an uncontrolled

environment.

We then tried to extract useful data combining information from several clients. Since

we wanted to extract patterns and resort to autonomous bottleneck detection in Chap-

ter 5, we used machine learning techniques. We provided data from several clients and

used supervised techniques to understand if they could identify patterns associated

with bottlenecks.

Chapter 6 gives insights on how to achieve monitoring in very dynamic microservice

architectures. This naturally extends our previous approach, because each microservice

behaves like a client for the next microservice in the chain.

In detail, this thesis main research contributions are:

1. A survey on the main issues involved in current monitoring solutions regardless of

their level of intrusiveness (i.e. white-box or black-box solutions). This allowed

us to identify gaps in the current state of the art.

2. An analysis of the major HTTP solutions, such as web sites or REST interfaces.

This analysis can help us to understand which kind of problems are more prone

to appear to the client.

3. A laboratory experiment where we synthesize several bottlenecks and evaluate

how do they show up on the client. This is very useful to understand the limits

of a full black-box solutions.

4. An autonomous bottleneck identi�cation technique, using machine learning.

5. Extending the previous methods to the increasingly popular microservices ar-

chitecture using nothing more than the information collected from the invoking

side.

It is important to mention that Chapter 6 was a team e�ort. The �exponential variable

sum algorithm�, in Section 6.2.1, and the �tandem queue model �tting�, in Section 6.3.1,

models are not from my authorship. I include them here for self-containment, as I need

to use them as a baseline for comparison to the machine learning approaches. The main

author of these algorithms was another PhD student called Jaime Correia.
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In addition to the aforementioned direct contributions, we believe that this thesis can

pave the way to better monitoring solutions. Through more observable distributed

components, we aim at improving what is most important: the client's quality-of-

experience.

1.4 Thesis Structure

Chapter 1 introduces the research topic, the motivation, problem characterization, and

main contributions.

Chapter 2 presents the background and state of the art in monitoring distributed sys-

tems.

Chapter 3 presents a study on a large list of online HTTP application, such as web

sites or REST interfaces. We aimed to understand if server-side errors are common and

whether clients can detect them.

Chapter 4 presents an experiment on how to detect bottlenecks in a distributed system

from the client-side point-of-view. We used some classic statistical analysis to create a

client pro�le concerning the web page time retrieval.

Chapter 5 extends the previous scenario, by having multiple clients invoking the same

resource. We correlated all this information to identify bottleneck patterns. For this,

we used machine learning techniques to pinpoint distinct performance issues.

In Chapter 6 we analyze a microservice architecture. The monitoring solution is built

resorting to Net�ix components and to simulation. In this chapter we try to understand

if the same methods that we use in the previous chapters can be adapted to this kind

of applications.

Finally, Chapter 7 concludes the thesis and proposes future directions for this research.
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State of the Art on Distributed

Systems Monitoring

Monitoring takes an important role in distributed systems, to ensure quality-of-service

to the client. The importance of a proper monitoring is a thematic that has been

evolving from monolithic to distributed solutions. Distributed systems � an evolution

of monolithic architectures �, have created even more di�cult, complex and unpre-

dictable situations to system administrators.

As stated in Section 1.1, distributed systems are highly dynamic, may have distinct

technologies and may be part of a large ecosystem. The plethora of problems and

monitoring solutions for such systems is consequently intimidating.

In this chapter we present some of the most advanced monitoring solutions for dis-

tributed systems, as well as some fundamental concepts. We divide the topics of this

chapter into several Sections. First, in Section 2.1, we present the main concepts rele-

vant to our work such as microservice, observability, tracing, logging or debugging. In

Section 2.2, we present the common use cases associated with monitoring distributed

systems, from anomaly detection, system modelling and occupation prediction to im-

proving system e�ciency. Afterwards, in Section 2.3, we present techniques and studies

addressing these use cases. In Section 2.4 we present concrete tools and frameworks

used for monitoring. Section 2.5 is focused on studies associated with web site reliabil-

ity, as some of our work is related to this topic.
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Finally, in Section 2.6 we present our conclusions and how we can contribute in this

demanding �eld of research.

2.1 Concepts

2.1.1 Monitoring

Monitoring can be de�ned as the act to observe and retrieve relevant data and tracking

the events occurring in a system. With this information, monitoring aims to supervise

and report the overall health of the system to administrators (Techopedia, 2019b).

For Google, monitoring is �collecting, processing, aggregating, and displaying real-time

quantitative data about a system, such as query counts and types, error counts and

types, processing times, and server lifetimes.� (Ewaschuk, 2019; Ewaschuk and Beyer,

2016). These authors describe some of the Google's challenges in terms of monitoring.

From the de�nition and taxonomy of some monitoring concepts to the description of

some of the monitoring solutions implemented, this study gives a general overview of

the di�culties to maintain a simple (but e�ective) tool in a production environment.

We can decompose monitoring into two main branches: white-box and black-box.

White-box monitoring

White-box monitoring is �based on metrics exposed by the internals of the system,

including logs, interfaces like the Java Virtual Machine Pro�ling Interface, or an HTTP

handler that emits internal statistics.� (Ewaschuk, 2019). This kind of monitoring

although very invasive, forcing the instrumentation of the code or the need of agents,

provides a complete view of the system.

To collect data, probes and agents gather, collect and transmit information about the

machine to a central point. This information can then be monitored to understand if

a threshold is exceeded, or a speci�c pattern occurs (e.g. by using anomaly detection

techniques).

In the literature, the aggregation of agents, probes and information collected about the

infrastructure can be named �Infrastructure Performance Management� (IPM). IPM
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provides a complete overview about the system with an emphasis on CPU, network

or memory used on each machine. Some examples of these components are Zabbix or

Nagios (Nagios, 2019; Zabbix, 2019).

Application Performance Monitoring (APM) solutions can also be considered white-

box. APMs are intrusive, but can generate a clear image of the system. They are

strongly coupled to the system, enabling analysis of speci�c applications, recurring to

agents, tracing and dashboards, to retrieve insights to administrators. APM suites can

decompose the application in it subsets, such as components or databases, creating a

work�ow of service invocation (AppDynamics, 2017; NewRelic, 2017). Comparing IPM

and APM solutions, IPMs are less intrusive and need fewer resources, but APMs are

application-oriented and allow administrators to understand users' quality of experi-

ence.

Tracing, which we detail in Subsection 2.1.4, is the ultimate white-box approach, by

exploring instrumentation of the source code to generate better insights about the

application, beyond simple infrastructure metrics.

Black-box monitoring

Black-box monitoring is �Testing externally visible behavior as a user would see

it� (Ewaschuk, 2019). We can classify the technologies as Real User Monitoring (RUM)

suites under this category. Tools like Monitis (2017) or even GoogleAnalytics (2018),

provide a perception of the system from the outside, collecting information from the

clients and their interactions with the system. Since black-box is independent from the

internal details of the system, it does not have as much information as white-box appli-

cations. Black-box approaches usually check threshold violations and provide general

dashboards and noti�cation rules to warn system administrators.

Applications like Pingdom (2017) or the open source project Bucky (2017) are focused

on the presentation layer. They rely solely on client's data, but can generate viable

information that may elude system administrators control (e.g. third-party providers).

They can combine information from multiple clients, using general metrics visible by

the clients, such as latencies. Thus, this kind of application is mostly interested in the

system metrics per se, not aiming to gain insights of more complex patterns happening

inside the system.
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2.1.2 Observability

Observing is normally de�ned as �to be or become aware of, especially through careful

and directed attention� (TheFreeDictionary, 2019). Several de�nitions of observability

have been introduced in the literature, some of them from the area of control theory,

where this concept emerged (Brooker, 2012).

In Özveren and Willsky (1990), observability is �de�ned as having perfect knowledge

of the current state at points in time separated by bounded numbers of transitions.�,

requiring knowledge of the events currently being processed in the system. In Lin and

Wonham (1988) a similar de�nition is presented, with the knowledge of external outputs

of the system, to ensure an always-observable system. Observability � a metric of how

well the internal state of a system can be determined from its external outputs (Kalman,

1959) � is key to ensure responsiveness of large-scale online systems.

Newman (2015) observed that in microservices: �We cannot rely on observing the

behavior of a single service instance or the status of a single machine to see if the system

is functioning correctly. Instead, we need a joined-up view of what is happening. Use

semantic monitoring to see if your system is behaving correctly, by injecting synthetic

transactions into your system to simulate real-user behavior. Aggregate your logs,

and aggregate your stats, so that when you see a problem you can drill down to the

source. And when it comes to reproducing nasty issues or just seeing how your system

is interacting in production, use correlation IDs to allow you to trace calls through the

system.�.

Taking into consideration these de�nitions, observability is a concept that requires

techniques as the ones mentioned in Section 2.3. In a simplistic way, we can consider

that monitoring is the action to get the state of a system, and observability is the

property of a system to externalize the inner status.

Perfect observability would require extensive instrumentation of source code with agents

dedicated to software and hardware resources. Unfortunately, an intrusive monitoring

solution may not be desirable or possible due to technical constraints. Covering the

entire system may also be too complex or too expensive. Hence, inferring the state of

the individual components without invasive monitoring techniques can bring concrete

bene�ts for the observability of the system.
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2.1.3 Microservices

Microservices were �rst introduced in 2005, by Dr. Peter Rogers, with the name �micro

web services� and afterwards in 2011 at a workshop of software architects, the pillars

of this architecture were discussed, �nalizing in 2012 with the adoption of the name

�microservices� (Dragoni et al., 2017; Lewis, 2019).

Within a monolithic system, developers and administrators need to contain all code and

functionalities in the same place. However, since monolithic systems are not function-

ally decoupled, similar functionalities may be copied in an erroneous way. Additionally,

in a monolithic solution we are forced to ensure that all the system uses the same tech-

nologies. One of the consequences of this, is the evolution of the system. It is more

di�cult to evolve one component, without having to evolve all the system, thus, being

more di�cult to create new versions of some components.

Evolution of this new paradigm also bene�ted from a number of other factors. Microser-

vice architectures are better suited for deployment and operation with containerization

technologies such as Docker (Docker, 2018). Additionally, emergent methodologies in

product development, such as Agile or Development and Operations (DevOps), with

smaller teams that work independently, are well aligned with microservice architectures.

Therefore, microservices bring tremendous bene�ts in term of development, operation,

availability and scalability, and have thus become a trend for distributed large-scale sys-

tems. Finally, early adoption from major providers, such as Net�ix or Amazon helped

the dissemination of microservices (Atchison, 2019).

Microservices aim to be �an architectural style that structures an application as a

collection of loosely coupled services, which implement business capabilities� (Dragoni

et al., 2017). Each component is function-oriented or as mentioned by Robert C.

Martin: �Gather together those things that change for the same reason, and separate

those things that change for di�erent reasons.� (Martin, 2019). In Figure 2.1, from

Lewis (2019), we can see an image describing the major di�erences between these two

approaches.

Taking into consideration the versatility and agility of microservices, monitoring be-

comes a challenging task. In old monolithic systems, monitoring was restricted to a

stable infrastructure. In microservice systems, administrators have to pinpoint the

root cause of some anomaly in hundreds or thousands of machines. Sam Newman

13



Chapter 2

Figure 2.1: monolithic versus microservices (Lewis, 2019)

mentioned �breaking our system up into smaller, �ne-grained microservices results in

multiple bene�ts. It also, however, adds complexity when it comes to monitoring the

system� (Newman, 2015). Some techniques are identical to monolithic solutions, such

as the use of tools that retrieve information from the system as CPU or memory used �

Nagios or Zabbix. However, since microservices are more complex, these tools cannot

cover all the necessities of this kind of architecture.

2.1.4 Tracing

Tracing is a method that recovers causality relationships in distributed systems allowing

users to make inferences concerning critical paths and relations among microservices.

For OpenTracing (2019), tracing is �a method used to pro�le and monitor applications,

especially those built using a microservices architecture. Distributed tracing helps

pinpoint where failures occur and what causes poor performance�. For OpenCensus

(2019) tracing �tracks the progression of a single user request as it is handled by other

services that make up an application. Each unit work is called a Span in a trace. Spans

include metadata about the work, including the time spent in the step (latency), status,

time events, attributes, links. You can use tracing to debug errors and latency issues

in your applications.�

Tracing is based on two components: spans and traces (Fonseca et al., 2007). Span

represents a single operation in the service invocation, such as a database query or an
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Span A

Span B

Span C

Span D

Span E

Time

Figure 2.2: Sample trace over time (Bento, 2019)

HTTP request. A span may be triggered by another work unit, hence being considered

a child span (e.g. a remote procedure call). A span without a parent is named parent

node or root node. Each span is uniquely identi�ed by a spanID and belongs to a single

trace.

Traces represent the work done by a request in the system. Each trace is the sum

of several spans, where a span represent an individual workload that occurs in a ser-

vice of the system. All spans share a correlation identi�er named traceID that sets

relationships between spans.

Figure 2.2 represents a trace with �ve spans, with �span A� being the parent node

(or root node), originating �span B� and �span E�. The relationships can be inferred

since the correlation identi�er � traceID � , spanID and parentID are propagated to

downstream spans. Another useful information, that can be seen in Figure 2.2, is the

duration of each span, and the possibility to have multiple spans working at the same

time.

Since tracing uses a correlation identi�er to extract the work�ow of a request, it is a

good approach to monitor distributed systems (Sambasivan et al., 2016). The most

important feature of tracing is the ability to follow a request throughout the system,

giving insights about how each individual component acts to a speci�c request. Al-

though very powerful, allowing to pinpoint failures in a distributed system, tracing has

some disadvantages. Each component must be instrumented. Additionally, all traces

must be delivered to a central point, to be processed and stored, for future analysis.

There are two major areas regarding tracing: black-box and non-black-box approaches.

Concerning black-box, these methodologies rely on message-level traces of the system,
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or thread and network activities, as a middleware to detect request paths (Aguilera

et al., 2003; Tak et al., 2009).

Non-black-box approaches, such as in Fonseca et al. (2007), use meta-data to trace

networks. Building on the same principle, Sigelman et al. (2010) created a tracing

infrastructure for distributed applications. Sambasivan et al. (2016) use a similar ap-

proach to gain insight at the application level, in particular work�ow-based tracing,

concerning the tracing of individual requests.

OpenTracing (2019) and OpenCensus (2019) are other examples that give developers

the ability to trace requests and integrate multiple languages, which can be used with

state-of-the-art tracing back-end tools. These open projects also aim to create a con-

vention in terms of semantics and annotations of the trace (e.g. span tag name such as

http.method, to save the invoked HTTP method) (Speci�cation, 2019).

2.1.5 Logging

Logging can be de�ned as �record events taking place in the execution of a system

in order to provide an audit trail that can be used to understand the activity of the

system and to diagnose problems. They are essential to understand the activities of

complex systems� (EventLogs, 2019). Logging is a monitoring technique that �is not

about prevention, but can help with detecting and recovering�(Newman, 2015). It

allows to understand what is happening to a request by externalizing valuable infor-

mation. Hence, it is very useful to track application errors, helping administrators and

developers. In this technique, it is important to understand what information is useful

and what information may be sensitive to be stored in logs (e.g. name or address of the

client). Hence, logging must store all the information relevant to make debugging possi-

ble without exposing information that may con�ict with some regulation (e.g. General

Data Protection Regulation � GDPR). Another important requirement for logging is

the capability to produce asynchronous logs to ensure that business threads will not be

blocked or delayed by the generation of logging messages (Janapati, 2019).

There are plenty of logging libraries in every language to standardize processing the

generated logs � e.g. according to severity of the log; info, warning, error, etc. Density

of the logs (i.e. number of logs per lines of code) and quality of the information

contained in the logs, is a very important aspect. Studies show that the majority of
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Table 2.1: Open-source software and logging quality (Yuan et al., 2012)

log msgs apache openssh postgres squid total

modi�ed 605 628 3128 1106 5367

total 1838 3407 6052 3474 14771

percentage 40% 18% 52% 30% 36%

open-source software in production only logs error events. In Table 2.1 we can see

a study related with open-source code (i.e. apache, openssh, postgres database and

squid) and the quality of logging. We can observe in the table the number of logs

presented in the application and the number of logs changes after development. We

can observe that around 36% of total logs were changed after the development phase.

The changes in the logging were due to log location, verbosity, availability of variables

in the log message or to the contents of the text to print (Yuan et al., 2012). Hence,

logging is an important aspect of an application, often requiring changes in the quality

or density of the logs.

Logs from multiple sources may also be aggregated. Using aggregation of logs for

distributed systems, we can enrich root-cause-analysis and detect some problems that

elude single logs, or even use statistical analysis to �nd patterns. Aggregation and

transmission of logs to a central point can be obtained with frameworks such as Logstash

(2019). Technologies such as Kibana (2018) � based on ElasticSearch �, allow to

query through the centralized logs to a faster analysis (Barga et al., 2004; Janapati,

2019; Johnson, 1989). In Subsection 2.1.5, we will further analyze logging tools.

2.1.6 Debugging

Debugging can be de�ned as �the routine process of locating and removing computer

program bugs, errors or abnormalities, which is methodically handled by software pro-

grammers via debugging tools. Debugging checks, detects and corrects errors or bugs

to allow proper program operation according to set speci�cations.� (Techopedia, 2019a)

Debugging provides insights about what is happening in a system.

Debugging is normally associated with the development phase, but can also be associ-

ated with the inference of performance issues � e.g. performance debugging �, in a

distributed system (Aguilera et al., 2003; Khadke et al., 2012; Sambasivan et al., 2014).

Debugging in this sense is the act to infer and understand what kind of bottlenecks
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and performance issues are happening in a system. It is this kind of debugging that is

mostly associated with this research work.

Performance debugging aims to detect anomalous situations in the distributed sys-

tem, including abnormal situations, transient behaviors, pro�ling of the application,

resource utilization in platforms such as cloud computing, and workload modelling to

infer components' occupation.

2.2 Use Cases

In this section we present some of the use cases associated with distributed systems

monitoring. The use cases are presented as a set of speci�c situations that monitoring

aims to detect and prevent. We consider the following situations, as mentioned in

Sambasivan et al. (2014): anomaly detection � a situation that is outside of the

common pattern of the system �; steady-state, i.e. a transient problem that eludes

anomaly detection techniques; distributed pro�ling, to gain insight of the application;

resource utilization on pay-as-you-go platforms and workload modelling, to predict

bottlenecks or component occupation in the distributed system.

2.2.1 Anomaly detection

Anomaly Detection is de�ned as �the identi�cation of rare items, events or observations

which raise suspicions by di�ering signi�cantly from the majority of the data.� (Zimek

and Schubert, 2017). In anomaly detection, our main goal is to identify patterns or

outliers that escape the common standard in a speci�c system � e.g. outliers that are

in the 99th percentile range.

Additionally, we can observe anomalies in time-series where observations of the system

do not conform to the expected behavior, or even in a dataset where some samples do

not �t in the majority of the data � see Figure 2.3.

Anomaly Detection is a use case where system administrators aim to understand be-

haviors that elude the common standard, like intrusion detection, fraud or abnormal

�nancial transactions. One of the main challenges of Anomaly Detection frameworks

is to correctly identify anomalous observations � e.g. maximize the true positive and

true negative rates and decrease false positive and false negative events.
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(a) Time Series. (b) Non-Time Series.

Figure 2.3: Anomaly Detection. (Mertz, 2019)

2.2.2 Diagnosing steady-state problems

Steady-state is de�ned as �an unchanging condition, system or physical process that

remains the same even after transformation or change.�(Steady-state, 2019). This con-

cept was initially used in the �eld of energy consumption to determine (and monitor)

in a passive way the consumption of electric appliances (Hart, 1992). However, it is

easy to extended to other research �elds. In Figure 2.4 we can see the illustration of

what happens in steady-state series (e.g. steady-state situations) and also in transient

situations.

TIME

POWER

STEADY CHANGING STEADY CHANGING STEADY

Figure 2.4: Detecting step-changes in sampled data. (Hart, 1992)

The issue may not be detected by common anomaly detection techniques, presented

in the previous subsection, since as can be seen in Figure 2.4, the anomaly may not

be transient and become the new state of the distributed system. Comparing anomaly

detection with steady-state problems, an anomaly is an outlier de�ned as data in the

99th percentile range, when we look to the overall performance of the application.
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However, steady-state problems will manifest in multiple work�ows, hence not being

considered an anomaly � e.g. steady-state problems are below the 99th percentile

range.

This behavior may occur for several reasons such as miscon�guration in the application,

a business con�guration change, or other cause that may impact the overall performance

of the system (Sambasivan et al., 2014).

2.2.3 Distributed pro�ling

As stated by Sambasivan et al. (2014) �The goal of distributed pro�ling is to identify

slow components or functions. Since the time a function takes to execute may di�er

based on how it is invoked, pro�lers often maintain separate bins for every unique

calling stack, so full work�ow structures need not be preserved�.

There are two main approaches for a distributed pro�ling. In monolithic solutions,

we had the capability to create end-to-end pro�ling of a request, aiming to detect low

performance functions. Distributed pro�ling aims to extend this kind of methodology.

One of the approaches is to focus on overall low performance components (Chanda

et al., 2007; Sambasivan et al., 2014).

Another possibility is to use tracing to track low performance functions. Since trac-

ing can generate work�ow structures, it may be used to create an application' pro�l-

ing (Sambasivan et al., 2016; Sigelman et al., 2010).

2.2.4 Resource attribution

As stated by Sambasivan et al. (2014), resource attribution or resource utilization can

be de�ned as �Who should be charged for this piece of work executed deep in the stack

of my distributed system's components?�. This sentence raises an important question

for �as a service� cloud architectures. In this kind of system, the client is normally

charged for the used resources in terms of computational performance and time spent.

Hence, scenarios of pay as you go (PAYG), such as cloud computing, billing and resource

payment need to assign resource utilization (Chen et al., 2013; Wachs et al., 2011).
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Resource attribution consists of setting the correspondence between a resource in the

distributed system to a work submitted by a client, having into consideration con-

straints like billing limitations, or energy consumption in embedded systems. Resource

attribution may also be used in other scenarios, where we want to ensure that all clients

have a fair resource usage of the infrastructure (Fonseca et al., 2008; Mace et al., 2015).

2.2.5 Workload modelling

A tool that performs workload modelling is a tool that collects �stand-alone events

generated by operating system, middleware and application components, correlates

related events to extract individual requests, expresses those requests in a canonicalized

form and then �nally clusters them to produce a workload model� (Barham et al., 2004).

Workload modelling normally depends on instrumentation � refer to Subsection 2.1.4

�, to collect information from the distributed system. As stated by Sambasivan et al.

(2014), although instrumentation is essential to workload models, the main focus is to

create a model that can explain the distributed system. Additionally, it is also very

important to understand what kind of question the operator is trying to respond � e.g.

�Where are requests from client A spending most of their time in the system?�(Thereska

et al., 2006).

Other studies do not rely on instrumentation, but on modelling techniques, such as

queuing models, but with the same goal: answering questions about the system that

might not be answered using the real (i.e. in production) distributed system (Samba-

sivan et al., 2016).

2.3 Monitoring Techniques

In this section we present some of the most important techniques used in distributed

system monitoring. They are closely coupled to the use cases of the previous section,

and we can interpret these techniques as practical implementations of solutions for the

aforementioned use cases.

We divide the section into four main subsections: �rst, we present high level monitoring

dashboards; secondly, we show how alarms can be used in monitoring; thirdly, time

series are presented; and �nally we present modelling techniques.
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Table 2.2: Use Case vs. Technique

Use Case Technique

Anomaly Detection Dashboards; Alarms; Time Series;
Steady-state problems Dashboards; Alarms; Time Series;
Distributed Pro�ling Time Series;
Resource attribution Modelling Techniques;
WorkLoad modelling Modelling Techniques;

Table 2.2 presents how the use cases are related with the techniques presented in the

following section. Some of the techniques may respond to several use cases, such as

Dashboards and Alarms. This is due to the fact that these techniques are key elements

to create insights about the distributed system that may be used for di�erent goals

(e.g. anomaly detection and steady-state problems).

2.3.1 Dashboards

A dashboard is one of the most important tools for an administrator. A de�nition

of dashboard is �A software-based control panel for one or more applications, network

devices or industrial machines. Dashboards may display simulated gauges and dials

that look like an automobile dashboard or a factory assembly line, or they may show

business graphics such as pie charts, bar charts and graphs.� (Dashboard, 2019).

Dashboards are visualization tools that merge key performance indicators (KPI), noti-

�cations and alarms triggered by the system. Their main goal is to provide a central

point of information about the health of the system for administrators. There are

several applications to make dashboards. Almost every business application resorts to

some sort of dashboard to monitor the system. For example, in Figure 2.5, we can see an

example of kibana (Kibana, 2018), a visualization tool for ElasticSearch. Other very

well know tools currently used are Grafana (Grafana, 2018), Prometheus (Prometheus,

2018), Zabbix (Zabbix, 2019), or Graphite (Graphite, 2019).

Concerning industrial approaches, we have solutions owned by the infrastructuture

provider (e.g. Amazon CloudWatch, Net�ix or Linkedin) or third party modules such

as NewRelic (2017) or DynaTrace (2017). Net�ix has several modules for monitoring

and instrumentation. Vector (2018), is a framework that creates dashboards with system

metrics, such as CPU or network. The module requires an agent � named Performance
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Figure 2.5: Kibana Dashboard (Kibana, 2018)

Co-Pilot (PCP) �, on each host or application to monitor. Another very similar

approach is Prometheus (2018), an open-source monitoring solution that also requires

instrumentation.

Application Performance Monitoring (APM) tools, based on instrumentation or agents,

allow the creation of dashboards and the de�nition of noti�cations to administrators,

when some threshold is violated. For example, DynaTrace (2017) and others (AppDy-

namics, 2017; Grafana, 2018; Kibana, 2018; NewRelic, 2017) have some features related

to dashboards.

Cloud providers are also an interesting case to cover in this subsection, as they have their

own monitoring tools, supporting con�gurable dashboards, like Amazon (CloudWatch,

2019) or Azure (AzureMonitor, 2019). Another interesting approach is presented in

Instana (2019), where the APM presents multiple dashboards and performance analysis

for microservice platforms.

2.3.2 Alarms

Alarm is normally de�ned � as a device or call announcing a warning or danger� (Alarm,

2019). Another de�nition for an alarm is �a signal signifying to an operator that an

abnormal state has occurred� (Us et al., 2011). Alarms are a common piece of software

in the majority of software infrastructures from aircraft cookpits, to nuclear plants,

including telecommunication operators. An alarm is triggered by a source that indicates
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an error, malfunction or other deviation from the normal behavior, while events alert

an operator that may have to interpret and acknowledge the situation.

Concerning the source, in most cases we have three distinct origins for the alarm:

infrastructural or hardware, some malfunction of the software or a violated KPI (e.g.

number of requests per second below a speci�c threshold).

Although the de�nition contemplates only events with warning or critical severity, it

is common for the sources to also notify events that may have lower severity (e.g.

informative events, such has sporadic loss of network connectivity). These events may

be handled in an alarm manager platform, capable of handling multiple sources of

events to create more complex behaviors.

2.3.3 Time Series

Time Series are a way of representing data as a sequence of values sorted by time. This

kind of data often arises from system monitoring, business metrics or even �nancial in-

dexes. These processes are usually not random, thus having periodic behaviors. Hence,

autocorrelation can be explored to extract insights from the data. Time-series can be

analyzed to detect patterns in the system � i.e. outliers �, such as in Li (2019); Liu

et al. (2004). Hence, anomaly detection in time series data is a common application to

get details about outlier occurrence; another typical application is forecasting.

There are some essential concepts associated with time series that almost every tool

uses underneath. Time series are often associated with sliding windows. This time

model considers the most recent N elements of a stream, discarding older samples (and

their importance), thus being a window of N elements (Das et al., 2012). This concept

allows us to analyze data in a real-time manner: when it is infeasible to save all data

due to limited computational resources, when the importance of data decays with time

(the actual state of the system is more important than older state), and �nally when

quick responses with little delay in the answer are important (Muthukrishnan et al.,

2005). In time series, when we want to characterize the stream, there are some common

statistical metrics such as variance, quantile or frequency of an event that might help

in the analysis.

Although it is a very used technique, there are some challenges in time series analysis,

specially in distributed streams (from distinct origins). First, how to relate multiple
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stream sources (e.g. sequentially, parallel invocations, ...) might not be trivial; secondly,

we might have some streams that change the frequency of sample creation; and �nally

since streams may use di�erent clocks we might have out-of-order events (Cormode

et al., 2008; Das et al., 2012; Liu et al., 2010).

Concerning the tools existing in the market, Atlas (2018) � an open project from

Net�ix �, presents a platform to manage multidimensional time series. This platform

is focused on big data. The goal is to apply prediction methods, to understand the

evolution of metrics and real time analysis. Although powerful, this platform requires

instrumentation of microservices. Spotify uses a similar approach. They had the need

for a customized monitoring infrastructure that creates dashboards and time series.

Each machine runs an agent to send information to a central point (Spotify, 2018).

A common acronym in time-series is Time-Series Database (TSDB). There are sev-

eral platforms for TSDB, such as (In�ux, 2018; OpenTSDB, 2018; TimescaleDB, 2018;

Warp10, 2018) with multiple features such as structured query language, integration

with distributed �lesystem, such as Hadoop Distributed File System (HDFS), or dedi-

cated languages, to identify patterns or anomalies through data analysis.

Another approach that relies on time series is Pip (Reynolds et al., 2006). As stated by

authors �Pip is an infrastructure for comparing actual behavior and expected behavior

to expose structural errors and performance problems in distributed systems.�. This

framework compares baseline series with the actual behavior of the system, to detect

steady-state problems.

2.3.4 Modelling Techniques

Modelling Techniques are associated with the use case of workload modelling presented

in Subsection 2.2.5. The main goal is to answer questions about the system, without

having to change it. A model of the system is created, for example to understand what

could happen when we add (or remove) components, such as virtual machines.

Regarding academic literature, Iqbal et al. (2010, 2011) propose an algorithm that

processes proxy logs and, in a second phase, all CPU metrics of web servers. The

purpose is to achieve elasticity concerning the number of instances of the saturated

component. Liu and Wee (2009) use static performance-based rules. In this approach,

if saturation is observed in a component resource, then, the user will be migrated to a
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new virtual machine through IP dynamic con�guration. In Battre et al. (2010), authors

try to discover bottlenecks in data �ow programs running in the cloud. They focus on

CPU and I/O bottlenecks, and not on predicting occupation. A di�erent approach

was followed by Chi et al. (2011), where the main goal is not bottleneck detection, but

optimal resource utilization using heuristic models.

Bahl et al. (2007) propose an inference Graph model from network tra�c, to model and

detect service degradation and failures. Their work is strongly tied to the enterprise

network topology. Urgaonkar et al. (2005), propose an analytical model based on multi-

tier queues for multi-tier Internet services. Work like Dilley et al. (1998); Li (2010);

Yang et al. (2013) use networks or layered queues to model the distributed system.

They do manual modelling at design time or modelling from deep knowledge of the

system, instead of trying to extract the model from an existing system or considering

other data-driven approaches. Other approaches try to model the service performance

and response times. This is the case of Cao et al. (2003), who model classic web

servers as M/G/1/K ∗ PS queues. However, models like M/G/1, G/G/c, with no

assumption of processing time, are not amenable to closed-form solutions and cannot

be easily composed.

Heinrich et al. (Heinrich et al., 2017) explore microservice-based systems and point out

that the modelling approaches available do not �t modern microservice-based systems.

In Cao et al. (2003) the goal is to model web servers as single server queues in terms

of response time and overall system performance. Van Do et al. (2008) use a similar

approach for an Apache Web Server. In Shoaib and Das (2011), layered queueing

networks are used to model a system with two layers � frontend and backend.

Kattepur and Nambiar (2015) present a model for Multi-tiered Web Applications using

queues for individual components, such as CPU, I/O or Network. Singh et al. (2010)

present an approach that uses a queuing model for each tier of the system, to predict

the server capacity for a given workload.

Barham et al. (2004) present Magpie, a framework with a speci�c application event

schema, to correlate events and extract a workload for the distributed system.

Zhao et al. (2016) present Stitch, a non-intrusive framework that creates a pro�ling of

the application based on the unstructured logs with the assumption that the program

outputs viable and enough information to create a pro�le.
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Huang et al. (2017) present VPro�ler, a tool that creates a model to identify blocks of

code dominating computational latency. It uses the source code and annotations of the

application, to suggest improvements in the code.
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2.4 Monitoring Tools

In this section we present some of the most used tools in distributed system monitoring.

They are closely coupled to the use cases of the previous Section 2.2.

We divide the section into three main subsections: �rst, we present logging tools that

system administrators may use. Secondly, we present tracing tools that can extract

relationships between service invocations. Finally, we show agents that act like a

middleware between the system and the high-level techniques aforementioned, such

as Dashboards or Modelling Techniques and that are essential to collect and gather

system metrics.

Table 2.3: Use Case vs. Tools

Use Case Tools

Anomaly Detection Tracing; Logging; Agents
Steady-state problems Tracing; Agents
Distributed Pro�ling Tracing; Logging;
Resource attribution Tracing; Agents
WorkLoad modelling Tracing;

Table 2.3 presents how the use cases are related with the tools presented in this section.

Tracing tools can be used in every use case, since they collect �ne-grain information

about the distributed system, necessary for several use cases. As mentioned in Sub-

section 2.1.5, the majority of applications on production environment only log error

events. Hence, logging is useful for anomaly detection scenarios and also for pro�ling,

since they provide hints about application behavior. Agents can give insights about the

systems' components. Hence they provide information on anomaly detection, steady-

state or even resource attribution. Although Table 2.3 gives relevance to some tools,

with some �engineering� and e�ort it is possible to use tools to other use cases (e.g.

logging to steady-state problems).

2.4.1 Logging Tools

As mentioned in Subsection 2.1.5, logging is an important part of observability. It is of-

ten used to ensure a fast root cause analysis when a problem occurs in a distributed sys-

tem. Almost every programming language has a framework for logging and managing

appenders (Janssen, 2019; Loggly, 2019). Appenders make part of the logging system
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and are responsible to route the logs to a speci�c �le or destination (Dietrich, 2019).

