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Abstract. The frame Sc(L) generated by closed sublocales of a
locale L is known to be a natural Boolean (“discrete”) extension of
a subfit L; also it is known to be its maximal essential extension.
In this paper we first show that it is an essential extension of any
L and that the maximal essential extensions of L and Sc(L) are
isomorphic. The construction Sc is not functorial; this leads to
the question of individual liftings of homomorphisms L → M to
homomorphisms Sc(L) → Sc(M). This is trivial for Boolean L and
easy for a wide class of spatial L,M . Then, we show that one can
lift all h : L → 2 for weakly Hausdorff L (and hence the spectra of
L and Sc(L) are naturally isomorphic), and finally present liftings
of h : L → M for regular L and arbitrary Boolean M .

Introduction

The trivial discretization (X,P(X)) → (X, τ) of a topological space
allows dealing, inside the category of spaces, with general maps X → Y
(or maps with a weaker continuity) in parallel with continuous maps
(X, τ) → (Y, θ). This has in the point-free context a not quite so trivial
counterpart in the extension L → Sc(L) of a subfit frame to a certain
Boolean algebra.

Let us explain in some detail what Sc(L) is about. It is the lattice of
sublocales of L join-generated by the closed ones, which appeared, first,
in connection with comparison of fitness and subfitness and in the study
of scattered frames ([4]), and later turned out to play a basic role as a
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discretization tool ([14, 15]). This lattice Sc(L) is, for any L, a frame

(although naturally included in the coframe S(L) of all sublocales).
Moreover, for subfit frames (a very large class of frames, a counterpart
of a class of spaces more general than T1), Sc(L) is Boolean (see [15]).
Being Boolean is in the point-free context the natural counterpart of
discreteness in spaces, and Sc(L) indeed turned out to be a satisfactory
tool for dealing, e.g., with rings of real functions (continuous, semicon-
tinuous, general) in the point-free context; for instance, unlike other
representations it is conservative in the sense that it precisely extends
the theory of classical spaces ([14]). Furthermore, for subfit frames the
natural extension L → Sc(L) is characterized by being the maximal

essential extension (see [3]), as is for TD-spaces the extension of τ to
P(X) (see 3.2 below).

Unlike the discretization of spaces, the construction Sc(L) is not func-
torial. In fact, it is not to be expected, regarding the non-functoriality
of the standard Booleanization ([5]), to which it is, in a way, related.
Therefore we have to put up with individual extensions of frame ho-
momorphisms h : L → M to commutative diagrams

Sc(L)
h̃ // Sc(M)

L

OO

h // M

OO
.

We call them liftings; the liftings for some classes of homomorphisms
constitute the main topic of this article.

After Preliminaries introducing the necessary concepts and notation,
we discuss in Section 2 the behavior of the Sc(L) for general L extending
what is known for the subfit case. It is always an essential extension,
although it is maximal such (and hence Boolean) only for subfit L.
Also, we show that the maximal essential extensions of L and Sc(L)
are always isomorphic. Then, in Section 3, we compare the classical
spaces and the point-free ones from a new perspective and explain the
concept of lifting. In Section 4 we show that, in the broad context of
weakly Hausdorff (and also other) frames, the homomorphisms L → 2
always lift, which results in the isomorphism of the spectra of L and
Sc(L). Finally, in Section 5, we prove the liftability of homomorphisms
for most (but not quite all) spatial frames and, on the other hand,
for Boolean sources resp. targets. The last then results in a canonical
connection between Sc(L) and the standard Booleanization of L.
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1. Preliminaries

1.1. Notation. For a subset A of a poset (X,≤) we write

↑A = {x ∈ X | x ≥ a for some a ∈ A}

and abbreviate ↑{x} to ↑x. A join (supremum) of a subset A ⊆ (X,≤),
if it exists, will be denoted by

∨
A, and we write a ∨ b for

∨
{a, b};

similarly we write
∧
A and a ∧ b for meets (infima). The smallest

element of a poset (the supremum
∨

∅), if it exists, will be denoted by
0, and the largest element (the infimum

∧
∅) will be denoted by 1. The

dual of a poset X, that is, the poset with the order on X reversed, will
be denoted by Xop.

