Luminescent halogen-substituted 2-(N-arylimino) pyrrolyl boron complexes: the internal heavy-atom effect

Ana I. Rodrigues, Paramasivam Krishnamoorthy, Clara S. B. Gomes, Nicolas Carmona, Roberto E. Di Paolo, Piotr Pander, João Pina, J. Sérgio Seixas de Melo, Fernando B. Dias, Maria José Calhorda, António L. Maçanita, Jorge Morgado and Pedro T. Gomes

A group of new boron complexes \([\text{BPh}_2\{(\kappa^2N,N'\text{-NC}_4\text{H}_3{-}\text{2-C(H)}=\text{N}-\text{C}_6\text{H}_2X)\}]\) containing different halogens as substituents in the \(N\)-aryl ring have been synthesized and characterized in terms of their molecular properties. Their photophysical characteristics have been thoroughly studied in order to understand whether these complexes exhibit an internal heavy-atom effect. Phosphorescence emission was found for some of the synthesized halogen-substituted boron molecules, particularly for \(4g\) and \(4h\). DFT and TD-DFT calculations showed that the lower energy absorption band resulted from the HOMO to LUMO \((\pi-\pi^*\) transition, except for \(2\text{-}I\) and \(4\text{-}I\), where the HOMO–1 to LUMO transition was also involved. The strong participation of iodine orbitals in HOMO–1 is reflected in the calculated absorption spectra of the iodine derivatives, especially \(2\text{-}I\) and \(4\text{-}I\), when spin–orbit coupling (SOC) was included. Organic light-emitting diodes (OLEDs) based on these complexes, in the neat form or dispersed in a matrix, were also fabricated and tested. The devices based on films prepared by thermal vacuum deposition showed the best performance. When neat complexes were used, a maximum luminance \((L_{\text{max}})\) of 1812 cd m\(^{-2}\) was obtained, with a maximum external quantum efficiency \((\text{EQE}_{\text{max}})\) of 0.15%. An \(\text{EQE}_{\text{max}}\) of ca. 1% along with a maximum luminance of 494 cd m\(^{-2}\) were obtained for a device fabricated by co-deposition of the boron complex and a host compound \((1,3\text{-}\text{bis(N-carbazolyl)benzene, mCP})\).

1. Introduction

After the report of the first multi-layered organic-light-emitting diodes (OLEDs), by Tang and Van Slyke, many improvements have been achieved in this type of technology to the point of their being nowadays present in commercially available flat displays and lighting applications. In spite of this achievement, there is a continuous search for enhancements in this technology aiming to obtain better brightness, flexibility, stability and lower production costs.

In the production of luminescent emitters, there is already a variety of options based on fluorescent and/or phosphorescent chromophores, or in the newest thermally activated delayed fluorescent (TADF) molecules. Tetracoordinate boron complexes containing bidentate \(N,N'\) and \(O\) ligands gave rise to particularly interesting luminescent chromophores, some of them used in OLED devices with good electroluminescent properties. Our research group has already developed a reasonable number of tetracoordinate boron complexes bearing a \(2\{N\)-

* Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. E-mail: pedro.t.gomes@tecnico.ulisboa.pt
* Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
* Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
* University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
* BioISI -Biomems & Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisboa, Portugal
* Instituto de Telecomunicações, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
* Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
* Centre for Environmental Research, Department of Chemistry, King’s Engineering College, PerunduraiErode 638 060, India
* LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
* UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
* Electronic supplementary information (ESI) available. Several subsections, also including CCDC 2004594–2004596. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/D0DT01845G
arylformimino)pyrrolyl ligand. Their emission colour could be tuned by varying the structural and electronic features of this scaffold. The 2-iminopyrrolyl-BPh₂ complexes containing donor and acceptor groups in the N-phenyl fragment (e.g. H, 2,6-iPr₂, OMe, CN, etc.) (Chart 1, A)⁵ proved to be blue to bluish-green fluorescence emitters. The boron analogues bearing fused aromatic fragments onto the C4–C5 or the C3–C4 bonds (indolyl or phenanthropyrrolyl, respectively) (Chart 1, B) are other good examples. For instance, the phenanthropyrrolyl derivatives exhibited fluorescence quantum yields in the range of 37–61%.⁶ Other derivatives such as 2-(imino) and 2-(iminophenanthro)pyrrolyl-BPh₂ containing N-alkyl groups (methyl, n-octyl, i-propyl, cyclohexyl, t-butyl and adamantyl) were also reported as violet-blue emitters (Chart 1, C).⁷ OLED devices based on binuclear 2-iminopyrrolyl-BPh₂ derivatives (Chart 1, D) achieved a luminance maxima of 4400 cd m⁻².⁶,⁸ The substitution of the 2-iminopyrrolyl ring at position 5 with aromatic substituents, such as phenyl or anthracenyl (Anthr), originated a new family of 5-substituted 2-(N-arylformimino)pyrrolyl boron complexes. These green and blue fluorescent emitters (Chart 1, E) were applied in the emissive layers of OLED devices with various structures, showing external quantum efficiencies up to 2.75% along with luminances as high as 23 530 cd m⁻².⁹

Interestingly, in all the previous studies, the observation of triplet formation via intersystem crossing was only identified in a single case (for a molecule of the type A with R = 4-CN, see Chart 1).⁵ We describe in the present work a set of new halogen-substituted 2-(N-arylformimino)pyrrolyl-BPh₂ complexes, which were designed to investigate the possible existence of an internal heavy-atom effect,¹⁰ promoting the triplet state formation via a spin–orbit coupling mechanism, namely for the heavier substituents. The photophysical properties of the new boron derivatives were thoroughly studied in order to conclude about the origin of light emission in these compounds. In addition, the new halogen-substituted 2-(N-arylmino)pyrrolyl boron complexes were characterized by NMR spectroscopy, elemental analysis and single crystal X-ray diffraction. DFT and TDDFT studies complemented the work by providing the geometry of the ground state, the singlet and triplet first excited states, as well as the nature of the absorption bands and an understanding of the importance of spin–orbit coupling in the emission of the halogenated complexes. At a later stage, OLEDs based on these complexes as emissive materials were fabricated and their performance assessed.

2. Results and discussion

2.1 Synthesis and characterization of halogen-substituted 2-iminopyrrole ligand precursors and halogen-substituted 2-iminopyrrolyl boron complexes

The halogen-substituted 2-formiminopyrrole ligand precursors 3c–3h were synthesized via a condensation reaction of 2-formylpyrrole 1 (ref. 11) with different anilines 2c–2h containing halogen substituents. The mixtures were refluxed at ca. 130 °C,
in toluene, with removal of water (Scheme 1), except in the case of 3c that was refluxed in (a mixture of) xylene.

The resulting ligand precursors 3c–3h were obtained in moderate to high yields. Their molecular characterization was performed by NMR spectroscopy (1H and 13C) and elemental analysis. The 2-(N-aryliminoformimino)pyrrole ligands 3a and 3b had already been reported by us5a,c and other research groups.12 The syntheses of the p-chlorine, p-bromine, p-iodine, m-bromine and o-bromine derivatives 3e–3g, although already reported in the literature,12a,b,d,e,f,13 were carried out following the typical condensation procedure used in our group.3a–9,12f The reaction of halogen-substituted 2-(N-aryliminoformimino)pyrrole ligand precursors 3c–h with triphenylboron under reflux, in toluene and under nitrogen, afforded the respective iminopyrrolyl boron complexes 4c–4h in moderate to high yields (Scheme 2).

The formation of the four-coordinate boron complexes 4c–4h is suggested by the absence of the NH proton resonance in the 1H NMR and the appearance of a 11B singlet in the range of δ 4.73–5.34 (three-coordinate 11B resonances occur at higher fields in the region ca. 25 ppm). The iminopyrrolyl boron complexes 4a and 4h, previously reported in the literature,5 were included in this work as reference complexes, for comparison with complexes 4c–4h.

