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Abstract  

With the growth of big data analytics more and more services and organizations have started 

collecting and processing personal information and customer behavior in order to optimize 

their business strategies and directed marketing. Furthermore, public and private 

organizations are embracing the information and communication technologies and moving 

their services to more convenient electronic alternatives, managing and collecting 

information on a larger scale and much more frequently.  

 

Having sensitive personal information being collected, kept and shared between multiple 

organizations and services on a daily basis creates a significant risk for individuals as 

personal information can be used for fraudulent purposes. Increasing the severity of the 

issue, tracking which organizations are keeping what data about you is nearly impossible.  

 

The General Data Protection Regulation (GDPR) implemented on the 25th of May 2018 aims 

to protect individuals by imposing stricter regulations regarding collection and processing 

of personal identifiable information, in order to mitigate the potential malicious use and 

propagation of such information. 

 

The Protection and control of Secured Information by means of a privacy enhanced 

Dashboard (PoSeID-on) H2020 project's goal is to address this by creating a platform for 

individuals to centrally manage their personal data across several services and 

organizations, while providing businesses with the tools for safeguarding the rights of 

individuals as declared on the regulation. 

 

The work developed for this thesis, consists on the design and preliminary development of 

a module for analysis and risk identification in Personal Identifiable Information (PII) 

exchanges within the PoSeID-on platform. This report presents the architectural description 

and the interim implementation of this module, which receives and analyses system and PII 

operations log in real-time, for identification and notification of possible privacy risks to data 

subjects PII. 

 

Keywords 

Anomaly Detection, Machine Learning, Personal Identifiable Information, Privacy, Log 

Parsing 
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Resumo  

Com o crescimento da análise de dados em grande escala, cada vez mais serviços e 

organizações armazenam e processam dados pessoais e padrões comportamentais de 

utilizadores de modo a otimizar os seus processos de negócio e marketing. Para além disso, 

cada vez mais organizações públicas e privadas adotam serviços de informação e 

comunicação e movem os seus serviços para meios eletrónicos mais convenientes, gerindo e 

armazenando informação em grande escala e com mais frequência. 

 

Ter informação sensível e pessoal a ser armazenada, processada e partilhada entre múltiplas 

organizações e serviços cria um risco significativo para os indivíduos em causa, pois a sua 

informação pessoal pode ser utilizada para fins fraudulentos. Aumentando a severidade da 

situação, manter um registo sobre que organizações possuem que dados sobre um individuo 

é praticamente impossível. 

 

O Regulamento Geral de Proteção de Dados (RGPD) implementado no dia 25 de Maio de 

2018, tem como objetivo proteger os indivíduos impondo uma legislação mais restrita sobre 

a coleta e processamento de informação pessoalmente identificável, de maneira a mitigar o 

potencial uso malicioso e propagação deste tipo de informação. 

 

O projecto H2020 PoSeID-on tem como objetivo endereçar o problema através do 

desenvolvimento de uma plataforma através da qual indivíduos podem gerir, de uma 

maneira centralizada, os dados pessoais partilhados com diversos serviços e organizações. 

Por outro lado, a criação desta plataforma disponibiliza a estas organizações ferramentas 

para garantir a segurança dos seus utilizadores, protegendo os mesmos de acordo com o 

regulamento RGPD. 

 

O trabalho desenvolvido nesta tese, consiste no design e desenvolvimento de um módulo 

para análise de dados e identificação de riscos em transações e operações envolvendo dados 

pessoais, dentro da plataforma PoSeID-on. Este relatório apresenta a descrição arquitetural 

e implementação do protótipo deste módulo, que recebe e analisa registos de sistema e 

registos de operações sobre dados pessoais em tempo real, para identificação e notificação 

sobre possíveis riscos para os dados pessoais dos utilizadores. 

 

Palavras Chave 

Deteção de Anomalias, Aprendizagem Computacional, Informação Pessoalmente 

Identificável, Análise de Registos de Sistema 
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Chapter 1  Introduction 

This document is the final thesis report, in the scope of the master’s in informatics 

engineering. This thesis was conducted in the Laboratory of Communications and 

Telematics of the Center for Informatics and Systems of University of Coimbra (LCT/CISUC), 

under the supervision of Professors Paulo Simões and Fernando Boavida Fernandes. 

The internship was conducted in the scope of the H2020 PoSeID-on research project[1], of 

which LCT/CISUC is one of the main partners. This research project aims at devising, 

building and evaluating a platform for supervising the exchanges of Personal Identifiable 

Information (PII) between different data processors, in order to ensure compliance with 

recent regulations such as the EU’s General Data Protection Regulation (GDPR)[2] and to 

enable data subjects (e.g. citizens) with tools for properly managing and enforcing their 

rights to control their PII. 

The initial objective of the internship was the design, implementation and integration of the 

PoSeID-on platform’s Risk Management Module (RMM), one of the two platform 

components to be developed by LCT/CISUC. Nevertheless, since the internship started in 

the early months of the project, when the PoSeID-on platform itself was not sufficiently 

defined, significant contributions were also provided to the overall design of PoSeID-on 

platform and, more recently, to the platform integration process. 

This report details the design and development of the preliminary version of the 

aforementioned RMM – a module for detecting anomalous behaviors within the PoSeID-on 

platform. It also provides an overview of the PoSeID-on initial architecture design, which 

was conducted in parallel with the RMM and in which the LCT/CISUC (and the candidate) 

took a key role, leading, documenting and moderating the whole process. 

This chapter describes the motivation and goals for the work developed for this thesis by 

contextualizing it in the PoSeID-on project. An overview of the PoSeID-on project is 

provided, followed by the primary goals of this work.  A summary of the major contributions 

and the structure of the document are also presented. 

1.1  Motivation 
Personal information has never been more valuable[3]. Services and organizations have been 

collecting and processing personal information and customer patterns in order to optimize 

their businesses for years and, with the widespread adoption of information and 

communication technologies, even in services which regularly operate outside this medium, 

the scale and speed at which this gathering of information occurs has increased significantly. 

As personal information collection and usage grew, so did awareness of the value and risk 

of exposing this type of information. 

On the 25th of May 2018, the European Union’s (EU) General Data Protection Regulation 

(GDPR) was officially approved, forcing all public and private organizations selling goods 

or services or in any way collecting and processing personal data of individuals residing in 

the EU to become compliant. This set of regulations, giving new rights and more control to 

individuals and in consequence making these organizations accountable for the data they 
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own about each individual, creates a mandatory step to take in order to achieve compliance: 

the implementation of tools or systems to provide these rights but most importantly, to 

guarantee the unhindered functioning of previously provided services. Even today, most 

organizations have no streamlined tools for allowing data subjects to check which PII they 

keep and share with others – data subjects are relegated to means such as phone calls, emails 

or even mail to contact data processors, and data processors also process those requests in a 

manual fashion which is not cost-effective, efficient or even satisfactory to data subjects.  

The PoSeID-on H2020 research project[1] aims to devise, build and demonstrate an 

innovative and intrinsically scalable platform that data subjects may use to interact with a 

wide set of data processors (e.g. all data processors from a specific country), in order to 

monitor and control their PII – checking which PII is kept, processed or exchanged by each 

data processor, and defining their consent (or lack of) per operation, per PII and per 

processor, in a fine grained manner. Such a centralized platform is necessary for actually 

enabling the vision of GDPR, registering exchanges and storage of PII and making them 

visible to data subjects and regulators. 

The motivation behind the work developed and reported in this thesis is the necessity of 

monitoring the operations that take place within the PoSeID-on platform in order to detect 

possible anomalies and privacy risks associated with the exchange of PII.  

This will allow data subjects to not only be aware of possible risks affecting their personal 

data but also to make informed decisions over the processing of their PII. 

1.2  Objectives 
The main goal of the work reported in this thesis is to contribute to the PoSeID-on platform 

by researching, designing and developing a module for monitoring the platform and 

detecting risks and anomalies associated with the exchange and processing of PII. In 

addition, there is a goal the of contributing to the overall architecture of the PoSeID-on 

platform and to the integration activities.  

In a clear and concise way, the goals were the following: 

1. To study: 

• the implications of GDPR in data processing and software development. 

• the basis of blockchain technologies. 

• the state-of-the-art in anomaly detection, in order to devise the RMM. 

2. To contribute to the definition of the PoSeID-on architecture, based on preliminary 

study and by promoting and participating in the architecture design and 

documentation activities. 

3. To design and develop a prototype module for privacy risk identification (the RRM), 

based on available machine learning techniques for anomaly detection and feed by 

data provided by other PoSeID-on platform components. 

4. To integrate this module into the PoSeID-on platform and to test it, in order to 

validate the adopted anomaly detection approaches. 
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1.3  The PoSeID-on Project 
As already mentioned, the work reported in this thesis was performed in the scope of the 

PoSeID-on project [1]. The University of Coimbra (UC) team contributes to this project with 

several activities, of which the more relevant, for the purpose of this thesis, were leading the 

definition of the overall platform architecture (Task 2.2) and the design and development of 

the components not directly related with blockchain technology (Work Package 4), of which 

the already mentioned RMM is part (Task 4.2). 

The RMM implementation is planned in two phases. A first version has been released in 

August 2019, for platform integration and usage in a first round of Pilot Trials, and a second 

(and final) RMM release will be provided by May 2020. 

This section aims to contextualize the reader with the project, by giving a general overview 

of PoSeID-on’s motivation, goal, envisioned solution and conceptual architecture. A large 

part of the content provided here is directly adapted from the project’s initial documentation 

(i.e. the project proposal). 

1.3.1  PoSeID-on Goals and motivation 

With the enforcement of the GDPR starting from the 25th of May 2018, all public and private 

organizations selling goods or services or in any way collecting and processing personal data 

of individuals residing in the EU are forced to be compliant to the regulation or else become 

subject to fines that can reach 20 million euro or 4 percent of a company's worldwide annual 

turnover. This set of regulations, giving new rights and more control to individuals and in 

consequence making these organizations accountable for the data they own about each 

individual creates a mandatory step to take in order to achieve compliance: the 

implementation of tools or systems to provide these rights and most importantly, to 

guarantee the unhindered functioning of previously provided services. 

The PoSeID-on project aims to develop a transparent and intrinsically scalable ecosystem for 

personal data protection, providing the necessary tools for businesses and public 

organizations to be able to be compliant to the GDPR while providing data subjects with a 

way to manage access and authorizations to personal data in an easy, secure and 

independent way, while safeguarding their rights. The use of the PoSeID-on platform for 

personal data management facilitates the transition to compliance for these services and 

encourages new business opportunities by creating an ecosystem based on transparency, 

trust and security for personal data sharing, while leveraging innovative technologies such 

as blockchain, smart contracts and the cloud. In summary, the PoSeID-on platform aims at 

managing all the PII transactions between data subjects and data processors/controllers in 

order to: 

1. Define the treatment purpose of all personal data and exactly who (external entities) 

can access it. 

2. Define the set of information that can be processed for each specific purpose, by a 

particular entity. 

3. Identify all the entities involved in the processing of the personal data of a data 

subject. 

4. Secure and track transactions through which personal data is shared between data 

subjects and the data controllers (who define the purpose of data processing). 
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5. Secure and track transactions through which personal data is shared between data 

controllers and data processors. 

6. Make informed decisions on who will be allowed to process personal data, based on 

data controller/provider trustworthiness. 

7. Alert of risks and threats in case of privacy exposure due to anomalies on the 

transactions or the detection of Personally Identifiable Information. 

Evaluation of the platform and achievement of the aforementioned goals will be done 

through four pilot studies across four countries, each testing its functionalities in public, 

private and mixed contexts. An Italian pilot will enhance e-services for management of 

public sector employees. A Spanish pilot will integrate and improve the e-government 

services available for the citizens of Santander. An Austrian pilot was planned to focus on 

integrating PoSeID-on with a e-government platform for business and organizations 

management (meanwhile this Pilot has been substantially changed), and a French pilot will 

simplify e-services for French citizens. These pilots will be run in controlled environments, 

with a select set of users, in order to simulate real life services and conditions. 

 

1.3.2  PoSeID-on Conceptual Architecture 

The PoSeID-on project consists in designing, implementing and validating a Privacy 

Enhancing Dashboard for personal data protection, a platform which will manage all PII 

exchanges between a data subject or controller of a data subjects’ personal data and private 

or public entities requesting that data, also taking a role of a data controller or data processor 

within the PoSeID-on system. Data subjects will be able to manage and monitor information 

regarding the state of their personal data, through a user friendly and usability focused web 

dashboard, which should allow them to track exchanges of their PII, manage permissions of 

access to their data and view risk levels stemming from their privacy exposure and system 

operations. This dashboard will only be available through secure authentication via 

electronic Identification (eID) accounts in line with the electronic IDentification, 

Authentication and trust Services (eIDAS) Regulation in order to reduce identity frauds and 

protect the privacy of users. 

The PoSeID-on proposal envisages a solution leveraging permissioned blockchain 

technologies and smart contracts. Through the use of smart contracts for PII management 

data confidentiality, access control and transparency of operations will be guaranteed for 

data subjects. Data controllers and data processors will only be able to access PII when 

properly authorized through a request using this technology. Permissioned blockchain 

technologies will provide a tamper resistant way to manage and record PII accesses and 

exchanges in a secure and distributed way while removing the possibility of unauthorized 

third parties monitoring or eavesdropping on data exchanges. No PII will be stored in 

blockchain transactions or smart contracts, only anonymized references to it, respecting 

GDPR data minimization principles and the right to be forgotten. 

Figure 1.1 shows the original PoSeID-on contextual architecture, as described and presented 

in the projects description of work (DoW), identifying the major components and actors (data 

subjects and data processors) of the platform. 
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Figure 1.1 PoSeID-on original architecture proposal 

While this original architecture is clearly not sufficiently well-defined to fully understand 

the PoSeID-on concept, it is what was available at the start of the project and at the start of 

this MSc Thesis. For the RMM module, the initial vision was that, somehow, a specialized 

module would be able to receive information from the other platform components (e.g. logs 

from data subjects accessing the dashboard, logs from data processors exchanging PII) and, 

based on those logs, would be able to detect anomalies reflecting abusive usage of the 

platform (e.g. illegitimate syphoning of user data, abnormal activity of data processors).  

The results of the subsequent work detailing of the PoSeID-on architecture and components 

will be provided in Chapter 3  (PoSeID-on Architecture). 

 

1.3.3  Consortium Partners 

The PoSeID-on project combines the expertise of ten partners from seven European 

countries, which can be seen in Table 1.1. This subsection aims to present them and give an 

overview of each partner’s role in the project. 

The Consortium consists of two public administrations (MEF, SAN), three large industry IT 

companies (ACN, PNO and SOFT), one public and private IT provider (BRZ), one legal 

small-medium enterprise (ELEX) and two research and university institutes (TECN, UC). 

Reflecting the different profiles of each partner, most of the technical ICT work was 

performed by three partners: Tecnalia (blockchain tools), JIBE (dashboard and leadership of 

overall integration), and UC (architecture design, RMM and Data Privacy Analyzer). 

 

 

Partner No Organization name Short name Country 

1 (Coordinator) Ministero dell’Economia e delle Finanze MEF IT 

2 Accenture S.p.A. ACN IT 
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3 PNO Innovation PNO BE 

4 e-Lex Studio Legale ELEX IT 

5 Fundacion Tecnalia Research & Innovation TECN SP 

6 Ayuntamiento de Santander SAN SP 

7 Softeam SOFT FR 

8 Universidade de Coimbra UC PT 

9 Bundesrechenzentrum GmbH BRZ AU 

10 SMARTFEEDZ B.V. JIBE NL 

Table 1.1 Project Partners 

1.4  Thesis Contributions 
This work developed for this thesis contributed to the anomaly detection state-of-the-art by 

providing a design and proof-of-concept implementation for a scalable, on-line anomaly 

detection module using PoSeID-on’s logs (from the system and from PII transactions) for 

data subject risk assessment. Moreover, it contributed to the PoSeID-on project not only with 

the RMM module but also with additional efforts in the definition of the architecture of the 

whole platform. 

The main contributions resulting from this work are: 

1. A review of GDPR, blockchain technology and anomaly detection concepts and 

approaches. 

2. The architectural design for a horizontally scalable module for online anomaly 

detection based on logs and system and PII transactions (the RMM Module). 

3. Implementation of a proof-of-concept module based on the proposed architectural 

design. 

4. A collection of scripts for building, containerizing and deploying the RMM module 

in Kubernetes, as well as the module dependencies, such as storage containers. 

5. Implementation of the Drain Log Parser algorithm in Java, based on the original 

python implementation. Some quality of life adaptations to the algorithm were also 

developed to accommodate the use of Apache Spark Streaming [4] and log auditing. 

6. A preliminary evaluation of the RMM module, based on synthetic datasets, to be 

later complemented with a more complete evaluation in the scope of the Pilots. 

In addition, the following secondary outcomes of this work are noteworthy: 

1. Documentation of PoSeID-on’s System Requirements and Architecture, a joint work 

from several project partners that was led by the University of Coimbra and resulted 

in Deliverable 2.2 of the PoSeID-on project, led by the author of this Thesis [Annex 

1]. 

2. The documentation of the Risk Management Module Interim implementation, that 

is a large part of Deliverable 4.3 of the PoseID-on project[5] . 
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3. Co-authorship of a journal paper describing the PoSeID-on’s concept and initial 

architecture design, accepted for publication in the Journal of Data Protection & 

Privacy[6]. 

4. Co-authorship of a dissemination paper describing the PoSeID-on concept and 

focused on work conducted by University (the RMM and the Personal Data 

Analyzer), accepted for publication in the 9th “Congresso Luso-Moçambicano de 

Engenharia” (CLME2020) [7]. 

5. Co-authorship of a technical paper describing the PoSeID-on concept and focused on 

work conducted by University (the RMM and the Personal Data Analyzer), 

submitted to the Annual Privacy Forum 2020 (under review)[8]. 

6. Invited presentation in the public “Workshop on Privacy, Data Protection and Digital 

Identity”, organized by the PoSeID-on Project, Coimbra, July 11, 2019. 

Furthermore, the work developed during this thesis (wh[9]ich will continue in the following 

months) is expected to result in another research paper, focused specifically on the RMM 

solution. 

1.5  Structure 
The rest of this document is organized as follows: 

• Section 1 is this introduction. 

• Section 2 presents the background for the work presented in this thesis. It gives an 

overview of the General Data Protection Regulation, followed by a overview of 

blockchain technologies basic concepts and anomaly detection approaches. 

• Section 3 presents the PoSeID-on project architecture and use cases. 

• Section 4 details the Risk Management Module proposed design and specification, 

starting with the methodology that led to the initial proposal, followed by the 

anomaly detection approach taken and architectural design decisions. 

• Section 5 describes the implementation and integration efforts performed during the 

development of this work, describing the technological stack and implemented 

components and deployment scripts. Finally, challenges faced during 

implementation are discussed. 

• Section 6 evaluates the module and thesis results in face of the initial requirements 

and objectives and presents the experimental methodology and results achieved for 

the prototype implementation of the Risk Management Module. Publications which 

resulted from the work developed are also presented followed by the fulfilled thesis 

objectives.  

• Section 7 presents the conclusions taken from the developed work and presents the 

future work for the RMM module. 
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Chapter 2  Background 

The GDPR [7] is a regulation with the goal of harmonizing data privacy laws across Europe. 

It builds upon the European Data Protection Directive (DPD)'s concepts and principles, 

introduced in 1995, and aims at increasing the protection legislation provides to individuals 

regarding their personal data. To better understand the GDPR, without diving into the 

extensive details present in the regulation, it is helpful to identify what it applies to, who it 

affects, and what protections it aims to provide [9]. 

2.1  General Data Protection Regulation 
The GDPR [7] is a regulation with the goal of harmonizing data privacy laws across Europe. 

It builds upon the European Data Protection Directive (DPD)'s concepts and principles, 

introduced in 1995, and aims at increasing the protection legislation provides to individuals 

regarding their personal data. To better understand the GDPR, without diving into the 

extensive details present in the regulation, it is helpful to identify what it applies to, who it 

affects, and what protections it aims to provide [7]. 

 

What does GDPR apply to? 

GDPR has an over-arching scope over all material involving personal data of data subjects 

in the EU. Personal data is defined in Article 4 of GDPR as: 

    “any information relating to an identified or identifiable natural person” [7] 

This definition implies that the GDPR applies to not only data that is directly and obviously 

related to a natural person, such as a name or address, but also to any other data that can 

potentially be used to directly or indirectly identify someone. An example is logged 

metadata regarding someone's behavior on an online platform. For example: if it is possible 

to trace the operational logs back to a person, by connecting the log to an account number 

and that account number to a natural person, this is also considered personal data. 

