
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE

must be obtained for all other uses, in any current or future media, including reprint-

ing/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copy-

righted component of this work in other works.

This is the accepted version of the following article: Dorabella Santos, Teresa

Gomes, and David Tipper. Software-Defined Network Design driven by

Availability Requirements. 2020 16th International Conference on the

Design of Reliable Communication Networks DRCN 2020, Milano, Italy,

25-27 Mar. 2020, pp. 1-7. DOI: 10.1109/DRCN48652.2020.1570604282,

which has been published in final form at https://ieeexplore.ieee.org/document/

9089377.

Software-Defined Network Design driven by

Availability Requirements∗

Dorabella Santos† Teresa Gomes‡† David Tipper§

dorabella.santos@gmail.com teresa@deec.uc.pt dtipper@pitt.edu

January 2020

Abstract

In Software Defined Networking (SDN), the controller locations are mainly con-

strained by delays between switches and controllers, and between the controllers

themselves. In addition to the delay requirements, the availability of the connections

between switches and controllers is also a key issue for control plane performance.

Here, we explore the idea of having a spanning tree substructure called the spine,
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whose links can be upgraded to have high availability in order to support avail-

ability requirements for the control paths (routing paths between switches and con-

trollers). We formulate an optimization model of the joint controller placement and

spine design problem for SDN networks, under delay, availability and path redun-

dancy requirements.Numerical results are presented showing the trade-offs between

the number of controllers, delay requirements and upgrade cost.

Keywords: SDN, controller placement, availability, spine design, optimization

1 Introduction

In Software Defined Networking (SDN), the controller locations are mainly constrained

by two types of delays: (i) the delays between each controller and the set of switches

they manage; (ii) the delays between the controllers themselves. The problem of how

many controllers to deploy in a SDN network and where to deploy them, is known as the

Controller Placement Problem (CPP).

In a logically centralized control plane, the set of controllers function as a unit. While

delays between controllers can influence control plane communication overhead, the com-

munication between each controller and their switches is much more critical and frequent.

Moreover, the question of the availability of the connections between each controller and

their switches is also important. The availability of the control paths (routing paths con-

necting the switches to their controllers) is usually assessed in terms of control plane con-

nectivity [7,8] or reachability [9]. Traditionally, end-to-end availability is increased by path

redundancy, i.e., by guaranteeing a link/node-disjoint backup path between the respective

end nodes. In [16], although controller placement is not addressed, path redundancy is

considered as a means to increase control path availability.

There are also works addressing the CPP with availability requirements. In [12], the

CPP is studied, where each switch connects to a primary and to one or more backup

controllers, in order to guarantee availability requirements for the control paths. In [6], the

control path availability is assessed in terms of the expected percentage of control path loss

given the failure probability of each network component. Several heuristics are proposed for

the controller placement problem, aiming to maximize the availability of the control paths.

The previous works do not jointly consider delay constraints for the controller placements

and availability requirements for the control paths. Moreover, the desired availability for

the control paths cannot always be achieved by path redundancy alone. In [1], the concept

of a spine is proposed, where a higher availability subgraph exists in the network.
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In this work, we assume that the spine is a spanning tree, and that its links can be

upgraded to have increased availability at a given cost [2], by reducing the average time to

repair of the link – and/or reducing the time between failures (by installing more robust

equipment on the link, for example). Our previous work [15] also addresses the problem

of controller placement and link upgrade. However, path redundancy was not considered

and the upgraded links did not have to be on a spanning tree subgraph.

The contribution of this paper is as follows: (i) we address the problem of determining

the controller placements and selecting a spanning tree to be the spine, i.e., an higher

available subgraph in the network, such that the cost of upgrading the spine is minimized,

while satisfying delay, path redundancy and availability requirements; (ii) we present an

exact way of linearizing the inherent availability constraints; (iii) we formulate the problem

as a compact integer linear programming (ILP) model.

