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Resumo

Apresentamos um estudo da estabilidade da matéria no interior da
crosta duma estrela de neutrões sob a ação de um campo magnético
externo muito intenso, como os que poderão existir no interior de mag-
netares. Neste trabalho, consideramos campos magnéticos com inten-
sidades da ordem de 2×1015 < B < 5×1016 G. O método utiliza um mod-
elo de campo médio relativista da matéria nuclear acoplado ao campo
magnético. O momento magnético anómalo de neutrões e protões é in-
cluı́do, e o seu efeito estudado explicitamente. A estabilidade do estado
fundamental é analisada, sendo calculada a relação de dispersão no
formalismo da equação de Vlasov relativista para os modos longitudi-
nais e usando a mesma interacção. Verificamos que o campo dá origem
a uma heterogeneidade adicional na estrutura da crosta interna com
flutuações significativas no tamanho do agregado com a densidade.
Além disso, a densidade de transição crosta-núcleo pode aumentar de
pelo menos 0.01 fm−3, resultando num aumento significativo da mas-
sa e do momento de inércia da crosta. Verifica-se ainda que uma in-
tensidade de campo suficientemente elevada pode dar origem a uma
alternância de camadas de matéria nuclear homogénea e matéria com
agregados nas camadas profundas da crosta interior.

Os efeitos simultâneos da intensidade do campo magnético, da en-
ergia de simetria e da temperatura no núcleo da crosta são discutidos.
Sob a ação de campos magnéticos fortes, a extensão da crosta é muito
sensı́vel à dependência da energia de simetria na densidade. As pro-
priedades que dependem da espessura da crosta podem estabelecer u-
ma forte restrição na equação de estado. As spinodais termodinâmicas
são usadas para estudar a estabilidade da matéria estelar a temperatu-
ra finita. É mostrado que o efeito do campo magnético sobre a extensão
da transição da crosta-núcleo desaparece para temperaturas acima de
109 K. No entanto, para temperaturas inferiores a esse valor, o efeito é
importante, e aumenta à medida que a temperatura diminui, devendo
ser levado em consideração quando a evolução de magnetars é estuda-
da.
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Abstract

We study the stability of stellar matter in the inner crust of neutron
stars under the effect of strong external magnetic fields, as the ones
that may occur in magnetars. Quantizing magnetic fields with inten-
sities in the range of 2 × 1015 < B < 5 × 1016 G are considered. We
use relativistic mean-field models to describe nuclear matter coupled
to the magnetic field. The anomalous magnetic moment of neutrons
and protons are explicitly included in the study and their effect ana-
lyzed. The stability of the ground state is then examined with respect
to longitudinal modes using the relativistic Vlasov formalism, and the
explicit calculation of the dynamical spinodal. We find that the strong
magnetic field introduces additional heterogeneity into the structure
of the inner crust with significant fluctuations in the cluster size with
density. It can extend the crust-core transition density by 0.01 fm−3,
or even more, which would result in a significant increase in the mass
and moment of inertia of the crust and, perhaps most interestingly, at
high enough field strength, we obtain layers of homogeneous nuclear
matter sandwiched in-between clustered matter in the deep layers of
the inner crust.

The simultaneous effects of the magnetic field intensity, and both
the symmetry energy and the temperature, on the crust-core transi-
tion of a magnetar are also discussed. Under strong magnetic fields,
the crust extension is very sensitive to the density dependence of the
symmetry energy, and the properties that depend on the crust thick-
ness could set a constraint on the equation of state. The thermody-
namical spinodals are used to study the stability of stellar matter at
finite temperature. It is shown that the effect on the extension of the
crust-core transition is washed out for temperatures above 109 K. How-
ever, for temperatures below that value, a noticeable effect exists, that
grows as the temperature decreases, and which should be taken into
account when the evolution of magnetars is studied.
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Chapter 1

Introduction

1.1 Neutron stars

Neutron stars are one of the possible remnants of the end of the stellar
evolution for very massive stars, with a mass larger than 8M� [Shapiro
and Teukolsky, 2004], and are formed in a type-II supernova explosion
called core-collapse supernova. The mass of a typical neutron star is
around 1.4M� and the radius is about 10 km. They were first predicted
by Baade and Zwicky [Baade and Zwicky, 1934] in 1934, and due to
their exotic constitution, they have been attracting the curiosity of sci-
entists ever since. Fifty years ago, in 1967, Jocelyn Bell and Anthony
Hewish observed the first pulsar [Hewish et al., 1968].

Due to the extreme conditions (high pressures and densities, large
isospin asymmetry, and high temperatures), which laboratories on earth
cannot reach, neutron stars have become an amazing laboratory in the
universe. The research of neutron stars attracts interest of scientists
from many areas, such as nuclear and particle physics, astrophysics,
cosmology and general relativity. In particular, nuclear physics plays
an important role in understanding these objects, because the funda-
mental nuclear interaction is necessary to determine the equation of
state (EoS), responsible for the constitution and structure of the stars.
Furthermore, neutron stars can be thought of a giant very neutron-rich
nucleus, meaning that understanding the constitution and properties
of the star leads to a better understanding of the nuclear force. Astro-
physical observations can, therefore, be used to put constrains on the
properties of nuclear matter.

In September 2015, the first gravitational waves were detected by
the LIGO interferometer [Abbott et al., 2016]. Their origin was the
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1.1. NEUTRON STARS

collision of two massive blackholes. This has opened an important win-
dow to the observation of massive stars and neutron stars. Due to their
extreme gravitational field, they are also strong candidates for gravi-
tational wave observation. One expects that gravitational waves from
supernova explosions, binary merging or neutron star oscillations could
be detected in the near future.

Scientists hope to use various observations (electromagnetic radi-
ation of different wavelengths and gravitational waves) together with
theoretical methods to probe the properties of matter in a neutron star
under extreme conditions.

1.1.1 Constitution
A neutron star roughly includes four different regions: atmosphere,
outer crust, inner crust, and core, see Fig. 1.1.

Outer crust:

Electrons, lattice of atomic nuclei

Atmosphere

Figure 1.1: The schematic picture of the structure of a neutron star,
taken from [Sharma, 2013].

The atmosphere is only a few centimeters thick and contributes very
little to the total star mass, however it is very important in determining
the spectrum and flux of the neutron star. It is essentially constituted
by hydrogen and helium atoms.

The outer crust consists of a lattice of atomic nuclei, which are iron
nuclei at the outer layer close to the atmosphere, immersed in an elec-
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1.1. NEUTRON STARS

tron Fermi sea. From the top to the bottom layer of the outer crust,
nuclei become more and more neutron rich, until neutrons drip out of
the nuclei (free, unbound neutrons) at densities above the 4 × 1011 g
cm−3, and condense into a superfluid phase in some layers.

The region that starts at the onset of the neutron drip is called the
inner crust, and it extends until the transition to the core occurs, at a
density of ∼ 1.5 × 1014 g cm3. In this region, heavy clusters will form,
embedded in a background gas of superfluid neutrons. These exotic
shapes result from the competition between the short range nuclear
force and the long range Coulomb force. These geometries will eventu-
ally melt, as the density increases towards the center of the star, and
the transition to the core occurs.

The liquid core consists of a mixture of neutrons, protons and elec-
trons. Due to the high Fermi pressure, muons and other exotic particles
such as hyperons and pion and kaon mesons, or even deconfined quark
matter, may appear.

1.1.2 The nuclear pasta phase

Figure 1.2: The nuclear pasta phases. From left to right: droplets,
rods, cross-rods, slabs, tubes and bubbles. Figure taken from [Pais and
Stone, 2012].

As the density increases in the crust, from ∼ 0.001 up to ∼ 0.1
fm−3, [Sonoda et al., 2008, Sonoda et al., 2010, Avancini et al., 2008],
and before an eventual transition to homogeneous matter occurs, heavy
quasi-nuclei structures, immersed in a electron gas and neutron gas,
will probably be formed.

Their geometry will be determined by the minimization of the free
energy, and shapes such as droplets, rods, slabs, tubes, and bubbles, or
others in between, could exist. An example of these exotic geometries
is represented in Fig. 1.2, taken from [Pais and Stone, 2012], where
it is shown the neutron density distribution at onset density of each
phase. These heavy clusters, called the pasta phases, are constituted
by protons and neutrons, and were first introduced by Ravenhall et
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1.1. NEUTRON STARS

al. [Ravenhall et al., 1983] and Hashimoto et al. [Hashimoto et al.,
1984].

These geometrical configurations have not only been predicted in
nuclear matter, but they have also been observed in a variety of amor-
phous solids, crystals, and magnetic and biological materials [Watan-
abe and Sonoda, 2007, Moessner and Ramirez, 2006, Kuksenok et al.,
2006].

The equilibrium structure of the pasta phases is a frustrated system
that arises from the interplay between the surface energy of the nucle-
i, which is favoring large structures, and their Coulomb energy, which
is favoring small structures, [Ravenhall et al., 1983, Horowitz et al.,
2004b, Horowitz et al., 2005, Maruyama et al., 2005, Watanabe et al.,
2005,Sonoda et al., 2008,Sonoda et al., 2010]. In fact, in neutron stars,
where the pressure and densities are very high, the Coulomb energy
becomes comparable in magnitude to the nuclear binding energy. Mat-
ter becomes frustrated and arranges itself in a regular periodic lattice
of nonspherical clusters in order to minimize the Coulomb energy. The
pasta phases are the ground-state of matter, if their free energy per
particle is lower than the corresponding homogeneous matter state [A-
vancini et al., 2010].

Understanding nuclear matter under exotic conditions is still at-
tracting the interest of the scientific community because the informa-
tion that arrives to the surface of the star coming from the core has to
go through the inner crust. Learning about the inner core is, therefore,
only possible if the constitution of the outer and the inner crust are
well understood. Besides, several properties of neutron stars, such as
glitches, are attributed to the dynamics of the crust.

Recently, Pons et al [Pons et al., 2013] suggested that an indirect
observation of the existence of a layer of pasta phases at the upper
border of the inner crust is the fact that pulsars with periods above
∼ 12 s have not been observed. They have shown that there seems to
exist a direct correlation between the highly resistive layer in the inner
crust of the stars, and the maximum observed spin period of isolated
x-ray pulsars. This could be an evidence for the existence of the nuclear
pasta phase.

Since the pioneer studies of Ravenhall et al [Ravenhall et al., 1983],
the nuclear pasta phase has been studied, using either semiclassical
liquid drop models or Thomas-Fermi methods [Lamb et al., 1983, Lat-
timer and Swesty, 1991,Lassaut et al., 1987]. Using the principle that
the ground-state configuration of matter is the one that minimizes the
free energy, the geometrical structures were obtained by calculating
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1.1. NEUTRON STARS

the energy densities of each configuration in the range of densities and
temperatures that they were expected to appear, and selecting the one
that gave the lowest energy state.

Different formalisms have later been used to calculate these same
geometrical structures, including classical and quantum molecular dy-
namics models [Horowitz et al., 2004c, Sonoda et al., 2008, Schneider
et al., 2014], the Thomas-Fermi approximation within relativistic nu-
clear models [Shen et al., 1998,Maruyama et al., 2005,Avancini et al.,
2008], and Hartree-Fock calculations with both non-relativistic and rel-
ativistic models [Gögelein and Müther, 2007, Newton and Stone, 2009,
Pais and Stone, 2012].

Quantum molecular dynamics [Maruyama et al., 1998, Watanabe
et al., 2001, Horowitz et al., 2004b, Horowitz et al., 2004a, Watanabe
and Sonoda, 2005] simulations are another possible approach to model
these exotic geometries. In this approach, a large number of nucleons
is dynamically evolved in a cubic box with periodic boundary condi-
tions. Here, the nuclear structures are not defined a priori, but one of
the problems with this semiclassical microscopic treatment is that the
effective nucleon-nucleon interaction is very schematic and the shell
effects are missing.

The pasta phases have also been described within a classical molec-
ular dynamics technique, based on the work of Pandharipande [Vicen-
tini et al., 1985, Lenk and Pandharipande, 1986, Lenk et al., 1990] in
Ref. [Dorso et al., 2012]. In this approach, the nucleons are treated as
classical particles, which interact through a two-body potential. The
coupled equations of motion of the many-body system need to be solved
so that the time evolution of all particles are obtained. The microscopic
structure of the nuclear medium is possible to obtain because the po-
sition and momentum for the particles is know at all times and for all
particles [Dorso et al., 2012].

A fully self-consistent, non-relativistic 3D Skyrme-Hartree-Fock mod-
el of the nuclear pasta phase at finite temperature, that allows for a
wide variety of possible nuclear formations, calculated self-consistently,
has been used in Refs. [Newton and Stone, 2009, Newton, 2008, Pais,
2013, Pais and Stone, 2012] to study the nuclear pasta structures and
the transition to the liquid uniform phase. In this approach, no pre-
determination of the shape is imposed, and the transition between the
different shapes is self-consistent with no need to introduce different
EoS.

The spherical Wigner-Seitz (WS) approximation, in which the gen-
erally nonspherical unit cell is replaced by a spherical one with the
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1.2. LIQUID GAS PHASE TRANSITION

same volume, has been used in several studies, like fully microscop-
ic Hartree-Fock (HF) calculations of supernova matter [Bonche and
Vautherin, 1981, Bonche and Vautherin, 1982], or in the relativistic
Thomas-Fermi approximation [Avancini et al., 2008, Avancini et al.,
2009, Avancini et al., 2010], within the framework of the non-linear
Walecka model with a variety of effective Lagrangians. This approxi-
mation is good, as long as the nuclear structures, that form the lattice
points, are sufficiently widely spaced. In these studies, the authors
considered the formation of pasta structures both at zero and finite
temperature.

Let us point out that when describing warm neutron star matter, be-
sides these heavy clusters, light clusters, like e.g. deuterons, tritiums,
heliums and α−particles, can also form [Hempel et al., 2011, Avanci-
ni et al., 2012, Pais et al., 2015]. According to some estimates, the
nuclear pasta phase may form up to 20% of the supernova matter at
bounce [Sonoda et al., 2007]. This justifies the importance of consider-
ing these exotic geometries in the EoS used in core-collapse supernova
simulations. However, at finite temperature, it becomes questionable
whether the single heavy nucleus approximation, which has been ap-
plied in [Shen et al., 1998, Avancini et al., 2010] is still valid, or if it
is in fact too schematic. Alternative EoS, appropriate for core-collapse
supernova simulations, as the ones proposed in [Hempel and Schaffner-
Bielich, 2010, Raduta and Gulminelli, 2010] were built, considering s-
tatistical methods that overcome the single nucleus approximation.

1.2 Liquid gas phase transition
Nuclear matter at subsaturation densities is characterized by a liquid-
gas phase transition [Müller and Serot, 1995]. For a system of a liquid
(phase 1) and a gas (phase 2) in equilibrium, the temperatures of both
phases, T1 and T2, and the correspondent pressures, P1, P2, must be
equal, since the forces exerted by the two phases on each other at their
surface of contact must be equal and opposite [Landau and Lifshitz,
1980]. The same applies to the chemical potentials, µ1 = µ2 . If the
potentials are expressed as functions of the pressure and temperature,
and T1 = T2 = T and P1 = P2 = P , then µ1(P, T ) = µ2(P, T ) . These
thermal, mechanical and chemical equilibrium relations are called the
Gibbs conditions.

Since nuclear matter is formed by two different types of particles,
protons and neutrons, mechanical and chemical instabilities may lead
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1.2. LIQUID GAS PHASE TRANSITION

both to the fragmentation of a nuclear system in heavy ion collisions
and an isospin distillation effect [Colonna et al., 2002, Chomaz et al.,
2004]. The distillation effect is defined as the tendency of the system
to separate into two phases with a different isospin content from the
average isospin content that the unstable homogeneous phase would
have. Due to the symmetry energy contribution to the total energy of
the system, the most favorable phase separation will correspond to an
isospin-symmetric matter dense phase (liquid), and a neutron-rich gas,
i.e. a highly isospin-asymmetric phase.

Dynamical and thermodynamical instabilities of nuclear and stel-
lar matter at subsaturation densities are particularly important for
the description of the inner crust of neutron stars [Providência et al.,
2006a, Brito et al., 2006]. The thermodynamic spinodal is defined as
the locus where the free energy curvature goes to zero, and the dy-
namic spinodal as the surface where the eigenmodes of matter go to
zero. Both surfaces coincide if perturbations of infinite wave length
are considered in the dynamical description. Spinodal decomposition
has been applied to study the fragmentation of finite nuclear system-
s, within a self-consistent quantum approach, in Refs. [Colonna et al.,
2002,Chomaz et al., 2004], and it was shown that the liquid-gas phase
transition of asymmetric systems would induce a fractional distillation
of the system.

Figure 1.3: Dynamical and thermodynamical instabilities. The tran-
sition densities are shown for β-equilibrium matter by square and dot
points.

From the spinodals of both neutron-proton (np) and neutron-proton-
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1.3. THE CRUST-CORE TRANSITION

electron (npe) matter, it is possible to make a relatively good predic-
tion of the density and pressure at the crust-core phase transition, see
Fig. 1.3 [Providência, 2007,Pais et al., 2009,Santos et al., 2008,Ducoin
et al., 2008]. In Ref. [Link et al., 1999], quantities such as the transi-
tion pressure and density, which determine the extension of the crust,
allowed the understanding of the formation of glitches, sudden changes
in the star’s rotation, and an important relation between the EoS and
neutron star observations was established.

1.3 The crust-core transition
The crust-core transition is the transition from the clusterized matter
in the inner crust to the homogeneous matter in the core. Different nu-
clear models have been used to study the properties of this transition in
neutron stars, and to contribute to the interpretation of astrophysical
observations.

For a given nuclear density, the proton fraction of homogeneous β-
equilibrium neutron-star matter, transparent to neutrinos, is essen-
tially determined by the symmetry energy, and it has been shown that
the symmetry energy slope, L, correlates to the crust-core transition
properties [Ducoin et al., 2010], see Fig. 1.4 taken from [Vidaña et al.,
2009]: the larger the value of L, the smaller the transition density. It
is, however, important to account for misleading relations when the s-
tudy is limited to a restricted nuclear model or family of models. In
Refs. [Vidaña et al., 2009,Ducoin et al., 2010,Ducoin et al., 2011], it is
shown that an accurate determination of the symmetry energy and its
slope and curvature at subsaturation densities allows a quite accurate
prediction of the core-crust transition properties.

The correlation between L and the transition density was shown to
be very robust, and it emerges from the following properties: a larger
value of L means a smaller symmetry energy at subsaturation density,
which implies a lower density ρt. On the other hand, no clear correla-
tion was observed between L and the transition pressure when differ-
ent kinds of models are used. The transition pressure depends on the
nuclear models, and different models may even predict contradictory
increasing or decreasing correlations of Pt with L [Ducoin et al., 2011].

The crust-core transition can be determined by the crossing between
the dynamical spinodal and the EoS of β-equilibrium matter, with re-
sults very similar to the Thomas-Fermi prediction from pasta phase
calculations [Avancini et al., 2010, Grill et al., 2012]. The transition

8



1.4. COLLECTIVE MODES
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Figure 1.4: Correlation between the symmetry energy slope L and the
crust-core transition density, ρt, taken from Ref. [Vidaña et al., 2009].
The transition density is shown for a wide number of nuclear model-
s, in particular, phenomenological approaches: non-relativistic Skyrme
forces (black squares), relativistic mean-field (RMF) models (blue tri-
angles for NLWM and red triangles for DDH), QMC (stars), and the
microscopic BHF calculation with Argonne V18 potential with a three-
body force of the Urbana type (circle). The blue line is a linear fit.

point calculated on the basis of the thermodynamical spinodal is larg-
er than the prediction coming from the dynamical spinodal [see Fig.
1.3] and Thomas-Fermi pasta calculation, however, it was confirmed
that the correlations obtained within the thermodynamical approach
are equivalent to the ones obtained from the dynamical spinodal ap-
proach [Ducoin et al., 2011]

1.4 Collective modes
Collective modes of nuclear matter have been studied with the help
of different formalisms. A non-relativistic approach was applied in
[Haensel, 1978] to calculate isospin and density waves in asymmetric
nuclear matter. The relativistic Vlasov equation, a semi-classical ap-
proach to the quantum hydrodynamical (QHD) model was used [Nielsen
et al., 1991, Nielsen et al., 1994, Nielsen et al., 1993]. The relativistic
Vlasov equation based on QHD was also applied to the simulation of
heavy-ion collisions [Ko et al., 1987,Jin et al., 1989], and its predictions
are similar to the ones obtained from more time consuming calculation-
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1.4. COLLECTIVE MODES

s, based on the time-dependent Dirac equations [Ko et al., 1987]. These
results indicate that the relativistic Vlasov equation defines an alter-
native way to study relativistic systems.

