
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE

must be obtained for all other uses, in any current or future media, including reprint-

ing/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copy-

righted component of this work in other works.

This is the accepted version of the following article: Dorabella Santos and Teresa

Gomes. Controller Placement and Availability Link Upgrade Problem in

SDN Networks. 2019 11th International Workshop on Resilient Networks

Design and Modeling (RNDM), Nicosia, Cyprus, 14-16 Oct. 2019, pp. 1-

8. DOI: 10.1109/RNDM48015.2019.8949109, which has been published in final

form at https://ieeexplore.ieee.org/document/8949109.

Controller Placement and Availability Link Upgrade

Problem in SDN Networks∗

Dorabella Santos† Teresa Gomes‡†

dorabella.santos@gmail.com teresa@deec.uc.pt

September 2019

Abstract

In SDN networks, the problem of how many controllers and where to place them,

has been extensively studied. This is known as the controller placement problem,

and has been addressed mainly considering the delays between the SDN switches and

controllers. Although the delays between switches and controllers and the intercon-

troller delays are key aspects, a less addressed issue is the availability of the control

paths (the routing paths between the switches and their controllers). In this paper,
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the problem regarding controller placements with QoS requirements, both in terms

of delays and availability of the control paths, is addressed. To guarantee the avail-

ability requirements, a set of links is selected to have upgraded availability. An exact

method and a heuristic method are proposed for solving the problem. Computa-

tional results show that the heuristic method provides near-optimal solutions within

reasonable runtimes, when the exact method becomes computationally expensive.

Keywords: SDN, availability, controller placement problem, optimization.

1 Introduction

Software-Defined Networking (SDN) has gained significant importance for telecommunica-

tion networks. The networking paradigm decouples the data plane from the control plane,

providing more flexibility for control management. The data plane consists of SDN enabled

switches that are basically forwarding devices, controlled by a SDN controller. To provide

robustness in the control plane, multiple controllers can be distributed in the network,

while working as a centralized unit, in the logically centralized control plane architecture.

In this case, each switch is managed by one of the controllers.

The problem of how many controllers and where to place them in the network, known

as the controller placement problem (CPP) [5], has been extensively studied. The CPP has

been considered mostly conditioned by the switch-controller (SC) delays, i.e., the delays

between the switches and their controllers [8]. Since having multiple controllers implies

synchronization delays between controllers, the controller-controller (CC) delays are also

important, among other aspects such as controller load balancing (number of switches

managed by each controller) [6]. Other works have considered the CPP in resilient contexts

against failures [18], [12] and also against malicious attacks [14].

A less studied aspect in the context of SDN networks, is the issue of availability. Most

works assess the availability of SDN networks using models to evaluate the availability in

terms of reachability between switches and controllers [11] or in terms of network connec-

tivity [9], [10]. Although the CPP is not addressed in [15], the work addresses control path

availability and path redundancy is considered as a means to increase availability.

Fewer works consider availability in the context of the CPP. In [13], the CPP is ad-

dressed to guarantee a lower bound on the availability of the control paths (routing paths

between the switches and their controllers), allowing the switches to connect to multiple

controllers (one primary and one or more backup controllers). In [7], several heuristics for

controller placement are proposed, aiming to maximize availability, which is given in terms
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of the expected percentage of control path loss. In these works, delay guarantees are not

imposed in the CPP.

In this paper, the CPP is addressed considering maximum SC and CC delay values,

as well as, minimum control path availability values. To achieve the required control path

availability, a set of links is selected to have upgraded availability, by adding a parallel

fibre to each of these links [3]. The set of such links constitutes a substructure of higher

availability in the network, called the spine [1], [4]. The existence of this structure in the

network provides for high resilience routing and also resiliency differentiation, in a more

effective manner than just increasing availability through path redundancy [2]. Actually,

path redundancy alone may not be sufficient to ensure high end-to-end availabilities for

mission critical services, while providing higher than needed availability for most consumers

than they are willing to pay for [17].