The paper is organized as follows: in Section 2 we describe the optimization problem of

joint controller placement and spanning tree selection, such that the cost of upgrading the

links on the spanning tree to achieve the desired levels of control path availability is mini-

mized; in Section 3 we present the optimization problem as an integer linear programming

(ILP) model and we detail an exact way of linearizing the availability constraints therein;

in Section 4 we discuss the computational results for our ILP model; and in Section 5 we

present our conclusions.

2 Joint CPP and Spine Design Problem

The problem addressed in this paper, is the problem of selecting the controller locations

and a spanning tree to be the spine, such that the upgrade cost of the spine is minimized,

while satisfying delay and availability requirements.

More precisely, a given number C of controllers must be deployed in the network, such

that: (i) the delay between a switch and its controller – switch-controller (SC) delay –

cannot exceed a given maximum value Dsc; (ii) the delay between any two controllers

– controller-controller (CC) delay – cannot exceed a given maximum value Dcc. These

maximum values guarantee acceptable control plane performance, in a logically centralized

control plane, where besides the switch-controller communication, intercontroller communi-

cation is also present for synchronization. Since the SC communications are more frequent

than the CC ones, we assume that Dsc < Dcc [11]. The minimum value C can be obtained

by solving the CPP problem with respect to the delay requirements [14].
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Moreover, we consider path redundancy to protect the control paths (routing paths

between the switches and their controllers) against single link and node failures. Therefore,

a pair of node-disjoint paths is guaranteed between each switch and its controller [18]. A

minimum end-to-end availability λ between each switch and its controller is also required

(given by the pair of node-disjoint routing paths).

The end-to-end availability A of the node-disjoint pair of paths is given by A = 1 −
(1 − Ap)(1 − Ab), where Ap and Ab denote the availabilities of the primary path and of

the backup path, respectively. To ensure the minimum availability requirement, we further

consider the primary path must satisfy an availability minimum of λp, whereas the backup

path must satisfy an availability minimum of λb, such that 1− (1− λp)(1− λb) ≥ λ [2].

To achieve the required availabilities, we assume that the links of the network can be

upgraded to have enhanced availability, and we impose that the upgraded links sit on a

spanning tree subgraph. However, we do not force any of the paths to be routed on the

spanning tree – the paths will use the spanning tree links if this is necessary to achieve the

required availability.

Consider that the SDN data plane is represented by an undirected graph G = (N,E),

where N is the set of nodes and E is the set of links. Each link is represented by its

end nodes {i, j}, with i 6= j. We consider that each link of the network has a default

distance-based availability given as in [17] (page 186)

α0
ij = 1− MTTR

MTBFij
(1)

where MTTR denotes the mean time to repair (in hours) and is considered to be 24 h.

Parameter MTBFij denotes the mean time between failures (in hours) of link {i, j} ∈ E
and is given by MTBFij = CC × 365× 24/`ij, where CC denotes the cable cut rate and

is considered to be 450 km and `ij denotes the link length.

Given a spanning tree to be the spine, each link of the spine can be upgraded, so

that corresponding unavailability is decreased by a given value ε ∈ (0, 1). Considering κ

levels of link availability upgrade, we have that the unavailability of link {i, j} upgraded

to level k is denoted by µkij and given by [2] (we do not consider any downgrade level here)

µkij = (1− ε)µk−1ij , k = 1, ..., κ where µ0
ij = 1 − α0

ij denotes the default unavailability. In

terms of availability, we have that µkij = 1−αkij and so αkij = αk−1ij + ε− εαk−1ij , k = 1, ..., κ.
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The cost for upgrading the link availability to level k is given in [2, 5] as,

ckij = −`ij · ln

(
1− αkij
1− α0

ij

)
k = 1, ..., κ (2)

Consider Fig. 1 to better illustrate these ideas. The spanning tree selected for no-

bel germany network (from SNDlib) is shown as solid lines and the controller nodes are

indicated by red circles. In this example, we considered C = 6 controllers, Dsc = 35%,

Dcc = 70%, λp = 0.999 and λb = 0.90.

