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Abstract: The retina is a highly metabolically active tissue with high-level consumption of nutrients
and oxygen. This high metabolic demand requires a properly developed and maintained vascular
system. The retina is nourished by two systems: the central retinal artery that supplies the inner
retina and the choriocapillaris that supplies the outer retina and retinal pigment epithelium (RPE).
Pathological neovascularization, characterized by endothelial cell proliferation and new vessel
formation, is a common hallmark in several retinal degenerative diseases, including age-related
macular degeneration (AMD). A limited number of studies have suggested that microglia, the resident
immune cells of the retina, have an important role not only in the pathology but also in the formation
and physiology of the retinal vascular system. Here, we review the current knowledge on microglial
interaction with the retinal vascular system under physiological and pathological conditions. To do so,
we first highlight the role of microglial cells in the formation and maintenance of the retinal vasculature
system. Thereafter, we discuss the molecular signaling mechanisms through which microglial cells
contribute to the alterations in retinal and choroidal vasculatures and to the neovascularization
in AMD.

Keywords: age-related macular degeneration (AMD); retina; choroid; microglia; retinal vasculature;
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1. Introduction

The retina is the nervous tissue that sits at the back of the eye and is responsible for converting light
into electrical signals and sending these on to the brain for visual recognition. Retinal development
is a long and complex process that, in humans, begins during the fourth week of embryogenesis
and continues into the first year of life [1]. During retinogenesis, retinal progenitor cells give rise
to six major types of neurons, ganglion cells, amacrine cells, horizontal cells, bipolar cells, cone and
rod photoreceptor cells and one glial cell type, the Müller glial cells [2]. The six different cell lines
are organized into a laminated structure composed of three nuclear layers, the outer nuclear layer
comprising the cell soma of the photoreceptors; the inner nuclear layer composed by the nuclei of the
horizontal, bipolar and amacrine cells and of the Müller glial cells; and the ganglion cell layer (GCL)
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consisting of the soma of ganglion and amacrine cells. The three nuclear layers are divided by two
plexiform layers composed by the axonal, dendritic processes and synapses of these cells [3].

Microglia, the resident immune cells of the retina, are not derived from retinal progenitors cells but
are derived from primitive yolk sac progenitors [4], and therefore are from mesodermal/mesenchymal
origin. The precursors of microglia are found in the retina, before vascularization, via the vitreal
surface of the retina or by migrating from non-neural ciliary regions in the periphery [5,6]. In the adult
retina, microglial cells are distributed in the plexiform layers, ganglion cell layer and nerve fiber layer,
where they survey the surrounding environment with their motile processes [7,8].

With approximately 4.5 million cone and 90 million rod photoreceptors, the human retina is the
most metabolically expensive tissue in the human body. The retina is fed nutrients and oxygen from a
unique dual blood supply that divides the retina into outer and inner layers [9]. The formation of the
retinal vasculature is a timely controlled process driven by numerous signaling pathways and cellular
interactions. Pathological blood vessels in the eye constitute a threat to normal vision. Angiogenesis,
important in both physiological vascular development and pathological neovascularization, occurs as
endothelial cells proliferate and form new vessels following guidance cues and angiogenic stimulators
and inhibitors [10]. Dysregulated angiogenesis disrupts delivery of oxygen and nutrients, resulting in
unbalanced metabolic demand and supply and disturbed neural retinal function. Abnormal ocular
angiogenesis is associated with a broad spectrum of eye diseases, including neovascular age-related
macular degeneration (AMD) [11,12], diabetic retinopathy [12,13], retinopathy of prematurity [14],
retinitis pigmentosa [15], amongst others. Pathological retinal neovascularization is characterized by
leaky and tuft-like vessels, which are associated with retinal exudates and hemorrhages, that might
lead to retinal detachment, retinal damage or both [16].

The retina has the particularity of being the only tissue in the human body for which deep
vasculature can be visualized directly and in a non-invasive way using, for example, optical coherence
tomography angiography (OCTA), presenting a unique opportunity to study vascular alterations in
eye diseases [17,18].

Several studies demonstrated the importance of microglial cells in retinal development and
degeneration. However, recently, some studies suggested that microglia also play an important role in
the development of retinal vasculature [8,19–22]. Here, we will focus on the molecular and cellular
mechanisms ruled by microglia and their contribution to the formation and maintenance of the retinal
vasculature under physiological and disease conditions.

2. Development and Structure of Retinal and Choroidal Vasculature

The development of the vasculatures of the embryonic and fetal human eye is an orchestrated
and synchronous process that is dependent on the demand for oxygen. The choroidal vasculature is
the first to develop followed by the hyaloid vasculature and then the retinal vasculature [23].

The choroid is a thin, highly vascularized and pigmented tissue positioned under the neural
retina that constitutes the posterior part of the uveal tract (the iris, ciliary body and choroid). The inner
limit of the choroid is the Bruch’s membrane on which the retinal pigment epithelium (RPE) lies [2].
The vascular layer of the choroid is divided into three layers from internal to external, with increasing
luminal diameter: the anterior choriocapillaris with broad and flat lumens arranged in a honeycomb-like
lobular pattern especially in the posterior pole, Sattler’s layer of intermediate vessels in the middle
and the outermost Haller’s layer with large vessels [24].

