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Abstract

The resilience to disasters is a very relevant problem in telecommunication net-

works. This work addresses the problem of 1+1 optical lightpath protection consid-

ering maximally SRLG-disjoint geodiverse paths, applied in the context of an optical

network. The resilience to geographically correlated disasters is accomplished by

∗The final title of this paper in the published version is: Shared Risk Link Group disjointness and
geodiverse routing: A trade-off between benefit and practical effort.
†The work of R. Girão-Silva and T. Gomes has been partially supported by Fundação para a Ciência e

a Tecnologia (FCT), I.P. under project grant UIDB/00308/2020 and was financially supported by ERDF
Funds through the Centre’s Regional Operational Program and by National Funds through FCT under
project CENTRO-01-0145-FEDER-029312.
‡University of Coimbra, Department of Electrical and Computer Engineering, Coimbra, Portugal
§Institute for Systems Engineering and Computers at Coimbra (INESC Coimbra), Coimbra, Portugal
¶Department of Mathematics and Natural Sciences, Darmstadt University of Applied Sciences, Darm-

stadt, Germany
‖Deutsche Telekom Technik GmbH – Optical Transport Core, Darmstadt, Germany
#Corresponding author: rita@deec.uc.pt

1

https://doi.org/10.1002/net.21931
https://doi.org/10.1002/net.21931
http://www.wileyauthors.com/self-archiving


guaranteeing geodiversity of the paths. This work focuses on estimating the increase

of the path lengths and the increase in cost of the required transponders, compared

to simple link disjointness (i.e. when no constraints on SRLG-disjointness or geodi-

versity are considered). Results in different networks allow to evaluate the effect of

SRLG-disjointness to ensure some geodiversity.

Keywords: SRLG-disjoint, min-sum, geodiverse routing, optical networks, disaster

resilience

1 Introduction

The resilience to disasters is a challenging problem in today’s telecommunication net-

works [26]. Known risks of failure have to be taken into account in network planning and

management, so that end-to-end connectivity may be guaranteed in the event of disasters,

in particular in backbone networks [17, 20]. A set of links sharing a common risk of failure

(for instance fibres sharing a cable or a duct) constitute a Shared Risk Link Group (SRLG).

Two paths are SRLG-disjoint if they do not share a common risk of failure. As the problem

of determining a pair of SRLG-disjoint paths is NP-complete [19], heuristics are used in

large networks and/or when on-line routing is considered. In [32, 28, 16], heuristics seek-

ing the minimization of some additive cost metric associated with the links of the paths,

are proposed. Seeking to reduce the CPU needed by heuristics to calculate maximally

SRLG-disjoint paths, the authors in [21] propose to use parallel processing, by offloading

adequate parts of the algorithm to one or more graphics processing units (GPUs).

Usually a min-sum problem is formulated where the aim is the minimization of the sum

of the cost of both paths in the pair, obtained considering SRLG-disjointness constraints.

In [15] an exact algorithm for enumerating SRLG-disjoint path pairs, by non-decreasing

order of their additive cost was proposed, and its computational efficiency was analysed.

In [35] the “divide and conquer” strategy – first proposed as part of the heuristic called

COnflicting Link Exclusion (COLE) [36] – is used for solving min-min SRLG disjoint

routing problem.

In the context of multi-layer survivable routing, a formulation for multipath routing

and resource assignment in a virtual optical network is presented in [37].

Broadcast communication using light-trees is considered in [38]. Here SRLGs are used

to represent various failure scenarios, with a given probability. The authors seek the

light-tree with minimum failure probability, and designate the problem reliable collective

communication (RCC) and heuristics are put forward to solve RCC. A bicriteria model
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to construct spanning trees over optical networks, with the objective to minimize jointly

the number of different SRLGs and the total bandwidth usage cost of all the tree links is

presented, and solved using an exact algorithm, in [12]. The authors based their approach

in an algorithm for the minimal cost/minimal label spanning tree problem, by considering

multiple labels per link [11].

Geographically correlated failures may be represented by SRLGs. The authors in [31]

propose a model for representing the effect of regional failures with the shape of a disk

with a certain radius, spanning a set of links. In that work, it is shown that the number

of SRLGs covering the possible circular disk failures with a known radius is proportional

to the number of nodes in the network, by a factor of 1.2. The closely related work [34]

tackles the generation of SRLGs representing disk failures that affect a specific number of

network nodes. In this case, the number of SRLGs is proportional to the multiplication of

the number of nodes in the network with the number of affected nodes.

In cases when it is not possible to find fully SRLG-disjoint paths, one may try and find

maximally SRLG-disjoint paths [28, 29, 18]. That is the problem to be considered in this

work. Note that the devised path pair should be of min-sum cost and link or node-disjoint,

for all traffic demands in a transparent optical network, i.e. guided over end-to-end optical

lightpaths. Note that any additive cost may be considered. In this work, the cost is the

fibre cable length. Hence, the cost of a path pair is the sum of the fibre length in kilometers

of both paths.

The first objective of this work is to see the impact of the SRLGs in the total path

length. Therefore, min-sum length path pairs are calculated for each demand with or

without SRLG-disjointness constraints. This comparison allows to grasp the relevance of

the SRLGs from a topological point of view.

In this paper we are not considering that SRLGs are associated to a duct or a cable

with a set of links, but rather as a way to represent geographically correlated failures. That

is also why: (i) we find SRLGs as explained in [18]; (ii) we are not calculating paths based

on minimal total SRLG length, as we did in the previous study [22]. In that previous work,

actual information from an existing network was taken into account and SRLGs actually

represented a duct or a cable, unlike what is considered here.

The impact of geographically correlated failures may be taken into account in the se-

lection of routing paths. In order to find geodiverse paths for a given node pair, different

metrics may be considered. In [27], the authors propose a path diversification approach,

where different paths are selected based on their diversity and also aiming at the improve-
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ment of flow reliability.

A routing protocol for finding two paths separated by a certain distance in a physical

network, GeoDivRP, is proposed in [7], where the cTGGD (compensated Total Geograph-

ical Graph Diversity) value is used to assess the geographical path diversity of a given

topology. Following this work, two heuristics, iWPSP (iterative WayPoint Shortest Path)

and MLW (Modified Link Weight), are proposed in [6, 9], allowing for a reduction in the

complexity of the optimal routing algorithm. The GeoDivRP is further explored in [8]

(by including information on critical regions) and in [10] (by proposing a multicommodity

linear optimization formulation for the routing problem).

The work in [13] tackles the calculation of geodiverse paths, seeking to guarantee more

resilience in the event of disasters. Two different routing algorithms are put forward

in [2]. The first algorithm aims at selecting a pair of edge-disjoint paths which maximize

the minimal spatial distance between them, which ensures maximum survivability against

spatial-based simultaneous edge failures. The second algorithm aims at finding a pair of

edge-disjoint paths with minimal path weight for the Active Path (AP) and with a Backup

Path (BP) such that a certain distance between them is guaranteed.

The need to increase the network resilience to geographically correlated failures is tack-

led in this work. The approach proposed in [13] to calculate D-geodiverse path pairs,

i.e. paths separated by D km, is considered. Therefore, the second objective is to study

the impact of geodiverse routing (for various values of D) on the length of the paths (with

SRLG-disjointness constraints, as explained earlier).