Therefore, the CPP variant is addressed herein which considers the control path avail-

ability requirements and is referred to, in this paper, as availability link upgrade CPP

(ALU-CPP). An ILP model of the ALU-CPP is formulated, using an exact linearised

version for the constraints guaranteeing the control path availability requirements. The

contributions of this paper are summarized as follows:

• Formulation of the ALU-CPP: the problem jointly optimizing the controller place-

ment and the selection of a set of links to have upgraded availability in the context

of SDN networks.

• A novel way (to the best of our knowledge) of representing the exact linearized

constraints for the control path availability requirements, considering link availability

upgrade.

• An exact method and a heuristic method to solve the ALU-CPP.

The paper is organized as follows: the ALU-CPP is formulated as an integer linear

programming (ILP) model and the linearized version of the availability requirement con-

straints is discussed in Section 2; an exact method and a heuristic method for solving the

ALU-CPP are proposed in Section 3; computational results for four networks are presented

in Section 4; and finally conclusions are drawn and some future work considerations are

presented in Section 6.
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2 The Availability Link Upgrade CPP

In this section, the availability link upgrade CPP (ALU-CPP) is formulated. When multi-

ple controllers exist in a SDN network, their placement contributes directly to the control

plane performance. Each switch is connected to a controller, and each controller manages a

set of switches. In this work, the controllers are assumed to be collocated with the switches

and the control plane is assumed to be implemented in-band (a more realistic approach for

large SDN networks).

The control plane performance strongly depends on the SC and CC delays. To guaran-

tee acceptable delay requirements, it is assumed that the SC delays cannot exceed a given

maximum value Dsc, and similarly, the CC delays cannot exceed a given maximum value

Dcc. Since the SC communications are more critical and much more frequent than the CC

communications (also due to the larger number of switches compared to the number of

controllers), it makes sense that Dsc < Dcc.

Besides the delay requirements, the availability of the routing path between a switch

and its controller, known as the control path, is also a key aspect. One way to mitigate

this issue is to consider controller redundancy [12–14,18] or path redundancy [15,18]. This

work, however, focuses on improving control path availability by upgrading the availability

of the links constituting the spine. The default availability of each link is considered to be

distance-based [16] and given by

aij = 1− MTTR

MTBFij

(1)

where MTTR denotes the mean time to repair (in hours) and MTBFij denotes the mean

time (in hours) between failures of link {i, j} which is dependent on its length `ij (in km)

and given by

MTBFij =
CC × 365× 24

`ij
(2)

The parameter CC denotes the cable cut rate and is considered to be 450 km, while MTTR

is considered to be 24 hours [1].

Traditionally, the improvement in availability is to add parallel redundancy. Therefore,

the upgraded link availability is obtained by adding a parallel connection which is con-

sidered to have the same availability as the original link (e.g. adding a fiber of the same

length) and so is given by [3]:

âij = aij(2− aij) (3)
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The set of upgraded links in this manner form the higher availability spine. The selection

of such links depends on the requirement that each control path cannot have an availability

less than a given minimum value λ.

2.1 Problem Formulation

The ALU-CPP can be formulated as an ILP model. Therefore, consider that the SDN data

plane can be represented by a graph G = (N,E), where N is the set of nodes (switches)

and E is the set of links. Each link is represented by its end nodes {i, j}. Consider A to

be the set of arcs or directed links. The arc directed from node i to node j is represented

by the ordered pair (i, j). For each node i, the set of adjacent nodes to i ∈ N is denoted

by V (i), i.e., V (i) = {j ∈ N : {i, j} ∈ E}. Moreover, the delay between two nodes i and j

is denoted by dij.

Consider the following parameters:

• C ∈ N integer parameter that indicates the number of controllers to be placed in the

network

• tsi ∈ {0, 1} binary parameter that indicates if i = s

and the following decision variables:

• yi ∈ {0, 1} binary variable that is 1 if a controller is placed in node i, and 0 otherwise