1.1.1. Adjoint maps. If X, Y are posets we say that monotone maps
f : X → Y and g : Y → X are adjoint, f to the left and g to the right,
if

f(x) ≤ y ⇐⇒ x ≤ g(y).

Recall that this is characterized by the pair of inequalities fg(y) ≤ y
and x ≤ gf(x), and that f resp. g preserves all the existing suprema
resp. infima. Furthermore, if X and Y are complete lattices then a
monotone map f : X → Y preserves all suprema iff it is a left adjoint,
and a monotone map g : Y → X preserves all infima iff it is a right
adjoint.

1.2. Pseudocomplements, complements, Boolean algebras. The
pseudocomplement of an element a in a lattice L, that is, the largest
element b such that b ∧ a = 0 (if it exists) will be denoted by a∗ (thus,
x∧ a = 0 iff x ≤ a∗). A complement of a is a b such that b∧ a = 0 and
b ∨ a = 1. If it exists we say that a is complemented. In distributive
lattices (which will be always the case in this article), every comple-
ment is a pseudocomplement. Hence, we will use the notation a∗ also
for complements.

A Boolean algebra is a distributive lattice in which every element is
complemented. For any distributive lattice with pseudocomplements
we have the Booleanization

βL = (a 7→ a∗∗) : L → BL = {a∗∗ | a ∈ L},

a homomorphism the target of which is a Boolean algebra.

1.3. Frames and coframes. A frame, resp. coframe, is a complete
lattice L satisfying the distributivity law

(
∨

A) ∧ b =
∨
{a ∧ b | a ∈ A}, (frm)

resp. (
∧

A) ∨ b =
∧
{a ∨ b | a ∈ A}, (cofrm)
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for all A ⊆ L and b ∈ L; a frame homomorphism preserves all joins and
all finite meets. The lattice Ω(X) of all open subsets of a topological
space X provides an example of a frame, and an example of a frame
homomorphism Ω(f) : Ω(Y ) → Ω(X) is obtained from a continuous
f : X → Y by setting Ω(f)(U) = f−1[U ]. Thus we obtain a functor
Ω: Top → Frmop.

1.3.1. Spectrum. Recall that the functor Ω has a right adjoint
Σ: Frmop → Top, the spectrum defined by

Σ(L) = ({p | p : L → 2}, {Σa | a ∈ L}), Σh(p) = p · h,

where 2 = {0, 1} is the two-element Boolean frame and Σa = {p | p(a) =
1}. The p : L → 2 are often referred to as points of L, and they are in a
one-to-one correspondence with the primes of L (elements a such that
x∧ y ≤ a only if either x ≤ a or y ≤ a) given by the formula pa(x) = 0
iff x ≤ a.

1.3.2. In a frame, (cofrm) generally does not hold, similarly (frm)
does not hold in a coframe. But

if b is complemented, then both (frm) and (cofrm) hold for b in any

frame and any coframe

(see, e.g., [7, 11]).

1.4. The Heyting structure. The equality (frm) states that the
maps (x 7→ x ∧ b) : L → L preserve all joins. Hence by 1.1.1 every
frame is a Heyting algebra with the Heyting operation → satisfying

a ∧ b ≤ c iff a ≤ b → c.

The pseudocomplements in a frame are obviously given by a∗ = a → 0.

1.5. The coframe of sublocales. A sublocale of a frame L is a subset
S ⊆ L such that

• for every M ⊆ S the meet
∧
M is in S, and

• for every s ∈ S and every x ∈ L, x → s is in S.

The category Loc = Frmop can be thought of as a category of
generalized spaces. It is of advantage to treat it as a concrete category
with arrows opposite to frame homomorphisms h : L → M represented
as their right Galois adjoints f : M → L; these will be referred to as
localic maps. In emphasizing this point of view, we often speak of
frames as locales. From this perspective, the sublocales are indeed the
sub-locales in the sense that they are precisely the subsets for which
the embeddings are extremal monomorphisms in the category Loc.
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The system S(L) of all sublocales of L, ordered by inclusion, is a
complete lattice with

∧
Si =

⋂
Si and

∨
Si = {

∧
M | M ⊆

⋃
Si}.