2.2 X-ray diffraction studies

Single crystal X-ray diffraction structures were obtained for halogen-substituted 2-iminopyrrolyl-BPh3 complexes 4c, 4d and 4g. Fig. 1 presents the perspective views of their molecular structures. Crystallographic data for these complexes and the most significant bond distances and angles are listed in Table S1 and Fig. S1–S3 of the ESL,† respectively.

Molecules 4c and 4d, containing the substituent at the p-position of the aryl ring, far away from the BPh3 and 2-iminopyrrolyl fragments, exhibit dihedral angles between the N-phenyl ring and the 2-iminopyrrolyl fragment of 45.19(16)° and −46.4(7)°, respectively, similar to that observed in 4a.5a,c However, in these perspective views, it is clear that the N-phenyl core of the o-bromine complex 4g appears to be approaching orthogonality relative to the 2-iminopyrrolyl fragment, with significantly higher dihedral angles of −69.4(3)°, 59.8(3)°, 72.0(3)°, and −70.4(3)°, for molecules A, B, C, and D, respectively (defined as C6–N2–C7–C8), owing to the high atomic radius of the bromine atom, exerting its bulkiness over the BPh3 fragment.

The bite angles, corresponding to N1–C2–N2–, have typical values of 94.91(12)° (4c), 94.84(9)° (4d) and 94.86(18)°, 94.88(18)°, 94.87(18)°, and 94.60(18)° (4g), molecules A, B, C, and D, respectively, consistent with modestly distorted tetrahedral geometries.

2.3 Photophysical studies

The photophysical properties of complexes 4c–4h were studied in solution and in solid state and compared to complexes 4a and 4b. For solution studies, diluted THF solutions (ε < 2.7 × 10−6 M) were prepared. In the case of solid state measurements, complexes 4c–4h were mixed with ZEONEX and drop-cast on quartz or sapphire disks. The normalized absorption and emission spectra of the halogen-substituted iminopyrrolyl–BPh3 complexes 4c–4h, along with their emission colours, are presented in Fig. 2. No emission was found in the films of 4h dispersed in ZEONEX.

The absorption wavelength maxima of complexes 4c–4h in THF solution are within the 367–395 nm range (Table 1). Films of these complexes dispersed in ZEONEX show similar maxima (365–395 nm range), despite the small but significant decrease of the dielectric constant (ε = 7.6 in THF and 2.5 in ZEONEX). The molar extinction coefficients at the maximum wavelength (εmax) in THF (Table 1) display values characteristic of 2-iminopyrrolyl–BPh3 complexes, within the 1.5–2.8 × 104 L mol−1 cm−1 range, comparable to those of compounds 4a–4b (1.7 and 1.9 × 104 L mol−1 cm−1, respectively),5 and of the similar complexes already published.5–9

The fluorescence quantum yield (Φf) values of complexes 4a–4g in THF are within the 0.18–0.48 range, but for complex 4h (the N-2-iodophenyl derivative), it is more than one order of magnitude lower (Φf = 0.01) and non-measurable in ZEONEX films. However, the moderately high molar singlet extinction coefficient of 4h (εmax = 1.5 × 105 L mol−1 cm−1, Table 1) points to an allowed π−π* character of the lowest lying singlet
excited state, similar to the other complexes. The increase of the Φ_T for the p-substituted N-phenyl complexes (0.25 up to 0.48, for p-F $4b$ to p-I $4e$, respectively) indicates the absence of spin–orbit coupling when the heavy-atom is attached at the para position, because the increase of the halogen atom mass ($F < Cl < Br < I$) should increase the intersystem crossing rate constant (k_{isc}), thus decreasing the fluorescence quantum yield, $\Phi_T = k_f/(k_f + k_{isc})$.

The fluorescence decays of complexes (4a to 4g) in THF were single exponentials with fluorescence lifetimes (τ_f) around 2 ± 0.5 ns, from which the values of the fluorescence (k_f) and sum of the non-radiative rate ($k_{nr} = k_{ic} + k_{isc}$) constants were obtained (Table 1). The exception was the fluorescence decay of complex $4h$ that required a sum of three exponential terms with decay times (τ_i) equal to 0.027, 0.16 and 2.27 ns and pre-exponential coefficients (A_i) equal to 0.62, 0.30 and 0.08, respectively, to be properly fitted (Fig. S4, in ESI†). This complexity indicates the presence of a fast additional excited-state process (a photoreaction), responsible for the extremely small fluorescence quantum yield of $4h$ ($\Phi_T = 0.01$). Briefly, the two shortest decay times are assigned to the quenched fluorescence decay of $4h$ and the longest time to the emission of a photoproduct (see detailed Discussion in the ESI†). In order to evaluate approximate values for the fluorescence (k_f) and the sum of the non-radiative (k_{nr}) constants, the quenched lifetime of $4h$ was assumed equal to the average time of the two shortest decay times ($\tau_{average} = \Sigma A_i \tau_i^2/\Sigma A_i \tau_i = 0.13$ ns).

The k_f values of complexes 4a–4f in THF are similar (within the 0.14–0.19 ns$^{-1}$ range), decreasing to 0.09 and 0.08 ns$^{-1}$ for the ortho-substituted complexes 4g and 4h. This diminution is confirmed by TDDFT calculations (see Table 3 and the following Discussion in Section 2.4).

The non-radiative rate constant (k_{nr}) values are within the 0.35 ± 0.14 ns$^{-1}$ range except for complex $4h$ whose k_{nr} value (7.66 ns$^{-1}$) is 20-fold larger than those of the other complexes, consistent with the presence of the additional non-radiative process indicated by the multi-exponential fluorescence decay.

In ZEONEX films, the photoluminescence rate constants (k_{ph}) are similar to those in THF, but the non-radiative rate constants are lower, explaining the higher values of the photoluminescence quantum yields (Φ_{ph}) in ZEONEX.

In order to split the non-radiative rate constants (k_{nr}) of the new complexes (4c to 4h) into their internal conversion (k_{ic}) and intersystem crossing (k_{isc}) rate constants, the triplet formation quantum yields (Φ_T) and the triplet lifetimes (τ_T) were also measured, using nanosecond-laser flash photolysis. The transient absorption spectra of complexes 4c–4g decayed single-exponentially with lifetimes (τ_T) within the 35–51 μs range (Table 2). Complex $4h$ was again the exception, with decays at $\lambda_{abs} < 440$ nm generally requiring sums of two exponential terms plus a constant to be properly fitted, which indicates the presence of other absorbing species besides the triplet. For longer wavelengths ($\lambda_{abs} = 450$ nm), where only $T_1 \rightarrow T_n$ transitions are expected, acceptable fits with single exponentials plus a constant ($A_{abs} = a \times \exp(-t/\tau_T) + b$) were obtained with values of $\tau_T = 28$ μs, $a = 0.67$ and $b = 0.33$ (Fig. S5, ESI†). The triplet lifetime $\tau_T = 28$ μs (Table 2), is slightly shorter than that of $4g$ (35 μs), as expected from the
larger spin–orbit coupling effect on the $T_1 \rightarrow S_0$ transition. The significant value of b (0.33) is consistent with the absorption of ground-state species resulting from the photoreaction of $4h$. The results (Φ_T, $k_{isc} = \Phi_T/t_1$ and $k_{ic} = k_{int} - k_{isc}$) are shown in Table 2.

The k_{isc} values are small (≈0 to 0.03 ns$^{-1}$) for the $para$-substituted $4c$–$4e$ series, slightly increase for the m-substituted $4f$ (0.05 ns$^{-1}$) and clearly increase for the $ortho$-substituted compounds $4g$ and $4h$ (0.11 and 0.39 ns$^{-1}$), indicating that spin–orbit coupling is most efficient when the heavy-atom is bonded at the $ortho$ position. Actually, $4h$ is the only compound where the introduction of the spin–orbit coupling in the calculations induces significant changes in the calculated absorption spectrum (see below Section 2.4).

The k_{ic} values of compounds $4c$–$4g$ are within the 0.25 ± 0.06 ns$^{-1}$ range, with the k_{ic} value of $4h$ (7.27 ns$^{-1}$) being much larger than those of the other compounds, as expected. This means that, in the case of $4h$, $k_{int} = k_{isc} + k_{ic} + k_{reaction}$.