• asi ∈ {0, 1} binary variable that is 1 if the controller of switch s is placed in node i,

and 0 otherwise

• xsij ∈ {0, 1} binary variable that is 1 if arc (i, j) ∈ A belongs to the path of switch s

to its controller, and 0 otherwise

• zij ∈ {0, 1} binary variable that is 1 if edge {i, j} belongs to the spine, i.e., if the link

has upgraded availability, and 0 otherwise

• ws
ij ∈ {0, 1} binary variable equal to xsij · zij
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The ALU-CPP is formulated as an ILP model given by

min
∑
{i,j}∈E

zij (4)

s.t.∑
i∈N

yi = C (5)∑
j∈N :

dij≤Dsc

yj ≥ 1 i ∈ N (6)

yi + yj ≤ 1 i ∈ N, j ∈ N : dij > Dcc (7)∑
j∈V (i)

(
xsij − xsji

)
= tsi − asi s ∈ N, i ∈ N (8)

ass = ys s ∈ N (9)

asi = 0 s ∈ N, i ∈ N : dis > Dsc (10)

asi ≤ yi s ∈ N, i ∈ N : dis ≤ Dsc (11)

zij ≤
∑
s∈N

(
xsij + xsji

)
{i, j} ∈ E (12)

zji = zij {i, j} ∈ E (13)

ws
ij ≤ xsij s ∈ N, (i, j) ∈ A (14)

ws
ij ≤ zij s ∈ N, (i, j) ∈ A (15)

ws
ij ≥ xsij + zij − 1 s ∈ N, (i, j) ∈ A (16)∑
{i,j}∈A

[
xsij log(aij) + ws

ij (log(âij)− log(aij))
]
≥ log(λ) s ∈ N (17)

yi ∈ {0, 1} i ∈ N (18)

xsij, w
s
ij ∈ {0, 1} s ∈ N, (i, j) ∈ A (19)

asi ∈ {0, 1} s ∈ N, i ∈ N (20)

zij ∈ {0, 1} (i, j) ∈ A (21)

The objective function (4) aims to minimize the number of upgraded links, which

translates to minimizing the cost of upgrading the links, assuming the costs are the same

for all links (the ILP can easily be extended to the general case, where the costs depend

on the length of the added fibers).

Constraint (5) guarantees that C controllers are placed in the network. Constraints

(6) guarantee that for any switch, there must be at least one controller located not further
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than Dsc, while constraints (7) guarantee that if two nodes are distanced further than Dcc,

then both nodes cannot host controllers (since controllers cannot be distanced further than

Dcc).

Constraints (8) are the flow conservation constraints of each switch s ∈ N routed to

its destination given by asi = 1. These combine with constraints (9)-(11) to guarantee that

each switch’s destination in node i has a controller and is distanced at most Dsc from s:

• constraints (9) guarantee that if node s has a controller placed there, then the switch

is managed by that controller (is routed to itself);

• if node i is distanced further than Dsc, constraints (10) guarantee that i cannot be

the destination of s;

• otherwise, constraints (11) guarantee that i can only be a destination of s if there is

a controller placed there.

Constraints (12) guarantee that a link {i, j} can only be upgraded if it belongs to the

routing path of a switch to its controller, i.e., if at least one routing path uses one of the

arcs of {i, j}. Constraints (13) account for both arcs in a link, meaning that if one arc is

upgraded, then the arc in the opposite direction is upgraded too.

Constraints (14)-(16) are the linearization constraints guaranteeing that ws
ij = xsij · zij.

These variables ws
ij are auxiliary variables used to define constraints (17), which guarantee

that the control paths have availability values of at least λ. Constraints (17) result from the

linearization of the availability constraints, as will be thoroughly discussed in subsection

B. The constraints correspond to exact linearized versions of the availability constraints

and not the usual approximation expressions.

Finally, constraints (18)-(21) are the variable domain constraints.

2.2 The availability constraints

In this subsection, constraints (17) are discussed. To this end, two linearized expressions

are presented for the control path availability, one assuming there is no link availability

upgrade, and the other assuming there is link availability upgrade. These expressions

are exact and novel (to the best of our knowledge) linearized expressions, that do not

result from the usual approximation approach usually employed. In fact, they result from

the usual application of logarithms to linearize the availability expressions, and then the
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corresponding expressions resulted by inspection (taking advantage of the binary nature

of the decision variables involved).

First, the linearized expression for the control path availability without upgrade, is

presented.