The final objective of this work is an assessment of the cost of the required transponders,

to satisfy a set of demands using coherent interfaces at 100 Gb/s (or beyond) taking

into account optical reach limitations [25]. As the fibre spectrum was modeled to be

unconstrained, the lightpaths can always be guided over the calculated optimal path pair

for each considered scenario. Note that the specific wavelength or spectrum assignment is

not addressed, which keeps the problem simpler.

The results for maximally SRLG-disjoint paths while guaranteeing (or not) geodiver-

sity in a network, are compared with those obtained when simple link disjointness (1+1

protection) is considered, i.e. without SRLG-disjointness and without any geodiversity

constraints. The comparison is made in terms of the increase of the path lengths and

the consequent increase in the cost of the required transponders. Note however that the

increase is not in the same proportion, i.e. the increase in backup length by a certain factor

leads to an increase in transponders costs, but by a smaller factor. Another observed result
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is that SRLG-disjointness entails some geodiversity for most of the node pairs.

This paper is an extension of [22]. Experiments are performed on different networks of

the sndlib set [24] for which different SRLG sets were devised as in [18], allowing to model

geographically correlated failures. Given that geodiversity requires node-disjointness, we

have formulated and solved a problem of maximally SRLG-disjoint paths among node-

disjoint path pairs.

Specific strategies aiming at reducing the cost of transponders were considered in this

paper. As the selection of transponders is performed for the longer path of the pair,

we have formulated and solved variants of the proposed models, in which the aim is the

minimization of the longer path of the pair considering a total path pair length close to

the one obtained for the original models.

Due to the path lengths in the considered networks, it is expected that fully transparent

paths may not be available for some demands. Therefore, we assume that regenerative

transponders will have to be used along the paths. We will use the term regenerator

to refer to a regenerative transponder specifically located in an intermediate node of the

path, though it is still a transponder. The general term transponder may refer to any

transponder, regardless of where it is located. A problem for devising the appropriate

number and location of regenerators is formulated based on an approach in [3]. Once the

length of the longest transparent segment is known in the paths of the path pair for each

demand, the appropriate transponders may be selected. The transponders at the source

and destination node for each demand will be identical to the regenerators along the path.

The selection of the transponders for each demand was also performed in a more accu-

rate and flexible way, by solving a new Integer Linear Programming (ILP) problem. In the

formulation of this new problem, we assume that the traffic may be split in any number of

flows (not just in halves or quarters, as in [22]) and the used transponders may be selected

so as to minimize the total cost.

After this Introduction section, the notation and the addressed problems are formally

described in Section 2. After the details on the calculation of the transponders’ reach

and cost in Section 3, the formulation of problems related to the selection of regenerative

transponders (regenerators) is presented in Section 4. Results are presented in Section 5

and the paper ends with some conclusions and proposals for future work (in Section 6).
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2 Addressed Problems

2.1 Notation

The physical network topology will be represented by G = (V,E) with V = {v1, v2, . . . , v|V |}
as the set of |V | nodes and E = {e1, e2, . . . , e|E|} as the set of |E| network links or edges.

These are undirected arcs represented by an unordered node pair eu = {va , vb}, with

va , vb ∈ V , u = 1, 2, . . . , |E|.
An edge from E may be represented by two symmetrical (directed) arcs, i.e. edge

eu = {va , vb} may be represented by ak = (va , vb) and ak′ = (vb, va). The set of the directed

arcs corresponding to the links in E will be denoted by A.

Let % be the total number of risks affecting more than one edge in the network. The

set of existing failure risks will be denoted by Y , with Y = {y1, y2, . . . , y%}. The set Ar is

the set of arcs that defines the r-th SRLG, i.e. this set includes the set of arcs that fail if

the event associated with risk yr occurs. Note that ∪r∈RAr may be only a subset of A as

an arc a ∈ A may not belong to any Ar, r = 1, . . . , %.

Let R be the set of indexes of all SRLGs in the network. For ease of notation, SRLG

Ar will be simply identified by r, with r = 1, . . . , %. Given the arc ak, then φk is the set of

indexes of SRLGs in R containing arc ak, i.e. r ∈ φk if and only if ak ∈ Ar.
A path is a continuous sequence of different nodes from one source node, vs or simply

s, to a destination (or target) node vt or simply t, (with s, t ∈ V ), and is represented

by p = 〈s ≡ v1, v2, . . . , vn ≡ t〉, where (vi, vi+1) ∈ A, i ∈ {1, . . . , n − 1} and n is the

number of nodes in the path. Let Ap be the set of arcs of path p and Ep the set of the

corresponding edges. Let Pst represent the set of all paths from s to t in the network. A

path pair is identified by (p1, p2). The set of path pairs, from s to t, which are edge-disjoint

is designated by P 2
st.

Let ϕrp be the set of arcs in path p belonging to SRLG r, i.e. if ak ∈ ϕrp, then ak ∈ Ar
and ak ∈ Ap. The indexes of the union of all SRLGs of path p is denoted by Rp = {r ∈
R : Ar ∩ Ap 6= ∅}. The indexes of the SRLGs shared by path pair (p, q) is represented by

Rp,q = Rp ∩Rq.

The length of arc ak ∈ A is given by `k, and the length of path p will be denoted by ¯̀
p,

with ¯̀
p =

∑
ak∈Ap `k.

We now define some additional notation, that is useful for the formulation of the ILP

problems. The following indexes will be used: j, k = 1, . . . , |A| identify arcs aj or ak;

i = 1, . . . , |V | identifies a node vi; s and t identify the source node and the destination node,
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respectively (as already mentioned); m = 1, 2 identifies whether a path is the active one

(m = 1) or the backup one (m = 2); r = 1, . . . , % identifies the risks and the corresponding

SRLGs (as already mentioned). The indexes of the arcs leaving node vi are identified by

E(i+) and the indexes of the arcs entering node vi are identified by E(i−). Note that any

arc ak leaving node vi will have a symmetrical arc ak′ entering the same node.

A set of parameters is calculated and known beforehand:

• hr,k indicates whether arc ak belongs to SRLG r:

hr,k =

{
1 if r ∈ φk
0 otherwise

As previously stated, r ∈ φk is equivalent to ak ∈ Ar.

• the length of the arcs `k.

The binary decision variables used in the formulation are:

• xk,m indicates whether arc ak belongs to path pm:

xk,m =

{
1 if ak ∈ pm
0 otherwise

• zr,m indicates whether SRLG r affects any arc of path pm:

zr,m =

{
1 if r ∈ Rpm

0 otherwise

• gr indicates whether SRLG r includes arcs belonging simultaneously to both paths

p1 and p2:

gr =

{
1 if ∃aj ∈ ϕrp1 and ∃ak ∈ ϕrp2
0 otherwise

For all the formulated problems, the arcs forming the solution path pair (p∗1, p
∗
2) are

given in the decision variables xk,1 and xk,2.