The least sublocale
∨

∅ = {1} is denoted by O and referred to as
the void sublocale1. It is a fundamental fact that the lattice S(L) is a
coframe ([8],[11]).

1.5.1. Open and closed sublocales. With each element a ∈ L there
is associated an open sublocale and a closed sublocale, respectively

o(a) = {x | x = a → x} = {a → x | x ∈ L} and c(a) = ↑a.

Open and closed sublocales correspond precisely to the open and closed

parts, respectively, in Isbell’s pioneering article [7]. Furthermore, in the
spatial case L = Ω(X) they correspond to open and closed subspaces
of X. They are complements of each other in S(L). We have

o(0) = O, o(1) = L, o(
∨

ai) =
∨

o(ai), o(a ∧ b) = o(a) ∧ o(b), and

c(0) = L, c(1) = O, c(
∨

ai) =
∧

c(ai), c(a ∧ b) = c(a) ∨ c(b).

1.6. Subfitness, fitness, regularity. A frame is subfit if for all a and
b,

a � b =⇒ ∃c (a ∨ c = 1 6= b ∨ c).

For spaces this is a separation axiom slightly weaker than T1. The
original (and equivalent) definition in [7] characterizes subfitness by
the property that

each open sublocale is a join of closed sublocales. (1.6.1)

A frame is fit if for all a and b,

a � b =⇒ ∃c (a ∨ c = 1, c → b � b),

A frame is regular if for every a, a =
∨
{x | x∗∨a = 1}; note that this

corresponds to the classical regularity: a space X is regular iff Ω(X) is
regular in the just defined sense.

1.7. The frame Sc(L). Set

Sc(L) ≡ {S ∈ S(L) | S is a join of closed sublocales of L}.

Somewhat surprisingly, this set of sublocales is always a frame (see
[15, 4]). For subfit L (and only for them), Sc(L) is a Boolean algebra
(see [15]).

1This may sound odd but it makes good sense; if L happens to have points, they
are sublocales of the form {a, 1} with prime a 6= 1.
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By the formulas in 1.5.1, o constitutes an embedding L → S(L).
Furthermore, by (1.6.1), for subfit frames we have an embedding

o : L → Sc(L) (1.7.1)

and although the embedding Sc(L) ⊆ S(L) in general does not preserve
finite meets, since the intersection o(a)∩o(b) = o(a∧b) in S(L) is open,
it is in Sc(L) and hence also the meet in this frame. Hence, (1.7.1) is a
frame embedding.

1.7.1. From [15] recall that

• for a subfit L, Sc(L) is the (co)Booleanization of S(L), and
• for a T1-space X, Sc(Ω(X)) picks out precisely the subspaces of
X among all the sublocales of Ω(X).

1.8. The axiom TD. This is a separation axiom between T0 and T1

(defined first in [1]). It requires that

∀x ∈ X ∃ open U ∋ x such that U r {x} is open. (TD)

For more about frames and locales see, e.g., [8, 11].

2. Sc(L) as an essential extension

2.1. A monomorphism m : A → B in a general category is called an
essential extension if every morphism f : B → C such that f ·m : A →
C is a monomorphism is itself a monomorphism. If m : A → B is an
essential extension we say that A is essential in B. We are interested
in essential extensions in the category of frames, and for comparison
also in the category of distributive lattices DLat.

A maximal essential extension of L is an essential extension m : L →
M such that for every essential extension n : L → N there is precisely
one morphism g : N → M such that g · n = m.

From [3] let us quote the following facts (also based on the results
from [17, 2]).

(2.1.1) In DLat and Frm, m : L → M is essential iff for each pair

x < y in M there is a pair a < b in L such that x∧m(b) ≤ m(a)
and y ∨m(a) ≥ m(b).

(2.1.2) In DLat and Frm, every L has a maximal essential extension,

and an essential extension m : L → M is maximal iff M is

Boolean.