The photoreactivity of $4h$ may be due to the contribution of the $p(1) \rightarrow \pi^*$(iminopyrrolyl) transition for the S_1 state leading to some charge transfer from the iodine p-orbitals (HOMO−1) to the LUMO orbital, essentially located on the iminopyrrolyl moiety (see Fig. 5 and following discussion in Computational studies). Actually, homolytic photodissociation of iodine has
Table 1 Wavelength maximum (λ_{max}) and molar extinction coefficient (ε_{max}) of the absorption band, wavelength maximum (λ_{em}), fluorescence quantum yields (Φ_f and Φ_{pl}), fluorescence lifetimes (τ_f and τ_{pl}), radiative rate constants (k_{r} and k_{pl}) and sum of non-radiative rate constants (k_{nr}) in solution (THF) and in solid state (ZEONEX 480 film), respectively, of boron complexes 4a–4h, at 293 K

<table>
<thead>
<tr>
<th>Complex</th>
<th>Solution (THF)</th>
<th>Solid state (ZEONEX 480 film)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>λ_{max} (nm)</td>
<td>ε_{max} (M$^{-1}$ cm$^{-1}$)</td>
</tr>
<tr>
<td>4a</td>
<td>383</td>
<td>1.7</td>
</tr>
<tr>
<td>4b</td>
<td>381</td>
<td>1.9</td>
</tr>
<tr>
<td>4c</td>
<td>391</td>
<td>2.2</td>
</tr>
<tr>
<td>4d</td>
<td>393</td>
<td>2.4</td>
</tr>
<tr>
<td>4e</td>
<td>395</td>
<td>2.8</td>
</tr>
<tr>
<td>4f</td>
<td>389</td>
<td>1.8</td>
</tr>
<tr>
<td>4g</td>
<td>367</td>
<td>1.7</td>
</tr>
<tr>
<td>4h</td>
<td>369</td>
<td>1.5</td>
</tr>
</tbody>
</table>

a 10$^{-1}$, M$^{-1}$ cm$^{-1}$. b From single exponential decays. c $k_{r} = \Phi_f/\tau_f$. d $k_{pl} = (1 - \Phi_f)/\tau_f$. e $k_{nr} = \Phi_{pl}/\tau_{pl}$. f $k_{nr} = (1 - \Phi_{pl})/\tau_{pl}$. g Ref. 5. h Not available. i Average decay time from two exponential terms. j Non-emissive.

Table 2 Fluorescence lifetime (τ_f), radiative rate constant (k_{r}), sum of non-radiative rate constants (k_{nr}), triplet formation quantum yield (Φ_t), triplet lifetime (τ_t), intersystem crossing rate constant (k_{ic}) and internal conversion rate constant (k_{nc}) of boron complexes 4c–4h, in THF, at 293 K

<table>
<thead>
<tr>
<th>Complex</th>
<th>Solution (THF)</th>
<th>Solid state (ZEONEX 480 film)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>τ_f (ns)</td>
<td>k_{r} (ns$^{-1}$)</td>
</tr>
<tr>
<td>4c</td>
<td>2.1</td>
<td>0.33</td>
</tr>
<tr>
<td>4d</td>
<td>2.4</td>
<td>0.26</td>
</tr>
<tr>
<td>4e</td>
<td>2.5</td>
<td>0.21</td>
</tr>
<tr>
<td>4f</td>
<td>2.6</td>
<td>0.24</td>
</tr>
<tr>
<td>4g</td>
<td>2.0</td>
<td>0.42</td>
</tr>
<tr>
<td>4h</td>
<td>0.13g</td>
<td>7.66</td>
</tr>
</tbody>
</table>

a From single exponential decays. b $k_{r} = \Phi_f/\tau_f$. c $k_{nr} = (1 - \Phi_f)/\tau_f$. d $k_{ic} = \Phi_{pl}/\tau_{pl}$. e $k_{nc} = k_{nr} - k_{ic}$. f No signal was observed that could be attributed to the triplet state absorption. g Average decay time from two exponential terms. h Value of $k_{ic} + k_{reaction}$.

been observed for iodine-substituted aromatic rings or other chromophores.14 In the case of 4h, the reaction is described by two fast decay times, which is consistent with reversible homolytic cleavage of the iodine-C bond followed by a separation of the resulting radicals (see the ESI†). Complete elucidation would require further photochemical studies that are beyond the purpose of this work.

Fig. 3 compares the emission spectra of diluted solutions of complexes 4e–4h in 2-MeTHF glasses, at 77 K, measured at two different delay times after excitation: $\Delta t = 0$ ms, to collect all luminescence (fluorescence and phosphorescence), and $\Delta t = 0.05$ ms, with most of the fluorescence being gated-out and exclusively collecting phosphorescence.

Phosphorescence emission at $\Delta t = 0.05$ ms was not detected for complex 4c, being very weak for complexes 4d, 4e and 4f (close to the background noise). For complexes 4g and 4h, the ortho-substituted bromine and iodine compounds, phosphorescence was clearly observed, indicating that the internal heavy-atom effect is the highest in these two compounds, as mentioned before. The smaller phosphorescence emission intensity of 4h relative to 4g results from the concurrent photoreaction of 4h, leading to a four-fold smaller Φ_t (Table 2). It is worth noting that at $\Delta t = 0$ ms the phosphorescence intensity of complex 4h competes with that of fluorescence and complex 4g shows residual phosphorescence peaking at 518 nm and 561 nm.

2.4 Computational studies

The ground state geometry of all the complexes was obtained from DFT calculations (ADF program) using the PBE0 functional, with a TZP basis set for all atoms, considering spin-orbit coupling (SOPERT) and the effect of the THF solvent (method A). Calculations were also performed with the B3LYP functional (method B) and, in both cases, using a D3 Grimme correction (methods A/D3 and B/D3, more in Computational details). TDDFT calculations were used to determine the geometry of the first singlet and triplet excited states. The geometries obtained for complexes 4a–4h are shown in Fig. 4. Although geometries for 4a and 4b have been published, they had not been calculated in these conditions for 4b (method A)5c and had not been reported in detail for 4a.9

In the ground state, the relevant dihedral angle C6 with Φ_t, and with substituents in positions 3 and 4 (4c–f) are shown in Fig. 4. Although geometries for 4a and 4b have been published,5 they had not been calculated in these conditions for 4b (method A)5c and had not been reported in detail for 4a.9
molecules of 4g. The higher values in the solid can be assigned to the repulsion between adjacent molecules.

In both singlet and triplet excited states, the C6–N2–C7–C8 dihedral angle approaches zero for complexes 4a–f. The other two complexes behave differently. While in the 2-Br derivative 4g, the dihedral angle drops significantly from -59° to -29° in the singlet and -32° in the triplet, in the 2-I derivative 4h, the dihedral angle increases from -58° to -66° in the singlet, but drops to -32° in the triplet. These values are very similar to those obtained by the other approaches referred above9 and the one used in earlier publications,5 as shown in Table S2.†

TDDFT calculations were used to calculate the absorption spectrum of all the complexes (method A with a TZ2P basis set; results from other approaches are given in the ESI†). The absorption maxima for all the complexes are given in Table 3. The calculated values are higher than the experimental ones, but they reflect the trends, namely the significantly higher absorption energies for 4g and 4h. The lowest energy absorption band results for all complexes, except for 4h, from a HOMO to LUMO transition in the following percentage (oscillator strength): 4a 96.2 (1.05), 4b 95.9 (0.98), 4c 96.3 (1.11), 4d 96.5 (1.14), 4e 96.7 (1.19), 4f 95.8 (1.03), 4g 92.0%
The same band for complex 4h arises from a HOMO to LUMO (87%) and a HOMO−1 to LUMO (8%) transition, with an oscillator strength of 0.65.