2.2 Optimization problems without SRLG-disjointness

We formulate problem P0, which is a basic problem of finding the link-disjoint path pair

with min-sum length, which is easily solved by the Suurballe’s [30] or Bhandari’s algo-
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rithm [4]. This is a very simple form of protection, usually referred to as 1+1 protection.

We present the formulation here for a demand originating in node s and terminating in

node t, as the formulations of the other problems include some of the constraints of P0.

min

|A|∑
k=1

`k (xk,1 + xk,2)

subject to:

∑
k∈E(i+)

xk,m −
∑

k∈E(i−)

xk,m =


1 if vi = s

−1 if vi = t

0 otherwise

∀i = 1, . . . , |V |;m = 1, 2 (1)

xk,1 + xk,2 ≤ 1 ∀k = 1, . . . , |A| (2)

xk,1 + xk′,2 ≤ 1 ∀k = 1, . . . , |A| (3)

xk,m + xk′,m ≤ 1 ∀k = 1, . . . , |A|;m = 1, 2 (4)∑
k∈E(i+)

xk,m +
∑

k∈E(i−)

xk,m ≤ 2 ∀i = 1, . . . , |V |;m = 1, 2 (5)

binary xk,m ∀k = 1, . . . , |A|;m = 1, 2 (6)

Constraints (1) are the usual flow conservation constraints. An arc (or an arc and

its symmetrical) cannot be used in both paths simultaneously, which is guaranteed by

constraints (2)-(3). Constraints (4)-(5) prevent the formation of cycles (or loops). An arc

and its symmetrical cannot be used in the same path; any node in either path cannot have

more than two of its arcs in that path, which guarantees that certain configurations of

cycles do not appear.

In the formulation of this problem, constraint (3) may be omitted, as we are dealing

with positive costs in the objective function, which is of min-sum type. For a similar reason,

constraints (4) and (5) may also be omitted, as the objective function of P0 naturally leads

to the avoidance of any superfluous links in the solution.

Let θst be the solution of problem P0, i.e. the minimal length of an edge-disjoint path

pair for a demand between s and t. Problem P0 is instrumental in the sense that it must

be solved so that the value of θst for every (s, t) demand is known.
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2.2.1 Variant of P0

We now formulate P ′
0, which is a variant of the previous problem. This variant aims at

finding solutions (path pairs) with length close to the minimal total length obtained when

P0 was solved, but with a smaller length for the longest path of the pair.

The selection of transponders for a demand takes into consideration the longest path

of the path pair obtained for that demand. Therefore, it may be important to reduce the

length of the longest path of the pair (for each (s, t) demand). In this framework, we want

to find the path pair that satisfies the total length θst (with some pre-defined tolerance ∆θ)

and for which the longest path has minimum length. This is equivalent to minimizing the

difference between the length of the AP and of the BP:
∣∣∣∑|A|k=1 (xk,1`k)−

∑|A|
k=1 (xk,2`k)

∣∣∣.
This absolute value expression must be linearized.

Problem P ′
0 may be formulated as:

min M

subject to: constraints (1)-(6) and

|A|∑
k=1

`k (xk,1 + xk,2) ≤ Lst∆L (7)

|A|∑
k=1

(xk,1`k)−
|A|∑
k=1

(xk,2`k) ≤ M (8)

−

 |A|∑
k=1

(xk,1`k)−
|A|∑
k=1

(xk,2`k)

 ≤ M (9)

where Lst = θst and ∆L = ∆θ. Let θM
st be the solution of this problem.

2.3 Optimization problems with node-disjointness, SRLG-disjoint-

ness and no geodiversity constraints

The calculation of the minimum number of SRLGs in common, that is the number of

SRLGs shared by a maximally SRLG-disjoint path is an ancillary problem for obtaining

the path pair of minimal total length among all maximally SRLG-disjoint path pairs (which

are also node-disjoint). Let this problem be identified as P1N . Afterwards, we can for-

mulate problem P2N , which tackles the calculation of the minimal total length among the
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maximally SRLG-disjoint path pairs (which are also node-disjoint). Finally, we formulate

P ′
2N , which is a variant of problem P2N . This variant aims at finding solutions (path

pairs) with length close to the minimal total length obtained when P2N was solved, but

with a smaller length for the longest path of the pair.

Problems P1N and P2N are instrumental as they provide information needed for the

subsequent formulation of problem P ′
2N .

2.3.1 Minimizing the number of SRLGs in common

To keep the text self-contained, we present a formulation for node-disjoint path pairs, for a

demand originating in node s and terminating in node t, similar to the one present in [19]

for SRLG-disjoint paths:

min

%∑
r=1

gr

subject to: constraints (1), (4)-(5) and

x(s,t),1 + x(s,t),2 ≤ 1 (10)∑
k∈E(i+)

(xk,1 + xk,2) ≤ 1 ∀vi ∈ V \ {s, t} (11)

|A|∑
k=1

hr,kxk,m ≤ |A|zr,m ∀r = 1, . . . , %;m = 1, 2 (12)

zr,1 + zr,2 − gr ≤ 1 ∀r = 1, . . . , % (13)

binary xk,m, zr,m, gr ∀k = 1, . . . , |A|;m = 1, 2; r = 1, . . . , % (14)

In the formulation of this problem, constraints (2) and (3) may be omitted, because

we added the node-disjointness constraint (11). Due to the removal of (2), constraint (10)

had to be added, to guarantee that the direct arc between s and t (if it exists) is not used

in both paths simultaneously.

Constraint (12) allows to know if an SRLG affects an arc of a path. On the one hand,

if at least an arc ak belonging to SRLG r (i.e. hr,k = 1) is used in path pm (i.e. xk,m = 1)

then the constraint is satisfied only if zr,m = 1; on the other hand, if none of the arcs in

path pm is affected by risk r, then the left-hand side of the inequation is 0, which means

that zr,m may be 0 or 1. However, the constraint (13) and the fact that we are minimizing

the number of variables gr which are 1, will lead to zr,m = 0. In fact, a variable gr will be

1 only if zr,1 and zr,2 are simultaneously 1 (i.e. both paths have arcs affected by the risk
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r), as guaranteed by constraint (13) and the considered objective function.

Let µst be the value obtained as a result of the resolution of P1N for an (s, t) demand.

2.3.2 Minimizing the path-length of a node-disjoint path pair with minimal

number of SRLGs in common

The formulation for node-disjoint path pairs, for a demand originating in node s and

terminating in node t (similar to the link-disjoint formulation in [18]) is presented next:

min

|A|∑
k=1

`k (xk,1 + xk,2)

subject to: constraints (1), (10)-(14) and

µst =

%∑
r=1

gr (15)

Let Λst be the solution of problem P2N , i.e. the minimal length of a node-disjoint path

pair for a demand between s and t, with minimal number of common SRLGs.

2.3.3 Variant of P2N

Similarly to what was considered earlier, we want to find the maximally SRLG-disjoint

path pair that satisfies the total length Λst (with some pre-defined tolerance ∆Λ) and for

which the longest path has minimum length.