In Ref. [Lim and Horowitz, 1989], the zero sound, and the longitu-
dinal and transverse modes of symmetric nuclear matter were inves-
tigated within a relativistic Hartree calculation. Later, the authors of
Ref. [Greco et al., 2003] calculated the eigenmodes of asymmetric nu-
clear matter within a relativistic approach to nuclear matter via the
linear response equations. Matsui studied the collective modes in a
Landau Fermi liquid formalism, applied to the relativistic mean field
theory, see [Matsui, 1981], but the nuclear model considered did not
include non-linear terms, missing, therefore, some of the properties of
nuclear matter at saturation. In his work, only symmetric matter and
neutron matter were discussed. Later, in Ref. [Avancini et al., 2005],
the longitudinal collective modes of asymmetric nuclear matter were
calculated, within the relativistic Vlasov equation. In this thesis, this
is the formalism that we are going to generalize to magnetized nucle-
ar matter. Recently, the authors of [Pais et al., 2016] have shown that
the Relativistic Random Phase Approximation and the Vlasov equa-
tion predict similar transition densities for npe β-equilibrium stellar
matter, showing again the equivalence between these two methods.

The collective modes of nuclear matter may influence in a drastic
way the opacity of neutrinos formed during the supernova explosion
for subsaturation densities. The presence of spin domains could give
rise to coherent effects, which would increase the cross section of neu-
trinos with a typical energy of a few MeV. These effects are expected for
densities of the order of 10 − 50% of the saturation density, i.e., inside
the inner crust [Avancini et al., 2005].

Actually, the transport properties of stellar matter depend on the
modes which can be excited in the medium, either by its own free con-
stituents (proton, neutron or electron scattering) or by escaping neutri-
nos. In the case of a nonhomogeneous medium, a possible interaction
could consist in exciting a resonance mode inside a cluster. A nucle-
ar nonuniform system is specific to the structure of the inner crust of
neutron stars, and their collective modes may influence significantly
the specific heat of baryonic inner crust matter of neutron stars [Khan
et al., 2005].

Di Gallo et al. [Gallo et al., 2011] have studied the spectrum of
collective excitations in the ”lasagna” phase in the neutron star inner
crust within a superfluid hydrodynamics approach. In particular, they
have obtained very low-energy collective modes, and discussed their
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contribution to the specific heat in comparison with other known con-
tributions. The boundary conditions used were not totally justified.
However, an improved model was discussed recently in [Urban and O-
ertel, 2015].

1.5 Constraints on the EoS
The EoS of nuclear matter must be constrained by experimental da-
ta and astrophysical observations. In this study, we consider models
within the RMF approach. These are phenomenological models, whose
parameters, as referred before, must be fitted to data, either exper-
imental, observational, or even theoretical data, obtained from first
principles. Some of the constraints to be considered are the astrophys-
ical constraints on the maximum neutron star mass and the speed of
sound in stellar matter: Mmax ≥ 2M�, a limit set by the mass of the
pulsar PSR J0348+0432 (2.01 ± 0.04M�) [Antoniadis et al., 2013], and
vsound(2M�) < c, i.e., causality. RMF models satisfy automatically the
second one. We will consider the NL3 or NL3ωρmodels that also satisfy
the first one.

Besides these two constraints, several much stronger nuclear con-
straints have been obtained during the last decade, either from exper-
iments or from microscopic calculations.

The parameters of the models are usually obtained either by mak-
ing a fit to the saturation properties of nuclear matter or by performing
a multi-parameter fitting procedure to the properties of a set of spher-
ical nuclei. The experimental inputs for finite nuclei are the charge
radii, the total binding energies, the neutron radii or the surface thick-
ness [Lalazissis et al., 1997].

Making the incompressibility K, the symmetry energy at satura-
tion J and its slope L, consistent with the semi-empirical evaluations of
these parameters obtained in the laboratory, yields constraints on the
corresponding EoS of neutron star, and consequently, on neutron star
models. In particular, the radius of the star has been shown to be corre-
lated with L, especially for low mass stars [Carriere and C. J. Horowitz,
2003]. The correlation is still present for the more massive stars, but it
becomes weaker with the mass.

In [Khan et al., 2012], it was shown that self-consistent microscopic
calculations generate a reliable incompressibility constraint K = 230±
40 MeV for infinite nuclear matter, where 40 MeV corresponds to the
17% uncertainty in the extrapolations from the average nuclear density
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Table 1.1: Nuclear matter saturation properties of NL3 and NL3ωρ
models.

Model ρ0 (fm−3) EB (MeV) K (MeV) J (MeV) L (MeV)
NL3 0.148 -16.240 269.937 37.344 118.320

NL3ωρ,Λv = 0.01 0.148 -16.240 269.937 34.929 87.638
NL3ωρ,Λv = 0.02 0.148 -16.240 269.937 33.121 68.147
NL3ωρ,Λv = 0.03 0.148 -16.240 269.937 31.660 55.227

to the saturation density. Both NL3 and NL3ωρ models satisfy this
constraint, if the uncertainty is considered to be 18%, instead of 17%.

Within the theoretical calculations, we refer the studies of neutron
matter performed in [Gandolfi et al., 2012] and [Hebeler et al., 2013].
In Ref. [Gandolfi et al., 2012], the authors calculate the EoS of neu-
tron matter with phenomenological NN interaction, which provides an
accurate description of nucleon-nucleon scattering data at low energies
and 3N interaction, using quantum Monte Carlo techniques. In [Hebel-
er et al., 2013], the equation of state of neutron-rich matter has been
determined within a microscopic approach in the framework of chiral
effective field theory. NL3 does not satisfy the constraints from the cal-
culation of [Hebeler et al., 2013]. We will, however, consider it, because
it is frequently used as a reference. On the other hand, the NL3ωρ
model only shows a 10% relative deviation from the results presented
in [Hebeler et al., 2013], which we consider acceptable.

Two recent publications, [Tsang et al., 2009] and [Lattimer and Lim,
2013], have collected a set of experimental constraints on the J − L
plane. According to [Tsang et al., 2009] ( [Lattimer and Lim, 2013])
these quantities satisfy 30 < J < 35 MeV and 30 < L < 80 MeV
(29.0 < J < 32.7 MeV and 40.5 < L < 61.9 MeV). The values of J and
L for NL3ωρ belong to these intervals, but NL3 does not satisfy these
conditions.

Table 1.1 shows the nuclear matter properties at saturation density
for these two models: the binding energy per nucleon EB, the incom-
pressibility coefficient K, the symmetry energy J , and the symmetry
energy slope L.
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1.6 Magnetars

More and more evidences are showing that there is a class of neutron
stars with strong magnetic fields [Harding and Lai, 2006]. The dis-
covery of radio pulsars [Hewish et al., 1968] with magnetic fields lying
between 1011 and 1014 G is one evidence for such objects. The strongly
magnetized neutron stars, which were discovered at x-ray and γ-ray
energies, and have very strong surface magnetic fields of the order
of 1014 − 1015 G, are other class of objects with very strong magnetic
fields [Braithwaite and Spruit, 2006]. Such stars are known as mag-
netars [Duncan and Thompson, 1992]. These stars are bright pulsat-
ing isolated neutron stars with relatively long periods, usually lasting
for several seconds [Condon and Ransom, 2016]. Soft γ-ray repeaters,
which emit powerful bursts of γ- and x-rays at irregular intervals, and
anomalous x-ray pulsars, are considered in the literature the two main
types of magnetars [Turolla et al., 2015].

The strongest surface magnetic field observed up to now is as large
as 2 × 1015 G [SGR Catalogue, 2009], and it was detected from a quite
young star, SGR 1806-20 [Olausen and Kaspi, 2014, SGR Catalogue,
2009]. One believes that in the interior of the stars, the fields could be
higher, reaching the order of 1018 G, according to the virial theorem [Lai
and Shapiro, 1991], but these are only assumptions. The integration
of the Einstein equations, taking into account the magnetic field, and
performed in [Broderick et al., 2002], seems to indicate that, in fact,
neutron stars become unstable for magnetic fields above ∼ 1018 G.

The equation of state of stellar matter under β−equilibrium, charge
neutrality conditions, and strong magnetic fields, has been studied by
several authors [Chakrabarty et al., 1997, Broderick et al., 2000]. It
was shown that the nucleon anomalous magnetic moment (AMM) plays
a significant role only for sufficiently strong fields, and may decrease
the softening of the EoS caused by the Landau quantization. Other
theoretical studies on the effects of strong magnetic fields on dense
stellar matter, that forms neutron stars, have been carried out by many
authors [Cardall et al., 2001,Yue and Shen, 2006].

One can determine the intensity of the magnetic fields of these stars
from the period, P , and period derivative, Ṗ , of the objects, which are
measured from the arriving time of the pulses, and the assumption
that the spin-down is due to the usual magnetic dipole radiation. The
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surface field intensity can then be calculated from the expression

B =
(

3Ic3PṖ

2πR6

)1/2

, (1.1)

where I and R are the moment of inertia and radius of the star, respec-
tively. Fig. 1.5 is a PṖ diagram, useful to track the lives of pulsars,
playing a similar role to the Hertzsprung-Russell diagram for ordinary
stars.

Figure 1.5: PṖ diagram for the known magnetars and other objects.
Objects with a large magnetic field lie on the top right corner. Figure
taken from [Harding, 2013].

Magnetic fields significantly affect the radiative spectral opacities
and determine various observational manifestations of the neutron s-
tars. They also directly affect other processes, such as the thermal
evolution of the crust, since the temperature modifies the magnetic
filed evolution. Some theoretical models of pulsar and magnetar mag-
netospheres depend on the properties of nuclear matter under strong
magnetic fields. Moreover, strong magnetic fields will also greatly in-
fluence the transport properties and thermal structure of the neutron
star crust. Even though the magnetic quantization effects are small in
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the crust, the magnetic field still significantly modifies the transport
coefficients (e.g. electric conductivity and heat conductivity).

Previously, there have already been studies that analyze the effect
of the magnetic field on the thermodynamical spinodal [Rabhi et al.,
2008], and the pasta phases in the inner crust [Lima et al., 2013]. Both
studies, however, have been performed for magnetic fields more intense
than the ones expected to exist in the crust of a magnetar. A more
careful study, considering realistic magnetic field intensities, should be
carried out.

The effect of the magnetic field on the outer crust was analyzed
in Ref. [Chamel, 2012], within a Hartree-Fock-Bogoliubov calculation,
and it was shown that the Landau quantization of the electron motion
could affect the outer crust equation of state, giving rise to more mas-
sive outer crusts than the expected in usual neutron stars. Also, the
neutron drip density and pressure are affected by a strong magnetic
field, showing typical quantum oscillations, which shift the transition
outer-inner crust to larger or smaller densities [Chamel et al., 2015],
according to the field intensity.

Recently, the time evolution of the magnetic field of isolated x-ray
pulsars has been studied by Pons et al. [Pons et al., 2013]. The authors
have shown that a fast decay of the magnetic field could explain the non
observation of stars with periods above 12 s. The decay of the magnetic
field was attributed to a high electrical resistivity of the inner crust,
possibly due to the existence of an amorphous and heterogeneous layer
at the bottom of the inner crust. The lack of isolated x-ray pulsars with
a period higher than 12 s, could, therefore, be a direct indication of the
existence of an amorphous inner crust, possibly in the form of pasta
phases.

However, very strong magnetic fields will influence the proton charge
fluctuations, and correspondingly the transport properties. Molecular
dynamics simulations of the nuclear pasta have shown that topological
defects in the pasta could increase electron scattering and reduce the
electrical and the thermal conductivities [Horowitz et al., 2015,Schnei-
der et al., 2016]. However, electron conductivity in magnetized neutron
star matter was also studied in [Yakovlev, 2015], and it was shown
that the electron transport is strongly anisotropic, due to the presence
of strong magnetic fields. The complexity introduced by the magnetic
field suggests that both suppression and enhancement of the electron
conduction in the presence of the pasta phases are possible. In the in-
ner crust, the resistivity is determined by electron-impurity scattering
at low temperatures.
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1.7 Objectives
Our main objective is to study the effect of strong magnetic fields, as
the ones that may occur inside magnetars, on the extension of the crust.
Using the RMF framework and nuclear models with saturation prop-
erties in the range of values presently accepted as reasonable coming
from laboratory experiments, theoretical calculations or observations,
we will apply:

1) the semiclassical relativistic approach based on the Vlasov e-
quation to study infinite symmetric and asymmetric nuclear matter
at zero temperature, and determine the dispersion relation of the re-
spective collective modes. Within the same approach the dynamical
spinodal will be used to determine the effect of the magnetic field on
the crust-core transition, on the average size of the clusters at T = 0
and on the ratio between the proton and neutron density fluctuation-
s. We will restrict ourselves to the longitudinal modes arising from s-
mall oscillations around a stationary state in asymmetric nuclear mat-
ter at subsaturation densities [Nielsen et al., 1991, Providência et al.,
2006a,Brito et al., 2006].

2) the thermodynamical approach to the description of instabilities
to the discuss the joint effect of the magnetic field and the tempera-
ture on the crust-core transition. This will be carried out calculating
the thermodynamical spinodal at zero and finite temperature under
strong magnetic fields. At T = 0, the thermodynamic transition densi-
ties will be compared with the predictions obtained from the dynamical
spinodal calculation, both excluding and including the anomalous mag-
netic moment of protons and neutrons. The finite temperature thermo-
dynamical spinodal will be applied to study the evolution of the crust
extension as the temperature increases, for different values of the mag-
netic field. Special attention will be given to the determination of the
conditions that wash out the magnetic field effects.
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Chapter 2

Relativistic mean field models

2.1 Mean field approximation

The nuclear force binds together the protons and neutrons in the nu-
cleus. It favours the binding of nucleons with opposite spins, and it is a
very short-range force, with range 1 fm=10−15 m [Brown and Jackson,
1976, Machleidt and Slaus, 2001], much stronger than the electrical
force. It has a particular property: a nucleon can only interact with
the ones in its immediate vicinity. This is called saturation [Sakura-
gi, 2016], and leads to a nearly constant nuclear binding energy and
density. Nowadays, the correct description of this force is still lack-
ing. The nuclear many-body problem can not be solved exactly and the
scientific community still relies on approximate approaches [Ring and
Schuck, 1980]. A better understanding of neutron stars, as they can be
considered giant nuclei, can bring some hints into this problem.

Phenomenological and microscopic approaches have been applied to
the study of nuclear matter. A phenomenological approach [Li et al.,
2008] introduces parameters that have to be fitted to observables of fi-
nite nuclei and should reproduce the saturation properties of symmet-
ric nuclear matter. One problem with such a method is the fact that
the parametrizations are not unique, leaving us with the need of find-
ing constrains, e.g. from observations and from microscopic neutron
matter calculations, to restrain these number of sets.

An example of such an approximation is given by the relativistic
mean field models [Walecka, 1974]. In these type of models, the meson-
s are responsible for mediating the nuclear force between the nucle-
ons. It is based on field-theoretical techniques, where the nucleon-
s are treated as Dirac particles (relativistic) moving in meson fields.

17



2.2. THE EQUATION OF STATE

The meson masses and the couplings constants between the meson-
s and the nucleons are the model parameters, and are fitted to fi-
nite nuclei properties, see the recent compilation [Dutra et al., 2014].
However, the pioneer phenomenological nuclear models were the non-
relativistic models, based on the Skyrme force [Skyrme, 1956, Köhler,
1965a,Köhler, 1965b,Brink and Boeker, 1967]. Presently, there are sev-
eral non-relativistic phenomenological nuclear models, appropriate to
describe nuclear stellar matter, including the Lyon parametrizations,
such as SLy4 [Chabanat et al., 1998], and the Bruxelles parametriza-
tions [Goriely et al., 2010,Goriely et al., 2013]. When these parametriza-
tions are used, it is important to verify that the EoS does not become
acausal within the range of densities of interest, see [Dutra et al., 2012]
for a recent review.

2.2 The equation of state
The EoS of stellar matter is the starting point to discuss the instabil-
ities that occur at subsaturation densities. We will work within the
RMF framework, and, in the following, we briefly review the formalis-
m.

2.2.1 The σ − ω model
In order to determine the EoS of our research system, we start from the
σ-ω model, known as Walecka model [Serot and Walecka, 1995, Ring,
1996]. In this model, the nucleons interact through the exchange of
mesons σ and ω. The σ meson has a strong attractive force at inter-
mediate range, and the ω meson has a strong repulsive force at short
range. The Lagrangian density is written by

L =
∑
i=p,n

ψ̄i [γµi(∂µ + igvV
µ)−M∗

i ]ψi + 1
2
(
∂µφ∂

µφ−m2
sφ

2
)
− 1

4ΩµνΩµν

+ 1
2m

2
vVµV

µ, (2.1)

where M∗
i = m− gsφ, Ωµν = ∂µVν − ∂νVµ.

The equations of motion for the protons, neutrons, and meson fields
are derived from the Euler-Lagrange equations [Providência, 2007]:

[γµ(i∂µ − gvV µ)− (m− gsφ)]ψi = 0, (2.2)
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(�+m2
s)φ = gsρs, (2.3)

(�+m2
v)V ν = gvj

ν , (2.4)

where ρs = ∑
ψ̄iψi is the scalar density, and jν = ∑

ψ̄iγµψi is the bary-
onic current density.

Using the RMF approximation, the meson fields are replaced by
their mean expected values, and the three nonlinear differential equa-
tions above are solvable [Glendenning, 2000]. The energy spectra for
nucleons can be worked out, and is given by

ε(p) =
√

(p− gvV)2 + (m− gsφ)2 + gvV0. (2.5)

For static homogeneous nuclear matter, the energy density has the ex-
pression

ε =
∫ d3p

2π3h(p, t)f(p, t) + 1
2(m2

sφ
2 −m2

vV
2

0 ), (2.6)

where h(p, t) =
√

(p)2 + (m− gsφ)2 + gvV0, is the one-particle hamiltoni-
an.

Within the Thomas-Fermi approximation, the ground-state proper-
ty is calculated by minimizing the free energy density [Providência,
2007],

δF = δ(ε− µρ) . (2.7)

In this way, we get the energy density of nuclear matter

ε = 1
π2

∫ Pf

0

√
p2 + (m− gsφ)2p2dp+ 1

2m
2
sφ

2 + 1
2m

2
vV

2
0 . (2.8)

The expression for the pressure is given by [Lay, 2012]

P = 1
3π2

∫ Pf

0

p4√
p2 + (m− gsφ)2

dp− 1
2m

2
sφ

2 + 1
2m

2
vV

2
0 . (2.9)

This quantities define the EoS of nuclear matter within the σ − ω
model, which, although describing the main features of the nuclear
force, fails to reproduce some of the main properties of symmetric nu-
clear matter at saturation.

2.2.2 Generalizing the σ − ω model
In the original σ-ω model, the meson masses and coupling constants
are adjusted to nuclear matter and properties of nuclei. The energy
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Figure 2.1: Energy per particle for symmetric nuclear matter and neu-
tron matter. The EoS of neutron matter presents a minimum at ∼ 0.6ρ0
that is considered unphysical.

per nucleon is −15.75 MeV and the Fermi momentum at saturation is
PF = 1.42 fm−1. The model is appropriate to describe dense stellar
matter, and the ratio between the pressure and the energy density is
always less than 1, i.e. the EoS is always causal. Furthermore, it
automatically includes a strong spin-orbit contribution for the nuclear
force [Ring, 1996]. However, the model has several limitations, namely,
a very low effective mass M∗ = 0.54m, the existence of a minimum at
finite density in the neutron matter EoS, a too large incompressibility
K = 540 MeV, and a too small symmetry energy J = 22.1 MeV.