Proposition 1. The linearized expression for the control path availability of any switch s,

without link availability upgrade, is given by

L0
s =

∑
(i,j)∈A

xsij log(aij) (22)

Proof. The availability of the control path of switch s is given by the product of the

availability of each link of the path. Assuming there are no upgraded links, the availability

of the control path of switch s is given by

A0
s =

∏
(i,j)∈A:
xs
ij=1

aij =
∏

(i,j)∈A

[
1− xsij(1− aij)

]
(23)

The second equality of (23) results from the definition of variables xsij, i.e., xsij is a binary

variable that indicates if arc (i, j) belongs to the control path of s.

The linearization of (23) is obtained by applying the logarithm, which is given by

log(A0
s) =

∑
(i,j)∈A

log
[
1− xsij(1− aij)

]
(24)

To show that expressions (22) and (24) are equivalent, i.e., that L0
s = log(A0

s), recall

that variables xsij are binary. Hence,

• if xsij = 0, then log
[
1− xsij(1− aij)

]
= log(1) = 0 and xsij log(aij) = 0

• if xsij = 1, then log
[
1− xsij(1− aij)

]
= log(aij) and xsij log(aij) = log(aij)

Therefore, L0
s and log(A0

s) are equivalent.

The linearized expression for the control path availability, assuming link availability

upgrade, is now presented.

Proposition 2. The linearized expression for the control path availability of any switch s,
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with link availability upgrade, is given by

Ls =
∑

(i,j)∈A

[
xsij log(aij) + ws

ij (log(âij)− log(aij))
]

(25)

Proof. Assuming links can be upgraded, the availability of the control path of switch s, is

now given by

As =
∏

(i,j)∈A:
xs
ij=1

[aij + ws
ij(âij − aij)] (26)

Since ws
ij is also a binary variable indicating that arc (i, j) belongs to the control path of

s with upgraded availability, following the same line of thought as for A0
s,

As =
∏

(i,j)∈A

[1− xsij(1− aij)− ws
ij(aij − âij)] (27)

The linearization of (27) is obtained by applying the logarithm, which is given by

log(As) =
∑

(i,j)∈A

log
[
1− xsij(1− aij)− ws

ij(aij − âij)
]

(28)

To show that expressions (25) and (28) are equivalent, i.e., that Ls = log(As), recall

that variables xsij and ws
ij are binary. Hence, by taking γ = 1−xsij(1− aij)−ws

ij(aij − âij),

• if xsij = 0, then ws
ij = 0 resulting in γ = log(1) = 0 and

xsij log(aij) + ws
ij [log(âij)− log(aij)] = 0

• if xsij = 1 and ws
ij = 0, then γ = log(aij) and

xsij log(aij) + ws
ij [log(âij)− log(aij)] = log(aij)

• if xsij = 1 and ws
ij = 1, then γ = log(âij) and

xsij log(aij) + ws
ij [log(âij)− log(aij)] = log(âij)

Therefore, Ls and log(As) are equivalent.

Imposing the control path availability requirements, results in the constraints given by

As ≥ λ. The linearized version of these constraints is given by log(As) ≥ log(λ), which

as a consequence of Proposition 2 results in constraints (17).
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Since a0, a1, λ < 1, then log(a0), log(a1), log(λ) < 0 hence (17) can be rewritten as∑
{i,j}∈A

[
− log(a0)x

s
ij + (log(a0)− log(a1))w

s
ij

]
≤ − log(λ) (29)

to yield positive values.

3 Solution Methods

In this section, an exact method and a heuristic method are proposed for solving the

ALU-CPP.

The exact method involves solving two ILP problems. The main ILP model is the

ALU-CPP, i.e., the ILP model given by (4)-(21). However, the number of controllers C

used in the exact method is fixed, and it is the optimal value for the standard CPP which

only considers the delay constraints. This CPP is referred to as delay-CPP herein and is

given by

min
∑

i∈N yi (30)

s.t.

(6)− (7)

Since the control plane performance strongly depends on the SC and CC delays, mini-

mizing the number of controllers aims to minimize the CC delay communication overhead.

Deploying more controllers tends to increase the average CC delay, although it does tend

to decrease SC delays. However, due to the maximum CC delay allowed, Dcc, it may not

be possible to deploy many more controllers.