The thickness of the lines are proportional to the level of availability upgrade of the

link of the tree (we have used κ = 3 levels). The thin solid lines means that those links

did not need to be upgraded, the thicker solid lines means the links were ugraded to level

k = 1 and the thickest solid lines means that they were upgraded to level k = 2. There

was no need to upgrade to level k = 3.

The upgrading of these links depends on the end-to-end availability requirements be-

tween each switch and its controller. The primary and backup paths for switch nodes 2

and 3 are shown. The primary paths are shown as red dashed lines, while the backup paths

are shown as blue dashed lines with ‘+’ markers. Note that switch node 2 is managed by

controller node 10, while switch node 3 is managed by controller node 1.

It should be pointed out that for switch node 3, the direct link to its controller in node

1 is not on the spanning tree. The primary path is routed on a two-link path, one of which

is on the spanning tree. The link on the spanning tree has to be upgraded, to ensure

λp = 0.999 is achieved. Note that the backup path, which corresponds to the direct link,

not selected to be on the spine, does not ensure λp but satisfies λb = 0.90.

For switch node 2, the primary path traverses the shortest path composed of three

links, to its controller on node 10. The two links on the spanning tree are upgraded to

level k = 1, guaranteeing the required λp availability.

3 Mathematical Formulation

The optimization problem we aim to solve, is the problem of selecting the controller loca-

tions and a set of upgraded links that sit on a spanning tree subgraph of G, such that the

cost of upgrading the links in the spanning tree – the spine – is minimized, while satisfying

delay and availability requirements. This problem is formulated as an ILP model in the

following.

5



7 8 9 10 11 12 13

Longitude (degrees)

48

49

50

51

52

53

54

L
a

ti
tu

d
e

 (
d

e
g

re
e

s
)

1

2

34

5

6

7

8

9

10

11

12

13 14

15

16

17

Figure 1: Nobel germany network with spanning tree shown in solid lines for C = 6,
Dsc = 35%, Dcc = 70% and κ = 3 levels of availability upgrade; the controller nodes are
indicated by the red circles. Primary paths for switch nodes 2 and 3 are shown as red
dashed lines; respective backup paths shown as blue dashed lines with ‘+’ markers.
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To formulate the ILP model, consider the following notation. Besides the set of links E,

consider A to the set of arcs or directed links, i.e., each link {i, j} ∈ E can be represented

by the pair of symmetrical arcs (i, j), (j, i) ∈ A. For each node i ∈ N , consider V (i) to be

the set of adjacent nodes to node i, i.e., V (i) = {j ∈ N : {i, j} ∈ E}. The delay between

two nodes i and j is denoted by dij and given by the shortest distance between them [11].

Consider the following parameters:

ρ arbitrary node referred as the root node to model the spanning tree for the spine;

tsi binary parameter that is 1 if i = s, and 0 otherwise;

and the following decision variables:

yi binary variable that is 1 if a controller is placed in node i, and 0 otherwise;

asi binary variable that is 1 if the controller of switch s is placed in node i, and 0

otherwise;

zkij binary variable that is 1 if link {i, j} is upgraded to level k, and 0 otherwise;

xs0ij binary variable that is 1 if arc (i, j) ∈ A belongs to the path of switch s to its

controller when link {i, j} is not upgraded, and 0 otherwise;

xskij binary variable that is 1 if arc (i, j) ∈ A belongs to the path of switch s to its

controller when link {i, j} is upgraded to level k, and 0 otherwise;

us0ij binary variable that is 1 if arc (i, j) ∈ A belongs to the backup path of switch s to

its controller when link {i, j} is not upgraded, and 0 otherwise;

uskij binary variable that is 1 if arc (i, j) ∈ A belongs to the backup path of switch s to

its controller when link {i, j} is upgraded to level k, and 0 otherwise;

βσij binary variable that is 1 if arc (i, j ∈ A) is in the path from node σ to the root node

ρ, and 0 otherwise;

θij binary variable that is 1 if arc (i, j) belongs the spanning tree, and 0 otherwise.