The HOMOs and LUMOs of 4a−4h and HOMO−1 of 4h are shown in Fig. 5, with their energies (see also Table S3†). It is very clear that the energies are almost exactly the same for the 4-substituted complexes (4b−4e), with the LUMOs being slightly destabilized and the HOMOs stabilized for the 2-substituted ones (4g−4h), while 3-Br (4f) only exhibits the stabilization of the HOMO. The HOMOs and LUMOs are localized in the iminopyrrolyl for 4a−4g, with a very small participation of the halogen in both HOMO and LUMO (4-F), or in the HOMO (4-Cl, Br, I), with the contribution of the halogen increasing from F to I. The transition can be assigned as an intraligand (IL) $\pi \rightarrow \pi^*$ (iminopyrrolyl) with a small (4b−4e) or no (4g) participation of the halogen.

The orbitals of 4h are different, since the contribution of the iminopyrrolyl ligand practically does not include the N-phenyl substituent, both in the HOMO and LUMO. The HOMO−1, however, is localized in two phenyls (on the iminopyrrolyl and on the boron), as well as in iodine, being C−I π-antibonding. In this complex the transition is essentially $\pi \rightarrow \pi^*$ (iminopyrrolyl) with some p(I) $\rightarrow \pi^*$ (iminopyrrolyl) charge transfer character.

Fig. 4 Calculated geometries of the ground state (DFT) and of the first singlet and triplet excited states (TDDFT) of complexes 4a−4h; the numbers represent the C6−N2−C7−C8 dihedral angle (°) for each species.
The calculated fluorescence rate constants \(k_f \) are higher than the experimental ones, but they follow the main trend, with the values for \(4g \) and \(4h \) being the smallest. Since the calculations included spin orbit coupling (SOC), it was possible to analyse its role. It can be seen by the percentage of triplet states contributing to the absorption bands and the position of the maxima. In almost all complexes, the first excited state is \(\sim 100\% \) singlet (for instance, the number for 4-Br (4d) is 99.5\%) and there is no shift in the absorption maximum when the calculation is performed with SOC, and the same happens for the F, Cl, and Br derivatives. The situation changes for the iodine containing molecules. In 4e (4-I), the first excited state is 99.3\% singlet, and small amounts (<1\%) of several triplet states, while the maximum shifts from 355 to 356 nm with SOC. The effect is more pronounced for 4h (2-I), where the first excited state is 92.7\% S\(_1\), 3.6\% T\(_1\). The 2 nm shift of the absorption maximum is visible in Fig. 6 for 4h (a similar picture is shown in Fig. S6, ESI,\(^\dagger\) for 4e).

These features are in relatively good agreement with the experimental results described in the previous section, since the larger effect of spin–orbit coupling is observed in 4h being much smaller in the second iodine derivative 4e. The effect of bromine is not detected in the calculations, but it is also smaller in the emission features. We calculated the energy of the phosphorescence by optimizing with TDDFT the lowest triplet excited state. Table S4, ESI,\(^\dagger\) shows the calculated energies of singlet and triplet states of complexes 4a to 4h using various methods. For 4g, the experimental triplet energy, \(E^0_{T0} \), is 2.39 eV (518 nm) (Fig. 3), while the calculated value is 1.89 eV (method A, Table S4 in ESI\(^\dagger\)). This is much lower than the experimental energy. The method had not been tested for the calculation of the energy of triplets, since this effect was not observed previously in this family.

A similar role played by iodine has been described for gallium and aluminium corrole complexes and their iodinated derivatives (three and four iodine atoms).\(^{15}\) TDDFT calculations with and without spin–orbit coupling showed the participation

<table>
<thead>
<tr>
<th>Complex</th>
<th>(E_{\text{calc}}) (eV)</th>
<th>(E_{\text{exp}}) (eV)</th>
<th>(k_f) (ns(^{-1}))</th>
<th>(k_f) (calc.)</th>
<th>(k_f) (Exp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>3.45</td>
<td>3.24</td>
<td>2.73</td>
<td>2.59</td>
<td>0.54</td>
</tr>
<tr>
<td>4b</td>
<td>4-Cl</td>
<td>3.53</td>
<td>3.17</td>
<td>2.66</td>
<td>2.55</td>
</tr>
<tr>
<td>4c</td>
<td>4-Br</td>
<td>3.53</td>
<td>3.16</td>
<td>2.65</td>
<td>2.55</td>
</tr>
<tr>
<td>4d</td>
<td>4-Cl</td>
<td>3.50</td>
<td>3.14</td>
<td>2.61</td>
<td>2.52</td>
</tr>
<tr>
<td>4e</td>
<td>4-Br</td>
<td>3.61</td>
<td>3.19</td>
<td>2.76</td>
<td>2.59</td>
</tr>
<tr>
<td>4f</td>
<td>2-Br</td>
<td>3.82</td>
<td>3.38</td>
<td>2.93</td>
<td>2.67</td>
</tr>
<tr>
<td>4h</td>
<td>2-Br</td>
<td>3.75</td>
<td>3.36</td>
<td>2.54</td>
<td>2.64</td>
</tr>
</tbody>
</table>

\(k_f (\text{calc.}) = 1/\tau (\text{calc.}), \text{ref. 5}\). \(k_f (\text{Exp.}) \) from ref. 5.

Fig. 5 Energies of the HOMOs and LUMOs of complexes 4a–4h and HOMO–1 of 4h with their 3D representation (the arrows indicate double occupation of the HOMOs).
of iodine in occupied orbitals, and its increase with the number of I atoms in the molecule, and reflected the strength of spin-orbit coupling. Despite the different nature of the absorption spectrum of these complexes, the charge transfer states from iodine to corrole parallel the charge transfer from iodine to iminopyrrolyl and the analogous role played by iodine.

2.5 Electrochemical properties

The new halogen-substituted complexes 4c–4h and parent complexes 4a–4b were characterized by cyclic voltammetry (CV) (Fig. S7–S12, ESI†). The measurements were carried out in tetrabutylammonium perchlorate/dichloromethane electrolyte solutions, at room temperature and under inert (N2) atmosphere. The oxidation and reduction onset potentials were used to calculate the electron affinities (EA) and ionization potentials (IP), after conversion to the absolute scale with the ferrocene/ferrocenium ion redox couple as an external reference.5a As the energy level of Fe/Fe’ (ferrocene/ferrocenium ion redox couple) is at 4.80 eV below the vacuum level, we calculated IP (eV) = E_{onset,ox} (V) + (4.80 − E_{Fe/Fe’}) and EA (eV) = E_{onset,red} (V) + (4.80 − E_{Fe/Fe’}), where E_{Fe/Fe’} represents the measured half-wave potential of Fe/Fe’). The values obtained are summarized in Table 4 along with the energies of the HOMOs and LUMOs of the corresponding complexes calculated by DFT with solvent correction (CH2Cl2).

The values of –IP show a correlation with the energies of the HOMOs, although with IP values differing between 0.08 and 0.26 eV from the calculated ones (see Fig. S13, ESI†). The –EA values also correlate with the calculated LUMO energies, with differences varying between 0.10 and 0.21 eV (see Fig. S13, ESI†).

2.6 Electroluminescence studies

The materials presented above (4b–4h) were tested as emissive materials in organic light-emitting diodes (OLEDs), with OLEDs based on complex 4h failing to show any measurable emission. Thin films of the complexes were prepared by either spin-coating or vacuum thermal deposition. The performance of the full set of devices tested can be found in the ESL†.

The best performing OLEDs were obtained when thin films of the boron complexes were prepared by vacuum thermal deposition.

Table 5 shows the performance parameters of a group of devices based on the films of complexes 4c, 4d and 4g prepared by thermal vacuum deposition, with the structure: ITO (100 nm)/PEDOT:PSS (40 nm)/TPD (20 nm)/Complex (ca. 80 nm)/Bphen (11 nm)/LiF (1.5 nm)/Al (80 nm).

In this series, 4c-based OLED showed the best performance, with a maximum luminance of 1812 cd m−2, an EQE of 0.15%. It is worth pointing out that for OLEDs based on all three complexes, 4c, 4d and 4g, the maximum emission is red shifted with respect to PL emission of the corresponding sublimed films (Fig. S15 in the ESI†).