Several improvements were implemented to the σ-ω model in the
last three decades, in order to better describe the nuclei and nuclear
matter, see [Boguta and Bodmer, 1977,Lalazissis et al., 1997,Sumiyoshi
et al., 1995]. One of the main problems was the wrong description
of asymmetric nuclear matter, with neutron matter presenting a fi-
nite saturation density, see Fig. 2.1. This is overcome by including
the vector-isovector ρ meson in the Lagrangian density to describe the
isospin channel [Serot and Walecka, 1995],

Lρ = −1
4Bµν ·Bµν + 1

2m
2
ρbµ · bµ , (2.10)

with
Bµν = ∂µbν − ∂νbµ − gρ(bµ × bν).

In order to get a better description for the ground-state of stable
and unstable nuclei, the self-interaction terms for the scalar meson
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proposed in [Boguta and Bodmer, 1977] have been included in the NL3
parametrization [Lalazissis et al., 1997],

LNL3 = 1
3!κφ

3 + 1
4!λφ

4. (2.11)

Another improvement is achieved by including the nonlinear ω-ρ
term [Horowitz and Piekarewicz, 2001a], as in the NL3ωρmodel, which
mixes the ω and ρ mesons, allowing to soften the density dependence
of the symmetry energy above saturation density,

Lωρ = Λvg
2
vg

2
ρVµV

µbµ · bµ. (2.12)

Changing the magnitude of the nonlinear ω-ρ term has a direct effect
on the neutron skin thickness of nuclei, and on the radius of neutron
stars. If the scheduled experiments PREX and CREX [Horowitz et al.,
2001, Kumar et al., ], to measure the neutron skins of 208Pb and 48Ca
with high precision, will be successful, important constraints on the
EoS will be obtained.

To describe stellar matter, it is necessary to include the contribu-
tions of electrons and the electromagnetic interaction [Providência, 2007],

Le = ψ̄e [γµ (i∂µ + eAµ)−me]ψe, (2.13)

LA = −1
4FµνF

µν . (2.14)

Now, the complete Lagrangian density in Eq. (2.1) becomes:

L =
∑
i=p,n

Li + Le + Lσ + Lω + Lρ + Lωρ + LA, (2.15)

where,

Li = ψ̄i [γµiDµ −M∗
i ]ψi, (2.16)

with

iDµ = i∂µ − gvV µ − gρ
2 τ · b

µ − eAµ1 + τ3

2 , (2.17)

and

Lσ = 1
2

(
∂µφ∂

µφ−m2
sφ

2 − 1
3κφ

3 − 1
12λφ

4
)
, (2.18)

Lω = −1
4ΩµνΩµν + 1

2m
2
vVµV

µ. (2.19)

In this system, nucleons with mass M interact with and through
an isoscalar-scalar field φ with mass ms, an isoscalar-vector field V µ

with mass mv, and an isovector-vector field bµ with mass mρ. Besides
nucleons, electrons with massme is included in the Lagrangian density.
Protons and electrons interact through the electromagnetic field Aµ.

21



2.2. THE EQUATION OF STATE

2.2.3 Adjusting the parameters
We will be using the NL3 and NL3ωρ models in the present study.

The NL3 model has been fitted to reproduce the ground state of a
wide number of stable and unstable nuclei, and it is still used very fre-
quently [Lalazissis et al., 1997]. We can take it as a representation
of the models with a hard EoS in both the isoscalar and the isovec-
tor channels, although we are aware of its limitations: it reproduces
nuclear properties with a minimum of non-linear meson terms in the
Lagrangian; it has a large symmetry energy slope and incompressibil-
ity at saturation. The symmetry energy slope of NL3 at saturation is
118 MeV, slightly larger than the limit obtained from the experimental
constraints with isospin diffusion 63 < L < 113 MeV, and larger than
other constraints from heavy-ion collisions [Centelles et al., 2009]; the
EoS obtained within NL3 is quite hard, and larger than the limits that
collective flow data [Danielewicz et al., 2002] impose to the EoS of sym-
metric matter.

NL3ωρ, on the other hand, includes a mixed isoscalar-isovector ter-
m, which is varied to change the density dependence of the symmetry
energy [Horowitz and Piekarewicz, 2001a], and it shows a softer behav-
ior of the symmetry energy, which becomes softer when the coupling Λv

increases.
The energy per particle is written as a function of the nucleon den-

sity ρ and the asymmetry parameter δ = (ρp − ρn)/ρ,

EB(ρ, δ) = EB(ρ, 0) + Jδ2 (2.20)

where EB(ρ, 0) is the energy per particle of symmetric matter and J is
the bulk symmetry energy, which is given by

J = 1
2
∂2EB(ρ, δ)

∂δ2 |δ=0. (2.21)

In the RMF approximation, the symmetry energy becomes

J = P 2
F

6εF
+ ρ

2
g2
ρ

4m∗ρ2 , (2.22)

with εF =
√
P 2
F +M∗2, andm∗ρ =

√
m2
ρ + 2g2

ρΛvV 2
0 is the effective ρ-meson

mass. The inclusion of the non-linear term ω − ρ affects the symmetry
energy.

Both NL3 and NL3ωρ show a decrease in the transition density
when L increases. This is due to the decrease of the transition pro-
ton fraction. A larger L corresponds to a smaller symmetry energy at
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subsaturation densities, and allows a larger asymmetry. Choosing a
model with a softer symmetry energy, namely a smaller slope L at sat-
uration, would shift the crust-core transition to a larger density and
increase the proton fraction [Ducoin et al., 2011].

Above the critical temperature, where the models do not present in-
stabilities [Brito et al., 2006], no clusters are expected, and there is a
smooth transition from a gas to a liquid phase in this region. Both NL3
and NL3ωρ have the same isoscalar description. The critical tempera-
ture is totally determined by the isoscalar properties of the models, not
the isovector properties. Therefore, the critical temperatures for NL3
and NL3 ωρ are the same [Alam et al., 2017].

2.3 Equation of state of magnetized nucle-
ar matter

In our work, stellar matter is described within the nuclear RMF for-
malism under the effect of strong magnetic fields [Broderick et al.,
2000, Rabhi et al., 2008], including the effect of the AMM. The static
electromagnetic field Aµstat = (0, 0, Bx, 0) is included, so that B=B ẑ and
∇·A = 0. It is assumed to be externally generated, and only frozen-field
configurations are considered for this component.

The Lagrangian density, with c = ~ =1, reads

L =
∑
i=p,n

Li + Le + Lσ + Lω + Lρ + Lωρ + LA, (2.23)

where Li is the nucleon Lagrangian density, given by

Li = ψ̄i

[
γµiD

µ −M∗
i −

1
2µNκbσµνF

µν
]
ψi, (2.24)

with

iDµ = i∂µ − gvV µ − gρ
2 τ · b

µ − eAµ1 + τ3

2 ,
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and

Le = ψ̄e [γµ (i∂µ + eAµ)−me]ψe, (2.25)

Lσ = 1
2

(
∂µφ∂

µφ−m2
sφ

2 − 1
3κφ

3 − 1
12λφ

4
)
, (2.26)

Lω = −1
4ΩµνΩµν + 1

2m
2
vVµV

µ, (2.27)

Lρ = −1
4Bµν ·Bµν + 1

2m
2
ρbµ · bµ, (2.28)

Lωρ = Λvg
2
vg

2
ρVµV

µbµ · bµ, (2.29)

LA = −1
4FµνF

µν , (2.30)

where Ωµν = ∂µVν − ∂νVµ,Bµν = ∂µbν − ∂νbµ − gρ(bµ × bν) and Fµν =
∂µAν − ∂νAµ.

We use the NL3 [Lalazissis et al., 1997], and NL3ωρ [Horowitz and
Piekarewicz, 2001b, Horowitz and Piekarewicz, 2001a] parametriza-
tions, which describe two solar mass stars [Fortin et al., 2016]. For
the NL3 model, we need the following parameters: the nucleon mass
M , the electrons mass me, the masses of the mesons ms, mv, mρ, three
coupling constants gs, gv and gρ of the mesons to the nucleons, the elec-
tromagnetic coupling constant e =

√
4π/137, the self-interacting cou-

pling constants κ and λ, the isospin projection τ3 = ±1 for the protons
and neutrons, respectively. For NL3ωρ model, we also have ωρ coupling
Λv besides these.

Some of the saturation properties of NL3ωρ are: the binding energy,
EB = −16.2 MeV, the saturation density, ρ0 = 0.148 fm−3, the incom-
pressibility, K = 272 MeV, the symmetry energy, J = 31.7 MeV, and its
slope, L = 55.5 MeV. The model satisfies the constraints imposed by
microscopic calculations of neutron matter [Hebeler et al., 2013, Gan-
dolfi et al., 2012], and it predicts stars with masses above 2M�, even
when hyperonic degrees of freedom are considered [Fortin et al., 2016].
The nucleon AMM are introduced via the coupling of the baryons to the
electromagnetic field tensor with σµν = i

2 [γµ, γν ], and strength κb, with
κn = −1.91315 for the neutron, and κp = 1.79285 for the proton, and
µN is the nuclear magneton. The value of electron AMM is tiny when
compared to the hadronic part, and its contribution will be negligible
for the magnetic fields we are interested [Duncan, 2000].

According to the standard procedure of RMF theory [Yuan and Zhang,
1999,Rabhi et al., 2008,Rabhi et al., 2009a], the energy density of neu-

24



2.4. NEUTRON STAR STRUCTURE

tron star matter can be calculated by

ε =
∑
b=p,n

εb + εe + 1
2m

2
sφ

2 + 1
2m

2
vV

2
0 + 1

2m
2
ρb

2
0 (2.31)

where the energy densities of nucleons and electrons at T = 0 read as
following

εp = eB

4π2

∑
ν

∑
s

[
P p
F ε

p
F + m̄2

p ln
∣∣∣∣∣P

p
F + εpF
m̄p

∣∣∣∣∣
]
, (2.32)

εn = 1
4π2

∑
s

[
1
2P

n
F ε

n3
F −

2
3sµNκnBε

n3
F

(
arcsin

(
m̄n

εnF

)
− π

2

)

−
(1

3sµNκnB + 1
4m̄n

)(
m̄nP

n
F ε

n
F + m̄3

n ln
∣∣∣∣P n

F + εnF
m̄n

∣∣∣∣)
]
, (2.33)

εe = eB

4π2

∑
ν

∑
s

P e
F ε

e
F +

(
m2
e + 2νeB

)
ln

∣∣∣∣∣∣ P e
F + εeF√

m2
e + 2νeB

∣∣∣∣∣∣
 , (2.34)

with m̄p =
√
M∗2 + 2νeB−sµNκpB, m̄n = M∗−sµNκnB. The summation

in ν in the above expressions terminates at νimax (i = p, e), which is the
largest value of ν for which the square of the Fermi momenta of the
particle is still positive, and which corresponds to the closest integer
from below, defined by the ratio

νpmax = (εpF + sµNκpB)2 −M∗2

2eB , (2.35)

νemax = εeF
2 −m2

e

2eB , (2.36)

where εpF and εeF are the Fermi energies of protons and electrons, re-
spectively.

The pressure can be obtained from the following expression

P =
∑
i

µiρ
i
v − ε = µnρb − ε , (2.37)

where the charge neutrality and β-equilibrium conditions are used.

2.4 Neutron star structure
The properties of the EoS direct affect the structure of compact stars.
The structure, in particular, the mass and radius, is obtained from the
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integration of the Tolmann-Oppenheimer-Volkov (TOV) equations for
spherically symmetric and static stars, which reads

dP

dr
(r) = − P (r) + ε(r)

r [r − 2M(r)]
{
M(r) + 4πr3P (r)

}
, (2.38)

M(r) = 4π
∫ r

0
ε(r)r2dr (2.39)

where ε(r), P (r) and M(r) are the energy density, pressure and mass of
radius r, respectively.

In order to obtain these equations, we need to input the β-equilibrium
EoS of stellar matter, which is a particular case of npe neutral matter.
The chemical equilibrium of npe can be established by neutron beta
decay

n→ p+ e− + νe. (2.40)
Since the mean-free path of neutrinos is larger than the size of the
star, we assume that neutrinos can escape freely, i.e. no neutrino trap-
ping [Prakash et al., 1997]. Under these conditions, the neutrino chem-
ical potential is zero and the equilibrium equation (2.40) relates the
chemical potential of the protons, neutrons and electrons according to

µp = µn − µe. (2.41)

In addition, muons usually appear at a density 0.85 ρ0 [C. Wen, 2006],
and when the magnetic fields increase, this density value gets larger
[C. Wen, 2006]. Since we are only interested in the structure of the
crust, and the muon onset occurs in the core, they will not be considered
in our present study. Besides β-equilibrium the charge neutrality ρp =
ρe must be imposed in order to obtain the EoS .

In practice, for a given baryonic density we solve self-consistently
the following equations:
i) chemical equilibrium conditions;
ii) charge neutrality condition;
iii) meson equations of motion.

2.5 The moment of inertia
In the slow-rotation approximation, first studied by Hartle and Thorne
[Hartle, 1967, Hartle and Thorne, 1968], the stellar moment of inertia
is only sensitive to the equation of state. We will assume that the neu-
tron star is rotating uniformly with a stellar frequency Ω, that is far
smaller than the Kepler frequency at the equator.
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The moment of inertia of a uniformly rotating, axisymmetric neu-
tron star in hydrostatic equilibrium is given by the expression [Fat-
toyev and Piekarewicz, 2010]:

I = J

Ω = 8π
3

∫ R

0
r4e−ν(r) ω̄(r)

Ω

(
ε(r) + P (r)

)
√

1− 2GM(r)/r
dr , (2.42)

where J is the angular momentum, ν(r) and ω̄(r) are radially-dependent
metric functions and M(r), ε(r), and P (r) are the stellar mass, energy
density, and pressure, respectively. In the slow-rotation approximation,
all the quantities appearing in Eq. (2.42) remain spherically symmet-
ric, and, therefore, the stellar profiles may be determined by integrat-
ing the TOV equations.

The pulsar glitches may set some constraints on the EoS [Link et al.,
1999, Lattimer and Prakash, 2001]. In particular, from the long time
observation of glitches of the Vela pulsar, it has been suggested that
at least 1.4% of the total moment of inertia must reside in the non-
uniform crust [Link et al., 1999, Lattimer and Prakash, 2001]. The
crustal moment of inertia is sensitive to the transition pressure at the
crust-core interface. Although in some works, a correlation between
this observable and the density-dependence of the symmetry energy
was proposed [Worley et al., 2008, Xu et al., 2008, Xu et al., 2009], it
was afterwards shown that no correlation seems to exist [Ducoin et al.,
2010,Ducoin et al., 2011].

The crustal moment of inertia is defined in terms of Eq. (2.42),
but with the range of integration limited from the crust-core transition
radius, Rt, to the star radius, R, i.e.,

∆Icr = 8π
3

∫ R

Rt
r4e−ν(r)ω̃(r)

(
ε(r) + P (r)

)
√

1− 2GM(r)/r
dr . (2.43)

Since the crust is thin and its density low, several approximations may
be used to evaluate the integral in Eq. (2.43), [Lorenz et al., 1993,
Ravenhall and Pethick, 1994, Link et al., 1999, Lattimer and Prakash,
2001, Lattimer and Prakash, 2007]. Taking these approximations, the
crustal moment of inertia expression may be written in the form

∆Icr ≈
16π
3
R6
tPt
Rs

[
1−

(
Rs

R

)(
I

MR2

)] [
1 + 48

5 (Rt/Rs − 1)(Pt/εt) + . . .
]
,

(2.44)
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where Rs = 2GM is the Schwarzschild radius of the star, and Pt =
P (Rt) and εt = ε(Rt) are the pressure and energy density at the core-
crust interface. Using the relationship proposed in Ref. [Ravenhall and
Pethick, 1994], namely,

I

MR2 = 0.21
1−Rs/R

, (2.45)

we obtain

∆Icr ≈
16π
3
R6
tPt
Rs

[
1− 0.21

(R/Rs − 1)

] [
1 + 48

5 (Rt/Rs − 1)(Pt/εt) + . . .
]
.

(2.46)
It has been shown that this expression remains very accurate [Fattoyev
and Piekarewicz, 2010]. According to this expression, the crustal mo-
ment of inertia of a neutron star with mass M and radius R depends
only on Rt, Pt, and εt, and, therefore can give information on the equa-
tion of state. For completeness, an expression of the crustal mass is
given by,

∆Mcr ≈ 8πR3
tPt(Rt/Rs − 1)

[
1 + 32

5 (Rt/Rs − 3/4)(Pt/εt) + . . .
]
. (2.47)

In the study of pulsar glitches, many models associate the glitch
size to the fraction of the moment of inertia which resides in the crust
of a neutron star where dripped neutrons coexist with nuclei. The high-
density crust boundary is defined by the boundary between clusterized
and uniform matter, where the pressure is Pt and the density is ρt. The
low-density boundary is the neutron drip density. Instead of using the
radius at the neutron drip density in the calculation, the star radius is
generally taken because the amount of mass between the neutron drip
point and the surface is negligible [Lattimer and Prakash, 2000].

The fractional moments of inertia in the present study will be cal-
culated from the approximate expression given in [Worley et al., 2008,
Lattimer and Prakash, 2000]:

∆Icr
I

' 28πPtR3

3M
(1− 1.67β − 0.6β2)

β

×
[
1 + 2Pt(1 + 5β − 14β2)

ρtmβ2

]−1

, (2.48)

where Pt and ρt are the crust-core transition pressure and density, re-
spectively, M and R are the gravitational mass and radius of the star,
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β = GM/R is the compactness parameter, and m is the nucleon mass.
The dependence on the EoS arises from the values of Pt and ρt, but
there is no explicit dependence on the higher-density EoS.
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Chapter 3

Collective modes and
instability region

In this section, we will first determine the dispersion relation of the
normal modes of nuclear np matter and stellar npe matter. The Vlasov
formalism [Nielsen et al., 1991, Nielsen et al., 1993], a semi-classical
method that corresponds to the ~ → 0 limit of the time dependent
Hartree-Fock method [Ring and Schuck, 1980] will be used.

A relativistic Vlasov equation, deduced from the Walecka model,
was first proposed by Ko et al. [Ko et al., 1987, Ko and Li, 1988], and
applied to the simulation of relativistic heavy-ion collisions. In Ref. [Ko
and Li, 1988], the authors already included a collision term, and con-
sidered meson self-interaction terms as in the model proposed by Bod-
mer and Boguta [Boguta and Bodmer, 1977]. In the early nineties, zero
sound modes in infinite symmetric nuclear matter were determined
within the relativistic Vlasov equation at zero [Nielsen et al., 1991]
and finite temperature [Nielsen et al., 1993]. In particular, at finite
temperature, it was shown that the zero-sound mode merges in the
continuum of particle-hole excitations. This formalism gives similar re-
sults to the ones obtained using the mean-field approximation for the
ground-state, and calculating the meson propagators in the one-loop
approximation [Lim and Horowitz, 1989].

The zero sound modes correspond to the eigenmodes of np and npe
matter obtained, taking the linearization of the equations of motion of
the mesons, and the Vlasov equation for the fermions, neutrons, pro-
tons and electrons. The asymmetric nuclear matter modes were first
calculated within relativistic mean field models in Ref. [Avancini et al.,
2005]. At subsaturation densities, nuclear matter presents imaginary
modes, indicating the existence of a region of instabilities, as discussed
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in [Providência et al., 2006b, Providência et al., 2006a]. In these ref-
erences, the surface that defines the unstable region, denominated dy-
namical spinodal, was obtained, and the modes with the largest growth
rates, the modulus of the imaginary mode, calculated. These modes
allow the determination of some interesting properties, such as the av-
erage size of the clusters in non-homogeneous subsaturation matter.

In Section 3.1, we generalize the formalism presented in Refs. [A-
vancini et al., 2005,Providência et al., 2006b,Providência et al., 2006a]
to magnetized nuclear matter, taking into account the anomalous mag-
netic moment of protons and neutrons. The dispersion relation of mag-
netized matter is calculated, and the dynamical spinodal determined.
In the limit of low momentum, k → 0, and excluding the Coulomb field,
the dynamical spinodal converges to the thermodynamic spinodal. In
Section 3.2, we study the simultaneous effects of the magnetic field and
temperature on the instability region of magnetized nuclear matter.
The finite temperature thermodynamical spinodal will be calculated.