When defining the decision variables, we separate xs0ij from xskij , with k ≥ 1 for better

clarification (as with variables us0ij and uskij , with k ≥ 1). This becomes more relevant in

the ILP formulation in Section 3.1, when referring to the link upgrade constraints.
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Proposition 1. The linearized expression related to the availability of the control path of

switch s, assuming links can be upgraded up to κ levels, can be expressed as

Ls =
∑

(i,j)∈A

κ∑
k=0

xskij log(αkij) (3)

Proof. The availability of the control path of switch s, i.e., of the routing path from s to

its controller, assuming links can be upgraded up to κ levels, is given by

As =
∏

(i,j)∈A:
xs0ij=1

α0
ij

∏
(i,j)∈A:
xs1ij=1

α1
ij · · ·

∏
(i,j)∈A:
xsκij =1

ακij (4)

By the binary nature of variables xskij , it is possible to show that

As =
∏

(i,j)∈A

κ∏
k=0

[
xskij α

k
ij +

(
1− xskij

)]
=

∏
(i,j)∈A

κ∏
k=0

[
1− xskij

(
1− αkij

)]
(5)

Applying logarithms to linearize the expressions, results in

log(As) =
∑

(i,j)∈A

κ∑
k=0

log
[
1− xskij

(
1− αkij

)]
(6)

Due to the binary nature of variables xskij , it is possible to show that log(As) = Ls.
In fact, by definition of variables xskij , for each {i, j} ∈ E, there is one and only one

kij ∈ {1, ..., κ} such that x
skij
ij = 1. So,

log(As) =
∑

(i,j)∈A

log
[
1−

(
1− αskijij

)]
=

∑
(i,j)∈A

log
(
α
skij
ij

)
= Ls (7)

Note that this proposition is a generalization of Proposition 2 in [15], where more

than one level of availability upgrade is considered. Also the definition of the aggregated
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decision variables xskij with k = 0, ..., κ, allow for a more compact linearized expression

when compared to the decision variables used in [15].

3.1 Optimization Model

Given the notation and proposition above the ILP model for the joint SDN spine design

and controller placement problem, with path redundancy, is given as follows.

min
κ∑
k=1

∑
{i,j}∈E

ckijz
k
ij (8)

s.t.

Controller placement constraints:∑
i∈N

yi = C (9)∑
j∈N :

dij≤Dsc

yj ≥ 1 i ∈ N (10)

yi + yj ≤ 1 i ∈ N, j ∈ N\{i} : dij > Dcc (11)

Primary path routing constraints:
κ∑
k=0

∑
j∈V (i)

(
xskij − xskji

)
= tsi − asi s ∈ N, i ∈ N (12)

ass = ys s ∈ N (13)

asi = 0 s ∈ N, i ∈ N\{s} : dis > Dsc (14)

asi ≤ yi s ∈ N, i ∈ N\{s} : dis ≤ Dsc (15)
κ∑
k=0

∑
(i,j)∈A

dijx
sk
ij ≤ Dsc s ∈ N (16)

Link upgrade constraints:

xs0ij + xs0ji ≤ 1− zkij s ∈ N, {i, j} ∈ E, k = 1, ..., κ (17)

xskij + xskji ≤ zkij s ∈ N, {i, j} ∈ E, k = 1, ..., κ (18)
κ∑
k=0

zkij ≤ 1 (19)
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Backup path routing constraints:
κ∑
k=0

∑
j∈V (i)

(
uskij − uskji

)
= tsi − asi s ∈ N, i ∈ N (20)

us0ij + us0ji ≤ 1− zkij s ∈ N, {i, j} ∈ E, k = 1, ..., κ (21)

uskij + uskji ≤ zkij s ∈ N, {i, j} ∈ E, k = 1, ..., κ (22)
κ∑
k=0

(
xskij + xskji + uskij + uskji

)
≤ 1 s ∈ N, {i, j} ∈ E (23)