 

Who does it concern? 

GDPR can be understood as set of rules defining the interactions between three main actors: 

• Data subject is whom the data relates to, and the actor GDPR aims to protect. 

• Data controller is defined in as the “natural or legal person, public authority, 

agency or other body which, alone or jointly with others, determines the purpose 

and means of the processing of personal data” [7]. It is the actor who is ultimately 

accountable for compliance and liable if the regulation is breached. It is also 

responsible of exercising the data subject's rights. It must always be possible to 

identify the data controller. 

• Data processor is a party who “processes personal data on the behalf of the 

controller”[7]. The data processors have a set of obligations under the GDPR, but 

accountability falls onto the data controller governing them. 
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Principles, rights and obligations 

In order to pave the way for the protection of personal data rules, GDPR sets the foundation 

of six data processing principles: 

• Lawfulness, fairness and transparency - personal data should be “processed 

lawfully, fairly and in a transparent manner”[7]. Data controllers must clearly 

communicate the intended use of the data and ensure collection and processing of 

this data is done according to the legislation. 

• Purpose limitation - personal data shall be “collected for specified, explicit and 

legitimate purposes”[7] meaning that any use of data for other purposes than those 

clearly identified upon data collection is against the law. Exceptions to this are 

archiving purposes for public interest or scientific and historical research. 

• Data minimization - personal data collected should be “adequate, relevant and 

limited to what is necessary”[7] for the stated purposes. 

• Storage limitation - personal data must be “kept in a form which permits 

identification of data subjects for no longer than is necessary”[7] for the stated 

purposes. Exceptions to this are archiving purposes for public interest or scientific 

and historical research. 

• Accuracy - personal data kept by a data controller must be “accurate and, where 

necessary, kept up to date”[10]. This translates into the data subject's right of asking 

for correction of their personal data, correction which must be met by the data 

controller, by either correcting or deleting the no longer valid data. 

• Integrity and confidentiality - personal data must be “processed in a manner that 

ensures appropriate security"[11], being the data controller’s responsibility of 

ensuring that the data collected is secure against attacks, loss, destruction or damage. 

GDPR also defines processing as lawful when it is done with the data subjects’ consent, freely 

given, specific, informed and unambiguous. This consent can be later revoked as the data 

subject has the right to withdraw his or her consent at any time. Data controllers do not 

always need to comply to the revocation and subsequent deletion of the personal data if it is 

necessary for fulfilment of a contract, protection of vital interests of the data subject or other 

party, or for the performance of a task carried out in the public interest or legitimate interest 

pursued by the controller (if these do not go against the interests and fundamental rights and 

freedoms of the data subject). 

From the principles above the GDPR derives a set of rights for data subjects and obligations 

for data controllers. In the perspective of general system design and development, and in 

particular from the viewpoint of the PoSeID-on project and architecture design, the following 

data subject rights are particularly relevant: 

• Right to rectification - data subjects have the right to correct and keep their data 

updated. 

• Right to be forgotten - data subjects have the right of having their personal data 

deleted if it is no longer necessary to fulfil the purpose it was requested for. 

• Right of access - data subjects have the right to request information regarding if their 

data is being stored or processed, how and where. 
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• Rights related to automated processing - data subjects have the right to not be 

subject to a decision based solely on automated processing, including profiling, 

which produces legal or other significant effects. 

Data controllers have the general obligations of exercising the rights of the data subjects, 

specially the obligation of processing personal data in a lawful way. Besides this, in the 

context of PoSeID-on’s platform, there are two relevant obligations: 

• Data protection by design - data controllers should design and implement their 

systems taking in consideration the compliance with GDPR. 

• Security of personal data - data controllers should guarantee the security of the 

personal data they hold, to reasonable extents. 

Data controllers must be also responsible for (and able to) demonstrate compliance with the 

GDPR principles we above described. The non-compliance results in fines that can reach 20 

million euro and/or 4 percent of a company's worldwide annual turnover. 

While GDPR received a lot of attention from regulators, data processors and the public in 

general, up to now the way GDPR is enforced is in general very rudimentary: most data 

processors have no automated channels to interface with data subjects or regulators, there is 

no common control of PII exchange between data processors, and data subjects have to rely 

in a multitude of ad-hoc interfaces for contacting all the data processors handling their PII. 

Even in the cases where data processor’s information systems are already able to handle 

GDPR requirements, there is no harmonized mechanism offered to data subjects or 

regulators. PoSeID-on focuses precisely on this gap, by providing a general framework for 

the relation between data subjects and data processors, that offers a common dashboard to 

data subjects (which they can use for all data processors holding their PII) and transaction 

registration mechanisms able to register all PII transactions between different data 

processors. Among other technical solutions, PoSeID-on explicitly assumes blockchain as the 

core technology for providing a distributed and secure mechanism for registering data 

subject’s consent and specific request, data processors response to those requests and 

exchange of PII between data subjects and/or data providers – in a safe, privacy-enabled and 

repudiation-proof manner. 

 

2.2  Blockchain 
Blockchain is the common denomination for fully distributed digital ledgers that enforce a 

tamper-resistant and tamper-evident implementation, usually without having a central 

authority (i.e. bank, company or government) governing over them. The blockchain allows 

for a community of users sharing the same ledger to record transactions in a distributed 

manner which prevents, in theory and under normal operation, transactions from being 

changed once committed to the chain. It became widely known when in 2008 it was 

combined with several other technologies and computing concepts to propose the first 

cryptocurrency, Bitcoin[11]. The novelty of this technology was the fact that it was a form of 

electronic cash protected through cryptographic mechanisms instead of a central repository 

or authority. 

In 2009 the Bitcoin network launched with success and became widely known and the staple 

in cryptocurrency as it is possible to still see today. Bitcoin users were provided with a way 

to transfer digital information representing electronic cash through a distributed system. 
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Common to all cryptocurrencies available today, users are able to digitally sign and transfer 

rights to that information to other users and this is recorded publicly, allowing all 

participants of the network to verify the validity of the transactions without the need of 

central authority. Through the use of cryptographic mechanisms which guarantee that 

consensus in the network a distributed group of participants maintain and manage the 

blockchain making it resilient to attempts to tamper with the ledgers state, be it by altering 

previous transactions or forging new ones. Although blockchain is strongly associated with 

Bitcoin and cryptocurrencies in general due to the popularity it gained over the years the 

blockchain technology has a variety of applications and new applications are being 

researched in a variety of sectors, such is the case of the PoSeID-on project in which this 

thesis is inserted. 

Blockchain technologies rely on several components, cryptographic primitives and 

distributed systems mechanisms which detailed exploration and description is beyond the 

scope of this thesis. It is possible however to describe each component in a simple way in 

order to help understand the blockchain system as a whole. The following is an informal 

definition of blockchains which conveys the focal points of the technology: 

"Blockchains are distributed digital ledgers of cryptographically signed transactions that are 

grouped into blocks. Each block is cryptographically linked to the previous one (making it 

tamper evident) after validation and undergoing a consensus decision. As new blocks are 

added, older blocks become more difficult to modify (creating tamper resistance). New 

blocks are replicated across copies of the ledger within the network, and any conflicts are 

resolved automatically using established rules"[12]. 

Many electronic currency schemes were implemented before Bitcoin (e.g. ecash and 

NetCash, but they did not achieve widespread use. The main appeal of the Bitcoin which 

fostered its growth and gain in popularity was the use of the fully distributed blockchain 

which allowed no single user to control the electronic currency and prevented a single point 

of failure of the network. This, in addition to allowing direct transactions between users 

without the need of a trusted third party promoted its widespread use. Bitcoin's popularity 

is also associated with the fact that it provided users who contributed to main the network 

the possibility of earning more cryptocurrency if they were able to publish new blocks and 

maintain copies of the ledger. These users, commonly known as miners were able to, in a 

distributed manner, manage the network without the need for organization as the automated 

rewards for doing so is enough to build a solid network of miners. The cryptographic 

primitives and self-policing mechanisms on which the blockchain builds upon are enough 

to guarantee consensus in the network’s administration and endurance that only valid 

transaction blocks are added to the blockchain. 

In Bitcoin, the blockchain allowed users to be pseudonymous, effectively anonymizing users 

but not their account identifiers. This paired with the transparency of transactions has 

effectively allowed the creation of accounts without any identification or authorization 

process and provided pseudo-anonymity to users. As such the bitcoin network is an 

environment where users do not know others identity. In order to create trust between users 

without the use of a trusted third party, the blockchain provides the following four 

characteristics: 

• Ledger - append only ledger which provides full transactional history. Transactions 

and values in a blockchain are never overridden unlike traditional databases. 
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• Secure - security is achieved through proven cryptographically secure methods, 

which ensure both the integrity and verifiability of the entries in the ledger. 

• Shared - the ledger is publicly shared amongst multiple participants, providing 

transparency across the network participants. 

• Distributed - being a fully distributed technology, scaling of the number of nodes 

participating in the network management bolsters its resilience to attacks by 

malicious nodes. 

These characteristics effectively allow the anonymous creation and participation of accounts 

in the blockchain network while still delivering trust between parties with no prior 

knowledge of one another. Without the need of a third party to validate transactions 

blockchain networks may achieve faster and cheaper transactions between participants. This 

is the case for the Bitcoin and following cryptocurrencies following the same model of 

anonymous account creation. Blockchains which leverage this model are called 

permissionless blockchain networks, however it is also possible to more tightly control 

access to the network, provided that some degree of trust is shared among users. These are 

called permissioned blockchain networks. 

2.2.1  Blockchain Categories 

It is important to make a distinction between blockchain permission models as they directly 

impact the interactions between users and the blockchain network. It also impacts blockchain 

components and the interaction flow between them. In summary, if the blockchain is open 

for anyone to publish new blocks it is permissionless. If only particular users can publish 

blocks, it is permissioned. Permissionless blockchain networks can be compared to a 

controlled corporate intranet, while a permissioned blockchain network is like the public 

internet, where anyone can participate [13]. 

Permissionless – blockchain networks are decentralized ledger platforms where anyone can 

publish blocks without need of approval from a trusted authority. Similarly, reading the 

blockchain and issuing transactions is also open to anyone. Since anyone can read and write 

to the ledger in order to prevent malicious users from tampering with the existing records 

by introducing malicious transactions, mechanisms are implemented in order to guarantee 

multiparty agreement. This is generally called "consensus" mechanisms in the blockchain. 

These mechanisms usually require users running blockchain nodes to spend computational 

resources when publishing blocks or to maintain a certain amount of cryptocurrency in order 

to prevent attacks [14]. This is the general permission model used by well-known 

cryptocurrencies and blockchain implementations such as Bitcoin and Ethereum[11]. 

Permissioned – blockchain networks are controlled by an authority that can be decentralized 

or not. As such only authorized users are able to maintain and publish to the blockchain. 

Access can also be controlled in order to allow anyone to read from the chain or just 

authorized users. It is possible for permissioned blockchains to have the same traceability 

and transparency of digital assets and transactions in the blockchain network and be equally 

distributed, with resilient and redundant data storage. Since trust is controlled and 

established through an authority, users can be held accountable in case of malicious 

behaviour. This results in less restrictive consensus mechanisms which generally makes 

permissioned blockchains less computationally expensive to maintain and transactions and 

operations are in most cases faster than in permissionless counterparts. 
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Besides providing trust and accountability to parties participating in the blockchain network, 

some permissioned blockchains also provide the ability of only revealing transactions to 

users which have been previously identified and given the right credentials. In this manner 

the content of transactions or even the existence of a transaction can be hidden from parties 

not involved in them. Some frameworks that currently leverage these capabilities are 

Hyperledger Fabric [11] and Quorum's Ethereum-based protocol [11]. 

2.2.2  Overview of Blockchain Components 

In order to understand the role of blockchain within the PoSeID-on system, a general 

understanding of certain blockchain components is necessary. This section will provide a 

general overview of these components and concepts. Technical detail regarding consensus 

mechanisms, hashing functions, and cryptographic mechanisms behind blockchain 

technologies can be extensively found in recent literature (for instance [15]) and as such will 

not be detailed in this section. 

 

Transactions 

A transaction represents an interaction between participants in the blockchain. Transactions 

usually represent records of activities regarding an asset, physical or digital. For example, in 

cryptocurrency, such as Bitcoin, a transaction is an exchange of currency but blockchain is 

not limited to that. In other scenarios such as property markets it can represent a transfer of 

property. 

A transaction usually includes the sender's address or other relevant identifier, his public 

key, a digital signature and transaction inputs and outputs: 

Inputs are most commonly the digital assets to be transferred. The transaction will contain a 

reference to the source of those assets which is either the previous transaction regarding said 

assets or the origin event (the transaction representing the creation of an asset) if the asset is 

new and has never been transferred before. Assets, per se, do not change, they are only 

referenced by new transactions as an input, it is impossible to add or remove assets. For 

example, in cryptocurrency, if you have a transaction representing a quantity of currency 

you hold, you cannot change the asset itself, but you can instead split or combine it with 

other assets by referencing them as input to a new transaction. Of course, this implies that 

the creator of new transactions has ownership and access to the referenced inputs, usually 

proven by the use of a private key to sign the new transaction. 

Outputs are usually the addresses or identifiers of the accounts which are the recipients of 

the asset and, in case of cryptocurrencies, the amount being transferred. If the amount being 

transferred is less than the asset used as input, an extra transaction is created with the sender 

of the asset as recipient. 
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Figure 2.1 Example of Transaction (from [16]) 

While the most common use of transactions in blockchain based systems is to transfer digital 

assets, transactions can be used to transfer generic data or post something publicly online in 

a permanent way by adding it to the payload of a transaction. On blockchain systems which 

support smart contracts, transactions can be used to send data to smart contracts for 

processing and can be used as a means of storing results of that processing on the blockchain. 

For example, in case of a smart contract leveraging system governing access to a building, a 

transaction could be sent when a user tries to open a room with his credentials and if they 

check out, have the smart contract create a new transaction on the blockchain recording his 

access to that room. 

 

Ledger 

Ledgers are tools to keep track of exchanged goods and services, from physical pen and paper, 

to digital databases, usually owned and operated by centralized trusted third parties on 

behalf of a community of users. 

A ledger is a collection of transactions. The approach taken by blockchain technology allows 

for a distributed ownership and distributed physical architecture, providing increased 

reliability, security and trust when compared to ledgers with a centralized ownership. The 

main advantages of having a decentralized ledger using blockchain technology are the 

following: 

• Distribution by design allows for several backup copies, all synced between peers. 

Some blockchain implementations can even support private transactions or 

channels, without taking away the advantage of having a distributed ledger, as it is 

possible to verify the existence of such transactions without revealing the actual 

content or participants of these transactions. 

• Increase security against attacks as it is possible to have heterogeneous software, 

hardware and infrastructures maintain the nodes and ledger. This means that an 

attack on one node is not guaranteed to work on another, increasing security and 

reliability. Furthermore, by having distributed validation of new blocks a node 

which has been compromised cannot alter the state of the ledger without the rest of 

the network knowing and validating these changes.  
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• Increased resilience and availability by allowing geographically dispersed nodes 

and supporting the loss of a node or even a region of nodes. 

• Transparency and tamper resistance which comes from having distributed 

ownership of ledgers and ledger validation. This guarantees that a single entity 

cannot commit malicious blocks without other nodes verifying and validating them 

first. 

 

Smart Contracts 

The term smart contract comes from the definition given by Nick Szabo in 1994: 

“A smart contract is a computerized transaction protocol that executes the terms of a contract. The 

general objectives of smart contract design are to satisfy common contractual conditions (such as 

payment terms, liens, confidentiality, and even enforcement), minimize exceptions both malicious and 

accidental, and minimize the need for trusted intermediaries” [17]. 

Smart Contracts are a collection of code and data deployed using cryptographically signed 

transactions on the blockchain network. They are executed by nodes participating in the 

blockchain network. As they are deployed on the blockchain, they are effectively tamper-

evident and tamper-proof and, as such, can be considered a trusted third party and can be 

used for any purpose which requires verifiable calculations, information storage or other 

operations which state needs to be publicly attestable. Smart contracts must also be 

deterministic, given the same input they should always produce the same output. Similarly, 

to regular transactions, all nodes must approve on the new state produced from the 

execution of the smart contract code. As such smart contracts can only operate on data 

directly passed as parameter. 

Depending on the implementation, smart contracts can be executed simultaneously with the 

publication of new blocks (i.e. Ethereum) or they can be executed by separate nodes which 

send the results to publisher nodes which validate and publish the output based on several 

executing nodes results (i.e. Hyperledger Fabric). 

2.3  Anomaly Detection 
Anomaly detection is an important area of data mining research that involves discovering 

anomalous or abnormal data in a given dataset. It is an area widely studied in statistics and 

machine learning and it is also termed as outlier detection, novelty detection, deviation 

detection and exception mining [18]. 

To understand anomaly detection, it is first necessary to understand what an anomaly is. For 

this we can look at the widely accepted definition given by Hawkins [19]: 

"An anomaly is an observation which deviates so much from other observations as to arouse suspicions 

that it was generated by a different mechanism" 

As Hawkins explains in his definition, detection of anomalies is relevant as anomalies are 

significant but rare events that can indicate the need of critical actions in the domain in which 

they are detected. Anomaly detection has been successfully applied to several different 

domains, such as public health, fraud detection, industrial damage, image processing, sensor 

networks, robot behavior and astronomical data [20], but a large part of available literature 

addresses network anomaly detection using Network Intrusion Detection Systems (NIDS), 
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as with the evolution of computer networks and the increase in the availability of hacking 

and cracking tools internet security has become a recurring topic and the interest in machine 

learning techniques for network intrusion detection has grown significantly. 

NIDSs can be classified according to their style of detection as either [18][21]: 

• misuse-detection - systems which monitor activity with precise descriptions of know 

malicious behavior. 

• anomaly-detection - system which form a view of normal activity and identify 

deviations from that profile. 

The latter are interesting in the scope of this thesis, as what we are setting out to implement 

is similar to an intrusion detection system, identifying possible attacks or patterns which 

may indicate risk of PII leakage or misuse. It is also important to note that anomaly detection 

systems are not targeting to identify malicious behavior but any pattern at all that has not 

been observed before, be it malicious or not. 

There are a wide variety of learning techniques for anomaly detection, proposed for different 

NIDS problems. These can be broadly categorized in three groups: supervised, semi-

supervised and unsupervised. These groups will be explained further in the subsection 

“Learning groups”. 

 

Figure 2.2 Generic framework for anomaly detection [22] 

Figure 2.2 shows the generic framework used for network anomaly detection systems. First, 

input data is processed as the data arriving at the anomaly detector is usually from different 

types of sources and comes in different formats, e.g. measurements from sensors, network 

logs or operational logs from a system module. 

This processing is usually associated to the specific anomaly detection techniques employed 

by the anomaly detector, as data must be in an acceptable format in order to be analyzed by 

each model. 
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After data is processed and analyzed by each model, the output of the analysis is evaluated, 

either by the means of a score or a label, each with their respective advantages and 

disadvantages, which will be further explained in the following sections. 

 

Types of Anomaly 

Anomalies are patterns which do not conform to well-defined characteristics of normal data 

patterns for a given domain or system. They can represent several abnormal activities and 

can range from harmless but not recognized behavior to critical threats such as cyber-attacks 

or component failures. 

Ahmed et al. categorized anomalies in three different categories[23][24]: 

• Point/Spatial anomaly: When a particular instance of data deviates from the normal 

pattern of the dataset, i.e. when a person usual makes 3 calls a day but suddenly data 

shows 30 calls made on the same day. 

• Contextual/Temporal anomaly: When a particular instance deviates from the 

normal pattern in a given context, i.e. if an outdoors thermostat reports 0 degrees 

Celsius in the Winter in Portugal, it may not be anomalous due to the usual decrease 

in temperatures, but if it reports the same value during the Summer, it is a strong 

indicator that the thermostat might not be working properly. 

• Collective anomaly: When a collection of similar data instances deviates from the 

normal pattern of the entire dataset, i.e. a lost packet by itself might not indicate a 

problem in a server but if packets are lost for a continuously long period of time, it 

may indicate the server has gone down or we are in the presence of a network attack. 

 

 Output evaluation: Score vs Label 

The output of the anomaly detection techniques is usually the data instances which were 

identified as anomalies and their respective classification.  The classification of these 

instances is usually represented in two ways[23]: 

• Scores - Each data instance is assigned a score indicating the severity of the anomaly. 

These scores are then ranked for an analyst to select from or are selected by a 

previously identified threshold. 

• Binary/Label - Each data instance is assigned a binary label, such as anomalous or 

normal. 