The main function of the choroid is to nourish the outer retina, RPE, the foveal avascular zone and
the optic nerve [25], maintaining the metabolic demands of the RPE and photoreceptor cells. Being
the largest source of blood supply to the posterior segment of the eye, the choroidal vasculature is
also responsible for the transport of metabolic waste from the RPE, contributing to the normal retinal
function. The choroid also acts as a thermal regulator for the outer retina via heat dissipation [26,27].
The choroidal circulation supplies the inner retina, in species where the retinal vessels are absent
(guinea pig) or sparse (rabbit) [27]. In primate eyes, the short posterior ciliary arteries and branches
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of the ophthalmic artery form a circle around the optic nerve as they pass almost perpendicularly
through the sclera to supply the choroid [28]. The short posterior ciliary arteries supply the posterior
choroid and the long posterior ciliary arteries supply the anterior portion of the choroid.

The development of human choriocapillaris is unusual when compared with other capillary beds
in the body [29]. Choriocapillaris develops before the formation of intermediate or large vessels, via
hemovasculogenesis in which blood vessel and blood cells differentiate from a common precursor,
the hemangioblast [24]. In humans, the choriocapillaris starts to differentiate simultaneously with the
development of the RPE during the fourth and fifth week of gestation. At this stage of development,
cells expressing CD31, CD34, CD39 and vascular endothelial growth factor receptor 2 (VEGFR-2)
are detected where choriocapillaris will form [23]. Later, at around 11 and 12 weeks of gestation,
the development of intermediate choroidal vessels in Sattler’s layer occurs by angiogenesis, facilitating
the connection of choriocapillaris with the larger vessels of the Haller’s layer [24]. The choriocapillaris
is fully mature, with flat, thin-walled fenestrated vessels at 22 weeks of gestation [30].

Alterations in choroidal structure or impaired blood flow result in degenerative changes and
neovascularization, such as choroidal coloboma and AMD [31,32]. The thickness of the choroid can be
used to assess abnormalities in choroidal vasculature, and it has been proposed as a biomarker for
cardiovascular diseases [26]. There is an increasing interest in the development of quantitative methods
to assess choroidal structural characteristics and their associations with ocular diseases (see Section 4).

Retinal blood vessels are organized in two planar layers that are restricted to the inner layers of
the retina. The central retinal artery enters the eye through the centre of the optic nerve. The artery
then branches in the inner retina to form three capillary layers. The retinal vessels provide blood to
the inner two-thirds of the retina [33]. The retinal vessels develop into intraretinal capillaries that
ramify at the inner and outer plexiform layers [34]. In mammals, retinal vessels, as opposed to the
choriocapillaris, are not fenestrated and nourish the retina mainly by transcytosis of nutrients, since
the presence of tight junctions between the endothelial cells restrict paracellular diffusion. Retinal
pericytes directly contact the vascular endothelium. Pericytes are enclosed by the basement membrane
and abundantly express smooth muscle actin that confers contractile properties [35].

Early in eye development, the oxygenation of the retinal tissue is provided by the vascular
networks of the choroid and hyaloid. Hyaloid vessels progressively regress by apoptosis while
the development of the retinal vasculature occurs on an astrocyte scaffold [36]. Failure of this
regression is associated with incomplete retinal vascularization [37], suggesting an interplay of these
two mechanisms. In humans, the formation and regression of the hyaloid vasculature and most of the
retinal vasculature development occur in utero. In mice, retinal vasculature development is similar to
humans but begins postnatally [38]. The most superficial retinal vascular layer is the first to be formed,
starting from the optic nerve head and progressing toward the peripheral edge of the retina. When
this superficial layer is almost formed, retinal vessels grow into the retina to form the deep retinal
vascular layer at the base of the outer plexiform layer. Then, the intermediate layer forms between the
superficial and deep layers, superficial to the inner plexiform layer, building a well-organized network
to complete the three vascular layers [30]. Each of these three layers has a characteristic location and
branching pattern and is considered an independent neurovascular unit.