3.1 Dynamical spinodal under strong mag-
netic fields

In the following, we determine the collective modes and the dynamical
spinodal of magnetized nuclear matter within the Vlasov formalism
discussed in [Nielsen et al., 1991, Providência et al., 2006a]. We are
interested in stellar matter, therefore, besides neutrons and protons,
we also include electrons. The Coulomb field is also taken explicitly
into account.

In order to describe simultaneously the three particle species, neu-
trons, protons and electrons, we introduce a distribution function that
includes these three degrees of freedom. In particular, the distribution
function for npe matter at position r, instant t, and momentum p is
given by

f(r,p, t) = diag(fp, fn, fe) , (3.1)

and its time evolution is described in the Vlasov equation:

∂fi
∂t

+ {fi, hi} = 0, i = p, n, e. (3.2)

{, } denotes the Poisson brackets. The one-body hamiltonian,
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h = diag (hp, hn, he), is given by

hi = εi + Vi0, εi =
√

(p̄iz)2 + m̄2
i , i = p, e (3.3)

hn = εn + Vn0 , εn =
√

(p̄nz )2 + (εn⊥ − sµNκnB)2, (3.4)

with
p̄i = p− Vi, (3.5)

and

m̄p =
√
M∗2 + 2νeB − sµNκpB, (3.6)

m̄e =
√
m∗2e + 2νeB, (3.7)

εn⊥ =
√
M∗2 + (p̄n⊥)2, (3.8)

Vnµ = gvVµ −
gρ
2 bµ, (3.9)

Vpµ = gvVµ + gρ
2 bµ + eAµ, (3.10)

Veµ = −eAµ. (3.11)

ν = n + 1
2 − sgn(q) s2 = 0, 1, 2, . . . enumerates the Landau levels of the

fermions with electric charge q, the quantum number s is +1 (−1) for
spin parallel (anti-parallel) to the magnetic field direction, taken in the
z-direction. We define the vectors (p, V , ...) along directions parallel
(pz, V z, ...) and perpendicular (p⊥, V ⊥, ...) to the magnetic field.

We obtain the time evolution equations from the Euler-Lagrange
formalism for the fields φ, V µ, Aµ, and the third component of the ρ-
field bµ3 = (b0,b). These equations are given in Appendix A.

At zero temperature, the ground state of the system is characterized
by the neutron, proton and electron Fermi momenta, P i

F (i = p, n, e),
and is described by the equilibrium distribution function

f0(r,p) = diag[Θ(P p2
F − p2),Θ(P n2

F − p2),Θ(P e2
F − p2)], (3.12)

where

P p
F =

√
εpF − m̄2

p, (3.13)

P n
F =

√
γ −

√
γ2 − β, (3.14)

P e
F =

√
εeF − m̄2

e, (3.15)
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are the Fermi momenta of protons, neutrons and electrons, respective-
ly, and

γ = α + 2 (sµNκnB)2
(
1− x2

)
, (3.16)

α = εn2
F −M∗2 − (sµNκnB)2 , (3.17)

β = α2 − 4 (sµNκnB)2M∗2, (3.18)

with x = cos θ′, θ′ being the polar angle.
The equilibrium state is also defined by the constant mesonic fields,

that are given by the following equations

m2
sφ0 + κ

2φ
2
0 + λ

6φ
3
0 = gsρ

(0)
s , (3.19)

m2
v V

(0)
0 + 2Λvg

2
vg

2
ρV

(0)
0 b

(0)2
0 = gvj

(0)
0 , (3.20)

m2
ρ b

(0)
0 + 2Λvg

2
vg

2
ρV

(0)2
0 b

(0)
0 = gρ

2 j
(0)
3,0 , (3.21)

V
(0)
i = b

(0)
i = A

(0)
0 = A

(0)
i = 0, (3.22)

where ρ(0)
s , j(0)

0 , j(0)
3,0 are the equilibrium scalar density, the nuclear den-

sity, and the isospin density, respectively. The spatial components of
V µ, bµ and Aµ are zero because there are no currents in the system.

The Fermi momentum of the neutron, P n
F , is derived from the fol-

lowing equation:

εnF =
√
P n2
Fz +

(√
M∗2

n + P n2
F⊥ − sµNκnB

)2
, (3.23)

with P n
Fz = P n

F cosθ′ = P n
Fx, and P n

F⊥ = P n
F sinθ′ = P n

F

√
1− x2.

The collective modes, which are obtained by considering small oscil-
lations around the equilibrium state, are given by the solutions of the
linearized equations of motion. The deviations from equilibrium are
described by

fi = f0i + δfi , (3.24)
φ = φ0 + δφ , (3.25)
V0 = V

(0)
0 + δV0 , Vi = δVi , (3.26)

b0 = b
(0)
0 + δb0 , bi = δbi , (3.27)

A0 = δA0 , Ai = δAi. (3.28)

We use a generating function

S(r,p) =

 Sp 0 0
0 Sn 0
0 0 Se

 , (3.29)
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which contains the isospin space defined by protons and neutrons, and
the electron degree of freedom, such that the fluctuations are given by

δfi = {Si, f0i} = −{Si, p2}δ(P i2
F − p2) . (3.30)

The linearized Vlasov equations for δfi written as,

dδfi
dt

+ {δfi, h0i}+ {f0i, δhi} = 0, (3.31)

are equivalent to the following time evolution equations:

∂Si
∂t

+ {Si, h0i} = δhi, i = p, n, e, (3.32)

where
δhp = −pz · δVp

z

εpstatic
− gsM

∗m̄p

εpstatic(m̄p + sµNκpB)δφ+ δV0p, (3.33)

δhn = −pz · δVn
z

εnstatic
− gsM

∗

εnstatic

(
1− sµNκnB√

M∗2 + p⊥2

)
δφ+ δV0n, (3.34)

δhe = e

[
pz · δAz

εestatic
− δA0

]
, (3.35)

with
εpstatic =

√
p2
z + m̄2

p, (3.36)

εnstatic =
√
p2
z +

(√
M∗2

n + p2
⊥ − sµNκnB

)2
, (3.37)

εestatic =
√
p2
z + m̄2

e. (3.38)

The linearized equations of the fields are given by

∂2δφ

∂t2
−∇2δφ+ (m2

s + κφ0 + λ

2φ
2
0)δφ = gs [δρsp(r, t) + δρsn(r, t)] , (3.39)

∂2δVµ
∂t2

−∇2δVµ +m2
vδVµ + 2Λvg

2
vg

2
ρb3µ · b3µδVµ = gv[δjpµ + δjnµ ] , (3.40)

∂2δb3µ

∂t2
−∇2δb3µ +m2

ρδb3µ + 2Λvg
2
vg

2
ρVµV

µδb3µ = gρ
2 [δjpµ − δjnµ ] , (3.41)

∂2δAµ
∂t2

−∇2δAµ = e[δjpµ − δjeµ] . (3.42)
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In the present work, only the longitudinal modes are considered,
with momentum k in the direction of the magnetic field, and a frequen-
cy ω. They are described by the following ansatz


Sj(r,p, t)

δφ
δB0
δBi

 =


Sjω(p, cosθ)

δφω
δB0

ω

δBi
ω

 ei(ωt−kz ·r) , (3.43)

where j = p, n , e, B = V, b, A represents the vector fields, and θ is the
angle between p and kz.

For these modes, we get δV x
ω = δV y

ω = 0, δbxω = δbyω = 0 and δAxω =
δAyω = 0. Calling δV z

ω = δVω, δbzω = δbω and δAzω = δAω, we have δVi,z =
δViωei(ωt−kz ·r), δV0i = δV0i

ω ei(ωt−kz ·r).

Replacing the ansatz (3.43) in Eqs. (3.32), we get

i(ω − ω0pξ)Spω(ξ) = −gs
M∗

εpF

(
m̄p

m̄p + sµNκpB

)
δφω − V p

F ξδV
p
ω + δV0p

ω , (3.44)

i(ω − ω0nx)Snω(x) = −gs
M∗

εnF

1− sµNκnB√
M∗2 + P n2

F (1− x2)

 δφω
−V n

F xδV
n
ω + δV0n

ω , (3.45)
i(ω − ω0eξ)Seω(ξ) = e

(
V e
F ξδAω − δA0

ω

)
, (3.46)

(
ω2 − k2 −m2

s,eff

)
δφω = −igsM

∗

(2π)2

∑
ν,s,ξ

eBkz
εpF

m̄pξS
p
ω(ξ)

(m̄p + sµNκpB) (3.47)

+ P n
Fω0n

∑
s

∫ 1

−1
xSnω(x)

1− sµNκnB√
M∗2 + P n2

F (1− x2)

 dx
 ,

(
ω2 − k2 −m2

v,eff

)
δV 0

ω = χδb0
ω −

igv
(2π)2

∑
ν,s,ξ

eBkzξS
p
ω(ξ)

+P n
F ε

n
Fωon

∫ 1

−1
xSnω(x)dx

)
, (3.48)

(
ω2 − k2 −m2

ρ,eff

)
δb0
ω = χδV 0

ω −
igρ

2(2π)2

∑
ν,s,ξ

eBkzξS
p
ω(ξ)

−P n
F ε

n
Fωon

∫ 1

−1
xSnω(x)dx

)
, (3.49)

(
ω2 − k2

)
δA0

ω = − e2B

(2π)2 ikz
∑
ν,s,ξ

ξ(Spω(ξ)− Seω(ξ)) , (3.50)
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where

ω0i = kzV
i
F = kzP

i
F/ε

i
F , i = p, n, e, (3.51)

m2
s,eff = m2

s + κφ0 + λ

2φ
2
0 + g2

s

dρs
dM∗ , (3.52)

m2
v,eff = m2

v + 2Λvg
2
vg

2
ρb

(0)2
0 , (3.53)

m2
ρ,eff = m2

ρ + 2Λvg
2
vg

2
ρV

(0)2
0 , (3.54)

with ξ = ±1, x = cosθ, and χ = 4Λvg
2
vg

2
ρV

(0)
0 b

(0)
0 .

From the continuity equation for the density currents, we get for
the components of the vector fields

kz δVω = ωδV 0
ω −

ω

ω2
v

χδb0
ω (3.55)

kz δbω = ωδb0
ω −

ω

ω2
ρ

χδV 0
ω (3.56)

kz δAω = ωδA0
ω (3.57)

with ω2
v = ω2 − k2 −m2

v,eff and ω2
ρ = ω2 − k2 −m2

ρ,eff .
Substituting the set of equations (3.47)-(3.50) into Eqs. (3.44)-(3.46),

we get a set of five independent equations of motion in terms of the
amplitudes of the proton and neutron scalar density fluctuations, Apsω,ν,s,
Ansω,s, respectively, and in terms of the amplitudes of the proton, neutron
and electron vector density fluctuations, Apω,ν,s, Anω,s, Aeω,ν,s given by

Apsω,ν,s =
∑
ξ

ξ
m̄p

(m̄p + sµNκpB)S
p
ω,ν,s(ξ), (3.58)

Ansω,s =
∫ 1

−1
P n2
F x

1− sµNκnB√
M∗2

n + P n2
F (1− x2)

Snω,sdx, (3.59)

Apω,ν,s =
∑
ξ

ξSpω,ν,s(ξ), (3.60)

Anω,s =
∫ 1

−1
P n2
F xSnω,sdx, (3.61)

Aeω,ν,s =
∑
ξ

ξSeω,ν,s(ξ). (3.62)

The equations for the unknowns Aiω are written in the matrix form as
a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 0
a41 a42 a43 a44 0
0 a52 0 0 a55





∑
ν,sA

ps
ω,ν,s∑

ν,sA
p
ω,ν,s∑

sA
ns
ω,s∑

sA
n
ω,s∑

ν,sA
e
ω,ν,s

 = 0. (3.63)
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where the matrix elements aij are defined in Appendix B. The disper-
sion relation for the collective modes in magnetized nuclear matter is
obtained by equating the determinant of the matrix of the coefficients
of the above equation to zero, namely

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 0
a41 a42 a43 a44 0
0 a52 0 0 a55

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.64)

The eigenmodes ω of the system correspond to the solutions of the dis-
persion relation (3.64).

The density fluctuations of neutrons and electrons can be written in
terms of the proton density fluctuations as

δρn/δρp =
Anω,s

eBApω,ν,s
, (3.65)

δρe/δρp =
Aeω,ν,s
Apω,ν,s

. (3.66)

The first ratio δρn/δρp allows us to define how strong is the distillation
effect, e. g. how efficient is the separation of matter into a neutron rich
low density gas and a more isospin symmetric cluster. The second ra-
tio δρe/δρp indicates under which conditions the electrons and protons
move independently.

At low densities, the system has unstable modes characterized by an
imaginary frequency, ω. The dynamical spinodal surface in the (ρp, ρn)
space, for a given wave vector k, is obtained by imposing ω = 0. In-
side this unstable region, we also calculate the mode with the largest
growth rate, Γ, defined as ω = iΓ. This mode is the one that drives the
system into a non-homogeneous system formed by clusters immersed
in a background neutron-rich gas. By taking its half-wavelength, we
can get a good estimation of the size of the clusters (liquid) that appear
in the mixed (liquid-gas) phase, i.e. in the inner crust of the stars [Brito
et al., 2006].

In the next chapter, we will concentrate on the unstable modes, in
particular, we will calculate the dynamical spinodal and identify the
modes with the largest growth rates.
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3.2 Thermodynamical spinodal under strong
magnetic fields

The thermodynamical spinodal gives a good estimation of the lower
limit of the pasta phase extension [Avancini et al., 2010]. In Ref-
s. [Rabhi et al., 2009a, Rabhi et al., 2009b], the authors show that the
bands of instability and wider unstable regions can be produced un-
der strong magnetic fields, using the thermodynamical instabilities at
T = 0. However, most of the results are focused on the magnetic fields
of the order of 1018−1019 G, which are far larger than the current astro-
nomical observation of magnetars. Recently, smaller magnetic fields,
between 1016 and 5 × 1017 G, have been considered in a very similar
analysis done at T = 0 in Ref. [Chen, 2017]. There, the author has es-
sentially discussed the effect of the symmetry energy on the extension
of the thermodynamical spinodal and the behaviour of the proton and
neutron fluctuation ratio.

In the following, we present the formalism of the thermodynamical
spinodal, and discuss the thermodynamical instabilities at low densi-
ties for np matter under magnetic fields of the order of 1015 − 1017 G.
We will consider the calculation of the thermodynamical spinodal at fi-
nite temperature, and a special interest will be set on the discussion of
the effect of the magnetic field on the crust-core transition, which was
not done before for the low magnetic fields that we are considering.
Moreover, a comparison with the results obtained within a dynamical
spinodal calculation will also be carried out in Chapter 5.

Below, we give a detailed calculation of the thermodynamical spin-
odal and relative quantities. Denoting by

f(r,p, t)± = diag(fp±, fn±, fe±) (3.67)

the distribution functions of particles (+) at position r, instant t and
momentum p, and of antiparticles (-) at position r, instant t and mo-
mentum −p, the scalar and vector densities are written as

ρsp = eB

(2π)2

∑
ν,s

∫
(fp+ + fp−) m̄pM

∗

(m̄p + sµNκpB) εp
dp , (3.68)

ρsn = 1
(2π)3

∑
s

∫
(fn+ + fn−)

1− sµNκnB√
M∗2

n + p2
⊥

M∗

εn
d3p , (3.69)

ρi = eB

(2π)2

∑
ν,s

∫
(fi+ − fi−)dp, i = p, e , (3.70)
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ρn = 1
(2π)3

∑
s

∫
(fn+ − fn−)d3p , (3.71)

where

εp =
√

(p̄pz)2 + m̄2
p , (3.72)

εn =
√

(p̄nz )2 + (εn⊥ − sµNκnB)2 , (3.73)

εn⊥ =
√
M∗2 + (p̄n⊥)2 , (3.74)

with
p̄ = p− V, (3.75)

and

m̄p =
√
M∗2 + 2νeB − sµNκpB, (3.76)

Vnµ = gvVµ −
gρ
2 bµ, (3.77)

Vpµ = gvVµ + gρ
2 bµ + eAµ. (3.78)

ν = n + 1
2 − sgn(q) s2 = 0, 1, 2, . . . enumerates the Landau levels of the

fermions with electric charge q, and s is the quantum number spin,
with +1 for spin up, and −1 for spin down. The vectors (p, V , ...) are
defined along parallel (pz, V z, ...) and perpendicular (p⊥, V ⊥, ...) direc-
tions, since the magnetic field is taken in the z-direction.

The state which minimizes the energy of asymmetric npe matter is
characterized by the distribution functions

f0i± = 1
1 + e(ε0i∓νi)/T

, (3.79)

with νi = µi − gvV0 − gρ
2 τib0 − eA0

1+τi
2 , for i = p, n, and νe = µe for the

electrons, and by the constant mesonic fields which obey the following
equations

m2
sφ0 + κ

2φ
2
0 + λ

6φ
3
0 = gs(ρsp + ρsn), (3.80)

m2
v V0 + 2Λvg

2
vg

2
ρV0b

2
0 = gv(ρp + ρn), (3.81)

m2
ρ b0 + 2Λvg

2
vg

2
ρV

2
0 b0 = gρ

2 (ρp − ρn), (3.82)

with all the spatial components of the vector fields being zero, and for
homogeneous matter, A0 is also zero. Notice that for T = 0 MeV, the
distribution functions f0i± become f0i+ = θ(P 2

Fi − p2), f0i− = 0 [Brito
et al., 2006].
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Nuclear matter at subsaturation densities has a liquid-gas phase
transition. Homogeneous matter is unstable if the free energy curva-
ture is negative.

In infinite matter, the free energy can be reduced to a free energy
density [Müller and Serot, 1995,Margueron and Chomaz, 2003], which
is written as

F (T, ρi) = −p(T, µi) +
∑
i=p,n

µiρi, (3.83)

with the chemical potentials µn = ∂F
∂ρn

and µp = ∂F
∂ρp

. The stability condi-
tions for asymmetric nuclear matter are obtained from the free energy
density, by imposing that the function is convex on the densities ρp
and ρn, keeping the volume and temperature constant [Margueron and
Chomaz, 2003]. For stable homogeneous matter, the stability matrix is
given by

Fij =
(

∂2F

∂ρi∂ρj

)
T

. (3.84)

Then, the thermodynamical spinodal is the surface in the (ρn, ρp, T )
space where the determinant of the free energy curvature matrix

F =


∂µn
∂ρn

∂µn
∂ρp

∂µp
∂ρn

∂µp
∂ρp

,

 , (3.85)

is zero, i.e. the smallest eigenvalue is zero since the largest one is al-
ways positive. Inside this surface, nuclear matter is unstable. Fig. 3.1,
taken from Ref. [Müller and Serot, 1995], shows an example of such
situation for symmetric nuclear matter at T = 11 MeV: in the range of
densities, limited by ρ(A′) and ρ(B′), the free energy density curvature
is negative, which corresponds to the thermodynamic spinodal region.

We define
Tr(F) = ∂µn

∂ρn
+ ∂µp
∂ρp

(3.86)

and
Det(F) = ∂µn

∂ρn

∂µp
∂ρp
− ∂µp
∂ρn

∂µn
∂ρp

. (3.87)

For a given temperature T , the eigenvalues of the stability matrix are
given by

λ± = 1
2

(
Tr(F)±

√
Tr(F)2 − 4Det(F)

)
. (3.88)
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Figure 3.1: Free energy density minus EB0ρ, where EB0 is the energy
per particle at saturation, and ρ is the baryonic density. Points A and B
belong to the binodal, A′ and B′ are spinodal points, and in C the free
energy density is concave, therefore, the system is unstable. Figure
taken from [Müller and Serot, 1995].

The ratios obtained from the eigenvectors δρ± of the stability ma-
trix, given by

δρ±i
δρ±j

= λ± − Fjj

Fji
, i, j = p, n, (3.89)

are quantities that give information on how matter will separate into
two phases, in particular, a neutron-rich low density phase and a more
isospin symmetric high density phase. In Chapter 5, these quantities
will be calculated and the effect of the magnetic field on the isospin con-
tent in the low and high density phases, known as isospin distillation
effect, will be discussed.