Binary labels are computationally more efficient than scores since the latter do not need to 

be calculated for each data instance but in several cases, such as in unsupervised learning, 

scoring can help partitioning the identified anomaly data set and provide valuable 

information for further retraining since in unsupervised learning we do not have a labelled 

training data set and making a distinction between real anomalies and normal behavior is in 

most cases non-binary, with data instances varying in probability of being anomalies or not. 

 

Learning groups 

Anomaly detection techniques require some sort of learning from historical data in order to 

be able to reason over identified patterns and classify them as anomalous or normal. 

According to the methods used to build a prediction model of the data under study, anomaly 
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detection techniques can be split into three learning groups:  Supervised, Semi-supervised and 

Unsupervised learning. 

Supervised learning requires some previous knowledge provided by an external source, 

such as labelled data for both normal and anomalous classes. In well know domains these 

techniques can be extremely good at detecting well known anomalous patterns (i.e. DDoS 

attacks, distributed network scanning, ping flooding, etc.) but suffer against unknown 

patterns and zero-day vulnerabilities. This can be mitigated to an extent by having an 

architecture which allows re-training of working models with manual input provided by 

security analysts which manually identify new vulnerabilities or anomalous patterns and 

insert them into the system, but this does not scale well into large systems or networks. A 

typical approach for supervised training involves building a predictive model against a 

training dataset, contained aforementioned data instances labelled as normal and anomalous 

and then using another testing dataset in order to evaluate the model’s performance[25]. 

Supervised learning faces two major practical challenges. First, in general, anomalous 

instances are in great lesser number than the normal instances of the dataset. Issues which 

occur due to imbalanced class distributions have already been addressed by a number of 

data mining and machine learning literature[26][27][28]. Second as explained earlier, it is 

difficult to obtain accurate and representative labels for anomalies that are not known in 

advance. 

Semi-supervised learning usually involves building a model for the class corresponding to 

normal behavior and using the model to identify anomalies in the data under study. There 

are also some approaches which are trained with only the anomalous data instances instead, 

but these are not commonly used since it is difficult to obtain a training set with all of the 

possible anomalous behavior. 

Since these techniques do not rely on both classes of data instances, they are applicable to 

situations where no data regarding attacks or anomalies is available. Due to this fact, they 

are also frequently called novelty detection, since no anomalous data was used for training. 

Unsupervised learning anomaly detection techniques do not require training data and as 

such are more widely applicable to new domains. 

The frequent approach to these techniques consists in analyzing the datasets from all 

scenarios and sources combined and labelled respectively. Then a sample of the dataset is 

selected as training data this sample is used to build a model according to the technique 

used. Another sample is selected from the remaining data instances (excluding the 

previously selected for training), is selected to serve as test data for cross-validation of the 

model. 

Unsupervised techniques operate on the implicit assumption that the dataset used contains 

a much greater number of normal instances than anomalous ones. If that is not the case, then 

the model will report a high number of false positives as it will consider normal instances as 

possible anomalies. 

Many semi-supervised techniques can be adapted to operate in unsupervised mode by using 

a sample of the unlabelled dataset as training data, provided that this dataset contains a small 

number of anomalies and the resulting model correctly identifies these few instances as 

anomalies. 

Unsupervised techniques usually fall into two categories, clustering and nearest-neighbour 

techniques.  
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Clustering assumes that data is clustered, as in normal data can be separated into different 

clusters while anomalies appear as outliers and either fit in a small cluster or none at all. 

Frequently, unsupervised learning is simply referred as clustering.  

Nearest-neighbor assumes that new anomalies are closer to known anomalies and new data 

instances are evaluated according to the distance to other anomalies or density of anomalies 

near them. 

 

Ensemble Learning 

The ensemble learning theory consists in combining multiple single machine learning 

models in order to improve the model’s predictions[29][30]. Using multiple learning 

algorithms, it aims to obtain a better predictive performance than any single constituent 

algorithm by itself. In theory, if no single model can cover the true prediction behind the 

data, an ensemble can give a better approximation of the true prediction model. In addition, 

an ensemble of models displays higher robustness when facing uncertainties in training 

data[31]. 

Instead of deciding on the best model to explain the data, ensemble techniques focus on 

constructing a set of models and then deciding between them with some combinatorial 

approach, in order for each model to complement each other and compensate for their 

individual limitations. 

As such, ensemble learning has a higher computational cost and complexity since it involves 

training and applying multiple models to the data under analysis but achieves a better 

diversity of predictions. 

There are several approaches to ensemble learning, for supervised, semi-supervised and 

unsupervised learning, being the most common supervised approaches bagging[32] 

,boosting[33]and stacking[34] 

Bagging short for Bootstrap Aggregation, generates additional training data from the 

original dataset in order to decrease the variance of the prediction model. Using random 

subsets of the training set, bagging trains each model in the ensemble, which are then 

combined in an equal-weight majority voting mechanism. This does not increase accuracy of 

the predictions but narrows the variance by strongly tuning the outcome.  

Boosting involves building an ensemble by training each new model according to the 

performance of previous models. In this two-step approach, first a subset of the original data 

is used to produce multiple models, then these models are combined, also using majority 

voting in order to boost their performance. 

Stacking consists in using several different base models in order to obtain a better 

understanding of the input data, as opposed to bagging and boosting, which normally use 

the same base model in all training steps. Whereas bagging and boosting usually rely on 

majority voting to decide over the base models results, stacking is the method which actually 

makes use of a meta learner. This learner uses the output of the base learners in order to 

explore the data inputs through the different properties of each model. In this way, since 

each particular model is capable of capturing some aspects of the data but not the whole 

picture, it is possible to obtain better results by taking this in consideration and stacking a 

meta learner on top of these base models. Stacking is less popular than bagging and boosting 

but recent literature [35]and results in model competitions[36] has demonstrated the 

capabilities and outstanding results of this technique. 
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Unlike supervised ensemble approaches, there are no theories behind the success of 

clustering ensemble approaches and these approaches face the challenge of label 

correspondence as relating clusters between different algorithms is not a trivial task. 

Experimental results show that cluster ensembles are better than single models in practice 

but there is no universally successful ensemble method. 

 

Stream vs batch analysis 

Depending on the nature of the system under analysis, there are two approaches that can be 

taken, in respect to the way in which the data processing is performed and how the dataset 

is provided to the anomaly detection system, these are: 

• Batch Processing - consists in the processing of large volumes of data collected over 

large periods of time. It is the most common approach to data analysis and has been 

the standard for big data analysis in the past years, specially due to the 

announcement of Google's MapReduce programming paradigm for extremely 

scalable processing and generation of big data sets in a parallel and distributed 

manner\cite{MapReduceLAMMEL20081} and its counterpart open source 

implementation by the Apache foundation\cite{Hadoop}. Although it is a very 

efficient way to process large amounts of data it is not a good approach when 

analysis results are necessary in real-time. 

• Stream processing - involves analyzing continuous sequences of data occurring in 

real-time. With the rise of Internet of Things (IoT) and growth of real-time data 

sources which stream large quantities of time-series data, stream analysis is 

becoming a growing trend and some works have been published exploring this 

field[37][33] [38][23]but there is still no over-arching reliable solution. Stream 

analysis is especially useful when the detection of anomalous behavior is necessary 

in real-time, such as in cyber-security or fraud detection. The main challenges with 

stream processing or stream analysis are that streaming data inherently exhibits 

concept drift, which means the statistical properties of the data inputs change over 

time in unforeseen ways, causing the predictions to become less accurate as time 

passes. Another problem is that as opposed to batch processing, the full dataset is 

not available. 

 

Challenges in anomaly detection 

Despite seeming straightforward, detecting data that does not follow the normal pattern in 

a given dataset is a complex task as patterns vary from domain to domain as well as data 

types under study and its dimensionality. As such the following challenges can be identified 

in current anomaly detection techniques[26]:  

• There is no universal anomaly detection technique, selecting the best machine 

learning model for a particular problem is a complex task; 

• Noisy data usually contain anomalies which can be difficult to correctly identify and 

separated from regular noise; 

• Normal behaviors and patterns are continually evolving and as such current 

detection techniques may not be effective in long term. 

Besides these three over-arching challenges across the anomaly detection field, depending 

on the domain of application of these techniques, other challenges can be identified. One of 
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particular interest for this thesis appears in network monitoring applications, requiring near 

real-time processing of very large amounts of data which is heterogeneous by nature. 

 

Anomaly detection approaches 

There are many approaches to the problem of anomaly detection using machine learning 

and it is explored extensively in literature. There are several surveys which give an overview 

of machine learning models used in network anomaly detection [33][24]papers which 

evaluate some of the proposed models in different scenarios, such as in detection of 

application anomalies and cellular Quality of Experience (QoE) prediction[26]and in 

detection of attacks using NIDSs[36][39] In general, the majority of available literature 

explores approaches using batch analysis in a supervised and semi-supervised manner, with 

recent papers tackling the challenge of stream analysis using both supervised[37][40] and 

unsupervised[36][41] learning. To summarize a few of these techniques, Table 2.1 was 

compiled in order to aid in understanding the current most common and some recently 

proposed algorithms for each learning category and processing approach. 

This is by no means a complete list, it is a compilation based on the literature read during 

the development of this work. The absence of entries in one of the table's cells also does not 

mean that there are no solutions for that learning group and processing scenario intersection.  

There are many more algorithms or techniques which can be used for anomaly detection, 

making the task of choosing the appropriate technique for the situation at hand an even more 

daunting task. As mentioned before, there are no one-size-fits-all solution and a technique 

that might work very well for one scenario might not achieve the same results at all in 

another. Therefor several algorithms should be selected and tested for each specific problem, 

as an attempt to achieve the best result. If technical and performance constraints allow it, 

ensembles can be used to further improve predictions. 

Recent works have shown that for network analytics, supervised decision trees are 

computationally efficient and accurate and have favorable properties such as model visibility 

and comprehensiveness[42]. Still within the supervised learning field, Stochastic Gradient 

Descent and Random Forests (an ensemble of decision trees) have also been used in network 

anomaly detection in both stream and batch scenarios with the stream variants achieving 

results as good or better than the batch variants [37]. 

For the RMM specific problem, explained in Chapter 4 , a selection of unsupervised 

algorithms is the best starting approach as there is no training data available. Streaming and 

batch variants are also favorable, due to the architectural approach chosen, also detailed in 

the same chapter. Clustering algorithms K-means and expectation-maximization algorithm in 

the context of Gaussian Mixture Models (GMM) are well known and tested algorithms, with 

variants used in both stream[37][1] and batch processing[43] and are good candidates for 

this scenario. 
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Learning Group Batch Stream 

Supervised Logistic and Lasso Regression 

SVM 

Decision Trees 

k-Nearest Neighbours 

Multi-layer Perceptron 

Naïve Bayes 

Stochastic Gradient Descent 

Hoeffding Trees 

PCA 

Hough 

Hoeffding Adaptive Trees 

Incremental k-NN 

Stochastic Gradient Descent 

Semi-Supervised 
OCSVM 

k-Nearest Neighbours 

Incremental k-NN 

Unsupervised Isolation Forest 

k-means clustering 

x-means clustering 

k-medoids 

Hierarchical Temporal Memory 

Twitter’s Anomaly Detection 

Etsy’s Skyline 

Multinomial Relative Entropy 

EXPoSE 

Bayesian Online Changepoint 

detection 

Watchmen Anomaly Detection 

Incremental K-Means 

Ensemble 

Supervised 

Random Forest 

Decision Trees with Bagging 

and Boosting 

Stacking Majority Voting 

Stacking with GML 

Adaptive Random Forests 

Ensemble 

Unsupervised 

Hypergraph Partitioning 

Majority Voting 

Mutual Information 

Co-association based functions 

Finite Mixture Model 

 

Table 2.1 Compilation of several algorithms used in anomaly detection 
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2.4  Log Anomaly Detection 
Most anomaly detection algorithms require data to be structured in a way that the algorithm 

can comprehend and work it. Normally this is in the form of a set of numeric features 

described by a feature vector. 

In order to build a feature vector to feed the prediction models, it is necessary then to convert 

our data sources into numeric features. In the case of the Risk Management Module, data 

arrives in the form of raw system and PII operation logs. In order to build a feature vector 

from this information, the generic framework used in log-based anomaly detection is 

applied. This consists of four main steps [12]: 

• Log Collection:  systems constantly produce a stream of logs describing system states 

and runtime information. These logs contain a set of parameters depending on the used 

logging framework, and a raw text log message describing the event which resulted in 

the respective log. These logs can be stored for later use or fed directly into a stream 

analyzer for real-time anomaly detection. 

 

• Log Parsing: since logs consist of free form text, it is necessary to parse them and extract 

a group of structured event templates. The event templates consist of the most common 

combination of log parts/segments, which define the constant part of a log. Once a set of 

event templates is selected, each log can then be considered an occurrence of one of the 

selected events, with added specific parameters, which constitute the variable part of the 

log. 

 

• Feature Extraction:  once event templates are selected, the logs collection is then sliced 

into several sequences of log events, which are then encoded into numerical feature 

vectors. In log anomaly detection, feature vectors generally consist of a count of 

occurrences of a certain event within the sequence of log events being analyzed. These 

vectors can then be passed as input to machine learning models. There are several ways 

to slice the logs, such as using fixed windows, sliding windows or other types of 

grouping, depending on the domain and desired outcome. Fixed and Sliding Windows 

are based on time and timestamps. Each log has an associated timestamp corresponding 

to the time the log was issued. A fixed window is determined by a fixed time span or 

duration for each window. All logs occurring within a predefined duration (e.g., an hour) 

are regarded as a sequence and analyzed together. These windows are consecutive, the 

end of one window corresponding to the beginning of the next one. Sliding windows are 

also grouped by time, but in this case, there is also a sliding step, which is typically 

smaller than the window size. This step determines the movement of the window over 

time, as the beginning of a window corresponds to the beginning of the previous one, 

plus the step size or duration. In practice, this means that it is possible to have windows 

with overlapping logs (i.e. if we have a 1-hour window with a 10 minutes step, we will 

have consecutive windows where the only new logs being added on each slide are the 

logs received in those new 10 minutes). Logs occurring within each window are here too 

regarded as a sequence. 

 

• Anomaly Detection:  the last step consists of feeding the feature vectors created in the 

previous phase into machine learning models for training and construction of a model 

for anomaly prediction. The constructed model can then be used to determine if a new 
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incoming log sequence is considered an anomaly or not by analyzing the predicted value 

for each incoming log sequence.  

 

A graphical example of this process can be seen in the Figure 2.3, provided next. 

 

Figure 2.3 Graphical example of log anomaly detection [12] 

  

2.5  Summary 
This chapter presented the state-of-the-art regarding anomaly detection, as well as the 

several approaches that can be taken for anomaly detection, from supervised to 

unsupervised learning, usage of ensembles to optimize results and the differences between 

batch and stream analysis. Furthermore, an overview of anomaly detection techniques 

available for each approach was presented, chosen based on the results of several surveys 

and availability of implementation and frameworks. A brief overview on GDPR and 

blockchain was also presented. Together this creates a solid basis for understanding both the 

key background technologies of PoSeID-on’s vision and the details necessary to understand 

the choice of frameworks, architecture and implementation options for the RMM, that will 

be discussed in Chapter 4. 
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Chapter 3  PoSeID-on Architecture  

As already mentioned, the work associated with this thesis was performed in the scope of 

the project PoSeID-on [44]. In this project the University of Coimbra participates in several 

activities, including the leading of the platform specification and design, as well as the design 

and development of a couple specific components (including the RMM).  

This section contextualizes the reader with a more technical perspective of the overall 

PoSeID-on platform, therefore complementing the project briefing already provided in 

Section 1. While the PoSeID-on architecture is provided here essentially for allowing the 

reader to better understand how the RMM fits into the platform, it should be noticed that the 

author of this thesis actively participated in the concept definition and architecture 

discussions that took part in the first months of the project, significantly contributing to its 

definition and leading the edition of PoSeID-on Deliverable D2.2 (Systems Requirements and 

Architecture [Annex 1]). 

3.1  Envisioned solution 
As explained in Chapter 1 , the PoSeID-on project aims at designing, implementing and 

validating a Privacy Enhancing Dashboard for personal data protection, a platform able to 

manage all PII exchanges between a data subject or controller of a data subjects’ personal 

data and private or public entities which request it. Entities requesting access to PII assume 

the role, within PoSeID-on, of data processors. 

The general architecture of the PoSeID-on system was the result of an iterative process, built 

upon the initial concept already presented in Chapter 1 in an interactive process, including 

the design of Use Cases for each of the 4 planned pilots, users requirements definition, 

system requirements definition, and system architecture design and specifications.  

Figure 3.1 provides a simplified perspective of the platform architecture, identifying main 

components and main actors. Those actors, components and use cases are briefly 

summarized in the next sections. 
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Figure 3.1 PoSeID-on architecture proposal 

3.2  System actors 
Data Subjects 

Data subjects are people that represent the primary target of the GDPR. They represent the 

majority of PoSeID-on’s users and will have their PII managed within the system. PII is a 

valuable resource for third-parties and its uncontrolled storage, processing and propagation 

represents a privacy risk for the data subject. PoSeID-on answers their need for having a 

single platform where it is possible to control and monitor PII accesses for the inevitable 

situations in which a data subject is required to share its PII with a third-party, such as banks, 

insurance companies, employers, airlines, health institutions or any other service that makes 

use of such information. These exchanges can be either direct, when the data subject directly 

provides the PII, or indirect, when one data processor directly provides PII to another data 

processor, with appropriate consent by the data subject. Examples of such sharing of PII are, 

for instance, tax services retrieving information from the subject’s bank directly, or one retail 
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group proving a customer’s PII to a marketing company for directed campaigns.Both these 

cases will be considered by PoSeID-on. 

Data Processors 

Data processors are third parties storing and exchanging PII with the data subject or between 

themselves. In the context of this project, this term encompasses the original designations 

given by GDPR for both data processors and data controllers (cf. section 0). Data processors 

will have multiple operations available with the data subjects PII, upon proper authorization 

(cf. section 3.4 for more details). PII storage mechanisms employed by data processors are 

outside the scope of PoSeID-on, which serves primarily as moderator and auditing tool, 

interfacing with the data processors’ information systems but without directly managing 

data processor’s data.  

This means PoSeID-on does not claim to cover all the technical functionalities to ensure 

GDPR compliance (this is still the role of data processors’ information systems), focusing 

instead on providing a means to mediate and register interactions between data subjects and 

data processors (e.g. provisioning of data, consent, requests for data correction or deletion) 

and between data subjects (e.g. sharing PII). Compliance with the GDPR is nevertheless 

mandatory and data subject's requests and permissions regarding retention, deletion and 

processing of their PI,I must be met by the data processors based to regulatory and legal 

obligations. 

Administrators 

Administrators are the operators managing the PoSeID-on platform. The platform is 

operated by a preassigned entity – typically a public or semi-public organization with the 

mission of providing a PII management framework such as PoSeID-on. While this entity is 

usually considered as a trusted third-party, the whole platform design tries to minimize the 

risk of intentional or accidental breaches of privacy originating from the management entity. 

Administrators manage the PoSeID-on platform on behalf of this entity. 

3.3  System components 
Web Dashboard  

The dashboard is a Web interface through which administrators and data subjects access the 

PoSeID-on platform. It allows data subjects to grant, modify and revoke permissions for all 

or individual data processors, to check their PII access history and to check risk levels 

associated with PII shared with each data processor, as well as to receive notifications of 

possible privacy risks. Access to the web dashboard will be typically (though not always) 

based on the data subject's national eID or similar credentials. Administrators will be able to 

analyse system wide risks and check operational logs through this interface. 

Data Processor API  

This API is the access point for data processors communicating with PoSeID-on. It is 

essentially a secure API through which data processors may integrate PoSeID-on 

functionalities into their legacy information systems . 

Client-side Data Processor API  

This is the client-side interface for data processors to communicate with the Data Processor 

API. It communicates with the PoSeID-on system and accesses the Data Processor API, data 
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processors will have to provide an interface to their PII store in order to allow access to data 

subjects PII in an automated way and allow PoSeID-on to manage the transport of PII and 

revocation of permissions. The PoSeID-on project will also implement an example of this 

interface for a PoSeID-on PII storage which will store PII which does not have an authority 

controlling and providing it to the system. This storage will be a regular data processor for 

what concerns the rest of the system. 

Permissioned Blockchain and Smart Contracts  

Blockchain implementation specific to the PoSeID-on system. It is permissioned, transactions 

are anonymized, and PII exchanges within PoSeID-on are managed through the 

implementation of smart contracts specific for this purpose. These will describe the 

management of permissions and PII requests in order to grant, deny and check PII access 

permissions. The blockchain nodes will be hosted by the PoSeID-on administration entity 

and possibly other authorized entities (depending on deployment options from Use Case to 

Use Case). 