κ∑
k=0

∑
j∈V (i)

(
xskji + uskji

)
≤ 1 + asi s ∈ N, i ∈ N\{s} (24)

Path availability constraints:∑
{i,j}∈A

κ∑
k=0

xskij log(αkij) ≥ log(λp) s ∈ N (25)

∑
{i,j}∈A

κ∑
k=0

uskij log(αkij) ≥ log(λb) s ∈ N (26)

Spanning tree constraints:∑
j∈V (i)

(βσij − βσji) =

{
1 i = σ

0 i 6= σ
i ∈ N\{ρ}, σ ∈ N\{ρ} (27)

θij ≥ βσij (i, j) ∈ A, σ ∈ N\{ρ} (28)∑
j∈V (i)

θij =

{
1 i 6= ρ

0 i = ρ
i ∈ N (29)

zkij ≤ θij + θji {i, j} ∈ E, k = 1, .., κ (30)

Variable domain constraints:

yi ∈ {0, 1} i ∈ N (31)

xskij , u
sk
ij ∈ {0, 1} s ∈ N, (i, j) ∈ A, k = 0, ..., κ (32)

asi ∈ {0, 1} s ∈ N, i ∈ N (33)

zkij ∈ {0, 1} {i, j} ∈ E, k = 1, ..., κ (34)

θij ∈ {0, 1} (i, j) ∈ A (35)

βσij ∈ {0, 1} (i, j) ∈ A, σ ∈ N\{ρ} (36)

The objective function given by (8) aims to minimize the cost of upgrading the links

in the spanning tree.

Constraints (9)-(11) refer to the controller placement in the network [14]:
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• constraint (9) guarantees that C controllers are placed in the network;

• constraints (10) guarantee that for each switch s, there is a controller distanced at

most Dsc from it;

• constraints (11) guarantee that any two controllers are distanced at most Dcc from

each other.

Constraints (12)-(16) guarantee that the primary paths are routed from each switch s

to its controller (located at node i such that asi = 1), satisfying the SC maximum delay

requirement [4]:

• constraints (12) are the flow conservation constraints for the primary path of switch

s to its controller;

• constraints (13) guarantee that if node s hosts a controller, then s is managed by

that controller;

• constraints (14) guarantee that any node i distanced further than Dsc from s, cannot

host the controller managing s;

• constraints (15) guarantee that if node i is distanced at most Dsc from s and manages

s, then a controller must be hosted in i;

• constraints (16) guarantee that each primary path is not longer than the SC maximum

delay requirement.

Constraints (17)-(19) guarantee the correct assignment of the flow variables according

to the upgrade level of the links [3]:

• constraints (17) guarantee that variables xs0ij are assigned to the non-upgraded arcs

of the primary path from switch s to its controller;

• constraints (18) guarantee that variables xskij are assigned to the arcs of the primary

path for switch s to its controller, that are upgraded to level k = 1, ..., κ;

• constraints (19) guarantee that each link is upgraded to one and only one specific

level k = 1, .., κ, or is not upgraded at all (k = 0).

Constraints (20)-(24) guarantee the backup path between each switch and its controller,

node disjoint to the corresponding primary path:
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• constraints (20) are the flow conservation constraints for the backup path of switch

s to its controller (not necessary if node s hosts a controller);

• constraints (21) guarantee that variables us0ij are assigned to the non-upgraded arcs

of the backup path from switch s to its controller;

• constraints (22) guarantee that variables uskij are assigned to the arcs of the backup

path for switch s to its controller, that are upgraded to level k = 1, ..., κ;

• constraints (23) guarantee that the primary and backup paths for switch s are link

disjoint;

• constraints (24) guarantee that the primary and backup paths for switch s are node

disjoint. These constraints allow for (23) to be simplified to only encompass the

direct link between s and its controller; since the controller location is not known

beforehand but is given by the variable asi = 1, constraints (23) are maintained.