Angiogenesis is the process by which proliferating endothelial cells form new vessel sprouts
and extend the vascular network from pre-existing vessels. Vasculogenesis is defined as the de novo
formation of blood vessels from isolated vascular endothelial precursor cells that coalesce into cords and
then form a lumen. Historically, there has been controversy regarding the development of retinal vessels.
Some authors support that retinal vasculature is formed by angiogenesis [34,36,39,40] while others
consider that vasculogenesis is the process underlying the formation of retinal vasculature [41–43].
Moreover, some authors are proposing that retinal vasculature develops in two steps: the initial
formation of the primary internal vascular network by vasculogenesis, followed by an angiogenic
phase that founds the deep secondary network.
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Non-endothelial cells, such as astrocytes and retinal ganglion cells, provide key molecular and
structural cues for the developing retinal vasculature. Astrocytes, retinal ganglion cells and cells
in the inner nuclear layer express vascular endothelial growth factor (VEGF) [44]. In particular,
VEGF-A is secreted by astrocytes and retinal ganglion cells to promote new vessel formation and
to alleviate tissue hypoxia [45]. Apparently, VEGF-A originated from astrocytes are not required
for angiogenesis [45]. Nevertheless, astrocytes provide structural “paths” for endothelial cells to
use as a template as the vascular network expands [46]. Recently, the VEGF receptor Flt-1 was
demonstrated to regulate the extent of vascular growth and to promote the efficiency of endothelial tip
cells and their filopodia in establishing new vessels in spatially defined locations along the astrocyte
“template” [47]. VEGF isoforms have been shown to perform specific functions during the development
of the vasculature [48,49]. For example, the VEGF164 isoform (in the mouse; VEGF165 in humans) leads
to leukocyte adhesion in pathological, but not the physiological, neovascularization [50]. The complete
inhibition of intracellular VEGF signaling results in substantial suppression of normal vascular
development [50,51], suggesting that VEGF isoforms differently to VEGF164, and in combination,
may be sufficient to promote normal physiological neovascularization. Despite the high expression of
VEGF by retinal ganglion cells in the developing macula [52], the migration of endothelial cells and
astrocytes in the developing macula is inhibited and the fovea never develops a retinal vasculature [53].
This feature is probably due to the expression of high levels of anti-angiogenic factors, such as the
pigment epithelium-derived factor (PEDF) [54]. Axon guidance factors of the ephrin, semaphorin, slit
and netrin families may also have a role in regulating vascular growth in the macula through repellent
mechanisms [55].

3. The Role of Microglia in Retinal Vascular Development

In the retina, vascular patterning is essentially dependent on astrocytes in physiological
conditions [56]. Astrocytes secrete VEGF in response to hypoxia, guiding the endothelial cells.
Other cells also participate in the development of retinal vasculature. For example, modulating
the HIF/VEGF system in horizontal or amacrine cells changes the density of the adjacent capillary
plexus [57], demonstrating that these cells are also required for generating and maintaining the
intraretinal vasculature.

Microglia are the resident innate immune cells of the central nervous system with crucial functions
during development, and in normal and pathological conditions [58]. In the adult healthy, microglia
keep a fairly low turnover rate without contributions from cells of the periphery, such as circulating
monocytes or blood-derived macrophages [59]. These cells have important roles in health and disease
and in development, including the modulation of retinal angiogenesis [60]. Although microglia and
the vascular cells do not appear in the developing retina at the same time, the association of microglia
with the developing retinal vasculature has been described for many years [61]. This association is
supported by experimental data showing that pharmacological depletion of resident microglia from
the developing retina, decreases retinal vascular area and density, as the effect that is amended by the
reintroduction of microglial cells in the vitreous [60].

Microglia, present at sites of endothelial tip cell anastomosis, stimulate vessel sprouting. However,
physical contact between microglial and endothelial cells is not essential for the angiogenic stimulatory
effects of microglia, suggesting that the effects of microglial cells on retinal vasculature are mediated
via soluble factors secreted by these cells. Indeed, microglia secrete soluble factors that shape vascular
growth and branching [62], such as CD95L that activates CD95 on vessels, mediating vascular growth
through Src-family kinase and PI3K signaling [63] (Figure 1). Additionally, basigin-2, an extracellular
matrix metalloproteinase inducer, was reported to facilitate microglia-endothelial communication
through the secretion of insulin-like growth factor-1 (IGF-1) via the PI3K/AKT signaling pathway [64].
Recently, MAS, the receptor of angiotensin-(1-7), was shown to play an important role in microglia
recruitment and vascular growth in the developing retina [65]. The activation of MAS causes the
upregulation of Notch1, Delta-like ligand 4 and Jagged1 expression, members of the Notch signaling
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pathway (Figure 1). Indeed, this signaling pathway has been implicated in microglia localization and
interaction with endothelial cells during sprouting angiogenesis and on the regulation of the fate of tip
cells [66,67].
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Figure 1. Contribution of microglial cells to vascular development in the retina. (A) The activation of
the MAS receptor is involved in the recruitment of microglia and vascular growth in the developing
retina by activating the Notch signaling pathway. (A’) Microglial cells secrete CD95L that binds to its
receptor CD95 on endothelial cells. The phosphorylation of the death domain by Src-family kinase
results in the activation of PI3K signaling pathways, leading to the activation of AKT or ERK (A”).

