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Abstract

In recent years, Machine Learning (ML) went through a renascence due to
improvements in computing systems and computer memories. The internet also
played an important role, by providing access to and aggregating large amounts
of data. As this technology evolves, optimizations to its processes are receiving
more attention. Traditionally, machine learning models are intense in both
memory and computations during training and inference.

An optimization technique used in ML is focused on the inference phase.
Models are typically trained in 32-bits, but instead of performing inference in
32-bits (operations and storage), it can be quantized to a format that uses fewer
bits - this is called Post-training quantization.

Usually, the fewer bits being stored and moved around in a computing sys-
tem, the less energy is consumed, thus faster computations are performed, re-
sulting in a more efficient system, given equivalent tasks.

The goal of this study is to compare two 8-bit Post-training Quantization
techniques by using two different basic models and exploit both their poten-
tials and caveats. Both models are trained to classify handwritten numbers,
the first one is focused on Fully Connected layers while the second focuses on
Convolutional Layers.

One of the techniques examined adopts a novel numeric representation sys-
tem and this work also explores a model to understand how the system accumu-
lates error. In short, it is an attempt at understanding which method provides
a more efficient and practical solution. In both case studies, TensorFlow Lite is
concluded to be the best Post-training Quantization solution.

Keywords Machine Learning, Post-Training Quantization, DeepFloat, Systolic-
array, Neural Networks





Resumo

Recentemente, Machine Learning (ML) passou por um peŕıodo de renascimento
devido à melhoria dos sistemas de computação e memórias dos computadores.
A internet também teve um papel fundamental, permitindo o acesso e agre-
gando enormes quantidades de dados. À medida que a tecnologia evolui, as
optimizações feitas aos seus processos têm vindo a obter destaque. Tradicional-
mente, os modelos de machine learning são bastante pesados em termos de
memória e computações durante as fases de inferência e treino.

Uma técnica de otimização utilizada em ML é focada na fase de inferência.
Os modelos são tipicamente treinados em 32-bits, mas em vez de se realizar
a inferência em 32-bits (operações e gravação), esta pode ser quantizada para
um formato que utiliza menos bits - um processo designado por Quantização
pós-treino.

Tipicamente, quanto menos bits forem guardados e movimentados num sis-
tema, menor será a energia consumida e mais rápidas serão as computações
implementadas, resultando num sistema mais eficiente, dado o mesmo tipo de
tarefas.

O objetivo deste estudo é comparar duas técnicas de quantização pós-treino
de 8 bits utilizando dois modelos básicos diferentes, explorando os seus poten-
ciais e as suas ressalvas. Ambos os modelos foram treinados para classificar
algarismos escritos manualmente, em que o primeiro modelo é focado em ca-
madas Fully Connected e o segundo é focado em camadas Convolutional.

Uma das técnicas estudadas utiliza um sistema de representação numérica
novo e este trabalho também explora um modelo para compreender como este
sistema acumula erro. Em suma, é uma tentativa para perceber qual dos
métodos fornece uma solução mais eficaz e prática. Em ambos os casos de
estudo, conclui-se que o método do TensorFlow Lite é a melhor para realizar
Quantização Pós-treino.

Palavras-chave Machine Learning, Quantização Pós-Treino, DeepFloat, Array
Sistólico, Redes Neuronais
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1 Introduction

Machine Learning models typically perform training and inference in 32-bits
Single-precision floating-point. Recently, new number representation schemes
have been proposed that can be employed to implement computing operations
and storage for inference by using fewer bits - this is called Post-training Quan-
tization [1].

In [6], a Post-training Quantization technique inspired by Posits (or Univer-
sal Numbers Type III) is proposed. It promised a method without retraining
with small accuracy drops (from 32-bit float to 8-bit ”DeepFloat”). This ap-
proach has also been heavily focused on hardware optimizations for machine
learning and neural networks.

Other post-training quantization solutions do exist, for example Google’s
TensorFlow Lite. By implementing this method, the model operations and
storage can also be represented using 8-bits.

Excluding the computing system architectures, the optimizations provided
by the reduction of data representation size are virtually the same for both
methods. This is the main argument to justify the importance of understanding
which one of the techniques offered is a better solution, in terms of achieving
a lower accuracy degradation, or in which situation each method has its best
performance.

1.1 Motivation

Machine Learning (ML) is not new. In recent years the advances in this field
have been considerable due to improvements in computer memories and com-
puting systems [18].

As technology matures, faster and better solutions are required to continue
further innovation. Currently, breakthroughs in this field are achieved by using
huge data-centers and time-consuming processes that only a few have access to
[18]. Recently, the paradigm has undergone continuous evolution due to open-
source initiatives and competitive cloud services, that provide reduced prices
[18].

Nevertheless, optimizing the machine learning pipeline is of great importance
as it saves energy, development costs and time. Improvements can be made
regarding development tools, and computing engines, as well as in the hardware
infrastructure.

In essence, more optimized machine learning models and pipelines provide
equivalent output results using more efficient processes.

1.2 Objectives

The aim of this study is to compare two post-training quantization techniques:
DeepFloat and TensorFlow Lite, by using two models and the same dataset. The
goal is to understand which method can provide a more efficient and practical
solution, based on the obtained results.
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1.3 Outline

The starting point of this work were the materials provided alongside [6], that
describe the computing system used by DeepFloat in a conceptual and hardware
dimension (See Annex A). The implementation resources were available on a
GitHub repository.