Constraints (25)-(26) guarantee the availability minimum requirements for the primary

and backup paths, applying the linearization used in (3):

• constraints (25) guarantee that the primary path of each switch to its controller has

a minimum availability of λp;

• constraints (26) guarantee that the backup path of each switch to its controller has

a minimum availability of λb.

Constraints (27)-(30) guarantee that the upgraded links sit on a spanning tree structure

[13]:

• constraints (27) guarantee a routing path from any node σ to the root node ρ;

• constraints (28) account for the spanning tree links given by the routing paths from

σ to ρ;

• constraints (29) guarantee a directed spanning tree towards the root node ρ;

• constraints (30) guarantee that the upgraded links belong to the spanning tree.

Finally, constraints (31)-(36) are the variable domain constraints.

Note that we do not force the primary path to be on the spanning tree, since the SC

delay cannot exceed Dsc, which may happen if the paths are forced to be routed on the
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Table 1: Topological characteristics of the networks

Network #nodes #links avg deg Dg [km]

polska 12 18 3.00 811
nobel germany 17 26 3.06 790

spanning tree. Nor do we force the backup paths to be on the spanning tree, since this

can lead to longer paths. Any of the paths will use the spanning tree if it is necessary to

obtain the desired end-to-end availability.

4 Computational Results

For the computational results, we used two networks from SNDlib [10]: polska and no-

bel germany. The topological characteristics of these networks are shown in Table 1.

We assume the maximum delay values Dsc and Dcc are given as percentages of the graph

diameter Dg (longest shortest path between two nodes in the network) [11]. For the polska

network, we have considered the maximum SC delay value to be Dsc = 35%, 40%, while the

maximum CC delay value was considered to be Dcc = 70%, 75%. For the nobel germany

network, we have considered the maximum SC delay value to be Dsc = 35%, 40%, while

the maximum CC delay value was considered to be Dcc = 65%, 70%.

For the number of controllers C, we have chosen to start with the minimum value al-

lowed for the delay requirements, and we increment C in order to minimize the upgrade

cost as much as possible. However, having a large number of controllers is undesirable for

the network operator, since the intercontroller communication overhead increases, jeop-

ardizing the control plane performance. We show the trade-off between the number of

controllers and the upgrade cost, for the network operator to weigh the benefits of each

solution. Eventually, increasing the number of controllers will result in the problem be-

coming infeasible, since having too many controllers will not allow for the maximum CC

delay value Dcc to be satisfied.

Since these networks have a similar graph diameter Dg, we have considered minimum

availability values for the primary control paths given by λp = 0.999, and for the backup

control paths given by λb = 0.99, to achieve end-to-end availabilities of at least λ = 0.99999.

To obtain these desired availability levels, each link of the selected spanning tree subgraph

can be upgraded up to κ = 4 levels where, for each level, the link unavailability is reduced

13



Table 2: Computational results for polska; nondominated solutions are marked with *

Dcc = 70% Dcc = 75%

Dsc C cost t(s)
no. upg links

C cost t(s)
no. upg links

total
k

total
k

1 2 3 4 1 2 3 4

35%

3 5054.43* 43.69 11 1 0 3 7 3 4055.60* 280.36 11 1 2 6 2
4 2995.09* 59.39 9 2 1 4 2 4 2995.09* 117.49 9 2 1 4 2
5 2469.68* 43.28 9 2 5 2 0 5 2340.76* 15.64 8 1 5 2 0
6 2299.17* 6.66 8 2 4 2 0 6 2229.16* 10.86 8 2 4 2 0
7 2266.59* 3.60 9 3 3 3 0 7 2058.65* 3.38 7 2 3 2 0
8 2266.59 2.08 9 3 3 3 0 8 1947.05* 2.02 6 1 3 2 0
9 – 0.05 – – – – – 9 1947.05 0.66 6 1 3 2 0