Interestingly, systemic inflammation in the neonatal period is known to impair vessel development
by decreasing vessel extension, reducing capillary density and inducing localized overgrowth of
abnormal retinal vessels [68]. In addition to the astrocytes that are localized in the lesion of abnormal
vessels, activated inflammatory cells might cross the blood-retinal barrier and affect the normal
vascular growth in the developing retina [68]. The infiltration of immune cells may be responsible
for the increase in inflammation-related cytokines, such as tumor necrosis factor (TNF), interleukin
(IL)-1β and IL-12a. TSP-1 is an anti-angiogenic and pro-apoptotic factor of retinal angiogenesis during
development that antagonizes VEGF-mediated signaling [69]. TSP-1 was reported to be increased in
systemic inflammation-induced retinopathy [68]. Moreover, microglia are also implicated in abnormal
retinal vascular development during early postnatal inflammatory stress. These cells become reactive
and are found either around branch points of sprouting vessels or at tip cells [70]. These alterations
impact retinal neuronal function later in life, probably due to exacerbated microglial activity as reflected
by the increase in IL-1β, IL-6 and TNF, implicating microglia as the cellular player by which perinatal
inflammation causes visual deficits [70].
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4. Changes in Retinal and Choroidal Vascular Structure and Function in Age-Related Macular
Degeneration (AMD)

Age-related macular degeneration is a leading cause of vision loss among the elderly population in
developed countries [71]. The global prevalence of AMD is expected to increase from 196 million people
in 2020 to 288 million in 2040, as a consequence of exponential ageing [72]. This disease affects the central
region (macula) of the retina, as a result of photoreceptor/RPE/Bruch’s membrane/choriocapillaris
complex abnormalities. When the central area of the macula, named the foveal avascular zone (the area
containing the highest density of cones) is affected, the central field of vision of patients becomes
compromised [73,74]. Age-related macular degeneration is a degenerative disease that progresses
from early and intermediate AMD, which are mainly characterized by the accumulation of yellowish
deposits called drusen located beneath the RPE and abnormalities of the RPE, respectively, to late-stage
AMD defined by severe retinal and choroidal damage [75,76].

Age-related macular degeneration is a leading cause of vision loss among the elderly population in
developed countries [71]. The global prevalence of AMD is expected to increase from 196 million people
in 2020 to 288 million in 2040, as a consequence of exponential ageing [72]. This disease affects the central
region (macula) of the retina, as a result of photoreceptor/RPE/Bruch’s membrane/choriocapillaris
complex abnormalities. When the central area of the macula, named the foveal avascular zone (the area
containing the highest density of cones) is affected, the central field of vision of patients becomes
compromised [73,74]. Age-related macular degeneration is a degenerative disease that progresses
from early and intermediate AMD, which are mainly characterized by the accumulation of yellowish
deposits called drusen located beneath the RPE and abnormalities of the RPE, respectively, to late-stage
AMD defined by severe retinal and choroidal damage [75,76].

Although drusen biogenesis is not fully understood, some authors have suggested that drusen
result from the RPE or choriocapillaris damage. The specific mechanisms that connect RPE and
choroidal endothelial cells pathology and drusen formation may include oxidative injury from light
exposure or systemic factors, like compounds associated with smoking, lipofuscin accumulation,
complement activation, Bruch’s membrane-induced dysfunction and ischemia [32,77–84]. Drusen
are made up of a complex mixture of inflammatory mediators and lipids of retinal and choroidal
origin [77,85–89] and their number and size may be indicative of risk for some future vision loss. Small
drusen with well-demarcated borders (hard drusen) are usually neither age-related nor associated with
an increased risk for the development of neovascularization [90,91], while larger drusen (measuring
63 µm or greater) lacking distinct borders (soft drusen) predict progression to its advanced forms of
the disease [92].

Besides subretinal drusenoid deposits found in AMD, several histopathological studies reported
the presence of yellowish lesions in the fundus, which can be viewed using blue light. Although
these reticular pseudodrusen have some similarities in their composition compared to the subretinal
deposits, such as the presence of vitronectin, complement proteins, apolipoprotein E and unesterified
cholesterol, they lack immunoreactivity for protein markers of RPE, Müller glial and photoreceptor
cells [93,94]. Interestingly, the presence of reticular pseudodrusen has been associated with late
manifestations of AMD, including both geographic atrophy (nearly 20% of patients) and choroidal
neovascularization (about 43% of patients) [95,96]. The geographic (dry) form of AMD is hallmarked
by the presence of drusen and atrophy of the RPE. The exudative (wet) form is characterized by the
growth of abnormal and fragile vessels from the choroid (known as choroidal neovascularization)
under and into the macular portion of the retina. The leakage of blood and fluid from these newly
formed vessels (choroidal neovascular membranes) contribute to the damage of the macula and cause
central vision to become blurred and distorted. Although exudative (wet) AMD is less common (10 to
15% of affected individuals) than the dry form of the disease, it is associated with a faster sight decline
compared to dry AMD, in which the rate of vision loss is usually very gradual.