A multilayer OLED based on 4e with the structure, ITO/HAT-CN (10 nm)/TAPC (25 nm)/mCP co 10% (40 nm)/TPBi (40 nm)/LiF (0.8 nm)/Al (100 nm) (Fig. 7(a)), was also prepared by vacuum thermal deposition.

Commercially available hexazatriphenylenehexacarbonitrile (HAT-CN) was used as a hole injection layer and N,N-bis(4-methylphenyl)-benzenamine (TAPC) was used as a hole-transporting layer. 2,2’,2”-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-benzimidazole) (TPBi) was selected as electron-transporting material, and lithium fluoride (LiF) as an electron injection layer with aluminium (Al) as the cathode. Complex 4e was dis-

<p>| Table 4 | Ionization potentials (IP), electron affinities (EA) and IP–EA values of complexes 4a–4h, estimated from cyclic voltammetry measurements, and corresponding energies of HOMOs and LUMOs determined by DFT (CH2Cl2). All values in eV |</p>
<table>
<thead>
<tr>
<th>Complex</th>
<th>Cyclic voltammetry</th>
<th>DFT (CH2Cl2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IP</td>
<td>EA</td>
</tr>
<tr>
<td>4a</td>
<td>None</td>
<td>5.64a</td>
</tr>
<tr>
<td>4b</td>
<td>4-F</td>
<td>5.66a</td>
</tr>
<tr>
<td>4c</td>
<td>4-Cl</td>
<td>5.70</td>
</tr>
<tr>
<td>4d</td>
<td>4-Br</td>
<td>5.67</td>
</tr>
<tr>
<td>4e</td>
<td>4-I</td>
<td>5.68</td>
</tr>
<tr>
<td>4f</td>
<td>3-Br</td>
<td>5.68</td>
</tr>
<tr>
<td>4g</td>
<td>2-Br</td>
<td>5.78</td>
</tr>
<tr>
<td>4h</td>
<td>2-I</td>
<td>5.86</td>
</tr>
</tbody>
</table>

 Values from ref. 5.

<p>| Table 5 | Characteristics of OLED devices based on vacuum thermal deposited complexes 4c, 4d and 4g including maximum luminance (L_{max}, cd m−2), external quantum efficiency (EQE$_{\text{max}}$, %), current efficiency (ηL, cd A−1), and Commission Internationale de l’Eclairage (CIE) colour coordinates |</p>
<table>
<thead>
<tr>
<th>Complex</th>
<th>X</th>
<th>L_{max}</th>
<th>EQE$_{\text{max}}$</th>
<th>ηL$_{\text{max}}$</th>
<th>CIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4c</td>
<td>4-Cl</td>
<td>1812</td>
<td>0.15</td>
<td>4.9×10$^{-3}$</td>
<td>0.30, 0.51</td>
</tr>
<tr>
<td>4d</td>
<td>4-Br</td>
<td>488</td>
<td>0.03</td>
<td>1.2×10$^{-3}$</td>
<td>0.33, 0.53</td>
</tr>
<tr>
<td>4g</td>
<td>2-Br</td>
<td>4</td>
<td>0.06</td>
<td>1.2×10$^{-2}$</td>
<td>0.29, 0.38</td>
</tr>
</tbody>
</table>
persed in mCP (1,3-bis(N-carbazolyl)benzene) (10%), which was selected due to its energy levels: HOMO at -5.9 eV, below that of 4e ($E_{HOMO} = -1P = -5.68$ eV) and LUMO at -2.4 eV, above that of 4e ($E_{LUMO} = -E_A = -2.88$ eV).

Fig. 7 presents the performance data of this device, which showed a turn on voltage of 5.1 V at 5 cd m$^{-2}$ reaching a maximum luminance of 494 cd m$^{-2}$ with a maximum EQE of 0.90% and a maximum current efficiency of 2.07 cd A$^{-1}$. The obtained EL spectrum (CIE coordinates at 100 cd m$^{-2}$ of 0.28, 0.43) is slightly red shifted with respect to the PL spectra, which could be due to interference effects.

The OLEDs prepared with molecules 4e–4h did not clearly show the phosphorescence contribution to the electroluminescence spectrum. In the case of 4g, there is some indication that it may be present, but a definite conclusion cannot be drawn [see Fig. S18 in the ESI†]. The absence of a clear phosphorescence contribution to the OLED emission is attributed to a significant charge-induced triplet quenching, promoted by the long lifetime of the triplets, which makes the observation of this emission very difficult.16

3. Conclusions

A set of halogen-substituted 2-iminopyrrolyl–BPh$_2$ complexes was synthesized and characterized in terms of their molecular and photophysical properties. The internal heavy-atom effect was strongly controlled by the position of the halogen atom in the N-aryl ring of the ligand moiety, being negligible for para-I substitution ($k_{isc} \approx 0.03$ ns$^{-1}$) and most effective for ortho-I substitution ($k_{isc} \approx 0.39$ ns$^{-1}$). Accordingly, complex 4h exhibited the greatest phosphorescence emission at 77 K. DFT and TDDFT calculations reproduced well the absorption and emission energies and provided geometries of the first singlet and triplet excited states, which showed how the steric hindrance of the 2-substituents prevented the iminopyrrolyl ligands from achieving planarity in both situations. Evidence of spin–orbit coupling in the absorption spectra was only found for the molecules containing iodine and was more visible for the ortho-I derivative. OLEDs were fabricated based on solution processed and vacuum thermal evaporated films of complexes 4b–4h, the best one giving an external quantum efficiency...
(EQE) of 0.15% along with a luminance maximum \((L_{\text{max}})\) of 1812 cd m\(^{-2}\) for 4c. An optimized structure was later prepared with 2-iminopyrrolyl boron complex 4c as an emissive layer mixed with mCP as the host material. The latter structure gave rise to an improved EQE of nearly 1%, along with a maximum luminance of 494 cd m\(^{-2}\).

4. Experimental section

4.1 General

All experiments dealing with air- and/or moisture-sensitive materials were carried out under inert atmosphere using a dual vacuum/nitrogen line and standard Schlenk techniques. Nitrogen gas was supplied by Air Liquide and purified by passage through 4 Å molecular sieves and degassed by storage over 4 Å molecular sieves and degassed. All reagents were purchased from commercial suppliers (e.g. Acrös, Aldrich, Fluka, Alfa Aesar) and used without further purification. All solvents to be used under inert atmosphere were thoroughly deoxygenated and dehydrated before use. They were dried and purified by refluxing over a suitable drying agent followed by distillation under nitrogen. The following drying agents were used: sodium (for toluene and diethyl ether), calcium hydride (for n-hexane and dichloromethane). Solvents and solutions were transferred using a positive pressure of nitrogen through stainless steel cannulae and mixtures were filtered in a similar way using modified cannulae that could be fitted with glass fibre filter disks.

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III 300 spectrometer at 299.995 MHz \((^1\text{H})\), 75.4296 MHz \((^{13}\text{C})\) and 96.2712 MHz \((^{11}\text{B})\). Deuterated solvents were dried by storage over 4 Å molecular sieves and degassed by the freeze–pump–thaw method. Spectra were referenced internally using the residual protio solvent resonance \((^1\text{H})\) and the solvent carbon \((^{13}\text{C})\) resonances relative to tetramethyldisilane \((\delta = 0)\) and referenced externally using 15% BF\(_3\cdot\text{OEt}_2\) \((\delta = 0)\) for \(^{11}\text{B}\). All chemical shifts are quoted in \(\delta\) (ppm) and coupling constants given in hertz. Multiplicities were abbreviated as follows: broad (br), singlet (s), doublet (d), doublet of triplets (dd), triplet (t) and multiplet (m). For air- and/or moisture sensitive materials, samples were prepared in J. Young NMR tubes in a glove box. Elemental analyses were obtained from the IST elemental analysis services.

The reagent 2-formylpyrrole (1) was prepared according to the literature. Materials used for the device fabrication were purchased from Sigma Aldrich (LiF(99.995%), TPD, TAPC), Alfa Aesar (Al wire (99.9995%)), and LUMTEC (TPBI, mCP, HAT-CN).