Problem P ′
2N may be formulated as:

min M

subject to: constraints (1), (10)-(14), (15) and (7)-(9), where Lst = Λst and ∆L = ∆Λ. Let

ΛM
st be the solution of this problem.
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2.4 Optimization problems with SRLG-disjointness and geodi-

versity constraints

2.4.1 D-geodiverse path pair

In [13] the geographical distance between two paths is shown to depend only on the distance

of the edges of the paths. Let δ(eu, ew) designate the (minimal) distance between two

edges eu and ew. The same notation will be used if arcs are considered instead of edges:

δ(aj, ak) designates the distance between the edges corresponding to the arcs aj and ak.

The geodiversity value of path pair (p, q) ∈ P 2
st is represented by Dp,q and given by:

Dp,q = min
eu∈Ep,ew∈Eq

δ(eu, ew) (16)

When eu, ew have a common end node, the distance δ(eu, ew) = 0, except if the common

node is the source or the destination of the path pair, in which case δ(eu, ew) is calculated

as in [13]. More specifically, the distance between two edges eu = (s, v1) and ew = (s, v2) is

the minimum of two distances: the distance between node v1 and edge ew and the distance

between node v2 and edge eu – and similarly for a pair of edges with node t in common.

For each node pair (s, t), DMax
st = max(p,q)∈P2

s,t
Dp,q represents the maximal geographical

distance that can be achieved for any path pair between s and t. This problem requires

the calculation of the maximum geodiversity that can be achieved between every node pair

of interest for a demand originating in node s and terminating in node t. A formulation

for solving the ancillary problem of calculation of DMax
st can be found in [13].

In this context, as SRLG-disjointness is also a requirement, the calculation of the

maximal geographical distance that can be achieved takes into account the value of µst,

obtained when problem P1N was solved. Let this maximal distance be identified by

DMax
st|µst = max(p,q)∈P2

s,t:|Rp,q |=µst Dp,q. Therefore, the path pairs considered in the calcula-

tion of DMax
st|µst are those such that the minimal number of shared SRLGs is µst, as in the

following formulation:

max ξ

subject to: constraints (1), (10)-(14), (15) and

xj,1 + xk,2 − ϑjk ≤ 1 ∀j, k = 1, . . . , |A| (17)

(δ(aj, ak)−M)ϑjk − ξ ≥ −M ∀j, k = 1, . . . , |A| (18)

binary ϑjk ∀j, k = 1, . . . , |A| (19)
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where M is a sufficiently large number.

The binary variable ϑjk is 0 if arcs j and k cannot be both in the path pair. Indeed if

ϑjk = 0, then equation (17) becomes xj,1 + xk,2 ≤ 1 and therefore, if arc j is in the first

path then arc k cannot be in the second path (and vice-versa). This will happen if these

two arcs are not geodiverse. In this case, equation (18) becomes ξ ≤ M and is always

satisfied. If they are geodiverse, then ϑjk = 1 and both arcs can be used in the path pair

and equation (18) becomes ξ ≤ δ(aj, ak).

The solution of the previous problem for demand (s, t) is the value DMax
st|µst , which can

be calculated in advance for all (s, t) pairs. This formulation implies that geodiversity

is considered to be less relevant than the number of common SRLGs, i.e. the maximal

distance is the best that can be achieved while still respecting the value of the minimal

number of SRLGs in common obtained for node-disjoint path pairs.

One can define, for a desired D-geodiversity:

Dst = min
(
D,DMax

st|µst

)
(20)

We assume the networks are bi-connected, hence at least a node-disjoint pair of paths exists

for every node pair in the network. By using value Dst when calculating a D-geodiverse

path pair from s to t, we ensure a solution will always exist for any D > 0 in a bi-connected

network, because we relax D to each node pair maximal possible value Dst.

For the calculation of the geodiversity we must obtain the geographical distance of each

link to every other link and from each link to every node. To accomplish this, we take into

account the coordinates of the nodes in a xy plane, rather than geographical information

about the nodes or the edges (due to the difficulty in obtaining this type of information).

The edges are considered to follow the shortest lines between the corresponding end nodes,

which results in an optimistic calculation of the paths distances. We could have scaled up

the obtained distance by some factor, or alternatively scale down the desired geodiversity.

Therefore, the solution for a problem with a geodiversity of D km will be optimistic in the

sense that the real geodiversity is probably lower.

For the formulation of optimization problems involving geodiversity constraints, we

consider that Dst (as calculated in equation (20)) is known, along with the binary values

dk,j, which indicate whether arcs ak and aj are geodiverse (for a connection from s to t):

dk,j =

{
1 if δ(ak, aj) < Dst

0 otherwise
(21)
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2.4.2 Minimizing the total path-length of a path pair, under (maximal) SRLG-

disjointness and geodiversity constraints

Problem P2G is similar to problem P2N . It also relies on the result obtained for problem

P1N for each demand and some of the constraints are the same. The difference is that

now a constraint on geodiversity is also considered.

min

|A|∑
k=1

`k (xk,1 + xk,2)

subject to: constraints (1), (4)-(5), (10)-(14), (15) and

(xk,1 + xj,2) dk,j ≤ 1 ∀k, j = 1, . . . , |A| (22)

Constraint (22) guarantees the geodiversity. On the one hand, if dk,j = 0 then the

constraint is always satisfied, which means that the arcs ak and aj may be freely used in

the paths, as they are geodiverse; on the other hand, if dk,j = 1 then the constraint is

satisfied only if the arcs ak and aj are not used in both paths, as they are not geodiverse.

A lexicographic optimization approach is used, as this problem is solved after having

found a solution for problem P1N . Let Γst be the solution of problem P2G. This problem

is another ancillary problem, which finds the value of Γst for each (s, t) demand, required

for the formulation of P ′
2G.

2.4.3 Variant of P2G

Similarly to what was considered earlier, we want to find the maximally SRLG-disjoint path

pair with geodiversity constraints that satisfies the total length Γst (with some pre-defined

tolerance ∆Γ) and for which the longest path has minimum length.

Problem P ′
2G may be formulated as:

min M

subject to: constraints (1), (4)-(5), (10)-(14), (15), (22) and (7)-(9), where Lst = Γst and

∆L = ∆Γ. Let ΓM
st be the solution of this problem.
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3 Calculation of transponders’ reach and cost

After solving problemsP0, P2N and P2G (and their respective variants), the length of the

optimal path pairs for each demand is known. Given this information along with a traffic

matrix with demands in Gb/s, the aim is to calculate the cost of each solution in terms of

required Reconfigurable Optical Add-Drop Multiplexers (ROADMs). Note that the length

of the paths determines the possible/feasible transponders that can be used, due to their

optical reach. According to the optical reach, the feasible transponders may have different

rates and capacities, that will have an impact on the cost of the transponders.

3.1 Transponder reach

According to the model proposed in [25] for the calculation of the maximum reach of a

lightpath, we have to consider a certain threshold of the Bit Error Rate (BER), which is

related to a minimal value of the Optical Signal-to-Noise Ratio (OSNR). In the calculation

of the OSNR, the noise contribution from Amplified Spontaneous Emission (ASE) and

Non-Linear Interference (NLI) due to the Kerr effect in the fibre are considered. The

generalized Gaussian noise model may be used:

OSNR =
PTx,ch

PASE + PNLI

(23)

where PTx,ch is the input power per channel (ch) of the transmitter (Tx).