With the help of OCTA, that allows the study of retinal and choroidal microvasculature and en
face visualization of the blood flow at different anatomic retinal layers, without the need for the dye
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injection [97], it is becoming increasingly clear that AMD pathogenesis may extend beyond the outer
retina. In fact, although intermediate AMD is hallmarked by the presence of at least one large druse
(>125 µm) and abnormalities in RPE or both, it has been reported that the inner retinal vasculature
is also affected in intermediate AMD [98]. Eyes of AMD patients present reduced vascular density
in the superficial capillary plexus and decreased total vessel length and average vessel diameter in
the deep capillary plexus, suggesting an association between density changes and decreased vessel
number and caliber [98,99]. The complexity of the vasculature is also reduced in both capillary
layers, which suggests loss or reduced flow of vessels at the intermediated AMD stage [99]. Besides
alterations in retinal vessels, several other structural changes seem to be present in the inner retina in
the early stages of AMD, such as loss of GCL, and inner plexiform layer and ganglion cell complex
thickness [100–107]. In fact, a decrease in GCL thickness, in intermediate AMD, seems to be associated
with changes in the vasculature supplying the inner retina [99], resulting in ischemia and cell loss.
Ganglion cell complex thinning and photoreceptor cell damage (measured by the reflectivity of the
en face inner segment/outer segment junction disruption) were found in studies investigating the
relationship between ganglion cell complex thickness and photoreceptor alterations in eyes of patients
with intermediate AMD [101]. Moreover, decreased thickness of inner retinal layers and peripapillary
retinal nerve fiber layer correlates with AMD [100]. Although these reports suggest correlations
between outer and inner retinal changes, it is difficult to ascertain the exact relationship between
structural and vascular components of the inner retina in AMD.

With distinct approaches, several studies demonstrated the association between choroidal vascular
changes with ageing and early AMD. Fluorescein angiography showed a prolonged choroidal filling
phase in patients with early AMD [108], which is in agreement with the observations of reduced
choroidal perfusion caused by a change in diffusional characteristics of the Bruch’s membrane [109,110].
Choroidal thickness is negatively correlated with age [111], and fluorescein angiograms show reduced
blood volume and abnormal blood flow in eyes with nonexudative AMD [90,112]. A combination of
choriocapillaris luminal narrowing, loss of cellularity and thinning of the choroid has been proposed
as a potential cause of reduced blood flow [113]. Moreover, choriocapillaris dropout has been
well documented in AMD patients and is usually associated with morphological features of eyes
with AMD, including the accumulation of drusen, presence of reticular pseudodrusen and RPE
atrophy [32,114–116].

In the case of neovascular AMD, the disease is hallmarked by choroidal neovascularization and
associated manifestations such as pigment epithelial detachment, retinal pigment epithelial tears,
disciform scarring and intraretinal hemorrhages [117]. The choroidal neovessels breach the Bruch’s
membrane and invade sub-RPE and subretinal spaces. Clinical assessment of neovascular AMD
is based on visual acuity testing, Amsler grid testing and slit-lamp examination, and in certain
cases, to ascertain whether the disease is active, spectral-domain (SD)-OCT and fundus fluorescein
angiography (FFA) are used. In fact, with fundus fluorescein angiography (FFA), the gold standard
for the diagnosis of neovascular AMD, in combination with SD-OCT, that aids in both the diagnosis
and follow-up of the disease, choroidal neovascularization (CNV) can be classified into three types:
type 1 CNV, which involves the sub-RPE space and refers to vessels beneath the RPE (corresponds
to angiographically occult CNV); type 2 CNV, which also involves the sub-RPE space and refers to
neovessels growing from the choroid to the subretinal space between the neurosensory retina and the
RPE (corresponds to angiographically classic CNV); and, type 3 CNV, which appears as intraretinal
anastomosis originating in the deep capillary plexus of the retina [117].

5. The Contribution of Microglia to Retinal and Choroidal Neovascularization in AMD

In normal retinas, the continuous surveillance for the detection of noxious stimuli is performed by
microglia, which are mostly confined to the plexiform layers where they exhibit complex ramified
processes sensing the local retinal microenvironment [118,119]. These cells play an important role
in retinal homeostasis, contributing to neuroprotection against transient pathophysiological assaults.
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Microglia express a variety of markers, such as CD45, MHC-I, MHC-II and macrophage antigens,
including Iba-1, which suggests that microglia are a heterogeneous population of cells [118,120].
Inflammatory responses during retinal pathophysiology are coordinated by microglial cells [121].

Several mechanisms are known to be involved in endothelial dysfunction in the retina and
choroidal neovascularization in AMD, such as oxidative stress and chronic inflammation [122].
Nitric oxide is produced by three nitric oxide synthase isoforms (endothelial, neuronal and inducible)
that are expressed to variable degrees in the retina [123]. In the retina, nitric oxide is required for normal
visual function. Although nitric oxide is itself a radical, its reactivity is low compared to the oxidative
products, for example, dinitrogen trioxide (N2O3) and peroxynitrite (ONOO−), can be generated in the
presence of concomitant oxidative stress [124]. This can lead to nitrosative stress following the reaction
of these reactive products with molecules, such as proteins, lipids and DNA [125,126]. Oxidative
and nitrosative stress, as a result of an imbalance between the production of reactive oxygen and
nitrogen species, and antioxidant defense system plays a key role in the onset and progression of
AMD [127–131].