(2.1.3) The maximal essential extension of a frame in Frm coincides

with its maximal essential extension in DLat.
(2.1.4) If L is subfit then o : L → Sc(L) is a maximal essential exten-

sion.
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2.2. Computing in Sc(L). (1) The embedding of Sc(L) into S(L) pre-
serves joins but not meets. However, if an element of Sc(L) is comple-
mented in S(L) and if the complement sits in Sc(L) then it is comple-
mented in Sc(L). In particular, this holds for the closed sublocales.

(2) By (1) we have (
∨

↑bi) ∩ ↑a =
∨
(↑bi ∩ ↑a) =

∨
↑(bi ∨ a) ∈ Sc(L)

so that for an S ∈ Sc(L) the meet S ∩ ↑a from S(L) is also the meet in
Sc(L).

(3) We have the join ↑a∨↑b = ↑(a∧b) both in S(L) and Sc(L). Indeed:
↑a ∨ ↑b = {u ∧ v | u ≥ a, v ≥ b} and for x ≥ a ∧ b we have x =
(x ∨ a) ∧ (x ∨ b).

2.3. Lemma. Let L be an arbitrary frame. Then in the context of

distributive lattices,

(a 7→ ↑a) : L → Sc(L)
op = M

is an essential extension preserving, moreover, all joins.

Proof. (Use 2.1 and 2.2.) It is a lattice embedding preserving all joins:

↑
∨
ai =

⋂
↑ai =

∧
Sc(L)

↑ai =
∨
M

↑ai,

↑(a ∧ b) = ↑a ∨Sc(L) ↑b = ↑a ∧M ↑b.

Now let S <M T , that is, T ( S. Hence, there is an x such that
↑x ⊆ S and ↑x * T so that there exists an a > x such that a /∈ T and
as ↑a ⊆ ↑x, ↑a ⊆ S. Set b =

∧
{y ∈ T | y ≥ a}. Then b ∈ T , and as

a /∈ T , a < b. Now we have, by the definition,

↑a ∩ T ⊇ ↑b, that is, ↑a ∨M T ≥M ↑b,

and since ↑a ⊆ S we also have that

S ∨ ↑b ⊇ ↑a, that is, ↑b ∧M S ≤M ↑a,

and we can use (2.1.1). �

2.4. Theorem. For an arbitrary frame L, L and Sc(L) have the same

maximal essential extension, up to isomorphism. Hence in particular,

for any L, the maximal essential extension of Sc(L) is isomorphic to

B(S(L))op.

Proof. Recall 2.1.
Consider a maximal essential extension B of Sc(L), m : Sc(L) → B,

and the composed embedding

L
(a 7→↑a)
−−−−→ Sc(L)

op m
−−−→ Bop.

By 2.3 it is essential and since Bop is Boolean, it is a maximal essential
extension. As a Boolean algebra, B is isomorphic to Bop. �
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2.5. More precisely. Let us describe the situation in more detail.
Consider the following diagram in which the dashed arrows make sense
only in the subfit case.

S(L)op
S 7→S∗∗

// B(S(L))op

L
(a 7→↑a)

//

(a 7→↑a)(a 7→↑a)

==

o

!!

Sc(L)
op

⊆

OO

j //

S 7→S∗

��

Bop

∼=

OO

∼=

zz
Sc(L)

We see that the maximal essential extensions of L and of Sc(L) are
isomorphic only because a Boolean algebra is isomorphic, by comple-
mentation, with its opposite. The embeddings of L into B(S(L))op and
of Sc(L) into B are in fact connected by a contravariant isomorphism.

If L is subfit (and only in that case), j is the identity.

3. Essential extension of spaces;

subfit frames as generalized spaces, lifting

3.1. By [15, Theorem 4.6], for a T1-space (X, τ), Sc(τ) ∼= P(X) and
hence j : τ ⊆ P(X) is a maximal essential extension.

3.2. We can prove it directly, and for more general topologies.

Proposition. If τ is a TD topology on X then P(X) is a maximal

essential extension of τ .
In fact, P(X) is a maximal essential extension of τ if and only if τ

is TD.

Proof. Since P(X) is Boolean, the point is in the essential extension,
the maximality comes for free.