Blockchain API  

This interface translates blockchain operations into a high-level API suitable for integration 

into other applications. Since the use of Blockchain carries some important implications on 

how the clients and the servers behave, actions like account management (Data Processor 

and Data Subject identity on the Blockchain) or system functionality (Smart Contract 

functions usage) change drastically. For instance, users shall sign locally every call to a Smart 

Contract, but other components in the overall PoSeID-on architecture, like the Web 

Dashboard Module, will function as if communicating with a regular web service, despite 

the existence of a Blockchain network behind it.  

The Blockchain API will also generate logs for modules communicating with the blockchain 

and send them to the Risk Management Module. The Blockchain API is not a web-service, 

but it will be directly used as a wrapper from the client browser, without intermediaries, 

providing a direct connection to the Blockchain Module. 

Risk Management Module  

This module is responsible for monitoring PoSeID-on, both from a system wide perspective 

and from the point of view of individual data subject’s operations. RMM is expected to detect 

and evaluate possible security and privacy risks. For instance: anomalous behavior from a 

specific data processor which suddenly begins collecting much more data than usual, from 

a large set of data subjects (which means the data processor may have been hacked and being 

used to syphon PII to external attackers) or risks associated with a specific data subject (such 

as successive attempts to login with his/her credentials). Risk detection is made combining 

machine learning algorithms, that analyze multiple sources of information about 

transactions, user-level behavior and system-level behaviour. When the data subject 

provides explicit consent, transaction-specific data and PII may also be used for this analysis. 

High risk levels may trigger alerts to PoSeID-on administrators and Data Subjects – 

depending on the RMM settings. 

Personal Data Analyzer  

Monitors personal data transactions and warnings generated by the blockchain platform, to 

detect anomalies regarding PII exchanges. As opposed to the RMM, this module will analyze 

the personal data being exchanged with the aim of discovering non-identified PII, or PII not 

covered by the involved data processor's permissions. This component requires explicit 
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consent for operation, due to the sensitive nature of the data being analyzed, and all data 

will be discarded by the PDA after analysis is performed. It will also analyze data on demand 

from data processors, in order to identify possible PII contained in such data. 

eID Provider  

This provider authenticates data subjects and data processors on behalf of the PoSeID-on 

system, according to the European eIDAS regulations. Other authentication solutions can be 

used with PoSeID-on, if necessary, but this is option is the preferred one, mostly due to non-

technical reasons. 

Data Subject's PII Repository  

This repository stores PII manually inserted by the data subject into the PoSeID-on system 

(using the dashboard), in order to provide this information to data processors. From a 

technical view this repository acts as a regular data processor within the system and operates 

within the same rules as general data processors. This guarantees that storage and access to 

PII within PoSeID-on cannot bypass existing privacy restrictions and integrates seamlessly 

with the rest of the system. This solution, which in practice means each data subject has its 

own personal data processor, was deemed as the most elegant to keep the PoSeID-on 

architecture simple and flexible. 

Message Bus  

This component provides the messaging infrastructure for PoSeID-on components to 

communicate with each other in a controlled but decoupled fashion, which will allow for the 

easy addition and removal of components without affecting the overall system operation. It 

supports asynchronous communication, facilitates scalability and fault tolerance. The 

different components of PoSeID-on can be seen as individual applications. Messages are 

passed between them, through a queue mechanism, each and every one signed by the sender 

and encrypted for the recipient. When a component is unreachable (e.g., a Data Processor is 

offline), the message will be kept until either a predefined timeout expires or the recipient 

comes back online.  

3.4  Use Cases 
This section briefly describes a representative subset of the platform use cases, in order to 

complement architectural description given above and to help understand the general 

interactions between system components. These are non-exhaustive and were used as a 

guide for the functionalities identified during requirement analysis and evaluation. The use 

cases are grouped by initiating actor. 

3.4.1  Initiated by the Data Processor 

Request PII values from a specific or all data subject: Data processors are able to request 

PII of a data subject through the DP API. A check will be performed on the blockchain to see 

if the requester has the correct permissions before PII is retrieved from the data processor 

holding it. 

Request access to PII from a specific or all data subjects: Data processors are able to request 

permission to access PII of a data subject, identified by type and upon proper description of 

the intended use for that information and how that information will be stored and handled. 
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This request will be processed via smart contracts and sent to the data subject. A reference 

to it will be stored in the blockchain. 

Send data possibly containing PII to be analyzed: Data processors are able to send data in 

structured or unstructured formats to the Personal Data Analyzer in order to identify 

possible PII contained in it. 

3.4.2  Initiated by the Data Subject 

Grant access to PII to one Data Processor: Data subjects will be able to see all permission 

requests sent to them by data processors and accept them through the web dashboard. The 

act of granting access is automatically logged in the blockchain. 

Revoke access to PII from one Data Processor: Data subjects will be able to revoke 

permissions for data processors, provided that the access to the PII they are processing is not 

mandatory as explicitly stated in the permission request. Upon access revocation, data 

processors are notified with an API call and are legally obligated to delete the PII in question. 

Revocations are also logged in the blockchain. 

View PII known to one Data Processor: Data subjects will be able to see all PII types and 

values known to one data processor. These values will be requested from the associated data 

processors upon view request. 

Update PII known to one Data Processor: Data subjects will be able to update PII if the data 

processors provide the necessary interface for this purpose and if the PII is not read-only. 

Upon PII update, the data processor which have access to this PII and the primary holder of 

the PII are notified and sent the new values through an API call. The act of updating PII 

values is also logged in the blockchain. 

3.5  Summary 
This chapter contextualizes the PoSeID-on project for the purpose of understanding the 

contributions made to the project and the development of the RMM's architecture. In this 

section the overall design of platform is presented. The key components of the platform are 

also described, as are the main actors and their definition. 

A representative set of use cases of the platform are also introduced, organized by initiating 

actor. This provides the necessary overview to understand the role of the RMM in the project 

and the functionalities offered by the components which will provide data to it, as well as 

the flow of interactions leading to the production of such data.
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Chapter 4  RMM Design and Specification 

The Risk Management Module (RMM) is responsible for monitoring PoSeID-on, both from 

a system-wide perspective and from the point of view of operations involving individual 

data subjects. The RMM is expected to detect and evaluate possible security and privacy risks 

inherent to the processing of personal data, such as the exposure of PII through the malicious 

use of the PoSeID-on platform. 

4.1.1  Methodology 

To design the RMM several factors stemming from the original description of the module 

had to be considered. A set of objectives was extracted from it and evolved during the initial 

discussion around the overall PoSeID-on concept and architecture, leading to the 

identification of constraints and necessary attributes for each of the project modules. The 

following sections will introduce the factors that influenced the design and implementation 

of the RMM, followed by the solution proposed to address them.  

4.1.2  Objectives 

From the brief description of the Risk Management Module in the original project 

description, it was possible to pinpoint the following goals: 

1. The module must use machine learning to evaluate services (data processors) 

connected to the PoSeID-on platform. 

2. The module must advise data subjects which of these services to disable. 

3. The module must analyze information from PII transactions and external data to 

enrich them. 

4. The module must monitor all warnings generated by the blockchain platform. 

5. The module must analyze historical data logs, either received directly or from log 

management systems. 

6. The module must not automatically (re)act based on findings. Instead, it must  only 

provide actionable insights to the data subjects and systems administrators, which 

will then evaluate those findings and decide on how to react. 

4.1.3  High-level Functional Requirements 

From the objectives stated above and the discussion with project partners, a set of high-level 

requirements – provided in Table 4.1 – was compilated. 
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Requirement 

ID 

Title Description 

R1 
RMM Data 

Sources 

RMM will receive information from the blockchain 

through the blockchain API and information from the API 

Gateway 

R2 
RMM Risk 

Detection 

RMM will detect risk events based on blockchain 

transactions and previous stored risk events information 

R3 
RMM Risk 

Events 
The RMM will create, update and delete PII risk events 

R4 
RMM 

Notifications 

Depending on the nature of risk events notifications will 

be delivered to involved data processors, data subjects 

and PoSeID-on platform administrators 

R5 
RMM PII in 

Risk Events 

Risk Events may include PII in case of explicit consent by 

the data subjects and data processors to the RMM 

R6 

RMM Risk 

Event 

Storage 

Risk events will be logged in a secure way for later 

analysis, forensics and processing 

R7 

RMM Data 

Processor 

Reputation 

RMM will associate a reputation score with each data 

processor based on previous track record 

R8 
RMM DP 

Reputation 

Reputation scores will be created, updated and deleted by 

the RMM 

R9 

RMM Risk 

Notification 

Delivery 

RMM will notify identified parties in a risk event through 

the web dashboard or other channels specified for this 

purpose 

R10 
RMM Risk 

Prediction 

Risk Management Module will predict risks based on 

reputation, PII transactions and system logs 

Table 4.1 Risk Management Module Requirements 

4.1.4  Quality Attributes 

From the discussions with project partners and the use case descriptions of each pilot of the 

project, several attributes were verbally agreed upon for every module of the system. No 

metrics were formally defined. Nevertheless, this step allowed the identification of 

important qualities for the module. The attributes identified for the RMM can be seen in the 

table 4.2. 
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Quality Attribute Attribute 

Refinement 

ASR ID ASR 

Performance Latency QA1 Analysis results must be delivered in 

near real-time (within a user session) to 

be actionable. A user session can be 

considered from 5 to 10 minutes. 

Availability Fault-

tolerance 

QA2 The module must provide fault 

tolerance and graceful degradation 

mechanisms. 

Scalability Multiple 

Instances 

QA3 The module must be able to scale 

horizontally in order to cope with 

increasing and decreasing number of 

users. 

Privacy PII Privacy QA4 The module must be compliant with 

the GDPR and minimize the PII needed 

for analysis. 

Security Data 

Security 

QA5 Information in transit and at rest must 

be secure. 

Table 4.2 Quality Attributes associated with the RMM 

4.1.5  Technical Constraints 

Since all modules of PoSeID-on need to be integrated into a single platform, partners had to 

agree on which technologies to use for deployment, development and inter-module 

communication. These directly translate into technical constraints for the RMM, which are 

presented in Table 4.3, provided next. 
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Constraint ID Constraint  Description 

TC1 Language Most common programming languages are 

encouraged, for maintainability and debug 

purposes. 

Suggestions were Java, Python and Go. 

TC2 Operating 

System 

Modules must be buildable and runnable on Linux. 

TC3 Message Queue Modules must communicate through RabbitMQ 

[45]. 

TC4 Messaging 

Protocol 

Google’s Protobuf [46] will be used for message 

protocol definition. 

TC5 In-Transit 

Encryption 

Libsodium [47] will be used for encryption, for 

signing and encrypting messages. 

 

TC6 Containerization Modules must be containerized and compliant with 

the Open Containers Initiative (OCI) [48]. 

TC7 Cloud 

Deployment 

Modules must be deployable in a cloud 

environment. The platform chosen for this was 

Kubernetes [49].  

For local development Minikube [50] will be used. 

TC8 Log Manager The log manager to be used in PoSeID-on will be 

Graylog[45], each module should send their logs to 

Graylog for audit purposes. 

Table 4.3 Technical Constraints 

4.1.6  GDPR concerns 

Since the RMM also processes data from PoSeID-on, it must comply with the GDPR. Logs 

and operational data will not directly contain PII, but they will contain metadata that can be 

eventually considered as PII. Some examples of such data include data subject’s and data 

processor’s identification tags, connection location, time of log issuing and other data of 

sorts. As such, the principles presented in GDPR still apply. These principles, and the 

approach to respect them, are: 

• Lawfulness, fairness and transparency: The intended purpose of the RMM is stated 

in the terms of service of PoSeID-on and the RMM code will be available as open-

source. 

• Purpose limitation: As above, the purpose of data collection is the analysis of the 

general system behavior and protection of the data subjects. Public code can 

guarantee verification of this. 
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• Data minimization: The only PII collected, for security purposes, are the ID’s of the 

entities involved in each log message. 

• Storage limitation: Logs containing ID’s should be easily deleted once the time for 

holding the data expires or the data subject requests their deletion. Models being 

trained must not store the PII of data subjects and cannot be used to track a single 

subject. 

• Accuracy: Does not apply for the specific purpose of the RMM. 

• Integrity and confidentiality: Communication between modules must be secure and 

data storage must support encryption at rest. 

4.1.7  Data Sources 

The data sources which will supply the RMM with actionable information are the Gateway 

API, the Blockchain API and the Dashboard. The information provided by each of these 

sources will be in the form of system logs, and will include: 

Operational logs from the Gateway API, including information about the parties involved 

in the operations, for: 

• Connection logs 

• Permission requests 

• PII requests 

• PII exchanges 

• Permission lookup requests 

Operational logs from the Blockchain API, including information about the party using the 

Blockchain API, for: 

• Read requests 

• Write requests 

• Permission lookups 

• Validated requests  

(i.e. translation from system requests to blockchain transactions is valid) 

• Rejected requests  

(i.e. translation from system requests to blockchain transactions is invalid) 

Operational logs from Blockchain received through the Blockchain API or other method to 

be defined, such as: 

• Transactions accepted 

• Transactions rejected 

• Accesses to the chain by the Blockchain API  

(which party accessed it and for what purpose) 

Operational logs from the Dashboard including the identification of users performing the 

operations, for: 

• Access location 

• Login attempts 

• Permission management logs: 

o Permission listing 

o Grant permission (as answer to a request by a DP) 

o Revoke permission 

o Create permission  
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In most cases, raw system logs will be provided, but for PII operations a field in the message 

protocol may indicate the type of operation and the issuer of the operation. The format of the 

messages can be seen in the following section. 

4.1.8  Interaction Flow 

 Figure 4.1 provides a diagram with the generic sequence intended for the interaction between 

the RMM and other system components. Whenever a message is sent to the RMM, it should 

analyze the log, store the analysis results and the data and, whenever an anomaly is detected, 

dispatch a warning to the Dashboard for the data subjects involved in the anomaly. Data 

processors involved in the anomaly are also identified and their reputation must be updated 

accordingly. Administrators receive a copy of the warning and can then later on review the 

warning anddecide either to keep the reputation change or mark the warning as a false 

positive. 

 

 

Figure 4.1 RMM System Interaction (General Overview) 
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4.2  Anomaly Detection Approach 
The approach to be taken for anomaly detection must have in consideration the points 

mentioned in section 4.1.1 , to ensure the goals of the module are achieved without 

compromising the constraints set by the PoSeID-on platform and project partners. It is 

necessary to consider: 

• Quality Attributes – The selected approach must be not only accurate but also able 

to provide results in a near real-time fashion.  

• Availability of training data – As this is a novel area and a novel system, there are 

currently no labelled or even unlabeled data sets which can be use to describe the 

behavior of a PII management and distribution system. Without training data, the 

immediate solution is to select an approach which is able to model the behavior of 

the system without any previous knowledge. 

• Future proofing – The RMM should also be able to adapt to changes in normal 

behavior of the system, as any new platform is expected to see a growth in usage 

with time and consequently also a change in normal behavior. Furthermore, with 

visibility, the number of possible malicious attacks or misuse of the system is also 

expected to grow. 

• Data sources – The way on which data is made available and volume of data being 

sent to the RMM also influences the approaches that can be taken. In this case, system 

logs are the default source of information. 

• Available time for research and implementation – The PoSeID-on project plans a 

first functioning prototype by September 2019. As such, re-use of existing 

technologies is encouraged in order to have a functioning and integrated prototype 

by that date. 

From this analysis, we can conclude that a continuous unsupervised learning approach is 

the best option for the system at hand, combined with stream-based analysis, in order to 

derive real-time results from the arriving data. The inclusion of semi-supervised algorithms 

is foreseeable at a later stage of development in order to make use of manually labelled data, 

once system analysts can give feedback on results. 

In addition, the selected approach to anomaly detection will be a combination of domain 

specific feature extraction and the generic well-known approach for log analysis anomaly 

detection (cf. section 2.4 ), since received messages contain structured information, such as 

operation and data subject ID’s and a raw system log. 

4.2.1  Log Collection 

Logs in PoSeID-on are delivered to the Risk Management Module through the message bus, 

using the established message protocol based on Protobuf [51] for the message format and 

Libsodium [51] for encryption. Since a message will be sent for each log using this message 

protocol, we don’t just send a raw description of the log, but also an extra set of parameters 

that can be useful for analysis.  

Examples of this are PII or metadata regarding the data subjects and data processors 

involved in the operations described in the logs. By separating more sensitive fields from 

logs, we keep this information out of the general log storage – thus accounting for privacy 
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issues. It is also important to keep in mind that the RMM collection of this extra PII is optional 

and subject to consent. 

 

4.2.1.1  Message definition 

Table 4.4 summarizes the parameters to be included in the messages received by the RMM. 

Each message will include some or all the parameters presented in Table 4.4. 

 

Parameter Description 

Module The module issuing the message 

Operation The operation that is being performed, where applicable. Some logs 

may be associated with specific operations, such as PII Permission 

Requests, PII Permission Grants, PII Permission Revocation, PII 

Transacted/Accessed. 

Sender ID The ID of the issuer of a certain operation, where applicable. If it is a 

system operation it can be the ID of the module producing the 

message. If it is a PII related operations it can be a Data Subject ID or a 

Data Processor ID (only sent when consent is given). 

Sender IP The IP originating the message. 

Receiver ID The ID of the target of a certain operation, where applicable. If it is a 

system operation it can be the ID of the module receiving the request. 

If it is a PII related operations it can be a Data Subject ID or a Data 

Processor ID (only sent when consent is given). 

GELF Log The default fields sent to GELF log manager such as the host, short 

message, full message (raw log) and syslog level. 

Table 4.4 - Message Parameters 

The operation description parameter allows us to extract a feature vector consisting of the 

count of each operation type instance happening per window of collected messages. The raw 

log from GELF will be used to build a set of log templates which will also be used for log 

event counting per window. The fields identifying the entities involved in a PII operation, 

such as the data processors and data subjects involved (supplied if consent is given) will be 

used to identify the parts at risk or creating risk, when an anomalous pattern is detected in a 

message window. 

4.2.2  Log Parsing 

The first step of the anomaly detection pipeline is to structure arriving information in a way 

that allows us to compare data instances. From the message format we already have 

structured information that is comparable between instances, but raw logs require some 

processing before then can be used by models, which in most cases receive as input 

numerical features.  

The quality of the structuring of the raw logs and the creation of the event templates directly 

affects the anomaly detection. Moreover, good log parsing enables efficient search, filtering 
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and grouping of logs. Current solutions for automated log parsing have built-in parsing 

support for common log structures, such as Apache and Nginx logs. Since the PoSeID-on 

platform will have a collection of logs being generated by several third-party frameworks 

and tools and custom-built software, with unique logs, there is the necessity of manually 

configuring custom parsing with regex scripts, grok patterns or a parsing wizard. This does 

not scale particularly well, and an automated solution is much more flexible. 

Moreover, PoSeID-on is a novel platform working in a novel domain, making adaptability 

to change a must. As such, there was the need for analyzing the current automated log 

parsing solutions in order to apply one to the Risk Management Module log parsing step. 

Michael Lyu et al. have performed an in-depth research [52] on 13 representative log parsers 

proposed in the literature, and have compiled their results as seen in Table 4.2. 

 

Figure 4.2 Summary of Automated Log Parsing Tools (from [53]) 

From this list, the following key characteristics must be taken in consideration: 

• Mode: Log parsers can be categorized into two main modes, offline and online. Offline 

log parsers are a type of batch processing and require all log data to be available 

before parsing. On the other hand, Online log parsers allow processing of log 

messages one by one, in a streaming manner. As such, only online parsers were 

considered. 

• Efficiency: This characteristic is of the utmost importance, considering the 

potentially large volume of logs being generated per second. As all of the subsequent 

analysis tasks depend on log parsing, it is necessary that the parser is efficient in 

order to perform real-time anomaly detection. As result, High efficiency is the value 

that must be aimed at. 

• Coverage: Indicates the capability of a log parser to successfully parse all input log 

messages. If a checkmark is present, then the log parser is able to handle not only 

frequent patterns but also rare events, which is not always the case with log parsers. 

Ignoring rare events might result in missing important events, which are 

consequentially missed on the anomaly detection, so full coverage is necessary. 

• Open-source: The availability of the source-code makes it much easier to adopt the 

parser, reusing it or even extending its implementation. As such, only open-source 

parsers are considered for our implementation. 