Other functionalities for logging systems include asynchronous logging, maintenance of

the logging �les (e.g. create a new logging �le each day), and other framework-speci�c

functionalities � e.g. some logging frameworks on Python log events from dictionaries

rather than from strings, thus structuring the logs.

There are plenty of applications to centralize logs and ensure data analysis through the

logs. Some of them are Graylog (2019); LogEntries (2019); Logstash (2019) or Flume

(2019). They have several aspects in common: aggregation and maintenance of his-

torical data, possibility to query logs and correlate between several systems and some

libraries for data analysis.

2.4.2 Tracing Tools

Tracing takes an important role in distributed systems. Tracing, unlike standard mon-

itoring solutions, exposes causality relationships in the logs, allowing users to make

inferences concerning critical paths and relations, e.g., among microservices. Regard-

ing tracing, there are black-box and non-black-box approaches. Black-box approaches

do not instrument application code, relying on middleware metrics. We have examples

of that in Aguilera et al. (2003). In this work, authors used a tool that tracks message-

level traces of the system, to debug the overall distributed system (not performing

overall performance diagnosis). Another example is presented in Tak et al. (2009),

where authors use threads and network activities, as a middleware to detect request

paths.

Another methodology more commonly used is full instrumentation of the code (e.g.

non black-box). In Fonseca et al. (2007) meta-data passing is used to trace networks.

Building on the same principle, Sigelman et al. (2010) created a tracing infrastructure

for distributed applications � Dapper. Sambasivan et al. (2016) use the approach to

gain insight at the application level, in particular work�ow-based tracing.

Linkedin (2019) has a distributed tracing system built upon Apache Samza (Samza,

2019), to detect performance issues and root cause analysis. The system uses the call

paths aggregation of every 15 minutes. These call paths are used to benchmark the

web page and compute the cost of invoking downstream services or web pages from

the main page. Net�ix (Net�ix, 2018) has also created several monitoring tools using
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distributed tracing, including failure injection features, to improve resilience of the

overall infrastructure.

OpenTracing (2019) gives developers tracing clients in multiple languages and brings

integration with state-of-the-art tracing back-end tools, such as ZipKin (2018). Google

recently published a competing standard � OpenCensus (2019)�, supporting a par-

tially overlapping set of the same back-end tracing tools. Another example of dis-

tributed tracing is Jaegger (2019).

Another solution is Pinpoint (Chen et al., 2004). This framework dynamically traces

real client requests. For each request, it records the set of components used to service

it. Afterwards, it performs data clustering and uses statistical techniques to correlate

failures with the components most likely to have caused them. Pivot Tracing (Mace

et al., 2018) uses instrumentation to correlate events in highly heterogeneous distributed

systems. In Stardust (Thereska et al., 2006), authors create an infrastructure to use

end-to-end tracing to create a monitoring tool in distributed systems. ETE or end-to-

end response times uses instrumentation of overall components, to provide a complete

picture of response times in the components of the distributed system (Hellerstein et al.,

1999).

MilliScope is a monitoring framework that relies on an instrumentation tool associated

with the framework � mScopeMonitors �, that gathers information in a similar way to

the tracing technologies aforementioned. The main purpose of MilliScope is to identify

transient bottlenecks.

While tracing (white-box methodology) gives the ability to understand the �ow of

individual requests, it has some disadvantages: developers have to instrument each

microservice and focus not only on the business algorithms, but also on monitoring.

On the other hand, black-box approaches may fail to give the insights that system

administrators are looking for.

2.4.3 Agents

Agents or probes serve to monitor an application or infrastructure, having the purpose

to gather data and generate performance reports. Some can even act in the case of a
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module malfunction. Some agents are internal to the system and involve some intru-

siveness, others are more black-box and serve to validate metrics, such as throughput.

In the next subsections we will further detail both methodologies.

Internal Agents

In the literature, we can �nd a large body of work aiming to detect, predict and monitor

distributed systems, usually in n-tier HTTP server systems (Battre et al., 2010; Bodík

et al., 2009; Huber et al., 2011; Iqbal et al., 2011; Shoaib and Das, 2012; Wang et al.,

2013).

Malkowski et al. (2007) aim to ensure low service response times. Authors collect many

system metrics, like CPU or memory utilization, and correlate them with system perfor-

mance. This should expose the metrics that best identify the performance degradation.

However, this form of analysis collects more than two hundred system and application

metrics. Malkowski et al. (2009), studied bottlenecks in n-tier systems even further,

to expose the phenomenon of multi-bottlenecks, due to multiple resources reaching

saturation. The main conclusion from this work is that lightly loaded resources may

be responsible for multi-bottlenecks causing a chain reaction in the n-tier system. The

framework used is very similar to their previous work, requiring full access to the infras-

tructure. Wang et al. (2013) followed this approach, with in-depth analysis of metrics

in each component of the system. The goal was to detect transient bottlenecks with

durations as low as 50 milliseconds. The problem with these approaches is that it is

very hard to transpose the acquisition of such �nely-grained data to di�erent hardware

and software architectures.

Battre et al. (2010) use DAG-based data �ow programs running on cloud infrastruc-

tures, to detect CPU and I/O bottlenecks. Huber et al. (2011) present a dynamic

allocation of VMs based on SLA restrictions. The framework consists of a continuous

system introspection that monitors the cloud system and their components. This, how-

ever, requires continuous resource consumption (paid by the user) and scalability to

large cloud providers.

X-ray (Attariyan et al., 2012) uses a distinct approach of internal agents. It instruments

the binary code, to check what kind of process instruction was invoked. The goal is
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to make a reverse-engineering of the application from the binary code level. Authors

de�ne this as as �performance summarization� of the application.

In Haselböck and Weinreich (2017), authors give some guidelines on how to build and

monitor a microservice platform. The availability of instrumentation or agents to collect

information from hosts and applications is assumed. In Mayer and Weinreich (2017),

authors present a monitoring dashboard, but once again based on agents and service

instrumentation.

In To�etti et al. (2015), authors use a distinct approach, where each microservice is

responsible for its own elasticity and scalability. Each module saves the information

about their own CPU and response times. Thus, this methodology may lead to over-

dimensioning the system, because each microservice has full autonomy.

In Malik and Shakshuki (2016), a tool based in the global entropy of a distributed

system is presented to automatically detect anomalies. However, due to the fact that

they do not rely on response time and other performance metrics their approach may

lead to false positives.

In Ciu�oletti (2015), authors propose a methodology to create �monitoring as a Service�,

based on containers, where agents are associated with the microservice container. In

this architecture, there is a one-on-one relationship between agent and container that

may cause some overhead and scalability issues. Additionally, monitoring is associated

with the container, in disfavor of the work�ow that exists between modules. In Moradi

et al. (2017), the access point of each container is changed to monitor the network.

Hence, it has a kind of �man-in-the-middle� approach having no consideration about

the application, or work�ow of the system.

Another interesting approach is Whodunit (Chanda et al., 2007). In this paper authors

aim to create a pro�ling tool in the shared memory of Apache and MySQL. With this

information they aim to create a performance pro�ling of the application running on

top of that infrastructure.

32



State of the Art on Distributed Systems Monitoring

External Agents

This subsection reviews solutions that try to perform monitor without having access

to the observed infrastructure. In Agarwal et al. (2010), authors propose a client-

based collaborative approach. They use a web browser plug-in on each client that

monitors all client Internet activity and gathers several network metrics. The plug-in

focus is mainly the HTML initial page. It discards page resources from third-party

providers, such as CDN objects and sends all information of the main site to a central

point, for processing. The impact of this approach on network bandwidth and client

data security is unclear. Additionally, the work of Agarwal et al. (2010) only handles

network connectivity bottlenecks.

In Kreibich et al. (2010), authors present Netalyzr, a Java applet for browsers that

clients can use to understand network connectivity issues. Netalyzr is mostly used

when clients experience some problem. When a client wants to diagnose why some

URL is slow, the tool makes several HTTP requests from other locations, gathering

several network metrics. Although very powerful for connectivity issues, it does not

analyze web page errors.

Dasu Sánchez et al. (2013) propose a client-based software. This has more than 90,000

installations, allowing the collection of metrics from di�erent end users. As mentioned

by the authors, it is limited by the number of hosts that are online and, consequently,

cannot run continuous measurements. It only collects metrics associated with the client

network point-of-view, discarding application measurements, such as HTML objects

from third-party resources.

Flach et al. (2013) present a browser plugin that collects information and analyzes

sites based on rules. Again, their paper focuses on network metrics and connectivity

issues. Another similar approach is presented in Dhawan et al. (2012), where a Firefox

extension based on Javascript was created to gather client information to diagnose

network problems. Cui and Biersack (2013) is another plugin for the Firefox browser.

It gathers network metrics for later evaluation of networking issues. Unlike the previous

work, the collected data is not processed in real time, but transferred to a PostgreSQL

database. Besides connectivity issues, authors also look at client performance problems

occurring during page rendering.
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In Li and Gorton (2010), authors aim to detect user-visible failures, by analyzing Web

logs and users' browsing patterns to construct a Markov model. However, the fact that

the client may not react to the visible failure (e.g., by leaving the page, or not refreshing

it) and how would the web logs be collected from distinct users is a major concern in

practice. In Li et al. (2010a), a similar idea is implemented: the interaction of a user

with the web page serves to train a Bayesian model and infer if failures exist in that

page. In this case, as in Li and Gorton (2010), authors focus only on AJAX requests.

Other tools (CheckMySite, 2017), allow the client to con�gure an URL to monitor.

If something goes wrong, an alert (SMS or email) will be sent to the site owners.

Unfortunately, these tools can only detect some network bottlenecks or a �slow� system,

because they lack the �ne-grained evaluation. Finally, some tools use a hybrid solution,

with internal and external metrics (MonitoringTools, 2015). Additionally, Real User

Monitoring (RUM) suites, like Pingdom (2017), Monitis (2017) or open source project

like Bucky (2017) rely on clients' data, but they mostly serve to create dashboards and

trigger noti�cations according to a set of rules.

There are also some hybrid tools that collect information from inside and outside the

system. Although very powerful, they need constant maintenance, to ensure that the

system is correctly monitored (MonitoringTools, 2015).

Table 2.4 illustrates the kind of resource problem detected by some of the aforemen-

tioned literature. Normally, authors aim to detect connectivity issues between the

client and the distributed system, or analyze some sort of dashboards that gathers

information perceived by the client.
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Table 2.4: Monitoring speci�cities detection in related work

Article Main focus

Agarwal et al. (2010) Connectivity issues
Kreibich et al. (2010) Connectivity issues
Vaz et al. (2011) Connectivity issues
Sánchez et al. (2013) Connectivity issues
Flach et al. (2013) Connectivity issues
Cui and Biersack (2013) Connectivity issues
Padmanabhan et al. (2006) Connectivity issues
Li and Gorton (2010) User-visible failures
Dhawan et al. (2012) Connectivity issues
CheckMySite (2017) Connectivity issues
Pingdom (2017) Load time; connectivity issues
Monitis (2017) Dashboards
Bucky (2017) Dashboards

2.5 On Reliability of Web Sites

In the literature, we can �nd a large body of work focused on the reliability of web

sites. Here, we present e�orts that are of particular interest to us: Internet studies

regarding top sites reliability.

In HTTPArchive (2016) � an open-source project �, the goal is to collect and under-

stand the web page evolution over time. The project aims to understand the trends

in terms of frameworks and technologies. The goal of this project is to register the

evolution of the web along the years. Vaz et al. (2011) use a di�erent approach, im-

plementing a web crawler that gathers HTTP, DNS and TCP connection data from

di�erent locations. The goal is to understand in which layer do most of the user-visible

page failures occur. The main disadvantage is the fact that authors built a customized

crawler instead of using a common browser, to simulate the interaction with the web

sites, something that might skew some results, e.g., related to JavaScript. Padmanab-

han et al. (2006) use the PlanetLab (PlanetLab, 2015) infrastructure, to gather network

information from 80 sites and analyze the source of the problems. Due to the fact that

they use a speci�c infrastructure, they do not require any browser extension, thus being

able to run out-of-the box tests. However, recent studies suggest that this pattern of

concurrent accesses can signi�cantly change the results observed (Sommers and Bar-

ford, 2007).
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WebProphet (Li et al., 2010b) and Polaris (Netravali et al., 2016) are more focused on

determining the dependencies between objects referred in the HTML, to decrease the

page load time on the client. For this, they compute the critical path of dependencies

and change the load sequence from the web page.

Palma et al. (2014), made a study to identify the lack of REST patterns in major

operators. In Laranjeiro et al. (2009), authors evaluate the robustness of web services,

using invalid call parameters, to observe programming or design errors. Although

we also care for web services, the main concern of this thesis is on the reliability of

invocations like in Ivaki et al. (2015) or Shegalov et al. (2002) and monitoring REST

interfaces.

Mendes et al. (2018) present a study concerning web pages. It is focused in HTML

errors presented in the web sites, and uses some techniques of web crawling to retrieve

information. Their main purpose is not monitoring but to analyze the number of errors

of coding presented in the site that may elude system monitoring.

2.6 Conclusion and Discussion

In this thesis, we aim to make contributions to monitoring in distribution systems. Tak-

ing into consideration this chapter, monitoring is a key aspect for distinct architectures,

not only to ensure a proper system observability but also to ensure system resilience.

We can clearly see that papers or industrial methodologies focused in internal � and

more intrusive �, solutions tend to handle server errors, whereas outside methods tend

to cover only network or client-side quality-of-service.

We are looking for bridging this gap. First, our premise is simplicity. We do not

want complex solutions that generate a superabundance of dashboards or require heavy

instrumentation or agents in the system.

Secondly, we aim to have methods not tied to any speci�c architecture, as we try to

evaluate system performance from the client side. We have to resort to information

that is leaked by the system to the client, such as interaction times. Additionally, by

taking measurements from the perspective of the client, we can have a better insight on

the quality of the response. This approach seems preferable to taking a large number

of measurements from multiple vendors that compose distributed systems.
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Third, although results achieved in terms of failure detection and data visualization

are quite impressive, enabling system administrators to grasp crucial aspects of the

system, they lack automatism. Hence, we aim to determine if it is possible to automat-

ically determine the overall occupation of a distributed system. The fact that we have

client metrics allows us to understand the in�uence of the client-to-server network, and

also to validate the interaction of users with third party resources, thus getting useful

information to improve the quality-of-experience.

Concerning web site studies, we intend to improve the previously mentioned literature

in at least two aspects: �rst, the study that we intend to do takes into consideration

a very wide range of sites and not only a handful of worldwide top sites. This o�ers

a more realistic view of global web page error status, by taking into account, not only

the big companies, but also other operations with fewer resources (that might trigger

di�erent error patterns). Secondly, we also want to align possible solutions with the

real errors observed by the results of the very wide range of sites.
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HTTP infrastructure evaluation

In the operation of a web site, monitoring plays a major role in mitigating the nega-

tive consequences for the user quality-of-experience resulting from programming errors,

network malfunctions, overloaded resources, among many other problems.

To control failures in web resources, system administrators must keep a watchful eye on

a large range of system parameters, like CPU or memory occupation, network interface

utilization, among an endless number of other metrics, some of them speci�cally related

to web page performance, such as page load time. Unfortunately, even with all these

metrics � that add complexity to the system and make monitoring more intrusive �,

the client may experience some problems, due to web page external content, JavaScript

errors, or even client speci�c conditions, such as network glitches or browser version.

Several studies (Sweenie, 2000, 2003) show that sites belonging to the top-50 of the most

viewed web sites worldwide have errors, thus suggesting that even expensive monitor-

ing mechanisms cannot provide a completely accurate picture of web page reliability.

Another study (Oppenheimer et al., 2003) shows that an earlier detection of failures

would reduce the majority of customer complaints. Customer feedback regarding web

pages is a key aspect for web page trustworthiness, but metrics such as network latency

or user-visible failures are di�cult to get by system administrators, not to mention that

some server issues might not produce the same e�ects in all clients.

In the previous Chapter, we analyzed distinct approaches to monitor distributed sys-

tems from white to black-box frameworks. We also presented studies related to the

availability of web sites. In this Chapter, we go a step further in these studies, as we
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analyze how the client identi�es distinct failures. These failures might be visible to the

user, such as HTML errors that do not allow a correct resource visualization (Mendes

et al., 2018), or associated with a resource fetch that might degrade web page perfor-

mance � e.g. load time �(Li et al., 2010b; Netravali et al., 2016).

For this we start in Section 3.1 by evaluating 3000 web pages, from the most viewed

web site rankings. Additionally, and since REpresentational State Transfer (REST) in-

terfaces are a standard for communication between systems, in Section 3.2, we evaluate

some of the most used REST interfaces from global providers.

3.1 Web site Evaluation

Several studies (CMUPDL-05-109, 2005; Technology, 2005) show the signi�cant impact

for companies of users experiencing blank pages, missing items in the web page, or being

unable to interact with the web page in operations such as online transactions. This

may a�ect the company's reputation and pro�ts.

We argue that there are still no e�ective means to easily detect web page problems. A

successful monitoring approach needs to gather server and client-side data, e.g., through

probes in the server and analytic tools in the web page, respectively. Server-side data

is not enough, because other overheads and problems beyond metrics like server CPU

load, memory usage, database latency, etc. can a�ect client observed delays.

To demonstrate that the web currently su�ers from a lack of proper monitoring, we

ran an experiment using 3,000 sites of the top 1,000,000 web sites from the Alexa rank-

ing (Alexa, 2017). The samples cover 1,000 di�erent web sites from the range 1-1,000

in the ranking, another 1,000 from the range 10,000-20,000 and a �nal 1,000 pages from

the range 100,000-200,000. In our experiments, we used the Chrome browser (Chrome,

2017), to ensure realistic access to web pages, and simulate real user interactions. Ad-

ditionally, to compare results, the experiment ran in two distinct locations: Portugal

and Hungary. Several metrics were collected, such as error, network and JavaScript

errors, among others.

We think that our results are noteworthy: even 16% of the top 1,000 sites have errors

in their web page resources, being this value higher for less popular sites. Based on

these results, we argue that there are no simple or e�ective tools to prevent these errors.
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Taking these results into consideration, we then discuss possible client-side monitoring

solutions, to complement current web page monitoring. We distinguish the di�erent

solutions, based on their level of adaptation on the client: stand-alone applications

that can be periodically invoked, browser extensions to enrich client-side information

and JavaScript snippets. Approaches that can collect more metrics are also much more

intrusive. On the other hand, our error report leads us to the conclusion that even non-

intrusive light-weight approaches for web site monitoring can cover these 16% of web

errors. These light-weight approaches have the additional bene�t of not compromising

client security or increasing the complexity of monitoring.

3.1.1 Problem Description

In this subsection, we describe the problem, de�ne the metrics and review the chal-

lenges associated with client-side monitoring. These concepts serve as the basis for the

experiments of Sections 3.1.2 and 3.1.3.

Before rendering and displaying an HTML (HyperText Markup Language) page,

browsers must �rst fetch the page from a server, using an HTTP (Hypertext Transfer

Protocol) address that uniquely identi�es the page, know as URL (Uniform Resource

Locator). The browser then goes through the source code of the page, to build the

DOM (Document Object Model) and the resulting render tree before displaying the

page. In the process, it might need to download multiple other resources referenced

in the main page through other unique URLs, like style sheets, images, scripts, etc.

To fetch these resources, the browser opens several TCP (Transmission Control Pro-

tocol) (Postel, 1981) connections to their respective server. Some of these resources

might be internal and reside in the same server (or at least in the same domain), other

resources might be external.

Since the �nal result that one sees in a browser is usually the combination of many

di�erent resources, each one of these might impact the user experience, and might

be a�ected by varying issues. These problems include network connectivity problems,

server bottlenecks, HTTP errors, or even processing errors, if the resource is a script

to be executed by the browser. Hence, system administrators must take performance,

as perceived by the clients, into consideration, when they create and maintain the web

site.
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However, the crucial point here is that these metrics are external to the server providing

the web page and, therefore, out of (simple) reach by the administrators, who need spe-

ci�c tools to get them. A typical approach is to send browsing data to an analytic tool

that creates reports or triggers alarms in the presence of a violated threshold (Clicky-

Analytics, 2017; Clifton, 2008; GoogleAnalytics, 2018; Internet, 2016). Normally, these

tools have some ability to handle problems such as nonexistent web pages in the domain.

But, since they are oriented to advertising and search engine optimization (SEO), they

typically neglect correct web page display.

The purpose of this Section is to demonstrate that current web sites are not being

properly monitored and to propose appropriate �xes. For this, we inspected 3,000

di�erent sites, including the most popular ones, and looked for problems in the following

very speci�c metrics:

� First, in the main page and its associated resources, we analyzed network errors.

We decomposed network errors into DNS (Domain Name System) errors (if the

main page or some resource returned an error in the name lookup phase); TCP, if

the site exists, but the connection crashes or the server is unreachable; and other

errors, because the browser we used in the experiment does not classify all the

network errors as coming from DNS or TCP (ChromeErrors, 2016).

� For HTTP errors related to resources in the web page, we care for response codes

in the range 400-451 (4xx) and 500-511 (5xx). These resources are referenced in

the page and are necessary to render it. In our experiments, we do not count how

many errors exist in a single page, but only whether any exists (one or more). For

example, if, for 10 pages, we only have 1 page with HTTP errors, the statistics

will return 1 web page with errors, regardless of how many resources produced

an error in that speci�c page.

� It is also important to know how would the navigation from the user be handled.

For this, we count broken links, where the server responds with a 4xx or 5xx

HTTP code. Again, we only count the number of web sites that have errors in

these ranges, regardless of how many such errors a single site has.

� We also care for other sources of errors related to resources in the page: fonts,

style sheets, images and JavaScript. These errors might originate in the network

layer, while processing the script (if applied), or in the cancelation of a resource
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Table 3.1. Software used and distribution.

Component Observations Version

Selenium selenium-server-standalone jar 2.45.0

Chrome browser 48.0.2564.103

Chrome driver 2.21.371461

Xvfb xorg-server 1.13.3

download, e.g., because a change in the page made it unnecessary, or because a

network or other error on an earlier request showed that such resource is unreach-

able (ChromeNetwork, 2016; StatusCanceled, 2016).

� Finally, we also care for the time needed to display a web page (after it was

fully downloaded from the server) and the time that the browser needs to run

asynchronous scripts, after loading the page.

In the next section, we review the monitoring approach that allowed us to collect these

metrics from the 3,000 sites.

3.1.2 Experimental Settings

For the sake of doing an online analysis of the web sites, we used Selenium (2015). The

Selenium framework emulates clients using browsers to access web pages. Developers

might use Selenium for testing web software, but Selenium can also serve to automate

repetitive tasks (e.g, administrative), as we do in this section. This framework is

coupled to a browser through a WebDriver, which makes direct calls to browsers using

their native interface for automation (ChromeDriver, 2015; Selenium, 2015). The driver

can mask di�erences among browsers, thus providing a uniform interface for selenium.

In our experiments, we used the Chrome web browser.

We used the Xvfb (Xvfb, 2015) virtual display emulator for the client machine. This

display performs all graphical functions in memory, without actually needing a real

screen, thus allowing Selenium to run without a terminal. We wrote a program in

Java that runs in the background attached to this display emulator. This program

uses Selenium and Chrome, to access the list of web sites that we previously de�ned.

We used a Linux machine running in our department facilities in Portugal and another

instance in Hungary. Table 3.1 lists the software we used and the respective versions.
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Clients running from di�erent locations have di�erent network connectivity, thus having

a distinct perspective for the same web page. This may result in disparate behaviors,

like resources inaccessible from only one of the locations. Additionally, since programs

run autonomously, with a time lapse of several hours, they may experience di�erent

page errors.

Algorithm 1 shows the pseudo-code of the program we wrote to monitor web pages.

This program uses as input a �le that we must retrieve from Alexa (Alexa, 2017),

with the top one million ranking sites. Alexa keeps popularity rankings of web sites.

Afterwards, we sequentially analyze 3 ranges from this �le: from pages 1 to 1,000; then

from rank 10,000 to 20,000 with steps of 10 (e.g. rank 10,000; 10,010; 10,020;...) and

�nally, from 100,000 to 200,000 with steps of 100 (e.g. 100,000; 100,100; 100,200;...).

Since ranges do not include the upper limit (20,000 and 200,000), this adds up to a

total of 3,000 sites analyzed.

Algorithm 1 WebPage report

Input: CSV �le with the Alexa top one million sites
Output: web pages metrics and errors
1: Initialization :
2: Process Alexa �le
3: queryrange = list(range(1,1001))
4: queryrange.extend(range(10000, 20000, 10))
5: queryrange.extend(range(100000, 200000, 100))
6: Open chrome browser
7: LOOP Process
8: for all rank in queryrange do
9: Invoke web page;
10: Gather web page statistics;
11: Invoke web page links;
12: Save metrics to File;
13: end for

We also used two JavaScript libraries, de�ned by the World Wide Web (W3) Consor-

tium, called Navigation Timing API (NavigationTiming, 2015) and Resource Timing

API (ResourceTiming, 2016). The former library gives us metrics related to the main

HTML, whereas the latter relates to their resources. Used together, they provide a

better understanding of network, server and processing time from the client-side point-

of-view.
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When the chrome browser invokes a web page, we gather several metrics from di�erent

sources: from the Navigation Timing API (NavigationTiming, 2015), we collect the

time that the page takes to load, once it is received from the server (loadEventEnd

� responseEnd), and the time taken by the browser to execute JavaScript for the

window.load event (loadEventEnd � loadEventStart). From the Chrome driver and

Selenium, we collect network, driver and browser logs (in JSON format). With these

logs, we are able to detect network failures (at main HTML or resources), such as the

ones associated with DNS, TCP or HTTP; error codes such as the ones in the ranges

4xx or 5xx1. We do also capture errors related to JavaScript and other components

normally listed on the browser's console, such as Images, Fonts, among others. We

could also collect information related to resources available in the Resource Timing

API (ResourceTiming, 2016), but the web logs from the Chrome driver make these

metrics redundant.

Additionally, and one of the most relevant aspects of our work is that we parse the main

HTML page, to get all links accessible to the users through web page interaction. We

follow and invoke these links, to check if any HTTP error occurs (with error codes 4xx

or 5xx, related to client or server errors, respectively). This information is important,

because the availability of the links is tightly connected to the utility of the web page.

As we shall see the number of broken links is high, even in top web sites. To make this

process run faster, and since we only need the error codes, the URLs in the web page

links were invoked using the java HttpURLConnection, instead of using a full-blown

browser.

3.1.3 Results

In this subsection, we present the results of our experiment. The experiment took

several days to �nish, mostly due to the time consumed in the invocation of all links

associated with each web page. Tables 3.2, 3.3, 3.4 and 3.5 present the most signi�cant

results we got. For the sake of keeping the discussion brief, we only include metrics

that have interesting results.

In Table 3.2, for the client in Portugal, we analyze the number of web pages with

network or HTTP errors. This table contains three classes of problems: problems with

1The list of all network errors displayed by the browser can be retrieved from the Chromium open
source project (ChromeErrors, 2016)
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page resources (HTTP 4xx and 5xx), e.g., some image; connection errors (DNS, TCP

and other) and broken links, i.e., links that point to resources outside the page that

exhibits some problem. Connection errors are all related to the main HTML page or

one of its resources. As we mentioned before, the numbers in the table refer to the total

number of sites where we could observe the problem. This means that, for example,

in the �rst line, �rst column of Table 3.2, the number of HTTP 4xx errors in the top

1,000 sites is 161. I.e., 161 sites have one or more resources that are not accessible and

return a 4xx error code. Taking into consideration the results from Table 3.4 for the

client in Hungary, we realize that the values are very similar, but not equal. This is

mainly due to the fact that the two instances of the program run independently and

with a time interval, for the same list of websites.

The number of errors is quite high in general, especially in lower raking sites. Di�erences

between the �rst and the other two rows of the table are high, for most metrics. This

is true for internal problems and for external links, including network error conditions,

which are also much less frequent in the top ranking sites. Most problems come from

the external links that tend to break quite often, either with a 4xx or a 5xx error code

(right side of the table). However, internal problems (left-side of the table) are arguably

more important, as they might result in visible problems in the page layout. As much

as 16% of top-tier sites may su�er from some form of internal problem. This number is

even higher for the lower rankings. The same is true for connectivity errors (center of

the table). DNS, TCP and other forms of errors are less frequent in major sites. The

HTTP 5xx error codes are the only ones where the frequency of problems seems stable

across all rankings. We can speculate this might be due to an inverse relation between

complexity and ranking positions (i.e., more complex pages correspond to lower ranking

numbers), but a clear demonstration of such hypothesis requires further study.

Overall, these results suggest that top-tier sites either have better network connections,

or more server resources, or both. We might say the same about the contents them-

selves, most likely due to signi�cant advantages in the lifecycle of the web pages (one

or more among design, development, testing, deployment, and maintenance).
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Table 3.2. Number of sites with Network and HTTP errors - Portugal

HTTP 4xx
errors

HTTP 5xx
errors

DNS
errors

TCP
errors

Other
Network errors

Broken
Links 4xx

Broken
Links 5xx

range1000 161 62 68 27 96 115 65

range10000 251 47 122 38 111 182 42

range100000 291 51 113 37 114 193 43

Table 3.3. Number of sites with resource errors and event averages - Portugal

Resource
Font errors

Resource
style sheet error

Resource
image error

Resource
JavaScript error

Resource
JavaScript External

Resource
JavaScript Internal

Resource
JavaScript Both

range1000 11 15 131 153 136 13 4

range10000 16 16 134 189 136 39 14

range100000 27 27 143 174 103 62 9

Table 3.4. Number of sites with Network and HTTP errors - Hungary

HTTP 4xx
errors

HTTP 5xx
errors

DNS
errors

TCP
errors

Other
Network errors

Broken
Links 4xx

Broken
Links 5xx

range1000 154 50 58 4 78 129 24

range10000 242 50 143 8 96 223 54

range100000 267 48 132 21 88 291 43

Table 3.5. Number of sites with resource errors and event averages - Hungary

Resource
Font errors

Resource
style sheet error

Resource
image error

Resource
JavaScript error

Resource
JavaScript External

Resource
JavaScript Internal

Resource
JavaScript Both

range1000 10 11 100 163 148 13 2

range10000 17 16 119 172 119 38 15

range100000 26 25 133 172 104 60 8
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In Table 3.3, we show the number of sites that returned at least one resource error, for

di�erent types of resources. Resource problems include error getting a font, an image

or processing JavaScript (left side). Regarding JavaScript errors, we split data into

external or internal to the web page domain, or both, if errors exist in internal and

external resources. We can see that fonts and style sheet resources cause much fewer

errors than images and JavaScript. Another interesting result is that top-tier sites have

more errors in external JavaScript resources. This is an indication that top pages rely

more on standard libraries, normally hosted in another domain.

Concerning the results we got with the Navigation Timing API, in Figure 3.1, we can

see the di�erence between the domLoading event and the domComplete event times, for

every web page. We only show the graphic for the Portuguese experiments; results were

very similar in the Hungarian case. In this time interval, the browser starts parsing the

HTML document and loads all resources of the page (images, css, etc). At domComplete,

the document readiness is set to �complete�, which means that the next event, called

onLoad can be �red. To the user, this means that the loading spinner on the browser

has stopped. Figure 3.2 shows the time interval between the loadEventStart and the

loadEventEnd. This interval measures the time taken to do additional logic, such as

JavaScript. In both �gures, we sort the pages according to their rank in the x-axis.
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Table 3.6. Three page rank ranges

Event range1000 range10000 range100000

Average DOM Event 4517 6067 6963

Average Load Event 33 24 19

Hence, the �rst 1,000 ranks correspond to the top 1,000 pages, the following 1,000 ranks

correspond to pages in the interval 10,000 to 20,000 and so on, as we described before.

The maximum time for Figure 3.1 is very high because the timeout was not enabled at

the browser or selenium. Therefore the web page could take some minutes to be fully

loaded.

From the �rst row of Table 3.6, and from Figure 3.1, it is quite clear that the browser

tends to take a considerably longer time to parse and get the resources of less popular

web pages. We might say that this is not surprising: �rst, big companies with more

resources may have country-speci�c versions of the web pages, thus ensuring better

performance. Secondly, major sites use Content Delivery Networks (CDNs), to put the

�les closer to the users, thus granting faster download times. In fact, we observed that

some of the peaks observed in Figure 3.1 correspond to sites hosted in China, which

are geographically distant from our clients.
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Regarding the second row of Table 3.6 and Figure 3.2, we observe a completely distinct

pattern. As mentioned earlier, these data concerns the time taken to handle additional

JavaScript, after the document is fully parsed and the resources are loaded. We can

see that some higher ranking pages are JavaScript intensive, although the table shows

a very marginal decrease of this time with page rank.

3.1.4 Client-Side Monitoring

Taking into consideration the results of previous subsection, we discuss some solutions

that might serve to improve web page reliability. We suggest three di�erent options in-

volving di�erent levels of transparency to the client: a stand-alone approach, a browser

extension and a JavaScript snippet.

Stand-Alone Application

First, using a stand-alone application (similar to the one we showed in subsection 3.1.2),

provides us the most options. By having total control of the browser and resorting to a

testing framework such as Selenium, developers and system administrators could invoke

periodically the tool with a simple scheduler such as Crontab (2015). Afterwards, the

metrics could be centrally collected to create useful statistics and even generate alarms.

The major disadvantage of this approach is that a customized stand-alone application

is not practical to install on the clients. Monitoring a site in this way would therefore

be limited to a handful probes controlled by the site owners.

Browser Extension

A second approach would be to install a browser extension, to get the most important

metrics from the web page interaction and, again, send them to a central monitoring

site (we refer to some work using browser plugins in Chapter 2). Extensions could

bypass some of the security constraints associated with JavaScript. For example, with

extensions it would be possible to have access to the browser APIs and therefore to

network logs. This would enable network error collection (DNS, TCP and others). Ad-

ditionally, the extension could invoke links associated with a web page. Unfortunately,

extensions have two setbacks: �rst, it does not look feasible to convince hundreds or
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thousands of users to install some browser extension, which could actually raise issues

concerning security and privacy; secondly, di�erent extensions should be developed for

each di�erent browser, thus entailing a great e�ort and cost.