The retina is particularly prone to oxidative stress since it is the most oxygen-consuming tissue
in the body [132] and most of the oxygen consumption occurs in photoreceptor and RPE cells.
RPE cells are responsible for phagocytosing and shedding photoreceptor outer segments. With age,
the phagocytic capacity of RPE cells, that is essential for the renewal of photoreceptors (rods and
cones), is compromised, and incompletely degraded material is deposited in the form of lipofuscin in
Bruch’s membrane, contributing to drusen formation and Bruch’s membrane thickening [133–137].
Impaired clearance mechanisms of RPE, as a result of the excessive amount of reactive oxygen species
and oxidative damage to DNA, proteins and lipids, can contribute to increased lipofuscin (the main
constituent of drusen made of free-radical-damaged protein and fat) accumulation.

In an environment of oxidant stress, as it occurs in aged RPE, production and accumulation
of advanced glycation end product (AGEs) are enhanced, as well as, activation of AGEs receptors
(RAGE) [138], which are found in endothelial cells, pericytes, microglia, monocytes and macrophages,
among other cells [138]. Experimental studies have shown that exposure of RPE cells to RAGE ligands,
AGEs or S100B, can lead to retinal tissue damage, through RPE-mediated VEGF expression, leading
to pathologic angiogenesis [139,140]. Although the receptor for AGEs is not usually expressed in
high levels in the retina, it was found to be highly accumulated in RPE cells, photoreceptors and
choriocapillaris in advanced AMD [141,142]. RAGE is recognized as a pattern-recognition receptor,
and in addition to binding AGEs, can bind other proteins, such as high mobility group protein B1
(HMGB1), which can be released by necrotic cells passively, and by active secretion from macrophages,
natural killer cells, and dendritic cells. Interaction between RAGE and its ligands results in a wide range
of effects on several cellular pathways that are important in oxidative stress and inflammation [143–147].
RAGE activation, as a result of its interaction with S100B, was shown to contribute to CNV through
regulating angiogenic activity, immune cells (microglia/macrophages) activation and infiltration to the
damaged site, and upregulation of pro-inflammatory cytokines [148] (Figure 2).

It is known that drusen components, such as Aβ peptide 1–40 may be responsible for the increased
expression of inflammatory molecules and inflammasome components in the retina and RPE in AMD.
Furthermore, several cytokines (including TNF and IL-1β, IL-6 and transforming growth factor-beta
(TGF-β)) have an important role in CNV [149]. A recent report has shown that pro-angiogenic cytokines
and growth factors like VEGF and placental growth factor (PGF), which are produced by microglia
(and macrophages), are present in high levels in ocular fluids of AMD patients [150]. Blockage of these
molecules using antibodies reduces neovascularization and leakage, in a laser-induced CNV mouse
model [150]. Furthermore, IL-1β levels are strongly reduced after PGF and VEGF-A co-inhibition.
Abolishment of IL-1β signaling through Il1r1 deficiency leads to a reduction in the number of CNV
lesions both in a rat model of laser-induced CNV [151] and in a mouse model of AMD [152]. Altogether,
these data suggest that modulation of the pro-inflammatory state governed by microglia by decreasing
the expression of PGF can have an impact on choroidal neovessels formation. Moreover, increased
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levels of IL-6 have been found in a laser-induced CNV mouse model [153]. IL-6 receptor blockade
significantly reduced the expression of MCP-1/CCL2, VEGF and inhibited macrophage infiltration
into CNV areas [153]. TGF-β is mainly produced by RPE cells and pericytes [154] and has been
implicated in the regulation of endothelial cell proliferation (activated angiogenesis), in macrophage
infiltration, as well as in extracellular matrix (ECM) proteolytic remodeling (vascular remodeling) [155].
Increased levels of TGF-β are associated with retinal angiogenesis, through regulation of pro-angiogenic
factors [156,157]. TGFβR2-deficient retinal microglia induce abnormal responses to laser-induced
injury enhancing CNV, pointing out that the absence of TGF-β signaling in retinal microglia can
contribute to neurodegeneration and neovascularization [22].
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Figure 2. The role of microglial cells in choroidal neovascularization (CNV). Microglial AGE receptor
(RAGE) activation by RAGE ligands (AGEs, S100B and HMGB1) leads to the release of inflammatory
cytokines (IL-1β, TNFα, IL-6 and TGFβ) and production of ROS, ultimately leading to CNV (A); VEGF
secreted by RPE can activate microglial VEGFR1 and VEGFR2, which may play a role in the early and
late stages of CNV (B). Moreover, proangiogenic cytokines and growth factors like VEGF and PGF
produced by microglia contribute to CNV (B); interaction of CX3CR1 with its ligand CX3CL1 may play
a role in regulating microglia accumulation in the subretinal space, retinal degeneration and ultimately
to CNV (C).