The ASE noise power is given by

PASE = [Ns(G− 1)Fhν]Bn (24)

where Bn is the bandwidth at which the noise is measured, Ns is the number of amplifier

spans, G is the performance gain of the Erbium Doped Fibre Amplifier (EDFA), F is the

EDFA’s noise figure, h is the Planck effect quantum, and ν is the frequency.

The noise power due to NLI is given by

PNLI =

(
2

3

)3

NsBnψ (25)

ψ = γ2LeffP
3
Tx,ch

log2 (π2|β2|LeffN2
chR

2
s)

π|β2|R3
s

(26)

where γ is the fibre nonlinearity coefficient, Leff is the effective fibre length, Nch is the
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number of channels, Rs is the baud rate and β2 is the fibre dispersion.

The expressions for PASE (equation (24)) and PNLI (equation (25)) are replaced in

equation (23). The resulting equation may be solved in order to get Ns. Therefore, the

maximum number of spans for the considered minimal OSNR is given by

Nsmax =
PTx,ch

OSNRmin ·Bn

(
(G− 1)Fhν +

(
2
3

)3
ψ
) (27)

Finally, the optical reach of a lightpath is given by NsmaxLs, where Ls is the length of the

span.

3.2 Transponder cost

We consider normalized transponder costs calculated in reference to a state-of-the-art

100 Gb/s coherent transponder implemented by a single carrier with Dual-Polarization

Quadrature Phase-Shift Keying (DP-QPSK) and roughly 34 Gbaud electronic speed.

The costs of more advanced transponders are assumed to mainly depend on three factors

(see Table 1):

• the number of optical carriers (lasers). We assume that it is more cost-efficient to

choose a transponder with two or more carriers than choosing two or more transpon-

ders with a single carrier.

• the maximum baudrate. We assume that doubling the maximal baudrate entails an

increase in the cost of roughly one-third.

• the adaptability of the transponder capacity. A fixed transponder which supports a

single modulation format and thus a single capacity only is cheaper than a modulation-

flexible transponder supporting multiple modulation formats and related capacities.

For example, DP-QPSK-only modulation is cheaper than the adaptable support of

DP-QPSK, DP-8QAM (Quadrature Amplitude Modulation) and DP-16QAM mod-

ulations. Therefore, we assume that the capacity can be flexibly doubled. Let Cmax

and Cmin represent the maximum and minimum capacity of the transponders in-

duced by modulation adaptivity. The corresponding formula in Table 1 is based on

[14, eqs. (33)-(34)], adapted so that doubling the capacity entails a 5% extra cost.
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Table 1: Factors that influence the cost of transponders

Number of carriers
Carrier 1 2 4
Factor 1 1.6 2.56

Maximal baudrate
Gbaud 34 42 52 65
Factor 1 1.1 1.2 1.3

Adaptability of capacity
Cmax

Cmin

0.525
log2

(
Cmax
Cmin

)

4 Use of regenerative transponders

As mentioned earlier, the length of the paths determines the possible/feasible transponders

that can be used, due to their optical reach. In particular, when a path pair is considered for

a certain (s, t) demand, the longest of the two paths is determinant in selecting the most

appropriate transponder to be used. Therefore, it is advantageous to have the longest

path of the pair as short as possible, which is the reasoning behind the formulation of

problems P ′
0, P ′

2N and P ′
2G.

In the networks that will be considered, paths with length higher than the maximum

reach of the available transponders are expected. For those long paths it is not possible

to have a fully transparent path and the path will in fact be composed of fully transpar-

ent segments, for which appropriate regenerative transponders, herein simply termed as

regenerators, will have to be used. Therefore we are considering regenerators at specific

intermediate nodes, followed by fully transparent segments, where an impairment thresh-

old is satisfied. The regenerators will be selected from the available set of transponders,

already mentioned in Section 3.

In this work, we consider a regenerator placement problem, as tackled in [3], in particu-

lar the SRSRRP (Single Request Survivable Routing and Regenerator Placement) problem.

The resolution of this problem aims at finding Rst, which is the minimum number of inter-

mediate nodes where regenerators will be necessary for a demand (s, t). Each demand is

considered separately, i.e. the demands are not considered in a network as a whole. There-

fore, dedicated regeneration is performed, in the sense that transponders are not shared

among different demands.

Note that in each intermediate node, back-to-back regenerative transponders will be

used. Also one transponder is necessary in the source node and another in the destination

node, making the total number of used transponders 2 (Rst + 1).

Other information that can be obtained from the solution of this problem is the regen-
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erator placement (i.e. the intermediate nodes where regenerators are necessary) and the

path pair for each demand that satisfies the constraints of each specific problem.

For the sake of generality, we assume that the two paths of the pair can share regener-

ators on nodes which are common to both the AP and the BP, which is designated in [3]

as a dedicated-shared variant of the SRSRRP problem. We assume that the BP may be

used only in the event of failure of the AP. Naturally when we consider node-disjoint path

pairs, there will be no sharing of intermediate regenerators, but the transponders at the

source and destination nodes may be shared.

Note that in the following calculations no information on the traffic for the demand is

considered.

4.1 Notation

The impairment value ηk is known for each arc ak ∈ A. The impairment threshold ∆η for

each transparent segment in a path is also known. There cannot be any segment in a path

with impairment higher than that threshold ∆η, where the impairment of the segment is

the sum of the impairment values of the arcs in that segment.

The binary decision variables used in the formulation are:

• xik,m is 1 if arc ak belongs to path pm and node vi is its last regenerator node (or the

source node) before encountering the arc ak; it is 0 otherwise;

• σa,b
m (with a 6= b) is 1 if path pm uses a regenerator at node va directly followed

by a regenerator at node vb (where va may be the source node, which always has a

transponder); it is 0 otherwise;

• ς i is 1 if a regenerator (that may be shared) is necessary at node vi; it is 0 otherwise.

4.2 Formulation of problem Pη
0

The problem Pη
0 of finding a link-disjoint path pair for a specific (s, t) demand with regen-

erators along those paths, such that the number of regenerators for both paths is minimal,

is tackled in [3]. In particular, we are considering the variant identified as dedicated-

shared by the authors, with an additional constraint on the total length of the path pair

and constraints on the difference between the length of the AP and the BP.
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This problem may be formulated as:

min

|V |∑
i=1

ς i

subject to: ∑
k∈E(s+)

xsk,m = 1 ∀m = 1, 2 (28)

∑
k∈E(b−)

xa
k,m −

∑
k∈E(b+)

xa
k,m = σa,b

m ∀vb ∈ V \ {s; t}; va ∈ V : a 6= b;m = 1, 2 (29)

∑
k∈E(b+)

xbk,m −
|V |∑
a=1
a 6=b

σa,b
m = 0 ∀vb ∈ V \ {s; t};m = 1, 2 (30)

|V |∑
a=1
a 6=b

(
σa,b

1 + σa,b
2

)
≤ 2ςb ∀vb = 1, . . . , |V | (31)

|V |∑
i=1
vi 6=t

∑
k∈E(t−)

xik,m = 1 ∀m = 1, 2 (32)

|V |∑
i=1

(
xik,1 + xik,2

)
≤ 1 ∀k = 1, . . . , |A| (33)

|V |∑
i=1

(
xik,1 + xik′,2

)
≤ 1 ∀k = 1, . . . , |A| (34)