JavaScript Code

Site owners might use JavaScript and AJAX in the web pages they serve, to collect

error information. By precluding the need for special software, this would rule out the

shortcomings of the previous approaches. Furthermore, this would allow for a very

simple integration with analytic tools, like GoogleAnalytics (2018). Naturally, this can

only work for resources inside the main page, once the browser loads the JavaScript.We

now present some of the solutions possible to be achieved to collect networking errors,

internal 4xx errors, internal 5xx errors, external broken links and resource errors, using

Javascript code.

Resource Errors Regarding JavaScript exceptions and console logs, it is possible

to use the window.addEventListener for error events with the useCapture argument

set to true or use the window.onerror event. This will retrieve the element or script

that originated the error, and not the speci�c error message. This approach can also

generate an alert to system administrators, in case of problems. As an example, we

can see Listing 3.1 for JavaScript errors.

Networking Errors With JavaScript, one cannot know which resources returned

DNS or TCP errors, although this could be inferred using the Resource Timing API (Re-

sourceTiming, 2016). Internet Explorer and Firefox add entries in the PerformanceRe-

sourceTiming array for resources with network issues2. A domainLookup or connection

time of zero associated to a resource indicates a network error.

Internal 4xx Errors It is possible to customize an HTTP 4xx page for this range

of errors. As the user is redirected to this page, administrators will receive an alert.

2The Chrome browser does not provide resource information in the Resource Timing array, when
the resource does not return a response.

51



Chapter 3

Table 3.7. Comparison of methodologies

Stand-alone
Application

Browser
Extension

JavaScript
Code

Network
Problems

Y Y
Y

Indirectly for resources
Broken
Links

Y Y
Y

Proxy
JavaScript
Errors

Y Y Y

Real-world
application

hard to
deploy

security
constraints

easier to scale
and deploy

Internal 5xx Errors Detecting resources with an HTTP 5xx error could be done by

analyzing the di�erence between the responseEnd and the responseStart (time taken

to retrieve the resource). Having a connection time di�erent from zero and a response

time equal to zero is an indicator that the browser could not retrieve the resource from

the server. Another way to detect a 5xx error on a resource, in the Firefox browser, is to

check if the duration (available in the Resource Timing API) is zero for this resource.

As an example, we can see Listings 3.2.

External Broken Links Although JavaScript might invoke internal links, it may

be prevented from accessing any link outside of the server domain, unless cross-domain

communication is active, or if a proxy is used with AJAX (HTML5, 2016). This

proxy will then invoke the URL and return the request in JSON, thus not breaking

cross-domain security. One web service that can be used to this e�ect is the Yahoo

Query Language Yahoo (2016), which allows the JavaScript code to invoke the external

URL and get JSON content in return. As an example, we can see Listings 3.3.

// test javascript errors

window.addEventListener('error', function(e) {

//print error

console.log('error on ' + e.target.src);

//send error to server

dataLayer.push({

'event' : 'javascriptError',

'target' : e.target.src

});

}, true);

Listing 3.1. JavaScript code for error logging

window.addEventListener("load", checkResult);

function checkResult() {

// test network resources problems
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if (navigator.userAgent.indexOf("Firefox")!=-1 ){

// get resources timing metrics

var e = window.performance.getEntries();

for (var i in e) {

// for the document we need to use window.performance.timing

if (e[i].name != "document") {

// duration equal to zero means that the resource could not be fetched

if (e[i].duration==0) {

if (window.console) console.log("Network error in resource: " + e[i].name + " type:" +

e[i].initiatorType);

//send event to analytics

dataLayer.push({

'event' : 'networkError',

'type' : e[i].initiatorType,

'resource' : e[i].name

});

}

}

}

}

}

Listing 3.2. JavaScript to collect resource fetching errors

window.addEventListener("load", checkResult);

function checkResult() {

// test broken links. Validate if the links were tested in the last 60 minutes...

if (typeof {{Session alive}} === 'undefined') {

try {

// Get page links and make proxy querys...

var allLinks = document.links;

for (var i=0; i<allLinks.length; i++) {

// Set up variables for the call

var httpcode;

var link = encodeURIComponent(allLinks[i]);

var endpoint = 'http://query.yahooapis.com/v1/public/yql?q=select%20*%20from%20'+

'html%20where%20url%3D%22' + link ;

// Make the API call

jQuery.ajax({

type : 'POST',

dataType : 'jsonp',

url : endpoint + '%22&format=json'+

'&diagnostics=true&callback=?',

async : true,

success : function(data) {

httpcode = data['query']['diagnostics']

['url']['http-status-code'];

},

error : function(xhr, textStatus, errorThrown) {

console.log('Error while fetching link :: ' + errorThrown);

},

complete : function() {

if (typeof httpcode !== 'undefined' && (httpcode.startsWith("4") ||

httpcode.startsWith("5") )) {

// send broken link

console.log('Broken link: ' + link);

dataLayer.push({

'event' : 'linkError',

'error' : httpcode,

'link' : link

});

}

}

});

}
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} catch(e) {

console.log('Error collecting broken links... ' + e.message);

dataLayer.push({

'event' : 'APIError',

'APIErrorMSG' : e.message

});

}

// Set cookie to 60 minute expire date

var d = new Date();

d.setTime(d.getTime()+3600000);

var expires = "expires="+d.toGMTString();

document.cookie = "session=1; "+expires+"; path=/";

}

}

Listing 3.3. JavaScript to collect broken link information

Client Side Monitoring methods � discussion In Table 3.7, we make a sum-

mary of the di�erent methods mentioned in this section. In Listings 3.1 to 3.3, we

illustrate how to analyze web page errors using JavaScript. The browser invokes List-

ing 3.1 on error events. This code logs the error and collects the object that generates

the error. To ensure a more realistic scenario, we include code necessary to send these

errors to be displayed in Google Analytics (GoogleAnalytics, 2018). Listing 3.2 is asso-

ciated with the load event and Listing 3.3 is associated with broken links. For brevity

we omit the inclusion of external jQuery scripts. We check for broken links and resource

fetching errors. We also send the collected metrics to Google Analytics. This allows

us, in a relatively fast way, to understand the capabilities of this well know tool. Fur-

thermore, regarding the test for broken links, in a production scenario, this test should

only be made occasionally for each client. Therefore, we created a session cookie (using

Google's tag manager) with an expiration time of one hour. In this way, links are not

tested more than once per hour.

3.2 Evaluating REpresentational State Transfer Evalua-

tion Services

REpresentational State Transfer (REST), �rst de�ned by Fielding in his PhD thesis in

2000 (Fielding, 2000), has become a major standard for services provided over the In-

ternet. The power of REST comes from the versatility of interfaces that simultaneously

support the presentation layer of web pages developed in JavaScript, mobile applica-

tions that are native for Android or iOS, and interaction with third-party providers,
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most notably for the sake of authentication, but by no means limited to it. The modern

computing infrastructure, including the cloud, heavily relies on REST services as these

became ubiquitous. The number and names of web site providers using REST and

making their REST interfaces available for programmers is huge: Facebook, Twitter,

Instagram, Amazon, Microsoft, Google, YouTube and many others. In spite of this

success, critical web interactions still pose a major challenge for developers, whenever

operations fail to execute properly. Services involving reservation of some resource,

payments, or other business-oriented interactions cannot easily tolerate requests with

incorrect responses or no responses at all. However, the popularity of the running

REST interfaces, the number of available operations and the large number of users

they support, provide us new opportunities to evaluate the reliability of real, highly

relevant distributed systems. In particular, we would like to know exactly how likely

is it for an operation to have success or fail without providing adequate information to

the client.

To achieve this goal, we ran an experiment using successive HTTP invocations to REST

services of three major providers of video and �le storing and sharing. We did this for

several days, keeping notice of response times, unanswered requests, HTTP status of

the responses and HTTP headers. To avoid disclosing sensitive information regarding

these services, we keep them anonymous and refer to them by the letters A, B and C.

The results are noteworthy: even major providers cannot avoid a signi�cant number

of errors in the access to their REST resources and a wide disparity of response times.

While some of these problems come from the network, the provider itself is also to blame

in many cases. Although small in relative numbers, errors do not only exist, but exist

in large amounts, when we consider the vast utilization of these services. Hence, we can

conclude that, to build reliable distributed systems, developers must use mechanisms

that take connectivity, availability and performance problems into account. The results

of this section aim to motivate developers for the central problem of achieving reliable

invocation of services over the network and also to understand how a client can monitor

a REST interface.

3.2.1 Experimental Settings and Results

To evaluate the reliability of online REST services, we ran a client that regularly re-

quested operations from three well-known service providers. All three providers reside
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Figure 3.3. Provider A server time statistics - boxplot

in the west coast of the United States, whereas the client is in Portugal, around 9, 000

kilometres away. We used the crontab scheduler on a Linux machine, to run the cURL

command, which invoked the same REST resource during several days, with intervals

of 4 seconds. We accessed two �le sharing providers (A and B) and a video sharing

provider (C). In the �le sharing providers, we did a REST request to get the contents

of the home directory of a user account; in the video sharing provider, we did a REST

request to get the list of the 50 most popular videos. To access data from provider

A, we had to use the HTTP POST method; from the other two providers, we used

the GET method. Note that according to the HTTP protocol (Fielding and Reschke,

2014), the POST method is non-idempotent. Repeating an invocation might thus have

side e�ects.

We also gathered a speci�c HTTP extension header from provider A, which stated

the time that the server took to answer the request. This extension allowed us to

determine server-side times, regardless of network performance. In Figure 3.3, we show

the box plot associated with the server response time, while in Figure 3.4, we show the

histogram of the same samples, distributed by the time it took to answer the request

(x axis) and the frequency of each time interval (y axis). Looking at Figure 3.3 and

Figure 3.4, we can observe that the servers of provider A take around 250 ms to reply

to the majority of requests, once they arrive. However, as we can see in the box plot,

the actual times vary a lot. Additionally, if we take a closer look at the histogram, we

verify that sometimes the server responses take as much as 6000 ms. These response
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times (plus the network latency) may be treated as a timeout by the client software or

users, which might reload or resubmit forms in response during this interval.

Concerning the network time between our client and the servers of providers A, B

and C, in Figure 3.5 we show a box plot for the server+network times of our samples.

Service invocations will necessarily involve large network latencies, as light takes around

60 ms to cover the round-trip (in vacuum). Interestingly, provider C presents a very

stable connectivity, having very short interquartile ranges and a mean similar to the

median. The results of provider C are truly remarkable, suggesting, not only, that

providers A and B take long internal times to ful�ll the service, but also that such

times have a large variance (i.e., they cannot be attributed to the network). These

di�erences might result from the nature of the services involved. It might be simpler

to prepare the response to a request for the most popular 50 videos in store, than

it is to provide the list of �les in the home directory of a speci�c user. The precise

reasons, however, are di�cult to discern, without knowing the internal details of these

providers. Furthermore, as far as we could tell, the requests we did to provider C were

not served by any cache. The comparison of graphics of Figures 3.3 and Figure 3.4 also

suggests that the total internal server time of provider A is larger than what we see in

Figure 3.4. Furthermore, since variances for providers A and B are somewhat large,

they might pose some problems for client-side software, especially if developers want

to wait for (outlier) responses taking more than the 75 percentile to arrive.
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Table 3.8. Number of errors

Provider A Provider B Provider C

Connection setup errors 104(0.057%) 43(0.018%) 6(0.005%)

Connection crashes 5(0.003%) 28(0.012%) 7(0.005%)

Application errors 38(0.02%) 3(0.0012%) 0(0%)

Our next step was to count the errors in response to our requests (refer to Table 3.8).

We divide errors as seen by clients in three di�erent classes: network errors related to

the connection setup phase (�rst line), network errors occurring after the connection

is setup (second line), and application errors (third line). Network errors include con-

nection timeouts, connection crashes, read timeouts, or unreachable hosts. Application

errors occur when the client gets an HTTP error in the ranges 4xx or 5xx (we only

got 5xx, since we kept using a limited list of addresses in our requests). We can see

that the number of failed requests is quite relevant, especially when one accounts for

the intensive utilization of these services. Most errors are due to the network interac-

tion, whereas only a few occur in the application, caused by some temporary server

overload, for example. While service providers can invest in resources and software

to improve their network and the response of the application, connection setup errors

and connection crashes might be out of their control, as they mostly depend on third-

party providers. On the other hand, for developers, the most di�cult problems to

overcome are connection crashes and provider errors, because applications can hardly
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be sure about the outcome of the REST invocation, when these happen. This situation

might be even worse for mobile clients, as intermittent connections will certainly cause

more errors, thus raising the importance of tolerating ambiguous, absent or erroneous

responses.

3.3 Conclusion

Ensuring proper quality-of-service to users of a web site raises great and largely unsolved

challenges to system developers and administrators. The evidences we collected in this

chapter support exactly this point-of-view. This chapter focused on monitoring of

HTTP infrastructures, such as web pages and REST interfaces. We wanted to monitor

and extract useful information from major web sites and REST providers.

From Section 3.1 we conclude that even large companies with vast resources can fail to

provide impeccable, failure-free, web sites. As much as 16% of top-tier sites have some

sort of relevant error, such as a missing resource. To mitigate this problem, we argue

that web site providers must include client-side observations into their monitoring tools.

Unfortunately, collecting metrics in clients raises complex challenges, ranging from web

page performance degradation to security constraints. Hence, we discuss three di�erent

options to take the client-side point-of-view, from an impractical stand-alone client to

a more limited, but feasible, JavaScript approach. As we saw in Section 3.1.4, even this

latter option can cover most problems referenced in Tables 3.2 to 3.5, thus paving the

way to enriching currently available monitoring mechanisms.

Concerning Section 3.2, we are by no means the �rst ones to evaluate or benchmark

online services. However, taking into consideration Chapter 2, we are not aware of

other work comparing distinct providers in terms of error counting, request response

times, and their distribution. The importance of knowing the normal behaviour and

the frequency of errors in online services comes from the importance of ensuring that

non-idempotent REST requests execute at most once. However, when the user receives

an error and risks to resubmit the request, s(he) will be left without knowing whether

the request was executed zero, one or more times. This is an inevitable source of

mistrust about the service provider and ultimately contributes to the degradation of

the provider's reputation.
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The evidence we collected so far strongly supports the idea that developers need to

employ fault-tolerance techniques, if they use non-idempotent services. Depending on

the provider, the fraction of invocations that fail with ambiguous results might be

as large as 0.02 percent. Despite being a well-known problem, to achieve an imple-

mentation of at-most-once or (in certain conditions) exactly-once execution semantics

in HTTP, developers must recur to customized software that handles operation iden-

ti�ers. An approach to ensure idempotent operations is to use the HTTP Header

If-Unmodified-Since with the date of the last (supposed) update. The server would

either respond with success, if the resource was not modi�ed after the date, or respond

with an HTTP 412 PreCondition Failed otherwise. However, this mechanism is not

ensured by most providers; furthermore, this approach would force the server to asso-

ciate a date to each resource. As a �nal remark, we can say that 1) we showed that

problems in non-idempotent REST invocations occur frequently, 2) there is no ready-

to-use reliable invocation solution for web developers, and 3) the monitoring tools can

be enriched with client-side data.

For future work we would like to tackle a number of challenges. First, concerning

Section 3.1, a particularly interesting concern for future work will be the integration of

such monitoring JavaScript snippets with analytic tools from large providers, such as

Google Analytics, in a real production scenario. Additionally, a wider experiment that

covers the entire one million top ranking sites might produce some interesting results.

Secondly, for Section 3.2, we identify the need for collecting additional information from

other top web providers, to ensure a more complete overview.
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Client-Side Bottleneck

Identi�cation of HTTP

Infrastructures

In the operation of an Hypertext Transfer Protocol (HTTP, 1999) server, bottlenecks

may emerge at di�erent points of the system often with negative consequences for the

quality of interaction with users. To identify this kind of problem, system administra-

tors must keep a watchful eye on a large range of system parameters, like CPU, disk and

memory occupation, network interface utilization, among other metrics, some of them

speci�cally related to HTTP, such as response times or sizes of waiting queues. Despite

being powerful, these mechanisms cannot provide a completely accurate picture of the

HTTP protocol performance. Indeed, the network latency and transfer times can only

be seen from the client, not to mention that some server metrics might not translate

easily to the quality of the interaction with users. Moreover, increasing the number of

server-side metrics involved in monitoring adds complexity to the system and makes

monitoring more intrusive.

We argue that a simpler mechanism, based on client-side monitoring, can ful�l the task

of detecting and identifying an HTTP server bottleneck. The arguments in favour of

this idea are quite powerful, as client-side monitoring provides the most relevant per-

formance numbers, while, at the same time, requiring no modi�cations to the server,
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which, additionally, can run on any technology. This approach can provide a very e�ec-

tive option to complement available monitoring tools. Moreover, HTTP administrators

lack a perfect picture of the service as seen by the client, from request submission to

downloading the last byte of the response.

To achieve this goal, we used several distinct approaches, that will be further detailed

in the next sections. The overall goal was to understand the limits of a full black-box

monitoring in the context of HTTP Servers. We used several methods that allowed us

to retrieve server information from the client. The main idea is that some bottlenecks

expose themselves with a di�erent signature in the request and response time series.

With the experiments from this chapter, we managed to discover patterns and identify

bottlenecks in a lightweight fashion. We believe that these simple mechanisms can

improve monitoring tools, by providing HTTP administrators with qualitative results

that add to the purely quantitative metrics they already own.

The remainder of this chapter is organized as follows. In Section 4.1, we analyze dis-

tinct patterns that leak from a controlled laboratory experience. In this experiment, we

intended to observe the server infrastructure from the outside and gather the smallest

possible number of metrics from the inside. We undertook several experiments in a

controlled server, to identify the patterns that correspond to bottlenecks. These exper-

iments clearly show that one can actually diagnose di�erent bottlenecks, by analysing

response times as seen by browsers. Secondly, in Section 4.2, we evaluate how we could

infer the location of HTTP bottlenecks in real-world web pages, using time series from

the raw data. To overcome this problem, we used the times collected and foreseen by

users, aiming to interpret and distinguish patterns from the request and response times.

Finally, Section 4.3 concludes this chapter.

4.1 On Identifying Bottlenecks Distinct Signatures

Improved monitoring mechanisms should be independent from the server technology,

should require little to no con�guration and should provide information of the real

quality of service o�ered to clients.

To reach these goals, we intend to observe the server infrastructure from the outside

and gather the smallest possible number of metrics from the inside. We undertook
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several experiments in a controlled server, to identify the patterns that correspond to

bottlenecks. These experiments clearly show that one can actually diagnose di�erent

bottlenecks, by analyzing response times on browsers. These results pave the way to

future monitoring mechanisms, mostly based on quality of service evidence, supported

by user data.

To prevent service disruption, the owner of the service must promptly identify and

remove bottlenecks, by launching extra resources, such as more bandwidth, CPUs or

disk space. Unfortunately, this is not simple in practice, because the providing side

lacks a perfect picture of the service as seen by the client, from mouse clicking to

downloading the last byte. Additionally, having precise metrics of a running system is

expensive and causes a lot of interference with the system itself.

We focus on this exact problem: detecting bottlenecks using the minimum and simplest

possible metrics. We aim to perform this bottleneck detection in three-tier web sites

using client-side data, because clients have a better perspective of the o�ered quality

of service than providers. To evaluate this possibility, we perform batch submission

of requests to the service and collect timing responses on the client. This is not un-

like the current paradigm of HTTP performance tools, like HTTPerf (Perf, 2013) or

JMeter (JMeter, 2013). With one of these tools, the system administrator controls the

invocation of large numbers of requests to observe the response of the system, usually

for the sake of tuning performance.

However, since these tools impose a heavy load to the service (and thus are usually

run o�ine), we aim to perform a similar evaluation online, while standard users are

running the service. Instead of generating arti�cial requests, our goal is to use real

requests for the same purpose, by collecting and uploading browser data to the system

administrators. Our long-term goal is to identify as many problems as possible. In

this section, we restrict our e�ort to the three resources that are very important for

performance: CPU, server I/O access and client-server I/O bandwidth.

We aim to demonstrate the feasibility of identifying speci�c bottlenecks (CPU, I/O or

network) using browser metrics plus an internal server metric. We describe this process

and our main contribution in Section 4.1.1.
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Table 4.1. Measured metrics

Metric Description

Request Time Time between connection initialization and
�rst response byte received from server

Response Time Time between �rst and last response byte re-
ceived from server

Latency Time delay experienced in client-server com-
munication

Query processing
time

Time that an HTTP request spends on the
database

Total Time Request + Response Time

Table 4.2. Metrics Required to Detect Bottleneck (Idealized Results)

Bandwidth Database Threads

Request Time F T T
Response Time T F F

4.1.1 The Client-Side Tool

We follow a very simple approach to detect possible bottleneck causes of 3-tier Web

systems. We only consider three possible causes: processing, database or bandwidth

bottlenecks. Processing bottlenecks are related to CPU limitations, which may be due

to HTTP thread pool limitations of the Web Server, or CPU machine exhaustion,

e.g., due to bad code design that causes unnecessary processing. Database bottlenecks

are part of the Input/Output operations, which clearly depend on query complexity,

database con�guration and database access patterns. Bandwidth bottlenecks are re-

lated to network congestion, signi�cantly a�ecting client-server communication times.

We assume the point of view of an IaaS cloud, although our method can also partly

apply to a PaaS or a hybrid scheme. The client does not own the resources, but has

some control on the source code of a site he or she wants to make publicly available.

However, the client does not have root access to the target system's nodes. I.e, the

client can deploy, but cannot change machine con�guration. Hence, we do not want to

capture internal system metrics that strongly depend on the speci�c cloud, but we can

collect timestamps during the HTTP processing, doing only slight modi�cations to the

application source code.
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We initially considered a number of metrics that should allow us to understand if

the system has some bottleneck and where. These metrics contain a mix of network

and database times. We do not need the CPU time, because we can infer this time

based on the query processing time. The CPU time, in our system, is the sum of

the processing time plus the time to access the database. In Table 4.1 we list these

metrics and their corresponding description. In an ideal closed setting, we only need

the Total Time (request time plus the response time) to distinguish the aforementioned

three bottlenecks, if they occur separately � i.e. CPU, Database (I/O) and Network

bottleneck. In a bandwidth bottleneck between client and server, the di�erence between

request and response times will tend to grow with the load of the system (specially if

the HTTP answer is considerably bigger than the request). In a database bottleneck,

the time to get the �rst byte of the response will tend to grow with the load of the

database. A processing bottleneck will have a similar e�ect. To distinguish these two

cases, we can submit multiple equal jobs at once using more jobs than threads available

to run them: responses will come in groups. To give an example, assume that the server

has a pool of 5 threads. If we submit 20 jobs at once that take around 0.5 seconds

of CPU time each, every 0.5 seconds (plus a few other delays) we will get 5 di�erent

responses. This is a clear indication of a CPU bottleneck. In reality getting such a

well de�ned pattern is not so easy, because requests will not occur in clearly de�ned

batches. Hence, we need one additional measurement to distinguish between a CPU

and a database bottleneck. We use the query processing time. Unlike the previous

metrics of Table 4.1, this one is internal to the server. We could also consider the

processing time, but this is reciprocal to the former. Fortunately, we may eliminate

the latency, because this is constant and should not grow on a server bottleneck. In

Table 4.2, we display the relation between the bottlenecks that we are observing and

the variables necessary to detect them. We use a �T� (true) and �F� (false) to express

the necessity or lack of it to use a variable to observe a given bottleneck. These relations

are ideal. A practical setting may be more complex, as we show in Section 4.1.2.

A simple way to take measurements from the client side is to use a performance eval-

uation tool, like Apache's JMeter. The inconvenient of this approach is that it may

only work if the client machine is powerful enough to stress the server and the server

is disconnected from real users in a testbed. We intend to follow a di�erent approach.

Since our goal is to tackle more generic settings, we want to use data from real clients.

For this, we collect the required metrics directly from the user's browser, using the
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Figure 4.1. Experimental setup

JavaScript Navigation Timing API (NavigationTiming, 2015). This JavaScript library

can read the request and the response times of a given HTTP interaction. When the re-

quested resource loading �nishes, we send performance indicators (via AJAX) to a web

service, which stores timing data on a database. The remaining times of the process

might be kept directly on the server side1. Putting in simple terms, a �nal implemen-

tation should work like this: the owner of the site should add a few JavaScript lines to

the web page, to instruct the browser to collect the necessary metrics. After collecting

these metrics, the browser should send them to the server. This will enable the owners

of the site to analyze performance results as seen by the clients. This analysis, however,

might be more complex than with JMeter, because it is full of real life noisy data. In

the next section, we observe and tackle this precise problem.

4.1.2 Experimental evaluation

The goal of our experiment was to observe the feasibility of taking client-side measure-

ments to detect performance bottlenecks. For this, in this subsection, we �rst describe

the setup, before detailing the experimental results.

Experimental Setup

To run our experiments, we deployed the �Java Petstore� (PetStore, 2013) application,

including the Petstore schematic tables. In the front-end of the server, we have a load

1Nevertheless, for the sake of simplicity, in the tests we performed, we �rst sent the server data to
the client, which then uploads all the metrics in a single operation.
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Table 4.3. Software used and distribution

Component Observations Version

Load Balancer HTTPD with AJP Connector 2.2

Cluster VMs with GlassFish 3.1.2

Database MySQL 5.1.69

balancer that directs user requests to a group of GlassFish Application Servers (Glass-

Fish, 2013) running in di�erent Virtual Machines (VMs). These Application Servers

take care of the presentation (�rst) and business (second) tiers. The business tier is

stateless, because the Java application keeps all its data in the back-end database (the

third tier). This architecture is illustrated in Figure 4.1. The load balancer machine

runs an Apache HTTP Server and an AJP Connector for the load balancing. We also

installed a Tra�c Control (tc) tool (Tra�cControl, 2017) on the system entry point to

simulate a congested network. To ensure that some page requests took longer and to

avoid cache utilization that would change the bottlenecks, we increased the contents of

the database tables, relatively to the original petstore, with synthesized data.

Table 4.3 summarizes the most important software components of this experiment.

We evaluate the performance of this system using two di�erent methods. The �rst

injects requests through a standard performance evaluation tool (Apache JMeter). This

approach enables us to run a �nely controlled experience, although limitations of the

client machine running the Apache JMeter may cause requests to slide in time. To

simulate an intensive utilization of the web site by browsers, in the second method,

we submitted requests to our infrastructure using the Firefox web browser from 15

machines. The requests were submitted using a script that started the browser on

every machine. The purpose of this experience is to analyze the di�erence between a

tool like JMeter and a simulation that is closer to the real-life Internet utilization with

di�erent browsers accessing the same infrastructure.

We injected three di�erent bottlenecks on the server: a database bottleneck, a network

bottleneck and a CPU (threads) bottleneck. The �rst one corresponds to requests that

read a large amount of data from the database, to inject the second one we used the

tra�c control tool and, to delay the responses in the CPU, we reduced the overall

number of threads in the cluster to 5 and put them to sleep 1 second per request.
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Figure 4.2. CPU bottleneck
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Figure 4.3. Database (I/O) bottleneck
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Figure 4.4. Network bottleneck

Results

We show the results of our experiments in Figures 4.2, 4.3, and 4.4. On the left-side

of the �gures we have the response to the JMeter tool. On the right-side, we have the

response to the browsers. The x-axis shows the number of the request, from 1 to 50

with JMeter, and from 1 to 15 with the browsers, whereas the y-axis shows the time of

each response in milliseconds.
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Using JMeter, we managed to minimize the number of external factors interfering with

our measurements. For example, network latency is almost always the same, because

all the clients are run from the same node, in the same local area network as the server.

Furthermore, the tool will spawn multiple threads at once that will send the same

request to the server within the shortest possible time frame. This will contribute to

a nearly simultaneous arrival of all the requests. In the case of the browsers test, due

to the distributed nature of the simulation environment, the results are noisier. We

noticed that the delay of starting a new browser sometimes goes to several hundreds

milliseconds, making it very hard to perform simultaneous requests, not to mention

the di�erences in the local clocks, as each machine decides when to launch the browser.

Unlike this, in the JMeter case, the delay of the requests was within the few milliseconds

range. The browser experiment is therefore more akin to a possible real utilization of

the site, but, as we shall see, results become harder to interpret.

After plotting the results, we identi�ed several patterns resulting from Request and

Response Times. Firstly, for the JMeter tests, we noticed the ladder-type behavior,

when the server reaches its HTTP thread pool limit (in our case, the GlassFish cluster

was limited to serve 5 simultaneous requests). Since all clients were launched almost

simultaneously and given the signi�cant processing time, the steps of the ladder are

easily identi�able on the left side of Figure 4.2. We repeated the tests, changing the

number of threads in the HTTP thread pool of cluster instances and we were always

able to observe this behavior.

When a database bottleneck is present in the system, the time taken to generate the

page is dominant in the overall process. This behavior turns Request Time into the

largest factor in communication, because the time it takes for the server to send the �rst

byte of the response is mostly consumed on the database query. When the bandwidth

is the source of the performance problem, the time taken to transfer the page from the

server becomes dominant in the total communication time. We can ignore the time it

takes to transfer the data from the client to the server, because in most cases the client

request size is very small in comparison to the server response. The Response Time is

therefore crucial to identify a bandwidth bottleneck in the infrastructure. Additionally,

we expect the pattern of bandwidth bottlenecks to be less regular, because the request

and response packets have to go through a congested channel. We can see these di�er-

ences on the left sides of Figures 4.3 and 4.4. One should notice that these plots display

di�erent metrics. In the case of the network bottleneck, we display the Response Time,
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Table 4.4. Metrics Required to Detect Bottleneck(Practical Results)

Bandwidth Database Threads

Request Time F T T
Response Time T F F
Database Query Time F T T

whereas in the other two cases we display the Request Time (both metrics are easily

available in JMeter and browsers). This observation agrees with Table 4.2, i.e., these

times su�ce to identify di�erent types of bottlenecks.

Most of the patterns we observed on the previous experiment occur again in the browsers

experiment, but it is harder to distinguish between di�erent bottlenecks using only

client-side measurements. For example, the CPU bottleneck loses its ladder-like aspect

that was characteristic in the more controlled environment (refer to the right side

of Figure 4.2). Despite still being there, the e�ect is much less visible in the browsers

experiment, and, we believe that, in general, one might be completely unable to identify

this speci�c kind of bottleneck from the Request Time alone. A clear separation requires

an extra variable to distinguish the time the request spends on the CPU from the time

it spends on the database. We show the CPU processing time (Figure 4.2 right) and

query processing time for this (Figure 4.3 right). With these metrics, the component

responsible for the delay is immediately identi�ed. In fact, although the di�erence in

patterns between the Request Times of Figures 4.2 and 4.3 (which are nearly the same

as the Total time) might be unclear, the query processing time is negligible in the case

of the CPU bottleneck, whereas the CPU processing time is negligible in the other

case. Furthermore, the query processing time we measured includes the waiting time

to access the database and thus makes the evaluation simpler, when compared to the

CPU processing time, which we can see as a constant in Figure 4.2 right. In fact, this

di�erence in behavior could be eliminated, if one includes the waiting time for the CPU

in the CPU processing time, and, therefore, we can consider the query processing time

and the CPU processing time to be pretty much equivalent for our needs.

In light of these results, we are now able to review Table 4.2, to consider the evaluation

of bottlenecks under more realistic settings. As a result, we created Table 4.4, which

adds the database query time. This table is a step towards identifying bottlenecks

using timing measurements from real web clients.
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4.1.3 Conclusion

The monitoring of system resources poses a challenge to system architects and ad-

ministrators. To achieve this goal, we proposed to detect three types of bottlenecks:

processor, bandwidth and I/O. Unlike previous work, we mostly aim to use client-side

metrics for detailed observation of the server. The point is to strongly reduce the

intrusiveness of monitoring. While other approaches analyze dozens or hundreds of

server-side metrics, in this Section, our evaluation suggests that we need only one such

metric, to distinguish CPU time from database query times in a �black box� fashion.

While this section demonstrates that we can identify the source of a bottleneck with

only a handful of metrics, the great challenge is to do such detection in real time with

actual client requests distributed over time, instead of using a single burst of requests

over an o�ine system. The ability to do so might turn out to be an excellent way

of improving the existing monitoring tools, by introducing the client perspective of

performance and still distinguishing di�erent types of bottlenecks. In the next section

we will analyze this kind of problem.
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4.2 Black-Box Bottleneck Identi�cation on Multi Compo-

nent HTTP Infrastructures

In this section, we extend the methodology presented before in Section 4.1, with an

additional experiment. To achieve the goal of detecting bottlenecks in real time using

clients, we require two metrics taken from the web browser: i) the time it takes from

requesting an object to receiving the �rst byte (request time), and ii) the time it takes

from the �rst byte of the response, to the last byte of data (response time). We need to

collect time series of these metrics for, at least, one or two carefully chosen URLs. These

URLs should be selected according to aspects such as popularity. As we describe in

Subsection 4.2.1, the main idea is that di�erent signatures in the request and response

time series may imply di�erent bottlenecks. For now, we aim to have a binary decision:

whether a bottleneck is present or not.

To create such time series, in Subsection 4.2.2, we resort to experiments on real web

sites, by automatically requesting one or two URLs with a browser every minute, and

collecting the correspondent request and response times. With these experiments, we

managed to discover cases of bottlenecks. We believe that this simple mechanism can

improve the web browsing experience, by providing web site developers with qualitative

results that add to the purely quantitative metrics they already own.

In Subsection 4.2.3, we fetch pages from the same server using two synchronized clients.

This enables separation between client-side network problems and server-side problems.

However, the main goal of this experiment is to verify whether observations from one

of the clients takes us into a set of conclusions that �ts the observations of the second

one. To avoid any bias, in Subsection 4.2.4, we introduce a simple algorithm that

evaluates request and response times from both clients, before outputting the cause of

the problem.