Cells 2020, 9, 1217 10 of 21

There is substantial evidence suggesting that changes in microglial cells are not merely associated
with secondary phenomena in AMD. Besides the contribution of RPE dysfunction to the formation of
the subretinal drusenoid deposits, an alternative or concurrent mechanism for drusen genesis has been
proposed; an impaired recruitment of macrophages through a CC chemokine ligand 2 (CCL2) and
CC chemokine receptor 2-dependent (CCR2-dependent) pathway from the choroidal circulation may
hamper the clearance of age-related accumulation of debris in Bruch’s membrane [158].

Both CCL2- and CCR2-dependent macrophage recruitment plays a crucial role in the development
of experimental CNV, and ocular-infiltrating macrophages present a direct angiogenic ability [159].
Based on the fact that microglial cells are not the predominant sources of CCL2 in the retina, other
cells such as Müller glial cells promote the extravasation of monocytes through the retinal vasculature,
and immune cell recruitment may contribute to dysregulation in retinal para-inflammation and
AMD [159]. Nevertheless, microglial cells express the C-X-C-motif chemokine receptor 3 (CX3CR1;
receptor for CX3C chemokine ligand 1 (CXC3CL1)), another chemokine receptor that regulates the
responses of microglia during inflammation (Figure 2). It has been demonstrated that all retinal
microglial cells express CX3CR1, and these cells accumulate subretinally in affected areas of the
macula in AMD, suggesting the infiltration of the subretinal space by microglia cells [160]. However,
in CX3CR1-deficient mice, accumulation of microglial cells is also observed in the subretinal space at
sites of retinal degeneration and is associated with an exacerbation of CNV [161]. The recruitment of
activated microglia to the milieu of drusen and atrophic lesions are thought to contribute to drusen
formation, retinal degeneration and CNV [77,79,161–163]. Consistently, increased oxidative and
nitrosative stress is associated with increased numbers of Iba1+ macrophages/microglia in the retina
and choroid in AMD eye sections. These data are in agreement with observations that macrophages and
microglia recruitment in the macula are strongly associated with both early and advanced AMD [164].

In AMD the complement system activation is compromised at the level of retinal
microglia/macrophages, thus contributing to the onset and progression of AMD. Deposition of
complement, including C3, in affected areas of RPE/Bruch’s membrane, is associated with the
expansion of atrophic lesions. Interestingly, intravitreal injection of small interfering RNA (siRNA)
can suppress the local production of C3 by macrophages, increasing retinal complement activation
and degeneration [163]. Complement component 3 (C3d), which plays a key role in enhancing B
cell-specific immune responses [165], has also been recently described in the subretinal space of aged
CXCR5 knockout mice (CXCR5−/−) [166]. Aged CXCR5−/− mice present retinal degeneration, with
photoreceptor cell death, upregulation of TNF and breakdown of the outer blood-retinal barrier.
Moreover, these animals exhibit drusen-like deposits and the presence of Aβ and Cryab, two abundant
proteins that are present in Bruch’s membrane and choroidal tissues of AMD patients [167,168]. Aβ and
Cryab induce activation of the alternative complement cascade and are a target for microglia adaptive
immune responses [167,169].

Disturbance of the innate immune system in AMD is associated with dysregulated complement
and inflammasome activation and reactive microglia [170]. Increased levels of complement fragments
C3a and Ba, and cytokines (EGF, IL-1a2, IL-6, IL-8, ICAM1, MCP-1, among others) were found in
aqueous humor samples of patients with exudative AMD [171,172]. Moreover, bioactive fragments of
complement (C3a and C5a) present in drusen of AMD patients can induce VEGF expression, increasing
susceptibility to CNV formation [173].

Studies carried out on mice lacking the hypoxia response element (HRE) in the VEGF promoter
(Vegfδ/δ mice) showed that CNV is almost totally prevented [174]. Although VEGF has a positive
impact in wet AMD development, its receptors, VEGFR1 and VEGFR2, seem to play differential roles
in regulating the recruitment and accumulation of retinal microglia/macrophage in the subretinal
space. VEGFR1 plays an important role in the early stage of CNV, whereas both receptors play pivotal
roles at the later stages, suggesting that the angiogenic response involves the two receptors. These
data are associated with the regulation of two sub-populations: VEGFR1&2+CD45+CD11b+, which
represent circulating cells responding to the early stage of an experimental model of laser-induced



Cells 2020, 9, 1217 11 of 21

CNV, and VEGFR1&2−Iba1−, which represent the microglia in the retina. However, it remains to be
clarified whether the activation of the former is needed to recruit the latter to injured sites [174].

6. Modulation of Microglial Cells as a Potential Treatment for Neovascular AMD

In this review, we summarized the pieces of evidence supporting the contribution of microglial cells
and microglial-driven inflammation to neovascularization. Since inflammation and neovascularization
are closely related, several research teams tested if modulation of microglia activity might prevent
retinal neovascularization.