∑
k∈E(s−)

|V |∑
i=1

(
xik,1 + xik,2

)
= 0 (35)

∑
k∈E(s+)

|V |∑
i=1
vi 6=s

(
xik,1 + xik,2

)
= 0 (36)

∑
k∈E(b−)

|V |∑
a=1
a 6=b

xa
k,m ≤ 1 ∀vb ∈ V \ {s};m = 1, 2 (37)

|V |∑
i=1

(
xik,m + xik′,m

)
≤ 1 ∀k = 1, . . . , |A|;m = 1, 2 (38)
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|A|∑
k=1

ηkx
i
k,m ≤ ∆η ∀i = 1, . . . , |V |;m = 1, 2 (39)

|A|∑
k=1

`k |V |∑
i=1

(
xik,1 + xik,2

) ≤ Lst∆L (40)

|A|∑
k=1

`k |V |∑
i=1

(
xik,1 − xik,2

) ≤ Mst∆M (41)

−

 |A|∑
k=1

`k |V |∑
i=1

(
xik,1 − xik,2

) ≤ Mst∆M (42)

binary xik,m, σ
a,b
m , ς i ∀k = 1, . . . , |A|; i, a, b = 1, . . . , |V |

(with a 6= b);m = 1, 2 (43)

where Lst = θst (obtained when P0 was solved) and ∆L = ∆θ (a pre-defined tolerance,

which may be different from the one considered in the resolution of P ′
0 – we considered

it to be the same). The value of Mst is θM
st (obtained when P ′

0 was solved) and ∆M is a

tolerance value.

Constraints (28)-(32) are the usual flow conservation constraints. Constraint (28) is

formulated for the source node, where a transponder should be placed (although it is

not accounted for in the objective function, due to the format of constraint (31)) and it

guarantees that an arc leaving s will be considered for each of the paths.

Constraints (29)-(30) are formulated for the intermediate nodes and they establish the

relations between the x variables (that identify the arcs of the path) and the σ variables

(that identify the sequence of nodes where regenerators will be necessary). As for con-

straint (31), it establishes the relation between the sequence of nodes where regenerators

will be necessary and the consequent placement of regenerators, represented by the ς vari-

ables.

Constraint (32) is formulated for the destination node, to guarantee that the paths will

end in this node.

Constraints (33)-(34) are link-disjointness constraints and they guarantee that: an arc

(or an arc and its symmetrical) cannot be used simultaneously in both paths.

Constraints (35)-(38) guarantee that no cycles (or loops) occur. Constraints (35)-(36)

are formulated for the source node and they guarantee that: no arcs of the path enter the

source node (35); there are no transponders in the path before the source node (36).
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Constraint (37) is formulated for the intermediate nodes and the destination node and

it guarantees that arcs entering a node vb may have transponders in other nodes before

that node vb is encountered in a path.

Constraint (38) guarantees that an arc and its symmetrical cannot be used simultane-

ously in the same path.

Constraint (39) is the impairment constraint, and it guarantees that any segment be-

tween two consecutive transponders will have an impairment value under the maximal

possible impairment threshold. As explained earlier, the impairment of a transparent seg-

ment is the sum of impairments of the arcs in that segment.

Constraint (40) is a constraint on the total length of the path pair, similarly to con-

straint (7) previously used in the formulation of problem P ′
0.

Constraints (41) and (42) are similar to constraints (8) and (9) and they guarantee that

the length of the longest path of the pair is minimal.

4.3 Formulation of problem Pη
2N

The problem Pη
2N of finding a node-disjoint and maximally SRLG-disjoint path pair for

a specific (s, t) demand with regenerators along those paths, such that the number of

regenerators for both paths is minimal, may be formulated as:

min

|V |∑
i=1

ς i

subject to: constraints (28)-(32), (35)-(43), (13), (15) and

xs(s,t),1 + xs(s,t),2 ≤ 1 (44)∑
k∈E(b+)

|V |∑
a=1

(
xa
k,1 + xa

k,2

)
≤ 1 ∀vb ∈ V \ {s, t} (45)

|A|∑
k=1

hr,k

 |V |∑
i=1

xik,m

 ≤ |A|zr,m, ∀r = 1, . . . , %;m = 1, 2 (46)

binary zr,m, gr ∀m = 1, 2; r = 1, . . . , % (47)

where Lst = Λst and ∆L = ∆Λ. Also Mst = ΛM
st and ∆M is a tolerance value.

In this formulation, we have considered node-disjointness constraints (44)-(45) similar
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to equations (10)-(11). Naturally in this problem the regenerators cannot be shared.

Constraints (13) and (46), which is similar to equation (12), are SRLG-disjointness

constraints. The minimal number of SRLGs in common is guaranteed by constraint (15).

4.4 Formulation of problem Pη
2G

The problem Pη
2G of finding a geodiverse (for distance Dst) and maximally SRLG-disjoint

path pair for a specific (s, t) demand with regenerators along those paths, such that the

number of regenerators for both paths is minimal, may be formulated as:

min

|V |∑
i=1

ς i

subject to: constraints (28)-(32), (35)-(47), (13), (15) and

|V |∑
i=1

(
xik,1 + xij,2

)
dk,j ≤ 1 ∀k, j = 1, . . . , |A| (48)

where Lst = Γst and ∆L = ∆Γ. Also Mst = ΓM
st and ∆M is a tolerance value. The parame-

ters dk,j were defined in equation (21), according to the distance Dst in equation (20).

In this formulation, we have considered the geodiversity constraint (48) similar to equa-

tion (22). Naturally in this problem the regenerators cannot be shared.

4.5 Selection of transponders

In paper [22], the selection of the appropriate transponders was made in such a way that if

a single transponder could not support the necessary traffic volume, the traffic was evenly

split (in halves or in quarters) and all the necessary transponders (2 or 4) were equivalent.

A more accurate way of performing these calculations may lead to a better selection of

transponders (i.e. with a lower total cost) to be used in a fully transparent optical network

or for a transparent segment.

Assuming the following data is known for each demand:

• Bst: length of the longest transparent segment of the path pair for the (s, t) demand.

Note that this value may be equal to the longest path of the path pair (usually it

is the BP) for the (s, t) demand if no regenerative transponders are needed in any

intermediate node for this demand;
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• Dst: traffic for the (s, t) demand.

and for each transponder of type τ ∈ T :

• reachτ : optical reach [km], calculated as described in subsection 3.1;

• capacityτ : capacity [GB/s];

• costτ : cost [a.u.], calculated as described in subsection 3.2.

The binary decision variables

yτω =

{
1 if a total of ω transponders of type τ is used

0 otherwise

are defined for each transponder type τ ∈ T . We assume the maximum number of

transponders of a certain type to be used for each demand is given by Ω, so ω may take

one of the values 1, . . . ,Ω. The number ω of transponders of a certain type τ to be used is

related to the number of sub-flows in which a flow will be split. In fact, if a single type τ of

transponder is used for the (s, t) demand, then ω =
⌈

Dst
capacityτ

⌉
assuming the transponder

of type τ satisfies reachτ ≥ Bst.