Surprisingly, we noted that, occasionally, the two clients disagree about the quality of

the interaction with the server. One of them su�ers from an isolated problem, which

does not occur again, while the other client does not su�er from any problem at all.

This suggests that some requests get a very unfair treatment along their way. Even

a network and server that seem to be lightly loaded can exhibit this sort of delay at

times. Determining exactly where and how frequently does this happen is, we believe,

an interesting practical open concern.
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4.2.1 Creation of Time Series Through Client-Side Metrics

In this section, we evaluate the possibility of detecting bottlenecks, based on the down-

load times of web pages, as seen by a client. CPU bottlenecks may be due to thread

pool constraints of the HTTP Server (specially the front-end machines), or CPU ma-

chine exhaustion, e.g., due to bad code design that causes unnecessary processing or

waiting. I/O bottlenecks will probably be related to database (DB) operations, which

clearly depend on query complexity, DB con�guration and DB access patterns. We

also consider network bottlenecks.

Detecting bottlenecks from the client's point-of-view is very appealing. It allows to

reduce instrumentation of the server and also to identify bottlenecks that might elude

administrators, such as network problems between the client and the server. Since

pinpointing the exact zone of the bottleneck might be impossible, our goal is to use the

web page pro�ling to understand if a bottleneck is present.

We propose to systematically collect timing information of one or two web pages from

a given server, using the browser-side JavaScript Navigation Timing API (Naviga-

tionTiming, 2015). Figure 4.5 depicts the di�erent metrics that are available to this

JavaScript library, as de�ned by the World Wide Web (W3) Consortium. Of these, we

will use the most relevant ones for network and server performance: the request time

(computed as the time that goes from the request start to the response start) and the

response time (which is the time that goes from the response start to the response end):

� Request Time: client-to-server network transfer time + server processing time +

server-to-client network latency.

� Response Time: server-to-client network transfer time.

We chose these, because the request and response times are directly related to the

request and involve server actions, which is not the case of browser processing times,

occurring afterwards, or TCP connection times, happening before. Although these

metrics can give us some insights of where the time is being consumed, our goal is to

understand if the client can check the system health.

We argue that identifying bottlenecks and their cause with time series of these two

metrics is actually possible. In this section, we improve our work from Section 4.1.

73



Chapter 4

Figure 4.5. Navigation Timing metrics (�gure from NavigationTiming (2015))

Table 4.5. Software used and distribution.

Component Observations Version

Selenium selenium-server-standalone jar 2.43.0

Firefox browser 23.0

Xvfb xorg-server 1.13.3

When a bottleneck is present in the system, a modi�cation occurs in the patterns of

the request and response times. One should notice that responses must occupy more

than a single TCP (Postel, 1981) segment; otherwise, other variables may emerge in

the patterns.

4.2.2 Experimental Evaluation

In this Subsection, we present the results of our experimental evaluation. We present

the setup before showing the most important results obtained with the experiments.

Experimental Setup

For the sake of doing an online analysis, we used a software testing framework for

web applications, called Selenium (Selenium, 2015). The Selenium framework emulates

clients accessing web pages using the Firefox browser. It allows to mimic client behav-

iors when interacting with a web page, thus simulating real clients. Additionally, it give
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us access to the JavaScript Navigation Timing API (NavigationTiming, 2015). We use

this API to read the request and response times from the visited web pages. We used a

UNIX client machine, with a crontab process, to request a page each minute (Crontab,

2015), using Selenium and the Firefox browser. We emulated a virtual display for the

client machine using Xvfb (Xvfb, 2015). Table 4.5 lists the software and versions used.

One of the criteria we used to choose the pages to monitor was their popularity. How-

ever, to conserve space, we only show results of pages that provided interesting results,

thus omitting sites that displayed excellent performance during the entire course of the

days we tested (e.g., CNN (CNN, 2015) or Amazon (Amazon, 2015)) � these latter

experiments would have little to show regarding bottlenecks. On the other hand, we

could �nd some bottlenecks in a number of other web sites:

� Photo repository � We kept downloading the same 46 KiloBytes (KiB) Face-

book photo, which was actually delivered by a third-party provider Content De-

livery Network (CDN). During the time of this test, the CDN was retrieving the

photo from Ireland. This experiment displays several performance problems.

� Portuguese News Site� this web page is the 5th most used portal in Portugal

(only behind Google � domain .pt and .com, Facebook and Youtube) and the 1st

page of Portuguese language in Portugal (Alexa, 2015). This web page shows

considerable performance perturbations, especially during the wake up hours.

� Portuguese Sports News � This is an online sports newspaper. We down-

loaded an old 129 KiB news item and hit an inexistent resource for several days.

The old news item certainly involves I/O, to retrieve the item from a DB or other

repository, whereas the inexistent may or may not use I/O, we cannot tell for

sure. We ensured a separation of 10 seconds between both requests.

� Social Network Site�We used the most popular social network and the largest

social network worldwide. The technology demands are enormous to ensure a

good quality of experience to the users and, therefore, preventing bottleneck

occurrences. However, recent blackouts in the system have shown the potential

of our tool to detect system anomalies and predict web page disruptions.
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Figure 4.6. CDN bottleneck.

Results

In Figures 4.6, 4.7, and 4.8, we start by analyzing the results from the Content Delivery

Network and from the Portuguese News site. These �gures show the normal behavior

of the systems and enable us to identify periods where the response times fall out of

the ordinary.

Figure 4.6 shows the response of the CDN site for a lapse of several days. We can clearly

observe a pattern in the response that is directly associated to the hour of the day.

During working hours and evening in Europe, we observed a degradation in the request

and response times (see, for example, the left area of the dashed line on September 19,

2014, a Friday). The green and the red lines (respectively, the response on top and the

request times on bottom), clearly follow similar patterns, a sign that they are strongly

correlated. Computing the correlation coe�cient of these variables, r(Req,Res), for

the left side of the dashed line we have r(Req,Res) = 0.89881, this showing that the

correlation exists indeed. However, for the period where the platform is more �stable"

(after the dashed line and before the second peak period) we have r(Req,Res) =

−0.06728. In normal conditions the correlation between these two parameters is low.

This leads us to conclude that in the former (peak) period we found a bottleneck
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Figure 4.7. CDN - end of the bottleneck.
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Figure 4.8. Portuguese News Site bottleneck.
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Figure 4.9. Portuguese Sports News old page � request times.

that does not exist in the latter. However, our method cannot determine where in the

system is the bottleneck. Interestingly, in Figure 4.7, we can observe that the bottleneck

disappeared after a few days. On September 29th, we can no longer see any sign of it.

Regarding Figure 4.8, which shows request and response times of the main page of a

news site, we can make the same analysis for two distinct periods: before and after 9

AM (consider the blue solid vertical line) of December 13, 2013 (also a Friday). Visually,

we can easily see the di�erent pro�les of the two areas. Their correlations are:

� r(Req,Res)before9AM = 0.36621

� r(Req,Res)after9AM = 0.08887

The correlation is low, especially during the peak period, where the response time is

more irregular. This case is therefore quite di�erent from the previous one, and suggests

that a di�erent bottleneck exists in the system, during periods of intense usage.

Figures 4.9, 4.10, 4.11, and 4.12 show time series starting on February 18th, up to

February 21st 2015. We do not show the response times of the non-existent page as

these are always 0 or 1, thus having very little information of interest for us. In all
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Figure 4.10. Portuguese Sports News old page � request times with peaks cut.
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Figure 4.12. Portuguese Sports News inexistent page � request times.

these �gures, we add a plot of the moving average with a period of 100 samples, as the

moving average helps us identifying tendencies.

Figures 4.9 and 4.10 show the request time of the old 129 KiB page request. The former

�gure shows the actual times we got, whereas in the latter we deleted the highest peaks

(those above average), to get a clearer picture of the request times. A daily pattern

emerges in these �gures, as daytime hours have longer delays in the response than night

hours. We can visually see that the response times of Figure 4.11 do not exhibit this

pattern, which suggests a low correlation between request and response times (which is

indeed low). Next, we observe that the request times of the existent and non-existent

pages (refer to Figure 4.12) are out of sync. The latter seems to have much smaller

cycles along the day, although (di�erent) daily patterns seem to exist as well.

Figures 4.13 and 4.14 show a period when the social network web page was down in

the entire world, due to a system miscon�guration. Figure 4.13 shows how the page

behaved, regarding request and response times � before, during and after the system

resumed responding correctly. Figure 4.14 gives a closer look of the period before the

web page failure. Time periods without request or response times occurred when the

client reached the con�gured timeout and aborted the web page request. Currently,

the timeout is con�gured to be 60 seconds. Analyzing Figure 4.13, we can identify the
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period of time when the web page was down or responding incorrectly. This might

be important, if the web page is hosted in a third-party provider that might be held

responsible for the failure and the user wants to complain for a refund (Azure, 2015;

EC2, 2015)

Figure 4.14 gives a closer look of the minutes before the failure. The request time

increased signi�cantly, while the response time remained unchanged � that points to

a bottleneck a�ecting access to the server, and not the response. Facebook publicly

said that �con�guration issue� made to Facebook service did not allow millions of users

to log in the social network (DailyMail, 2015). Prior to the complete failure, we can

observe a 5-minute window, where the problem was starting to become apparent, and

that could be used to �x the problem or alert system administrators.

4.2.3 Client-Side Monitoring Using Two Distinct Networks

In Subsection 4.2.1, we focused on detecting bottlenecks using only client metrics, using

a time series approach. We now resort to two distinct clients. The observation from

two di�erent clients should be coherent; clients should agree on whether a bottleneck

exists, and where does it come from. It they do not agree a transient bottleneck may

be present, or a bottleneck in a di�erent path to the server.

Experimental Settings

We used the same technologies mentioned in Table 4.5. Each client was running a

Selenium instance to invoke a speci�c web page, through Firefox. However, having

two unsynchronized clients would invalidate the results, because we would not know

if the requests were made at the same time. To eliminate this limitation we created

a communication protocol between the clients in Java RMI (Downing, 1998). Before

fetching a page, the two clients communicate with each other, to determine which page

to get and to ensure some degree of synchronicity. The process consists in 3 steps

� �rst, client A noti�es client B to invoke a determined URL; second, both clients

invoke the URL and save the request and response time; and �nally, client A receives

the data from the web page invocation from client B. One of the clients (client A in

this description) has the role of �master�, triggering the web page invocation and the

collection of data from both requests. Clients should be in di�erent locations to have
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Coimbra
Client

Amazon
Client

RMI

Figure 4.15. Experimental Setup - 2 clients

di�erent network connectivities. We picked our own department facilities in Coimbra,

and a virtual machine in the Amazon Web Service cloud in the Northern Virginia

Region AWS (2015). Figure 4.15 illustrates this interaction � the RMI connection is

identi�ed in green, whereas the HTTP connections to the web page are depicted in

orange.

One of the criteria we used to choose the pages to monitor was their popularity. Ad-

ditionally, the web page should have the same location regardless of the origin of the

client. To ensure this, we compared the IP given by the DNS to each client, to ensure

that they were monitoring the same server. A second criterion was to monitor web

pages from di�erent geographical locations.

To conserve space, we only show results of pages that provided interesting results.

Among these, we could �nd some bottlenecks in the following web sites:

� American electronic commerce and cloud computing company � We

kept downloading the main page from this popular web page hosted in the United

States from our two clients. This experiment displays a signi�cant performance

improvement, at some point in time. This improvement was observed in both

clients.

� Chinese Search Engine � this web page is the front-end for one of the most

popular search engines in the world (Alexa, 2015). It is hosted in China. This

web page shows some network perturbations during a speci�c time in both clients.
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� Portuguese Sports News�This is an online sports newspaper already used in

Subsection 4.2.1. The web page is located in Portugal (Europe). We downloaded

the main page during several days. We veri�ed several pattern changes associated

with system bottlenecks in both clients.

Results

Since we now have two clients invoking the same URL, at the same time, we expect

similar server response patterns in both clients. One would assume that whenever the

response time pattern in only one of the clients changes, the di�erence should result

from some bottleneck in the client-server network path that is speci�c to the client

observing the change. However, if both clients observe a modi�cation in the response

patterns (in terms of request and response time series), we can conclude that this is

the result of a component that is common to both clients. Hence, this is the result of

a system bottleneck or a common network path.
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Figure 4.16. American electronic commerce web page
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Figure 4.17. Chinese search engine web page
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We start by analyzing the results of the American electronic commerce web page in

Figure 4.16, which shows the response of the main page for a lapse of several days.

The pair of �gures mostly shows normal behavior seen in Coimbra and in the AWS,

thus allowing us to identify periods when the response times fell out of the ordinary for

one or both clients. We can clearly observe a pattern in the response that is directly

associated to the hour of the day. Additionally, the pattern exists for both clients, this

meaning that both were experiencing the same constraints (system or network) from

the web page. To have a better understanding of the trends, we also show a moving

average of the last 100 samples of response time, in black. Computing the correla-

tion coe�cient for the response and request times for both clients, r(Req,Res), for the

interval between September 12th 13:00 and September 13th 13:00 2015, we get a corre-

lation of r(Req,Res)Coimbra = 0.13896 and r(Req,Res)AWS = −0.07370. Since none

of the clients observed signi�cant congestion conditions, this suggest a normal behavior

of the system. Near the end of the experiment, still in Figure 4.16, we can see an

improvement in the response times of both clients. We can infer that the improvement

experienced by both clients seems to be a consequence of a change in the web page.

An improvement in the system network is less likely, because the request time rested

unchanged for this period.

Figure 4.17 shows the request and response times of the Chinese Search Engine

web page. The web page presents a relatively stable pattern during most of the

days. During this period (before September 16th), the correlation coe�cient was

r(Req,Res)Coimbra = 0.04532 and r(Req,Res)AWS = 0.16566, both low values. How-

ever, for the period after September 16th, there was a signi�cant change observed

by the AWS client, and although less signi�cant, also by the Coimbra client. This

is even clearer when we calculate the correlation coe�cient of both clients for this

period. The correlation in Coimbra was r(Req,Res)Coimbra = 0.69707 and in AWS

r(Req,Res)Aws = 0.57794. This means that the correlation for request and response

times in both clients increased signi�cantly, when compared to the normal pattern. We

are, most likely, observing a network bottleneck in a common path between the server

and the clients, since both request and response times were a�ected.

Figure 4.18 shows a degradation of the response time in 3 distinct moments. This degra-

dation was observed in both clients at the same time. When we calculate the correlation

for a stable period of good performance (e.g., between the �rst and second peak), we
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Table 4.6. Correlation for the 3 peaks of Portuguese Sports News site

Correlation Coimbra AWS

r(Req,Res)1stpeak −0.32036 0.35263

r(Req,Res)
2ndpeak 0.33789 0.35815

r(Req,Res)
3rdpeak 0.28955 0.15749
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Figure 4.19. Portuguese Sports News Web Page - Detail

get r(Req,Res)Coimbra = −0.02381 in Coimbra and r(Req,Res)AWS = 0.17699 in the

AWS. Then, for the three observed peaks, we have the correlation values of Table 4.6.

This correlation coe�cient for both clients in the three peaks di�ers considerably, es-

pecially in Coimbra. We show with �ner detail the request and response times of this

client in Figure 4.19. The correlation is never very high, thus pointing to a problem

that is not a�ecting in the same way the request and response time, especially in the

�rst and third peaks.

4.2.4 Automatic Detection of Bottlenecks Using Two Distinct Net-

works

Our next step was to do a simple automated mechanism to detect bottlenecks, us-

ing information coming from the pair of clients. This is bene�cial, not only because
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automation may eventually lead to a quicker detection of performance problems, but

mainly because a visual inspection as we did in the previous subsections is error-prone

and is subject to all sort of biases. Indeed, with this new scheme we were able to achieve

new conclusions and get a deeper insight of performance bottleneck problems.

Overview

Table 4.7. All possible combinations of congestion and correlation

Client 1 Client 2
Cause

Congestion? Correlation Congestion? Correlation

No Irrelevant No Irrelevant No Bottleneck
No Irrelevant Yes Irrelevant Client 2's Network
Yes Similar Client 2 Yes Similar Client 1 Server or Common Network
Yes Distinct from Client 2 Yes Distinct from Client 1 Multiple bottlenecks

The pair of clients provides four di�erent variables that we can feed into an algorithm:

a boolean value per client telling whether or not the client sees a congestion; and the

correlation between the request and the response times, for both clients. Determining

if the client is observing a congestion in the service is not trivial, in the sense that

di�erent algorithms may respond di�erently. In our experiments, we used an algorithm

based on a moving average, described on Algorithm 2, and further detailed in the next

subsection. Unlike congestion, the correlation is easier to determine. As before, we use

the last 100 metrics of request and response times. Note that for the correlation to tell

us something, we must be careful enough to request pages that are relatively large, but

still go in a single non-chunked HTTP message. Considering high and low correlations,

we get 8 possible combinations of the four variables, of which we arrange the cases of

interest in Table 4.7. We omit the redundant cases, where client 1 and client 2 would

simply swap their variables. For example, since we already have �No, Irrelevant, Yes,

Irrelevant�, in the line before last, it would be pointless to include a �Yes, Irrelevant,

No, Irrelevant�.

Line 1 of the table is pretty much trivial: none of the clients observes a bottleneck,

therefore, looking for correlation is not relevant. In line 2, the client observing the

congestion can tell that the network is congested. Since client 1 observes no congestion,

the network of client 2 is the culprit. The following case is equally straightforward:

when both clients observe a congestion and a similar correlation, the server or common

network is the culprit. In the following case, more than one bottleneck exists: client

1 can tell that the server or common network is the most likely cause for the delay in
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the request and response times, because responses are taking quite a long time. On the

other hand, client 2 is also observing a congestion, but it can see a di�erent correlation

in the request and response times, thus concluding that the problem lies in other place.

This is possible, if both the server and client 2 network are sources for delays. We will

now try to con�rm to what extent do real observations actually �t into this model.

Algorithm to detect bottlenecks

In this subsection, we present an algorithm that evaluates the variables of Table 4.7

and outputs the cause of the problem. The algorithm combines the request and re-

sponse time series retrieved at the same time, by two distinct clients for the same

web page, collected in our �synchronous request� experiments. We wrote the algorithm

in Python and we describe its high-level details in pseudo-code in Algorithm 2. The

expression CongestionClient (1 or 2) ≥ CongestionThreshold becomes true when the

moving average of the request plus receive time of the last 100 values grows above 15%

of the average of all samples, for that client. We consider the threshold that splits low

from high correlation to be 0.2. The correlation also takes into account the last 100

measurements.

Results

In this subsection, we present some of the results we obtained with Algorithm 2 and

compare them to the data previously analyzed in Subsection 4.2.3. Although we ran our

algorithm under varied conditions, we focus on its responses for the inputs depicted in

Figures 4.16, 4.17, and 4.18. We can say that all the bottlenecks we identi�ed by visual

inspection in these �gures were also identi�ed by the algorithm, which pointed out the

same sources for problems. Although this might result from the speci�c thresholds we

selected and from the size of the sliding window in the moving average and network

correlation, the e�ort of tuning the algorithm and making it run under real data allowed

us to reach two results:

� The algorithm cannot cope with request or response times that are too low. For

instance, if the request or response times fall to values near the millisecond range,

as in one case where the client and server were very close to each other, any small

increase in the response time, no matter how small it is, will look as a congestion.
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Algorithm 2 Identify Bottleneck

if CongestionClient1 ≥CongestionThreshold then
if CongestionClient2 ≥CongestionThreshold then

if CorrelClient1 ≥HighCorrelationThreshold then
if CorrelClient2 ≥HighCorrelationThreshold then

Server or Common Network
else

Client 1's Network and Server ( Multiple bottlenecks presented )
end if

else if CorrelClient2 ≥ HighCorrelationThreshold then
Client 2's Network and Server ( Multiple bottlenecks presented )

else
Server or Common Network

end if
else

Client 1's Network
end if

else if CongestionClient2 ≥ CongestionThreshold then
Client 2's Network

else
No Bottleneck

end if

� The algorithm wrongly identi�ed some �outliers� while handling requests that take

some time to be answered. This happens because some requests take so long to

get an answer that they are able to push the moving average above the congestion

threshold. The interesting thing is that this sort of delay, which happens rarely, is

usually not seen by the peer client, which is fetching pages from the same server;

and it is not seen neither before, nor after, by the same client. This suggests that

some requests get an unfair amount of wait. If this is really the case, what is

the source of the problem and how often does this happen remains as an open

question.

4.2.5 Discussion and Conclusion

We proposed to detect bottlenecks on HTTP servers using client-side observations of

request and response times. A comparison of these signals, either over the same, or a

small number of resources, enables the identi�cation of bottlenecks. We did this work

having no access to internal server data and mostly resorting to visual inspection of
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the request and response times. If run by the owners of the site, we see a number of

additional options:

� Simply follow our approach of periodically, invoking URLs in one or more clients,

as a means to complement current server-side monitoring tools. This may help

to reply to questions such as �what is the impact of a CPU occupation of 80% for

interactivity?�.

� A hybrid approach, with client-side and server-side data is also possible. I.e.,

the server may add some internal data to each request, like the time the request

takes on the CPU or waiting for the database. Although much more elaborate

and dependent on the architecture, instrumenting the client and the server sides

is, indeed, the only way to achieve a full decomposition of request timings.

� To improve the quality of the analysis we did in Subsection 4.2.2, site owners

could also add a number of very speci�c resources, like a page that has known

access time to the DB, or known computation time.

� It is also possible to automatically collect timing information from real user

browsers, as in Google Analytics (Clifton, 2008), to do subsequent analysis of

the system performance. In other words, instead of setting up clients for moni-

toring, site owners might use their real clients, with the help of some JavaScript.

In summary, we collected evidence in support of the idea of identifying bottlenecks from

the client side. We managed to run several experiments with a second client. Although

mostly concurring with our initial observations, the second client opened an entirely

new perspective: sometimes one of the clients observes a delay in a single very concrete

request, which is neither observed by the other client, nor by the client itself, either

before or after. I.e., even when the server seems to be delivering a normal service,

clients may occasionally fail to receive a response in reasonable time.

Let us consider the unique route taken by each request: the TCP connection takes the

request up to the server, where some thread reads it, processes it, and (most likely)

forwards it to another layer of the system, where some thread will eventually fetch

several items from the database, before enqueuing or sending the response back to the

client. Each request might follow slightly di�erent routes, depending on the threads

that get it. This suggests a simple, but signi�cant conclusion: a few unlucky requests
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get blocked at some point inside the server. While there was never any guarantee that

all requests would get a fair treatment, or that they would all get a quick response,

observing such cases in a moderate number of samples is, we think, interesting. This

observation raises the question of determining the exact mechanism behind starvation

of some speci�c requests, and how likely is such mechanism to come into play.

4.3 Conclusion

This chapter focused on monitoring HTTP infrastructures. To achieve this task we

used distinct approaches: �rst, we analyzed a laboratory experiment to understand

the patterns for requests and response times that are leaked from a system that is

exposed to several bottlenecks. Secondly, using this knowledge, we gathered statistics

from several major web pages through weeks, to understand what kind of information

the client would get.

Then we analyzed the limits of black-box monitor using only client-side data. Taking

into consideration the bottleneck injection from Section 4.1 and the analysis of distinct

patterns in time series of Section 4.2, we think that there is a path to improve current

monitoring solutions. Having a black-box solution may be too ambitious, but a hybrid

solution where the white-box standard tools are enriched with valuable data from the

client-side might be promising.

We would also like to understand if a black-box algorithm � such as a machine learning

algorithm �, can present good results detecting bottlenecks in a distributed system.

This will be one of the research question for the next chapter: identify the possibility

to have machine learning techniques to predict system components' health.
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Machine Learning Monitoring

Techniques for Web Sites

System monitoring tools, Application Performance Monitoring (APM) or Real User

monitoring (RUM) can help to ensure that users accessing services enjoy a good quality

of experience (QoE). Unix boxes usually ship with a plethora of monitoring tools, such

as top, lsof, or netstat. Together with Nagios (Nagios, 2019) or Zabbix (Zabbix,

2019) these may help system administrators to analyze a large array of raw metrics

out-of-the-box, such as memory or CPU occupation by process, open �les, network

connections, and many others.

APM suites, such as New Relic (NewRelic, 2017), AppDynamics (2017) or DynaTrace

(2017) enable analysis of speci�c applications, at the cost of being more intrusive.

Normally, these tools launch agents on systems, which can, under certain conditions,

decompose application running times in components, say database time, or service

invocation. While system monitoring and Unix tools may lack application context,

they are less intrusive than APMs and need fewer resources. However, Unix tools

cannot grasp the users' quality of experience. On the other hand, commercial APM

suites can amass much more information on the application, for some programming

languages, usually at the expense of signi�cant resources and con�guration.

White-box suites, APM or simple monitoring tools, have two important disadvantages:

they are closely coupled to the infrastructure, and they ignore the fact that the client,

not the server, is the most important piece of the business application. The client
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has some speci�c conditions, such as network and third-party resources that cannot be

controlled (and monitored) by the system itself.

Therefore, to gain a system-wide perspective, monitoring tools should include client-

side data. We have followed this path in the previous chapters. In Chapter 3, we

focused on using JavaScript snippets to gather client-side information with an approach

similar to Google Analytics (GoogleAnalytics, 2018). In this Chapter, we extend our

previous work of determining the conditions of operation of an infrastructure and the

corresponding network, from a limited amount of data. This is simple and brings the

bene�t of a monitoring suite that is minimally tied to the architecture and software

solutions used in the system.

In previous chapters, we analyzed distinct approaches to visualize and track anomalies

and detect bottlenecks in HTTP infrastructures. In this chapter we go a step further

and use machine learning techniques.

Machine Learning was �rst introduced by Arthur Samuel. The �rst published work

in this scienti�c �eld presented an algorithm that learned and created tactics playing

checkers (Samuel, 1959). Since then, countless algorithms were introduced. A major

division exists between algorithms with labelled data � supervised techniques �, and

others with unlabelled data that extract insights from raw data. Some of the algo-

rithms are demanding in terms of computational resources (e.g. deep learning), thus

making deployment di�cult in real environments. This was one of the reasons for the

limitations of machine learning in real world applications � resources to be able to

train complex models. After some technology breakthroughs, machine learning started

to gain visibility once again with a popular game � chess. Machine victories over rep-

utable world chess players, amazed the public and attracted attention to the potential

of machine learning. In the words of the Danish grandmaster Peter Nielsen: �I always

wondered how it would be if a superior species landed on Earth and showed us how

they played chess� (Nielsen, 2019).

It was not only in chess that machine learning and arti�cial intelligence, disrupted cur-

rent trends. E-commerce and streaming applications, recommendation systems based

on clustering algorithms have recently evolved to improve services and pro�ts of com-

panies such as Amazon or Net�ix (Gomez-Uribe and Hunt, 2015; Linden et al., 2003).

Fast forwarding 60 years from the article of Arthur Samuel, machine learning (ML) and

arti�cial intelligence is revolutionizing almost every �eld of human life, and creating
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new business models. In this chapter we explore the potential of ML to do client-side

monitoring of a distributed system. Machine Learning might help us in many aspects

of our work, such as analysing raw data, or predicting resource occupation.

The remainder of this chapter is organized as follows. First, in Section 5.1, we evaluate

how we can understand if a bottleneck is occurring in a laboratory experiment. Then, in

Section 5.2 we go a step further, and implement a more complex and realistic experiment

analyzing the information that leaks from the distributed system. In Section 5.3 we

conclude this chapter.

5.1 Black-Box Monitoring of a Single Machine

The most intrusive monitoring suites tend to ignore the actual clients' waiting times,

often a result of their real locations and network conditions. Furthermore, some re-

sources on a web page are served from third-party providers, thus slipping under the

radar of server-side instrumentation. To gather a complete picture of the system, white-

box monitoring solutions should include client-side data. The simplicity of installing

and changing as little as possible and automatically observing beyond administration

frontiers is extremely appealing.

In this section, we follow this path and evaluate to what extent can black-box mon-

itoring identify di�erent bottlenecks, using only clients' data. Real user monitoring

suites, like Pingdom (Pingdom, 2017), Monitis (Monitis, 2017) or open source project

Bucky (Bucky, 2017) do this to some extent, by relying on clients' data, but they

mostly serve to create dashboards and trigger noti�cations according to a set of rules.

In simple terms, our goal in this section di�ers from these previous approaches, because

we want to automatically infer more information about the internal state of the server,

using only readings from clients.

To extract information from the server, we resort to two types of timings, known as

request and response times. Shortly, the request time is the time that elapses from the

request to the �rst byte of the response, on the client, whereas the response time is the

time to transfer the entire information following this byte. Based on these times, we

aim at pinpointing the precise cause for internal and external bottlenecks. We created

a laboratory experiment with the Mediadrop open source video service (Mediadrop,

2017), to identify two possible sources of bottlenecks: CPU and network. We ran a set

97



Chapter 5

of clients under a combination of 100 di�erent types of CPU and network performance

restrictions. For each of these combinations, we collected the request and response

times, for the batch of client requests. Using these data, we trained two algorithms, a

linear and a non-linear one, to identify the state of the server.

Our results demonstrate that client-side data enable CPU and network bottleneck iden-

ti�cation, thus showing not only the utility, but the necessity of considering client met-

rics for performance monitoring. The increase in complexity to collect the additional

data is also fairly small, because JavaScript snippets can do the trick of uploading lim-

ited amounts of performance data to the server. The trade-o� involved thus seems to

be quite favorable and independent of the operating system, server-side programming

language, or platform.

The rest of this section is organized as follows. Subsection 5.1.1 describes the prob-

lem we tackle in this section and the method we used to solve it. Subsection 5.1.2

describes the experimental settings. Subsection 5.1.3 discusses distinct machine learn-

ing alternatives to solve our problem. In Subsection 5.1.4 we show the results of our

experiment and evaluate the meaning of these results, the strengths of this approach

and the limitations.

5.1.1 Problem Description

CPUNetwork

Database

Figure 5.1. Representation of the considered server-side bottlenecks

As we show in Figure 5.1, we consider a stand-alone HTTP server, including a relational

database, and a set of clients requesting objects available on the server. We collect the

request and response times seen by each client, and, based on these times, we aim at

determining the level of utilization of network and CPU on the HTTP infrastructure,

including the client-server network. We assign a real number in the interval [0, 1] to

the availability of each of these resources, where 1 stands for a completely available

resource and 0 for a completely occupied one.
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Client Server

first byte

last byte

request
time

response
time

Figure 5.2. Request and response times

We use two metrics that are available on web browsers, via JavaScript: the request time

and the response time. In Figure 5.2, we can see that the request time is the time it

takes from the client's request to the �rst byte of the response. This time includes the

network round-trip-time, plus all the server processing delays. The response time is the

time from the �rst byte to the last byte of the response. To some extent, the former

time mostly involves latencies, whereas the latter mostly concerns network transfer

throughput, although in some cases the server might also need to perform extensive

computation and disk operations to produce the �rst byte, or even the remaining bytes

of the response.

To automatically determine the kind of bottleneck a�ecting the server, clients perform

object requests to the server and measure the request and response times. As we discuss

in Subsection 5.1.4, we eventually discarded the response time, and used the request

time alone. Based on a sequence of request times, the goal is to determine the level of

availability of CPU and network in the [0, 1] scale. Note that in real conditions, system

administrators can follow an approach similar to Google Analytics (GoogleAnalytics,

2018), to upload client data to their facilities and analyze such data, to determine server

operating bottlenecks.

In our experiments, we run the server under a wide range of controlled conditions,

knowing beforehand the exact level of availability of each resource. Each of these

conditions produces di�erent request times on the clients. We then get the times

directly from the clients and add the availability numbers for the two resources, in the

[0, 1] interval. We train machine learning algorithms using these data, to perform an

o�ine analysis of the overall performance, to understand the possibility of pinpointing

the server status using only client data.
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5.1.2 Experimental Setup

To experiment our method, we used the Mediadrop (Mediadrop, 2017) open source

video platform. Mediadrop is one of the components of BenchLab (Cecchet et al., 2011).

BenchLab addresses the limitations of older benchmark tools like TCP-W (TPC-W,

2017), or RUBIS (Rubis, 2017), which are outdated and do not include Web 2.0 fea-

tures.Ceehet et al. (Cecchet et al., 2011) list some more possibilities, but their adoption

is somewhat more complicated, because these benchmarks lack open source implemen-

tations.

We installed Mediadrop on a Ubuntu 14.04.1 LTS Server x64, running on a Citrix

XenServer virtualization platform. The virtual machine has 2 single-core Intel Xeon

CPU E5-2650 0 @ 2.00GHz virtual processors, and 2 GiB of RAM. We used a server

thread pool with size 10, along with other Mediadrop default settings and components.

The storage is accessed through a storage area network, via 10 Gbps �ber channel.

Mediadrop supports HTML5, Flash, and includes features such as video statistics or

popularity, social network integration with Facebook and Twitter, content management

and the ability to import videos from Youtube. Mediadrop has an o�-the-shell front-

end that can be accessed through a browser to let users see, import or comment videos.

It was written in Python and can be extended via plugins.

To simulate CPU bottlenecks, we used the cpulimit tool (Cpulimit, 2017), which limits

the CPU usage of a process. To restrain the network available to the Mediadrop server,

we used the tra�c control tool (Tra�cControl, 2017). We varied the available CPU

from 10% to 100% in steps of 10% (for 10 di�erent values overall) plus the network

from 100 kbps to 1000 kbps in steps of 100 (another set of 10 values). In total, with

these two tools, we operated the server under 100 di�erent conditions (10 × 10), by

doing requests from the client. The goal is simple: understand if, from the client's

point-of-view, we can recognize these distinct patterns of network and CPU usage.

To observe the e�ect of the aforementioned tools, and ensure the correct outcome of

the experiments, we resorted to the /proc virtual �le system. For the CPU, we got

data directly from /proc/stat; for the network utilization, we used bmw-ng (BwmNg,

2017).