The exact method consists in two steps as follows:

(i) first, the delay-CPP is solved, which provides the optimal number C of controllers

to be placed in the network given the delay constraints;

(ii) then, with the optimal value C, the ALU-CPP is solved, which provides an optimal

controller placement and an optimal set of links to have upgraded availability.

For medium-sized networks, the exact method can become computationally expensive.

Hence, a heuristic is derived which not only considers the optimal value C of the delay-
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CPP, but also considers the controller placement solution of the delay-CPP. In this way,

variables yi become fixed, making the ALU-CPP model much easier to solve.

The heuristic consists in two steps as follows:

(i) first, the delay-CPP is solved, which provides the optimal number C of controllers

and an optimal controller placement in the network given the delay constraints;

(ii) then, with the optimal value C and fixing variables yi to reflect the controller place-

ment solution obtained in (i), the modified ALU-CPP is solved, which provides an

optimal set of links to have upgraded availability (for that controller placement).

By fixing the controller placement in step (ii), the heuristic produces a set of links to

have upgraded availability, that may be suboptimal when considering the joint optimization

of the exact method.

To better illustrate the difference between both methods, consider the polska network

from SNDlib (12 nodes and 18 links). As in [14], the delay requirements Dsc and Dcc are

given as percentages of the graph diameter (i.e., longest shortest path between any two

nodes of the network).

By solving the delay-CPP for Dsc = 35% and Dcc = 65%, the optimal number of

controllers provided is C = 3. The 3 controller placements obtained are shown as red

squares in Fig. 1(a). The heuristic method considers this placement in the ALU-CPP.

Then considering the availability requirement given by λ = 0.999, the heuristic provides

a set of 4 links to have upgraded availability, which are shown as red and thick lines in

Fig. 1(a).

By allowing the ALU-CPP to also optimize the controller placement, the exact method

provides a solution with 3 controllers, shown as red squares in Fig. 1(b). By shifting a

controller to a neighbor node (the bottom controller), the exact method now provides a

set of 3 links (shown as red lines) to have upgraded availability (instead of 4 links). Note

that the controller placement in Fig. 1(b) is also an optimal solution for the delay-CPP,

whereas the controller placement in Fig. 1(a) does not yield the optimal solution for the

ALU-CPP.

4 Computational Results

In this section, computational results are presented for the exact and heuristic methods.

Different thresholds for Dsc and Dcc were chosen to assess the sensitivity of the ALU-CPP
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(a) Heuristic solution. (b) Exact solution.

Figure 1: Results for polska with Dsc = 35%, Dcc = 65% and λ = 0.999. The controller
placements are shown as red squares, while the upgraded links are shown as red lines.

Table 1: Characteristics of the networks

Network #nodes #links avg deg diameter [km]

polska 12 18 3.00 811
nobel germany 17 26 3.06 790

janos us 26 42 3.23 4690
cost266 37 57 3.08 4032

to these parameters. As mentioned above, these parameters are considered as percentages

of the graph diameter.

Four networks were chosen from SNDlib: polska, nobel germany, janos us and cost266.

The characteristics of these networks are summarized in Table 1, which shows the number

of nodes, the number of links, the average node degree and the graph diameter (in km) for

each network.

As in [14], the link lengths were calculated by considering the node coordinates and

computing the shortest path between the nodes over the Earth’s surface. Then, the delay

between two nodes dij is given by the shortest path length between them.

Both methods were implemented in C++, using CPLEX 12.8 callable libraries to solve

the ILP models. The instances were run on a 8 core Intel Core i7 PC with 64 GB of RAM,

running at 3.6 GHz.