The essential extension of τ to P(X) is equivalent to the condition
(EE) (recall 2.1) that for any two subsets A,B ⊆ X such that A ( B
there are U, V ∈ τ such that U ( V , A ∩ V ⊆ U and B ∪ U ⊇ V .

(EE) ⇒ TD: For an arbitrary x ∈ X set A = ∅ and B = {x}. Take the
U, V from (EE). Then we have, in particular, {x} ∪ U ⊇ V ) U which
yields U = V r {x} and x ∈ V .
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TD ⇒ (EE): Let A ( B. Choose an x ∈ B r A and an open V ∋ x
such that U = V r {x} is open. Then A∩ V ⊆ U and B ∪U ⊇ V . �

3.3. A topological space (X, τ) can be viewed as being carried by the
Boolean algebra P(X) instead of the set X, that is, as a pair (P(X), τ)
with τ a subframe of P(X); since maps f : X → Y are in a natural one-
one correspondence with Boolean homomorphisms g : P(Y ) → P(X)
(setting g(M) = f−1[M ]) and since the P(X)’s are, up to isomor-
phism, precisely the complete atomic Boolean algebras, the category
of classical TD spaces can be viewed as follows.

The objects are

• pairs (B,L) with B atomic complete Boolean algebras and L ⊆
B frames that are essential parts

and the morphisms (B1, L1) → (B2, L2) are

• Boolean homomorphisms g : B1 → B2 such that g[L1] ⊆ L2 (or,
the pairs (g, h) where h is the restriction).

3.4. Now a subfit frame L can be viewed, by [3], as a

• pair (B,L) with B an arbitrary complete Boolean algebra and
L ⊆ B a subframe that is an essential part.

In this sense (replacing “atomic” by “arbitrary”) we see (subfit) frames
as immediate generalizations of classical topological spaces and one
can contemplate the category immediately extending the representa-
tion from 3.3 above.

However, the morphisms are not simply the frame homomorphisms
h : L1 → L2. They are pairs (g, h) with commuting squares

B1
g // B2

L1

⊆

OO

h // L2

⊆

OO

In such a commuting square, the homomorphism g is uniquely deter-
mined by h (see also 5.1 below; of course also h is uniquely determined
by g). This yields a formal condition (which can be non-trivial) on
h, namely being the restriction of an “L1L2-continuous” g : B1 → B2.
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When returning to the natural representation of Bi as Sc(Li) this con-
dition means that h can be extended to a commutative diagram

Sc(L)
h̃ // Sc(M)

L

oL

OO

h // M

oM

OO
. (lift)

We will speak of a lifting of h.

4. The spectrum of Sc(L)

In this section we will show that for a large class of frames L every
homomorphism L → 2, i.e., every point of L, lifts. In other words,
we will show that for such frames the spectrum of Sc(L) is naturally
isomorphic with that of L.

4.1. Proposition. Let j : L ⊆ M be a subframe embedding. Let all

the primes in L be maximal and let j[max(L)] ⊆ max(M). Then the

prime elements of M are all maximal, and coincide with the maximal

elements of L.

Proof. For the right adjoint j∗ of j we have jj∗(x) ≤ x. Let p ∈ M be
prime. Since right adjoints preserve primeness, j∗(p) is prime and hence
maximal in L, hence jj∗(p) is maximal in M and since jj∗(p) ≤ p 6= 1,
p = jj∗(p) and it is maximal. �

4.2. Proposition. Let L ⊆ M be a subframe such that

(1) each s ∈ L is complemented in M , and

(2) for every x ∈ M , x =
∨
{s∗ | s ∈ L, s∗ ≤ x}.

Then each maximal element of L is maximal in M .

Proof. Let p be maximal in L and let p < x < 1 in M . Then there is
an s ∈ L such that

s∗ ≤ x and s∗ � p.

Suppose p ∨ s 6= 1. This happens in L and hence p = p ∨ s, that is,
s ≤ p. Then, however, 1 = s ∨ s∗ ≤ p ∨ x = x, a contradiction.