We ran client processes on the same virtualization infrastructure as the server, using

a similar hardware con�guration, with two identical single-core virtual CPUs, in the
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Table 5.1. Software used and distribution.

Component Observations Version

Mediadrop open source video platform 0.10.3

Selenium selenium-server-standalone jar 2.53.1

Firefox browser 45.4.0

JMeter performance application 3.0

Xvfb xorg-server 1.13.3

cpulimit binary 0.2

tra�c control change network bandwidth 1.0.2

same local area network. The client's operating system is CentOS 6.7 x64. To perform

client-side operations, we used a test tool called Selenium (Selenium, 2015). Selenium is

a framework that emulates clients accessing the Internet using browsers. Normally, this

tool is used for front-end tests, but it can be used to automate tasks, such as accessing

a Uniform Resource Locator (URL) and collect the responses, as we do in this Section.

To avoid being tied to a speci�c browser, Selenium uses a WebDriver, which allows the

framework to use pretty much any option. In our experiments we used Firefox. To

run multiple browsers without real screens, we used Xvfb (2015), to emulate a display

and perform the graphical operations. To control the clients, we injected the browser

requests through Apache JMeter (JMeter, 2013), which is a standard performance

evaluation tool. JMeter triggered the clients, each one of them using the Selenium

framework, coupled with Firefox. We resorted to the Navigation Timing Application

Programming Interface (API) (NavigationTiming, 2015), to collect performance times.

This API, is a JavaScript-based mechanism that runs on the browser and enables

collection of several performance times, including interaction times with the server,

as well as rendering and processing times of the browser itself. Figure 5.3 depicts the

di�erent metrics that are available to this library, as de�ned by the World Wide Web

(W3) Consortium.

This API collects information like DNS or TCP times, as well as the request and

response times we need for our algorithms. Table 5.1 summarizes the software and

respective versions of the most important components of the setup. Our utilization

of standard tools reproduces production site conditions, something that would not be

possible with customized clients.

In our experiments, we used 4 browsers, each one of them triggered by a distinct

JMeter thread. Each browser requested the entry page of Mediadrop 25 times. With
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Figure 5.3. Navigation Timing metrics (�gure from NavigationTiming (2015))

the combination of the two metrics, plus three iterations, our infrastructure generated

300 distinct results (10 steps for CPU × 10 steps for network × 3 iterations). From

these 300 we collected 100 distinct results using the median of the three iterations that

each client did for the 25 requests. These 100 values, together with the operating server

conditions, will be the input of the machine learning algorithms of Section 5.1.3.

The program we used in the experiment is summarized in Algorithm 3.

5.1.3 Machine Learning Approach

…
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…
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C
P
U

N
W

I
O

CPU Level

NW Level

IO Level

Figure 5.4. Machine learning regression models for CPU and network prediction of
availabilities

We followed a machine learning approach to predict CPU and network availabilities

from the clients' input data. We created a regression model (rather than a classi�cation)
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Algorithm 3 WebPage report

Input: Range of metrics to measure
Output: web pages metrics
1: Initialization :
2: cpu_range = list(range(10,100,10))
3: network_range = list(range(100kbit, 1000kbit, 100))
4: iteration_range = list(range(1, 3, 1))
5: Open Mediadrop Application
6: LOOP Process
7: for all cpu_rank in cpu_range do
8: Limit Mediadrop Application to cpu_rank
9: for all nw_rank in network_range do
10: Limit NW Bandwith to nw_rank
11: for all it_rank in iteration_range do
12: Run it_rank iteration
13: Invoke JMeter from the client machine;
14: Create 4 threads with respective Firefox Browsers;
15: Invoke web page link;
16: Save metrics to File;
17: end for
18: end for
19: end for
20: Parse Data and create �nal output with the median from all experiments.

for each of the two problems, as illustrated in Figure 5.4, since the output variables take

continuous values (rather than class labels). The idea behind regression is to predict

a real value, based on a previous set of training examples (Sen and Srivastava, 2012).

We provide 100 di�erent lines to each regression model, where each of the lines has 100

inputs: 25 request times seen by the �rst client, another 25 by the second, etc.. There

is a 101st value in the line, which is the availability of the resource (i.e., the actual

output value, e.g., CPU). This reference is necessary for training, but it is not available

in the test cases.

A wide range of regression methods are available in the literature (Witten et al., 2016).

In the context of the present study, two of them assume particular relevance: simple lin-

ear regression (SLR) and Support Vector Regression (SVR). SLR is a simple algorithm

where input-output linearity is assumed. This method was selected for its simplicity,

speed and adequacy as a baseline approach, following the principle of Occam's razor

or law of parsimony (�when you have two competing theories that make exactly the

same predictions, the simpler one is the better�) (Thorburn, 1915). However, since
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Table 5.2. Regression results for CPU and network availabilities

Method
CPU Network

MAE CC MAE CC
SLR 0.21± 0.03 0.59± 0.12 0.28± 0.05 0.29± 0.17

SVR 0.12± 0.02 0.82± 0.05 0.14± 0.02 0.79± 0.05

the linearity assumption may not be valid, we also evaluate a non-linear solution, in

this case, SVR. SVR is a particular case of Support Vector Machines, where the out-

puts are real-valued and input-output non-linearity is typically assumed, by using a

non-linear kernel, e.g., polynomial or radial basis function kernels. SVR's have proved

to outperform other regression approaches in a wide range of problems (Panda et al.,

2013).

These algorithms were run using the Weka framework (Hall et al., 2009). For SVR,

the normalized polynomial kernel was selected based on experimental results. Both

input and output data were normalized to the [0, 1] interval, to attain better numerical

behavior in SVR training. As for algorithmic parameterization, both algorithms were

employed with default parameters. Finally, all experiments were performed using 10-

fold cross validation with 20 repetitions.

5.1.4 Results

As we referred in Section 5.1.2, we collected a set of 100 request and response times for

the Selenium and JMeter client invocations. As we went through the data, we observed

that the request time completely dominated the overall time necessary to retrieve the

webpage, whereas the response time only contributed with an insigni�cant o�set, thus

providing little or no information at all. For this reason, we used the request times

alone as the input to the machine learning algorithms.

The results obtained for the CPU and network availabilities regression models are sum-

marized in Table 5.2. We report average results for two evaluation metrics: the mean

absolute error (MAE) and the Pearson correlation coe�cient (CC), between the pre-

dicted and actual values. Since we performed 20 repetitions of 10-fold cross-validation,

we present average and standard deviation results.

As one can observe, good results were attained for CPU and network availability predic-

tion. Average 0.12 MAE (with 0.02 standard deviation) and 0.14 (with 0.02 standard
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deviation) were attained using SVR, respectively. On a [0, 1] range this is a good result.

Regarding correlation, high correlation coe�cient values (0.82 and 0.79, respectively)

also denote that the proposed SVR approaches adequately model CPU and network

availabilities.

Both SLR and SVR work better with the CPU than with the network, because CPU

bottlenecks tend to dominate the request time. When the availability of the CPU is only

0.1 the average request time of the 100 requests (4 clients times 25 requests) can grow

as large as 10, 000 ms, whereas a very occupied network can only raise request times

to around 400 ms. Hence, very large request times point to low CPU availability, but

can make it quite di�cult to identify the state of the network, because this component

contributes relatively less to the overall delay. Indeed, when CPU availability is only

10%, the correlation coe�cient (CC) of the network decreases to 0.4, for SVR, as we

try all network availability levels. Finally, we observed that when the CPU and the

network contribute with delays of the same magnitude, in the order of 200 − 300 ms,

the correlation coe�cient of the network grows to 0.75. Put in other words, SVR could

easily identify the availability of the resource that is responsible for the longer delays

(CPU), and also did a good job for a second resource (network), as long as the relative

magnitudes of both delays are more or less the same. In the extreme case where one of

the resources (CPU) dominates the delay, the other (network) becomes almost invisible.

Comparing SVR and SLR, the former clearly outperforms the latter in all cases and in

both metrics (MAE and CC). To evaluate the signi�cance of these results, statistical

signi�cance tests were performed using the MAE results obtained for SLR and SVR.

As both MAE distributions were found to be Gaussian using the Kolmogorov�Smirnov

test, the paired T-test was carried out. These results proved statistically signi�cant (p-

value < 0.001). Hence, the improved performance obtained from the non-linear SVR

model shows that the input-output relationship cannot be adequately captured using

a simple linear regression model.
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5.2 Black-Box Monitoring of HTTP Clusters

In the previous Section, we focused on the detection of bottlenecks resorting to multiple

clients and a single HTTP server, with the goal of analyzing the feasibility of a black-box

approach.

We now extend the previous section to a more complex scenario, with a cluster of server

machines. Our goal is to determine the conditions of operation of the cluster of servers

and network, using a limited amount of data. We aim to experimentally evaluate

whether a client can tell if a speci�c machine of the cluster is underperforming. This

is simple and brings the bene�t of a monitoring suite that is minimally tied to the

architecture and software used in the system.

To get information from the server, we will continue to use the request time. Again, we

resorted to the Navigation Timing API framework (NavigationTiming, 2015), available

in the most common browsers, to get this time.

Based on client data, we analyze the possible causes associated with internal or external

bottlenecks. We ran several clients that accessed the Mediadrop application, under a

combinations of di�erent CPU and network operating conditions. For each combina-

tion, we collected the request times, for the batch of clients accessing the web page.

The data was used to train two distinct machine learning algorithms, a linear and a

non-linear one.

Our results demonstrate that it is possible to have CPU and network bottleneck detec-

tion using client-side data even for a cluster of servers. Since data is gathered using a

JavaScript snippet, it would be easy to upload this information to a central point, with

the convenience of this approach being operating system and platform independent.

This solution is clearly more limited than in a single-server machine, because other

machines of the cluster can now compensate for problems in one of their peers. Never-

theless, we can still identify in coarse terms the operating conditions of each machine.

Given the simplicity and the complete scope of this form of monitoring, we argue that

this approach should be a complement to standard monitoring solutions, with the goal

to improve the clients' quality of experience.

The rest of the Section is organized as follows. Subsection 5.2.1 describes the method.

Subsection 5.2.2 describes the experimental settings for the problem we tackle in this
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Figure 5.5. Representation of the considered infrastructure

section. Subsection 5.2.3 discusses distinct machine learning techniques to solve our

problem. In Subsection 5.2.4 we show the results of our experiment, evaluate the

meaning, the strengths of this approach, and the limitations.

5.2.1 Problem Description

In our experimental evaluation, as illustrated in Figure 5.5, we consider an HTTP

infrastructure comprised of 10 server machines running a social media application (Me-

diadrop, 2017). In the front of the server machines we have a load balancer (LB) and

a set of clients requesting HTTP objects.

As in Section 5.1, we use a metric that is available in all modern web browsers, via the

framework Navigation Timing API: the request time. Figure 5.2 depicts this metric,

including the server processing time and the network round-trip-time from the begin-

ning of the request, until the �rst byte of the response has arrived. As before we do

not need a complementary metric, the response time, which includes the time needed

to get all the response. Since we were always able to infer network occupation, from

request time alone, we simply did not use the response time.

Besides the request times observed by each client, we added an indication of which

back-end server sent the reply in the response. Clients should then upload their data

to a central point, from where we aim to automatically infer two metrics: 1) the level

of occupation of the server's CPU and 2) the client-server network occupation. This

information will enable system administrators to know the real operating conditions

that clients experiment, and to react to bottlenecks in parts they control.
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In Section 5.1, we directly used raw data collected by the clients without any kind

of processing. Therefore, the order of arrival of the clients' responses had an impact

in the method, i.e., having client A's response before client B's response was not the

same as having the responses in reverse order. The reason for this is that we fed the

request times to the machine learning algorithms in some speci�c order. In this section,

we wanted to avoid this dependency. Hence, we used the averages and median times

of all the clients' raw data, in a rolling window approach. These values were then

mapped with the vacancy of the resources in the interval [0, 1] (0 is entirely occupied,

1 is entirely vacant).

As we analyze on Subsection 5.2.4 to achieve better results in the machine learning

algorithms, we also added information of where the request was processed, having this

way a more �ne grain information concerning the system. In a production environment,

to collect this information, an approach similar to GoogleAnalytics (2018) could be

made, to collect and determine the operation status of the server.

The server was run in di�erent operation sets, knowing a priori the vacancy of each

resource. The clients for each set ran several requests and all the data was collected.

Using this data, we trained the machine learning algorithms.

5.2.2 Experimental Setup

In our experimental setup, we used as before, the open source platform for video con-

tents, named Mediadrop (Mediadrop, 2017). The Mediadrop software was installed in

ten machines running Ubuntu 16.04, running on a virtualized platform. Each virtual

machine has 2 single-core Intel Xeon CPU E5-2650 0 @ 2.00GHz virtual processors,

and 1 GiB of RAM. We used the Mediadrop default settings.

To simulate the CPU and network loads, we used two distinct tools. In one speci�c

machine of the cluster, we used the cpulimit tool (Cpulimit, 2017). This tool limits

the CPU of the process running Mediadrop. To limit the network, we used the tra�c

control tool (Tra�cControl, 2017). CPU vacancy for the Mediadrop processes was

limited from 10% (almost entirely occupied) to 100% (entirely vacant) in steps of 10%.

For the network, we used 5 levels, as we did not notice much performance di�erences in

having additional levels. The network levels used were 50, 100, 250, 500 and 1000 kbps.

This gives a total of 10× 5 = 50 di�erent server conditions.
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As before, to control the actual e�ect produced on the servers, we used standard tools,

such as the information obtained from /proc/stat or top, for the CPU utilization,

and bmw-ng (BwmNg, 2017) for the network usage.

The load balancer used to distribute requests among the 10 back-end servers was

an NGINX proxy server. The load balancing algorithm used was round-robin. It is

relevant to mention that the load balancer includes a health-check mechanism that

cuts the load on heavily stressed machines, thus having some interference on the ex-

periments we did.

Client applications use a similar hardware con�guration, with two virtual CPUs. The

operating system is CentOS 6.7 x64. Since we wanted to invoke the Mediadrop webpage,

we used Selenium (Selenium, 2015). In this scenario, we used this tool to access the

Mediadrop webpage in an autonomous way, and collected the request times.

To control the several clients that access the infrastructure, with minimal e�ort, we

integrate the Selenium clients with Apache JMeter (JMeter, 2013), which is a standard

performance tool. Hence, our experimental setup concerning the clients, consisted of

JMeter invoking our clients emulated by Selenium and Firefox, which collected the

information from the Navigation Timing API (NavigationTiming, 2015). The compo-

nents used in the experiment are identical to Table 5.1 with the inclusion of NGINX

to balance the load throughout the 10 machines.

We used a total of 4 browsers, each one of them associated with a JMeter thread.

We con�gured each thread (i.e. each client) to invoke the entry page of Mediadrop

application 50 times - for a total of 200 requests. To provide more data to the machine

learning algorithms, we made 20 iterations for each combination of CPU and network

occupations. This means that for the initial 200 requests, we generated 4, 000 raw

results, for each of the 50 con�gurations � a grand total of 200, 000 requests of total

raw data for all the experiment.

The 4, 000 requests of each setup were aggregated to produce results independent of

the invocation order. For each of the 4, 000 requests concerning one con�guration, we

aggregated request times by computing the following data: the number of requests

processed by the back-end server machine (as we said, the server leaks the machine ID

to the client), the minimal request time, the maximum request time, the median of the

request time and the mean request time observed. With this information, we added
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the CPU or network level, depending on the regression case we are trying and fed the

data to the algorithms of Section 5.2.3.

5.2.3 Machine Learning Approach
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Figure 5.6. Example of Machine Learning regression models for CPU prediction of
availabilities

With the information collected in our experiment, we used two machine learning algo-

rithms to predict the CPU and network occupation, based on the clients' data. The

method used in this section is similar to the one used in previous section, however some

di�erence exists. We aggregated the raw data for the several iterations, where each

line had the target value of the con�guration of CPU or network. Each line has the

features represented in Figure 5.6 and the output to be predict, which is the vacancy

of the resource (i.e., the actual output value, e.g., CPU in the �gure). This latter value

is available in the test scenario, but unavailable in the validation cases. The vacancy

of resources is normalized in the interval [0, 1], being 1 an entirely free, and 0 a totally

occupied resource.

There is a wide body of knowledge regarding regression models, e.g. Witten et al.

(2016). In this context, we opted for the two previous used algorithms: Simple Linear

Regression (SLR) and Support Vector Regression (SVR).

Both algorithms were run using the Weka framework (Hall et al., 2009). For the SVR,

we used the normalized polynomial kernel, with normalized data in the interval [0, 1], to

achieve better behaviour in the training set. For SVR and SLR we used default values

for the remaining parameters. To analyze the data, we used 10-fold cross validations,

with 20 repetitions.

5.2.4 Results

The results obtained for CPU and network occupation for the two distinct models

are presented in Table 5.3 and in Table 5.4. Table 5.3 presents the values for the 10

levels of CPU and 5 levels of network and in Table 5.4 we present the values with a
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Table 5.3. Regression results for CPU and network availabilities � all occupation levels

Method
CPU Network

MAE CC MAE CC
SLR 0.18± 0.03 0.43± 0.11 0.19± 0.01 0.56± 0.11

SVR 0.16± 0.06 0.45± 0.17 0.21± 0.13 0.51± 0.19

Table 5.4. Regression results for CPU and network availabilities � 3 ranges of levels
(small, medium, large)

Method
CPU 3 levels Network 3 levels

MAE CC MAE CC
SLR 0.12± 0.03 0.70± 0.11 0.18± 0.08 0.71± 0.16

SVR 0.15± 0.10 0.85± 0.12 0.15± 0.13 0.76± 0.17

subset of the collected values. This subset was chosen taking into consideration the

small, medium and large values of the interval of both CPU and network occupation

mentioned in Section 5.2.2. The problem of having the complete range of availabilities is

that similar levels of CPU and network are very di�cult to separate due to the in�uence

of the remaining machines in the cluster. We thus restricted our goal to check if the

methods can actually do a good job of telling the big picture regarding the resource

state (resource available, unavailable or halfway).

In Table 5.3 and Table 5.4 we show the MAE results between the estimated and the

real value. Since we make a 10-fold cross-validation, with 20 repetitions, we present

the values associated with the average and standard deviation of all the iterations.

While we get acceptable results in Table 5.3, results in Table 5.4 are much better. We

can see that the former results are only average, but if we only consider 3 ranges of

vacancy (small, medium, large), as in the latter table, the results are very good. We get

a particularly high correlation, as well as low MAE, this meaning that both machine

learning methods, specially SVR can do an excellent regression.

Results are better for the CPU bottlenecks, because, as before, the CPU bottleneck

tends to dominate the overall request time. Specially in lower CPU vacancy (10%)

the overall request time grows considerably (in the order of 10, 000 ms), whereas a

very occupied network bottleneck only produces a delay of 400 ms. Therefore in the

extreme case of low CPU and network resources, the time is largely dominated by the

CPU starvation.
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When we compare the results of this section with the work of Section 5.1, we verify

that results are not so good now. Since the infrastructure is more complex, with a load

balancer and 9 extra servers, patterns in the request time become more elaborate. This

is true even knowing the machine sending the response. In fact, if we did not know this,

we would not be able to get any information at all regarding the state of one particular

server (the other 9 would compensate for any trouble).

5.3 Conclusion

Monitoring of web pages is a major challenge, due to the complexity, third-party re-

sources and the need to achieve excellent quality-of-experience. The standard approach

is to rely on white-box tools that collect performance metrics from the server. However,

this tends to be intrinsically associated with the architecture and software used, thus

excluding the clients' point-of-view. Since the goal is to understand if the quality of ex-

perience is good, it is important to collect metrics from the client, especially due to the

client-to-server network and external resources that are outside of the administrators'

control.

The main objective of this chapter was to perform automatic detection of bottlenecks.

The evidence we collected supports the idea that a black-box monitoring system, using

client metrics alone, can be achieved with limited e�ort. In particular, results demon-

strate that it is possible to accurately separate an internal server bottleneck, such as

CPU, from external network bottlenecks. Furthermore, since this method is not tied

to any operating system or programming language, it is compatible with current mon-

itoring systems, thus being able to complement standard white-box monitoring tools.

In the process, we realized that there are limits to what we can infer from the client per-

spective, or more precisely, and in converse terms, we identi�ed some of the information

that the server and networks leak about its internal condition, during their operation

(in a process that bears some similarities to black-box attacks that aim at gaining in-

formation from the physical implementation of crypto systems (Vateva-Gurova et al.,

2015; Wang et al., 2017)).

As future work, we want to mitigate some of the disadvantages of using a supervised

machine learning technique. Using a trained data set may be unfeasible to do in large

production systems. Next we do an attempt to build a model of complex systems from
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the client's observations, and use that model to infer the internal state of the system.

This will be one of the research question for the next chapter � identify the possibility

to simulate and predict system components' occupation in microservice architectures.
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Microservice Monitoring

Techniques

Microservice systems are a modern approach used by technological companies to create

highly available, elastic and dynamic systems. This kind of architecture enables teams

to work independently on di�erent services and ensures that modules are oblivious to

changes in the surrounding system.

There are some challenges concerning monitoring and observability of microservice

production systems, as these become more complex compared to monolithic solutions.

Dynamic scalability, network distribution, fragmented resources, or dynamic architec-

tures, make microservice systems di�cult to observe and control. When compared to

monolithic solutions, microservices have more possible points of failure and can severely

decrease the quality of service. In monolithic systems, monitoring is restricted to the

system, in a stable infrastructure with little elasticity. In microservice systems, ad-

ministrators have to pinpoint the root cause of the anomaly in hundreds or thousands

of machines, with services that have high elasticity and communicate with each other.

The increased complexity creates a di�cult task for administrators.

More traditional approaches based on adding instrumentation to the source code, or

generic metrics such as CPU or network occupation, agents, logging, watch-dogs, dash-

boards, etc., have serious shortcomings for modern distributed systems. Although they

can indeed create a very good image of the infrastructure, two problems subsist: �rst,

they only supply an extended set of tools to react to already in-place incidents, and
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secondly they lack �intelligence�, if the system is not observable, i.e., if we cannot access

metrics in precise spots that are hidden inside complex black boxes.

We need better tools and methods to understand the overall status of the system.

Actual monitoring tools are built on the premise of observable systems, with agents,

instrumentation, or some sort of module heartbeats. Furthermore, some resources may

elude administrators control, such as objects located in third-party providers - e.g. con-

tent delivery networks. While some frameworks aim to gather information from the

client-side point-of-view such as Pingdom (2017), Bucky (2017), or enterprise solutions,

such as DynaTrace (2017), they are basically aimed at creating simple dashboards and

insights of the platform to trigger alerts to administrators based on a set of custom

rules. We want to go beyond this, and automatically infer service occupation, using as

little data as possible from the systems, possibly because such data is unavailable. Ad-

ditionally, perfect observability would require extensive instrumentation of source code

with agents dedicated to software and hardware resources. Furthermore, a centralized

point in the system would be required to gather, store, process and display data in

dashboards.

In Chapter 4, we gathered clients' data � collected by JavaScript snippets �, to im-

prove monitoring using the client-side point-of-view, as a complement to traditional

monitoring applications. In Chapter 5, we used machine learning techniques to pin-

point two sources of system bottlenecks � CPU and network �, using only the raw

data visible by clients. In this chapter we aim to understand if these methods can be

extrapolated to more complex microservice scenarios.

Hence, the purpose of this chapter is to propose new techniques to monitor microservice

architectures to ensure proper system observability. The remainder of this chapter is

organized as follows. First, in Section 6.1 we study if it is possible to have a non-

intrusive monitoring system, in a microservice ecosystem. This approach is based on

the assumption that the system needs a gateway for service discovery and routing to

other microservices. Secondly, we try to understand the feasibility to monitor a two

component system resorting only to the total request time that the client receives. This

study is presented in Section 6.2. In Section 6.3, we go a step further and improve our

method, using more advanced techniques, such as neural networks to, not only, monitor

but have a precise and �ne-grained occupation level of each layer. Finally, Section 6.4

concludes this chapter.
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6.1 Nonintrusive Monitoring of Microservice-based Sys-

tems

Microservices have become a trend in the development of distributed systems. This

new paradigm evolved due to a number of factors. First, standard monolithic systems

were di�cult to maintain, deploy, develop and scale. Hence, there was the need to de-

compose these vertical systems in modules that are function-oriented and that could be

handled separately, in terms of development and management. Secondly, microservice

architectures are better suited for deployment and operation in Docker (Docker, 2018)

or other containers. Finally, methodologies in product development, such as Agile or

DevOps, with smaller independent teams, are more aligned with microservice archi-

tectures. Therefore, microservices have tremendous bene�ts in terms of development,

operation, availability and scalability, and have thus become a standard for large-scale

systems.

Since there is communication between several microservices, a powerful monitoring

technique consists of instrumenting all the modules, creating traceability for a partic-

ular request. Tracing normally propagates a correlation identi�er that can be used to

determine the �ow through several microservices. In other words, tracing allows system

administrators to determine the entire work�ow of applications. There are some frame-

works that help to implement tracing, such as ZipKin (2018), OpenTracing (2019) or

the one presented on Sigelman et al. (2010).

Despite the bene�ts, tracing brings two major drawbacks. First, all microservices must

have tracing implemented and be responsible to send the data to a central point. This

platform gathers, processes and aggregates the raw data. Therefore, developers have

to focus, not only on the business algorithm, but also on monitoring and operation of

the microservice. Secondly, the central point may be a system bottleneck, due to the

large number of records. In fact, tracing systems normally purge older samples or save

only a small percentage of data.

Bearing in mind the aforementioned solutions, one could think that administrators

have all the tools to monitor systems. However, in reality, operators use a plethora

of platforms and frameworks, some of them adopted from monolithic systems. These

tools only give insights of what is happening in the system, and it is the administrators'

responsibility to endure the hard task of navigating through several dashboards and
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noti�cations to identify the problem. Hence, microservices have introduced a new

paradigm to develop distributed systems, with well de�ned functions and boundaries,

but still use monitoring techniques similar to what we could �nd in older architectures.

The monitoring tool we propose decouples monitoring functionalities from function-

oriented microservices. It is a solution that is neither invasive, nor disruptive, as it

requires no adaptations on the microservice level. As a consequence, it is a good solution

to already implemented production systems. To achieve this, we used and adapted a

gateway from Net�ix, named Zuul (2018), to collect metrics from the requests made

by the microservices. Based in metrics such as response time, origin and destination of

the requests, we aggregated the raw data in a concise output with relevant information,

such as average response time, topology and overall service characterization.

Our results show that we can obtain relevant and useful information to system ad-

ministration, even though we use a non intrusive approach methodology. We do not

need to instrument microservices or add agents to the infrastructure, resorting only to

components already needed by microservice modules. Therefore, the solution presented

is useful, viable � specially in very dynamic and elastic systems �, and aligned with

microservice methodology.

The rest of the Section is organized as follows. Subsection 6.1.1 describes the problem

we tackle and the method we used to solve it. Subsection 6.1.2 describes the experi-

mental settings. In Subsection 6.1.3 we present and evaluate the meaning of the results,

the strengths of this approach and its limitations.

6.1.1 Proposed Methodology

In this Chapter, we tackle the problem of monitoring microservice architectures. In

vertical solutions, monitoring is easier, because the application does not change that

much over time. Microservice systems evolved from new development methodologies,

such as Agile or DevOps and new deployment techniques, such as containers. Sys-

tem monitoring did not follow this evolution and is still based on the applications

and techniques for monolithic systems. In Subection 2.3.1, we discussed how major

worldwide technological companies are struggling with this fact, being forced to create

customized platforms for their needs. Indeed, monitoring is a complex and di�cult

problem in highly dynamic systems.
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Source
code
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microservice A microservice B microservice C
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Tracing System

Figure 6.1. Tracing of microservices application (optimizations to reduce tracing
messages omitted).

We analyzed the monitoring problem from a di�erent perspective. A typical approach

for monitoring would consist of instrumenting or adding agents in as much layers as pos-

sible, from hosts to middleware, up to the application layer. Refer to Figure 6.1, which

shows a sequence of three microservices, where some function in A invokes a function

in B, which invokes a function in C. To bring the information of the interdependent

invocations to the monitoring system, messages must carry some identi�er that allows

their correlation, for example, an HTTP header with the same identi�er (idx = idy).

Unfortunately, this involves changing the source code of the application. While this

technique creates several monitoring points, these are also additional points of failure

and maintenance that couple monitoring with business logic. This goes against the

microservice methodology, which follows the premise of function-oriented �ne-grained

modules. To eliminate the need for instrumentation, we follow a non-traditional ap-

proach. Knowing that microservices resort to a gateway to make service discovery and

redirect requests, we added the capability to collect some monitoring metrics to this

gateway. The idea is to make the gateway gather information, such as response time,

IP and port of origin and destination, and the identi�cation of the function that was

invoked. This approach brings advantages, such as decoupling the monitoring system

from the application without hindering system scalability, because the gateway and

associated services are horizontally scalable.
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In the next subsections, we describe our methodology in more detail. First, we present

the architecture, and how we incorporate our solution in Net�ix modules. Secondly,

we go through the metrics we can collect in the gateway and discuss the information

dashboards we can build with standard tools. Finally, we present how we implemented

and distributed the tool.

Architecture

In microservice infrastructures, gateways are often used to solve the service discovery

problem. Hence, it is very appealing to take advantage of this module to observe the

system. We resorted to three Net�ix components: Zuul, Ribbon and Eureka, respon-

sible for gateway, load balancing and registry of scalable service, respectively. These

services allow us to gather metrics data, being an advantage to monitor microservice

systems. In Figure 6.2, we present the high level architecture view of our tool.

FrontEnd 

Docker Swarm

Swarm Manager

   Service Discovery 
   (Eureka) 

Gateway (Zuul)

 Load Balancing 
   (Ribbon) 

Metric Storage 

  Failure detector 

   Service Registry 
   

User Containers

Figure 6.2. System components

We use four components that are aligned with microservice best practices, such as

service discovery or containerization. First, the module �Metric Storage� gathers met-

rics collected by the customized Zuul application. These metrics are response time �

in requests between services or directly from the client �, IP and port of origin and

destination of the request, and function invoked on the destination microservice. This

module, also acts as a backend to the �Frontend� module, where we display relevant

information such as response times, topology and characterization of services.

The other two modules are associated with �Service Registry� and �Failure Detection�.

We focused on docker containers (Docker, 2018), because this is perhaps the most

important framework in this technological �eld. By analyzing containerization, data
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Table 6.1. Collected Metrics

Metric Type

Start Time Long
End Time Long
Duration Long
Origin IP String
Origin Port Integer
Destination Service String
Destination Instance String
Destination IP String
Destination Function String

description of containers and how the container manager works, it is possible to fully

automate the process of registry and failure detection. This give us a tremendous ad-

vantage, since we do not need container instrumentation. In this case, our module is

noti�ed when a change occurs in the containers, such as creation, destruction or state

change, through an agent associated to the container manager. Bearing in mind that

we also observe HTTP results, it is also possible to implement a module responsible

for failure detection. This module combines information from the HTTP results with

container status, to add capabilities to our system of autonomous maintenance and re-

covery. When an instance fails, it is possible to remove or restart this instance, without

needing administration supervision or microservice instrumentation. It is also relevant

to mention that the components involved in monitoring are horizontally scalable, and

therefore do not harm performance or availability of the application. Since we remove

the instrumentation necessary of systems like the one of Figure 6.1, the processes re-

sponsible for extraction and processing of the metrics are outside of the critical path,

and consequently do not create any sort of overhead.

Collected Metrics

We present in Table 6.1 the metrics collected in our �Metric Storage� module. For

each request, regardless of the origin (either another microservice or a client), we save

metrics associated to the origin and destination of the request.

Beside standard plots with averages and quartiles, e.g., as in box-plots, this raw infor-

mation allows us to create high-level information about the system. For example, it

is possible to dynamically extract topological information and characterize the level of
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interaction among di�erent microservices. Additionally, we can also calculate response

times and load of each microservice, inferring maximum capacity and quality-of-service

of each module, to ensure correct dimensioning.

For the frontend layer of our monitoring system, we used Grafana (Grafana, 2018),

an open platform for analytics and monitoring, highly �exible and customizable. To

display a few more complex plots, we used as a complement, graphics generated using

the R language � a common standard in the academic �eld, for simulation and analysis,

incorporating the output on Grafana.

Implementation

To validate our tool, we made a fully non-intrusive implementation for the docker

swarm container management platform. The source-code and deployment instructions

are available on GitHub (2018) as open-source. Additionally, it also contains the sample

microservice application used in our experimental validation, of Section 6.1.2. The tool

is easily deployable in a system with Docker and Swarm Manager installed. Since the

monitoring tool needs an overlay network (DockerOverlay, 2018), the system must have

this network created and con�gured, to ensure the correct operation of our approach.

Afterwards, the only parametrization needed is the name of the overlay network. The

remaining parameters may be de�ned with the default values without loss of function-

ality. To use our monitoring solution, one could download the repository, de�ne the

overlay network in our con�guration �le and run the installation script that will au-

tomatically generate and deploy a docker-compose manifest �le. The Service Registry

component, described in Subsection 6.1.1, will subscribe to the docker event API and

be noti�ed of container creation, destruction and state change. As such, service regis-

tration on the gateway will be done automatically, requiring no collaboration from the

services themselves. This is possible because each container already carries the relevant

metadata, such as name and service port.

The monitoring solution includes the user-customizable frontend module, with Grafana.

Furthermore, we developed and included a custom plug-in, written in R, to generate

more complex visualizations, such as Chord diagrams (Gu et al., 2014). Our raw data

storage module, uses in�uxDB and MySQL databases. In Table 6.2 we present the

overall containers associated (and deployed) with the tool. Once installed in a Docker
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Figure 6.3. Sample user-customizable frontend.

Swarm container manager, all other applications deployed on it will automatically use

our gateway for service discovery and monitoring, as long as they are in the same

overlay network.

Figure 6.3 shows an example dashboard, extracted during the experimental stage. In

this case, we show the charts described in Section 6.2.3, such as histograms and chord

diagrams.