10 – 0.05 – – – – –

40%

3 4445.85* 2525.28 10 2 1 3 4 3 3695.86* 252.18 11 2 2 7 0
4 2635.35* 121.62 9 3 1 5 0 4 2635.35* 106.75 9 3 1 5 0
5 2299.17* 26.14 8 2 4 2 0 5 2299.17* 40.43 8 2 4 2 0
6 2217.38* 8.83 8 2 5 1 0 6 2143.90* 30.69 8 3 3 2 0
7 2217.38 5.15 8 2 5 1 0 7 1958.83* 5.40 6 2 0 4 0
8 2184.80* 3.04 9 3 4 2 0 8 1829.91* 3.16 5 1 0 4 0
9 – 0.06 – – – – – 9 1795.25* 0.69 5 0 2 3 0

10 – 0.03 – – – – –

by ε = 0.5.

The ILP model was implemented in C++, using CPLEX 12.8 callable libraries. The

instances were run on a 8 core Intel Core i7 PC with 64 GB of RAM, running at 3.6 GHz.

The computational results for polska are shown in Table 2, whereas the computational

results for nobel germany are shown in Table 3. Each table shows the results for the

different combinations of Dsc and Dcc values. Column ‘C’ shows the number of controllers,

starting with the minimum value allowed for the maximum SC and CC delays [14], and

ending with the number of controllers for which the problem is infeasible (since the number

of controllers is too large to guarantee the maximum CC delay). Column ‘cost’ shows the

optimal cost of upgrading the links of the selected spanning tree in the network to achieve

the required availabilities. Column ‘t(s)’ shows the runtime in seconds for each instance.

The following columns are grouped under ‘no. upg links’: column ‘total’ shows the total

number of upgraded links; and the columns grouped under ‘k’ show the total number of

upgraded links for each level from 1 through 4.
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For the polska network, it is possible to observe that for Dsc = 35% and Dcc = 70%,

there is a decrease in the cost of the link upgrade as the number of controllers increases from

3 to 7. Increasing the number of controllers to 8 does not improve the cost and increasing

the number of controllers to 9 renders the problem infeasible (too many controllers to

guarantee the Dcc maximum value for the CC delay). A similar observation can be done for

Dsc = 35% and Dcc = 75%, where there is a decrease in the upgrade cost up to controllers

and then for 10 controllers the problem is infeasible. The solutions marked with an asterisk

(*) show the nondominated set of solutions obtained for the minimization of the number

of controllers versus the minimization of the upgrade cost. A nondominated solution is

a solution such that any other solution to the problem which has a smaller number of

controllers must have a greater upgrade cost, or such that any other solution with a smaller

upgrade cost must have a greater number of controllers. In other words, a nondominated

solution is such that it is not possible to improve both objectives simultaneously even

further.

For Dsc = 40% and Dcc = 70%, there is a decrease in the upgrade cost up to 6

controllers. Increasing the number of controllers to 7 does not improve the upgrade cost,

however, increasing the number of controllers to 8 does improve the upgrade cost even

more, resulting in another nondominated solution for the minimization of the number of

controllers versus the minimization of the upgrade cost. For Dsc = 40% and Dcc = 75%

there is a decrease in upgrade cost as the number of controllers increases to 9, and then

for 10 controllers the problem is infeasible.

For the nobel germany network, it is possible to observe that for Dcc = 65%, there

is decrease in the upgrade cost as the number of controllers increases from 2 to 6. Then

increasing the number of controllers further, does not improve the upgrade cost. In fact

surprisingly, increasing the number of controllers from 9 to 10 actually worsens the upgrade

cost. This is due to the fact that fixing the 9 controller placements of the solution C = 9,

implies that the 10th controller must be placed further thanDcc from some of the controllers.