4.2 Syntheses

Synthesis of 2-(4-chlorophenylformimino)pyrrole (3c).

4-Chloroaniline 2e (0.38 g, 3.0 mmol), 2-formylpyrrole 1 (0.28 g, 3.0 mmol) and a catalytic amount of p-toluenesulphonic acid were suspended in a mixture of xylene (35 mL) in a 50 mL round-bottom flask fitted with a Soxhlet, a condenser and a CaCl\(_2\) guard tube. The orange mixture was refluxed at 130 °C for 4 days. After reaching room temperature, the reaction mixture was filtered, and all volatiles removed. The brown oil obtained was extracted with hot n-hexane, giving rise to an orange solution that was concentrated and kept at −20 °C. After some hours, a brown solid corresponding to the desired product 3c was filtered and dried under vacuum. Yield, 0.15 g (25%). \(^1\text{H}\) NMR (300 MHz, CD\(_2\)Cl\(_2\)) \(\delta\) 9.47 (br, 1H, NH), 8.23 (s, 1H, CH=N), 7.33 (d, \(J_{\text{HH}} = 9\) Hz, 2H, N–Ph–H\(_3\) + N–Ph–H\(_6\)), 7.11 (d, \(J_{\text{HH}} = 9\) Hz, 2H, N–Ph–H\(_3\) + N–Ph–H\(_6\)), 6.98 (s, 1H, H\(_5\)-pyrr), 6.70 (d, \(J_{\text{HH}} = 3\) Hz, 1H, H\(_3\)-pyrr), 6.32 (t, \(J_{\text{HH}} = 3\) Hz, 1H, H\(_4\)-pyrr).

Synthesis of 2-(4-bromophenylformimino)pyrrole (3d).

4-Bromoaniline 2d (0.51 g, 3.0 mmol), 2-formylpyrrole 1 (0.28 g, 3.0 mmol), a catalytic amount of p-toluenesulphonic acid and MgSO\(_4\) (to remove any water from the reaction mixture) were suspended in toluene (30 mL) in a 50 mL round-bottom flask fitted with a condenser and a CaCl\(_2\) guard tube. The brown mixture was refluxed overnight, at 100 °C. After reaching room temperature, the reaction mixture was filtered, and all volatiles removed. The brown solid obtained was extracted with hot n-hexane, giving rise to a yellow solution that was concentrated and kept at −20 °C. After some hours, a beige solid corresponding to the desired product 3d was filtered and dried under vacuum. Yield, 0.47 g (63%). \(^1\text{H}\) NMR (300 MHz, CD\(_2\)Cl\(_2\)) \(\delta\) 9.99 (br, 1H, NH), 8.24 (s, 1H, CH=N), 7.49 (d, \(J_{\text{HH}} = 9\) Hz, 2H, N–Ph–H\(_3\) + N–Ph–H\(_6\)), 7.06 (d, \(J_{\text{HH}} = 9\) Hz, 2H, N–Ph–H\(_3\) + N–Ph–H\(_6\)), 6.87 (s, 1H, H\(_5\)-pyrr), 6.71 (d, \(J_{\text{HH}} = 3\) Hz, 1H, H\(_3\)-pyrr), 6.30 (t, \(J_{\text{HH}} = 3\) Hz, 1H, H\(_4\)-pyrr).

Synthesis of 2-(4-iodophenylformimino)pyrrole (3e).

4-Iodoaniline 2e (0.66 g, 3.0 mmol), 2-formylpyrrole 1 (0.96 g, 3.0 mmol), a catalytic amount of p-toluenesulphonic acid and MgSO\(_4\) (to remove any water from the reaction mixture) were suspended in toluene (30 mL) in a 50 mL round-bottom flask fitted with a condenser and a CaCl\(_2\) guard tube. The brown mixture was refluxed overnight, at 100 °C. After reaching room temperature, the reaction mixture was filtered, all volatiles removed. The brown solid obtained was extracted with hot n-hexane, giving rise to a yellow solution that was concentrated and kept at −20 °C. After some hours, a beige solid corresponding to the desired product 3e was filtered and dried under vacuum. Yield, 0.36 g (41%). \(^1\text{H}\) NMR (300 MHz, CD\(_2\)Cl\(_2\)) \(\delta\) 9.81 (br, 1H, NH), 8.22 (s, 1H, CH=N), 7.68 (d, \(J_{\text{HH}} = 9\) Hz, 2H, N–Ph–H\(_3\) + N–Ph–H\(_6\)), 6.96 (s, 2H, N–Ph–H\(_3\) + N–Ph–H\(_6\)), 6.93 (s, 1H, H\(_5\)-pyrr), 6.73 (d, \(J_{\text{HH}} = 3\) Hz, 1H, H\(_3\)-pyrr), 6.32 (t, \(J_{\text{HH}} = 3\) Hz, 1H, H\(_4\)-pyrr).

Synthesis of 2-(3-bromophenylformimino)pyrrole (3f).

3-Bromoaniline 2f (1.72 g, 10.0 mmol), 2-formylpyrrole 1 (0.96 g, 10.1 mmol) and a catalytic amount of p-toluenesulphonic acid were suspended in toluene (30 mL) in a 50 mL round-bottom flask fitted with a Soxhlet apparatus, a condenser and a CaCl\(_2\) guard tube. The orange mixture was refluxed at 130 °C, for 3 days. After reaching room temperature, the reaction mixture
was filtered, and all volatiles removed. The brown oil obtained was filtered and dried under vacuum. Yield, 1.80 g (72%). 1H NMR (300 MHz, CD2Cl2): δ 10.11 (br, 1H, NH), 8.26 (s, 1H, CH=NH), 7.37 (s, 1H, N–Ph–H4), 7.35 (s, 1H, N–Ph–H3), 7.26 (t, δ jHH = 9 Hz, 1H, N–Ph–H3), 7.15 (d, δ jHH = 3 Hz, 1H, N–Ph–H4), 6.89 (s, 1H, H2-pyrr), 6.76 (d, δ jHH = 3 Hz, 1H, H2-pyrr), 6.63 (t, δ jHH = 3 Hz, 1H, H2-pyrr). 13C{1H} NMR (75 MHz, CDCl3): δ 153.3 (N–Ph–Cipso), 150.9 (CH=N), 130.6 (N–Ph–C), 130.5 (C2-pyrr), 128.4 (N–Ph–C), 124.1 (N–Ph–C), 123.9 (N–Ph–C), 122.9 (N–Ph–C), 120.2 (C2-pyrr), 117.9 (C2-pyrr), 110.8 (C2-pyrr). Anal. calcd (%) for C16H9BrN3: C, 53.04; H, 3.52; N, 11.14. Found: C, 53.06; H, 3.55; N, 11.14.

Synthesis of 2-(2-bromophenylformimino)pyrrole (3g).
Bromoaniline 2g (1.73 g, 10.0 mmol), 2-formylpyrrole 1 (0.95 g, 10.0 mmol) and a catalytic amount of p-toluenesulfonic acid were suspended in toluene (30 mL) in a 50 mL round-bottom flask fitted with a Soxhlet apparatus, a condenser and a CaCl2 guard tube. The orange mixture was refluxed at 130 °C, for 2 days. After reaching room temperature, the reaction mixture was filtered, and all volatiles removed. The brown oil obtained was extracted with hot n-hexane, giving rise to an orange solution that was concentrated and kept at -20 °C. After some hours, a beige solid corresponding to the desired product 3g was filtered and dried under vacuum. Yield, 1.36 g (54%). 1H NMR (300 MHz, CD2Cl2): δ 9.77 (br, 1H, NH), 8.11 (s, 1H, CH=NH), 7.60 (d, δ jHH = 6 Hz, 1H, N–Ph–H4), 7.29 (t, δ jHH = 6 Hz, 1H, N–Ph–H4), 7.08-6.88 (m, 3H, N–Ph–H4 + N–Ph–H3 + H2-pyrr), 6.70 (d, δ jHH = 3 Hz, 1H, H2-pyrr), 6.30 (t, δ jHH = 3 Hz, 1H, H2-pyrr). 13C{1H} NMR (75 MHz, CDCl3): 150.6 (CH=N), 131.3 (N–Ph–C), 130.7 (C2-pyrr), 128.6 (N–Ph–C), 126.4 (N–Ph–C), 123.7 (N–Ph–C), 120.1 (C2-pyrr), 118.7 (N–Ph–C), 117.4 (C2-pyrr), 110.8 (C2-pyrr). Anal. calcd (%) for C16H10BrN3: C, 53.04; H, 3.64; N, 11.25. Found: C, 53.07; H, 3.57; N, 11.25.