Table 6.2. Tool Containers

Container Description

Eureka Service Discovery

Zuul Gateway

Service Reg-
istry

Manages containers life-cycle, in as-
sociation with Eureka

In�uxDB Time-series scalable DB

MySql DB

Grafana Frontend

Chord Plugin Generates chord visualizations

6.1.2 Experimental Setup

In this subsection, we present the experimental setup used, the changes made to Net-

�ix modules, and our microservice application. First, concerning the infrastructural

modules, used by the test application, we rely on modules that are stable. To do load
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Table 6.3. Microservice and functions available

microservice functionality request type description

Authentication_MS
/ GET System Healthcheck
/login POST Validate user credentials and create token

Users_MS

/ GET System Healthcheck
/login POST Validate user credentials
/users GET Get user info
/users POST Create user
/users/{id} DELETE Remove user
/users/{id} PUT Update user

Playlists_MS

/ GET System Healthcheck
/playlists GET Get playlists associated to a user
/playlists POST Create playlist
/playlists/{id} GET Get playlist
/playlists/{id} PUT Update playlist
/playlists/songs/{id} DELETE Remove a speci�c music from a playlist
/playlists/songs/{id} GET Get music info associated to a playlist
/playlists/songs/{id} POST Add music to playlist

Songs_MS

/ GET System Healthcheck
/songs GET Get music info
/songs POST Create music info
/songs/convert/{id} GET Convert music from mp3 extension to wav

/songs/criteria GET Get music list based on some criteria
/songs/{id} DELETE Remove music
/songs/{id} PUT Update music

Aggregator_MS
/ GET System Healthcheck
/playlists/songs/{id} GET Get all music info associated to a playlist

balancing, we used Ribbon. This module give us several advantages, such as the avail-

able load balancing algorithms, the use of REST interfaces, but most importantly, an

o�-the-shelf integration with the remaining support modules from Net�ix. Hence, inte-

gration with the discovery and registry module � Eureka �, is made, allowing a more

agile instantiation and implementation of our methodology. Aligned with Ribbon and

Eureka, we also used the Net�ix gateway � Zuul �, that uses Ribbon internally. Zuul

gets service location through a query to Eureka, and then routes requests to the correct

service. Since requests have to pass through Zuul, this module allows us to have a clear

vision regarding tra�c between microservices and to gather monitoring information to

a central point.

The other component of our experimental setup is the application that allows us to test

the monitoring method. The application that we implemented is related to music and

has �ve microservices with well de�ned functions. The application allows its clients

to manage users, playlists and songs. On Table 6.3, we identify the overall endpoints

associated to each microservice, respective invocation methods and a brief description.

Since we wanted to collect raw information about the requests, but without instrument-

ing microservices, we changed the Zuul source code to register information concerning
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origin and destination of each request. We save the following information: microser-

vice that made the request, start time, end time, IP and Port of the request origin,

microservice instance that processed the request, and function that was invoked. With

this information, we were able to extract relevant information about the system, such

as topology or average response times, decomposed by microservice and function. As

mentioned, we did not need any kind of instrumentation on the source code of the ap-

plication (i.e., we only changed the infrastructure). The raw data is then pre-processed

and redirected to a MySQL database that is part of our �system metric� module.

The software was installed in a virtual environment running Ubuntu 16.04. The vir-

tual machine had 8 vCores, with 22 GiB of RAM. All components were installed with

standard parametrization, except the Zuul parameter sensitive-headers. This con-

�guration allows us to propagate the authentication token through all microservices

without any kind of manipulation from the gateway.

To simulate load on the system, we used Apache JMeter (JMeter, 2013). We con�gured

this load tool with 10 threads, and a launching period of 120 seconds. Each thread ran

during 10 minutes with the following loop:

1. Create User;

2. Authenticate;

3. Get user;

4. Update user;

5. Add song;

6. Get song;

7. Update song;

8. Convert song;

9. Add playlist;

10. Get playlist;

11. Update playlist;

12. Add music to playlist;
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Table 6.4. Software used

Component Observations Version

Zuul Gateway 1.4.4

Eureka Service discovery 1.4.4

Ribbon Load balancer 1.4.4

MariaDB DB used by microservices 10.3.7

MySQL DB used by the frontend 8.0

JMeter Load testing tool 4.0

13. Get music from playlist;

14. Get all musics from playlist;

15. Delete music from playlist;

16. Delete playlist;

17. Delete song;

18. Delete user.

In Table 6.4 we present the open-source components used in the experiment and re-

spective versions.

Our ultimate goal with this experiment is very simple: understand the limits, bene�ts

and disadvantages of our �black-box� nonintrusive monitoring tool. Figure 6.4 summa-

rizes the entire system, with application, infrastructure, including the monitoring tool

and a load generator.

6.1.3 Results

In this section, we present the results of gathering monitoring data from the API gate-

way. This technique allows us to extract raw data from microservice interactions and,

therefore, create a set of metrics and charts with relevant information for administra-

tors, without the need of instrumentation or agents at hosts level. In this Section, we

present 5 visualizations that combined, give us a clear vision of the system.

Concerning the frontend application, we divided visualization into 3 distinct charts.

First, we need to understand which microservices have a higher variance in the response
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Gateway (Zuul)

 Load Balancing 
   (Ribbon) 
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FrontEnd 

Metric Storage     Service Registry 
   

  Failure detector 

Figure 6.4. System architecture

time. To get this data � see Figure 6.5 �, we opted for a boxplot chart. This kind of

graphic allows us to have compressed information in only one visualization. Figure 6.5

was created based on data extracted from our MySQL database. It is relevant to

mention that although we are presenting response time distributions of microservices, it

is possible for the user to drill-down, and visualize the same distribution by destination

function inside each microservice.

Regarding dependencies between microservices, we resort to a graph. This representa-

tion allows us to present topology and dependencies between modules. In Figure 6.6, we

can easily see the relations between the di�erent microservices, and the direct accesses

from clients.

127



Chapter 6

Figure 6.5. Boxplot of response time by microservice

aggr-ms

playlists-ms

songs-ms

auth-ms

users-ms

client

Figure 6.6. Application graph
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Having response times distribution in boxplot charts for each microservice (and func-

tion) and dependencies between microservices in graph visualization, there is still a

crucial aspect missing, to understand the health of the system: the importance of each

microservice and function in the system. To achieve this, we resort to chord diagrams,

based on the work of Gu et al. (2014). This kind of graphic allows us to see more

complex relations between entities. Graph nodes are arranged along a circle, and the

importance of their interactions is proportional to the width of the connecting arcs. We

use arrows to provide information of which side receives the call, and colors to simplify

interpretation. For instance, in Figure 6.7, we can see the number of requests, and in

Figure 6.8 latency. In a very large system, a chord graph comprising everything would

probably be di�cult to read. Hence, to improve diagram interpretation, administra-

tors can select which microservices to display, as seen in Figure 6.3. For instance, in

Figure 6.9 we see latency, without requests made by the clients, since these requests

can have a huge impact on the graph and make other interactions less visible.

Taking into consideration Figure 6.7, an administrator can verify that microser-

vice playlist-ms was the origin or destination of around 28, 000 requests. From these,

around 3, 000 were requests from playlist-ms to songs-ms, 21, 000 requests were made

directly by clients and around 3, 000 from the aggr-ms microservice. This way, we have

a vision of the relevance of the playlist-ms microservice in the overall system. Addi-

tionally, the same analysis could be made for latency. The box-plots, combined with the

dependency graph and the chord diagram, give us a good idea of the system capacity,

module importance and response time distribution by microservice or function.

An interaction of a system administrator with the monitoring system could go this

way: the administrator would �rst look to Figure 6.5. This box-plot, provides a clear

understanding of what services have higher response times. It is easily observable that

the service songs-ms has the highest response times of all modules. The second module

with higher response times is aggr-ms. Nevertheless, an administrator would try to

understand the importance that the songs-msmicroservice has in the system. Although

it has a higher response time compared with other microservices, an administrator

should look to the remaining Figures. With Figure 6.6, he can see that songs-ms

receives invocations directly from the client, aggr-ms and playlists-ms, so, there is

a large system dependency on the songs-ms microservice. Furthermore, we notice

that the latency of songs-ms depends on who is invoking it, presenting a much higher

latency for client-initiated invocations. This would show that either they are invoking
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di�erent functions or there is some anomaly. An administrator - using our application

- can then drill down and see granular invocation data for further analysis.

The last information that an administrator needs is the number of requests and latency

in the calls between microservices. Even though songs-ms has a high response time,

and is a key module in terms of dependencies, we need to understand if the number

of requests that go through songs-ms is relevant in the overall number of requests

processed by the system. To have this information, we can look to Figure 6.7 and 6.9.

We can see that songs-ms is an important destination of requests, specially from client

and aggr-ms. In fact, looking to Figure 6.9, we can see that aggr-ms dependencies

(songs-ms and playlists-ms) have low latencies, so they are not a bottleneck.

Given that Figure 6.7 shows the aggr-ms service makes roughly twice as many invoca-

tions as it gets, it leads to the conclusion that latency is a result of multiple requests,

possibly serially or with low parallelism. Therefore, an administrator with these visu-

alizations would have two possible solutions: drill-down the boxplot of songs-ms by

function, to check if there is any o�ending function, and/or try to improve the way how

aggr-ms invokes dependencies. It is important to remember that all this information

is achievable with no instrumentation or agents in the infrastructure.

When we compare our approach to current monitoring tools for microservices, we can

see some bene�ts, as well as disadvantages. One of the disadvantages, is related to

tracing. We do not have the granularity that tracing o�ers, to understand the work�ow

of speci�c requests. Hence, we may miss some information concerning causality between

microservices. Nevertheless, if we have a widespread distribution of requests, we can

still estimate the work�ow. On the other hand, our module is far less intrusive, as it

does not have the overhead to develop instrumentation or deploy agents in the system.

Additionally, our solution could be implemented in legacy systems in a very agile way,

something that is probably beyond reach of tracing-based solutions.
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6.2 Black-box monitoring techniques for multi-component

services

Actual monitoring tools are built on the premise of observable systems, with agents,

instrumentation, or some sort of module heartbeats. Furthermore, some resources may

elude administrators control, such as objects located in third-party providers � e.g.

content delivery networks. While some frameworks aim to gather information from the

client-side point-of-view, they are basically aimed at creating simple dashboards and

insights of the platform to trigger alerts to administrators based on a set of custom

rules. We want to go beyond this and automatically infer service occupation, using as

little data as possible from the systems, because such data is unavailable.

In this section we further extend our previous work � specially from Chapter 5, where

internal observability may not apply �, with two generic layers that simulate two

components of a system. This system could be a microservice that is complex and

contains several queues inside, or a couple of microservices, one after the other, if

intermediate timings of requests are not available, i.e., if we cannot relate the times at

which the �rst and second services interact in response to an initial request to the �rst

service. To get insights about the two-layer system, we only used the total time seen

by the caller. This time aggregates the overall invocation time that sums up the two

services. Based on this time, our goal is to determine the overall occupation of both

services. We created a simulation using a two queue system, with one goal: infer the

service occupation of each layer resorting to the collection of the response times. We

then applied two methodologies to extract occupation of each layer (component) and

extract error metrics: �rst, we used a similar approach as in Chapter 5, with supervised

machine learning algorithms to identify service capability. Secondly, we used another

method that tries to decompose the overall response time into the components' times

to identify the occupation of each.

Our results demonstrate that a methodology that extrapolates information about a

non-observable system of two layers is feasible and can improve performance monitor-

ing. There is no overhead associated with these methodologies, and both methods �

machine learning and division of the signal �, present advantages and complementary

properties. These methods can improve monitoring when instrumentation or observ-

ability is di�cult or unable to be achieved by administrators of the system.
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The rest of the section is organized as follows. Subsection 6.2.1 describes the monitoring

problem we tackle in this section as well as the methods we propose. Subsection 6.2.2

describes our experiment. In Subsection 6.2.3 we present and evaluate the meaning of

the results, discussing the strengths of both approaches and its limitations.

6.2.1 Proposed Methodology

In this Subsection, we describe the problems and challenges associated with observabil-

ity of a system and the de�nition of the metrics used.

With the increase of complexity of applications, and the need to reduce time-to-

market, monitoring becomes more important than ever to ensure that component fail-

ures and bottlenecks do not a�ect user's quality-of-experience. Traditional monitoring

approaches use a large set of tools and methods, such as tracing, logging, or correlation

identi�ers between services or system tools, such as Nagios or Zabbix. Although func-

tional, these approaches require the system to be prepared to give away information

about its current internal status. In legacy systems, or systems without some form

of instrumentation or agents, this might be di�cult. Additionally, the e�ort to create

logging or tracing in a production system may be too high.

We present an approach that neither requires instrumentation, nor disperse logging

tools over the system. In Chapter 5, we followed a similar approach to pinpoint bot-

tlenecks in two distinct layers: external network and internal system. In this Section,

we further evolve this methodology, by modelling a system in two components, and de-

termining each component's occupation, without using instrumentation in the middle.

Understanding each component's occupation may give a huge advantage for adminis-

trators, whenever monitoring is impracticable, either because it is too costly or because

the internal details of the system are unknown, e.g., because the source code is un-

available or too complex. The only metric that we used was the total time observed

by the entity that invoked the system. The total time represents the time that the

request spent in the two components, from the beginning of the request until the end.

In fact, our method of decomposing a system of two layers is very generic and can be

used in di�erent scenarios, like a system with a database and network, or two modules

interconnected, or even a chain of microservices.
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In the next subsections, we present our methods to evaluate a �black-box� approach

of a two-layer system. First, we present an approach based on a machine learning

supervised algorithm. Then, we describe our method based on the split of the signal.

Both methods use the data collected from our experiment.

Machine Learning Algorithm

We followed a machine learning approach to predict each layer's occupation from the

experiment input data. We used a regression model � instead of a classi�er � since

our output is a continuous value, instead of a set of class labels (Sen and Srivastava,

2012). We created a regression model for each layer, as illustrated in Figure 6.10.

In addition to the regression models, we also wanted to evaluate the possibility of having

decision tree classi�ers. This is appealing, because decision tree models are highly

interpretable and, therefore, an advantage to system administrators and operators.

We provide to our algorithm 3, 000 lines to each model. Each line has 2, 000 requests

made to the system, meaning that our classi�er has 2, 000 features � e.g. inputs. There

is a 2001st value in each line, that corresponds to the layer 1 or layer 2 occupation (i.e.,

the real occupation of each layer). This value is mandatory, since we are training a

supervised machine learning algorithm. However, this output is not available in the test

cases, because we want to predict the occupation level, as illustrated in Figure 6.10.

Layer 1
...

...
2000

level

Layer 2
...

...
2000

level

Figure 6.10. Machine learning regression models for the two layers

Among the wide range of supervision machine learning methods available in the lit-

erature (Witten et al., 2016), we focused on the two previously used models: Simple

Linear Regression (SLR) and Support Vector Machine (SVM).

The literature (Witten et al., 2016) also includes a wide range of decision tree models,

but since we wanted to predict a real value, we opted for a decision tree regression
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model. This kind of model allows us to have more insight about how it works, thus

making it more interpretable, a great advantage for system operators.

To run the algorithms under our training set, we used the scikit learn frame-

work (SciKit, 2018). This framework, written in python, is a common standard for

data scientists and people that want to generate models based on input data. For

SVR, we used RBF and a polynomial kernel to evaluate the di�erences, with normal-

ized data (input and output), in the [0, 1] interval, to achieve better predictions. The

decision tree regression model was evaluated with default parameters and data. Con-

cerning the evaluation, all experiments were performed using a 10-fold cross validation

with 20 repetitions.

Exponential Variable Sum Algorithm

The problem of determining the occupation of two sequential components, which we

call layers, be they resources or distributed services, observing only global response

times, can be modeled as determining the two tandem random processes responsible

for generating an observed request time distribution. In other words, given a statistical

distribution, since we know a priori that the distribution is the sum of two factors,

what we want is to separate these factors. Particularly, in this Section we explore this

approach under the assumptions that the service times are approximately exponentially

distributed and the service is under relatively low load (occupation ρ < 0.3), at the

time of observation. As long as the load and parallelism of each layer is known, the

results can be used to extrapolate the total capacity of each layer. It should be noted

however that this does not reduce the generality of the solution. The same approach

could be applied under di�erent distributions and loads, as long as some conditions are

met (the resulting distribution having enough information to extrapolate the original

processes). Furthermore, the two processes under study do not necessarily have to be

tandem, they may, for example, be interleaved, as long as the sum of the components

follows the previously described assumptions. A good example of where interleaving is

the more adequate model, would be resource time-slicing.

To de�ne it more precisely, given f(x) and g(y), which are the density functions of

the service times of two layers, known to be approximately exponentially distributed,

of rates λ and µ, we know that the total service time will be described by the sum

136



Microservice Monitoring Techniques

of two random variables, h(z), obtained from the convolution of the two, as shown in

Equation 6.1.

h(z) = (f ∗ g)(z) =

∫ +∞

−∞
f(z − y)g(y) dy (6.1)

By substituting for the particular case of the exponential distribution, we get the result

for h(z) in Equation 6.2, which we integrate in Equation 6.3 to obtain the cumulative

distribution function H(z).

h(λ, µ, z) =

∫ z

0
λe−λtµe−µt dt

= λµ

(
1

ezλµ− λezλ
− e−zµ

µ− λ

) (6.2)

H(λ, µ, z) =

∫ z

0
h(t) dt

=

∫ z

0
λµ

(
1

etλµ− λetλ
− e−tµ

µ− λ

)
dt

=
λµe−zµ

(
λezλ +

((
ezλ − 1

)
µ− λezλ

)
ezµ
)

λezλµ2 − λ2ezλµ

(6.3)

Armed with the cumulative distribution function, and the empirical cumulative distri-

bution function, ecdf(x), from the observed sample S of total service time, we made

an R script to determine the variables λ and µ, by solving the optimization model in

Equation 6.4. The objective is selecting the variables to minimize the mean square

error between the empirical cumulative function of the sample and H(z), e�ectively

�tting it to the data.
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Minimize
λ̂,µ̂

1

n

n∑
i=1

(ηi − εi)2

subject to τ = max(Si), ∀i

δ =
τ

1000

ηi = H(λ̂, µ̂, iδ), i = 1, ..., 1000

εi = ecdf(iδ), i = 1, ..., 1000

λ̂ > 0, λ̂ ∈ R

µ̂ > 0, µ̂ ∈ R

(6.4)

At the end of this step, we are left with a λ̂ and µ̂, which are estimators of the service

rate of Layers 1 and 2 respectively. Given the load under which the measurements were

taken, which we denote as W , as well as the parallelism levels, denoted c1 and c2, the

occupation of each layer, ρ1 and ρ2 can be determined as shown in Equation 6.5 where

S denotes the service rate of a layer (λ̂ or µ̂).

ρ =
W

c · S
(6.5)

The assumption that the parallelism level c is known might seem limiting. However, in

practice, this parameter is easy to monitor using classic tools, and even if not directly

measurable, heuristics can be used to estimate it. One such example is exploiting the

relationships between maximum throughput T and parallelism given by Equation 6.6.

T = c · S (6.6)

6.2.2 Evaluation

We validated and benchmarked the two methods with total service time samples ex-

tracted from a simulated service with two layers. The described system was simulated

as two sequential single server queue systems (M/M/1) in R using the qcomputer (Ebert

et al., 2017) package (shown in Figure 6.11).

To simulate di�erent occupation rates, we used a �xed global request arrival rate W

of 30 requests per unit of time and varied the service rates S of each layer according
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L1 L2W

Figure 6.11. Two sequential single server queue systems.

to Equation 6.5. A set of 30 samples of 2000 observations each was then obtained for

all the permutations of the two layers with occupations in the range [0.1, 0.9] in 0.1

increments (e.g. (0.1, 0.1), (0.1, 0.2), ...). The data was saved in a comma-separated

�le (CSV), each sample containing 2000 features and the 2 targets, in this case the

occupation parameters.

Using cross-validation we trained the machine learning al-

gorithms and evaluated the quality of the predictions.

For the exponential variable sum algorithm we used the proposed optimization

approach to predict the targets for each sample.

To compare the two general approaches we calculated the Mean Square Error (MSE)

for each layer grouped by occupation range in 0.1 increments. Additionally, as we tried

multiple machine learning approaches, these metrics were also used to pick the best

algorithm.

6.2.3 Results

As we referred in Subsection 6.2.1, we collected a set of 2000 total response times for

the clients invocations. We analyze the results obtained with the machine learning

algorithms and also with the exponential decomposition.

Table 6.5. Regression model results for Layer 1 and Layer 2 occupation

Method
Layer 1 Layer 2
MSE MSE

Decision Tree 0.12± 0.08 0.09± 0.06

SLR 0.81± 0.61 0.93± 0.44

SVR 0.05± 0.04 0.05± 0.03

The results obtained for the Layer 1 and 2 occupation models are summarized in Ta-

bles 6.5, 6.6 and 6.7. We report average results for the mean square error (MSE),

between the predicted and actual values. Since we performed 20 repetitions of 10-fold

cross-validation, we present average and standard deviation results.
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Table 6.6. Machine Learning Decomposition

Range Layer 1 - MSE Layer 2 - MSE
0.1 0.12 0.12

0.2 0.07 0.08

0.3 0.04 0.03

0.4 0.03 0.02

0.5 0.02 0.02

0.6 0.03 0.02

0.7 0.03 0.03

0.8 0.03 0.03

0.9 0.03 0.03

Table 6.7. Exponential Decomposition

Range Layer 1 - MSE Layer 2 - MSE
0.1 0.08 0.08

0.2 0.12 0.26

0.3 0.25 0.51

0.4 0.40 0.68

0.5 0.93 0.74

0.6 1.79 1.76

0.7 3.76 4.95

0.8 11.38 11.43

0.9 66.48 74.87

Table 6.5 presents the results for three distinct classi�ers: decision tree regressor, SLR

and SVR algorithms. As expected, SVR outperforms the others algorithms, since it

uses a non-linear kernel that �ts better the raw data that is handled in this use-case

scenario.

The SVR algorithm attained an average of MSE 0.05 (with 0.04 standard deviation)

for Layer 1 and 0.05 (with 0.03 standard deviation) for Layer 2. On a [0, 1] range this

is a good result.

SVR algorithm outperforms SLR and Decision tree model, for both layers. Therefore,

we compared SVR algorithm with a non-linear kernel with the exponential decompo-

sition method. To do this, we trained the same SVR algorithm for both Layer 1 and

Layer 2. We submitted to the �tted model only values for a speci�c range (e.g. 0.1, 0.2)

and registered the MSE for the predicted values. In Table 6.6 we evaluate the machine

learning accuracy for distinct Layer levels. We can observe that for low occupied layers

the algorithm has a worse MSE, compared to a more occupied Layer.
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In Table 6.7 we show results for exponential decomposition method. We evaluated

the MSE for each layer 1 and 2 occupation level. One can notice that this algorithm

outperforms SVR on lower occupation levels. However, for high occupation levels,

the exponential algorithm, does not do a good predict on, being outperformed by the

machine learning approach.

Another di�erence is that the Machine Learning algorithm requires supervised training

and the exponential decomposition does not. On the other hand, the latter can only

be used when the system load during the sampling period is known. Given their

complementary properties and ranges of e�ectiveness, they are obvious candidates for

hybrid application.

6.3 Towards Occupation Inference in Non-Instrumented

Services

Inferring occupation of individual components without help from instrumentation or

external agents can bring concrete bene�ts for the observability of the system. A

clear use case would be extracting information at sub-instrumentation granularity as

well as improving the visibility over legacy parts of a system that are not or cannot

be adequately instrumented. Given this goal, in this section, we aim to determine

whether we can perform such separation using a neural network. It has been shown

that any system can be decomposed into an arbitrary number of queues as a result of

the properties of sums of Markovian processes (Horváth and Telek, 2002). Furthermore,

request rates for modern use cases are known to be well modeled by Poisson processes

for large numbers of clients (Shahin, 2017).

To evaluate this possibility, we created a laboratory experiment, where we use a system

with two sequential M/M/1 queues. We ran a set of several combinations for layer

occupations, from lightly occupied to heavily busy. For each combination, we collected

the response time for a batch of client requests. Using this data, we trained a neural

network, which we eventually set to three hidden layers of 100 neurons each, with two

outputs representing the level of occupation of each component of the system. The point

is to understand if the neural network could predict the occupation of each layer without

expert understanding of the system. We evaluated our trained neural network against

a baseline optimization method. To extract the occupation, this method explicitly uses
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µ1 µ2λ

Figure 6.12. Tandem M/M/1 queues.

underlying knowledge of the system, to �t the observed data with a tandem queue

model.

Our experiments show that the neural network can accurately infer the occupation of

each layer. With the exception of the case where one of the layers is extremely busy and

dominates the response time of the system, both methods, the neural network and the

tandem queue model, achieve satisfactory results. These results show the feasibility

of using machine learning to do black-box monitoring of systems. Furthermore, it

reinforces that black-box observations contain enough information to reason about the

structure of the system that generated it. The assumption that a generic system can

be decomposed into queues with exponential service times is supported by existing

research (Shahin, 2017), theoretical results (Philippe, 1998) and from our previous

Section 6.2. The intuition is that a computer, as a discrete system, can be seen as an

arrangement of bu�ers (queues) representing the resources.

The rest of the section is organized as follows. Subsection 6.3.1 describes the methods

we used for the problem we tackle in this section. Subsection 6.3.2 describes the settings

for our experiment. In Subsection 6.3.3 we show and evaluate the meaning of the results,

the strengths of this approach and its limitations for both methods.

6.3.1 Proposed Methodology

In this Subsection, we describe our approach to infer the occupation of each component

in the system of two queues depicted in Figure 6.12.

Using a sample of response times, we determine the occupation of each component

(which we refer to as layer), both with model �tting and a deep neural network. While

the model �tting algorithm explores the underlying structure of the system and serves

to prove that it is indeed possible to do the black-box prediction, our goal is to create

a neural network that precludes the need for any assumption or knowledge about the

system.
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Tandem Queue Model Fitting

To determine the occupation of each layer of a tandem, two-component system, we �rst

need to model their response to load. In a generic way, this response function is de�ned

by the time it takes to service each request and the level of parallelism. Since we know

the response time is the sum of the two random processes representing the service time

portions happening at each layer, as a naive approach, we could attempt to model the

data, by �tting the sum of two random variables (exponential for example). This would

shed light on the time spent on each layer and indirectly their capacity. However, this

approach fails to capture the variation in response time in response to load/occupation,

as a result of not considering the time spent waiting for the service.

Queuing theory gives us a theoretical framework to predict response time variation in

function of occupation. As such, we modelled the system as a network of two tandem

single-server queues (M/M/1), shown in Figure 6.12. This model assumes Markovian

properties for both inter-arrival times as well as service times. It further assumes no

parallelism. We forewent more general models, for which approximate or numerical

solutions are known, as the objective is not generally solving the problem, but to prove

its feasibility and establish a performance baseline for a relatively simple case. Each

queue is de�ned by its arrival rate λ and service time µ, and the occupation ρ is λ
µ .

The probability density function (PDF ) for the response time distribution is given in

Equation 6.7 by r(λ, µ, x).

r(λ, µ, x) =

(1− ρ)µe−x(1−ρ)µ x ≥ 0

0 otherwise
(6.7)

The model resulting of the composition of two tandem M/M/1 queues is de�ned by

the arrival rate (λ), and the service rate of each queue (µ1, µ2), and has a response

time distribution given in Equation 6.8 as t(λ, µ1, µ2, x) and a respective cumulative

distribution function (CDF ) given in Equation 6.9 as T (λ, µ1, µ2, x). Note that due to

space restrictions, the numerator on τ(λ, µ1, µ2, x) is split in two lines.
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t(λ, µ1, µ2, x) = (r ∗ r)(x)

=

∫ x

0
r(λ, µ1, z)r(λ, µ2, x− z) dz

= µ1µ2

(
1− λ

µ1

)(
1− λ

µ2

)(
exλ−µ1x

µ2 − µ1
− exλ−µ2x

µ2 − µ1

) (6.8)

T (λ, µ1, µ2, x) =

∫ x

0
t(λ, µ1, µ2, z) dz

=


(

1− λ
µ1

)2
µ1

2
(
1−((µ1−λ)x+1)eλx−µ1x

µ12−2λµ1+λ2

)
µ1 = µ2

τ(λ, µ1, µ2, x) otherwise

(6.9)

where,

τ(λ, µ1, µ2, x) =

(1− λ
µ1

)
µ1

(
1− λ

µ2

)
µ2e
−µ2x−µ1x(

(µ1 − λ) eµ1x+λx +
(
(µ2 − µ1)eµ1x + (λ− µ2) eλx

)
eµ2x

)


(µ1 − λ)µ22 + (λ2 − µ12)µ2 + λµ12 − λ2µ1

As we want to �nd the occupations ρ of each layer, and ρ ∈ ]0, 1[, we rewrite the model

in terms of occupation, as shown in Equation 6.10.

Θ(λ, ρ1, ρ2, x) = T (λ,
µ1
λ
,
µ2
λ
, x) (6.10)

To �t it to the data, we use optimization to �nd the values ρ1, ρ2 that minimize the

mean square error (MSE ) between Θ and the empirical cumulative distribution function

(eCDF ) of the samples. We assume λ is known for the time interval when the samples

where taken. Figure 6.13 shows an example of how the model Θ �ts the eCDF after the

optmization step. This particular sample was generated from a system with a (0.7, 0.2)

occupation, and the optimization determined parameters (0.16, 0.73).
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Figure 6.13. Empirical and predicted Cumulative Distribution Functions (CDF ).

l1

l2...
...

...

x1

x2

x3

x4

x5

xz

h11 h21 h31

h12 h22 h32

h13 h23 h33

h1n h2n h3n

...

Figure 6.14. Representation of the network for the two components

Machine Learning Approach

We used a neural network that predicts each system layer's occupation from raw re-

sponse times, as clients observe them. Since we wanted to predict the output of a

continuous value, our neural network would have to solve a regression problem, i.e.

we want to predict our output value as accurately as possible � contrasting with a

classi�cation problem.

We made several tests with distinct algorithms and opted for a deep neural network.

The rational being that we wanted to correlate both layers' occupation, since the output

visible to the client is associated with both layers and has a complex non-linear relation.

Furthermore, current software frameworks make deployment and use simple, as well as
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production-ready. In addition, we experimented several setups for the neural network

� distinct number of layers, nodes, and activation functions. Our �nal con�guration

for the neural network consisted of one input layer with 2000 nodes, three hidden layers,

each with 100 nodes, with the activation function being the relu function (TensorFlow,

2018) and, in the 2 node �nal layer, a linear activation function. Since the network

is shared by both outputs, we were able to have a multi-output regression model to

predict each layer's occupation. Hence, both occupations are correlated and in�uence

the hidden layers, having an impact on the outcome. Figure 6.14 illustrates our model.

The network receives z input values, which are the response times seen by z client

requests.

We provide to our network around 10, 000 lines of raw data from our experiment. Since

we are training our neural network, and therefore using a supervised machine learning

approach, we need labeled data. Each line has 2, 002 values: 2, 000 response times as

seen by clients and the labels: the 2, 001st value is the occupation of one layer, the

2, 002nd value is the occupation of the other layer. In the test scenario this output is

not available, serving only to validate the accuracy of the prediction.

6.3.2 Evaluation

To validate the tandem queue model �tting method and the neural network, we used

response time data generated with a simulated two-component system. We modeled

a two component system as two sequential single server queueing systems since it ele-

gantly expresses the variation of response time with occupation. The simulation was

made using the qcomputer (Ebert et al., 2017) package written in R.

The occupation levels were de�ned as all the combinations of 0.1 increments in the

range [0.1, 0.9] - e.g. Layer 1 at 0.1 and Layer 2 at 0.5. The arrival rate was �xed at 30

requests per unit of time and the service rate of each layer varied to express the desired

occupation. For each combination of occupations, we collected 150 samples. Since we

had 9 occupation levels per components, we collected 92∗150 = 12150 samples of 2, 000

request observations each. These observations correspond to overall response times of

each request.

To evaluate and create the neural network model, we used Tensorflow with Keras (Ten-

sorFlow, 2018). This framework, allow us to rapidly generate and save our model and
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is a common standard for the generation of complex networks in the industry and

academy. Of the 150 samples, 80%, or 120 per occupation combination, were used to

train the neural network, and the remaining (30 per combination) for the validation of

both methods � test set. Furthermore, of the portion allocated to the neural network

training, 30% were used for model validation in Tensorflow. We used a Sequential

model and the Mean Absolute Error � for the optimization score function �, and a

total of 100 iterations over the dataset � i.e. �epochs�.

For validation and comparison of the two approaches (neural network and model �t-

ting), we calculated the following error metrics: Mean Square Error (MSE), Mean

Absolute Error (MAE), as well as the mean Euclidean distance, because we wanted to

understand the distance between the two-dimensional predictions versus the real value.

These metrics were calculated for the whole set of predictions, by range for each layer

occupation as well as for each combination of occupations (Euclidean distance).

6.3.3 Results

Having generated predictions for a test set of 2, 430 samples (30 samples for each of

the 81 combinations of occupations), we calculated their respective errors. Besides the

global and per range error for each individual layer predictor, for which we used MSE

and MAE, we calculated the error as the Euclidean distance for the prediction pair.

This latter metric gives an absolute error value that more intuitively shows the quality

of the prediction and better exposes issues such as the prediction regressing to the mean

of the two occupation values.
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6Table 6.8. Global results for both methods.

Layer 1 Layer 2
Method MAE MSE MAE MSE

Queue Model 0.05± 0.07 0.01± 0.03 0.05± 0.08 0.01± 0.03

Neural Network 0.09± 0.11 0.02± 0.04 0.08± 0.10 0.02± 0.04

Table 6.9. Error metrics for each method and layer, grouped by range.