The following problem is formulated and solved for each demand:

min
∑
τ∈T

(
costτ

Ω∑
ω=1

ωyτω

)

subject to:

reachτ ≥ Bstyτω ∀τ ∈ T ;ω = 1, . . . ,Ω (49)∑
τ∈T

(
capacityτ

Ω∑
ω=1

ωyτ

)
≥ Dst (50)

Ω∑
ω=1

yτω ≤ 1 ∀τ ∈ T (51)

binary yτω ∀τ ∈ T ;ω = 1, . . . ,Ω (52)

If reachτ ≤ Bst, then the transponder of type τ cannot be used for this demand. Note

that in this case, for equation (49) to be satisfied, the value of yτω must be 0 for every

ω, and therefore this transponder type will not be selected. If reachτ ≥ Bst, then the
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transponder of type τ may or may not be used for this demand, in the quantity given by

ω. Equation (49) is always satisfied in this case, regardless of the value of yτω. In order

to solve this problem, we need all the results Bst for each of the problems (Pη
0 , Pη

2N or

Pη
2G) for any network.

4.6 Resolution approach

The resolution approach to find the set of transponders with minimal cost to be used for

each demand, is a lexicographic one.

1. We start by solving one of the problems Pη
0 , Pη

2N or Pη
2G, with the impairment

threshold ∆η = maxτ∈T reachτ . We will assume that the impairment value of an arc

is the length of the arc, i.e. ηk = `k. Let Rst be the solution obtained, i.e. the minimal

number of intermediate nodes where regenerators will be necessary, for demand (s, t).

Each transparent segment in any of the paths in the pair has a maximal length of

∆η, which is guaranteed by constraint (39).

2. Next we solve a problem aiming at the minimization of the maximal length of any

transparent segment in any of the paths of the pair, subject to a constraint on

Rst, which is the minimal number of intermediate nodes where regenerators will

be necessary. This will allow us to consider transponders with a reach lower than

maxτ∈T reachτ .

In this problem, the value of ∆η is not known beforehand and is actually the param-

eter that we wish to minimize. A problem formulated as

min ∆η

subject to: constraints of the considered problems Pη
0 , Pη

2N or Pη
2G and

|V |∑
i=1

ς i ≤ Rst (53)

is solved.

Let Sst be the solution obtained, i.e. the length of the longest transparent segment

in any of the paths of the pair for demand (s, t). Note that if Rst = 0, then Sst is

actually the length of the longest path in the pair.

24



Table 2: Network characteristics: |V |, |E|, average node degree (AND) [24], link density
(LD) [24], network diameter (ND), average clustering coefficient (ACC), assortativity

Network |V | |E| AND LD ND ACC Assort.

polska 12 18 3.00 27.27% 4 0.1472 -0.0435
nobel-eu 28 41 2.93 10.85% 8 0 0.0534
cost266 37 57 3.08 8.56% 8 0 -0.0151

Note that the solutions for the path pairs obtained after this resolution approach

should be very close to the ones obtained when P ′
0, P ′

2N or P ′
2G were solved, because

of constraints (40)-(42).

3. Finally, we select the actual transponders to be used. This is a simplification, as we

will assume that all the segments in the paths will have the same set of transponders,

regardless of the actual length of each individual segment.

To achieve this, we consider the problem defined in Subsection 4.5 for the selection of

transponders of minimal cost, with Bst = Sst. Note that in this problem information

on the traffic Dst for the demand is a parameter of the problem. Let the solution be

Cst.

4. The final cost value will be 2 (Rst + 1) · Cst.

5 Results

In this paper, we consider three different networks, all from the sndlib set [24], for which

some topology characteristics are displayed in Table 2. The polska network has a dimension

similar to the DT-backbone network provided by Deutsche Telekom (DT) and considered

in [22]. The other two networks have a higher dimension and they present paths longer

than the ones in the DT-backbone network or the polska network, as they span a much

wider geographical area. These longer paths ensure that there is the need for regeneration.

The topological information included in the table provides some insight into the net-

works: (i) the average node degree, which is similar to all the networks; (ii) the link density,

which is the highest for the polska network (it is the densest of the considered networks);

(iii) the network diameter, i.e. the highest of the minimal hop count between all pairs of

nodes in the network, is the same for the nobel-eu and the cost266 networks; (iv) for these

two networks, the average clustering coefficient [33] is 0, which goes to show that they are
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not very dense; (v) the assortativity [23] of the nobel-eu network is positive, indicating a

correlation between nodes of similar degree.

In the sndlib files, information on the longitude and latitude of the nodes for the

networks is available. Given this information, the coordinates of the nodes in a xy plane

were obtained by a sinusoidal projection [5]. The coordinates of the nodes in the xy plane

are used to calculate the length of the edges which are simply the Euclidean distance

between the end-nodes of the edges. They are also used to calculate the geodiversity in

terms of the geographical distance of each link to every other link and from each link to

every node, as explained earlier.

For the polska and nobel-eu networks, we considered ten different instances with differ-

ent SRLG sets, which were generated as described in [18], which should allow for a realistic

SRLG distribution. For the cost266 network five different instances were considered.

The number of generated SRLGs is half the number of edges in each network and for

each generated SRLG, the target number of edges is 2 to 4 (randomly (uniformly) selected

value). For each edge, the target number of SRLGs is 0 to 4 (uniformly selected value). The

generation of each SRLG starts with a random (uniform) selection of a node. Afterwards,

the edges with an end node at a distance less than a pre-defined value χ from the selected

node are candidates for that SRLG. Each candidate edge which hasn’t exceeded its assigned

SRLG target yet, may be included in the SRLG with a probability of 10%.

In this generation of SRLGs, the value of χ is defined for each network, based on the

average and minimum distance between all the node pairs in that network (Euclidean

distance between the xy coordinates of the nodes). Therefore, the edges in each SRLG are

located in a χ-radius neighborhood, i.e. they are in close geographic proximity and should

share common risk faults.

The information on the traffic matrices for each network is based on the information

provided in the sndlib files and on the estimated population served by each network.

The approach we used is arguable as the total traffic volume in a backbone network also

depends on the number of backbone nodes, but we still think it may be used for the sake of

experimentation. Note that information on the traffic matrices in a network is not available

from network operators, so some kind of estimation always has to be considered.

Considering the total traffic in the matrix provided by DT for the DT-backbone net-

work in [22] and the total population of Germany, we get an estimate of traffic per user

(denoted by ℘). Given estimates of the populations served by each of the networks, a

multiplication of those values of population per ℘ gives the total traffic we should have
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Table 3: Average value of the lengths (in km) of the edge-disjoint paths of min-sum length
for the nobel-eu network

Problem Average length of AP [km] Average length of BP [km]

P0 1382.01 2064.31
P ′

0 1426.22 2020.11

for each network. Taking the traffic matrix provided in sndlib for each network as a basis,

we applied a multiplication factor to each demand, so that the total traffic has the desired

value. Afterwards, a final correction factor of 2 to 5 is applied to account for higher traffic

values. Note that in a backbone network, the traffic values are related not only to the

population, but also to the number of nodes in the backbone.