Restricting the selection process to online and highly efficient automated log parsing tools, 

only SHISO[54], Spell[4] and Drain[55] were considered. Among these three, all offer optimal 

coverage but only Drain is open source. Coincidentally, Drain also achieves the best overall 

accuracy, while also being successfully implemented in a production system in collaboration 

with Huawei. In addition, it has been successfully extended with Apache Spark [35] for 
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parallelization, exploiting Drain’s data partitioning, although this implementation has not 

been made open source. This makes Drain an optimal candidate for log parsing in RMM. 

The Drain approach to log parsing uses a fixed depth parsing tree, which encodes specially 

designed rules for parsing. As input, Drain receives a batch of raw text logs and a simple 

description of the raw text formats, given during configuration, in order to extract 

components (e.g. the following string: “<Date> <Time> <Pid> <Level> <Component>: 

<Content>”). 

Optionally, regular expressions can also be given in order to select well-known parameters 

from the raw text, such as numbers, IP addresses or session ID’s. 

The output is the parsed log, structured according to the format given as input, with the 

addition of a template (event) extracted from the free-form part of the log and the parameters 

removed from that template. Templates are updated in an online manner as new logs arrive. 

Figure 4.3 demonstrates how a template looks like, with “<*>” corresponding to extracted 

parameters or variable parts of the log. 

 

Figure 4.3 Example of Log Templates 

4.2.3  Feature extraction 

From the templates created in the previous log parsing step, a numerical feature vector will 

be created by performing a count of the occurrence of each template in the time window 

under analysis. If the received message has an operation ID associated with it, a count of 

operations per window is also performed.  

Since the objective is to model the normal behavior of the system by measuring the Euclidean 

distance between points, normalization of the feature vector is necessary. The approach for 

normalization that will be taken is to normalize the features to unit length, separately for 

template occurrences and operation occurrences, since templates and operations are not 

independent features. 

In addition to how templates are selected, how to perform log grouping for occurrence count 

is also a relevant factor for achieving good results.  

 

4.2.3.1  Time Windowing 

Since results must be generated in very short intervals (3 to 5 minutes), if analysis is 

performed only on those intervals of arriving logs it is possible that most anomalies will be 

lost. It will be possible to detect point anomalies, such as a data subject being the target of a 

burst of permission requests, but it will not be possible to detect collective anomalies. 

Anomalous patterns happening over the course of more than 5 minutes would simply be 

lost. 
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For this reason, the approach taken will use sliding windows, where a short step will allow 

for outputting results in real-time, but a larger window will offer more insight on longer 

patterns of system operation. 

 

4.2.3.2  Log grouping and RMM goals 

Considering the goals of the module, it is also necessary to group PoSeID-on logs in respect 

to the following aspects: 

• Data Subject’s Behavior: By grouping data by subject identification it is possible to 

model how a single data subject is normally involved in a collection of operations. It 

is also possible to directly identify the data subject being targeted since an anomalous 

grouping of logs will have a single target. 

• Data Processor’s Behavior: By grouping data by data processor the same applies. It 

is possible to detect which data processor is behaving in an anomalous way and 

notify administrators that a data processor may be compromised. 

• System Behavior: By grouping logs by time window only, a model of the overall 

system operations is created, which will allow for detecting system-wide anomalies. 

This will make PoSeID-on more secure but won’t allow for direct identification of the 

anomaly cause until the log window is further analyzed. If desired, grouping logs by 

issuing module may give further insight on the anomaly source. 

As such, to have a complete view of PoSeID-on’s normal behavior, at least three approaches 

to log grouping must be taken and three models must be trained, each providing different 

insights on the system. 

4.2.4  Anomaly Detection 

For the anomaly detection step of the RMM pipeline, due to the lack of training data and the 

necessity of a stream-based algorithm with an available implementation working out of the 

box, K-Means will be used to model system behavior in the prototype version of the RMM.  

 

4.2.4.1  K-Means Clustering Outlier Detection 

K-Means partitions the incoming feature vectors into clusters, each incoming vector being 

added to the cluster with the nearest mean. Clustering is performed by minimizing within-

cluster variances (squared Euclidean distances). In the streaming variant of K-Means, it is 

possible to define a decay parameter which determines how much previous vectors 

contribute to the current clusters. 

The usual approach for anomaly detection using K-Means is to calculate the Euclidean 

distances from each vector to the center of its assigned cluster and selecting a percentage of 

each cluster’s vectors with the largest distance to be considered an anomaly. In a streaming 

scenario this would involve storing all the feature vectors and recalculating the distances to 

the center of each cluster every time the model is re-trained. 

As this is impractical for long-running systems, we resort to descriptive statistics to 

summarize the dataset. As each feature vector arrives, the distance to the center of the 

predicted cluster is calculated and stored in a sample set of distances for each cluster. As new 

values arrive old values are discarded. In addition, the number of vectors that have been 

added to each cluster are counted. 
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If an incoming vector’s distance to the center of its predicted cluster is over a threshold Z-

Score, that is, a number of standard deviations over the mean of the descriptive set of 

distances, that vector is considered an anomaly. 

Since a stream approach is used, discarding anomalous vectors may make us lose 

information in the long term. As a result, anomalous points are still used to recalculate the 

model.  

When a new vector arrives, an extra check is performed, in order to prevent anomaly formed 

clusters from not triggering anomalies by taking in points similar to the cluster mean. If the 

cluster predicted has less than a threshold percentage of all points added to the model, that 

point is considered as anomalous. 

4.2.5  Stream and Batch Approach 

Recent works, such as [51], combine both stream processing and batch processing by 

leveraging a simplified lambda architecture [56] in order to accommodate both near real-

time and also a slow-rate event processing. Real-time allows for critical alerts which require 

low reporting latency, while slow-rate processing can make use of the large data sets 

collected in order to detect anomalous patterns.  

A similar approach was taken for the RMM. Unsupervised learning algorithms for batch 

processing can be used for improving the detection rate and even for improving the stream-

based model by training the stream prediction model based on the batch analysis results [57], 

when using a semi-supervised approach. This is also in line with the possibility of having an 

administrator or security analyst analyzing the results of the models and providing feedback 

for further re-training. 

As such, a stream and batch approach are taken, using of stream capable unsupervised 

learning algorithms. These can either be trained on the fly in the stream-layer or using the 

batch-layer, in periodic intervals. Having a batch layer will allow for more flexibility in what 

algorithms can be used for analysis, as there are well tested algorithms available for batch 

analysis which do not have a usable counter-part for evolving stream analysis yet, such as 

PCA, even though there have been recent proposals for it[58][59]. 

4.3  Proposed Architecture 
The architecture for the Risk Management Module, depicted in Figure 4.4, is based on the 

proposal by N. Marz. for a generic and scalable data processing architecture, which he called 

Lambda Architecture [60], and the proposal by Yamato et al. of an architecture for real-time 

predictive maintenance [61]. This architecture allows for an efficient processing of the 

volume of information being constantly generated by the PoSeID-on platform, analyzing 

data as it arrives in the RMM and providing data subjects feedback regarding exposure risks 

in a near real-time manner, while also allowing this module to analyze data and extract 

valuable insight from large volumes of data, without instant feedback for the data subject, 

by using more complex, time- and resource-intensive methods. 



RMM Design and Specification 
 

45 

 

Figure 4.4 RMM Architecture Proposal 

This architecture features three layers: a batch layer, a speed layer and a serving layer. As data 

regarding system operations and blockchain transactions arrives at the Risk Management 

Module, it is dispatched to the speed layer for parsing. Once the data is parsed, it is sent 

down-stream for anomaly detection and stored in the module’s external database. 

The batch layer fetches the already parsed data and uses it for historic risk analysis. The 

amount of data available will depend on how long the RMM is allowed to retain data, 

provided the data subject has given explicit consent for this purpose.  This more in-depth 

analysis takes significant time and is not expected to work for near real-time risk detection. 

Instead, this layer provides warnings in case of risk detection in an “offline” manner and is 

can also be used for training and updating machine learning models used in speed layer’s 

near real-time analysis. 

The speed layer deploys the models created by the batch layer or trained on the go – if the 

algorithm allows it, as in the case of the streaming K-Means variation. It analyses the stream 

of data in real-time, by collecting small batches of data every couple of seconds from message 

queue.  In case an anomaly is detected, both layers dispatch a warning to the serving layer. 

The serving layer is in charge of receiving the results from both the batch and the speed 

layers, and notifying the respective entities about risk exposures, through designated 

channels. Right now, this is performed through the message queue, with the Dashboard as 
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receiver and router of messages to the end-target of the warning. The serving layer is also in 

charge of receiving feedback from administrators, regarding such risk notifications, and 

updating the associated risk reputation for each data processor. 

4.3.1  Components 

Each internal component has a small set of responsibilities in order to keep components 

loosely coupled and the RMM easily customizable. The responsibilities of each component 

are discussed next. 

 

4.3.1.1  RMM Message Handler 

The Message Handler is responsible for subscribing to the Message Bus, decrypting and 

decapsulating the incoming stream of messages, to then pass to the speed layer. Secure 

communication between the RMM and Dashboard will also be managed by this module, 

forwarding incoming remote procedural calls to the risk manager and sending back results 

and notifications to the respective parties. The message handler can be further extended to 

other communication channels as necessary. 

 

4.3.1.2  Batch Processor 

The batch processor is the component were batch analysis is performed. This analysis will 

make use of the parsed and structured messages already parsed by the stream layer.  

Batch Scheduler: subcomponent that manages the scheduling of batch tasks and storage 

access. Whenever a batch run is due, it fetches information from the external storages and 

passes it to the analyzer component. 

Batch Analyzer: subcomponent which will perform complex event processing and dispatch 

results to the ML Model Builder and Risk Manager for further action. 

Machine Learning Model Builder: this subcomponent will create and update machine 

learning models to further improve detection of anomalous behaviors and risks based on the 

analysis results. Feedback from system administrators on identified anomalies will also 

improve the models when using semi-supervised or supervised machine learning models. 

 

4.3.1.3  Stream Processor 

The stream processor is the component performing near real-time analysis. As data arrives 

in the system, it is temporarily stored and analyzed.  

Log Parser: subcomponent which will parse the incoming messages into structured data to 

be used further down the pipeline. 

Stream Analyzer: subcomponent responsible for the analysis of the structured data. It must 

be able to evaluate risk in a near real-time fashion, being able to provide risk warnings within 

a short time window after the occurrence of a PII exchange or anomalous system behavior. 

Structured data grouping and windowing happens in this component. All prediction models 

will also be deployed here. 
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4.3.1.4  Risk Manager 

The Risk Manager is the component which will act on the results provided by both Batch 

Processor and Stream Processor. All reasoning from the analysis is passed to this component, 

which will then take the necessary procedures for each evaluated case. This can be: 

• Notifying the respective parties at risk: Depending on which model detects an 

anomaly, the data processor behavior, data subject or system behavior model, a 

warning will be dispatched to the respective party. 

• Updating a data processor reputation: Whenever an anomaly is tied to a certain data 

processor, their reputation should be updated accordingly. Administrators may 

manually confirm or deny reputation updates later on. 

This component also receives messages from the message handler regarding feedback on an 

identified risk. When an administrator verifies an anomaly, they can send a message to the 

RMM confirming or denying the prediction. 

Notification Dispatcher: subcomponent in charge of sending notifications to the dashboard 

or other specified channels. 

Reputation Manager: subcomponent which is in charge of creating, updating and 

maintaining risk reputation of data processors and also provide this information to the 

dashboard and other components of the RMM. 

Monitoring Module: subcomponent which will provide a correction mechanism for 

predictions and possibly a direct way to access the data storage and analysis results. No 

formal requirements have been discussed for this component, but it is possible to foresee 

these uses and thus it has been included in the architecture. 

 

4.3.1.5  External Storage 

An external storage is necessary to keep: 

• Parsed data – The data provided by the several system components and parsed using 

the drain parsing algorithm.  

• Analysis results – The results for each analyzed window of logs. 

• Feedback from security analysts – Manually given inputs on data instances which 

were previously analyzed and stored in the system. 

• Learning models – Models trained and deployed by the respective analyzer 

components. 

• Parsing tree – The data structure used for parsing logs in the log parser algorithm. 

 

Having this storage external to the RMM instance allows for several instances of the RMM 

to share models and data structures for the log parser, and provides more flexibility as to 

how and where storage is deployed. This external storage must be able to be deployed in a 

distributed manner and have highly performant writing speeds, in order to be able to cope 

with the volume of data output by the RMM. 

4.3.2  Interfaces 

Initially, interfaces planned for the RMM included the message system for the PoSeID-on 

platform and a direct interface with the blockchain module, through one of the Ethereum 

nodes, in order to listen to smart contract-triggered events. 
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Later on, focus shifted to having every log message delivered through the message bus. As 

such RMM instances connect to the message bus and receive all communication through the 

RMM queue. This results in a simpler and cleaner platform architecture, while also providing 

enhanced support for implementations using parallel instances of the RMM for load-

balancing. 

4.3.3  Parallelization 

The potential number of data subjects managed by a single PoSeID-on platform is in the 

order of millions. For example, in the Italian Ministry of Economy and Finance’s use case, 

the PoSeID-on will be used to manage PII associated with the payrolls of approximately 2.1 

million public sector employees. Moreover, many of the concepts of PoSeID-on only reach 

their full potential if the system covers a wide number of data subjects and data processors 

(e.g. a government-sponsored PoSeID-on platform for a whole country). 

The PII access patterns for this type of operation are still unknow, so the load on the RMM 

cannot be estimated accurately. Nevertheless, it must be designed with performance and 

scalability in mind in order to support this magnitude of users. 

To support this, the RMM must be able to have several instances running independently, 

without compromising the quality of the predictions. Models can be shared between 

instances by persisting them in the database, and the same case applies to the parsing 

structure.  

Synchronizing the training of these models, however, becomes a not so trivial task if there 

are several instances running in parallel, and becomes impractical for the streaming machine 

learning models that are trained as data is received. In order to overcome this, for the specific 

case of the RMM, introducing an orchestrator and only synchronizing the batch layer is 

proposed. 

 

4.3.3.1  Orchestrator for data separation 

Since every incoming log message has an identifier (such as data subject ID, data processor 

ID or module issuing the message), it is possible to create a routing table were each RMM 

instance receives all logs respective to a certain ID. An orchestrator can manage all active 

RMM instances and a routing table, balancing the number of ID’s assigned to each instance. 

This way the load is distributed while maintaining patterns’ consistency, since all logs 

respective to a single entity are sent to a single instance.  

In addition, by storing the parsed data with a reference to the RMM instance ID, data is also 

logically separated and each RMM instance can fetch and perform batch training or 

prediction without need for synchronization between instances. Figure 4.5 illustrates this 

while using the message queue for routing logs. 
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Figure 4.5 Orchestrator Data Flow Using Message Queue 

Re-using the message bus for routing will double the number of messages circulating in the 

system, but as PoSeID-on will benefit of distributed deployment, this shouldn’t be an issue. 

The orchestrator can be parallelized if the routing table and connected instances information 

is stored in an external storage. Deployment can then be optimized by deploying in clusters, 

such as having a dashboard, storage and message queue node paired with an orchestrator 

and couple RMM instances per cluster. Figure4.6 presents the orchestrator architecture, 

which includes the following components: 
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Figure 4.6 RMM Orchestrator Architecture 

Message Handler: manages the message queue incoming and outgoing communication, 

decrypts and decapsulates messages and passes them to the data subject identifier. 

Data Subject Identifier: retrieves data subject identifiers by extracting them from the 

message headers and performing a simple regex retrieval of ID’s in the raw log. 

Load Balancer: manages the routing of messages by synchronizing with the routing table 

and active RMM instances, re-queuing the original message in the queue of the instance 

managing that ID. 

Instance Monitor: regularly checks if an instance is still active in order to inform the load 

balancer and store that information in the distributed storage. In this figure the instance 

monitor receives regular messages from the queue, sent regularly by the RMM instance but 

it is also possible to implement this through other means such as sockets. 

 

4.3.3.2  Synchronization of models 

Synchronizing the training and loading of stream-based models becomes impractical when 

the number of instances grows. Since real-time results are necessary, instances cannot wait 

for another instance to stop training a shared model before it can load, predict and train the 

model with its own data. As such, streaming models are not synchronized. This can affect 

predictions in a negative manner but as the volume of PoSeID-on users increase and the 

system has been running for a while, prediction results across instances should converge. 

Alternatively, it is possible to synchronize only the batch layer. Since batch training and 

prediction can happen in an offline manner, the orchestrator can manage a time schedule for 

training of a shared model between instances and prediction can happen simultaneously. 

4.4  Summary 
This chapter presented the design of the Risk Management Module.  

The RMM objectives, requirements, quality attributes and constraints were presented as 

means to support the choices made in the RMM architectural design process. 

The anomaly detection approach was also described in detail, followed by the proposed 

architecture, which employs a simplified lambda architecture to allow both stream and batch 

prediction. Afterwards, the parallelization approach is also discussed, and a proposal is 

given to manage instances and synchronization. 
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Chapter 5  Implementation and Integration 

This chapter reports the implementation efforts of the RMM, by describing the technological 

choices made and the components from the proposed architecture that were successfully 

implemented. Integration and deployment efforts are also described. 

The work developed in the scope of this thesis was necessarily aligned with and constrained 

by the planification of the PoSeID-on project. For this reason, thesis priorities had to follow 

closely the priorities of the project, which focused on having a fully integrated and 

deployable platform as early as possible. As such, development of secure communication 

interfaces, containerized deployment and setup for Kubernetes deployment took priority 

over the development and refinement of the anomaly detection pipeline and orchestrator. 

The PoSeID-on overall workplan reflects this, with a first version of the platform 

components, with a reduced set of features per component, scheduled for delivery in July 

2019 for a first integration round, followed by deployment at the trial sites and, afterwards, 

a return to component development to deliver the complete version of each component by 

May 2020. 

Moreover, the fact that overall platform deployment is late (due to issues and delays in the 

blockchain-related components to be provided by Tecnalia), with the subsequent delay in 

the kick-off of the four planned pilots, has prevented taking advantage of having the PoSeID-

on platform systematically running with real data to refine the RMM. 

5.1  Technological Stack Choices 
The prototype for the RMM was developed in Java 8. This version is explicitly necessary as 

the framework used for data processing does not support newer versions of Java yet. The 

choice of language derived from personal preference between the choices presented in 

technical constraint TC1. In addition, Java being a compiled language, is generally faster and 

more efficient than Python. 

The technological stack derived from the technical constraints presented in Section 4.1.5 , as 

well as a comparison of similar technologies and personal preferences. This section gives an 

overview of the chosen frameworks for the core aspects of the RMM module, such as logging, 

data processing and communication, and provides insight on what drove such choices.  

5.1.1  Adopted Frameworks 

 

5.1.1.1  Apache Spark and Apache Spark Streaming 

Apache Spark [62] is the de-facto standard for big data processing. It started as a batch 

processing but eventually also incorporated streaming into its framework by introducing 

DStreams, an abstraction which represents a continuous stream of data that can be treated 

as a very small batch. As such, using Spark and Spark Streaming [63] becomes very similar 

and accommodates the lambda architecture of the RMM. 
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There are alternatives such as the recent Apache Flink [64], which boasts faster stream 

processing times and also allows for batch processing. Nevertheless, Apache Spark is still 

better established, with several success cases in production systems, as well as boasting a 

large array of open-source libraries and community support. 

Additionally, Spark Streaming was initially encouraged as there was discussion, within the 

PoSeID-on technical core, whether RabbitMQ or Apache Kafka would be used as message 

queue system. Eventually RabbitMQ was chosen, but the initially discussion encouraged the 

use of Spark Streaming as there are well documented and tested connectors already 

implemented for Kafka to Spark communication. 

 

5.1.1.2  Junit 5 

JUnit 5 was chosen for its simplicity and convenience for writing unit and integration tests. 

 

5.1.1.3  Apache Log4J2 

Logging framework for Java. Chosen due to its popularity and wide support. In addition, 

Graylog, the log manager choice for PoSeID-on, is compatible out-of-the-box with Log4J2.  

5.1.2  Adopted Libraries and Packages 

 

5.1.2.1  Apache MLlib 

Apache MLlib is a machine learning library developed specifically for Apache Spark, making 

it a natural choice to use in combination with Apache Spark. Furthermore, it has a 

parallelized implementation of Kmeans++ for both batch and stream processing. 

 

5.1.2.2  Lazysodium and Libsodium (C library) 

Libsodium is an open-source cryptography library widely used in C and was a constraint 

introduced by the integration team for secure communication. Lazysodium is a wrapper 

over that C library, which allows its use in Java, with minor configuration efforts. 

 

5.1.2.3  RabbitMQ AMQP Client and Spark Streaming Receiver 

RabbitMQ Spark Streaming Receiver[65] is an open-source receiver which connects to 

RabbitMQ through RabbitMQ’s AMQP Client library and fetches data in stream-like fashion, 

through micro-batches. Although it is an outdated open-source library, it is the current 

receiver implemented for Spark Streaming and is compatible with the latest versions of 

RabbitMQ and Spark. 