Synthesis of 2-(2-iodophenylformimino)pyrrole (3h).
2-Iodoaniline 2h (0.50 g, 2.3 mmol), 2-formylpyrrole 1 (0.24 g, 2.5 mmol) and a catalytic amount of p-toluenesulfonic acid (p-TSA) were suspended in toluene (30 mL) in a 50 mL round-bottom flask fitted with a Soxhlet apparatus, a condenser and a CaCl2 guard tube. The salmon-coloured mixture was refluxed overnight, at 130 °C. After reaching room temperature, the reaction mixture was filtered, and all volatiles were removed. The brown oil obtained was extracted with hot n-hexane, giving rise to a yellow solution that was concentrated and kept at -20 °C. After some hours, a brown solid corresponding to the desired product 3h was filtered and dried under vacuum. Yield, 0.48 g (72%). 1H NMR (300 MHz, CD2Cl2): δ 9.56 (br, 1H, NH), 8.10 (s, 1H, CH=NH), 7.88 (d, δ jHH = 6 Hz, 1H, N–Ph–H3), 7.35 (t, δ jHH = 6 Hz, 1H, N–Ph–H3), 7.06-6.94 (m, 2H, N–Ph–H4 + H2-pyrr), 6.89 (t, δ jHH = 6 Hz, 1H, N–Ph–H4), 6.72 (s, 1H, H2-pyrr), 6.33 (s, 1H, H2-pyrr). 13C{1H} NMR (75 MHz, CDCl3): δ 152.7 (N–Ph–Cipso), 150.0 (CH=N), 139.2 (N–Ph–C), 130.5 (C2-pyrr), 129.5 (N–Ph–C), 126.7 (N–Ph–C), 123.4 (N–Ph–C).
The solution was filtered, and the powder dried under vacuum. Yield, 0.25 g (45%). 1H NMR (300 MHz, CD2Cl2): δ 8.50 (s, 1H, CH=N), 7.60 (d, JHH = 9 Hz, 2H, N-Ph-H + N-Ph-H), 7.33–7.14 (m, 11H, H-C=pyrr + B-Ph-Hmeta + B-Ph-Hpara + B-Ph-Hipso), 7.08 (d, JHH = 6 Hz, 1H, H-C=pyrr), 7.03 (d, JHH = 9 Hz, 2H, N-Ph-H + N-Ph-H), 6.58 (dd, JHH = 6 Hz, JHH = 3 Hz, 1H, H-C=pyrr). 13C{1H} NMR (75 MHz, CDCl3): δ 150.5 (CH=N), 142.2 (N-Ph-Cg), 138.8 (N-Ph-C3 + N-Ph-C4), 134.8 (Cpyrr), 133.5 (B-Ph-Cortho), 132.4 (C4-meta), 128.0 (B-Ph-Cmeta), 127.1 (B-Ph-Cpara), 124.2 (N-Ph-C2 + N-Ph-H), 118.1 (C=pyrr), 116.1 (C=pyrr), 92.2 (N-Ph-C4), B-Ph-Cipso resonance absent. 11B NMR (96.29 MHz, CD2Cl2): δ 6.05. Anal. calc’d (%) for C23H18BBrN2C: C, 60.04; H, 3.94; N, 6.09. Found: C, 60.07; H, 3.93; N, 6.08.

Synthesis of [BPh2{(κ2N,N′-N′-NC6H5C(H)=N-3-Br-C6H4)}] (4f). A solution of 2-(3-bromophenylformimino)pyrrole 3f (0.57 g, 2.3 mmol), in toluene, was added to triphenylboron (0.55 g, 2.3 mmol) (also in toluene). The green solution was refluxed overnight under nitrogen. The resulting dark green solution was cooled to room temperature and filtered. The solvent was concentrated under vacuum and the final solution stored at −20 °C, giving rise to a yellow powder corresponding to the desired boron complex 4f, which was dried under vacuum. Yield, 0.25 g (45%). 1H NMR (300 MHz, CD2Cl2): δ 8.48 (s, 1H, CH=N), 7.40 (s, 1H, N-Ph-H), 7.37 (d, JHH = 9 Hz, 1H, N-Ph-H), 7.33–7.18 (m, 12H, N-Ph-H + B-Ph-Hmeta + B-Ph-Hpara + B-Ph-Hipso), 7.10 (d, JHH = 3 Hz, 1H, H-C=pyrr), 6.59 (dd, JHH = 6 Hz, JHH = 3 Hz, 1H, H-C=pyrr). 13C{1H} NMR (75 MHz, CDCl3): δ 156.3 (CH=N), 144.7 (N-Ph-Cg), 140.6 (N-Ph-C4), 132.4 (C2pyrr), 133.5 (B-Ph-Cortho), 132.4 (N-Ph-C4), 129.0 (C=pyrr), 127.7 (B-Ph-Cmeta), 126.9 (B-Ph-Cpara), 126.7 (N-Ph-C2 + N-Ph-H), 117.5 (C=pyrr), 115.8 (C=pyrr), 96.1 (N-Ph-C4), B-Ph-Cipso resonance absent. 11B NMR (96.29 MHz, CD2Cl2): δ 5.31. Anal. calc’d (%) for C23H18BBrN2C: C, 66.87; H, 4.39; N, 6.09. Found: C, 66.36; H, 4.26; N, 6.76.

The crystallographic data for complexes 4c, 4d and 4g were collected using graphite monochromated Mo-Kα radiation (λ = 0.71073 Å) on a Bruker AXS-KAPPA APEX II diffractometer equipped with an Oxford Cryosystem open-flow nitrogen cryostat, at 150 K, and the crystals were selected under inert atmosphere, stored in polyfluorooether oil and mounted on a nylon loop. Cell parameters were retrieved using Bruker SMART software and refined using Bruker SAINT on all observed reflections. Absorption corrections were applied using SADABS. Structure solution and refinement were performed using direct methods with the programs SIR2004, SIR2014, SIR2018 (ref. 19) and SHELXL,20 included in the package of programs WINGX-Version2014.1.21 All hydrogen atoms were inserted in idealized positions and allowed to refine riding on the parent carbon atom, with C–H distances of 0.95 Å for aromatic H atoms and with Uiso(H) = 1.2Ueq(C). Graphic presentations were prepared with ORTEP-III.21 Data were deposited in CCDC under the deposit numbers 2004594 for 4c, 2004595 for 4d, and 2004596 for 4g;also included in the package of programs WINGX-Version2014.1.21 All hydrogen atoms were inserted in idealized positions and allowed to refine riding on the parent carbon atom, with C–H distances of 0.95 Å for aromatic H atoms and with Uiso(H) = 1.2Ueq(C). Graphic presentations were prepared with ORTEP-III.21 Data were deposited in CCDC under the deposit numbers 2004594 for 4c, 2004595 for 4d, and 2004596 for 4g.†