Hence p ∨ s = 1, and s∗ = s∗ ∧ (p ∨ s) = s∗ ∧ p, hence s∗ ≤ p, a
contradiction again. �
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4.3. Some Hausdorff type axioms. In the following theorem we will
consider frames in which every prime element is maximal.

Recall the numerous Hausdorff type axioms that are variants of the
Dowker-Strauss ([6])

(S ′
2) if a ∨ b = 1 and a, b 6= 1 then there are u, v such that u � a,

v � b and u ∧ v = 0

(Johnstone and Sun Shu-Hao [9], Paseka and Šmarda [10], weakly
Hausdorff in [11]). In particular, Johnstone and Sun Shu-Hao require
that

(T ′
2) if 1 6= a � b then there are u, v such that u � a, v � b and

u ∧ v = 0.

Under subfitness they are all equivalent (see [12, Proposition 4]). Let us
call the resulting conjunction naturally Hausdorff (note that this con-
junction is conservative – see [6] –, that is, a space (X, τ) is Hausdorff
iff τ is naturally Hausdorff).

4.4. An element p 6= 1 is semiprime if u ∧ v = 0 implies that either
u ≤ p or v ≤ p ([16]).

Lemma. (1) In a naturally Hausdorff frame each semiprime element

is maximal.

(2) In a fit frame, every prime element is maximal.

Proof. (1) Use (T ′
2). Let p be semiprime and let p < x 6= 1. Then there

are u, v such that u � x, v � p and u∧ v = 0. By the weak primeness,
u ≤ p < x, a contradiction.

(2) Let L be fit, p prime and p < x. Then there is a c such that
c∨ x = 1 and c → p � p. Since c∧ (c → p) ≤ p we have c ≤ p < x and
x = c ∨ x = 1. �

Note. We have seen that the fact that semiprime elements are maxi-
mal follows from (T ′

2) alone, without using subfitness. This is another
Hausdorff type axiom, introduced by Rosický and Šmarda in [16].

4.5. Theorem. Let L be naturally Hausdorff or fit. Then the embed-

ding o : L → Sc(L) induces an isomorphism

|Σ(L)| ∼= |Σ(Sc(L))|.

Proof. The embedding o satisfies the condition of 4.2, hence it sends
maximal elements to maximal ones. Use 4.1. �

4.5.1. Note. In fact we have proved more, namely that, moreover, the
spectrum Σ(Sc(L)) is T1.



12 R. N. BALL, J. PICADO, AND A. PULTR

5. Some special liftings; in particular the Boolean case

5.1. Let Li, i = 1, 2, be sober subfit topologies on sets Xi. Then every
frame homomorphism h : L1 → L2 is Ω(f) for a continuous map. By

the observation in 3.3, hence, every h : L1 → L2 lifts to a Boolean h̃.
By Isbell’s spatiality theorem in [7] (see also[13]) this also yields the

following

Observation. For compact sober subfit frames L1 and L2, every frame

homomorphism h : L1 → L2 lifts.

5.1.1. Note. This shows that the problem of functoriality of Sc cannot
be approached by extra conditions on h that could be non-trivial for
continuous maps (openness, closedness, perfectness, etc.). In the (sober
subfit) spatial case everything lifts.

5.2. There is of course the trivial case with L1 Boolean. Then h lifts
to oL2

· h · o−1
L2
.

5.3. A less trivial case we have encountered in Section 4: under very
weak conditions on L every (point) h : L → 2 lifts. This will be seen
from another perspective shortly.

5.4. To get further let us start with an explicit formula for the lift
mapping.

Proposition. The unique candidate for the h̃ in the diagram (lift) in
3.4 is given by the formula

h̃(S) =
∨
{↑h(a) | ↑a ⊆ S}. (5.4.1)