5.1.3  Adopted Tools 

 

5.1.3.1  Google Protobuf 

Protobuf was collectively chosen by involved project partners as the message protocol 

defining utility. Protobuf makes it possible to define a clear communication protocol in a 

language and platform neutral extensible way. It provides a set of tools for compiling a 



Implementation and Integration 
 

53 

Protobuf file into classes of an array of languages, such as Java or Python, which perform 

serialization and deserialization of data according to the Protobuf file definition.  

5.1.4  Adopted Storage Database 

 

5.1.4.1  Apache Cassandra 

Apache Cassandra[66] is a NoSQL database which supports high scalability while 

maintaining high performance due to its data partitioning and clustering model. The biggest 

advantage of using Cassandra over other NoSQL databases is the higher write speeds, due 

to the fact that more than one master node can be deployed, not only increasing availability 

but allowing for parallelized writing. This pairs well with the distributed deployment 

strategy of PoSeID-on. In addition, due to the lambda architecture approach, write 

operations will be vastly superior in number than read operations.  

One downside of using Cassandra is the necessity of defining a data structure in beforehand, 

but since our log parsing step creates a structured output, it is possible to setup a data 

structure to accommodate the parsed data with minor effort. 

5.2  Implemented components 
Table 5.1 summarizes the development status of the RMM by breaking down the module 

into each component and its current status. It should be noted that having non-implemented 

components is not a sign of delay or under-achievement for this thesis, since as already 

mentioned the whole RMM is planned only for May 2020. Moreover, the delays in the four 

planned project trials led to the absence of real users and real data – which creates obvious 

difficulties in the refinement of the RMM. 

 

Component / Layer Sub-Component Status 

Message Handler  Fully Implemented 

Stream Processor Log Parser Fully Implemented 

Stream Analyzer Fully Implemented 

Batch Processor Batch Scheduler Not Implemented 

Batch Analyzer Not Implemented 

ML Model Builder Not Implemented 

Service Layer Notification Dispatcher Fully Implemented 

 Risk Manager Partially Implemented 

 Monitoring Module Partially Implemented 

Orchestrator  Not Implemented 

Storage  Fully Implemented 

Table 5.1 RMM Component Implementation Status (January 2020) 
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The adopted development approach, in addition to the chosen frameworks, allows for easy 

customization of the module’s pipeline as the code for operations on the data stream is 

separated into logical steps, as seen in Figure 5.1. These can be switched in a straightforward 

way, with minor code changes and more layers or branches can be added to the pipeline. 

 

Figure 5.1 Implemented Data Flow 

Although some components of the RMM have not been implemented yet, the pipeline 

leading to these components has already been set and has been implemented successfully 

from data reception, processing, storage, analysis and returning results to the PoSeID-on 
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platform, through the stream processor. The following sub-sections further detail each 

component’s implementation status. 

5.2.1  RMM Message Handler 

The Message Handler was fully implemented, handling all communications inbound and 

outbound of the RMM.  

Messages received by the RMM are decrypted and checked to make sure the RMM is the 

correct recipient. They are also validated through checking the message signature and the 

sender’s certificate is validated by confirming the certificate authority’s (CA) signature over 

the sender’s public key. 

All outbound messages incur the inverse process, signing, encryption and encapsulation 

according to the protocol described in Section Chapter 5 .  

5.2.2  Stream Processor 

The stream processor pipeline has been fully implemented, according to the RMM 

architecture design. Once verified and decrypted by the message handler, messages are 

structured into datasets organized by columns. Each parameter received in the message is 

turned into a column. The raw log column is then passed onto the Drain Log parser, to extract 

the corresponding template. 

After extracting the template and structuring the raw log parts, the structured parts are re-

joined to the previous dataset and sent down the pipeline. 

 

5.2.2.1  Log Parser 

As Drain is only available in python, a java implementation of the algorithm was specifically 

developed to facilitate the integration with the Risk Management Module pipeline and data 

analysis frameworks of Apache Spark. This implementation was also further extended in 

order to work for the specific purpose of the RMM. 

In order to maintain log template consistency across batches and across instances, the 

original implementation was changed to support loading and exporting the parsing tree, and 

log ids are no longer saved in the data structure, to avoid excessive and unnecessary 

information from being stored in the database. In addition, other minor changes were made 

to accommodate Spark Streaming and Spark data structures in Java. 

 

5.2.2.2  Stream Analyzer 

The stream analyzer was successfully implemented using the Spark Streaming framework. 

Once the structured logs are received, logs are first grouped by time and then by ID. Once 

this is done an event count is performed based on the extracted template and parameters and 

normalized by row, using the total parameter and template counts.  

Once this feature vector is normalized, it is passed into MLlib’s implementation of K-

means++, which returns a prediction for the cluster the vector belongs to. Once a prediction 

has been made, the result is passed to the anomaly predictor, which verifies if the cluster is 

an anomalous cluster or if the distance to the predicted cluster corresponds to an anomaly. 
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Slightly afterwards, in order not to train the model with the data being predicted, the model 

builder trains the model with the created feature vector. 

5.2.3  Risk Manager 

The Risk Manager, corresponding to the service layer, was partially implemented. 

The Notification Dispatcher is currently working. Using the Message Handler, a message is 

created and sent to the ID corresponding to the feature vector. 

The Monitoring Module did not have defined requirements and, as such, currently there is 

no functionality associated with it. The RMM however has already developed methods for 

handling RPC calls through the RabbitMQ queue and access to the structured data and 

results storage has already been implemented. As such, functionalities such as consulting 

more details about a certain anomaly can easily be added to the module. 

5.2.4  Batch Processor 

The Batch Processor has not been implemented yet, but the underlying structure has been 

set to accommodate its addition. Storage of the structured and parsed data has been fully 

implemented as has been access to stored data. 

5.2.5  External Storage 

External persistent storage and means to access it have been implemented fully, with the 

following information currently being stored in the Cassandra database: 

• Parsed Logs: The predefined components of a parsed log, as setup in Drain, plus the 

parameters extracted. 

• Log Templates: The determined templates obtained from Drain Log Parser. 

• Feature Vectors: The feature vectors obtained from performing event count over a 

window of logs. 

• Analysis Results: The prediction results for a window of logs. 

The data model developed accommodates the distributed use case and tables were modelled 

according to the queries that are going to be performed, since the distributed nature and 

NoSQL model, makes introducing new or complex queries rather difficult. Making use of 

Cassandra’s distributed nature, partition keys and clustering keys were defined to allow 

querying mainly to obtain results and information resulting of the feature vector analysis 

and to allow re-use of the parsed data, which will be read by the batch layer for further 

anomaly detection.  Data is partitioned by RMM instance ID and further clustered by the 

columns which will be the defining targets of a query. Table structure can be seen in 

Appendix B . 

RMM instances when paired with a Cassandra node will have their generated data naturally 

partitioned by locality. This means each instance will process only the data generated by 

itself, unless assigned to another instance’s data by the orchestrator. This reduces the need 

for data shuffling inside the Cassandra cluster, increasing read speeds and decreased the 

load on the system. 
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5.2.6  Orchestrator 

For the first release of the RMM a single instance implementation was the priority, with load 

balancing and parallelization efforts planned for release 2. As such, the orchestrator was not 

implemented. Nevertheless, much of the RMM’s instance implementation can be re-used in 

the orchestrator. The Message Handler can be re-used fully as the same functionalities used 

to receive and verify messages for a single instance of the RMM are the same for the 

Orchestrator. Storage access is also implemented, requiring minor changes to accommodate 

the orchestration data. Instance monitoring can also be performed through RPC messages 

sent through RabbitMQ, functionality already available and implemented in the RMM. 

5.3  Integration Work 
A fully integrated PoSeID-on platform prototype was planned for September 2019, and as 

result most of the early RMM development effort was put into the necessary technologies for 

this purpose. In order to deploy PoSeID-on all modules needed to be deployed in a 

straightforward and easy way and work out of the box, with little to no configuration from 

the platform administrator deploying it. In addition, the platform must be deployed in 

Kubernetes, in order to allow cloud deployment. 

As such, a great part of the RMM development included a deep dive into Kubernetes 

configuration and deployment as well as Docker, the technology chosen to containerize each 

module. In order to deploy the RMM and Cassandra storage in a seamless manner in 

Kubernetes, Minikube, a local installation of Kubernetes was used to test module integration 

and deployment. Several scripts were written to automate the build, containerization and 

deployment steps of the module. 

5.3.1  Development Environment 

The development environment for the whole project was setup on a local machine in the 

datacenter of the University of Coimbra. Minikube was run on this machine, and project 

partners were given access to it in order to develop their own modules.  

5.3.2  Module Configuration 

Module configuration and deployment is done completely through developed scripts and 

Kubernetes customization files. The following files were developed: 

Makefile: A makefile was created to build all necessary dependencies and packaging them 

into an uber-jar which can be submitted as a Spark job. This make file also pulls the latest 

docker image for ubuntu and builds the container which will run the RMM instance. 

Docker File: A docker file was created to install the necessary dependencies into the 

container which will run the RMM instance and setup default environment variables used 

by the RMM. 

Kubernetes Customization Files: Kubernetes configuration files were created to setup the 

deployment of the RMM instances and a Cassandra operator, used to manage the Cassandra 

cluster. The files setup RMM and Cassandra nodes discovery and the necessary port forward 

to access developer tools such as the Spark Dashboard and Cassandra CQL shell. 
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Deployment Scripts: Initial deployment scripts for the whole platform were shared by Jibe 

the project partner in charge of integration efforts. These scripts needed to be extended for 

the specific deployment of the RMM. This initial script targeted Linux as it was the common 

platform agreed by partners at the beginning of the project. As an additional effort, since the 

author of this thesis chose by personal preference to develop using Windows, an additional 

script was created for Windows deployment, through Windows Linux Subsystem. This was 

a valuable contribution as one of the project partners was later required to deploy the 

platform in Windows OS. 

5.3.3  Message Protocol 

The message protocol defined for PoSeID-on communication was implemented and tested 

successfully in the RMM and was proven completely functional by exchanging messages 

between the RMM and the PDA. 

The structure for communication through the RabbitMQ was defined by Jibe to achieve the 

following objectives: 

• End-to-end encryption for all the data exchanged in PoSeID-on 

• Authentication of the data transported 

• Verification of the data transported 

• Identification of the sender and recipient of a message 

• Concealment of the sender from all entities but the recipient 

• Identification of message type (one- or two-way communication) 

• Serialization of message parameters 

These objectives were achieved by defining a protocol that specifies the following: 

 

Member identification, authentication and verification 

This was achieved through the use of asymmetric encryption, certificates and the use of a 

certificate authority (CA). The technology used for encryption was NaCl (Salt)[66], a 

collection of modern, verified cryptographic primitives abstracted into easy to implement, 

usable components. For identification of parties, an asymetric key pair is generated using 

Ed25519 signature scheme, which is later signed by the CA. The members public key is 

combined with the CA signature through Protobuf, resulting in the certificate used for 

identification. 

 

Queue routing rules 

The queue definition for each instance participating in PoSeID-on is based on the recipient’s 

public certificate. A SHA-256 hash is calculated over the certificate binary and presented as 

a decimal string, which serves as the queue name for this recipient. The except to this rule 

are data subjects, for which messages are delivered to the Dashboard queue and then routed 

by the Dashboard to the end-user, to avoid the creation of a gigantic amount of queues. 

For Remote Procedure Calls (RPC), two queues are necessary since queues are only one way, 

as such when an RPC message is sent a correspoding queue is declared, uniquely named for 

the response and using the AMQP 0-9-1 flag. 
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Packet format 

The packet format consists of consecutive layers with signatures and encryption where 

needed. Protobuf, as explained previously is used to define the packet format. The following 

figure shows a graphical representation of this format: 

 

Figure 5.2 Graphical Representation of the Message Packet 

First layer contains the recipient’s certificate, unencrypted for identification purposes within 

the Dashboard, together with an encrypted message body, sealed using Libsodiums sealed 

boxes. This encryption scheme uses X25519 and XSalsa20-Poly1305 for encryption. The 

X25519 key used is derived from the ED25519 key found in the recipient’s certificate. 

The encrypted body contains a payload and a signature over that payload. This signature is 

also created using libsodium’s public-key signature and the sender’s private Ed25519 key. 

Inside the payload, the certificate of the sender can be found, to verify the payloads 

authenticity. The payload itself, can be of two message types, direct message or RPC 

message. A direct message contains the message identifier, such as the id respective to a 

permission request, permission grant, etc, and a set of parameters structured as ordered key-

value pairs. 

5.3.4  Integration Testing 

Unit and Integration testing for the RMM has not be formally defined or implemented as the 

envisaged component Technology Readiness Level is TRL 6 and focus on complete code 

coverage is not required. Regardless, an initial test setup has been developed to cover the 

communication protocol implementation. 

Currently automated testing covers message decryption and encryption, certificate signing 

and validation, payload signature and validation and finally message signature and 

validation. 
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5.4  Challenges  
During the development of the module several challenges arose which delayed or affected 

to some extend the modules development. 

Choice of Message Queue tools: the choice of RabbitMQ as the message queue system 

determined the usage of Spark Streaming, instead of the latest Spark Structured Stream 

framework, which allows for a larger set of operations possible over a data stream. This 

happened since there are no open-source connectors implemented for Spark Structured 

Streaming and implementing and testing a connector from scratch would substantially 

increase the workload – and that was acceptable from the project point of view. An outdated 

RabbitMQ connector was used with Spark Streaming and even this connector had to be 

modified and built locally to work with the Spark Streaming 2.4.0. 

Data Sources Definition: data sources definitive decisions (by part of the project 

consortium) did not happen until late December 2019, and even then plans changed from 

having log messages being received directly from the Blockchain through Smart Contract 

event listeners to having everything delivered through the message bus, rendering the 

significant effort spent researching into blockchain technologies not applicable in the RMM. 

Integration and trials are delayed: although the RMM has been fully integrated into PoSeID-

on and the communication protocol tested and verified by communicating with the PDA and 

the Dashboard, several partner modules have suffered severe delays and by the time of 

delivery of this thesis (January 2020) the blockchain has not yet been deployed in the PoSeID-

on platform. Furthermore, the Dashboard and pilot’s Data Processor implementation are still 

not completely functional – and what is functional does not produce RMM-usable logs yet. 

As result, the RMM has no real data in transit to analyze, and there are no perspectives of 

real logs being set to the RMM soon. In order to test the RMM data analysis pipeline a public 

log dataset had to be used, as discussed in Chapter 6 . 

5.5  Summary 
This chapter presents the development and integration work performed in the scope of the 

Risk Management Module. First, component status is presented, in light of the proposed 

architecture. The Message Handler and Speed Processor have been completed, as well as 

part of Risk Manager. The Batch Processor development has not started although the 

groundwork for the data access and pipeline setup has been done. Afterwards, integration 

efforts are described, with emphasis on the developed scripts which automate the 

deployment and setup of the PoSeID-on platform and the RMM. Finally, implementation 

challenges and solutions, when available, are described.
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Chapter 6  Evaluation 

The work developed during this thesis falls between Software Engineering work and 

Research and Development, as there was not a single focus throughout the thesis. Activities 

ranged from pure architectural definition and design, to research into the machine learning 

area of expertise and implementation of the main module considering the PoSeID-on project 

priorities. An innovation in the anomaly detection field was not expected or set as an 

objective. The objective was to set up a module within PoSeID-on that can apply existing 

technologies for the purpose of protecting data subjects and their PII. 

In this perspective, to evaluate the results of this thesis, thesis objectives, module 

requirements and attributes and experimental results for the anomaly detection pipeline 

must be considered. 

6.1  Evaluation Strategy and Challenges 
To evaluate the RMM, firstly the experimental setup, challenges and preliminary results of 

the anomaly detection pipeline will be presented. Secondly, fulfilled requirements and 

quality attributes will be discussed, taking in consideration what has been designed and 

what has been implemented accordingly. Finally, PoSeID-on project milestones for the 

interim version of the RMM will be analyzed, as well as the challenges associated with them. 

6.1.1  Experimental Setup and Evaluation 

Evaluation of the RMM anomaly detection had a few challenges. First of all, by the time of 

evaluation, no real data was circulating within PoSeID-on, as already explained in Section 

5.4 . An alternative had to be found to test the RMM. In order to test the module, a public 

dataset was chosen, based on the type and structure of the logs. 

Furthermore, the staging environment, running in Minikube and used to deploy the PoSeID-

on platform, suffered several setbacks during the time of testing, from mid-December 2019 

to early January 2020. Due to power-shortages in the UC datacenter (where the machine 

running the staging environment was placed) and development issues with project partners, 

the staging environment was down for a majority of the time. The partner in charge of 

managing the staging environment (Jibe) did not have any available resources to fix this due 

to the vacation period. In addition, the deployment script was missing a key aspect for 

making the Minikube available to external access, and as such the UC team could not setup 

the environment by itself. Due to these circumstances, tests were run on the same machine 

but not in Minikube. 

Finally, Spark Streaming, as opposed to Spark Structured Streaming, does not allow for 

complex windowing operations, such as windowing data by timestamp. As such, the 

adopted dataset had to be tested by creating a script to send logs one by one to the RMM, 

according to the timestamp. This emulated real working conditions, as logs arrive in the 

interval that they would have arrived in a real-scenario and be windowed accordingly. 

The following sections describe the experimental setup and achieved results. 
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6.1.1.1  Dataset 

To the best of the authors knowledge, there are no datasets available from PII management 

systems. As such, an alternative had to be found. By using an alternative dataset, we cannot 

determine if the results obtained will be similar in the PoSeID-on context, but we can validate 

the anomaly detection approach and pipeline, since the log anomaly detection approach is 

generic. The chosen HDFS dataset was made available by the LogPAI research team [66], 

and its characteristics are summarized in Table 6.1. 

 

Description: Hadoop Distributed File System log set is generated in a private cloud 

environment using benchmark workloads, and manually labelled through handcrafted 

rules to identify the anomalies. The logs are sliced into traces according to block ids. 

Then each trace associated with a specific block id is assigned a ground-truth label: 

normal/anomaly 

Time Span 38.7 Hours 

Number of Messages 11 175 629 

Number of Blocks 575 061 

Number of Normal Blocks 558 223 (97,1% of blocks) 

Number of Anomalous Blocks 16 838 (2,9% of blocks) 

Table 6.1 HDFS Dataset Characteristics 

The characteristics of the chosen dataset have three important factors: 

• It is a distributed system: logs are generated by several distributed components. 

• There is an identifier associated with each log: as with PoSeID-on, logs have an 

identifier corresponding to the block each operation is referring to, and a single block 

can be the target of multiple operations or logs, much like PoSeID-on will have an 

identifier associated to a Data Subject or Data Processor. 

• Anomalies are labelled according to the identifier: the dataset is labelled in respect 

to blocks, such as a window of the RMM will label a window of logs corresponding 

to a data subject or data processor as anomalous or not. 

These factors allow for the logs to be analyzed using the same approach that the RMM uses 

for PoSeID-on system logs. 

 

6.1.1.2  Machine and Deployment 

The machine where the RMM was deployed was the same machine where the staging 

environment was running. A Cassandra and a RabbitMQ node were run on the same 

machine, to deliver the logs through the message queue, as would happen in the PoSeID-on 

deployment and to save results. 

Applications run on this machine remained the same for all runs of the experiments. The 

characteristics of the machine are provided in Table 6.2. 
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Brand and Model Dell Precision 5820 Tower X-Series 

Operating System Ubuntu 18.04.1 LTS 

Processor Intel(R) Core (TM) i9-7920X CPU @ 

2.90GHz 

Random Access Memory 132 GB, 2666 MHz, DDR4 

Graphics NVIDIA Quadro P1000, 4 GB GDDR5 

Storage 1TB 7200rpm SATA Hard Drive 

Table 6.2 Machine Characteristics 

The RMM was packaged into a Java Archive (JAR) file containing all necessary dependencies 

and ran with the Java Virtual Machine (JVM) configuration presented in Table 6.3. 

 

Parameter Value 

Maximum memory allocation (-Xmx) 64 Gigabytes 

Initial memory allocation (-Xms) 64 Gigabytes 

Table 6.3 Java Virtual Machine Parameters 

In addition, Spark was run in local cluster mode and as such the enforced configuration is of 

one Driver, with the Driver performing all the execution (instead of an Executor). The 

parameters set for running the RMM in local mode are summarized in Table 6.4. 