Queue model Neural network
Layer 1 Layer 2 Layer 1 Layer 2

ρ MAE MSE MAE MSE MAE MSE MAE MSE

0.1 .05± .09 .01± .04 .05± .09 .01± .04 .12± .14 .04± .06 .11± .13 .03± .05

0.2 .05± .08 .01± .03 .06± .11 .02± .05 .1± .1 .02± .04 .11± .11 .02± .04

0.3 .06± .09 .01± .03 .06± .09 .01± .04 .1± .08 .02± .02 .08± .07 .01± .02

0.4 .06± .08 .01± .03 .07± .09 .01± .03 .09± .08 .02± .02 .08± .07 .01± .02

0.5 .06± .07 .01± .02 .06± .08 .01± .03 .09± .09 .02± .03 .08± .08 .01± .03

0.6 .06± .07 .01± .03 .05± .07 .01± .03 .09± .1 .02± .04 .09± .1 .02± .04

0.7 .05± .05 .01± .02 .05± .06 .01± .03 .1± .1 .02± .04 .09± .1 .02± .05

0.8 .04± .05 0± .03 .04± .05 0± .2 .1± .13 .03± .06 .08± .11 .02± .05

0.9 .04± .04 0± .01 .04± .03 0± 0 .06± .13 .02± .06 .01± .02 0± 0
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We focus on the MAE and mean Euclidean distance since they have the same unit.

Table 6.8 shows the MAE and MSE for each layer, as well as the respective standard

deviations. The Mean Euclidean distances for the Tandem Queue Model Fitting and

the Deep Neural Network are 0.09 ± 0.10 and 0.15 ± 0.12, respectively. Euclidean

distances are further detailed in Figures 6.16(a) and 6.16(b).

The best method in Section 6.2, has a MSE of 0.05 ± 0.04 and 0.05 ± 0.03, for layer

1 and 2 respectively. The new methods both show signi�cant improvement over those

same metrics, as shown on Table 6.8. Moreover, both methods show improvement over

all ranges of occupation. Table 6.9 shows error metrics for each method and layer,

grouped by range. For example ρ = 0.1 shows the results for the pairs (0.1, ∗) and

(∗, 0.1), where the asterisk stands for all values. As neither model could distinguish

the order of the occupation values � (0.1, 0.5) is indistinguishable from (0.5, 0.1) �

the errors were calculated after sorting the layer values. The results are much more

consistent over the whole range, compared to our previous work from previous Section,

where there was clear degradation, especially on the model �tting approach.

However, the error of each individual layer does not convey an important aspect of the

prediction quality. We wish to preserve the relationship between the two occupation

values, meaning that (0.1, 0.5) should be predicted as such, instead of averaging the

values to (0.3, 0.3). To understand if this relationships exists, we measure the error

as the Euclidean distance between the target and prediction pairs. Figure 6.16 shows

the error in a way that preserves that relation. We present two visualizations for each

method.

Firstly, we show the predictions as a cloud of points color-coded by expected occupation

pair (Figures 6.15(a) and 6.15(b)). The true occupations have a black circumference;

predictions are dots with the same color as the disk inside the circumference. For

example, in Figure 6.15(a), we see that for occupations (0.1, 0.1) all the predictions are

clustered around the real value. As we get farther from the origin, they get increasingly

more disperse. On Figure 6.15(b), representing the neural network results, we see there

is a particular pattern of dispersion for the extremes. On high occupations, predictions

are shifted along one of the axes. This means that the neural network is able to

accurately predict the higher occupation value, but the second one will tend towards

central values. This is expected, since the highest occupied component dominates the

overall response time experienced by the client.

149



Chapter 6
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(a) Queue model.

●●
●

●●●●●●●●●●●●
●

●●●●●●●●●●●●●●

●
●

●●

●

●● ●

●

●

●

●●

●

●

●

●
●● ●

●
●●●

●

●●
● ●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●●●
●
●

● ●●●

●

●●

●

●●●●

●

●●●●●
●

●● ●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●
● ●

●

●
● ● ●

●

●

●

●
●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

● ●

●

●

●●

●

●

●
●

●
●

●
● ●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●
● ●

●

●
●

●

●

●

●

●
●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ● ●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●
●

●● ●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

● ●●
●

●

●
●

●●

●

●

●
●

●

●

●●

●

●
●

●
●

●
● ●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

●
●

●

●

●

●
●

●
●●

●
● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●
●

●
●

●
● ●●

●●

●
●●

●● ●
●

●

●●

●

●●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●●
● ●●

● ●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

● ●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

● ●●
●

● ●●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●●

●
●

●

● ●
●●

●

● ●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(b) Neural network.

Figure 6.15. Model predictions.
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Figure 6.16. Mean Euclidean distance

Secondly, we show bubble charts, where the radius of each bubble is the mean Euclidean

distance of the predictions from the real value. Here it is visible that the queue model,

in Figure 6.16(a), shows stability along the range, except on the highest occupation

values. Figure 6.16(b), relative to the Neural Network, presents a di�erent pattern,

having lower accuracy when the di�erence in occupations is highest ((0.1, 0.9)) or as it

get closer to (0.9, 0.9).

Results show that we can estimate the internal occupations from the system's response

time with small error. When at least one of the components is very busy, only one of
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the high occupations is correctly approximated. We do not regard this as problematic,

because a very busy component will dominate the response time anyway.

6.4 Conclusion

Monitoring and observability of systems is a challenge for administrators, due to in-

creased application elasticity, complexity, granularity and dynamics. New software

releases, agents, tracing, and a plethora of system monitoring tools and dashboards

creates a complex environment for administrators to ensure correctness and proper

quality of service. Additionally, current tools put the burden of analysis, such as de-

tecting bottlenecks and performance issues on the operators. As the number of services

and technologies in a system increases, so does the complexity and time spent in oper-

ational tasks, such as root cause analysis.

In this chapter, we made several endeavours for new approaches for monitoring, without

any instrumentation or probes in the system. First, we aimed to analyze the limits of a

�black-box� approach, using only some of the infrastructural modules already deployed

in a microservice architecture. We resorted to Net�ix modules, customizing the gate-

way, to gather raw data from microservice invocations. Results show that our solution

involves minimal con�guration e�orts to be integrated in the system and to produce

relevant information to administrators.

Secondly, we aim to identify the occupation of each component on a two-layer system.

The evidence collected shows that it is possible to identify the capacity and occupation

of each layer, solely from the overall response time, as measured by a client. Since the

proposed method is not coupled to any infrastructure or language, it can be used in

any kind of system where observability is a major concern. The two methods � su-

pervised machine learning and exponential decomposition � combined can complement

each other's shortcoming and provide insights about the overall system performance,

although with some shortcomings, such as the non-adaptive behaviour with distinct

layer occupation, resulting in a median value for both layers.

Third, we improve our methods to identify occupation for a two-layer system. More

speci�cally, we wanted to compare two distinct methods: �rst, an optimized algorithm

speci�cally designed to our scenario, and secondly, a neural network trained with the

data collected from our experiment. Our results have improved, showing that it is viable
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to infer the load of each layer collecting only the overall response time. Hence, these

two methodologies � neural network and tandem queue model � are able to improve

current monitoring tools, and ensure a more �ne-grained knowledge about the system.

For future work, there are some directions that could be further investigated. First, the

open-source tool designed in the �rst section could be improved for automated analysis,

such as in critical path enumeration and anomaly detection, to give administrators

more information about the high-level behavior. Secondly, we could use the knowledge

related to layer occupation, extending this methodology for more generic topological

inference.
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Chapter 7

Conclusion and Future Work

In this chapter, we summarize the thesis and explain the main conclusions, contributions

and achievements of this research work. Additionally, we pave the way for future

research directions.

7.1 Summary of the Thesis

Distributed systems take an important role in society. Almost every single system

of our digital life has, in its genesis, a distributed system. These systems have thus

become an essential part of the daily life for billions of people worldwide. Unavail-

ability and quality-of-service degradation is something that no one is willing to accept.

Maintaining the healthiness of a distributed system requires not only the proper peo-

ple � administrators and operators �, but also e�ective monitoring tools. However,

monitoring distributed systems involves multiple challenges.

This thesis started by presenting a survey on monitoring in distributed systems. It is

observable that this research �eld is highly dynamic with a lot of contributions in the

industry and also in the academia. There is a plethora of solutions concerning this kind

of system, from more intrusive to some that are more black-box. An explanation for this

abundance is that some companies lack viable monitoring solutions to comply with their

demands, thus having to create customized tools. Selecting the right tool and acquiring

the best possible information to mitigate and even predict system performance issues is

not a trivial task. Each monitoring solution supports a speci�c feature or enables some
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characteristic that is useful for the development or operator team. Hence, the need for

the aforementioned personalized solutions implemented in their systems.

We analyzed several academic studies and industrial solutions to monitor distributed

systems. This analysis helped us to �nd out the gaps between what we wanted to

achieve and the current state of the art. As a result, we observed that the majority

of monitoring solutions implement dashboards and noti�cation systems; furthermore,

they are intrusive and they are intertwined with the system to monitor. Another key

aspect is that although they create dashboards and present the errors, it is always the

responsibility of administrators and operators to interpret the data. This could be

mitigated with some autonomous performance issue detection.

This thesis aimed to answer the research question of what are the limits of a full black-

box solution, using client-side data. It also tries to identify what kind of information is

useful as a complement to current monitoring tools, to reduce time to detect any kind

of issues in the system. The client-side method is applied to several infrastructures,

such as websites, REST interfaces, common applications supported by HTTP clusters,

and larger microservice architectures.

We proposed several distinct approaches to analyze client-side data: �rstly, collecting

client information retrieved by standard frameworks, like the NavigationTiming (2015),

before processing the data using time series and machine learning. We extended this

approach to other more generic solutions that did not require JavaScript instrumen-

tation. Secondly, we investigate how exactly do clients perceive bottlenecks that are

occurring in the distributed system. We were interested in understanding when bot-

tlenecks arise in the infrastructure and to determine whether clients (as opposed to

infrastructure owners) could pinpoint their possible cause. Thirdly, we had the goal of

understanding what valuable information may emerge when we combine information

from multiple clients using the same distributed system. For this we correlated data

retrieved by distinct clients. Finally, with the previously acquired know-how we ana-

lyzed a microservice infrastructure, to understand if a microservice could monitor other

microservices that are invoked.

As a result of the work of this thesis, we conclude that:
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� Clients can indeed perceive problems in complex distributed systems and, in

some cases, they can pinpoint the location of such problems. We demonstrate in

Chapters 3, 4, 5 and 6 the following results:

� Some errors may elude system's administrators control, specially with third-

party providers, with direct impact on the client, as we showed in Chapter 3.

� Clients with few information about the system can create a pro�le of the

system, thus understanding its normal behavior. This was demonstrated in

the experiments of Chapter 4.

� Even when the client has only a coarse-grained view of the overall health of

the system, thus being unable to identify the root cause of a problem, ad-

ministrators may still enrich current monitoring solutions with client's data,

to have better insights about the quality of service. This was demonstrated

with the experiments from Chapter 5 and 6.

� The previous conclusions are quite promising for microservice architectures, be-

cause each microservice may monitor its downstream services. This �auto-

monitoring� solution requires little to no instrumentation of the infrastructure

as demonstrated on Chapter 6.

As a �nal conclusion, administrators cannot be locked in their own shell, hoping, from

their instruments that clients are enjoying the best experience from their systems. This

thesis shows that clients have valuable information to diagnose system problems and

provide timely alerts to operators.

7.2 Future Work

We believe that the work presented in this thesis can improve the state of the art on

distributed systems monitoring. However, due to time constraints, we could not explore

a large number of topics, including the following:

� Monitoring solutions presented in this thesis were mostly experimented in labo-

ratory. The use in a real-world scenario with multiple variables of uncertainty is

the next step to have more robust methods.
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� A collection of previously labelled bottlenecks could increase the quality of system

monitoring. However, we could not follow this path, due to the absence of online

data sets or real-world scenarios, as far as we could tell.

� In this thesis, we mostly designed black-box monitoring approaches that may be

interconnected with current white-box (and more intrusive) solutions. However,

we could not explore the technical details of how to combine these mechanisms.

� In Chapter 3, we presented a study over 3, 000 web sites. These websites were a

sample from the top 1 million most visited web sites. At this time, we are working

on a more complex experiment, where we are going to analyze all the ranking (i.e.

all the 1 million websites). Taking into consideration 1 million web sites instead

of only 3, 000 may bring new conclusions and more research questions.

� In Chapter 6, we monitored microservices. As stated in that chapter, there is the

possibility of inferring the system components and extracting topology from an

outside point-of-view.

156



Bibliography

Agarwal, S., Liogkas, N., Mohan, P., and Padmanabhan, V. (2010). Webpro�ler: Co-

operative diagnosis of web failures. In Communication Systems and Networks (COM-

SNETS), 2010 Second International Conference on, pages 1�11.

Aguilera, M. K., Mogul, J. C., Wiener, J. L., Reynolds, P., and Muthitacharoen, A.

(2003). Performance debugging for distributed systems of black boxes. ACM SIGOPS

Operating Systems Review, 37(5):74.

Alarm (2019 (accessed June, 2019)). Alarm de�nition. https://www.yourdictionary.

com/alarm.

Alexa (2015 (accessed May, 2015)). Alexa � Top Sites in Portugal. http://www.

alexa.com/topsites/countries/PT.

Alexa (2017 (accessed May, 2017)). Alexa � top-ranked

websites. https://support.alexa.com/hc/en-us/articles/

200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-.

Amazon (2015 (accessed May, 2015). Amazon.com: Online shopping for electronics,

apparel, computers, books, dvds & more. http://www.amazon.com.

AppDynamics (2017 (accessed May, 2017)). Appdynamics. https://www.

appdynamics.com/product/application-performance-management/.

Atchison, L. (2018 (accessed September, 2019)). Microservice architectures: What

they are and why you should use them. https://blog.newrelic.com/technology/

microservices-what-they-are-why-to-use-them/.

Atlas (2018 (accessed May, 2018)). Atlas. https://github.com/Netflix/atlas.

157

https://www.yourdictionary.com/alarm
https://www.yourdictionary.com/alarm
http://www.alexa.com/topsites/countries/PT
http://www.alexa.com/topsites/countries/PT
https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-
https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-
http://www.amazon.com
https://www.appdynamics.com/product/application-performance-management/
https://www.appdynamics.com/product/application-performance-management/
https://blog.newrelic.com/technology/microservices-what-they-are-why-to-use-them/
https://blog.newrelic.com/technology/microservices-what-they-are-why-to-use-them/
https://github.com/Netflix/atlas


Bibliography

Attariyan, M., Chow, M., and Flinn, J. (2012). X-ray: Automating root-cause diagnosis

of performance anomalies in production software. In Presented as part of the 10th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),

pages 307�320, Hollywood, CA. USENIX.

AWS (2015 (accessed May, 2015)). Papers � Amazon Web Services. http://aws.

amazon.com/.

Azure (2015 (accessed May, 2015)). Papers �Windows Azure Service Level Agreement.

http://www.windowsazure.com/en-us/support/legal/sla/.

AzureMonitor (2019 (accessed May, 2019)). Azure Monitor. https://azure.

microsoft.com/en-us/services/monitor/.

Bahl, P., Chandra, R., Greenberg, A., Kandula, S., Maltz, D. A., and Zhang, M.

(2007). Towards highly reliable enterprise network services via inference of multi-

level dependencies. SIGCOMM Comput. Commun. Rev., 37(4):13�24.

Barga, R., Chen, S., and Lomet, D. (2004). Improving logging and recovery perfor-

mance in phoenix/app. In Proceedings of the 20th International Conference on Data

Engineering, pages 486�497. IEEE.

Barham, P., Donnelly, A., Isaacs, R., and Mortier, R. (2004). Using magpie for request

extraction and workload modelling. In Proceedings of the 6th Conference on Sympo-

sium on Operating Systems Design & Implementation - Volume 6, OSDI'04, pages

18�18, Berkeley, CA, USA. USENIX Association.

Battre, D., Hovestadt, M., Lohrmann, B., Stanik, A., and Warneke, D. (2010). Detect-

ing bottlenecks in parallel dag-based data �ow programs. In Many-Task Computing

on Grids and Supercomputers (MTAGS), 2010 IEEE Workshop on, pages 1�10.

Bento, A. P. (2019). Observing and controlling performance in microservices. Master's

thesis.

Bodic, P., Friedman, G., Biewald, L., Levine, H., Candea, G., Patel, K., Tolle, G., Hui,

J., Fox, A., Jordan, M. I., and Patterson, D. (2005). Combining visualization and

statistical analysis to improve operator con�dence and e�ciency for failure detec-

tion and localization. In Second International Conference on Autonomic Computing

(ICAC'05), pages 89�100.

158

http://aws.amazon.com/
http://aws.amazon.com/
http://www.windowsazure.com/en-us/support/legal/sla/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/


Bodík, P., Gri�th, R., Sutton, C., Fox, A., Jordan, M., and Patterson, D. (2009). Sta-

tistical machine learning makes automatic control practical for internet datacenters.

In Proceedings of the 2009 conference on Hot topics in cloud computing, HotCloud'09,

Berkeley, CA, USA. USENIX Association.

Brooker, G. M. (2012). Feedback and control systems. pages 159�205.

Bucky (2017 (accessed June, 2017)). Bucky � performance measurement of your app's

actual users. http://github.hubspot.com/bucky/.

BwmNg (2017 (accessed May, 2017)). Bandwidth Monitor. https://github.com/

vgropp/bwm-ng.

Cao, J., Andersson, M., Nyberg, C., and Kihl, M. (2003). Web Server Performance

Modeling using an M/G/1/K*PS Queue. In 10th International Conference on

Telecommunications, ICT 2003, volume 2, pages 1501�1506.

Cecchet, E., Udayabhanu, V., Wood, T., and Shenoy, P. (2011). Benchlab: an open

testbed for realistic benchmarking of web applications. In Proceedings of the 2nd

USENIX conference on Web application development, pages 4�4. USENIX Associa-

tion.

Chanda, A., Cox, A. L., and Zwaenepoel, W. (2007). Whodunit: Transactional pro�ling

for multi-tier applications. SIGOPS Oper. Syst. Rev., 41(3):17�30.

CheckMySite (2017 (accessed May, 2017)). Check my website. https://checkmy.ws/

en/features/.

Chen, C., Maniatis, P., Perrig, A., Vasudevan, A., and Sekar, V. (2013). Towards

veri�able resource accounting for outsourced computation. In ACM Sigplan Notices,

volume 48, pages 167�178. ACM.

Chen, M. Y., Accardi, A., Kiciman, E., Lloyd, J., Patterson, D., Fox, A., Brewer, E.,

Brewer, E., and Brewer, E. (2004). Path-based faliure and evolution management. In

Proceedings of the 1st Conference on Symposium on Networked Systems Design and

Implementation - Volume 1, NSDI'04, pages 23�23, Berkeley, CA, USA. USENIX

Association.

Chi, R., Qian, Z., and Lu, S. (2011). A heuristic approach for scalability of multi-tiers

web application in clouds. In Innovative Mobile and Internet Services in Ubiquitous

Computing (IMIS), 2011 Fifth International Conference on, pages 28�35.

159

http://github.hubspot.com/bucky/
https://github.com/vgropp/bwm-ng
https://github.com/vgropp/bwm-ng
https://checkmy.ws/en/features/
https://checkmy.ws/en/features/


Bibliography

Chrome (2017 (accessed April, 2017)). Chrome browser. https://www.google.com/

chrome/browser/desktop/.

ChromeDriver (2015 (accessed April, 2015)). Chrome driver - webdriver for chrome.

https://sites.google.com/a/chromium.org/chromedriver/.

ChromeErrors (2016 (accessed April, 2016)). Papers � Chrome List of Network Errors.

https://src.chromium.org/svn/trunk/src/net/base/net_error_list.h.

ChromeNetwork (2016 (accessed June, 2016)). Papers � Network - Google Chrome.

https://developer.chrome.com/devtools/docs/protocol/1.0/network.

Ciu�oletti, A. (2015). Automated deployment of a microservice-based monitoring in-

frastructure. Procedia Computer Science, 68:163 � 172. 1st International Conference

on Cloud Forward: From Distributed to Complete Computing.

ClickyAnalytics (2017 (accessed May, 2017)). Clicky web analytics. https://clicky.

com/.

Clifton, B. (2008). Advanced Web Metrics with Google Analytics. SYBEX Inc.,

Alameda, CA, USA.

CloudWatch (2019 (accessed May, 2019)). Amazon CloudWatch. https://aws.

amazon.com/cloudwatch/.

CMUPDL-05-109 (2005). Causes of failure in web applications (cmupdl-05-109),

dec 2005. http://repository.cmu.edu/cgi/viewcontent.cgi?article=1047&

context=pdl. Retrieved: April, 2016.

CNBC (2019). Target says cash registers back online and customers can make purchases

again after systems outage. https://www.cnbc.com/2019/06/15/targets-in-store-

payment-is-system-down-impacting-stores-nationwide.html. Retrieved June 2019,

from CNBC.

CNN ("2015 (accessed May, 2015)"). Breaking news, u.s., world, weather, entertain-

ment & video news - cnn.com. http://edition.cnn.com.

Cormode, G., Korn, F., and Tirthapura, S. (2008). Time-decaying aggregates in out-

of-order streams. In Proceedings of the Twenty-seventh ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems, PODS '08, pages 89�98,

New York, NY, USA. ACM.

160

https://www.google.com/chrome/browser/desktop/
https://www.google.com/chrome/browser/desktop/
https://sites.google.com/a/chromium.org/chromedriver/
https://src.chromium.org/svn/trunk/src/net/base/net_error_list.h
https://developer.chrome.com/devtools/docs/protocol/1.0/network
https://clicky.com/
https://clicky.com/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1047&context=pdl
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1047&context=pdl
http://edition.cnn.com


Cpulimit (2017 (accessed May, 2017)). Cpulimit - cpu usage limiter for linux. https:

//github.com/opsengine/cpulimit.

Crontab (2015 (accessed May, 2015)). Crontab - quick reference | admin's choice

- choice of unix and linux administrators. http://www.adminschoice.com/

crontab-quick-reference.

Cui, H. and Biersack, E. (2013). Troubleshooting slow webpage downloads. In Com-

puter Communications Workshops (INFOCOM WKSHPS), 2013 IEEE Conference

on, pages 405�410.

DailyMail (2015 (accessed Nov, 2015)). Facebook crash.

http://www.dailymail.co.uk/sciencetech/article-3252603/

Facebook-goes-Social-network-crashes-time-month-leaving-users-panic.

html.

Das, S. K., Kant, K., and Zhang, N. (2012). Handbook on Securing Cyber-Physical

Critical Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1st edition.

Dashboard (2019 (accessed June, 2019)). Dashboard de�nition. https://www.pcmag.

com/encyclopedia/term/40726/dashboard.

Dhawan, M., Samuel, J., Teixeira, R., Kreibich, C., Allman, M., Weaver, N., and

Paxson, V. (2012). Fathom: A browser-based network measurement platform. In

Proceedings of the 2012 ACM Conference on Internet Measurement Conference, IMC

'12, pages 73�86, New York, NY, USA. ACM.

Dietrich, E. (2018 (accessed September, 2019)). Log appender: What

is it and why would you use it? https://dzone.com/articles/

log-appender-what-is-it-and-why-would-you-use-it.

Dilley, J., Friedrich, R., Jin, T., and Rolia, J. (1998). Web server performance mea-

surement and modeling techniques. Performance Evaluation, 33(1):5�26.

Docker (2018 (accessed June, 2018)). Docker. https://www.docker.com/what-docker.

DockerOverlay (2018 (accessed June, 2018)). Docker overlay network. https://docs.

docker.com/network/overlay/.

161

https://github.com/opsengine/cpulimit
https://github.com/opsengine/cpulimit
http://www.adminschoice.com/crontab-quick-reference
http://www.adminschoice.com/crontab-quick-reference
http://www.dailymail.co.uk/sciencetech/article-3252603/Facebook-goes-Social-network-crashes-time-month-leaving-users-panic.html
http://www.dailymail.co.uk/sciencetech/article-3252603/Facebook-goes-Social-network-crashes-time-month-leaving-users-panic.html
http://www.dailymail.co.uk/sciencetech/article-3252603/Facebook-goes-Social-network-crashes-time-month-leaving-users-panic.html
https://www.pcmag.com/encyclopedia/term/40726/dashboard
https://www.pcmag.com/encyclopedia/term/40726/dashboard
https://dzone.com/articles/log-appender-what-is-it-and-why-would-you-use-it
https://dzone.com/articles/log-appender-what-is-it-and-why-would-you-use-it
https://www.docker.com/what-docker
https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/


Bibliography

Downing, T. B. (1998). Java RMI: remote method invocation. IDG Books Worldwide,

Inc.

Dragoni, N., Giallorenzo, S., Lafuente, A., Mazzara, M., Montesi, F., Musta�n, R., and

Sa�na, L. (2017). Microservices: yesterday, today, and tomorrow. In Mazzara, M.

and Meyer, B., editors, Present and Ulterior Software Engineering. Springer.

DynaTrace (2017 (accessed May, 2017)). Dynatrace. https://www.dynatrace.com/

platform/.

Ebert, A., Wu, P., Mengersen, K., and Ruggeri, F. (2017). Computationally E�cient

Simulation of Queues: The R Package queuecomputer.

EC2, A. (2015 (accessed May, 2015)). Papers � Amazon EC2 Service Level Agreement.

http://aws.amazon.com/ec2-sla/.

Engadget (2019). Facebook's massive outage was the result of

a server con�guration change. https://www.engadget.com/2019/

03/14/facebook-instagram-outage-server-configuration-change/

?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_

referrer_sig=AQAAAFSw-ONCiV29uxow2-gAHKfhDFQulfYoUsuT-BmA7WPHiN_

vdikgn6uMA8SXuvl1Bqz6Jn8XMVPM5iuOB7AUPgf1tXck3goKw_

aJnjciAwQal4-VFts2pWm_x9wX9wl4A_dH_i9cK1Y4X7pbAYantN_3xH_e_

eVC0PUg3p6Ixf7W. Retrieved: Mar, 2019.

EventLogs (2019 (accessed May, 2019)). Event logs. https://en.m.wikipedia.org/

wiki/Log_file.

Ewaschuk, R. (2019 (accessed September, 2019)). Monitoring dis-

tributed systems. https://landing.google.com/sre/sre-book/chapters/

monitoring-distributed-systems/.

Ewaschuk, R. and Beyer, B. (2016). Monitoring Distributed Systems: Case Studies

from Google's SRE Teams. O'Reilly Media, Incorporated.

Fielding, R. and Reschke, J. (2014). Hypertext transfer protocol (http/1.1): Message

syntax and routing. Technical report.

Fielding, R. T. (2000). Architectural styles and the design of network-based software

architectures, volume 7. University of California, Irvine Irvine, USA.

162

https://www.dynatrace.com/platform/
https://www.dynatrace.com/platform/
http://aws.amazon.com/ec2-sla/
https://www.engadget.com/2019/03/14/facebook-instagram-outage-server-configuration-change/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAFSw-ONCiV29uxow2-gAHKfhDFQulfYoUsuT-BmA7WPHiN_vdikgn6uMA8SXuvl1Bqz6Jn8XMVPM5iuOB7AUPgf1tXck3goKw_aJnjciAwQal4-VFts2pWm_x9wX9wl4A_dH_i9cK1Y4X7pbAYantN_3xH_e_eVC0PUg3p6Ixf7W
https://www.engadget.com/2019/03/14/facebook-instagram-outage-server-configuration-change/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAFSw-ONCiV29uxow2-gAHKfhDFQulfYoUsuT-BmA7WPHiN_vdikgn6uMA8SXuvl1Bqz6Jn8XMVPM5iuOB7AUPgf1tXck3goKw_aJnjciAwQal4-VFts2pWm_x9wX9wl4A_dH_i9cK1Y4X7pbAYantN_3xH_e_eVC0PUg3p6Ixf7W
https://www.engadget.com/2019/03/14/facebook-instagram-outage-server-configuration-change/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAFSw-ONCiV29uxow2-gAHKfhDFQulfYoUsuT-BmA7WPHiN_vdikgn6uMA8SXuvl1Bqz6Jn8XMVPM5iuOB7AUPgf1tXck3goKw_aJnjciAwQal4-VFts2pWm_x9wX9wl4A_dH_i9cK1Y4X7pbAYantN_3xH_e_eVC0PUg3p6Ixf7W
https://www.engadget.com/2019/03/14/facebook-instagram-outage-server-configuration-change/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAFSw-ONCiV29uxow2-gAHKfhDFQulfYoUsuT-BmA7WPHiN_vdikgn6uMA8SXuvl1Bqz6Jn8XMVPM5iuOB7AUPgf1tXck3goKw_aJnjciAwQal4-VFts2pWm_x9wX9wl4A_dH_i9cK1Y4X7pbAYantN_3xH_e_eVC0PUg3p6Ixf7W
https://www.engadget.com/2019/03/14/facebook-instagram-outage-server-configuration-change/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAFSw-ONCiV29uxow2-gAHKfhDFQulfYoUsuT-BmA7WPHiN_vdikgn6uMA8SXuvl1Bqz6Jn8XMVPM5iuOB7AUPgf1tXck3goKw_aJnjciAwQal4-VFts2pWm_x9wX9wl4A_dH_i9cK1Y4X7pbAYantN_3xH_e_eVC0PUg3p6Ixf7W
https://www.engadget.com/2019/03/14/facebook-instagram-outage-server-configuration-change/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAFSw-ONCiV29uxow2-gAHKfhDFQulfYoUsuT-BmA7WPHiN_vdikgn6uMA8SXuvl1Bqz6Jn8XMVPM5iuOB7AUPgf1tXck3goKw_aJnjciAwQal4-VFts2pWm_x9wX9wl4A_dH_i9cK1Y4X7pbAYantN_3xH_e_eVC0PUg3p6Ixf7W
https://www.engadget.com/2019/03/14/facebook-instagram-outage-server-configuration-change/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAFSw-ONCiV29uxow2-gAHKfhDFQulfYoUsuT-BmA7WPHiN_vdikgn6uMA8SXuvl1Bqz6Jn8XMVPM5iuOB7AUPgf1tXck3goKw_aJnjciAwQal4-VFts2pWm_x9wX9wl4A_dH_i9cK1Y4X7pbAYantN_3xH_e_eVC0PUg3p6Ixf7W
https://en.m.wikipedia.org/wiki/Log_file
https://en.m.wikipedia.org/wiki/Log_file
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/


Flach, T., Katz-Bassett, E., and Govindan, R. (2013). Diagnosing slow web page

access at the client side. In Proceedings of the 2013 Workshop on Student Workhop,

CoNEXT Student Workhop '13, pages 59�62, New York, NY, USA. ACM.

Flume, A. (2019 (accessed September, 2019)). Apache �ume. https://flume.apache.

org/.

Fonseca, R., Dutta, P., Levis, P., and Stoica, I. (2008). Quanto: Tracking energy in

networked embedded systems. In Proceedings of the 8th USENIX Conference on

Operating Systems Design and Implementation, OSDI'08, pages 323�338, Berkeley,

CA, USA. USENIX Association.

Fonseca, R., Porter, G., Katz, R. H., Shenker, S., and Stoica, I. (2007). X-trace: A

pervasive network tracing framework. In Proceedings of the 4th USENIX conference

on Networked systems design & implementation (NSDI'07), number April, page 20.

USENIX Association.

Gartner (2013 (accessed May, 2013)). Papers � gartner says 60 percent of virtualized

servers will be less secure than the physical servers they replace through 2012 [online].

www.gartner.com/it/page.jsp?id=1322414.

GitHub (2018 (accessed May, 2018)). Github � monitoring_ms. https://github.com/

fabiopina/monitoring_ms.

GlassFish (2019 (accessed August, 2013)). Technical white papers � GlassFish Appli-

cation Server. http://glassfish.java.net/.

Gomez-Uribe, C. A. and Hunt, N. (2015). The Net�ix recommender system: Algo-

rithms, business value, and innovation. ACM Trans. Manage. Inf. Syst., 6(4):13:1�

13:19.

GoogleAnalytics (2018 (accessed May, 2018)). Google Analytics. https://analytics.

google.com/analytics/web/. Retrieved May, 2018.

Grafana (2018 (accessed May, 2018)). Grafana. https://grafana.com/.

Graphite (2019 (accessed June, 2019)). Graphite. https://graphiteapp.org/.

Gray, J. Why do computers stop and what can be done about it?

Graylog (2019 (accessed September, 2019)). Graylog correlation & event management

engine. https://www.graylog.org/.

163

https://flume.apache.org/
https://flume.apache.org/
www.gartner.com/it/page.jsp?id=1322414
https://github.com/fabiopina/monitoring_ms
https://github.com/fabiopina/monitoring_ms
http://glassfish.java.net/
https://analytics.google.com/analytics/web/
https://analytics.google.com/analytics/web/
https://grafana.com/
https://graphiteapp.org/
https://www.graylog.org/


Bibliography

Gu, Z., Gu, L., Eils, R., Schlesner, M., and Brors, B. (2014). circlize implements and

enhances circular visualization in r. Bioinformatics, 30(19):2811�2812.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.

(2009). The weka data mining software: an update. ACM SIGKDD explorations

newsletter, 11(1):10�18.

Halpern, J. Y. (1987). Using reasoning about knowledge to analyze distributed systems.

Annual Review of Computer Science, 2(1):37�68.

Hart, G. W. (1992). Nonintrusive appliance load monitoring. Proceedings of the IEEE,

80(12):1870�1891.

Haselböck, S. and Weinreich, R. (2017). Decision guidance models for microservice

monitoring. In 2017 IEEE International Conference on Software Architecture Work-

shops (ICSAW), pages 54�61.

Heinrich, R., van Hoorn, A., Knoche, H., Li, F., Lwakatare, L. E., Pahl, C., Schulte, S.,

and Wettinger, J. (2017). Performance Engineering for Microservices. In Proceedings

of the 8th ACM/SPEC on International Conference on Performance Engineering

Companion - ICPE '17 Companion, pages 223�226, New York, New York, USA.

ACM Press.