The computational results are shown in Table 2 for polska, Table 3 for nobel germany,
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Table 2: Computational results for polska network

Parameters
C

Exact Heuristic

λ Dsc Dcc #links t(s) #links t(s)

35%
65% 3 3 0.152 4 0.212
70% 3 3 0.175 4 0.198
75% 3 3 0.342 3 0.132

40%
65% 3 3 0.339 4 0.188

0.999 70% 3 3 0.524 4 0.292
75% 3 3 0.505 4 0.301

45%
65% 3 3 0.615 4 0.193
70% 2 6 0.706 6 0.542
75% 2 6 0.767 6 0.515

Table 4 for janos us and Table 5 for cost266. The parameters are shown in the first three

columns of each table. Note that the SC delay parameter Dsc was chosen to range between

35% and 45% (in steps of 5%) for the smaller network polska, while for the larger networks

Dsc was chosen to range from 30% to 40% (also in steps of 5%; Dsc = 30% is infeasible for

polska). Following the same reasoning, the CC delay parameter Dcc was chosen to range

from 65% to 75% (in steps of 5%) for polska, while for the larger networks Dcc was chosen

to range from 60% to 70% (also in steps of 5%; Dcc = 60% for Dsc = 35% is infeasible for

polska).

Moreover, the availability parameter was chosen to be λ = 0.999 for the smaller net-

works polska and nobel germany (Tables 2 and 3). For the larger networks janos us and

cost266 (Tables 4 and 5), two values for λ were chosen, 0.995 and 0.9975, to show that

a small increase of the availability requirement, profoundly affects the performance of the

optimization methods.

The delay-CPP is the first ILP model to be solved in both methods. It provides the

optimal value C for the ALU-CPP, which is shown in the fourth column of each table. The

ALU-CPP model is then solved for the exact and heuristic methods. Recall that while the

heuristic method considers the number and controller placements given by the delay-CPP,

the exact method only considers the number of controllers and their placement is part of

the problem to be solved.

For both methods, the number of links (#links) and the runtimes in seconds (t(s)) are

shown, for each instance (last four columns of each table).
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Table 3: Computational results for nobel germany network

Parameters
C

Exact Heuristic

λ Dsc Dcc #links t(s) #links t(s)

30%
60% 4 2 0.387 3 0.374
65% 4 2 0.356 3 0.401
70% 4 1 0.255 3 0.398

35%
60% 2 5 1.058 5 0.658

0.999 65% 2 5 0.957 5 0.699
70% 2 5 5.971 5 0.643

40%
60% 2 5 3.540 5 0.640
65% 2 5 1.329 5 0.634
70% 2 5 4.439 5 0.631

Table 4: Computational results for janos us network

Parameters
C

Exact Heuristic

λ Dsc Dcc #links t(s) #links t(s)

30%
60% 4 6 352.938 8 214.069
65% 4 6 291.159 7 4.939
70% 3 7 67.004 7 22.883

35%
60% 3 7 104.270 8 90.307

0.995 65% 3 7 299.155 8 90.758
70% 3 7 191.918 9 181.775

40%
60% 2 9 191.789 9 134.720
65% 2 9 194.086 9 134.655
70% 2 9 222.581 9 134.761

30%
60% 4 12 497.095 13 426.130
65% 4 12 1095.433 12 435.273
70% 3 13 147.529 13 357.724

35%
60% 3 13 1891.822 14 588.457

0.9975 65% 3 13 1879.174 14 587.115
70% 3 * * 14 437.410

40%
60% 2 15 748.325 15 832.167
65% 2 * * 15 827.114
70% 2 15 3885.988 15 828.747
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Table 5: Computational results for cost266 network

Parameters
C

Exact Heuristic

λ Dsc Dcc #links t(s) #links t(s)

30%
60% 4 5 3777.748 6 289.292
65% 4 4 820.786 6 288.287
70% 4 4 365.941 6 289.871

35%
60% 3 * * 7 209.102

0.995 65% 3 7 2630.873 7 209.236
70% 3 * * 7 209.539

40%
60% 2 8 308.066 9 180.649
65% 2 8 274.025 9 179.370
70% 2 8 245.136 9 179.573

30%
60% 4 * * 15 9783.879
65% 4 * * 15 9781.396
70% 4 * * 15 9808.842

35%
60% 3 13 7958.082 15 2636.273

0.9975 65% 3 13 7333.177 15 2639.982
70% 3 * * 15 2640.573

40%
60 2 * * 17 15848.096
65 2 * * 17 15845.572
70 2 * * 17 15837.884

Table 2 shows that for the smallest network, polska, the exact method is very efficient

(with runtimes under 1 second). The heuristic is just as fast and very competitive. In fact,

for 3 out of 9 instances, the heuristic method provided an optimal solution (number of

links is the same as for the exact method), whereas for the remaining instances it provided

a solution with a surplus of one link to have upgraded availability.