Although not so important, we show, for completeness, the expres-
sion that allows the calculation of the thermodynamical spinodal of
stellar matter, i.e. taking electrons explicitly into account. Since stel-
lar matter is charge neutral, the fraction of electrons is not free but it
is determined by the proton density

ρe = ρp. (3.90)

Building the free energy density that includes the contribution of neu-
trons, protons and electrons, and taking the derivative with respect to
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the proton density gives

∂F

∂ρp
= µp + µe, (3.91)

so that the stability matrix (3.85) for npe matter reads

F =


∂µn
∂ρn

∂µn
∂ρp

∂µp
∂ρn

∂ (µp + µe)
∂ρp

 . (3.92)

The stability conditions are the same as the ones indicated for np mat-
ter: the trace and the determinant of F must be positive [Avancini
et al., 2006, Rabhi et al., 2009a]. It was shown that in the absence
of an external magnetic field, and depending on the models, due to the
large incompressibility of the gas of electrons, the instability region
predicted in this case could disappear completely, or be reduced to a
very small region in phase space.

The big difference with respect to the dynamical spinodal is that,
in the calculation of the thermodynamical spinodal, the electrons are
completely tied to the protons, while in the dynamical spinodal, this
only occurs in the limit of a very large wavelength: in general, the
fluctuations of protons and electrons are independent.
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Chapter 4

Dynamical spinodal

In the present and next chapters, we display the main results of this
thesis, which were obtained using the formalism that has been dis-
cussed in the previous chapter. In this chapter, the instability region of
cold magnetized nuclear matter is discussed within a dynamical spin-
odal calculation. In the first section, we discuss the properties of the
spinodal surface, and in the second section, the behaviour of the max-
imum growth rate, which is the mode that drives the system into a
nonhomogeneous structure, is examined.

4.1 Spinodal section
In this section, we apply the formalism presented in Section 3.1 to cal-
culate the dynamical spinodals for the NL3 and NL3ωρ models, taking
different intensities for the external magnetic field. As discussed in
Chapter 2, one of the reasons that justifies our choice of models is the
fact that they present a quite different behaviour of the symmetry ener-
gy with density, and will also allow us to refer to the symmetry energy
behavior when analyzing the results.

As already said in the previous chapter, the spinodal surfaces in the
(ρp,ρn) space are characterized by a zero frequency solution of the dis-
persion relation, Eq. (3.64). For each proton fraction, we determine
numerically the pair (ρp,ρn) that corresponds to a solution with ω = 0.

We have written a code to determine the dynamical spinodal, where
we first determine the ground-state configuration of npe matter, solv-
ing self-consistently the set of equations of motion for the mesons in
the ground-state configuration, for a given proton fraction, Eqs. (3.19)–
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4.1. SPINODAL SECTION

(3.21). The electron configuration is determined by imposing electrical
charge neutrality. Next, we calculate the eigenmode frequencies look-
ing for the zeros of the dispersion relation (3.64). For each eigenmode,
the neutron, proton and electron density fluctuations are determined
from equations (3.63). To calculate the spinodal, we look for the val-
ues in the plane (ρn,ρp), that satisfy the dispersion relation (3.64) for
a zero frequency. For each proton fraction, we get several solutions
for densities below 0.2 fm−3 for NL3, and below 0.12 fm−3 for NL3ωρ,
represented by points in the (ρn,ρp) plane. Each point is a solution
of the dispersion relation obtained for a fixed proton fraction, which
varies between 0 and 1. Due to this numerical limitation, the spinodal
sections are made of points, which, however, define closed regions.

In Fig. 4.1, we show the dynamical spinodal regions composed by
several irregular regions, which were obtained with different values of
the momentum transfer k, corresponding to perturbations with differ-
ent wave lengths, for a magnetic field B∗ = 5 × 103, which corresponds
to B = B∗Bce = 2.2 × 1017 G, where Bce = 4.41 × 1013 G, being the elec-
tron critical magnetic field, and taking the NL3 model without AMM.
We start to consider a small value, k = 5 MeV, and find that the influ-
ence of the electrons is very strong, and the spinodal section has almost
disappeared when B = 0. Taking a finite magnetic field, the spinodal
presents, besides the central component with a similar size, a very d-
ifuse distribution of disconnected regions, that extend to quite large
densities. Increasing k, the spinodal section increases, until k is in the
range 50−90 MeV, a behavior similar to what happens in magnetic field
free matter. It is mainly the Coulomb contribution that varies with the
inverse of k2 that explains this behaviour. However, the inclusion of
the proton-electron infinite range coupling forces the proton and elec-
tron fluctuations to be in phase at the infinite wave length limit, e. g.
k small. For a finite k density modulation, the local electroneutrality
is not anymore needed, electrons and protons fluctuate independently
and this leads to a larger instability region. Above the range 50 − 90
MeV, the instability region gets smaller again. The finite range of the
nuclear interaction reduces the binding of matter with k2, and reduces
the spinodal region at large k. The finite B spinodal follows always the
B = 0 behaviour with the extra contribution of the bands and discon-
nected regions due to the filling of the Landau levels.

In Fig. 4.2, we show the spinodal sections in the (ρp,ρn) space ob-
tained with the NL3 parametrization for the magnetic fields B∗ =
2.5 × 102, B∗ = 2 × 103, and B∗ = 104, calculated for a wave number
k = 50 MeV, which gives a spinodal section close to the envelope of
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Figure 4.1: Dynamical spinodals attained for different momentum
transfers k, for B∗ = 5 × 103, without AMM, and considering the N-
L3 model. The green line represents the corresponding B = 0 spinodal
section.
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Figure 4.2: Dynamical spinodals for the NL3 parametrization, for dif-
ferent magnetic field intensities and momentum transfer k = 50 MeV.
The three panels of the right have been obtained including the AM-
M, while the last panel gives the spinodal not taking into account the
AMM of both protons and neutrons.

all spinodal sections, as it was discussed above. In fact, the most in-
tense fields detected on the surface of a magnetar are not larger than
2 × 1015 G, i.e. one or two orders of magnitude smaller than the two
more intense fields considered in this study. However, in Refs. [Kiuchi
and Yoshida, 2008, Frieben and Rezzolla, 2012], the authors obtained
toroidal fields more intense than 1017 G in stable configurations, mean-
ing that in the interior of the stars, stronger fields may be expected
than the fields measured on the surface.

The calculations were carried out including AMM, except for the
largest field, for which we also show the spinodal without AMM, for
reference. The thick black line represents the spinodal section for a
zero magnetic field.

We have included in this Figure the EoS of β-equilibrium matter
represented by a dashed line: the line shows for each neutron density,
ρn, the respective proton density that satisfies the β-equilibrium con-
dition in neutral matter with electrons, e.g. where µn = µp + µe. The
intersection between the EoS of β-equilibrium matter and the spinodal
section gives a very good estimation of the crust-core transition accord-
ing to [Avancini et al., 2010].

In the right panel of Fig. 4.2, we can see that a magnetic field
B∗ = 104 is strong enough to create bands of instability at densities
above 0.05 fm−3, associated with the filling of the different Landau lev-
els. In [Rabhi et al., 2009b], the thermodynamical spinodal section,
which corresponds to the k = 0 limit of the dynamical spinodal, exclud-
ing electrons and the Coulomb field, was studied for magnetic fields
equal or above 5 × 1018 G. Spinodal bands are also present, although
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Figure 4.3: The proton chemical potential as a function of the proton
density for B∗ = 104, and T = 0, with the neutron density fixed at
ρn = 0.05 fm−3.

the stronger the field, the smaller the number of bands. The appear-
ance of bands was attributed to the behavior of the proton chemical
potential with density within each Landau band: at the bottom of the
band it has a very soft behavior, however, at the top of the Landau level
it hardens and a cusp occurs when a new Landau level opens, followed
by a softening of the chemical potential.

In order to investigate this process clearly, we plot in Fig. 4.3 the
proton chemical potential for B∗ = 104 and T = 0 without AMM. It is
seen that the proton chemical potential shows many cusps correspond-
ing to the end of a Landau level and the beginning of the following one.

The proton and neutron AMM give rise to extra bands characterized
by different spin orientations. The magnetic fields lift the degeneracy
between spin up and spin down levels and the level with lower energy
is first filled up.

We identify two different contributions for the spinodal section: a)
a closed region that contains the B = 0 spinodal and extra regions that
form spike-like structures, associated with the filling of Landau levels;
b) disconnected regions that appear with the opening of new Landau
levels at densities well above the B = 0 crust-core transition density
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Figure 4.4: Dynamical spinodal for NL3ωρ, a momentum transfer of
k = 75 MeV, and B∗ = 104 (red), B∗ = 103 (blue), and B∗ = 102 (green)
with (top) and without AMM (bottom). A comparison with the B = 0
(black lines) results is also made.

and which do not occur at B = 0. The point-like appearance of the
sections is a numerical limitation. A higher resolution in (ρp,ρn) would
complete the gaps.

In order to understand the effect of the density dependence of the
symmetry energy, we show, in Fig. 4.4, the dynamical spinodal sections
obtained with NL3ωρ, which has the symmetry energy slope at satura-
tion L = 55 MeV. In the top panel, the calculations include the AMM,
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while in the bottom panel we took AMM= 0.
The spinodal sections are plotted for three different values of the

magnetic field: B∗ = 102, B∗ = 103, and B∗ = 104. The black lines
represent the spinodal section when the magnetic field is zero. The
calculations were performed with k = 75 MeV, which is a value of the
transferred momentum that gives a spinodal section very close to the
envelope of the spinodal sections. As above, these sections have been
obtained numerically by solving the dispersion relation (3.64) for ω = 0.

First we compare the results obtained omitting the AMM contribu-
tion (bottom panel). The structure of the spinodal section obtained for
the strongest field considered, B∗ = 104, clearly shows the effect of the
Landau quantization: there are instability regions that extend to much
larger densities than the B = 0 spinodal section, while there are also
stable regions that at B = 0 would be unstable. This is due to the fact
that the energy density becomes softer, just after the opening of a new
Landau level, and harder when the Landau level is most filled. The
spinodal section has a large connected section at the lower densities
and extra disconnected regions. If smaller fields are considered, the
structure found for B∗ = 104 is still present, but at a much smaller s-
cale due to the increase of the number of Landau levels, see detail in
the inset of the middle panel of Fig. 4.5, for B∗ = 103. It is clear that the
spinodal section tends to the B = 0 one, as the magnetic field intensity
is reduced.

In the top panel of Fig. 4.4, we show the same three spinodal sec-
tions, but with the inclusion of the AMM for the protons and neutrons.
The overall conclusions taken for the spinodals without the AMM are
still valid, although the section acquires more structure when the AM-
M is included since, for each Landau level, the proton spin up and spin
down levels have different energies. This difference originates a dou-
bling of the bands, which are easily identified for B∗ = 104. Besides,
these bands are also affected by the neutron AMM. The spinodal sec-
tions obtained with AMM are smaller, as it is seen from Fig. 4.5, where,
for each field intensity, B∗ = 104 (top), 103 (middle), and 102 (bottom),
the spinodal section without (red) and with (green) AMM are plotted.
Although the inclusion of the AMM does not have a very strong effec-
t because the proton and neutron anomalous magnetic moments are
small, these effects are not negligible, and, in fact, they reduce the in-
stability sections. In the three panels of Fig. 4.5, we include an inset
panel where we have zoomed in the spinodal with AMM in a small
range of densities to show that, although in a smaller scale, the struc-
ture is similar to the one shown for B∗ = 104.
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Figure 4.5: Dynamical spinodal for NL3ωρ, a momentum transfer of
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For neutron-rich matter, as the one occurring in neutron stars, the
instability regions extend to densities almost 40% larger than the crust-
core transition density for B = 0. The effect of the magnetic field is
larger precisely when the proton fraction is smaller. We have includ-
ed in the three panels of Fig. 4.5 a curve that represents the densi-
ties (ρp, ρn) at β-equilibrium, including the contribution of the AMM.
The curves cross an alternation of stable and unstable regions, indicat-
ing the existence of a complex crust-core transition, see the insets for
detail. The beginning of an homogeneous matter is shifted to larger
densities, 0.100 fm−3 for B∗ = 104, 0.103 fm−3 for B∗ = 103, and 0.105
fm−3 for B∗ = 102, corresponding to the pressures 0.818 MeV/ fm3, 0.833
MeV/ fm3, and 0.863 MeV/ fm3, respectively. This complex transition
region with a thickness of ∼0.02 fm−3, even for the weaker fields, will
have strong implications in the structure of the inner crust of magne-
tars.

4.2 Growth rates
The solution of the dispersion relation inside the spinodal section gives
pure imaginary frequencies, indicating that the system is unstable to
the propagation of a perturbation with the corresponding wave number
in the density range where this occurs. The modulus of the frequen-
cy, designated as growth rate, indicates how the system evolves into a
two-phase configuration. The evolution will be dictated by the largest
growth rate [Chomaz et al., 2004,Providência et al., 2006a].

As an example, in Fig. 4.6, we show the growth rates, |ω|, as a func-
tion of the transferred momentum k, for fixed values of the baryonic
density: ρ = 0.04 fm3 (top), ρ = 0.08 fm3 (middle), and ρ = 0.09 fm3

(bottom panels), and for the NL3ωρ model. We consider a fixed proton
fraction of 0.035, which is an average value found for NL3ωρ within a
Thomas-Fermi calculation of the inner crust [Grill et al., 2012], and we
choose the same values for the magnetic field as in the previous figures.
The growth rates with (solid) and without (dashed) AMM are plotted
together with the growth rate at B = 0 (black line).

We first consider ρ = 0.04 fm−3, far from the transition to homoge-
neous matter. The smaller the field, the smaller the effect of the AMM,
and for B∗ = 102, the two curves superimpose, and are almost coinci-
dent with the B = 0 result. The effect of the AMM for the two larger
fields is non-negligible, and may go in opposite direction because its
behavior is closely related with the filling of the Landau levels. The
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instability does not exist for the two smaller fields at k close to zero.
This is the behavior discussed in Ref. [Providência et al., 2006a] and is
directly related to the 1/k2 divergence of the Coulomb field. However,
for B∗ = 104, and since the electron and proton densities are small, the
attractive nuclear interaction is strong enough to drag the electrons,
keeping the instability until k = 0. This is not anymore the case for
the two larger densities considered, because in these two cases, the nu-
clear interaction is not able to compensate for the larger densities of
the charged particles. The stronger nuclear attraction for B∗ = 104 is
also observed for the large values of k: the instability is still present for
k > 300 MeV, well above the maximum k attained for B = 0, indicating
that the attractiveness of the nuclear force is stronger at short ranges.

The two larger densities have been chosen because they are at the
B = 0 crust-core transition or above, and this is the most sensitive re-
gion to the presence of a strong magnetic field. Due to the alternation
between stable and unstable regions, it is highly probable that for one
of the field intensities, no instability is present for the particular den-
sity value considered. This explains the non appearance of the curve
with AMM for B∗ = 104 and ρ = 0.08 fm−3. It also explains why the be-
haviors with and without AMM are so different for B∗ = 103: the value
of the density considered picks up the instability region more or less
close to the limit of the instability region. In this case, also the maxi-
mum growth rates occur for different wave numbers. For B∗ = 102, the
results with and without AMM differ, and are not anymore coincident
with the B = 0 result, as seen for ρ = 0.04 fm−3. However, the maxi-
mum growth rate occurs at similar wave numbers in the three cases.

Finally, we consider the larger density, ρ ∼ 0.09 fm−3, approximately
10% above the crust-core transition density ρt = 0.0843 fm−3, when no
field is considered. For B = 0, this density belongs to the core, and
corresponds to homogeneous matter. However, for the three intensities
of the magnetic field we have been considering, B∗ = 102, 103, 104, this
is inside or close to a region of instability. For B∗ = 102, we have taken
ρ = 0.0903 fm−3, and multiplied the growth rate by a factor of 10 in the
figure. We conclude that the growth rates decrease with the magnetic
field, showing a convergence to the B = 0 result when no instability
exists.
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4.3 Maximum growth rates
In the present section, we obtain the maximum growth rates, the mod-
e that drives the system into an inhomogeneous phase, for NL3 and
NL3ωρ models. The determination of the wave length associated with
these modes allows an estimation of the size of the clusters formed in
the phase transition. On the other hand, the ratio between the corre-
sponding proton and neutron fluctuations indicate how strong is the
distillation effect.

To determine the maximum growth rates, we have looked for a giv-
en density inside the spinodal section for all eigenmodes with a pure
imaginary ω and different wave numbers, and identified the one with
the largest |ω|. In this way, we get the mode with the largest growth
rate, which is the one that drives the system into a non-homogeneous
system formed by clusters immersed in a background neutron-rich gas.

In Fig. 4.7, we show the largest growth rate, the corresponding
estimated size of the clusters, and δρp/δρn changing with the density,
for different proton fractions, yp = 0.02, 0.05, and 0.08, and B∗ = 103,
with and without AMM. When the proton fraction gets larger, both the
number of Landau levels and the maximum of the largest growth rate
increase. However, the size of the clusters decreases with an increas-
ing proton fraction. δρp/δρn increases when the proton fraction gets
larger and it is always larger than ρp/ρn. In this case, the dense phase
(clusters) is more symmetric.

In [Avancini et al., 2008], it was also shown that for NL3 the av-
erage proton fraction in the inner crust, for densities above 0.01 fm−3,
is yp ∼ 0.02, while for NL3ωρ is yp = 0.035. In the following, we will,
therefore, determine the most unstable modes for magnetized matter
for both parametrizations at fixed proton fraction, taking these proton
fractions, and will estimate the size and separation of charge content of
the clusters formed in the inner crust, originated by the clusterization.
As in Ref. [Providência et al., 2006a], we will consider that half wave-
length of the maximum growth rate mode is a good estimation of the
order of magnitude of the size of the clusters which are formed. In fact,
in Ref. [Avancini et al., 2008] it was shown that the size of the clus-
ters obtained within a Thomas-Fermi calculation compare well with
the half-wave length associated with the most unstable mode. These
quantities are plotted in Figs. 4.8, 4.10, and 4.11.

In Fig. 4.8, the largest growth rates (top panels), the corresponding
half-wave length (middle panels), and the ratio δρp/δρn between the
proton and neutron density fluctuations (bottom panels) are shown for
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fields between B∗ = 50 and B∗ = 2×103 for NL3 and NL3ωρ, at constant
proton fraction. In all panels, the B = 0 results are represented by a
black curve. In the top panels, we can see very clearly that there is
a closed region that, although with some fluctuations, follows the B =
0 curve, followed by separate regions, whose density width decreases
continuously until homogeneous matter sets in. These disconnected
regions appear when a new Landau level starts being filled.

Let us first consider the strongest field, represented by red dots in
the right panel of Fig. 4.8, obtained only for NL3. In this case, there are
several well defined regions of clusterized matter separated by regions
of homogeneous matter. This is a consequence of the bands of instabil-
ity, due to the filling of the Landau levels. Also, the size of the clusters
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is affected. In the first region of instability, the size of the clusters os-
cillates around the results for B = 0, and fast size changes occur in a
very small density interval. After the first instability region, several
others appear, although the larger the density, the smaller the densi-
ty width of each region. Considering weaker fields, all these features
are repeated with a denser appearance of unstable regions but with s-
maller widths each. The transition density to homogeneous matter is
changing slowly with the magnetic field intensity, but considering suf-
ficiently small fields, the finite B spinodal converges to the B = 0 one,
as discussed before.

This convergence is reflected on the decrease of the magnitude of
the growth rate at a density 10% larger than the B = 0 crust-core tran-
sition density with a decrease of the magnetic field: for NL3 (NL3ωρ),
it goes from 0.3855 (0.1481) MeV at B∗ = 103, to 0.0921 (0.0378) MeV for
B∗ = 2× 102, and 0.0068 (0.0020) MeV for B∗ = 10.