4.3 X-ray data collection
The crystallographic data for complexes 4c, 4d and 4g were collected using graphite monochromated Mo-Kα radiation (λ = 0.71073 Å) on a Bruker AXS-KAPPA APEX II diffractometer equipped with an Oxford Cryosystem open-flow nitrogen cryostat, at 150 K, and the crystals were selected under inert atmosphere, stored in polyfluorooether oil and mounted on a nylon loop. Cell parameters were retrieved using Bruker SMART software and refined using Bruker SAINT on all observed reflections. Absorption corrections were applied using SADABS. Structure solution and refinement were performed using direct methods with the programs SIR2004, SIR2014, SIR2018 (ref. 19) and SHELXL,20 included in the package of programs WINGX-Version2014.1.21 All hydrogen atoms were inserted in idealized positions and allowed to refine riding on the parent carbon atom, with C–H distances of 0.95 Å for aromatic H atoms and with Uiso(H) = 1.2Ueq(C). Graphic presentations were prepared with ORTEP-III.21 Data were deposited in CCDC under the deposit numbers 2004594 for 4c, 2004595 for 4d, and 2004596 for 4g; also included in the package of programs WINGX-Version2014.1.21 All hydrogen atoms were inserted in idealized positions and allowed to refine riding on the parent carbon atom, with C–H distances of 0.95 Å for aromatic H atoms and with Uiso(H) = 1.2Ueq(C). Graphic presentations were prepared with ORTEP-III.21 Data were deposited in CCDC under the deposit numbers 2004594 for 4c, 2004595 for 4d, and 2004596 for 4g.†

4.4 Cyclic voltammetry measurements
Cyclic voltammetry (CV) measurements were performed on a Solartron potentiostat in a three-electrode cell with a 0.1 M tetrabutylammonium perchlorate (TBAClO4)/CH2Cl2 supporting electrolyte, at a scan rate of 50 mV s−1, at room temperature and under inert atmosphere (N2). The reference electrode, counter electrode and working electrode used were a saturated calomel electrode (SCE), a platinum wire and a platinum disk, respectively.
4.5 Spectroscopic measurements

An Agilent Cary 8454 UV-Visible spectrophotometer and a SPEX Fluorolog 212I were used to obtain the absorption and fluorescence spectra of 4c–4h solutions, in THF. The fluorescence spectra were collected with right angle geometry, in the S/R mode, and corrected for instrumental wavelength dependence. Fluorescence quantum yields were determined by comparison with the quantum yields of α-tetrathieno (for complexes 4c–4f) and α-tertiophene (for complexes 4g and 4h) in dioxane at 25 °C. Phosphorescence spectra were measured with a SPEX 1934D phosphorimeter using a time window of 20 ms.

Fluorescence decays were measured using the time-correlated single photon counting technique with a previously described home-made apparatus. Briefly, the excitation pulses were provided by the frequency-doubled emission of a Millennia Xs/Tsunami lasers system from Spectra Physics, operating at 82 MHz and detected with a microchannel plate photomultiplier (Hamamatsu R3809u-50). The FWHM of the instrumental response function (IRF) (obtained with an optically matched scattering Ludox solution) is ca. 18 ps with 814 fs/channel resolution. Fluorescence decays were deconvoluted from the excitation pulse using the modulation functions method (Sand program).

For solid state measurements, toluene solutions of each complex 4c–4h (at a concentration of 1 mg mL$^{-1}$) and ZEONEX® 480 (at a concentration of 100 mg mL$^{-1}$) were blended on a ratio of 1 wt% and drop-cast (~80 µL) at 30 °C. ZEONEX® 480 is a transparent ethylene-cycloolefin copolymer. Absorption and emission spectra of the ZEONEX samples were collected using a UV-3600 double beam spectrophotometer (Shimadzu) and Jobin Yvon Horiba FluoroMax 3. Lifetime measurements were obtained by exciting the solid state samples with a pulsed Nd:YAG laser (EKPLA), at 355 nm. Photoluminescence quantum yield measurements were performed using an integration sphere coupled with a sensitive QePro spectrometer (Ocean Optics) using a 365 nm LED light source (Ocean Optics). The photoluminescence lifetimes were obtained using time correlated single photon counting (Mira-900 picosecond laser system).

The experimental setup used to obtain triplet absorption spectra and triplet lifetimes consists of an Applied Photophysics laser flash photolysis apparatus pumped by the third harmonic (355 nm) of a Nd:YAG laser (Spectra Physics). The detection system (Hamamatsu R928 photomultipliers) is at right angles to the excitation beam, and a pulsed 150 W Xe lamp was used to analyse the transient absorption. The signal obtained was fed into a Tektronix TDS 3052B digital analyser and transferred to an IBM RISC computer where the optical density (OD) at different wavelengths and different delays after flash were collected using the appropriate software (Applied photophysics). Transient absorption spectra were collected by monitoring the optical density change at intervals of 10 nm over the range of 330–650 nm and averaging at least 10 decays at each wavelength. First order kinetics was observed for the decays of the lowest triplet state, except for complex 4h. Special care was taken in order to have sufficiently low laser energies (\leq2 mJ) to avoid multiphoton and/or triplet–triplet annihilation effects. Before the experiments were done, all solutions were degassed with nitrogen for \approx20 min and sealed. The triplet molar absorption coefficients obtained in THF were determined by the singlet depletion technique, according to the well-known relationship, $\phi_T = \varepsilon_S \times \Delta \varepsilon_{OD_T}/\Delta \varepsilon_{OD_S}$. The ϕ_T values were measured using benzophenone in toluene as the reference compound.

4.6 Computational studies

The ADF program (Amsterdam Density Functional) was used in all Density Functional Theory calculations. The geometries of 4a–h were optimized without symmetry constraints, with the Vosko–Wilk–Nusair Local Density Approximation of the correlation energy and the PBE0 functional, with spin orbit coupling (SOPERT), taking into account solvent effects (THF) with the COSMO model implemented in ADF. Relativistic effects were treated with the ZORA approximation. Triple ζ Slater-type orbitals (STO) were used to describe all the electrons of H, C, B, N, F, Cl, Br, and I, augmented with a set of one polarization function (H, single ζ 2s; C, B, N, F, Cl single ζ 3d; Br single ζ 4d; I single ζ 5d). TDDFT was used to obtain the geometry of the first singlet excited states and to obtain the absorption spectra with the Tamman–Dannenberg approximation (TDA). Unrestricted calculations were carried out for open shell complexes. The starting geometries were the experimental ones described above for 4c–d, and 4g, or modelled after them. The excited singlet state lifetimes were obtained from the SOPERT calculations and the calculated fluorescence rate constants were their reciprocal.

For the sake of comparison with previous studies and to evaluate the role of dispersion in these systems, the previous calculations (method A in the ESIF) were repeated with the B3LYP functional (method B), with PBE0 and the Grimme D3 correlation functional (A/D3), with B3LYP and the Grimme D3 correction (B/D3), with Becke’s exchange and Perdew’s correlation functionals (gas phase, GP). The basis set was TZP with a small frozen core for all atoms. The solvent (COSMO) was introduced in a single point calculation on the structure from the latter. The same structure was used to calculate the absorption spectra with (THF) and without solvent (GP) and, also in gas phase and SOPERT, to obtain excited state lifetimes (SO). The first singlet excited state was obtained by the promotion of one electron from the HOMO to the LUMO followed by geometry optimization.

4.7 Light-emitting diode studies

The results presented in Table 5 and in the ESIF refer to OLEDs where the complexes were used in the neat form (deposited by either spin coating or vacuum thermal deposition) or dispersed in poly(vinylcarbazole). These devices were tested under vacuum, using a K2400 Source Meter and a calibrated silicon photodiode, as described before. The electroluminescence (EL) spectra were obtained with a CCD spectrograph.
The ITO/HAT-CN/TAPC/mCP co 10% 4e/TPBi/LiF/Al device was fabricated with pre-cleaned indium–tin–oxide (ITO) coated glass substrate after ozone plasma treatment. HAT-CN was used as a hole injection layer and TAPC as a hole transport layer. The emissive layer consisted of 4e co-evaporated with mCP (1,3-bis-(N-carbazolyl)benzene) to give 10% contribution of emitter by keeping the evaporation rate in proportion of 1:9 for emitter and host, respectively. TPBi was used as the electron transport layer. All organic and inorganic layers were thermally deposited using the Kurt J. Lesker Spectros II deposition system at 10−6 mbar. The deposition rate was kept at 1 Å s−1 for all layers except for LiF and the emissive material in co-evaporation in which case they were kept at 0.1–0.2 Å s−1. The device was characterized using a 10 inch integrating sphere (Ocean Optics) and coupled with a USB spectrometer (Ocean Optics) and connected to a Source Measure Unit.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements

References