Proof. If the diagram commutes and h̃ is a homomorphism we have

h̃(↑a) = h̃(o(a)∗) = (h̃(o(a))∗ = o(h(a))∗ = ↑h(a)

and hence

h̃(S) = h̃(
∨
{↑a | ↑a ⊆ S}) =

∨
{↑h(a) | ↑a ⊆ S}. �

5.4.1. Proposition. The mapping h̃ from (5.4.1) preserves meets.

Proof. Since h̃ is obviously monotone, we have h̃(S)∧ h̃(T ) ≥ h̃(S∧T ).
Now, although the meet in Sc(L) does not generally coincide with the

meet in S(L) (which is the intersection), we have in Sc(L), ↑a ∧ ↑b =
↑a ∩ ↑b = ↑(a ∨ b) simply because the intersection is in Sc(L). Hence
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we have, since Sc(L) is a frame with the same joins as in S(L),

h̃(S) ∧ h̃(T ) =
∨
{↑h(a) | ↑a ⊆ S} ∧

∨
{↑h(b) | ↑b ⊆ T}

=
∨
{↑h(a) ∧ ↑h(b) | ↑a ⊆ S, ↑b ⊆ T}

=
∨
{↑(h(a) ∨ h(b)) | ↑a ⊆ S, ↑b ⊆ T}

=
∨
{↑h(a ∨ b) | ↑a ⊆ S, ↑b ⊆ T}

≤
∨
{↑h(c) | ↑c ⊆ S ∧ T} ≤ h̃(S ∧ T ). �

5.4.2. Thus, one has to deal with two questions. For a particular h,

• does the h̃ from (5.4.1) commute in the diagram (lift), and
• does it preserve arbitrary joins?

5.4.3. Observation. The diagram (lift) commutes iff

↑h(a)∗ =
∨
{↑h(x) | x ∨ a = 1}. (5.4.3)

(Indeed, we have

h̃(o(a)) =
∨
{↑h(x) | ↑x ⊆ o(a)} =

∨
{↑h(x) | x ∨ a = 1}.)

5.5. The Boolean target. If M is Boolean consider, to simplify the
computing, the g in the diagram

Sc(L)
h̃ //

g

##

Sc(B)

o−1

M

��
L

oL

OO

h // M

We have o(a∗) = o(a)−1 = ↑a and hence o−1(↑a) = a∗. Thus,

g(↑a) = o−1
M (h̃(↑a)) = o−1

M (↑h(a)) = h(a)∗,

g(S) =
∨
{h(x)∗ | ↑x ⊆ S},

(5.5.1)

and hence, in particular, g(o(a)) =
∨
{h(x)∗ | x ∨ a = 1} and the

condition (5.4.3) transforms to

h(a) =
∨
{h(x)∗ | x ∨ a = 1}. (5.5.lift)

5.5.1. Proposition. If M is Boolean then h̃ is a frame homomor-

phism.

Proof. h̃ preserves finite meets generally.
Now let us prove that g preserves joins. Obviously it suffices to prove

that it preserves joins of closed sublocales, that is, that

g(
∨

↑ai) =
∨
{h(x)∗ | ↑x ⊆

∨
↑ai} =

∨
g(↑ai) =

∨
h(ai)

∗ = (
∧

h(ai))
∗.
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Since g(
∨

↑ai) ≥
∨
g(↑ai) is trivial, it suffices to prove that

∀x such that ↑x ⊆
∨

↑ai, h(x)∗ ≤ (
∧

h(ai))
∗.

Hence let ↑x ⊆
∨

↑ai. Then x =
∧

j yj for some yj ≥ aj, hence

h(x) ≥ h(aj) for all j, hence h(x)∗ ≤ h(aj)
∗ for all j, and finally

h(x)∗ ≤ h(aj)
∗ ≤ (

∧
h(ai))

∗. �

5.5.2. Theorem. Let L be regular and let M be Boolean. Then every

h : L → M lifts.

Proof. In view of 5.5.1 it suffices to prove the equation (5.5.lift).
If x∨ a = 1 then h(x)∗ = h(x)∗∧ (h(x)∨h(a)) = h(x)∗∧h(a), hence

h(x)∗ ≤ h(a), and we have h(a) ≥
∨
{h(x)∗ | x ∨ a = 1}. On the other

hand, if L is regular we have

h(a) = h(
∨
{y | y ≺ a}) =

∨
{h(y) | y∗ ∨ a = 1}

≤
∨
{h(y∗∗) | y∗ ∨ a = 1} ≤

∨
{h(x∗) | x ∨ a = 1}

≤
∨
{h(x)∗ | x ∨ a = 1}. �

5.5.3. Notes. (1) In particular we have a homomorphism g in

Sc(L)

g

&&
L

oL

OO

(x 7→x∗∗)
// B(L)

It is given by the formula

g(S) = (
∧

S)∗.