The extension of the region with disconnected unstable regions is
strongly dependent on the density dependence of the symmetry energy:
for the NL3ωρ parametrization with L = 55 MeV, the unstable region
extends only until ρ = 0.113 fm−3. This increases to ρ ∼ 0.12, 0.13, 0.16
fm−3 for L = 68, 88, 118 MeV, respectively , and stellar matter condi-
tions. Taking a larger proton fraction, yp = 0.1, which may be more
realistic at larger densities, there will still appear unstable regions for
ρ ≤ 0.11 fm−3 for NL3ωρ, with L = 55 MeV, and ρ ≤ 0.135 fm−3 for NL3,
with L = 118 MeV.

The proton-neutron density fluctuation ratio was also calculated.
Although yp = 0.02 corresponds to ρp/ρn = 1/49, the fluctuations give
rise to clusterized matter with a much larger proton content: above the
B = 0 crust-core transition density, the fluctuations δρp/δρn increase
from ∼ 0.35 to more than the double for NL3ωρ, and a factor of 5 for
NL3, see both panels of Fig. 4.8.

The joint effect of B and L on the thickness of the crust is summa-
rized in the following: a) the larger the L, the larger the effect of B,
mainly due to the proton fraction associated with each model, since a
larger L is associated with a smaller proton fraction; b) compared to
B = 0, the effect can be as large as a 100% for L = 118 MeV. However,
experimental contraints [Tsang et al., 2012], and microscopic neutron
matter calculations [Hebeler et al., 2013, Gandolfi et al., 2012], indi-
cate that the models with L = 30 − 80 MeV are more realistic. For
L = 55 MeV, the effect corresponds to an increase of ∼ 20%; c) taking
L = 55 MeV and decreasing the magnetic field by an order of magnitude
from B∗ = 103 to B∗ = 102, the transition density suffers a reduction of
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∼ 3− 5%, but is still larger than the corresponding value at B = 0.
In [Rabhi et al., 2009a], an interesting feature related to the ex-

tension of the thermodynamical spinodal for zero proton fraction with
magnetic field in the absence of the AMM was discussed. For ρp = 0,
and in the absence of the magnetic field, there is no instability, e.g. pure
neutron matter does not present liquid-gas like instabilities. However,
the inclusion of the magnetic field changes this behavior: the instabil-
ity region at ρp = 0 extends until a finite ρn value, independent of B.
This value is ∼ 0.213 fm−3 for NL3, shown in Fig. 4.9. On the other
hand, the inclusion of AMM will change this feature: ρn is still finite
for ρp = 0, but the value depends on the magnetic field.
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Figure 4.9: Thermodynamical spinodals for different values of magnet-
ic fields in the absence of the AMM for the NL3 model. All sections
extend to the same point at ρp = 0.

To understand this feature, we consider the determinant of the en-
ergy curvature matrix Det(F), which is related with the presence of
the instability region, and consider ρp = 0 matter. In this extreme
case, Det(F) increases monotonically with the density, and the equa-
tion Det(F) = 0 indicates the end of the instability region. The neutron
densities, where Det(F) = 0 in this extreme case, are the limit of the
instability region, theoretically. We obtain the corresponding finite val-
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ue of ρ = ρn = P n3
F

3π2 from the Fermi neutron momenta P n
F solution of the

equation Det(F) = 0 with ρp = 0. Explicitly, the latter equation can be
written as follows(
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(4.5)
This equation is independent of the magnetic field and, therefore, all
the spinodal regions for different magnetic fields without AMM have
the same value of ρn for ρp = 0.

The border to homogeneous matter at ρNL3
n = 0.213 fm−3 sets an

upper limit of the extension of the dynamical spinodal, which in fac-
t is too high, because matter in the stars has a finite proton fraction:
for NL3 (NL3ωρ) and the proton fraction at the crust-core transition,
yNL3
p = 0.02 (yNL3ωρ

p = 0.035), the dynamical spinodal extension is re-
duced to ρ ∼ 0.16 (0.115) fm−3 for B = 4.4 × 1016 G. Decreasing fur-
ther the magnetic field to 2.2 ×1014 G, the extension of the spinodal
decreases to 0.105 fm−3 for NL3, and 0.102 fm−3 for NL3ωρ, showing a
convergence to the B = 0 result, 0.056 and 0.084 fm−3, respectively.

There are several questions that can be raised with the previous
calculation: 1) how important is the inclusion of the AMM? 2) does it
make sense to consider the whole calculation of the maximum growth
rates at a constant proton fraction, or should this restriction be taken
only until the B = 0 crust-core transition density, and above this den-
sity, the β-equilibrium fraction should be chosen? In order to answer
the first question, in the following, we will compare two calculations
done under the same conditions, except for the AMM. An exact answer
to the second question demands a calculation of the EoS of clusterized
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Figure 4.10: Largest growth rate (top panels), the corresponding half-
wavelength (middle panels), and the proton-neutron density fluctua-
tion ration (bottom panels) versus density for NL3ωρ, with a proton
fraction of yp = 0.035 for the whole density range, without (left panels)
and with (right panels) AMM. Three different values of B are consid-
ered: B∗ = 102 (red), B∗ = 103 (green), and B∗ = 104 (blue). A compari-
son with the B = 0 (black lines) results is also made.
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matter under a strong magnetic field. Since this is not the objective
of the present study, we will consider an alternative scenario: the con-
stant proton fraction is taken only until the B = 0 crust-core transition
density, and, above this density, the β-equilibrium fraction is consid-
ered. This is the behavior of the EoS of stellar matter obtained from an
unified inner crust-core calculation [Grill et al., 2012].

In Fig. 4.10, the largest growth rates (top panels), the corresponding
half-wave length (middle panels), and the δρp/δρn ratio are shown for
three different magnetic field intensities, B∗ = 102, 103, and 104. In this
figure, all results were obtained with a fixed proton fraction, yp = 0.035.
The calculation including the AMM of protons and neutrons presents
twice as much unstable regions, as compared with the AMM= 0 case,
due to the separation of each proton Landau level in two, with a differ-
ent spin polarization. Only the first region, occuring at the lowest den-
sities, does not suffer a doubling, because it is associated with totally
polarized (spin up) protons. For the two lowest magnetic field intensi-
ties, the extension of the transition to the core decreases. However, for
B∗ = 104, the AMM extends the instability region to a larger density,
just because the third Landau level was pushed to a lower density. It
should be stressed that although the differences originated by the AM-
M decrease when the magnetic field intensity decreases, the effect is
still visible for B∗ = 102, a field below 1016 G.

More information on the properties of this range of densities is ob-
tained from the middle and bottom panels. In the middle panel, the
half-wave length of the perturbation is plotted, and it gives an estima-
tion of the size of the cluster that will be formed. Within each of these
independent unstable regions, the cluster size changes from about 9 fm
to about 4 fm in a very narrow density range. Finally, the bottom panel
gives some information on the proton content of the dense phase: the
clusters will be quite proton rich with a proton-neutron density fluc-
tuation ratio well above the 0.04 ratio of the homogeneous matter, and
more proton rich than clusters formed in non-magnetized matter.

The effect of considering above the B = 0 crust-core transition the
proton fraction dictated by the β-equilibrium condition imposed to mag-
netized matter is illustrated in Fig. 4.11, which shows the same quan-
tities plotted in the previous figure. In grey, we show the results with
a fixed proton fraction of 0.035 for the whole range of densities, and in
blue we take, above the B = 0 crust-core transition density, the proton
fraction as the one found in β−equilibrium matter, and below a fixed
proton fraction of 0.035. Taking the β-equilibrium proton fraction, in-
stead of the fixed 0.035 above the crust-core B = 0 transition, has a
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Figure 4.11: Largest growth rate (top panels), the corresponding half-
wavelength (middle panels), and the proton-neutron density fluctua-
tion ratio (bottom panels) versus density for NL3ωρ, and a magnetic
field of B∗ = 103, without (left panels) and with (right panels) AMM.
Results with the B = 0 (black solid lines) calculation are also shown
for comparison. The blue points correspond to a calculation with a
proton fraction equal to the one found in β−equilibrium matter, above
ρt = 0.0843 fm−3, the B = 0 crust-core transition density. The grey
points correspond to a fixed proton fraction of 0.035 in the whole densi-
ty range.

64



4.3. MAXIMUM GROWTH RATES

non-negligible effect, and, in fact, reduces the instability region, be-
cause the β-equilibrium condition predicts larger proton fractions, and
the larger the proton densities, the smaller the effects due to the mag-
netic field. In particular, for B∗ = 104, ρ2 is ∼ 0.01 fm−3 smaller, taking
yβ−eqp instead of yp = 0.035. This difference is ∼ 0.005 fm−3 for B∗ = 102,
and ∼ 0.002 fm−3 for B∗ = 103. The discrete feature of the Landau lev-
els results in a non-monotonic behavior of this quantity for the larger
values of B.

4.3.1 Thickness of the crust
The effect that was already identified with the spinodal sections is
clearly shown in Fig. 4.10 and 4.11: the unstable regions occur well
beyond the B = 0 crust-core transition at 0.0843 fm−3, and extend until
ρt = 0.11 fm−3, 40% larger than the B = 0 transition density. Howev-
er, above 0.082 fm−3, the unstable regions alternate with stable ones.
The transition densities that define the limits of the region of alternat-
ing stable and unstable regions have been labelled ρ1 and ρ2, and are
shown in Table 4.1. The transition density ρ1 defines the first time |ω|
goes to zero, and the density ρ2 defines the onset of the homogeneous
matter, meaning that we have a range of densities between ρ1 and ρ2
where unstable and stable regions alternate. At B = 0, both densities
coincide, i.e. ρ1 = ρ2.

Since it makes a difference the way we choose the proton fraction, to
determine the density ρ2 we have considered the β−equilibrium matter
proton fraction above the B = 0 crust-core transition, and ρ1 is calcu-
lated with the fixed yp = 0.035 proton fraction, obtained from the B = 0
calculations of the pasta phases, since ρ1 is a density that lies at or
below the B = 0 crust-core transition.

Besides ρ1 and ρ2, in Table 4.1, we also give the pressure at these
two densities and the fractional moment of inertia of the crust, a quan-
tity that depends directly on the pressure and density at the crust-
core transition, and that has an important impact in explaining pul-
sar glitches. In Table 4.1, the crust thickness, ∆R = R(0) − R(ρ2),
the thickness of the region between ρ1 and ρ2, ∆R′ = R(ρ1) − R(ρ2),
and the difference between the crust thicknesses at B = 0 and B 6= 0,
∆RB = ∆R−∆R(B = 0), are also displayed. These results take into ac-
count the AMM, and they have been calculated for a star with M = 1.4
M�, and a radius of R = 13.734 km for the NL3ωρ model. For the cal-
culation of the fractional moment of inertia of the crust, we took for Pt
and ρt the values of P2 and ρ2, given in the Table for each magnetic field.
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Table 4.1: Transition densities and pressures for the magnetic field-
s considered in this study, together with the correspondent fractional
moment of inertia of the neutron star crust, for NL3ωρ, with L = 55
MeV, for a star of M = 1.4 M� and R = 13.734 km. Also shown are the
crust thicknesses, ∆R, the thickness due to the inhomogeneous region
found when B 6=0, ∆R′ = R(ρ1)−R(ρ2), and the difference to the B = 0
result, ∆RB = ∆R − ∆R(B = 0). The results shown take into account
the AMM. The transition densities are calculated when |ω| = 0 (see top
panels of Figs. 4.10 and 4.11, and the text for more details). The val-
ues for ρ2 correspond to the calculations with a β−equilibrium matter
proton fraction.

B∗ ρ1 ρ2 P1 P2 ∆R ∆R′ ∆RB
∆Icr
I

(fm−3) (fm−3)
(

MeV
fm3

) (
MeV
fm3

)
(m) (m) (m)

0 0.0843 0.0843 0.5196 0.5196 1368 0 0 0.0676
102 0.0837 0.1044 0.5119 0.8541 1551 185 182 0.0968
103 0.0808 0.1096 0.4758 0.9743 1609 257 240 0.1056
104 0.0654 0.0998 0.3274 0.8095 1503 260 134 0.0922

Our results for B = 0 agree with the transition densities and pressures
and the moment of inertia of the crust obtained in Ref. [Fattoyev and
Piekarewicz, 2010], see tables I and IV. This is expectable, since the
same expression for the crustal moment of inertia has been used, as in
Refs. [Worley et al., 2008,Lattimer and Prakash, 2000].

The magnetic field gives rise to larger values of the crust-core tran-
sition pressure and density, and these affect directly ∆Icr/I. These val-
ues are much higher than the prediction in Ref. [Link et al., 1999, An-
dersson et al., 2012] for the Vela pulsar, 0.016, when no entrainment
effects are considered, and they would be high enough for the crust to
completely describe the glitch mechanism, even taking into account the
effect of entrainment [Andersson et al., 2012,Chamel et al., 2013]. In
fact, in this case, the “effective” moment of inertia associated with the
fluid is lowered, and the constraint inferred from glitches requires that
the crustal moment of inertia is 〈m∗n〉/mn ∼ 4 − 6 larger [Andersson
et al., 2012], where m∗n is the effective neutron mass including entrain-
ment, and mn the bare neutron mass. To explain the Vela glitches,
this constraint would be equivalent to requiring a fractional crustal
moment of inertia ∼ 0.064− 0.096.

66



4.3. MAXIMUM GROWTH RATES

4.3.2 Final comments
The properties discussed above indicate that at the crust-core transi-
tion, matter is very complex, and that the magnetic field favors a large
charge concentration in the clusters. Even considering matter below
the B = 0 crust-core transition, the present calculation indicates that
there is a fast change of the cluster size. This change will probably
cause the cluster size and structure to change more strongly with den-
sity than it would be expected for B = 0, giving rise to more heteroge-
neous matter.

Simulations of the time evolution of the magnetic field at the crust
have shown that the existence of amorphous and heterogeneous mat-
ter deep in the inner crust, with a high impurity parameter and, there-
fore, highly resistive, favors a fast decay of the magnetic fields. This
has been proposed as an explanation for the non-observation of x-ray
pulsars with a period above 12 s [Pons et al., 2013].

In summary, we have studied the effect of strong magnetic fields, of
the order of 1015 − 1017 G, on the extension of the crust of magnetized
neutron stars. It was shown that a strong magnetic field has a large
effect on the instability region, defining the crust-core transition as a
succession of stable and unstable regions due to the opening of new
Landau levels. The effect of the anomalous magnetic moment is non-
negligible for fields larger than 1015 G. The complexity of the crust at
the transition to the core, and the increase of the crust thickness, may
have direct impact on the properties of neutrons stars related with the
crust, in particular, the glitch mechanism and the non-existence of pul-
sars with a period above 12 s.
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Chapter 5

Thermodynamical spinodal

In this chapter, we first compare the predictions obtained from the dy-
namical and the thermodynamical spinodals, and, then, we analyze
the effect of the temperature on the thermodynamical spinodal section,
and draw some comments on the effect of the temperature on the ex-
tension of the crust. Most of the discussion is performed for NL3ωρ,
since the value of L of this model is more compatible with the present
experimental data than NL3.

5.1 Thermodynamical versus dynamical
spinodal

In the present section, we briefly compare the thermodynamical and
dynamical spinodals of strongly magnetized nuclear matter. In Ref. [A-
vancini et al., 2006], it has been shown that due to the large incom-
pressibility of the electron gas, most models that describe npe matter
do not present thermodynamical instabilities, or present only a very
reduced region of instabilities. However, thermodynamical stability
does not necessary mean that the npe system is stable to small den-
sity fluctuations, as shown in [Pethick et al., 1995, Providência et al.,
2006a, Brito et al., 2006]. The calculation of the dynamical spinodal
allows a quite good prediction of the instability region taking into ac-
count the independent fluctuations of the neutron, proton and electron
densities.

According to [Avancini et al., 2010,Ducoin et al., 2011], the np mat-
ter thermodynamical spinodal gives a good prediction of the crust-core
transition density, just slightly above the prediction from a Thomas-
Fermi calculation or a dynamical spinodal for npe matter.
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Figure 5.1: The dynamical and thermodynamical spinodals for B∗ =
104 and T = 0 MeV for the NL3ωρ model with AMM.

In order to understand which are the limitations of this procedure,
in Fig. 5.1, we compare the results obtained for the crust-core transi-
tion at T = 0 and B∗ = 104 with the npe dynamical spinodal, and the np
thermodynamical spinodals, both calculations taking into account the
AMM. The values predicted from the thermodynamical spinodal are al-
ways ∼ 15% larger than the ones from the dynamical spinodal. Having
this property of the thermodynamical spinodal in mind, in the follow-
ing, we will use the finite temperature np thermodynamical spinodal to
study the possible effect of temperature on the crust-core transition in
the presence of a strong magnetic field.

5.2 Thickness of the crust within the ther-
modynamical spinodal

Before discussing the effect of the temperature on the crust, we deter-
mine the size of the crust at T = 0 using the thermodynamical spinodal.
We will also show the effect of the density dependence of the symmetry
energy, and, in particular, calculate the thickness difference obtained
with the thermodynamical and the dynamical spinodal sections.

In order to get the thickness of the crust and of the transition region
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Figure 5.2: Details of the crossing of the thermodynamical spinodal
with the EoS (red solid line) for NL3ωρ with B∗ = 103, considering
different temperatures, and taking AMM= 0.

we determine the lower and upper transition densities from the cross-
ing of the β-equilibrium EoS and the spinodal section. This is illus-
trated in Fig. 5.2: the lower (upper) density ρ1 (ρ2) corresponds to the
density where the β-equilibrium EoS first (last) crosses the spinodal.
In this figure, the thermodynamical spinodal, calculated at B∗ = 103

and several temperatures, has been used to determine the crust-core
transition. Below T = 10 keV, the effect of temperature is almost negli-
gible, but at T = 100 keV, the temperature has washed out most of the
effect of the magnetic field. In the next subsection, we will come back
to this point.

We first compare the dynamical and thermodynamical approaches
at T = B = 0. In Table 5.1, we show the results obtained within both
formalisms at B = 0, and for T = 0, for models from the NL3 fami-
ly, with L = 55, 68, 88, and 118 MeV, which are obtained by choosing
adequately the couplings of the ρ-meson and the non-linear ωρ term.

For L = 55 MeV, we observe that the effect of using the thermody-
namical, instead of the dynamical, spinodal is an increase of 7 m in the
crust thickness, together with an increase of 18% of the pressure at the
crust-core transition, which gives rise to a 13% larger fractional crustal
moment of inertia. For L = 118 MeV, on the other hand, the crust gets
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142 m larger, and the fractional crustal moment of inertia almost 30%
larger. In the following, we will always consider L = 55 MeV.

Table 5.1: Transition densities and pressures calculated within the
thermodynamical and dynamical spinodals formalism at B = T = 0,
and considering four different values of L, with the correspondent frac-
tional moment of inertia of the neutron star crust, for a star of M = 1.4
M�. Also shown are the crust thicknesses, ∆R, and the radius of a 1.4
solar mass star, R1.4.

L ρ P R1.4 ∆R ∆Icr
I

(MeV)
(

1
fm3

) (
MeV
fm3

)
(km) (m)

Thermodynamical
118 0.0647 0.423 14.631 1467 0.067
88 0.0749 0.592 14.256 1586 0.077
68 0.0856 0.704 13.927 1603 0.083
55 0.0919 0.628 13.734 1432 0.078

Dynamical
118 0.056 0.258 14.631 1325 0.048
88 0.063 0.355 14.256 1395 0.055
68 0.074 0.503 13.927 1450 0.066
55 0.084 0.520 13.734 1368 0.068

We now compare the predictions of both methods for a finite mag-
netic field.

In Table 5.2, we give the the transition densities, ρ1 and ρ2, and
respective pressures, the crust thickness ∆R, the thickness of the tran-
sition region ∆R′, given by R′ = R(ρ1)−R(ρ2), and the crust fractional
momentum of inertia calculated with (ρ2, P2), considering the L = 55
MeV model at T = 0 for several values of B∗ using the thermodynami-
cal spinodal formalism without and with AMM. The quantities (ρ1, ρ2),
the total crust thickness ∆R, and the fraction of momentum of inertia
of the neutron star crust ∆Icr/I are plotted in Fig. 5.3 as a function of
B∗.