Hellerstein, J. L., Maccabee, M. M., Mills, W. N., and Turek, J. J. (1999). Ete: a

customizable approach to measuring end-to-end response times and their compo-

nents in distributed systems. In Proceedings. 19th IEEE International Conference on

Distributed Computing Systems (Cat. No.99CB37003), pages 152�162.

Herbst, N. R., Kounev, S., and Reussner, R. (2013). Elasticity in Cloud Comput-

ing: What It Is, and What It Is Not. Presented as part of the 10th International

Conference on Autonomic Computing, pages 23�27.

Horváth, A. and Telek, M. (2002). Ph�t: A general phase-type �tting tool. In Inter-

national Conference on Modelling Techniques and Tools for Computer Performance

Evaluation, pages 82�91. Springer.

HTML5 (2016 (accessed April, 2016)). Papers � Cross-Origin Resource Sharing.

https://www.w3.org/TR/cors/.

HTTP (1999). Rfc 2616 - Hypertext Transfer Protocol � HTTP / 1.1. Internet

Engineering Task Force (IETF).

164

https://www.w3.org/TR/cors/


HTTPArchive (2016 (accessed April, 2016)). Http archive. http://httparchive.org/.

Huang, J., Mozafari, B., and Wenisch, T. F. (2017). Statistical analysis of latency

through semantic pro�ling. In Proceedings of the Twelfth European Conference on

Computer Systems, pages 64�79. ACM.

Huber, N., Brosig, F., and Kounev, S. (2011). Model-based self-adaptive resource

allocation in virtualized environments. In Proceedings of the 6th International Sym-

posium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS

'11, pages 90�99, New York, NY, USA. ACM.

In�ux (2018 (accessed May, 2018)). In�uxdata. https://www.influxdata.com/

modern-time-series-platform/.

Instana (2019 (accessed May, 2019)). Instana. https://www.instana.com/.

Internet, A. (2016 (accessed May, 2016)). At internet. http://www.atinternet.com/.

Iqbal, W., Dailey, M. N., Carrera, D., and Janecek, P. (2010). Sla-driven automatic

bottleneck detection and resolution for read intensive multi-tier applications hosted

on a cloud. In Advances in Grid and Pervasive Computing, pages 37�46. Springer.

Iqbal, W., Dailey, M. N., Carrera, D., and Janecek, P. (2011). Adaptive resource

provisioning for read intensive multi-tier applications in the cloud. Future Generation

Computer Systems, 27(6):871�879.

Ivaki, N., Laranjeiro, N., and Araujo, F. (2015). A taxonomy of reliable request-

response protocols. In Proceedings of the 30th Annual ACM Symposium on Applied

Computing, SAC '15, pages 456�463, New York, NY, USA. ACM.

Jaegger (2019 (accessed Jun, 2019)). Jaegger. https://www.jaegertracing.io/. Re-

trieved Jun, 2019.

Janapati, S. P. R. (2017 (accessed May, 2019)). Dzone - distributed logging architecture

for microservices. https://www.elastic.co/products/kibana/.

Janssen, T. (2018 (accessed September, 2019)). Java logging frameworks: log4j vs

logback vs log4j2. https://stackify.com/compare-java-logging-frameworks/.

JMeter (2013 (accessed June, 2013)). Performance tools � Apache JMeterTM . http:

//jmeter.apache.org/.

165

http://httparchive.org/
https://www.influxdata.com/modern-time-series-platform/
https://www.influxdata.com/modern-time-series-platform/
https://www.instana.com/
http://www.atinternet.com/
https://www.jaegertracing.io/
https://www.elastic.co/products/kibana/
https://stackify.com/compare-java-logging-frameworks/
http://jmeter.apache.org/
http://jmeter.apache.org/


Bibliography

Johnson, D. B. (1989). Distributed system fault tolerance using message logging and

checkpointing. Technical report, DTIC Document.

Joyce, J., Lomow, G., Slind, K., and Unger, B. (1987). Monitoring distributed systems.

ACM Trans. Comput. Syst., 5(2):121�150.

Kalman, R. (1959). On the general theory of control systems. IRE Transactions on

Automatic Control, 4(3):110�110.

Kattepur, A. and Nambiar, M. (2015). Performance modeling of multi-tiered web

applications with varying service demands. In 2015 IEEE International Parallel and

Distributed Processing Symposium Workshop, pages 415�424.

Khadke, N., Kasick, M. P., Kavulya, S. P., Tan, J., and Narasimhan, P. (2012). Trans-

parent system call based performance debugging for cloud computing. In Presented

as part of the 2012 Workshop on Managing Systems Automatically and Dynamically,

Hollywood, CA. USENIX.

Kibana (2018 (accessed May, 2018)). Kibana. https://www.elastic.co/products/

kibana/.

Kiciman, E. and Fox, A. (2005). Detecting application-level failures in component-based

internet services. IEEE Transactions on Neural Networks, 16(5):1027�1041.

Kreibich, C., Weaver, N., Nechaev, B., and Paxson, V. (2010). Netalyzr: Illuminating

the edge network. In Proceedings of the 10th ACM SIGCOMM Conference on Internet

Measurement, IMC '10, pages 246�259, New York, NY, USA. ACM.

Lamport, L. (1987). Leslie lamport's home page. http://research.microsoft.com/

en-us/um/people/lamport/.

Laprie, J. C. (2008). From dependability to resilience. In In 38th IEEE/IFIP Int. Conf.

On Dependable Systems and Networks.

Laranjeiro, N., Vieira, M., and Madeira, H. (2009). Improving web services robustness.

In 2009 IEEE International Conference on Web Services, pages 397�404.

Lewis, J. (2019 (accessed June, 2019)). Microservices - a de�nition of this new archi-

tectural term. https://martinfowler.com/articles/microservices.html.

166

https://www.elastic.co/products/kibana/
https://www.elastic.co/products/kibana/
http://research.microsoft.com/en-us/um/people/lamport/
http://research.microsoft.com/en-us/um/people/lamport/
https://martinfowler.com/articles/microservices.html


Li, H. (2010). A Queue Theory Based Response Time Model for Web Services Chain.

2010 International Conference on Computational Intelligence and Software Engineer-

ing, pages 1�4.

Li, S. (2019). Time Series of Price Anomaly Detection. https://towardsdatascience.

com/time-series-of-price-anomaly-detection-13586cd5ff46. 2019 (accessed

Mar, 2019).

Li, W. and Gorton, I. (2010). Analyzing web logs to detect user-visible failures. In

Proceedings of the 2010 Workshop on Managing Systems via Log Analysis and Ma-

chine Learning Techniques, SLAML'10, pages 6�6, Berkeley, CA, USA. USENIX

Association.

Li, W., Harrold, M. J., and Görg, C. (2010a). Detecting user-visible failures in ajax

web applications by analyzing users' interaction behaviors. In Proceedings of the

IEEE/ACM International Conference on Automated Software Engineering, ASE '10,

pages 155�158, New York, NY, USA. ACM.

Li, Z., Zhang, M., Zhu, Z., Chen, Y., Greenberg, A. G., and Wang, Y.-M. (2010b).

Webprophet: Automating performance prediction for web services. In NSDI, vol-

ume 10, pages 143�158.

Lin, F. and Wonham, W. (1988). On observability of discrete-event systems. Informa-

tion Sciences, 44(3):173 � 198.

Linden, G., Smith, B., and York, J. (2003). Amazon.com recommendations: item-to-

item collaborative �ltering. IEEE Internet Computing, 7(1):76�80.

Linkedin (2019 (accessed May, 2019)). Linkedin - tracing. https:

//engineering.linkedin.com/distributed-service-call-graph/

real-time-distributed-tracing-website-\protect\discretionary{\char\

hyphenchar\font}{}{}performance-and-efficiency.

Liu, H., Shah, S., and Jiang, W. (2004). On-line outlier detection and data cleaning.

Computers and Chemical Engineering, 28(9):1635�1647.

Liu, H. and Wee, S. (2009). Web server farm in the cloud: Performance evaluation and

dynamic architecture. In Proceedings of the 1st International Conference on Cloud

Computing, CloudCom '09, pages 369�380, Berlin, Heidelberg. Springer-Verlag.

167

https://towardsdatascience.com/time-series-of-price-anomaly-detection-13586cd5ff46
https://towardsdatascience.com/time-series-of-price-anomaly-detection-13586cd5ff46
https://engineering.linkedin.com/distributed-service-call-graph/real-time-distributed-tracing-website-\protect \discretionary {\char \hyphenchar \font }{}{}performance-and-efficiency
https://engineering.linkedin.com/distributed-service-call-graph/real-time-distributed-tracing-website-\protect \discretionary {\char \hyphenchar \font }{}{}performance-and-efficiency
https://engineering.linkedin.com/distributed-service-call-graph/real-time-distributed-tracing-website-\protect \discretionary {\char \hyphenchar \font }{}{}performance-and-efficiency
https://engineering.linkedin.com/distributed-service-call-graph/real-time-distributed-tracing-website-\protect \discretionary {\char \hyphenchar \font }{}{}performance-and-efficiency


Bibliography

Liu, Y., Zhang, L., and Guan, Y. (2010). Sketch-based streaming pca algorithm for

network-wide tra�c anomaly detection. In 2010 IEEE 30th International Conference

on Distributed Computing Systems, pages 807�816.

LogEntries (2019 (accessed September, 2019)). The fastest way to analyze your log

data. https://logentries.com/.

Loggly (2019 (accessed September, 2019)). Python logging li-

braries and frameworks. https://www.loggly.com/ultimate-guide/

python-logging-libraries-frameworks/.

Logstash (2019 (accessed September, 2019)). Logstash. https://www.elastic.co/

products/logstash.

Mace, J., Bodik, P., Fonseca, R., and Musuvathi, M. (2015). Retro: Targeted resource

management in multi-tenant distributed systems. In Proceedings of the 12th USENIX

Conference on Networked Systems Design and Implementation, NSDI'15, pages 589�

603, Berkeley, CA, USA. USENIX Association.

Mace, J., Roelke, R., and Fonseca, R. (2018). Pivot tracing: Dynamic causal monitoring

for distributed systems. ACM Trans. Comput. Syst., 35(4):11:1�11:28.

Malik, H. and Shakshuki, E. M. (2016). Towards identifying performance anomalies.

Procedia Computer Science, 83(Supplement C):621 � 627. The 7th International

Conference on Ambient Systems, Networks and Technologies (ANT 2016) / The

6th International Conference on Sustainable Energy Information Technology (SEIT-

2016) / A�liated Workshops.

Malkowski, S., Hedwig, M., Parekh, J., Pu, C., and Sahai, A. (2007). Bottleneck detec-

tion using statistical intervention analysis. In Managing Virtualization of Networks

and Services, pages 122�134. Springer.

Malkowski, S., Hedwig, M., and Pu, C. (2009). Experimental evaluation of n-tier sys-

tems: Observation and analysis of multi-bottlenecks. In Workload Characterization,

2009. IISWC 2009. IEEE International Symposium on, pages 118�127. IEEE.

Manifesto, R. (2019 (accessed June, 2019)). Reactive Manifesto. https://www.

reactivemanifesto.org.

168

https://logentries.com/
https://www.loggly.com/ultimate-guide/python-logging-libraries-frameworks/
https://www.loggly.com/ultimate-guide/python-logging-libraries-frameworks/
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org


Martin, R. C. (2019 (accessed June, 2019)). The Single Responsibility Principle.

https://www.oreilly.com/library/view/97-things-every/9780596809515/

ch76.html.

Mayer, B. and Weinreich, R. (2017). A dashboard for microservice monitoring and

management. In 2017 IEEE International Conference on Software Architecture Work-

shops (ICSAW), pages 66�69.

Mediadrop (2017 (accessed June, 2017)). Mediadrop - mediadrop open source project.

http://mediadrop.video/.

Mendes, J., Laranjeiro, N., and Vieira, M. (2018). Toward characterizing html defects

on the web. Software: Practice and Experience, 48(3):750�757.

Mertz, N. B. (2019 (accessed June, 2019)). Anomaly Detection in Google An-

alytics � A New Kind of Alerting. https://medium.com/the-data-dynasty/

anomaly-detection-in-google-analytics-a-new-kind-of-alerting-9c31c13e5237.

Monitis (2017 (accessed June, 2017)). Real user monitoring (rum) - monitis. http:

//www.monitis.com/real-user-monitoring/.

MonitoringTools (2015 (accessed June, 2015)). Papers � External Site Monitoring

Services. http://softwareqatest.com/qatweb1.html#MONITORING.

Moradi, F., Flinta, C., Johnsson, A., and Meirosu, C. (2017). Conmon: An automated

container based network performance monitoring system. In 2017 IFIP/IEEE Sym-

posium on Integrated Network and Service Management (IM), pages 54�62.

Muthukrishnan, S. et al. (2005). Data streams: Algorithms and applications. Founda-

tions and Trends® in Theoretical Computer Science, 1(2):117�236.

Nagios (2019 (accessed June, 2019)). Nagios. https://www.nagios.org/.

NavigationTiming (2015 (accessed May, 2015)). Papers � Navigation Timing.

https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/NavigationTiming/

Overview.html.

Net�ix (2018 (accessed May, 2018)). Net�ix. https://speakerdeck.com/adriancole/

distributed-tracing-and-zipkin-at-netflixoss-barcelona.

Netravali, R., Goyal, A., Mickens, J., and Balakrishnan, H. (2016). Polaris: Faster page

loads using �ne-grained dependency tracking. In NSDI, pages 123�136.

169

https://www.oreilly.com/library/view/97-things-every/9780596809515/ch76.html
https://www.oreilly.com/library/view/97-things-every/9780596809515/ch76.html
http://mediadrop.video/
https://medium.com/the-data-dynasty/anomaly-detection-in-google-analytics-a-new-kind-of-alerting-9c31c13e5237
https://medium.com/the-data-dynasty/anomaly-detection-in-google-analytics-a-new-kind-of-alerting-9c31c13e5237
http://www.monitis.com/real-user-monitoring/
http://www.monitis.com/real-user-monitoring/
http://softwareqatest.com/qatweb1.html#MONITORING
https://www.nagios.org/
https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/NavigationTiming/Overview.html
https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/NavigationTiming/Overview.html
https://speakerdeck.com/adriancole/distributed-tracing-and-zipkin-at-netflixoss-barcelona
https://speakerdeck.com/adriancole/distributed-tracing-and-zipkin-at-netflixoss-barcelona


Bibliography

Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems. O'Reilly

Media, 1st edition.

NewRelic (2017 (accessed May, 2017)). New Relic. https://newrelic.com/

application-monitoring/features.

Nielsen, P. (2017 (accessed September, 2019)). Google's 'superhuman' deepmind ai

claims chess crown. https://www.bbc.com/news/technology-42251535.

OpenCensus (2019 (accessed May, 2019)). Opencensus. https://opencensus.io/.

OpenTracing (2019 (accessed September, 2019)). Opentracing. http://opentracing.

io/.

OpenTSDB (2018 (accessed May, 2018)). Opentsdb. http://opentsdb.net/.

Oppenheimer, D., Ganapathi, A., and Patterson, D. A. (2003). Why do internet services

fail, and what can be done about it? In Proceedings of the 4th Conference on USENIX

Symposium on Internet Technologies and Systems - Volume 4, USITS'03, pages 1�1,

Berkeley, CA, USA. USENIX Association.

Owezarski, P., Lobo, J., and Medhi, D. (2013). Network and service management for

cloud computing and data centers: A report on cnsm 2012. Journal of Network and

Systems Management, 21.

Özveren, C. M. and Willsky, A. S. (1990). Observability of discrete event dynamic

systems.

Padmanabhan, V. N., Ramabhadran, S., Agarwal, S., and Padhye, J. (2006). A study

of end-to-end web access failures. In Proceedings of CoNEXT, Lisboa, Portugal.

Palma, F., Dubois, J., Moha, N., and Guéhéneuc, Y.-G. (2014). Detection of rest

patterns and antipatterns: A heuristics-based approach. In Franch, X., Ghose, A. K.,

Lewis, G. A., and Bhiri, S., editors, Service-Oriented Computing, pages 230�244,

Berlin, Heidelberg. Springer Berlin Heidelberg.

Panda, R., Rocha, B., and Paiva, R. P. (2013). Dimensional music emotion recogni-

tion: Combining standard and melodic audio features. In Proceedings of the 10th

International Symposium on Computer Music Multidisciplinary Research (CMMR),

pages 583�593.

170

https://newrelic.com/application-monitoring/features
https://newrelic.com/application-monitoring/features
https://www.bbc.com/news/technology-42251535
https://opencensus.io/
http://opentracing.io/
http://opentracing.io/
http://opentsdb.net/


Perf, H. (2013 (accessed June, 2013)). Papers � HP Web Server Performance Tool.

http://www.hpl.hp.com/research/linux/httperf/.

PetStore (2013 (accessed August , 2013)). Technical white papers � Java Petstore 2.0.

http://www.oracle.com/technetwork/java/index-136650.html.

Philippe, N. (1998). Basic elements of queueing theory application to the modelling of

computer systems. Le Chesney, France: INRIA.

Pingdom (2017 (accessed May, 2017)). Website performance monitoring - pingdom.

https://www.pingdom.com/.

PlanetLab (2015 (accessed June, 2015)). Papers � Planet Lab. https://www.

planet-lab.org/.

Postel, J. (1981). Transmission Control Protocol. RFC 793 (Standard). Updated by

RFCs 1122, 3168.

Prometheus (2018 (accessed June, 2018)). Prometheus. https://prometheus.io/.

ResourceTiming (2016 (accessed March, 2016)). Papers � Resource Timing. https:

//www.w3.org/TR/2016/WD-resource-timing-20160225/.

Reynolds, P., Killian, C., Wiener, J. L., Mogul, J. C., Shah, M. A., and Vahdat, A.

(2006). Pip: Detecting the unexpected in distributed systems. In Proceedings of

the 3rd Conference on Networked Systems Design & Implementation - Volume 3,

NSDI'06, pages 9�9, Berkeley, CA, USA. USENIX Association.

Rimal, B., Choi, E., and Lumb, I. (2009). A taxonomy and survey of cloud computing

systems. In INC, IMS and IDC, 2009. NCM 09. Fifth International Joint Conference

on, pages 44�51.

Rubis (2017 (accessed June, 2017)). Rubis home page. http://rubis.ow2.org/.

Sambasivan, R. R., Fonseca, R., Shafer, I., and Ganger, G. R. (2014). So, you want to

trace your distributed system? key design insights from years of practical experience.

Sambasivan, R. R., Shafer, I., Mace, J., Sigelman, B. H., Fonseca, R., and Ganger, G. R.

(2016). Principled work�ow-centric tracing of distributed systems. In Proceedings of

the Seventh ACM Symposium on Cloud Computing, SoCC '16, pages 401�414, New

York, NY, USA. ACM.

171

http://www.hpl.hp.com/research/linux/httperf/
http://www.oracle.com/technetwork/java/index-136650.html
https://www.pingdom.com/
https://www.planet-lab.org/
https://www.planet-lab.org/
https://prometheus.io/
https://www.w3.org/TR/2016/WD-resource-timing-20160225/
https://www.w3.org/TR/2016/WD-resource-timing-20160225/
http://rubis.ow2.org/


Bibliography

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers.

IBM Journal of Research and Development, 3(3):210�229.

Samza (2019 (accessed May, 2019)). Apache Samza.

Sánchez, M. A., Otto, J. S., Bischof, Z. S., Cho�nes, D. R., Bustamante, F. E., Krish-

namurthy, B., and Willinger, W. (2013). Dasu: Pushing experiments to the internet's

edge. In Presented as part of the 10th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 13), pages 487�499, Lombard, IL. USENIX.

SciKit (2018 (accessed June, 2018)). Scikit learn. http://scikit-learn.org/stable/

index.html.

Selenium (2015 (accessed May, 2015)). Papers � Selenium Browser automation. http:

//www.seleniumhq.org/. accessed: May, 2015.

SemaText (2019 (accessed July, 2019)). Papers � Rum vs APM. https://sematext.

com/blog/rum-vs-apm/.

Sen, A. and Srivastava, M. (2012). Regression analysis: theory, methods, and applica-

tions. Springer Science & Business Media.

Shahin, A. A. (2017). Enhancing Elasticity of SaaS Applications using Queuing Theory.

IJACSA) International Journal of Advanced Computer Science and Applications,

8(1):279�285.

Shegalov, G., Weikum, G., Barga, R., and Lomet, D. (2002). Eos: exactly-once e-service

middleware. In Proceedings of the 28th international conference on Very Large Data

Bases, pages 1043�1046. VLDB Endowment.

Shoaib, Y. and Das, O. (2011). Web application performance modeling using layered

queueing networks. Electron. Notes Theor. Comput. Sci., 275:123�142.

Shoaib, Y. and Das, O. (2012). Using layered bottlenecks for virtual machine pro-

visioning in the clouds. In Utility and Cloud Computing (UCC), 2012 IEEE Fifth

International Conference on, pages 109�116.

Sigelman, B. H., Barroso, L. A., Burrows, M., Stephenson, P., Plakal, M., Beaver,

D., Jaspan, S., and Shanbhag, C. (2010). Dapper, a large-scale distributed systems

tracing infrastructure. Technical report, Google, Inc.

172

http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/index.html
http://www.seleniumhq.org/
http://www.seleniumhq.org/
https://sematext.com/blog/rum-vs-apm/
https://sematext.com/blog/rum-vs-apm/


Singh, R., Sharma, U., Cecchet, E., and Shenoy, P. (2010). Autonomic mix-aware

provisioning for non-stationary data center workloads. In Proceedings of the 7th

international conference on Autonomic computing, ICAC '10, pages 21�30, New York,

NY, USA. ACM.

Sommers, J. and Barford, P. (2007). An active measurement system for shared en-

vironments. In Proceedings of the 7th ACM SIGCOMM Conference on Internet

Measurement, IMC '07, pages 303�314, New York, NY, USA. ACM.

Speci�cation, O. (2019 (accessed September, 2019)). Opentracing speci�cation. https:

//github.com/opentracing/specification.

Spotify (2018 (accessed June, 2018)). Spotify. https://labs.spotify.com/2015/11/

17/monitoring-at-spotify-introducing-heroic/.

StatusCanceled (2016 (accessed April, 2016)). Papers � What means

status canceled. http://stackoverflow.com/questions/12009423/

what-does-status-canceled-for-a-resource-mean-in-chrome-developer-tools.

Steady-state (2019 (accessed May, 2019)). Steady-state. https://www.

yourdictionary.com/steady-state.

Sweenie, T. (2000). No time for downtime: It managers feel the heat to prevent outages

that can cost millions of dollars. Internet Week, N.807, 3.

Sweenie, T. (2003). The black friday report on web application integrity. Business

Internet Group, San Francisco, CA.

Tak, B. C., Tang, C., Zhang, C., Govindan, S., Urgaonkar, B., and Chang, R. N. (2009).

vpath: Precise discovery of request processing paths from black-box observations of

thread and network activities. In Proceedings of the 2009 Conference on USENIX An-

nual Technical Conference, USENIX'09, pages 19�19, Berkeley, CA, USA. USENIX

Association.

Technology, T. (2005). A study about online transactions, prepared for tealeaf technol-

ogy inc, oct 2005. http://www-01.ibm.com/software/info/tealeaf/. Retrieved:

April, 2016.

Techopedia (2019 (accessed May, 2019)a). Debugging. https://www.techopedia.com/

definition/16373/debugging.

173

https://github.com/opentracing/specification
https://github.com/opentracing/specification
https://labs.spotify.com/2015/11/17/monitoring-at-spotify-introducing-heroic/
https://labs.spotify.com/2015/11/17/monitoring-at-spotify-introducing-heroic/
http://stackoverflow.com/questions/12009423/what-does-status-canceled-for-a-resource-mean-in-chrome-developer-tools
http://stackoverflow.com/questions/12009423/what-does-status-canceled-for-a-resource-mean-in-chrome-developer-tools
https://www.yourdictionary.com/steady-state
https://www.yourdictionary.com/steady-state
http://www-01.ibm.com/software/info/tealeaf/
https://www.techopedia.com/definition/16373/debugging
https://www.techopedia.com/definition/16373/debugging


Bibliography

Techopedia (2019 (accessed September, 2019)b). Monitoring software. https://www.

techopedia.com/definition/4313/monitoring-software.

TensorFlow (2019 (accessed Feb, 2018)). Tensor�ow. https://www.tensorflow.org/

guide/keras.

TheFreeDictionary (2019 (accessed September, 2019)). Observing. https://www.

thefreedictionary.com/observing.

Thereska, E., Salmon, B., Strunk, J., Wachs, M., Abd-El-Malek, M., Lopez, J., and

Ganger, G. R. (2006). Stardust: tracking activity in a distributed storage system. In

ACM SIGMETRICS Performance Evaluation Review, volume 34, pages 3�14. ACM.

Thorburn, W. M. (1915). Occam's razor. Mind, 24(2):287�288.

TimescaleDB (2018 (accessed May, 2018)). Timescaledb. https://www.timescale.

com/.

To�etti, G., Brunner, S., Blöchlinger, M., Dudouet, F., and Edmonds, A. (2015). An

architecture for self-managing microservices. In Proceedings of the 1st International

Workshop on Automated Incident Management in Cloud, AIMC '15, pages 19�24,

New York, NY, USA. ACM.

TPC-W (2017 (accessed May, 2017)). Tpc-w benchmark, objectweb implementation.

http://jmob.ow2.org/tpcw.html.

Tra�cControl (2017 (accessed May, 2017)). Tra�c control. http://tldp.org/HOWTO/

Traffic-Control-HOWTO/intro.html.

Urgaonkar, B., Paci�ci, G., Shenoy, P., Spreitzer, M., and Tantawi, A. (2005). An

analytical model for multi-tier internet services and its applications. SIGMETRICS

Perform. Eval. Rev., 33(1):291�302.

Us, T., Jensen, N., Lind, M., and Jørgensen, S. B. (2011). Fundamental principles of

alarm design. International Journal of Nuclear Safety and Simulation, 2(1):44�51.

Van Do, T., Krieger, U. R., and Chakka, R. (2008). Performance modeling of an apache

web server with a dynamic pool of service processes. Telecommunication Systems,

39(2):117�129.

174

https://www.techopedia.com/definition/4313/monitoring-software
https://www.techopedia.com/definition/4313/monitoring-software
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/keras
https://www.thefreedictionary.com/observing
https://www.thefreedictionary.com/observing
https://www.timescale.com/
https://www.timescale.com/
http://jmob.ow2.org/tpcw.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html


Vateva-Gurova, T., Suri, N., and Mendelson, A. (2015). The impact of hypervisor

scheduling on compromising virtualized environments. In 2015 IEEE International

Conference on Computer and Information Technology; Ubiquitous Computing and

Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelli-

gence and Computing, pages 1910�1917.

Vaz, C., Silva, L., and Dourado, A. (2011). Detecting user-visible failures in web-sites

by using end-to-end �ne-grained monitoring: An experimental study. In Network

Computing and Applications (NCA), 2011 10th IEEE International Symposium on,

pages 338�341.

Vector (2018 (accessed May, 2018)). Vector. https://github.com/Netflix/vector.

Verge (2019). Facebook, instagram, and whatsapp were down for more

than two hours. https://www.theverge.com/2019/4/14/18310069/

facebook-instagram-whatsapp-down-outage-issues. Retrieved: Mar, 2019.

Verizon (2013 (accessed May, 2013)). Papers � 2013 data breach investi-

gations report. http://www.verizonenterprise.com/resources/reports/rp_

data-breach-investigations-report-2013_en_xg.pdf.

Wachs, M., Xu, L., Kanevsky, A., and Ganger, G. R. (2011). Exertion-based billing

for cloud storage access. In Proceedings of the 3rd USENIX Conference on Hot

Topics in Cloud Computing, HotCloud'11, pages 7�7, Berkeley, CA, USA. USENIX

Association.

Wang, Q., Kanemasa, Y., Li, J., Jayasinghe, D., Shimizu, T., Matsubara, M., Kawaba,

M., and Pu, C. (2013). Detecting transient bottlenecks in n-tier applications through

�ne-grained analysis. ICDCS'13.

Wang, X., Qi, Y., Zhang, C., Qi, S., and Wang, P. (2017). Secretsafe: A lightweight

approach against heap bu�er over-read attack. In 2017 IEEE 41st Annual Computer

Software and Applications Conference (COMPSAC), volume 1, pages 628�636.

Warp10 (2018 (accessed May, 2018)). Warp10. https://www.warp10.io/.

Whittaker, Z. (2012). O2 scraps ericsson database after second major network

outage. www.zdnet.com/o2-scraps-ericsson-database-after-second-major-network-

outage-7000005972. Retrieved Nov. 2012, from Northrop Grumman Information

Systems.

175

https://github.com/Netflix/vector
https://www.theverge.com/2019/4/14/18310069/facebook-instagram-whatsapp-down-outage-issues
https://www.theverge.com/2019/4/14/18310069/facebook-instagram-whatsapp-down-outage-issues
http://www.verizonenterprise.com/resources/reports/rp_data-breach-investigations-report-2013_en_xg.pdf
http://www.verizonenterprise.com/resources/reports/rp_data-breach-investigations-report-2013_en_xg.pdf
https://www.warp10.io/


Bibliography

Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016). Data Mining: Practical

Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington, MA, 4

edition.

Xvfb (2015 (accessed May, 2015)). Xvfb. http://www.x.org/archive/X11R7.6/doc/

man/man1/Xvfb.1.xhtml.

Yahoo (2019 (accessed April, 2016)). Webpage � Yahoo Query Language (YQL).

https://developer.yahoo.com/yql/.

Yang, W.-p., Wang, L.-c., and Wen, H.-p. (2013). A queueing analytical model for

service mashup in mobile cloud computing. 2013 IEEE Wireless Communications

and Networking Conference (WCNC), pages 2096�2101.

Yuan, D., Park, S., and Zhou, Y. (2012). Characterizing logging practices in open-

source software. In 2012 34th International Conference on Software Engineering

(ICSE), pages 102�112.

Zabbix (2019 (accessed June, 2019)). Zabbix. https://www.zabbix.com/.

Zhao, X., Rodrigues, K., Luo, Y., Yuan, D., and Stumm, M. (2016). Non-intrusive

performance pro�ling for entire software stacks based on the �ow reconstruction

principle. In 12th {USENIX} Symposium on Operating Systems Design and Imple-

mentation ({OSDI} 16), pages 603�618.

Zimek, A. and Schubert, E. (2017). Outlier detection. In Liu, L. and Özsu, M. T.,

editors, Encyclopedia of Database Systems, pages 1�5, New York, NY. Springer New

York.

ZipKin (2018 (accessed June, 2018)). Zipkin. http://zipkin.io/.

Zuul (2018 (accessed May, 2018)). Zuul. https://github.com/Netflix/zuul.

176

http://www.x.org/archive/X11R7.6/doc/man/man1/Xvfb.1.xhtml
http://www.x.org/archive/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://developer.yahoo.com/yql/
https://www.zabbix.com/
http://zipkin.io/
https://github.com/Netflix/zuul

	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Problem Statement and Motivation
	1.2 Main Objectives and Approach
	1.3 Results and Contributions
	1.4 Thesis Structure

	2 State of the Art on Distributed Systems Monitoring
	2.1 Concepts
	2.1.1 Monitoring
	2.1.2 Observability
	2.1.3 Microservices
	2.1.4 Tracing
	2.1.5 Logging
	2.1.6 Debugging

	2.2 Use Cases
	2.2.1 Anomaly detection
	2.2.2 Diagnosing steady-state problems
	2.2.3 Distributed profiling
	2.2.4 Resource attribution
	2.2.5 Workload modelling

	2.3 Monitoring Techniques
	2.3.1 Dashboards
	2.3.2 Alarms
	2.3.3 Time Series
	2.3.4 Modelling Techniques

	2.4 Monitoring Tools
	2.4.1 Logging Tools
	2.4.2 Tracing Tools
	2.4.3 Agents

	2.5 On Reliability of Web Sites
	2.6 Conclusion and Discussion

	3 HTTP infrastructure evaluation
	3.1 Web site Evaluation
	3.1.1 Problem Description
	3.1.2 Experimental Settings
	3.1.3 Results
	3.1.4 Client-Side Monitoring

	3.2 Evaluating REpresentational State Transfer Evaluation Services
	3.2.1 Experimental Settings and Results

	3.3 Conclusion

	4 Client-Side Bottleneck Identification of HTTP Infrastructures
	4.1 On Identifying Bottlenecks Distinct Signatures
	4.1.1 The Client-Side Tool
	4.1.2 Experimental evaluation
	4.1.3 Conclusion

	4.2 Black-Box Bottleneck Identification on Multi Component HTTP Infrastructures
	4.2.1 Creation of Time Series Through Client-Side Metrics
	4.2.2 Experimental Evaluation
	4.2.3 Client-Side Monitoring Using Two Distinct Networks
	4.2.4 Automatic Detection of Bottlenecks Using Two Distinct Networks
	4.2.5 Discussion and Conclusion

	4.3 Conclusion

	5 Machine Learning Monitoring Techniques for Web Sites
	5.1 Black-Box Monitoring of a Single Machine
	5.1.1 Problem Description
	5.1.2 Experimental Setup
	5.1.3 Machine Learning Approach
	5.1.4 Results

	5.2 Black-Box Monitoring of HTTP Clusters
	5.2.1 Problem Description
	5.2.2 Experimental Setup
	5.2.3 Machine Learning Approach
	5.2.4 Results

	5.3 Conclusion

	6 Microservice Monitoring Techniques
	6.1 Nonintrusive Monitoring of Microservice-based Systems
	6.1.1 Proposed Methodology
	6.1.2 Experimental Setup
	6.1.3 Results

	6.2 Black-box monitoring techniques for multi-component services
	6.2.1 Proposed Methodology
	6.2.2 Evaluation
	6.2.3 Results

	6.3 Towards Occupation Inference in Non-Instrumented Services
	6.3.1 Proposed Methodology
	6.3.2 Evaluation
	6.3.3 Results

	6.4 Conclusion

	7 Conclusion and Future Work
	7.1 Summary of the Thesis
	7.2 Future Work