Table 3 shows that for nobel germany, the exact method is still very efficient (with the

longest runtime under 6 seconds). Nevertheless, the heuristic method yields runtimes under

1 second, for all instances. The heuristic is very competitive, where for most instances, it

provided an optimal solution, whereas for 2 instances it provided a solution with a surplus

of 1 link, and for 1 instance it provided a solution with a surplus of 2 links to have upgraded

availability.

Table 4 shows results for janos us, with λ = 0.995 and λ = 0.9975. For λ = 0.995,

the exact method is able to provide optimal solutions, for all instances, with the longest
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runtime under 6 minutes. The heuristic method yields smaller runtimes for all instances,

with the longest runtime under 4 minutes. In fact, for Dsc = 30% and Dcc = 65%, the

runtime of the exact method was almost 300 seconds, while that of the heuristic method

was under 5 seconds. Also for Dcc = 70%, the runtime of the exact method was about 67

seconds, while that of the heuristic was 22 seconds. Moreover, the heuristic is competitive,

where for 4 out of 9 instances, it provided an optimal solution, whereas for 3 instances it

provided a solution with a surplus of 1 link, and for 2 instances it provided a solution with

a surplus of 2 links to have upgraded availability.

By increasing λ to 0.9975, the exact method becomes computationally challenging, hav-

ing terminated due to memory issues, in two instances (marked with *), without providing

an optimal solution. The heuristic method is able to provide solutions for all instances,

with the longer runtimes being around 800 seconds (see Table 4). Although, there are two

instances where the exact method requires a smaller runtime than the heuristic method,

the latter remains very competitive. For 4 out of 7 instances, the heuristic provided an op-

timal solution, whereas for the remaining 3 instances it provided a solution with a surplus

of 1 link to have upgraded availability.

Table 5 shows the results for the largest network, cost266, with λ = 0.995 and λ = 0.9975.

For λ = 0.995, the exact method becomes computationally challenging, having terminated

due to memory issues, in two instances (marked with *), without providing an optimal

solution. The heuristic method is able to provide solutions, for all instances, in under 5

minutes. The heuristic is competitive, where for 1 out of 7 instances, the heuristic pro-

vided an optimal solution, whereas for 4 instances it provided a solution with a surplus of

1 link, and for 2 instances it provided a solution with a surplus of 2 links to have upgraded

availability.

By increasing λ to 0.9975, the exact method is only able to provide solutions in two

instances, having terminated due to memory issues in the remaining ones. Clearly, the

exact method is not feasible for such instances. The heurisitc method is able to find

solutions for all instances, although for Dsc = 40%, the runtimes soar to over 4 hours.

5 Trade-Off Between Number of Controllers and Avail-

ability Link Upgrade

The exact method, presented in Section 2, is equivalent to lexicographically minimizing

(C, #links), i.e., first minimizing the number of controllers C, and then minimizing the
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number of upgraded links. This is motivated by the fact, that the CC communication

delay strongly affects the control plane performance. Deploying more controllers tends to

increase the average CC delay, although it may decrease the number of links that need

upgraded availability. One may question if increasing the number of controllers could lead

to avoiding link availability upgrade altogether.

Therefore, the trade-off between increasing the number of controllers versus the number

of upgraded links was also studied. To do this, the exact method was solved for incremental

values of C, from the optimal value by the delay-CPP, and stopped either when (i) the

number of upgraded links is zero; (ii) or when the problem is infeasible. In the latter case,

the maximum CC delay requirement Dcc imposes a limit on the number of controllers to be

deployed. From the set of these solutions, the set of non-dominated solutions were chosen.

Consider two solutions, one with C1 controllers and L1 links to have upgraded avail-

ability, and another with C2 controllers and L2 links to have upgraded availability. The

first solution dominates the second if C1 < C2 and L1 ≤ L2 or if C1 = C2 and L1 < L2. To

find the set of non-dominated solutions, any solution that is dominated by another in the

set is removed.