The main conclusions that can be drawn for the field intensities
considered are: a) the dynamical and thermodynamical spinodals with
AMM predict the same trends for the transition densities, though the
dynamical spinodal predicts smaller values of ρ1, in accordance with
the results from [Avancini et al., 2010, Ducoin et al., 2011]. However,
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Table 5.2: Transition densities and pressures calculated at T = 0 with-
in the formalism of the thermodynamical spinodal with and without
AMM, for 50 < B∗ < 104 and L = 55 MeV, together with the corre-
spondent fractional moment of inertia of the neutron star crust, for a
star of M = 1.4 M� and R = 13.734 km. Also shown are the crust
thicknesses, ∆R, the thickness due to the inhomogeneous region found
when B 6=0, ∆R′ = R(ρ1)−R(ρ2), and the difference to the B = 0 result,
∆RB = ∆R−∆R(B = 0).

B∗ ρ1 ρ2 P1 P2 ∆R ∆R′ ∆RB
∆Icr
I

( 1
fm3 ) ( 1

fm3 ) ( MeV
fm3 ) ( MeV

fm3 ) (m) (m) (m)
AMM

102 0.0909 0.0967 0.613 0.708 1474 51 105 0.085
103 0.0886 0.1145 0.580 1.101 1665 262 297 0.114
104 0.0688 0.1369 0.357 1.952 1981 713 612 0.159

AMM=0
50 0.0908 0.0967 0.610 0.706 1473 52 105 0.085
100 0.0907 0.1009 0.610 0.785 1514 93 145 0.091
200 0.0893 0.1065 0.589 0.9015 1574 165 206 0.100
500 0.0874 0.1163 0.562 1.150 1693 299 325 0.118
103 0.0900 0.1162 0.599 1.1481 1686 271 317 0.118
104 0.0839 0.1075 0.521 0.9484 1584 218 216 0.103
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Figure 5.3: The transition densities, ρ1 (empty) and ρ2 (full), (top), the
crust thickness, ∆R (full) and ∆R∗ = R(0) − R(ρ1) (empty), (middle),
and the crust fractional momentum of inertia (bottom), calculated with
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the dynamical spinodal with AMM (triangles).
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THERMODYNAMICAL SPINODAL SECTION

for the upper limit of the transition region, there is a dependence on
B, and the dynamical ρ2 is larger (smaller) than the thermodynamical
one for B∗ < 102 (B∗ > 102). It should be stressed that, for B = 0, the
dynamical spinodal predicts a smaller transition density, so the details
between B∗ = 50 and B = 0 cannot be seen from the figure, and need
to be determined specifically; b) AMM does not affect much the results
obtained with B∗ < 103. However, the AMM reduces in a non-negligible
way the instability region for the larger fields, giving rise to smaller
crust thicknesses and momentum of inertial crustal fractions.

5.3 Joint effect of temperature and mag-
netic field on the thermodynamical spin-
odal section

Our main objective is to determine for which temperatures is the effect
of the magnetic field washed out on the extension of the crust. This
will be done with a thermodynamical spinodal approach, and excluding
the AMM.

In the last section it was shown that at T = 0, the effect of the AMM
is negligible for B∗ < 103. The effect of the AMM at finite temperature
should also be analyzed, but we will postpone this study for a future
investigation. At the end of the section, we will draw some comments
concerning this point.

The temperature of the crust decreases as the star cools. While a
very young star, less than one year old, may have an inner crust tem-
perature above 109 K, it will drop below 109 K or even 108 K after 1 year,
depending on the EoS considered and the mass of the star [Chamel and
Haensel, 2008,Yakovlev et al., 2001]. It is, therefore, reasonable to ask
whether the strong effect of the magnetic field on the crust-core tran-
sition calculated at T = 0, with the appearance of a transition region
where stable and unstable regions alternate, still persists at finite tem-
perature. Moreover, the time evolution of both the magnetic field and
temperature inside the star are strongly coupled, and, therefore, it is
important to understand which is the effect of the temperature on the
transition region created by a magnetic field.

In Fig. 5.4, we show the spinodal sections for B∗ = 105 and B∗ = 104

at different temperatures for the NL3 model. Except for T = 200 keV,
all the other temperatures are above 1 MeV. The spinodal sections
get smaller and smaller, and shrink to a region that is quite isospin
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Figure 5.4: Thermodynamical spinodals for different temperatures,
and taking B∗ = 104 (top) and B∗ = 105 (bottom) for the NL3 mod-
el without AMM. The lack of definition for the smaller fields at low
proton density is a numerical constraint that would be overcome with
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symmetric, when the temperature increases, for both magnetic fields.
There are two separated regions for B∗ = 105 at T = 0 MeV, corre-
sponding to the filling of the two Landau levels. These regions combine
to one, and the curve gets smoother at T = 4 MeV, although there are
still two clear gaps on the curve. When the temperature increases fur-
ther, the gaps exist until T = 10 MeV. We also find that the shape of
the spinodals change fast when the temperature increases from T = 0
MeV to T = 4 MeV. These results also hold for B∗ = 104, but, in this
case, already at T & 1 MeV, the shape of the spinodals has lost most of
the spike-like structures, although it is still seen a certain ”wiggling”
at the smaller proton densities.

The Landau quantization will be completely washed out by temper-
atures of the order of the energy separation between consecutive Lan-
dau levels, i.e. T & eB/M∗ = m2

eB
∗/M∗. For B∗ = 103 (B∗ = 104), and

taking M∗ ∼ 700MeV for ρ ∼ 0.09 fm−3, this corresponds to T & 0.3 MeV
( T & 3 MeV). The effects become important already for 10% of this val-
ue in the regions of larger isospin asymmetry, i.e. larger ρn.

5.4 Effect of temperature on the crust-core
transition under a strong magnetic field

In the following, we calculate the crust-core transition density/region
at finite temperature. Temperatures in the range 1 keV< T < 1 MeV
(107 < T < 1010 K) will be considered. We will carry this study by
calculating the thermodynamical spinodal without AMM. We have seen
that above B∗ ∼ 103 (B ∼ 5 × 1016 G), the AMM has a non-negligible
effect and, therefore, we will essentially restrict ourselves to values
below that number.

Fig. 5.5 shows the effect of temperature on the spinodal for tem-
peratures below 4 MeV for NL3ωρ model (top panel) and NL3 model
(lower panel). For B = 0 (top panel), a temperature T ≤ 1 MeV has
practically no effect on the spinodal, except in a small region for very
asymmetric matter. The crust-core transition density, obtained from
the intersection of the β-equilibrium EoS with the spinodal, is only af-
fected by temperatures above 1 MeV.

To illustrate the simultaneous effect of temperature and the mag-
netic field on the crust-core transition, we have plotted in the lower
panel of Fig. 5.5 the spinodal surfaces for 0 ≤ T ≤ 4 MeV and B∗ = 104,
together with the β-equilibrium EoS for NL3 model. As before, the ef-
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Figure 5.5: Thermodynamical spinodals for several temperatures for
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fect of the temperature is very clear: it washes out the bands, and, for
T = 1 MeV, the effect of the magnetic field resumes to a slight oscilla-
tion of the spinodal section along the B = 0 one. We may expect that
for lower magnetic field intensities, the bands will be washed out at
lower temperatures, as we will see in the following. For low tempera-
tures, the β-equilibrium EoS crosses the spinodal section several times,
defining the region of instability referred in the previous sections. In
Fig. 5.2, we saw that the transition region for T = 10 keV is smaller
than the one obtained for T = 1 keV, because the EoS is not crossing
anymore the last band shown in the plot. The transition region be-
comes smaller and smaller as T increases, until the crossing occurs at
a well defined density, as for T ≥ 100 keV in Fig. 5.2.

In Table 5.3, we give the transition densities and pressures for B∗ ≤
104 and 0 ≤ T ≤ 1 MeV for NL3ωρ model. In order to get results for
these range of temperatures, we have implemented in our finite tem-
perature codes the method proposed in [Aparicio, 1998]. In Appendix
C, we present the different integrals in terms of the Fermi-Dirac func-
tions used in the calculations.

The densities ρ1 and ρ2 are determined from the first and last cross-
ing between the spinodal section and β-equilibrium EoS, as referred
in the previous section, and illustrated in Fig. 5.2. It is seen that, as
the temperature increases, the extension of the bands becomes small-
er, and the number of crossings diminishes, until it occurs at a single
point. Besides the transition densities and pressures, we also include
the crust thickness ∆R, the thickness of the transition region for B 6=0,
∆R′ = R(ρ1) − R(ρ2), and the correspondent fractional moment of in-
ertia of the neutron star crust, determined using eq. (2.48). These
quantities were obtained with a model with L = 55 MeV from the ther-
modynamical spinodal without the inclusion of the AMM, and for a star
of M = 1.4 M� and R = 13.734 km. The crust thicknesses were estimat-
ed from the integration of the TOV equations at B = 0. The magnetic
field B∗ = 104 could already be too strong for this approximation, and,
therefore, we will concentrate our discussion on the weaker fields, i.e.
B∗ ≤ 103.

In order to help the discussion, we have plotted in Fig. 5.6 the tran-
sition densities, ρ1 and ρ2 (top panel), the crust thickness, ∆R (middle
panel), and the momentum of inertial crustal fration (bottom panel)
for B∗ ≤ 103. The densities ρ2 come closer to the lower limit, ρ1, of
the transition region as the temperature increases, and it is interest-
ing to see that for magnetic field intensities considered at T = 100 keV,
all magnetic field effects have been washed out, and the B = 0 transi-
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Table 5.3: Transition densities and pressures for the magnetic fields
considered in this study and several temperatures, together with the
crust thicknesses, ∆R, the thickness due to the inhomogeneous region
found when B 6=0, ∆R′ = R(ρ1) − R(ρ2), and the correspondent frac-
tional moment of inertia of the neutron star crust, obtained from the
thermodynamical spinodal without AMM and with L = 55 MeV, for a
star of M = 1.4 M� and R = 13.734 km.

T ρ1 ρ2 P1 P2 ∆R ∆R′ ∆Icr
I

(KeV) (fm−3) (fm−3)
(

MeV
fm3

) (
MeV
fm3

)
(m) (m)

B∗ = 50
0 0.0908 0.0967 0.6100 0.7058 1473 52 0.0848

0.1 0.0912 0.0955 0.6160 0.6860 1463 38 0.0831
1. 0.0914 0.0929 0.6204 0.6437 1440 13 0.0794
10. - 0.0919 - 0.6279 1431 0 0.0779

100. - 0.0919 - 0.6278 1431 0 0.0779
1000. - 0.0906 - 0.6076 1420 0 0.0761

B∗ = 100
0 0.0907 0.1009 0.6101 0.7849 1514 93 0.0913
1. 0.0911 0.0941 0.6145 0.6619 1450 26 0.0810
10. - 0.0920 - 0.6284 1431 0 0.0780

100. - 0.0919 - 0.6278 1431 0 0.0779
1000. - 0.0913 - 0.6173 1425 0 0.0770

B∗ = 200
0. 0.0893 0.1065 0.5888 0.9013 1574 165 0.1004
1. 0.0908 0.0960 0.6114 0.6947 1467 45 0.0838
10. 0.0916 0.0923 0.6231 0.6342 1435 6 0.0785

100. - 0.0919 - 0.6279 1431 0 0.0779
1000. - 0.0913 - 0.6179 1425 0 0.0770

B∗ = 500
0. 0.0874 0.1163 0.5616 1.1500 1693 299 0.1175
1. 0.0897 0.1016 0.5939 0.7982 1521 109 0.0924
10. 0.0910 0.0928 0.6129 0.6408 1438 15 0.0791

100. - 0.0919 - 0.6281 1431 0 0.0779
1000. - 0.0913 - 0.6185 1426 0 0.0771
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Figure 5.6: The transition densities, ρ1 (empty) and ρ2 (full), (top), the
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T . The thermodynamical spinodal formalism without AMM has been
used. The horizontal black lines show the location of the respective
quantities at zero temperature and zero magnetic field.
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5.4. EFFECT OF TEMPERATURE ON THE CRUST-CORE TRANSITION UNDER
A STRONG MAGNETIC FIELD

Table 5.4: (continuation)

T ρ1 ρ2 P1 P2 ∆R ∆R′ ∆Icr
I

(KeV) (fm−3) (fm−3)
(

MeV
fm3

) (
MeV
fm3

)
(m) (m)

B∗ = 103

0 0.0900 0.1162 0.5985 1.1481 1686 271 0.1174
1. 0.0899 0.1017 0.5982 0.8001 1521 107 0.0926

10. 0.0900 0.0972 0.5984 0.7159 1478 64 0.0856
100. - 0.0919 - 0.6294 1431 0 0.0780
500. - 0.0918 - 0.6266 1430 0 0.0778

1000. - 0.0913 - 0.6189 1426 0 0.0771
B∗ = 104

0 0.0839 0.1075 0.5207 0.9484 1584 218 0.1033
1. 0.0840 0.1076 0.5221 0.9513 1587 220 0.1035

10. 0.0840 0.1076 0.5220 0.9503 1586 219 0.1034
100. - 0.0839 - 0.5215 1367 0 0.0677
500. - 0.0868 - 0.5627 1389 0 0.0716

1000. - 0.0903 - 0.6191 1418 0 0.0767

tion density has been recovered. As it can be seen from Table 5.3, for
a stronger field, this is not anymore true, but since for these stronger
fields, several of the suppositions considered in the present work break,
such as the use of the TOV equations or the exclusion of the AMM of
the nucleons, we will not discuss so strong fields. Above T = 100 keV, ρ1
and ρ2 coincide, but they take values below the T = 0 transition densi-
ty: this is the reduction of the extension of the spinodal section due to
temperature effects. We conclude that we may expect the appearance
of a transition region of nonzero thickness for temperatures in the crust
below 100 keV, and a magnetic field intensity at the crust-core transi-
tion below B ∼ 5× 1016 G.

With respect to the crust momentum of inertia fraction, we real-
ize that even considering that the thermodynamical approach predict-
s larger crust-core transition densities, we have obtained values that
can account for the Vela glitches which, according to [Andersson et al.,
2012], would require a fractional crustal momentum of inertia∼ 0.065−
0.095, considering that the effective neutron mass, including entrain-
ment effects, is 4− 6 times larger than the neutron bare mass. Further
studies should, however, be undertaken, because strong magnetic field-
s, as the ones considered in the present work, will certainly influence
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5.5. EFFECT OF THE MAGNETIC FIELD ON THE DISTILLATION EFFECT

the neutron superfluid behavior, and affect the neutron entrainment to
the lattice.

The main effect of having used the thermodynamical spinodal in-
stead of the dynamical one is that the predicted crust-core transition
density is ∼ 10% larger, the crust fraction momentum of inertia ∼
10−15% larger, and the transition region slightly smaller, but the over-
all conclusions remain valid.

5.5 Effect of the magnetic field on the dis-
tillation effect

The density fluctuations ratio δρ−p /δρ−n defines the direction of the evo-
lution of the instability which shows how the system separate into a
dense liquid and a gas phase. This ratio also measures the efficiency
in restoring isospin symmetry: the larger the value, the greater the
efficiency. As discussed in [Margueron and Chomaz, 2003, Providência
et al., 2006a], the direction of instability defines the way the distillation
effect is affected. The distillation effect has been observed experimen-
tally in heavy-ion reactions [Chomaz and Gulminelli, 1999, Xu et al.,
2000, Chomaz, 2001], and corresponds to the formation of the clusters
with low isospin asymmetry in a background of a neutron gas.

In order to understand under which conditions the unstable modes
produce more symmetric dense matter and more asymmetric gas, we
will study, in the following, how δρ−p /δρ

−
n changes with the magnetic

field (see also [Rabhi et al., 2009a,Chen, 2017]), and with the tempera-
ture.

In Fig. 5.7, we plot the ratio δρ−p /δρ−n for different values of the mag-
netic fields, and for the fixed density ρ = 0.06 fm−3, for NL3 model,
as a function of the proton fraction, with (bottom panel) and without
(top panel) AMM. The middle point corresponds to symmetric matter
yp = 0.5, with δρ−p /δρ

−
n = 1 the ratio of density fluctuations for symmet-

ric matter with B = 0.
For B∗ = 105, the spinodal has two bands, corresponding to the occu-

pation of the first and second Landau levels. The large discontinuity of
δρ−p /δρ

−
n at yp ∼ 0.67 corresponds to the transition from the first to the

second level. Above this proton fraction value, the curve behaves like
the B = 0 case, and increases with yp: this is the range corresponding
to larger proton densities and, therefore, less sensitive to the magnetic
field. For yp < 0.67, the behavior is quite different: the curve decreases
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Figure 5.7: δρ−p /δρ−n plotted as a function of the proton fraction with
T = 0 MeV and ρ = 0.06 fm−3, for different values of the magnetic fields,
for NL3 model with (bottom) and without (top) AMM. The dashed line
is the ratio between the proton and neutron densities.
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5.5. EFFECT OF THE MAGNETIC FIELD ON THE DISTILLATION EFFECT

from the value at yp=0 to a value much smaller than the corresponding
value of the fraction ρp/ρn.

The fluctuations will not drive the system out of the first Landau
level and, therefore, the larger the proton fraction, the closer the sys-
tem comes to the top of the band, and the smaller are the allowed pro-
ton fluctuations. For yp > 0.67, the Landau level is only partially filled,
and the fluctuations are not constrained by the filling of the Landau
level.

This process is repeated for B∗ = 104, involving more Landau levels.
For each Landau level, the curves decrease, except for the last one,
corresponding to last Landau level, which increases, and follows the
B = 0 behavior. When B∗ = 103, more curves appear. The total curves
behave like the B = 0 case: the fraction δρ−p /δρ

−
n is larger than ρp/ρn

below yp = 0.5, and less than ρp/ρn above.
The inclusion of the AMM doubles the numbers of discontinuities

in the fluctuation ratios. Except for the larger field shown, the fluctua-
tions around the B = 0 case are smaller, because the AMM stiffens the
EoS.

In Figs. 5.8, we plot the ratio of the proton over neutron density
fluctuation δρp/δρn as the function of nuclear density with the model
NL3 for a fixed proton fraction, yp = 0.2. Nuclear matter under differ-
ent values of the magnetic fields with and without AMM is considered.
When the effects of magnetic fields are taken into account, outside the
spinodal region defined by B = 0, discrete instability regions may oc-
cur. We do not restrict ourselves to the densities where the eigenvalue
of F give equation number are negative, but we will obtain the ratio
of the fluctuations for a whole range of densities below 0.15 fm−3. We
believe that it is still instructive when exploring the direction of the in-
stability under magnetic fields, even realizing that we will be covering
both stable and unstable regions.

We observe that the δρ−p /δρ−n decreases with density, for B∗ = 105.
The density fluctuations occur in such a way that the system stays in
the same Landau level: the larger the total density, the smaller the
fluctuations. Only the first Landau level is occupied, and is almost
complete, which prevents the existence of large proton density fluctu-
ations. For B∗ = 104 and B∗ = 103, the curves are divided in too many
pieces, and δρ−p /δρ

−
n decreases with the density, for each one. Many

Landau levels appear for B∗ = 104 and B∗ = 103, as discussed before,
and this explains why there are so many discontinuities.

We conclude that the magnetic field will have a direct effect on the
distillation, amplifying it or disfavoring it according to the fraction of
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Figure 5.8: δρ−p /δρ−n plotted as a function of the density with yp = 0.2 for
different values of the magnetic fields with (bottom) and without (top)
AMM for the NL3 model.
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5.5. EFFECT OF THE MAGNETIC FIELD ON THE DISTILLATION EFFECT

states in a given Landau level already filled. An almost empty level
favors the distilation effect, and the opposite occurs, for an almost full
level.

In Fig. 5.9, we plot the ratio δρ−p /δρ−n for B∗ = 105 and B∗ = 104 with
ρ = 0.06 fm−3 as a function of the proton fraction, for different tempera-
tures, and for the NL3 model. We have already discussed that, at T = 0
and B∗ = 105, the spinodal has two bands, corresponding to the occu-
pation of the first two Landau levels. The transition from one to the
other has a large discontinuity at yp ∼ 0.67. The discontinuity disap-
pears when T > 0.2 MeV. The curve becomes monotonously increasing
when T > 8 MeV. This process is repeated for B∗ = 104, involving more
Landau levels.