 

Parameter Value 

Spark Logical CPU Cores 24 

Driver Memory 48 Gigabytes 

Table 6.4 Spark Local Cluster Configuration 

 

6.1.1.3  Evaluating Drain Log Parser implementation 

To evaluate the implemented Java version of Drain Log Parser, several runs were conducted 

were the outputs of the parsing were compared to the original Drain implementation results. 

This was done with a sub-set of the HDFS dataset, containing two thousand logs, also made 

available by the LogPAI team. The configuration for Drain was the one used in the original 

Drain paper[54] to parse the same sub-set of data, as presented in Table 6.5. 
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Parameter Value 

Log Format “<Date> <Time> <Pid> <Level> 

<Component>: <Content>” 

Regex List BLOCK_ID = "blk_(|-)[0-9]+" 

IP  =  "(/|)([0-9]+\\.){3}[0-9]+(:[0-9]+|)(:|)" 

NUMBER = "(?<=[^A-Za-z0-9])(\\-

?\\+?\\d+)(?=[^A-Za-z0-9])|[0-9]+$" 

Similarity Threshold 0.5 

Depth of Tree 4 

Maximum Childs 100 

Table 6.5 Drain Configuration 

The results obtained from the implemented Java version, already included in the RMM and 

running inside the anomaly detection pipeline, were the same as the original 

implementation, as shown in Table 6.6. 

 

Log Template Occurrences 

BLOCK* ask <*> to delete <*> 2 

Receiving block <*> src: <*> dest: <*> 292 

Verification succeeded for <*> 20 

BLOCK* NameSystem.allocateBlock: <*> <*> 115 

<*> Starting thread to transfer block <*> to <*> 1 

BLOCK* ask <*> to delete <*> <*> <*> <*> <*> <*> <*> <*> <*> 1 

BLOCK* NameSystem.addStoredBlock: blockMap updated: <*> is added 

to <*> size <*> 314 

<*> Served block <*> to <*> 80 

BLOCK* ask <*> to replicate <*> to datanode(s) <*> 1 

<*>Got exception while serving <*> to <*> 80 

BLOCK* ask <*> to delete <*> <*> <*> <*> <*> <*> <*> <*> <*> <*> <*> <*> (…) 2 

BLOCK* NameSystem.delete: <*> is added to invalidSet of <*> 224 

Received block <*> src: <*> dest: <*> of size <*> 2 

Deleting block <*> file <*> 263 

PacketResponder <*> for block <*> terminating 311 

Received block <*> of size <*> from <*> 292 
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Table 6.6 Drain Java Implementation Results 

 

6.1.1.4  Evaluating Anomaly Detection approach 

In order to evaluate the anomaly detection approach, tests were run using a single RMM 

instance, under the conditions described in section 6.1.1 . The full HDFS dataset was used 

for testing. 

As explained previously, since Spark Streaming does not allow windowing by timestamp. 

For this reason, a script was run to read the HDFS dataset file and send each log one by one, 

according to its timestamp, to the message queue. The RMM instance fetched this 

information every 5 seconds from the queue. Since the dataset spanned over approximately 

39 hours, in order to minimize testing times, a speed-up parameter was added to the 

instance. For all testing cases, this speed-up was of 4 times faster than the real time. As such, 

all time-based operations ran 4 times faster. Messages were sent 4 times faster to the queue 

and processing happened 4 times faster than the parameters defined for the test. Although 

this increases the load on the system, it was a necessary trade-off for shortening testing times. 

The result should not have major differences, since all time-based operations are scaled 

accordingly. 

Several parameters need to be set in order to test the RMM instance. The K-Means algorithm 

parameters need to be set, as well as the Java Descriptive Statistics initial parameters, and 

general pipeline configuration. In order to test how the number of clusters would affect 

results, the RMM instance deployed four models, with increasing number of clusters.  

For K-Means the parameters provided in Table 6.7 were used to initialize the models. 

 

Parameter Value 

Cluster initialization Random 

Number of Clusters Per Model 4, 8, 12, 16 

K-Means Half Life 24 Training Batches 

Table 6.7 K-Means Initialization 

As for the starting clusters centers, these were set using a random seed. The same seed was 

used for all models running inside the same RMM instance, for result comparison. 

Regarding the Descriptive Statistics setup, the 100 000 most recent distances were saved for 

each cluster of each model. The parameters for K-Means initialization and Descriptive 

Statistics were kept constant across all tests. Since it is not possible to be sure that a predicted 

anomaly is in fact an anomaly or not, all received logs were used for training of the model.  

The parameters that suffered variations during testing were those related to the pipeline and 

anomaly detection approach, more specifically: 

• Whether or not feature vector overlap was considered for training. Since sliding 

windows are used for prediction, it is possible to train the model with the feature 

vector calculated for every slide or to train with the feature vector for an actual 

window, avoiding repetition of logs. 
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• What percentage of points a cluster must have to be considered an anomalous 

cluster. Since small clusters are hypothesized to contain anomalies, a threshold must 

be set to define what is a small cluster. This is done by defining a percentage of the 

total points to be considered anomalous. If the cluster as less than that percentage of 

points, it is considered anomalous and a point predicted to be in that cluster is 

considered anomalous. 

• The Z-Score threshold. How many standard deviations a vector’s distance to the 

cluster center must be over the cluster mean in order to be considered an anomaly. 

• The window length. What window is considered for training and analysis. Shorter 

windows will be able to detect point anomalies, while larger windows will detect 

collective anomalies. 

Sliding length is another potential parameter, but since it is necessary to have predictions 

output under a user session, a fixed parameter was chosen (5 minutes) as it is the predicted 

time a user would spend on the platform, so it was not considered for evaluation. The chosen 

parameters for evaluation can be seen in Table 6.8. 

 

Test Overlapping Anomaly 

% 

Z-Score 

Threshold 

Window 

(Minutes) 

Training 

Frequency 

(Minutes) 

Anomalies 

Considered 

T01  

 

Yes 3 2.5 30 

minutes 

40 

minutes 

Yes 

T02.1  No 3 2.5 30 

minutes 

40 

minutes 

Yes 

T02.2 No 3 2 30 

minutes 

40 

minutes 

 

T03.1  No 3 2.5 60 

minutes 

70 

minutes 

Yes 

T03.2 No 3 2 60 70 Yes 

Table 6.8 Parameters Tested 

The results of the tests took in consideration correction of anomalies detected. Since sliding 

windows of 5 minute are used, an anomaly detected in the first 5 minutes of a collection of 

logs in respect to certain ID may be considered an anomaly, but as more time passes and 

more logs for that ID are received, it may prove to be a normal pattern of logs. As such, only 

the latest prediction for an ID is considered. 

First, tests were run to test whether models trained with overlapping feature vectors 

achieved good results. As expected, this proved to be false, as models trained with the result 

of sliding windows become over trained due to the repetition of anomalous patterns. The 

models simply failed to detect any anomalies as every data point was considered normal, as 

seen in Table 6.9, test T01. As result, no further testing was done with overlap training. 

Due to still unresolved issues with Spark Streaming’s garbage collection, in the RMM 

implementation for model training without overlapping of training windows, it was not 
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possible to analyze the full dataset as with T01. Regardless, results were collected for partial 

analysis of the dataset, corresponding roughly to 30% of the full set. These results can also 

be seen in Table 6.9. 

 

  



Chapter 6  
 

68 

 

Test Cluster TP FP TN FN P R F1 

T01 K=4 0 0 558223 16838 NaN 0 NaN 

K=8 0 0 558223 16838 NaN 0 NaN 

K=12 0 0 558223 16838 NaN 0 NaN 

K=16 0 0 558223 16838 NaN 0 NaN 

T02.1 K=4 624 0 102697 4726 1 0.116 0.207 

K=8 624 0 102697 4726 1 0.116 0.207 

K=12 324 0 102697 5026 1 0.060 0.113 

K=16 331 0 102697 5019 1 0.061 0.114 

T02.2 K=4 2691 409 122694 3294 0.868 0.449 0.591 

K=8 1624 409 122694 4361 0.798 0.271 0.404 

K=12 2360 407 122696 3625 0.852 0.394 0.538 

K=16 1624 410 122693 4361 0.798 0.271 0.404 

T03.1  

 

 

K=4 444 0 104273 4983 1 0.081 0.149 

K=8 444 0 104273 4983 1 0.081 0.149 

K=12 328 0 104273 5099 1 0.060 0.113 

K=16 328 0 104273 5099 1 0.060 0.113 

T03.2  

 
K=4 1508 8 102689 3842 0.994 0.281 0.438 

K=8 638 6 102691 4712 0.990 0.119 0.212 

K=12 1503 6 102691 3847 0.996 0.280 0.437 

K=16 1506 6 102691 3844 0.996 0.281 0.438 

Table 6.9 Test Results 

As sowhn in Figure 6.1, a combination of a Z-Score threshold of 2 and a window of 30 

minutes achieved the best F1-Score for a model with 4 clusters. 

It is also possible to see that the increase in the number of clusters seems to affect tests 

negatively in most cases, which is an indicator that using a smaller number of clusters may 

be the best option performance and result wise. 
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Figure 6.1 Graphical Comparison of Experimental Tests 

No more tests were carried out before the writing of this document, due to the tests not being 

conclusive for the real use case of the RMM, as data collected is inherently different as is the 

natural windows over which anomalies occur. Regardless, these tests helped validating the 

anomaly detection approach and resulted in two useful conclusions: 

• Training with overlapping data will produce worse results, due to over-training with 

anomalies. 

• The anomaly detection approach works for the implemented speed layer. 

In addition, tests with the full HDFS dataset brought up problems with garbage collection 

and memory management, which root cause is still under evaluation. 

6.1.2  Fulfilled module requirements and quality attributes 

Looking at the requirements and quality attributes previously shown in Table 4.1 and Table 

4.2, respectively, it is possible to make an analysis of the status of the RMM at the end of this 

thesis – as illustrated in Figure 6.2. 
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Requirement 

ID 
Title Requirement Fulfillment Status 

R1 
RMM Data 

Sources 

Has been fulfilled, all defined data-sources are 

considered, and information is successfully collected and 

used for analysis from them. 

R2 
RMM Risk 

Detection 

Has been fulfilled, albeit the proposed design has not 

been completely implemented. Regardless the module 

already detects anomalies and is ready for testing with 

real data. 

R3 
RMM Risk 

Events 

Has been fulfilled. Results are created and kept in an 

external database. 

R4 
RMM 

Notifications 

Has been fulfilled. Current defined channels for 

notifications (Message Queue) are used successfully, as is 

the identification of the ID’s to whom the anomaly is in 

respect to. 

R5 
RMM PII in 

Risk Events 

All parameters passed in a log to the RMM can be 

consulted with proper authorization, as is any possible 

PII sent to it. 

R6 

RMM Risk 

Event 

Storage 

Has been fulfilled by saving results in an external 

database which supports encryption at rest and in transit. 

R7 

RMM Data 

Processor 

Reputation 

This requirement has not been fulfilled. Reputation scores 

are not being created yet for identified data processors. 

R8 
RMM DP 

Reputation 

This requirement has not been fulfilled. Reputation scores 

are not being created yet for identified data processors. 

R9 

RMM Risk 

Notification 

Delivery 

Has been fulfilled since the communication protocols and 

ID identification for this have been implemented. 

R10 
RMM Risk 

Prediction 

Has been partially fulfilled since reputation is not taken 

in consideration yet. 

Figure 6.2 Requirement Fulfilment Status 

From these requirements only R7 and R8 have not been fulfilled at least partially. This is due 

to the fact that real data is still not available in PoSeID-on and the dataset used for testing 

does not have the same ID correlation as is expected in the PoSeID-on system. Block ID’s are 

unique as opposed to Data Processor ID’s, so it is not possible to create a history of operations 

in order to associate a score to results obtained for a block ID. Regardless, the implementation 

of these metrics will be a minor effort as all underlying requirements, such as database access 

and anomaly detection by ID have been implemented. 
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As described in Table 6.10, Fault-Tolerance has not been implemented yet, and as such has 

not been fulfilled. Multiple instances are supported by the designed architecture, but the 

orchestrator will be implemented only in the final release of the RMM. 

 

Quality Attribute Attribute 

Refinement 

ASR ID Quality Attribute Status 

Performance Latency QA1 Has been fulfilled, results are 

provided every 5 minutes. 

Availability Fault-

tolerance 

QA2 Has not been implemented yet but 

Spark and the Orchestrator design 

should accommodate for this. 

Scalability Multiple 

Instances 

QA3 The module has been designed to 

work with multiple instances, but 

current implementation does not 

support this yet, although efforts have 

been made so the underlying pipeline 

supports loading of models. 

Privacy PII Privacy QA4 Has been fulfilled, only the strictly 

necessary amount of data is collected, 

the database supports time-to-live on 

data and deletion of PII from the 

system can be done since all entries 

can be deleted without affecting the 

module. 

Security Data 

Security 

QA5 Has been fulfilled all secure 

communication protocols have been 

implemented. 

Table 6.10 Quality Attributes Fulfilment 

All technical constraints, as shown in Table 4.3, have been respected. 

6.1.3  Fulfilled PoSeID-on milestones 

In addition to the evaluation criteria already identified, in this section we dig into the 

PoSeID-on project milestones involving the Risk Management Module (during the 

timeframe of this thesis), in order to assess its success in the scope of the project. Table 6.11 

identifies all relevant milestones. 
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Activities / Milestone Due Date Description 

Deliverable D2.2 31/12/2019 
PoSeID-on System Requirements & 

Architecture Design  

RMM Exploratory Studies & 

Detailed Design 
28/02/2019 

Detailed RMM design and 

implementation plan 

RMM Component 

Implementation - Interim 
31/07/2019 Initial module implementation  

Deliverable D4.3  31/07/2019 
Report on RMM and PDA interim 

implementation 

1st Integrated Platform 

Evaluation 
30/09/2019 

Preliminary prototype ready to be 

deployed in the pilots 

Table 6.11 PoSeID-on Milestones 

All milestones were accomplished, successfully and on time, with the possible exception of 

the last one: while there is an integrated platform with the first release of each PoSeID-on 

component, it is still not fully ready for trials with real users due to issues related with the 

blockchain components, which are to be solved by Tecnicalia. Moreover, the first formal 

review of the PoSeID-on project, which took place in Brussels in late October 2019, already 

evaluated and approved all technical outcomes related with this thesis (especially the 

architecture design and the interim RMM implementation). 

6.1.4  Publications 

Even though the publication of research papers was not a direct objective of this thesis, the 

way the work evolved led to a few publications, in addition to the already mentioned co-

authorship of project deliverables. More specifically, the following publications were 

produced: 

• Casaleiro, R. and Paulo Silva and Simões, P. and Boavida, F. and Edmundo Monteiro 

and Marilia Curado and Tiago Cruz and Nuno Antunes and Marco Vieira and Riccio, 

G.M. and Verzillo, M.P. and Marek, P. and Goncalves, L. and Bagnato, A. and 

Valentini, A. and Intonti, B. and Manzo, R. and Posta, V.D. and Zampolini, L. and 

Rooij, J.v. and Houf, R. and Rios, E. and Iturbe, E. and Gutierrez, I. and Anguita, S. 

and Gomez, C. and Echevarria, J. and Houf, H. and Nicoletti, L. and Lotti, R. and 

Natale, D. and Pizzo, L.d. and Pane, F. and Schiavo, F. , "Protection and control of 

personal identifiable information: The PoSeID-on approach", (accepted in) Journal of Data 

Protection & Privacy, vol. 3, 2020. 

This paper provides a first overview on the PoSeID-on’s concept and its architecture 

design. Since we were the lead editor of Deliverable D2.2 and one of the lead 

moderators of the discussions that lead to the definition of the architecture, we were 

also the first author and one of the main contributors to this collective paper. 

• Casaleiro, Rui, Silva, Paulo, Simões, Paulo, Antunes, Nuno, Curado, Marilia, 

Monteiro, Edmundo, Boavida, Fernando, “Gestão e Análise de Riscos na Plataforma 

de Proteção de Dados Pessoais POSEIDON”, (accepted in) “Congresso Luso-

Moçambicano de Engenharia” (CLME2020).  
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This dissemination paper describes the PoSeID-on concept, with a focus on the 

components provided by University of Coimbra (i.e. the RMM and the Personal Data 

Analyzer). 

• P. Silva, R. Casaleiro, P. Simões, N. Antunes, M. Curado, E. Monteiro, F. Boavida, 

“Risk Management and Privacy Violations Detection in PoSeID-on’s Data Privacy 

Platform”, submitted to the Annual Privacy Forum 2020 (under review). This 

technical paper provides an overview of the PoSeID-on concept and more detailed 

content about the RMM and the Personal Data Analyzer. The Privacy Forum is one 

of the more relevant European fora addressing data and personal privacy.  

In addition to those publications, a more ambitious paper specifically addressing the RMM 

is also planned, once PoSeID-on trials enable more extensive evaluation studies. 

6.1.5  Fulfilled thesis objectives 

By looking at the objectives introduced in Section 0 and the analysis presented in the 

previous sections, it is possible to conclude that all objectives initially set out for this thesis 

have been achieved. The contributions given to the PoSeID-on project resulted in the 

accepted deliverables. The RMM design supports the technical constrains and requirements, 

and the prototype version of the RMM was successfully integrated in the PoSeID-on 

platform. The module accomplishes most of the objectives required for the module, as 

expected for the interim version, and the implemented approach was tested and validated 

with a synthetic dataset – even though the constraints induced by the lack of real usage of 

the platform so far (due to issues outside our direct responsibility) leaves a bittersweet 

feeling regarding full blown demonstration of the RMM potential. 

6.2  Summary 
This chapter presented the evaluation strategy for the module and work developed in this 

thesis. First the experimental setup was described, and results were presented, in order to 

validate the implemented anomaly detection approach. Afterwards functional requirements 

fulfilment status for the current implementation of the RMM was presented, as well as the 

status for quality attributes. Finally, PoSeID-on milestones and their fulfillment is analyzed 

as well as the accomplished thesis objectives. 
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Chapter 7  Conclusions and Future Work  

7.1  Conclusions 
The work developed during this internship focused on delivering a proof-of-concept for the 

Risk Management Module, a PoSeID-on component which is intended to analyze system 

logs and PII transaction logs in order to provide platform administrators and data subjects  

(whom personal data is being exchanged) with actionable information regarding the safety 

of their information. 

This work began by contributing to the design and development of the initial PoSeID-on 

architecture and the refinement of each module’s characteristics, objectives and scope. In 

parallel, the state of the art of anomaly detection techniques was studied, as well as the basis 

for blockchain technologies and their variants. The General Data Protection Regulation was 

also explored in order to guarantee that the decisions made for the RMM and the PoSeID-on 

platform would comply with the regulation. 

With that preliminary steps gathered and documented, a design for the RMM was proposed, 

taking in consideration all the requirements for the module in the context of the project and 

the available tools for materializing the proposed design. A proof-of-concept was developed 

in accordance to the design proposed, and testing of the RMM revealed that the proposed 

design – even if only partially implemented, since the internship timespan does not entirely 

cover the project timespan – already achieves moderately accurate results using a synthetic 

dataset. This validates the RMM concept and, once real data starts circulating in the platform, 

its implementation can be further refined to fully achieve the purpose of the module within 

the PoSeID-on system. 

During the internship, all project milestones involving the UC team and the author’s work 

were successfully fulfilled and the author provided valuable contributions for this purpose. 

Furthermore, considering the work described in the previous chapters, it is possible to 

conclude that all objectives initially conceived for this internship were successfully achieved. 

There were several obstacles and challenges along the way but these were overcome with 

perseverance and ultimately culminated in the work that was presented here. 

In appendix, a detailed work plan can be found (Appendix A ), where the detailed 

management of this work is reported, as well as obstacles encountered during the period of 

its development and their resolution. 

The work developed, while not delving deep into pure research work, created the 

opportunity to acquire a different set of knowledge and new interests as this area of 

expertise, anomaly detection and machine-learning, was relatively unknown to the author. 

This, combined with the exploration of tools that are in demand (such as Kubernetes, Spark, 

and RabbitMQ) and the management and soft-skills developed through the participation in 

the PoSeID-on’s project consortium proved a very valuable outcome for the author, both 

academically and professionally. 
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7.2  Future Work 
Despite the successful proof-of-concept implemented as result of this internship, there are 

still some work that needs to be done in different areas of the Risk Management Module and 

PoSeID-on project. Most of the future work tagged as future is already considered in the 

overall project timespan (that goes beyond this internship). 

Regarding the PoSeID-on and the RMM status, the orchestrator and parallel deployment of 

RMM instances still need to be implemented, as well as the designed purpose for the batch 

layer. A reputation system needs to be developed and tested, once real data is circulating in 

PoSeID-on. The documentation, implementation and this internship report provide valuable 

inputs for this task. 