(Indeed, by (5.5.1),

g(S) =
∨
{x∗ | ↑x ⊆ S} = (

∧
{x | ↑x ⊆ S})∗ = (

∧
S)∗.)

(2) For the two-element Boolean algebra 2 = {0, 1} we have already
proved the lifting of any h : L → 2 in Section 4, for L with weaker
properties than regularity. Let us look at it from the now discussed
perspective.

We have a maximal p in a subfit L, and the mapping h is given by
h(x) = 1 iff x ≤ p. If h(a) = 0 then trivially

∨
{h(x)∗ | x∨ a = 1} = 0.

Now if h(a) = 1, we have a 6= p and hence there is a c such that
c ∨ a = 1 and c ∨ p 6= 1. By maximality, c ∨ p = p, hence c ≤ p so that
h(c) = 0 and h(c)∗ = 0.
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5.6. Example. Let L be the cofinal topology on an infinite set X
(consisting of ∅ and all complements of finite subsets). Here, p = ∅ is
prime. Consider the homomorphism h : L → 2 defined by

h(x) = 1 iff x � p (that is, x 6= 0).

Consider any element ξ ∈ X and a = X r {ξ}. Then h(a) = 1 and if
x∨ a = 1 then x 6= 0, hence h(x) = 1 and h(x)∗ = 0. Thus, (5.5.lift) is
not satisfied.

This trivial example shows several facts.

(1) There are plenty of homomorphisms that do not lift.2 Moreover,
our example is spatial; thus in 5.1 above the assumption of
sobriety was essential.

(2) Also, since L is T1 and hence subfit, we see that the assumption
of regularity in 5.5.2 cannot be relaxed to subfitness.

(3) On the other hand, by 5.5.1 h̃ is a frame homomorphism; thus,
the commutativity question in 5.4.2 is not included in the frame
homomorphism one.

(4) In Section 4 we obtained the spectrum result under various
conditions of Hausdorff type, or fitness. Again, we see that we
cannot go down to subfitness (or even to T1 in the spatial case –
the example reminds us of the fact that T1 does not necessarily
make the primes maximal). Also, it shows that the step from
subfitness to fitness jumps far over T1.
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CORRIGENDUM

Richard N. Ball, Jorge Picado and Aleš Pultr. 2019. Some aspects of
(non) functoriality of natural discrete covers of locales, Quaestiones Mathematicae

42(6) (2019), 249–263. (https://doi.org/10.2989/16073606.2018.1485756)

Proposition 5.5.1. (page 12) If M is Boolean then h̃ is a frame homomorphism.

should be

If M is Boolean and if h is complete (that is, if it preserves all meets) then h̃ is a
frame homomorphism.

Proof. The last sentence of the proof

Then x =
∧

j yj for some yj ≥ aj , hence h(x) ≥ h(aj) for all j, hence h(x)
∗ ≤ h(aj)

∗

for all j, and finally h(x)∗ ≤ h(aj)
∗ ≤ (

∧
h(ai))

∗.

can then be replaced by:

Then x =
∧

j yj for some yj ≥ aj , hence h(x) =
∧

j h(yj) ≥
∧

i h(ai) and h(x)∗ ≤

(
∧

i h(ai))
∗.

Theorem 5.5.2. Let L be regular and let M be Boolean. Then every h : L −→ M

lifts.

should be

Let L be regular and let M be Boolean. Then every complete (that is, every open)
h : L −→ M lifts.

Notes 5.5.3. (1) In particular we have a homomorphism g in ...

should be

(1) For a general frame homomorphism h, the proof of 5.5.1 works if the joins are

finite. Thus, we also have that for every h : L −→ M with Boolean M , h̃ is a lattice
homomorphism. In particular we have a lattice homomorphism g in ...

We are indebted to I. Arrieta Torres for alerting us to the mistake.
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