Ablation of microglial cells via PLX5622 administration, an inhibitor of the colony-stimulating
factor-1 receptor, results in a faster decrease of the CNV lesion size [175], suggesting a direct contribution
of microglia to the maintenance of the CNV lesion. A few other studies suggested that inhibition
of microglia-driven inflammation might be beneficial for the treatment of neovascular AMD, these
included the knockdown of tumor necrosis factor receptor-associated factor 6 (TRAF6), the inhibition
of sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC11) receptor and β2–adrenergic receptor.
TRAF6 facilitates the inflammatory response in microglia and macrophages and promotes tumor
angiogenesis via upregulating the expression of HIF-1a and VEGF [176]. Intravitreal administration of
TFAF6 siRNA inhibits the activation of microglia and macrophages, the formation of CNV and the
expression of HIF-1a and VEGF [177]. Sialic acid polymers prevent reactive oxygen species production
by human mononuclear phagocytes via the SIGLEC11 receptor. Intravitreal injection of a low-dose of
low molecular weight polysialic acid with an average degree of polymerization 20 (polySia avDP20) in
humanized transgenic mice expressing SIGLEC11 on mononuclear phagocytes reduced their reactivity
and vascular leakage induced by laser coagulation [178]. β2–adrenergic receptor signaling increases
Vegf and IL-6 RNA expression in mouse retinal microglia. Intravitreal injection of an β2–adrenergic
receptor antagonist reduces CNV by 35% and decreases IL-6 protein levels by approximately 50%,
these effects being partially due to the blocking of this pathway on microglial cells [179]. Moreover,
systemic delivery of IFN-β attenuates microgliosis and macrophage responses in the early stage
of the disease and reduces CNV size in the late phase [180]. Intravitreal administration of IL-4
attenuates laser-induced CNV due to specific IL-4 conditioning of microglia/macrophages. IL-4 induces
the expression of sFlt-1 by resident CD11b-positive retinal microglial cells and infiltrating myeloid
cells [181].

While it is still difficult to be certain about the best strategy to modulate microglial cells and to
prevent neovascularization, the treatment of neovascular AMD is currently performed by routine
intraocular injections of anti-VEGF agents, and to some extent by photodynamic therapy and
thermal laser [71]. The wide introduction of anti-VEGF therapy has led to an improvement in
the prognosis of patients affected by neovascular AMD, resulting in more favorable outcomes for a
previously blinding disease. Although all the previous benefits described, anti-VEGF therapy has its
caveats, such as the probability of ocular infection, increased ocular pressure, cataract, vitreous
hemorrhaging and retinal detachment [71]. Therefore, to overcome some of these limitations
and side-effects, several drugs are being tested as adjuvants to anti-VEGF regiments, including
a 2-mer pegylated DNA aptamer that selectively binds to PDGF-BB and PDGF-AB homodimers and
heterodimers [182] (NCT01940900), and steroids such as triamcinolone acetonide [183] (NCT01249937)
and dexamethasone [184] (NCT01243086). In contrast to anti-VEGF drugs that require regular eye
administrations, gene therapy medicines provide sustained delivery of the therapeutic protein or
peptide with a single-dose administration. It also has the advantage of being delivered to the target
cell avoiding potential side effects. Several gene therapy trials for neovascular AMD where the
transduced cell overexpresses an angiostatic protein to arrest CNV are ongoing. Amongst these
are gene therapy delivering sFLT01, a fusion protein composed of VEGF/PlGF (placental growth
factor) binding domain of human VEGFR1/Flt-1 (hVEGFR1) fused to the Fc portion of human
IgG1 through a polyglycine linker [185] (NCT01024998), the lentiviral vector expressing endostatin
and angiostatin [186] (NCT01301443), the adeno-associated viral vector expressing sCD59 [187]
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(NCT03585556) and the adenovirus vector coding PEDF [188] (NCT00109499). Short interference RNAs
(siRNA) have been also exploited as a treatment for neovascular AMD. Clinical trials using single
intravitreal injections of a chemically modified siRNA targeting VEGFR-1 (Sirna-027, also known as
AGN211745), were performed. However, the last clinical study terminated early due to company
decision (non-safety related) (NCT00363714; NCT00395057) [189].

7. Conclusions

In this review, we summarized the substantial research effort to identify and study new molecular
pathways responsible for the vascular alterations observed in AMD. Although our knowledge is
limited, it is becoming clear that the resident immune cells of the retina, the microglial cells, do mediate
processes related to neovascularization in AMD. Evidence suggests that the contribution of microglial
cells might be either indirectly through the secretion of pro-inflammatory cytokines or directly via the
release of angiogenic factors. A better understanding of the role of microglia in neovascularization
will allow us to develop new therapeutic modalities based on the modulation of microglia physiology
and reactivity. It is then crucial to clarify how, when and for how long we should modulate microglial
activity, and only new studies in innovative disease models will allow us to answer these questions.

The development of groundbreaking innovations in diagnostic technologies, such as OCTA,
that allows unprecedented high-resolution visualization of alterations in the choroidal and retinal
vasculature, in combination with new therapeutic approaches, some of them based on the modulation
of microglial cells, open new perspectives for early disease detection methods and treatment options
thus allowing the prevention of macular degeneration and consequent vision loss.
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