The ratios the ratio δρ−p /δρ−n decrease with the proton fraction with-
in a Landau level, except for the largest occupied Landau level, where
after decreasing, the ratio increases with proton fraction until yp = 1 is
reached. We can conclude that the effect of the magnetic fields will get
weaker with the increase of the temperature, but, for each magnetic
field, there is a temperature below which the effect of magnetic field
is non negligible. When this temperature is below the ones occurring
inside neutron stars, it is not important to consider the magnetic field
effect.

Compared to the T = 0 and B = 0 case, for both B∗ = 105 and
B∗ = 104, there is a temperature, at which the shape of the curve is
quite close to the T = 0 and B = 0 curve. This is easy to understand:
the strong magnetic field and finite temperature impose opposite ef-
fects on the shape of the spinodal. The strong magnetic fields make the
spinodal region larger, while the temperature makes the region small-
er. At finite B, the effect of temperature is to wash out the effects of the
Landau quantization.

In Fig. 5.10, we show the ratio of the density fluctuation δρ−p /δρ
−
n as

a function of the density for the NL3 model, for different temperatures,
and yp = 0.2, taking B∗ = 105 and B∗ = 104. As before, it is seen that
the temperature washes out the effects of the magnetic field, and the
behavior gets closer to the one obtained for B = 0.
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Figure 5.9: δρ−p /δρ
−
n plotted as a function of the proton fraction for

B∗ = 105 (top) and B∗ = 104 (bottom), with ρ = 0.06 fm−3, for sever-
al temperatures, and for the NL3 model. The curve for T = 0 and B = 0
is also shown as a blue line in the figure.
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blue line in the figure.
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Chapter 6

Conclusions

We have extended the relativistic Vlasov equation, by including the ef-
fect of an external magnetic field in the formalism, which gives rise to
the Landau quantization of the energy levels of the charged particles.
The linearized Vlasov equation was used to calculate the eigenmodes
of nuclear and stellar matter in the presence of very strong magnetic
fields, as may be found in magnetars. Within this formalism, it is pos-
sible to estimate the crust-core transition inside neutron stars from the
intersection of the spinodal section, the surface where the eigenmodes
go to zero, with the β-equilibrium equation of state. The AMM of pro-
tons and neutrons is taken into account, and it is shown that it is not
negligible for magnetic fields above 1015 G, and that it contributes to
an extra complexity of matter at the crust-core transition. Inside these
surfaces, matter will separate into a dense and a gas phase.

The Vlasov description of stellar matter modes takes into account
both the Coulomb field and finite size effects related to the finite range
of nuclear force. We have only considered the propagation of waves in
the direction of the magnetic field. The effect of the Landau quantiza-
tion of the levels of charged particles gives rise to a spinodal section
that presents a structure of bands at the border between clusterized
and homogeneous matter. As a consequence, it was shown that the
transition between the crust and the core of magnetars is defined by
a complex region that is ∼ 0.02 − 0.04 fm−3 wide, characterized by a
succession of homogeneous and clusterized matter. The determination
of the mode associated with the maximum growth rate in the densi-
ty range delimited by the spinodal section, allowed the estimation of
several properties of the clusters that are formed in the unstable re-
gions, in particular, the size and a qualitative prediction of the charge
content.
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The free energy negative curvature is an indication that stable mat-
ter will exist with a nonhomogeneous composition, formed by a dense
and a gas phase. When more than one conserved charge is involved,
and a long range force, such as the Coulomb force, comes into play, the
phase separation is a complex mechanism. Compared with the B = 0
situation, it was shown that close to the transition to homogeneous
matter, and due to the existence of an irregular spinodal section, there
is a heterogeneous region of alternating inhomogeneous and homoge-
neous matter. Besides, it was also shown that inside the spinodal sec-
tion, the average size of the clusters and its proton content vary in an
oscillatory way, reinforcing the heterogeneity of the inner crust mat-
ter, which could have a direct effect on the charge impurity parameter
associated to the inner crust at the crust-core interface. The impuri-
ty coefficient is a measure of the deviation from a regular distribution
of charge, and in [Pons et al., 2013] a high impurity coefficient was
needed to cause a fast decay of the magnetic field, and explain the non-
observation of isolated pulsars, with periods larger than 12 s.

In particular, at the crust-core transition, the effect on the proton
content of clusters is quite strong. The disconnected unstable regions
occur with the opening of new Landau levels, until a maximum that we
have tried to find. The extension of the spinodal, at zero proton density,
defined by (ρp, ρn) = (0, ρmaxn ), does not depend on the magnetic field, if
the AMM is not considered, and is obtained taking the proton Landau
level equal to zero. If the AMM is included, the extension of the spin-
odal is smaller, it approaches the no-AMM result, as the field becomes
weaker. This value of the density, ρmaxn = 0.21 fm−3 for NL3, and 0.12
fm−3 for NL3ωρ, sets an upper limit on our spinodals at zero proton
density, and lowest Landau level, which will, however, be affected by
the AMM.

The two main effects that could affect the impurity parameter are:
the fluctuation of the cluster sizes, and the proton fraction of the clus-
ters measured from the transition density fluctuations. If larger pro-
ton fractions occur in a region where the size of the cluster changes in
a short density range, this will probably lead to larger impurity coeffi-
cients, and a calculation has to be performed. The magnetic field could,
therefore, enforce the impurity parameter. These results indicate that
it is necessary to study the transport properties, such as electric con-
ductivity and shear viscosity, of this complex matter, see [Yakovlev,
2015,Ofengeim and Yakovlev, 2015].

The maximum growth rates at constant proton fraction allow a pre-
diction of the structure of the crust-core transition: for fields with in-
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tensity 5×1017G, there is a closed region that, although with some fluc-
tuations, follows the B = 0 curve, followed by separate regions, whose
density width decreases continuously until homogeneous matter set-
s in. This separate regions appear when a new Landau level starts
being filled, and only while filling the bottom of the Landau level.

We refer another pulsar property that could be affected by an in-
crease of the crust. Pulsar glitches are attributed to the angular mo-
mentum transfer between the crust and the core [Link et al., 1999],
involving the vortex dynamics associated to the neutron superfluid con-
fined in the inner crust. However, the recent detection of an anti-
glitch [Archibald et al., 2013], or the indication that, due to entrain-
ment, the inner crust angular moment is not enough to explain the
glitch mechanism [Andersson et al., 2012], suggests that the glitch the-
ory has to be clarified. The effects of the magnetic field on the inner
crust, in particular, an increase of the crust, the succession of cluster-
ized and homogeneous layers, and a non-monotonic change of the neu-
tron gas background density will certainly affect the glitch mechanism,
and should be taken into account in a glitch theory.

Next, we studied the thermodynamical instability of npmatter with-
in NL3 and NL3ωρ models for some values of magnetic fields at T = 0
and finite temperature. The bands are still present due to the Lan-
dau quantization under strong magnetic fields. When the magnetic
fields get weaker, the bands are replaced by some disconnected region-
s. We have confirmed that due to the sensitivity of the magnetic field
to the proton density, the extension of the crust-core transition region
strongly depends on the slope L of the symmetry energy. The larger
the slope L, the larger the transition region, because, below saturation
density, models with a large L present smaller symmetry energies and,
therefore, accept smaller proton fractions. Experimental and theoreti-
cal constraints seem to limit L below 80 MeV (30 < L < 80 MeV) [Tsang
et al., 2012], resulting in a more moderate effect of the magnetic field
on the extension of the crust. Properties of magnetized neutron stars
that directly depend on the thickness of the crust can set stringent con-
straints on the symmetry energy slope L due to the great sensitivity of
the crust size to this property.

We have also studied the effect of temperature for magnetic field-
s B ≤ 5 × 1016 G. The magnetic field effects on the extension of the
transition density are washed out for temperatures above 109 K, but
below these temperatures, even a field of intensity 2× 1015 G will have
a finite effect on the crust thickness. Microphysical parameters, such
as transport coefficients, that enter in the magneto-thermal evolution
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equations of a neutron star, are certainly affected by the existence of
the crust-core transition region that changes with cooling, and the im-
pact of this effect should be investigated. Recently, a one dimensional
thermal-magneto-plastic model, that considered transport coefficients
sensitive to temperature, as well as the coupling of the crustal motion
to the magnetosphere, has been implemented, and it has been shown
that this coupling induces an enrichment and acceleration of the mag-
netar dynamics [Li et al., 2016].
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Appendix A

Equations of motion of the
fields

The equations, describing the time evolution of the fields φ, V µ, Aµ,
and the third component of the ρ-field b3µ = (b0,b), are derived from
the Euler-Lagrange formalism:

∂2φ

∂t2
−∇2φ+m2

sφ+ κ

2φ
2 + λ

6φ
3 = gs[ρps + ρns ] , (A.1)

∂2Vµ
∂t2
−∇2Vµ +m2

vVµ + 2Λvg
2
vg

2
ρb3µ · b3µVµ = gv[jpµ + jnµ ] , (A.2)

∂2b3µ

∂t2
−∇2b3µ +m2

ρb3µ + 2Λvg
2
vg

2
ρVµV

µb3µ = gρ
2 [jpµ − jnµ ] , (A.3)

∂2Aµ
∂t2

−∇2Aµ = e[jpµ − jeµ] , (A.4)

where the scalar densities are given by

ρps(r, t) = eB

(2π)2

∑
ν,s

∫
dpzfp

m̄pM
∗

(m̄p + sµNκpB)εp
, (A.5)

ρns (r, t) = 1
(2π)3

∑
s

∫
d3pfn

1− sµNκnB√
M∗2 + p2

⊥

M∗

εn
, (A.6)
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and the components of the four-current density are

ji0(r, t) = ρi = eB

(2π)2

∑
ν,s

∫
fi(r,p, t)dpz, i = p, e , (A.7)

jn0 (r, t) = ρn = 1
(2π)3

∑
s

∫
fn(r,p, t)d3p , (A.8)

ji(r, t) = eB

(2π)2

∑
ν,s

∫
fi(r,p, t)

p̄iz
εi
dpz, i = p, e, (A.9)

jn(r, t) = 1
(2π)3

∑
s

∫
fn(r,p, t)d3p

×

 p̄nz
εn

+ p̄n⊥
εn

1− sµNκnB√
M∗2 + (p̄n⊥)2

 . (A.10)
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Appendix B

The coefficients of the
determinant of the dispersion
relation

The coefficients aij of the matrix (3.64) can be written as:

a11 =
∑
ν,s

gs
2π2

GφpM
∗

ω2
s

eB

P p
F (s2

p − 1) , (B.1)

a12 = −
∑
ν,s

eB

2π2V p
F (s2

p − 1)

[(
1− ω2

k2
z

C1p

)
gvD1p

+
(

1− ω2

k2
z

C2p

)
gρ
2 D2p +

(
1− ω2

k2
z

)
e2

ω2
A

]
− 1, (B.2)

a13 =
∑
ν,s

gs
2π2

GφpM
∗

ω2
s

1
V p
F ε

n
F (s2

p − 1) , (B.3)

a14 = −
∑
ν,s

1
2π2V p

F (s2
p − 1)

[(
1− ω2

k2
z

C1p

)
gvD1n

+
(

1− ω2

k2
z

C2p

)
gρ
2 D2n

]
, (B.4)

a15 =
∑
ν,s

(
1− ω2

k2
z

)
e2

2π2ω2
A

eB

V p
F (s2

p − 1) , (B.5)

a21 = m̄p

m̃p

a11 − 1, a22 = m̄p

m̃p

(a12 + 1), (B.6)

a23 = m̄p

m̃p

a13, a24 = m̄p

m̃p

a14, a25 = m̄p

m̃p

a15, (B.7)
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a31 =
∑
s

gsM
∗

(2π)2
eB

ω2
sε
p
F

εnFP
n
FL
∗(sn), (B.8)

a32 = −
∑
s

[(
1− ω2

k2
z

C1n

)
gvD1p −

(
1− ω2

k2
z

C2n

)
gρ
2 D2p

]

× eB4π2 ε
n
FP

n
FL(sn), (B.9)

a33 =
∑
s

gsM
∗

(2π)2
P n
F

ω2
s

L∗(sn), (B.10)

a34 = −
∑
s

[(
1− ω2

k2
z

C1n

)
gvD1n −

(
1− ω2

k2
z

C2n

)
gρ
2 D2n

]

×ε
n
FP

n
FL(sn)
4π2 − 1, (B.11)

a35 = 0, (B.12)

a41 = a31
H∗(sn)
L∗(sn) , a42 = a32

H(sn)
L(sn) , (B.13)

a43 = a33
H∗(sn)
L∗(sn) − 1, (B.14)

a44 = (a34 + 1)H(sn)
L(sn) , a45 = 0, (B.15)

a51 = a53 = a54 = 0, (B.16)

a52 =
∑
ν,s

(
1− ω2

k2
z

)
e2

2π2ω2
A

eB

V e
F (s2

e − 1) , (B.17)

a55 = −
∑
ν,s

(
1− ω2

k2
z

)
e2

2π2ω2
A

eB

V e
F (s2

e − 1) − 1 (B.18)

where m̃p = m̄p + sµNκpB, ω2
s = ω2 − k2

z − m2
s,eff , ω2

A = ω2 − k2
z , and

si = ω
ω0i
, i = p, n, e.

The remaining coefficients are given by

Gφp = gsM
∗m̄p

εpF (m̄p + sµNκpB) , (B.19)

Gφn = gsM
∗

εnF

1− sµNκnB√
M∗2 + P n2

F (1− x2)

 , (B.20)

C1i = 1− τigρχ

2gvω2
ρ

, (B.21)

C2i = 1− 2τigvχ
gρω2

v

, (B.22)
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D1i = τigρχ

2Dν

+
gvω

2
ρ

Dν

, (B.23)

D2i = gvχ

Dν

+ τigρω
2
v

2Dν

, (B.24)

Dν = ω2
vω

2
ρ − χ, (B.25)

L(sn) =
∫ 1

−1

x

(sn − x)dx, L∗(sn) =
∫ 1

−1

Gφnxdx

(sn − x) , (B.26)

H(sn) =
∫ 1

−1

1− sµNκnB√
M∗2

n + P n2
F (1− x2)

 xdx

(sn − x) , (B.27)

H∗(sn) =
∫ 1

−1

1− sµNκnB√
M∗2

n + P n2
F (1− x2)

 Gφnxdx

(sn − x) . (B.28)
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Appendix C

Some useful integrals

The following integrals are used in the calculations of the thermody-
namical spinodals for finite temperature:

∫ p2

1 + e(
√
p2+M∗2−ν)/T

M∗
√
p2 +M∗2dp

p=
√
y2−M∗2

====
∫ y2 −M∗2

1 + e(y−ν)/T
M∗

y
d(
√
y2 −M∗2)

=
∫ √y2 −M∗2 · y

1 + e(y−ν)/T
M∗

y
dy

=
∫ √y2 −M∗2 ·M∗

1 + e(y−ν)/T dy

y=x+M∗
====

∫ √x2 + 2M∗x ·M∗

1 + e[x−(ν−M∗)]/T dx

=
√

2M∗ 3
2

∫ √
x
√

1 + x
2M∗

1 + e[x−(ν−M∗)]/T dx

x=Tz====
√

2M∗ 3
2

∫ √
Tz
√

1 + Tz
2M∗

1 + e[z−(ν−M∗)/T ]d(Tz)

=
√

2M∗ 3
2T

3
2

∫ z
1
2

√
1 + Tz

2M∗

1 + e[z−(ν−M∗)/T ]dz, (C.1)

∫ 1
1 + e(

√
p2+M2−ν)/T

M∗
√
p2 +M2dp
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p=
√
y2−M2

====
∫ 1

1 + e(y−ν)/T
M∗

y
d(
√
y2 −M2)

=
∫ 1

1 + e(y−ν)/T
M∗

y

y√
y2 −M2dy

= M∗
∫ 1

1 + e(y−ν)/T
1√

y2 −M2dy

y=x+M==== M∗
∫ 1

1 + e[x−(ν−M)]/T
1√

x2 + 2Mx
dx

x=Tz==== M∗
∫ 1

1 + e[z−(ν−M)/T ]
1√

(Tz)2 + 2MTz
d(Tz)

= M∗T
1
2

√
2M

∫ z−
1
2 (1 + T

2M z)− 1
2

1 + e[z−(ν−M)/T ] dz, (C.2)

∫ p2

1 + e(
√
p2+M∗2−ν)/T

dp

p=
√
y2−M∗2

====
∫ y2 −M∗2

1 + e(y−ν)/T d(
√
y2 −M∗2)

=
∫ y2 −M∗2

1 + e(y−ν)/T
1
2

2y√
y2 −M∗2dy

=
∫ √y2 −M∗2 · y

1 + e(y−ν)/T dy

y=x+M∗
====

∫ √x2 + 2M∗x · (x+M∗)
1 + e[x−(ν−M∗)]/T dx

=
∫ (x+M∗)

√
x
√

2M∗
√

1 + x
2M∗

1 + e[x−(ν−M∗)]/T dx

=
√

2M∗
∫ (x 3

2 +M∗x
1
2 )
√

1 + x
2M∗

1 + e[x−(ν−M∗)]/T dx

x=Tz====
√

2M∗
∫ [(Tz) 3

2 +M∗(Tz) 1
2 ]
√

1 + Tz
2M∗

1 + e[z−(ν−M∗)/T ] d(Tz)

=
√

2M∗ 1
2T

5
2

∫ z
3
2

√
1 + 1

2
T
M∗ z

1 + e[z−(ν−M∗)/T ]dz +
√

2M∗ 3
2T

3
2

∫ z
1
2

√
1 + 1

2
T
M∗ z

1 + e[z−(ν−M∗)/T ]dz,

(C.3)
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∫ 1
1 + e(

√
p2+M2−ν)/T

dp

p=
√
y2−M2

====
∫ 1

1 + e(y−ν)/T d(
√
y2 −M2)

=
∫ 1

1 + e(y−ν)/T
1
2

2y√
y2 −M2dy

=
∫ y

1 + e(y−ν)/T
1√

y2 −M2dy

y=x+M====
∫ x+M

1 + e[x−(ν−M)]/T
1√

x2 + 2Mx
dx

x=Tz====
∫ Tz +M

1 + e[z−(ν−M)/T ]
1√

(Tz)2 + 2MTz
d(Tz)

=
∫ Tz +M

1 + e[z−(ν−M)/T ]

√
Tz−

1
2

1√
2M

(1 + T

2Mz)− 1
2dz

= 1√
2M

T
3
2

∫ z
1
2 (1 + T

2M z)− 1
2

1 + e[z−(ν−M)/T ]dz +
√
M√
2
T

1
2

∫ z−
1
2 (1 + T

2M z)− 1
2

1 + e[z−(ν−M)/T ] dz. (C.4)
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Piekarewicz, J. (2004c). Phys. Rev. C, 69:045804.

[Horowitz and Piekarewicz, 2001a] Horowitz, C. J. and Piekarewicz, J.
(2001a). Phys. Rev. Lett., 86:5647.

[Horowitz and Piekarewicz, 2001b] Horowitz, C. J. and Piekarewicz, J.
(2001b). Phys. Rev. C, 64:062802.

[Horowitz et al., 2001] Horowitz, C. J., Pollock, S. J., Souder, P. A., and
Michaels, R. (2001). Phys. Rev. C, 63:025501.

[Jin et al., 1989] Jin, X., Zhuo, Y., and Zhang, X. (1989). Nucl. Phys. A,
506:655.

[Khan et al., 2012] Khan, E., Margueron, J., and Vidaña, I. (2012).
Phys. Rev. Lett., 109:092501.

[Khan et al., 2005] Khan, E., Sandulescu, N., and Giai, N. V. (2005).
Phys. Rev. C, 71:042801(R).

[Kiuchi and Yoshida, 2008] Kiuchi, K. and Yoshida, S. (2008). Phys.
Rev. D, 78:044045.

[Ko and Li, 1988] Ko, C. M. and Li, Q. (1988). Phys. Rev. C, 37:2270.

[Ko et al., 1987] Ko, C. M., Li, Q., and Wang, R. (1987). Phys. Rev.
Lett., 59:1084.
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