All the ILP problems were solved using CPLEX 12.8 [1].

Regarding the lengths of the paths for the AP, the BP and the path pair, we will focus

on the results (in terms of the paths) of problems: (i) Pη
0 – edge-disjoint path pair of

min-sum length, with minimal length for the longest path of the pair; (ii) Pη
2N – node-

disjoint path pair with minimal number of SRLGs in common and min-sum length, with

minimal length for the longest path of the pair; (iii) Pη
2G – path pair with minimal number

of SRLGs in common and min-sum length, with minimal length for the longest path of the

pair and geodiversity constraints, with a distance D – problem Pη
2G(D). We considered

different values of D including a value sufficiently high so that for all the demands the

value of Dst is DMax
st|µst .

As mentioned previously, the problems described in Section 2 are instrumental, to find

out the values of θst, µst, Λst, M Λ
st , Γst(D) and M Γ

st(D). The tolerance values ∆ are always

1.001.

For illustration of the benefits of the use of the path pair in which the longest path of

the pair has minimal length, results for the average value of the lengths of the paths is

displayed in Table 3 for the nobel-eu network, when P0 and P ′
0 were run. As expected,

the length of the BP is slightly lower for P ′
0, which is accompanied by a slight increase in

the length of the AP. The variation is not very high, but it could be enough to allow for

the use of cheaper transponders. This is the reason why the following results focus on the

path pairs for which the longest path has minimal length.

In Figure 1 results for the relative variation of the lengths of the paths with respect to

the corresponding length of the path obtained with Pη
0 are displayed. Different instances

with different SRLG sets were considered. The average values are in the bars and the
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standard deviation values are in the lines.

The results for node- and maximally SRLG-disjointness (min#SRLG) and the results

for maximally SRLG-disjointness and geodiversity constraints with smaller values of D

are similar. This shows that node-disjointness along with maximally SRLG-disjointness

already provides some geodiverse results.

Networks polska, nobel-eu and cost266 have different sizes and different distances to

be considered. It is noticeable that in the smaller network, the results for geodiversity are

very different for D varying from 50 km to 150 km. The results for Dmax are similar to

the results for D=150km. As for the larger networks, the results for lower D do not show a

great variation, which again reinforces the idea that for large networks, node-disjointness

and maximally SRLG-disjointness guarantee some geodiversity. The average variation of

path length for Dmax is clearly higher than for lower D. The standard variation values

are relatively large, possibly due to the impact of selected SRLGs.

For the cost analysis, the parameters used to calculate the transponder optical reach

(see equation (27)) were: Nch = 96; γ = 1.37 [(W.km)−1]; Leff = (1 − e−2αLs)/(2α);

α = 0.22 [dB/km]; Ls = 80 [km]; β2 = −Dλ2/(2πc) [ps2/km]; D = 17 [ps/(km·nm)];

Bn = 12.48 [GHz]; G = 100.1αLs ; F = 6.5 [dB]; PTx,ch = −2 [dBm]; and c the light

velocity in free space. Additionally it was considered an OSNR penalty of 4 [dB] which

accounts for ageing, implementation imperfections, and additional imperfections inside the

fibre infrastructure.

We considered different types of transponders with different properties (cost, adaptable

capacity and reach). The reach and normalized cost of each transponder were calculated

as explained in Section 3.

The cheapest transponders capable of transporting the traffic of a demand in both paths

of the pair were always selected. As explained in Subsection 4.5, if a single transponder

cannot support the necessary end-to-end traffic volume, the traffic must be split and more

transponders will be required in a fully transparent optical network or for a transparent

segment.

As explained in Section 4, if a fully transparent path is not possible, then the maximum

length transparent segment in any of the paths in the pair is considered in the calculation

of the necessary transponders.

Note that in these problems, no fibre capacity constraints were taken into account.

In Figure 2, results for the relative variation of the costs of the transponders to be used

in the paths, with respect to the corresponding cost of transponders to be used in the path
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(a) Results for the polska network

(b) Results for the nobel-eu network

(c) Results for the cost266 network

Figure 1: Variation of the lengths of the paths (AP, BP and path pair) obtained for the
different problems Pη

2N (min#SRLG) and Pη
2G for different distances D, in relation to the

results of the basic solution (obtained with problem Pη
0 )
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Figure 2: Variation of the cost of the transponders for the different problems Pη
2N

(min#SRLG) and Pη
2G for different distances D, in relation to the results of the cost

of the basic solution (obtained with problem Pη
0 )

pair obtained with Pη
0 are displayed. Different instances with different SRLG sets were

considered. The average values are in the bars and the standard deviation values are in

the lines.

The pattern of variation of the transponders costs is similar to the pattern for the path

lengths, as expected as one of the main parameters influencing the cost of the transponders

is the reach of the transponder. For longer paths, transponders with longer reachs are

necessary.

Notice however, that the variation is not in the same proportion. For instance, for the

nobel-eu network, the relative variation of length of the BPs (usually the longest path of

the pair) increases from 35.5% to 52.3% when D varies from 150 km to Dmax, whereas the

relative variation of cost of the transponders in the same situation increases from 30.0%

to 46.6%.

6 Conclusion

This work focuses on the impact of SRLG-disjointness in the length of a path pair for each

demand in a network. Problems for devising (i) edge-disjoint path pairs, (ii) node-disjoint

and maximally SRLG-disjoint path pairs, and (iii) maximally SRLG-disjoint path pairs

with geodiversity were formulated, in order to find the path pair with min-sum length,

such that the longer path of the pair has minimal length, for each of the cases.
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Considering the results for the performed experiments, we realize that SRLG-disjointness

entails a certain geodiversity, as the results for maximally SRLG-disjointness with and with-

out geodiversity constraints are similar for the smaller values of D. This was expected, as

the SRLG sets were generated taking into account some geographical information. This re-

sult shows that associating links in SRLGs that encompass some geographical information

and finding node- and maximally SRLG-disjoint path pairs should guarantee some degree

of geodiversity, which is obviously desired in disaster-prone areas. Therefore, some benefits

of geodiversity may be accomplished by simply guaranteeing maximally SRLG-disjointness

(with node disjointness as well).

The cost of the transponders to be used for such paths was also analysed. If a transpar-

ent path is not possible, regenerators will be necessary in intermediate nodes. A problem

for calculation of the number and location of regenerators for each path pair is put forward

and solved. Another outcome of this problem is the path pair itself. The actual selection

of the transponders to use is accomplished by solving another ILP problem, aiming at the

minimal cost of the set of transponders that satisfy the reach of the longest transparent

segment in any of the path pairs. For the selection of transponders, information on the

traffic for every demand is taken into account.

As the required geodiversity distance increases, the length of the paths also increases,

which means that the cost of transponders will be higher. Note however that the cost

increase is not proportional to the path length increase.

Regarding future work, we plan to consider the selection of transponders in a more

refined way, so that the length of each segment in the path is taken into account, and

not only the length of the longest transparent segment. We also plan to formulate a

problem that encompasses the different aspects in transponder selection, rather than the

lexicographical approach that was proposed here.
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