This study was conducted for the cases in the previous section, where the exact method

managed to find the optimal solutions for all instances. Therefore, the study was conducted

for the polska and nobel germany networks (with λ = 0.999), and for janos us network with

λ = 0.995. In Tables 6, 7 and 8, the solutions for incremental values of C are shown, for

each instance of the polska, nobel germany and janos us networks respectively. The non-

dominated solutions are marked with an *. The last line is either for the non-dominated

solution with zero upgraded links or is indicated with a ‘–’ in case the problem is infeasible

for the corresponding value of C.

In Table 6, it is possible to see that for this small network, incrementally increasing

the number of controllers does tend to decrease the number of links to have upgraded

availability. The price to pay to only upgrade the availability on one link, is to deploy

almost half of the nodes with controllers – which can be arguable from the perspective of

SDN [5]. Moreover, the Dcc requirement makes it impossible to deploy sufficient controllers

to avoid availability link upgrade altogether.

In Table 7, the conclusions for nobel germany are similar for Dcc = 60% and Dcc = 65%.

However, for the highest value of Dcc = 70%, it is possible to discard link upgrade, at the

cost of deploying 5 controllers (deploying controllers in almost 1/3 of the nodes).

In Table 8, it is possible to see that for the larger network janos us, the Dcc requirement
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forces the minimum number of upgraded links to be equal or greater to 2. This number is

much larger when considering λ = 0.9975, since the availability constraint is higher (results

not shown since not all instances could be determined, as shown in Table 4). Moreover, it

is possible to observe that the more controllers are deployed the more difficult it becomes to

decrease the number of links. This can be observed, for example, in Table 8 for Dsc = 40%

and Dcc = 60%. Increasing the number of controllers from 2 to 3 results in a decrease of 3

upgraded links, whereas increasing the number of controllers from 3 to 4 and then from 4

to 5, results in each case in a decrease of 1 upgraded link. However, from 5 controllers we

cannot reduce the number of upgraded links any further (the problem becomes infeasible

for 18 controllers).

In summary, the tables show the trade-off between the deployed number of controllers C

and the necessary number of links to have upgraded availability. Incrementally increasing

the number of controllers eventually leads to a decrease in the number of upgraded links.

However for reasonable delay bounds, it is often not possible to avoid availability link

upgrade.

6 Conclusions

In SDN networks, the CPP is usually addressed focusing on delay requirements. In this

paper, a variant of the CPP is considered, the ALU-CPP, which also considers control path

availability requirements. A novel way of expressing the the exact linearized availability

constraints is presented and discussed.

An exact method and a derived heuristic method are proposed. The number C of con-

trollers used in both methods is provided by the delay-CPP model (the model only consid-

ering delay requirements). The heuristic method also considers the controller placement

provided by the delay-CPP. The exact method results in a lexicographical minimization

of the number of controllers and then of the number of links to have upgraded availabil-

ity. The order of the minimization objectives reflects the importance of the CC delays in

control plane communication.

Computational results were conducted for two smaller networks and two larger net-

works. The results for the smaller networks, show that the exact method is computation-

ally efficient for small-sized networks. The results for the larger networks were conducted

considering two values of λ. These results show that a small variation in the availability

requirement λ, profoundly affects the performance of both methods. The exact method
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becomes computationally challenging, yielding it impractical for medium-sized networks.

The heuristic, however, shows to be very competitive (although runtimes can soar), yield-

ing solutions with a surplus of up to 2 links to have upgraded availability. Hence, the

heuristic is a promising compromise to solve the ALU-CPP.

Moreover, a study of the trade-off between the number of controllers and the number of

links with upgraded availability to achieve a given λ availability for the control paths, was

also conducted. This study shows that incrementally increasing the number of controllers

eventually leads to a decrease in the number of upgraded links. However, for the CC

delay requirement imposes a limit on the number of controllers to be deployed, making it

impossible to avoid link upgrade in most of the cases.

Further research is needed in this problem, and future work entails availability require-

ments also considering backup paths between the switches and their controllers (or backup

paths to backup controllers).
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