The controllers actually begin ‘overcrowding’ each other and to maintain the CC delay

inside the maximum value Dcc between all controller pairs, the controllers need to be

repositioned leading to higher distances for a few switches and, thus, forcing the link

upgrade cost to increase (cost values shown in bold).
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Table 3: Computational results for nobel germany; nondominated solutions are marked
with *

Dcc = 65% Dcc = 70%

Dsc C cost t(s)
no. upg links

C cost t(s)
no. upg links

total
k

total
k

1 2 3 4 1 2 3 4

35%

2 3076.88* 171.0 15 5 6 3 1 2 3076.88* 365.3 15 5 6 3 1
3 2682.48* 14995.0 16 8 6 2 0 3 2682.48* 2401.7 16 8 6 2 0
4 2068.35* 697.0 14 7 6 1 0 4 2068.35* 1243.3 14 7 6 1 0
5 1477.79* 131.7 10 5 4 1 0 5 1477.79* 242.1 10 5 4 1 0
6 1337.08* 12.3 9 5 3 1 0 6 1275.39* 148.6 10 7 3 0 0
7 1337.08 12.0 9 5 3 1 0 7 1194.99* 22.7 9 6 3 0 0
8 1337.08 23.2 9 5 3 1 0 8 1118.74* 9.9 9 6 3 0 0
9 1337.08 16.1 9 5 3 1 0 9 1081.31* 6.5 9 7 2 0 0
10 1556.12 4.4 9 6 2 1 0 10 1081.31 5.7 9 7 2 0 0
11 1556.12 4.1 9 6 2 1 0 11 1081.31 4.8 9 7 2 0 0
12 – 0.1 – – – – – 12 1081.31 3.9 9 7 2 0 0

13 – 0.1 – – – – –

40%

2 3076.88* 600.4 15 5 6 3 1 2 3076.88* 1093.3 15 5 6 3 1
3 2672.08* 5214.6 12 5 3 4 0 3 2672.08* 2508.3 12 5 3 4 0
4 2068.35* 2565.1 14 7 6 1 0 4 2068.35* 3379.3 14 7 6 1 0
5 1477.79* 293.1 10 5 4 1 0 5 1477.79* 627.5 10 5 4 1 0
6 1337.08* 95.6 9 5 3 1 0 6 1165.87* 141.8 7 1 5 1 0
7 1337.08 70.6 9 5 3 1 0 7 955.85* 51.2 7 2 5 0 0
8 1337.08 94.0 9 5 3 1 0 8 886.54* 8.6 7 3 4 0 0
9 1337.08 19.3 9 5 3 1 0 9 817.22* 9.0 6 2 4 0 0
10 1556.12 10.9 9 6 2 1 0 10 817.22 10.0 6 2 4 0 0
11 1556.12 7.0 9 6 2 1 0 11 817.22 7.5 6 2 4 0 0
12 – 0.1 – – – – – 12 817.22 2.2 6 2 4 0 0

13 – 0.1 – – – – –
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5 Conclusions

In this paper, we address the control plane design optimization problem of controller place-

ment and selecting a spanning tree, such that the cost of upgrading the links on the span-

ning tree is minimized, to achieve the imposed availability requirements. We propose an

ILP model and show an exact method for linearizing the inherent availability constraints.

Computational results were conducted with two small networks, to assess the trade-off

between the number of controllers deployed in the network and the cost of upgrading the

links on the spanning tree. The ILP becomes time-consuming for larger networks, justifying

a heuristic for these cases, in future work. Having a minimum number of controllers in the

network is desired, from the network operator’s perspective, to minimize the intercontroller

communication overhead. However, this generally implies larger SC delays, decreasing the

availability of the control paths. To meet the required availability constraints, more links

need to be upgraded and to higher levels, increasing the upgrade cost. Deploying a few

additional controllers can drastically decrease the upgrade cost, without jeopardising the

intercontroller communication overhead too seriously, On the other hand, having too many

controllers not only jeopardizes the communication overhead, but can lead to an increase

in upgrade cost, as shown in the computational results.
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