 



Bibliography 
 

77 

Bibliography 

 

[1]        “Protection and control of Secured Information by means of a privacy enhanced 

Dashboard » PoSeID-on.” [Online]. Available: https://www.poseidon-h2020.eu/. 

[Accessed: 21-Dec-2019]. 

[2]        “Encryption | General Data Protection Regulation (GDPR).” [Online]. Available: 

https://gdpr-info.eu/issues/encryption/. [Accessed: 13-Dec-2018]. 

[3]        “Increasing value of personal data a 21st century challenge.” [Online]. Available: 

https://www.computerweekly.com/news/252452162/Increasing-value-of-personal-

data-a-21st-century-challenge. [Accessed: 21-Dec-2019]. 

[4]        “Spark Streaming - Spark 2.4.4 Documentation.” [Online]. Available: 

https://spark.apache.org/docs/latest/streaming-programming-guide.html. [Accessed: 

21-Dec-2019]. 

[5]        “Protection and control of Secured Information by means of a privacy enhanced 

Dashboard Deliverable 4.3 Risk Management Module & Personal Data Analyser 

Interim implementation.” [Online]. Available: https://www.poseidon-h2020.eu/wp-

content/uploads/2019/08/D4.3-RMM-and-PDA-V1.0-Final.pdf. [Accessed: 20-Jan-

2020]. 

[6]        F. B. Rui Casaleiro, Paulo Silva, Paulo Simões, Nuno Antunes, Marília Curado, Ed-

mundo Monteiro, “Protection and control of personal identifiable information: The 

PoSeID-on approach,” Journal of Data Protection & Privacy, vol. 3, no. 2, pp. 1–34, 2019. 

[7]        “EUR-Lex - 32016R0679 - EN - EUR-Lex.” [Online]. Available: https://eur-

lex.europa.eu/eli/reg/2016/679/oj. [Accessed: 21-Dec-2019]. 

[8]        F. B. Paulo Silva, Rui Casaleiro, Paulo Simões, Nuno Antunes, Marília Curado, Ed-

mundo Monteiro, “Risk Management and Privacy Violations Detection in PoSeID-

on’s Data Privacy Platform.” 

[9]        “GDPR FAQs – EUGDPR.” [Online]. Available: https://eugdpr.org/the-

regulation/gdpr-faqs/. [Accessed: 13-Dec-2018]. 

[10]       S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System.” 

[11]       D. Yaga and D. Yaga, “Blockchain Technology Overview Blockchain Technology 

Overview.” 

[12]       “Proof of Work vs Proof of Stake: Basic Mining Guide - Blockgeeks.” [Online]. 

Available: https://blockgeeks.com/guides/proof-of-work-vs-proof-of-stake/. 

[Accessed: 21-Dec-2019]. 

[13]       “Ethereum.” [Online]. Available: https://ethereum.org/. [Accessed: 21-Dec-2019]. 

[14]       “Hyperledger – Open Source Blockchain Technologies.” [Online]. Available: 

https://www.hyperledger.org/. [Accessed: 21-Dec-2019]. 

[15]       “Smart Contracts.” [Online]. Available: 

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/

LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html. [Accessed: 21-Dec-

2019]. 



0 
 

78 

[16]       R. A. Ariyaluran Habeeb, F. Nasaruddin, A. Gani, I. A. Targio Hashem, E. Ahmed, 

and M. Imran, “Real-time big data processing for anomaly detection: A Survey,” 

International Journal of Information Management, vol. 45. Elsevier Ltd, pp. 289–307, 01-

Apr-2019. 

[17]       D. M. Hawkins, Identification of Outliers. Dordrecht: Springer Netherlands, 1980. 

[18]       M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network anomaly detection 

techniques,” Journal of Network and Computer Applications, vol. 60, pp. 19–31, Jan. 2016. 

[19]       R. Sommer and V. Paxson, “Outside the Closed World: On Using Machine Learning 

For Network Intrusion Detection.” 

[20]       M. Zhang, B. Xu, and J. Gong, “An Anomaly Detection Model Based on One-Class 

SVM to Detect Network Intrusions,” in 2015 11th International Conference on Mobile Ad-

hoc and Sensor Networks (MSN), 2015, pp. 102–107. 

[21]       M. Ahmed and A. N. Mahmood, “Novel Approach for Network Traffic Pattern 

Analysis using Clustering-based Collective Anomaly Detection,” Annals of Data 

Science, vol. 2, no. 1, pp. 111–130, Mar. 2015. 

[22]       S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time anomaly 

detection for streaming data,” Neurocomputing, vol. 262, pp. 134–147, 2017. 

[23]       V. Chandola, “Anomaly Detection : A Survey,” 2009. 

[24]       N. S. Arunraj, R. Hable, and M. Fernandes, “Comparison of Supervised, Semi-

supervised and Unsupervised Learning Methods in Network Intrusion Detection 

System (NIDS) Application,” Anwendungen und Konzepte der Wirtschaftsinformatik, no. 

6, 2017. 

[25]       M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network Anomaly Detection: 

Methods, Systems and Tools,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, 

pp. 303–336, Spring 2014. 

[26]       M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network anomaly detection 

techniques,” Journal of Network and Computer Applications, vol. 60. Academic Press, pp. 

19–31, 01-Jan-2016. 

[27]       Y. Freund, R. E. Schapire, Y. Singer, and M. K. Warmuth, “Using and combining 

predictors that specialize,” in Proceedings of the twenty-ninth annual ACM symposium on 

Theory of computing  - STOC ’97, 1997, pp. 334–343. 

[28]       T. G. Dietterichl, “Ensemble learning.” 2002. 

[29]       P. Casas, J. Vanerio, and K. Fukuda, “GML learning, a generic machine learning 

model for network measurements analysis,” in 2017 13th International Conference on 

Network and Service Management (CNSM), 2017, pp. 1–9. 

[30]       L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140, Aug. 

1996. 

[31]       Y. Freund and R. E. Schapire, “Experiments with a New Boosting Algorithm,” 1996. 

[32]       D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, no. 2, pp. 241–259, 

Jan. 1992. 

[33]       P. Casas, “MLNET - Machine Learning Models for Network Analytics,” undefined, 

2018. 



Bibliography 
 

79 

[34]       A. Töscher, M. Jahrer, and R. M. Bell, “The BigChaos Solution to the Netflix Grand 

Prize,” 2009. 

[35]       Y. Yamato, H. Kumazaki, and Y. Fukumoto, “Proposal of Lambda Architecture 

Adoption for Real Time Predictive Maintenance,” in 2016 Fourth International 

Symposium on Computing and Networking (CANDAR), 2016, pp. 713–715. 

[36]       P. Mulinka and P. Casas, “Stream-based Machine Learning for Network Security and 

Anomaly Detection,” in Proceedings of the 2018 Workshop on Big Data Analytics and 

Machine Learning for Data Communication Networks  - Big-DAMA ’18, 2018, pp. 1–7. 

[37]       S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time anomaly 

detection for streaming data,” Neurocomputing, vol. 262, pp. 134–147, Nov. 2017. 

[38]       T. Qin, X. Guan, W. Li, P. Wang, and Q. Huang, “Monitoring abnormal network 

traffic based on blind source separation approach,” Journal of Network and Computer 

Applications, vol. 34, no. 5, pp. 1732–1742, Sep. 2011. 

[39]       P. Casas, F. Soro, J. Vanerio, G. Settanni, and A. D’Alconzo, “Network security and 

anomaly detection with Big-DAMA, a big data analytics framework,” in Proceedings 

of the 2017 IEEE 6th International Conference on Cloud Networking, CloudNet 2017, 2017. 

[40]       M. Mdini, A. Blanc, G. Simon, J. Barotin, and J. Lecoeuvre, “Monitoring the network 

monitoring system: Anomaly Detection using pattern recognition,” in 2017 IFIP/IEEE 

Symposium on Integrated Network and Service Management (IM), 2017, pp. 983–986. 

[41]       B. Aaron, D. E. Tamir, N. D. Rishe, and A. Kandel, “Dynamic Incremental K-means 

Clustering,” in 2014 International Conference on Computational Science and Computational 

Intelligence, 2014, pp. 308–313. 

[42]       E. Bigdeli, M. Mohammadi, B. Raahemi, and S. Matwin, “Incremental cluster 

updating using Gaussian mixture model,” in Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics), 2015, vol. 9091, pp. 264–272. 

[43]       “Messaging that just works — RabbitMQ.” [Online]. Available: 

https://www.rabbitmq.com/. [Accessed: 05-Jan-2020]. 

[44]       “Protocol Buffers  |  Google Developers.” [Online]. Available: 

https://developers.google.com/protocol-buffers. [Accessed: 05-Jan-2020]. 

[45]       “Introduction - Libsodium documentation.” [Online]. Available: 

https://libsodium.gitbook.io/doc/. [Accessed: 31-Dec-2019]. 

[46]       “Home - Open Containers Initiative.” [Online]. Available: 

https://www.opencontainers.org/. [Accessed: 05-Jan-2020]. 

[47]       “Production-Grade Container Orchestration - Kubernetes.” [Online]. Available: 

https://kubernetes.io/. [Accessed: 05-Jan-2020]. 

[48]       “minikube.” [Online]. Available: https://minikube.sigs.k8s.io/. [Accessed: 05-Jan-

2020]. 

[49]       “Setup — Graylog 3.1.0 documentation.” [Online]. Available: 

https://docs.graylog.org/en/3.1/pages/auditlog/setup.html. [Accessed: 05-Jan-2020]. 

[50]       “Protocol Buffers  |  Google Developers.” [Online]. Available: 

https://developers.google.com/protocol-buffers. [Accessed: 31-Dec-2019]. 



0 
 

80 

[51]       J. Zhu et al., “Tools and benchmarks for automated log parsing,” Proceedings of the 

41st International Conference on Software Engineering: Software Engineering in Practice, 

pp. 121–130, 2019. 

[52]       M. Mizutani, “Incremental mining of system log format,” in Proceedings - IEEE 10th 

International Conference on Services Computing, SCC 2013, 2013, pp. 595–602. 

[53]       M. Du and F. Li, “Spell: Streaming Parsing of System Event Logs,” in 2016 IEEE 16th 

International Conference on Data Mining (ICDM), 2016, pp. 859–864. 

[54]       P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An Online Log Parsing Approach 

with Fixed Depth Tree,” in 2017 IEEE International Conference on Web Services (ICWS), 

2017, pp. 33–40. 

[55]       N. Marz and J. (James O. ) Warren, Big data : principles and best practices of scalable real-

time data systems. . 

[56]       P. Yang, C.-J. Hsieh, and J.-L. Wang, “History PCA: A New Algorithm for Streaming 

PCA,” Feb. 2018. 

[57]       M. Grabowska and W. Kotłowski, “Online principal component analysis for 

evolving data streams,” in Communications in Computer and Information Science, 2018, 

vol. 935, pp. 130–137. 

[58]       N. Marz and J. (James O. ) Warren, Big data : principles and best practices of scalable real-

time data systems. . 

[59]       Y. Yamato, H. Kumazaki, and Y. Fukumoto, “Proposal of Lambda Architecture 

Adoption for Real Time Predictive Maintenance,” in 2016 Fourth International 

Symposium on Computing and Networking (CANDAR), 2016, pp. 713–715. 

[60]       “Apache SparkTM - Unified Analytics Engine for Big Data.” [Online]. Available: 

https://spark.apache.org/. [Accessed: 05-Jan-2020]. 

[61]       “Spark Streaming | Apache Spark.” [Online]. Available: 

https://spark.apache.org/streaming/. [Accessed: 05-Jan-2020]. 

[62]       “Apache Flink: Stateful Computations over Data Streams.” [Online]. Available: 

https://flink.apache.org/. [Accessed: 05-Jan-2020]. 

[63]       “GitHub - Stratio/spark-rabbitmq: RabbitMQ Spark Streaming receiver.” [Online]. 

Available: https://github.com/Stratio/spark-rabbitmq. [Accessed: 05-Jan-2020]. 

[64]       “Apache Cassandra.” [Online]. Available: https://cassandra.apache.org/. [Accessed: 

05-Jan-2020]. 

[65]       “NaCl: Networking and Cryptography library.” [Online]. Available: 

https://nacl.cr.yp.to/. [Accessed: 19-Jan-2020]. 

[66]       “LogPAI - Log Analytics Powered by AI.” [Online]. Available: 

http://www.logpai.com/. [Accessed: 12-Jan-2020]. 

  



 

 81 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Appendix





 

 83 

Appendix A  Workplan 

This appendix presents the expected and real workplan followed during this internship. As 

mentioned in the previous sections, during this thesis it was necessary to manage two 

different set of goals, the goals set for the Risk Management Module and the milestones of 

the PoSeID-on project. These goals were not always in alignment, which led to the need of 

prioritize some task in the determent of others. This will be detailed in this appendix, in 

addition to challenges found which influenced the work developed and an analysis of the 

expected workplan versus the real workplan. 

 

PoSeID-on Milestones 
The PoSeID-on project has a strict set of milestones which needed to be taken in 

consideration while developing this thesis. The milestones that directly influenced this thesis 

are the following, as also seen in Section 5.4 : 

 

Activities Milestones Description 

D2.2 - Deliverable 

Submission 

31/12/2019 PoSeID-on System 

Requirements and 

Architecture Design  

Exploratory Studies & 

Detailed Design 

28/02/2019 Detailed RMM design and 

implementation plan 

RMM Implementation - 

Interim 

31/07/2019 Initial module 

implementation  

D4.3 - Deliverable 

Submission 

31/07/2019 Report on RMM and PDA 

interim implementation 

1st Integrated Platform 

Evaluation 

30/09/2019 Preliminary prototype 

ready to be deployed in the 

pilots 

Table A.1 PoSeID-on Milestones (Reminder) 

During the first semester there was only one milestone directly influencing the Risk 

Management Module, which was the delivery of D2.2 the document specifying the 

architectural description and requirements. UC was the leader of this task and the majority 

of the work of compiling information and writing of this deliverable was designated to the 

author of this work, as the team member most involved the technical part of the project at 

that time, due to being the developer for the RMM.  

During the second semester the milestones aligned with this thesis’s goals as the task being 

developed was task T4.2, the development and reporting of the interim version of the RMM. 

Implementation was to continue till the end of June when focus changed into writing 

deliverable D4.3, Risk Management Module and Personal Data Analyzer Interim 

Implementation, containing the description of the interim version of the RMM and the PDA. 
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What deviated from the thesis goals during the second semester was the necessity of having 

an integrated platform as soon as possible before September, in order to accommodate the 

interim platform analysis in the end of September and allow at least a month of integrated 

development using a staging environment. With this, priorities had to switch from 

developing the anomaly detection pipeline to focusing on implementing the communication 

protocol and deploying the module on the staging environment. 

First Semester 

The workplan for the first semester, as seen in Figure 1.1, did not take in account the time 

necessary to participate in the PoSeID-on project related activities such as the participation 

in the discussion of system architecture and requirements and writing of the respective 

document. 

 

Figure A.1 First Semester Workplan 

Furthermore, the deployment and testing of a permissioned blockchain solution using 

Hyperledger was also not in the plan (Task T1.4 in Figure A.2), as it was something that 

stemmed from the discussion of possible frameworks to be used as the permissioned 

blockchain choice in PoSeID-on. For the previous reasons, in addition to the necessity to 

define clearly the state of the whole PoSeID-on platform, as the initial concepts were very 

open-ended, resulted in a delay of the anomaly detection and feature extraction study, which 

had to be delayed to the second semester. 
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85 

 

Figure A.2 First Semester Effective Work 

Initial implementation of the module was also postponed to the second semester, as 

development tasks for PoSeID-on platform as a whole did not start until mid-February. 

Figure A.2 shows the effective schedule for the first semester, including the tasks that were 

not account for in the initial planning. 

 

Second Semester 
For the second semester, the workplan can be seen in Figure A.3. During the beginning of 

the second semester it was necessary to determine what would be the integration constraints 

and RMM data sources as it was still not clear what information each module would be 

providing to the RMM and what technology stack would be used to do so. This was 

necessary in order to start implementing the module and to explore the possibilities for 

feature extraction. Afterwards, the expected work was to configure the chosen frameworks 

and start the implementation of the anomaly detection pipeline based on that information, 

followed by the writing of deliverable D4.3. Once implementation of the anomaly detection 

pipeline was complete as well as the definition of the dataset for testing, validation of the 

module and writing of this thesis were the following tasks. 
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Figure A.3 Second Semester Workplan 

Progress did not go exactly as expected, as can be seen in Figure A.4. Since priorities shifted 

to implementing the integration aspects of the module, more time was spent on 

configuration and implementation of the message protocol and respective frameworks. 

Deployment stack such as Minikube, Kubernetes and Docker also needed to be configured 

and studied. Another obstacle was the switch of the initial thought out choice for the 

messaging system, from Apache Kafka to RabbitMQ, which created some difficulties while 

trying to connect Spark Streaming to the message bus and with data processing as explained 

in Section 5.4  resulting in longer configuration and implementation times for the spark 

connector. 
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Figure A.4 Second Semester Effective Work 

Development of the feature extraction step of the module also took more time than expected 

as the algorithm chosen in order to create a feature vector from system log messages was not 

available in Java. In addition, in order to allow for a horizontally scalable RMM, this 

algorithm had to be adjusted to work with Spark Streaming and allow for the re-use and 

sharing of the parsing tree used by the algorithm. Participation in several PoSeID-on related 

activities as seen in task 13.1 to 13.5 were also not accounted for, which resulted in less time 

to finish the anomaly detection implementation. These activities were necessary, thought, as 

an integrated platform was the priority at the time and effort also resulted in the articles 

accepted for publication. 

 

Extra Semester 
As result of the project priority changes and the delays in integration, the author made the 

decision of delaying the delivery of this work for an extra semester, both to accomplish the 

objectives decided upon for this thesis fully before delivery but also to contribute to the 
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project milestones set for September and consolidate the integration works without 

neglecting either of the responsibilities. This resulted in the following workplan, for the 

effective work accomplished: 

 

Figure A.5 Extra Semester Effective Work 
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Appendix B  Storage Table Structure  

This appendix presents the table structure for the stored data produced by the Risk 

Management Module and the description of the purpose of each field. 

 

Key Type Column Description 

Partition Key  Instance ID ID of the RMM instance that generated this entry 

Clustering Key Window ID Unique ID of this window of data 

Clustering Key Window Time Time of processing 

Clustering Key Grouping ID ID used for further windowing or grouping of logs, 

Such as Data Subject, Data Processor or Module ID 

 Feature 

Vector 

The normalized feature vector that originated this 

result 

Clustering Key Label The label of the result, either Anomaly or Normal 

 Entity IDs List of ID’s involved in this log window. 

Clustering Key Algorithm String describing the approach used for this result. 

 Algorithm 

Parameters 

List of “Key:Value” strings for the initialization 

parameters of the algorithm 

 Result 

Parameters 

List of “Key:Value” strings used to save relevant 

information regarding the result, such as the rational 

leading to the result (e.g. if an anomaly was considered 

as such due to the cluster size of the predicted cluster, 

or due to Z-score being over the threshold) 

Table B.1 Results Table 

Key Type Column Description 

Partition Key  Instance ID ID of the RMM instance that generated this entry 

Clustering Key Window ID Unique ID of this window of data 

Clustering Key Window Time Time of processing 

Clustering Key Grouping ID ID used for further windowing or grouping of logs, 

Such as Data Subject, Data Processor or Module ID 

 Total Events Total count of events, or logs in this window 

 Event Vector The non-normalized feature vector 

 Event Vector 

Schema 

The feature vector schema at the time of the result. 

Each index contains a template/event ID, or a 

placeholder flag, to zero-pad the vector to a fixed size 

 Entity IDs List of ID’s involved in this log window 
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Table B.2 Feature Vector Table 

Key Type Column Description 

Partition Key  Instance ID ID of the RMM instance that generated this entry 

Clustering Key Event ID Unique ID generated for this event 

 Event 

Template 

Template generated by Drain. This template is 

updated as Drain parses more logs but the table entry 

and unique ID is maintained. 

Table B.3 Template Table 

Key Type Column Description 

Partition Key  Instance ID ID of the RMM instance that generated this entry 

Clustering Key Window ID Unique ID of this window of data 

Clustering Key Window Time Time of processing 

Clustering Key Message ID Unique ID of the parsed log. 

 Process ID ID of the process generating the log. 

 Severity Syslog level extracted from the log 

Clustering Key Log 

Timestamp 

Timestamp extracted from the log 

 Parameter 

List 

List of parameters extracted from the log (variable 

parts of the log not included in the main structure 

defined previously in Drain) 

Table B.4 Parsed Log Table 