Chapter 2 (Machine Learning Pipeline) shall introduce the topics and concepts
required to understand the experimental setup and results obtained.

In order to develop a competitive and attractive deep learning solution,
the hardware could become a bottleneck, so optimized hardware solutions were
preferred. Because the previous work [6] provided a hardware-focused process,
this thesis shall use the systolic array provided to implement part of its solution.

The experimental setup will be described in Chapter 3 (DeepFloat vs Tensor-
Flow Lite). Two neural networks were chosen to be trained and to be quantized
using DeepFloat and TensorFlow Lite. The quantization process and tools will
be described in this section.

The results of the experiments shall be shown and analyzed in Chapter 4 (Post-
Training Model Quantization Results). The main metric used to gauge results
was model accuracy. Measurements were taken before and after the quantization
process and then compared. The accuracy degradation of the DeepFloat method
can be described as an error accumulation and this analysis will be further
discussed in this section.

Chapter 5 (Conclusion) will reflect on the obtained the experimental results:
DeepFloat quantization and TensorFlow Lite.

The last Section 5.1 (Future Work) states future experiments and studies that
could be performed following this study, in order to improve the results displayed
here.
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2 Machine Learning Pipeline

2.1 Deep Learning

Deep Learning (DL), a sub-field of Machine Learning, has gained considerable
attention in the past few years [19]. This can be attributed to the publication
of several papers, achieving state-of-the-art results on ImageNet [7], an object
recognition challenge.

Achievements like this have been taking place in areas such as image recog-
nition, speech recognition, and language translation as well as other Artificial
Intelligence (AI) applications [19].

2.1.1 Neural Networks

...

......

Inputs FC Outputs

Figure 1: Neural Network Diagram

Diagram representing a Neural Network, depicting a Fully Connected layer
and how it connects the network’s inputs to the outputs.

Neural Networks comprise an entire class of Machine Learning architectures [14]
(See Figure 1). The networks were inspired by the human brain and how each
neuron is connected to the next [14]. They are usually designed using layers
and activations. A layer provides a specific operation to its inputs and produces
an output, becoming the next layer’s input. A layer output can sometimes
go through an activation function where some manipulation occurs, as it will
be shown in section 2.1.2 (Activation Functions). Non-linear properties are
frequently introduced to the network by this function [13]. The following are
examples of activation functions: sigmoid, tanh, softmax and ReLU (Please see
Table 1 for more details).
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2.1.2 Layers

Neural Networks are best described by their layers. Each layer can be defined
by an operation or group of operations. These are usually stacked and grouped
differently, depending on the network structure. Each type of layer follows a
specific strategy. On occasion, the same type of layers will be shared by different
networks, but these are used in different configurations, therefore achieving
different results [8].

Two types of layers are Fully Connected (FC) layers and Convolutional (CONV)
layers. When a network uses Convolutional (CONV) layers it is commonly
referred to as Convolutional Neural Network (CNN) and these are typically
employed in image classification problems [14].

FC Layer

Fully Connected layers connect the inputs from one layer to every activation
unit of the next one. These layers can be describe as performing O = I×W +B
(O - Outputs; I - Inputs; W - Weights; B - Bias). The Weights and Bias are
the trainable parameters. This equation can be manipulated to be performed
as single product. A row of ones is added to the Input matrix and the Weight
matrix is concatenated with the Bias matrix (O = IOnes ×WB ).

CONV Layer

Convolution Layers differ from the FC layers because they can only connect
part of their inputs to the activation units, rather than all the inputs. Instead
of Weights, CONV layers have filters or kernels. The way that the Filter slides
over the inputs is defined by the Stride. The CONV layer is computed by
matching the Filter with a region of the inputs, performing element-wise matrix
multiplication and then adding the Bias factor [F - Filter, S - Stride, B - Bias].
After repeating this process for the entirety of the input matrix, an output is
computed and it is sometimes referred to as a feature map.

Using a process called im2col, the CONV layer can resemble a FC layer, and
the same process of converting it to a single matrix multiplication can be ap-
plied. During a CONV layer computation, pairs between the layer inputs and
the convolution filter are created. im2col focus on these pairs, instead of com-
puting them, the inputs can be re-arranged in a new input matrix that allows
the computation to be performed as a single matrix multiplication, instead of
sequential element-wise matrix multiplications by the same filter (see Algorithm
1 in Section 3.3.2).

In CONV Layers, the Filter and the Bias matrices hold the trainable pa-
rameters.

Activation Functions

Activation functions provide an operation to a layer output [13]. It adds a non-
-linear transformation to the layer. They are sometimes used to ”turn some
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neurons off”, i.e. to transform the output of a layer in a way that highlights
some information and reduces the impact of another.
The models studied by this work have implemented ReLU and softmax acti-
vations. In Table 1 some activation functions examples are provided.

sigmoid 1
1+e−x

softmax exi∑
j exj

tanh tanh(x)
ReLU max(0, x)
Leaky ReLU max(0.1x, x)

Table 1: Activation Function Examples

2.1.3 Training & Inference

In machine learning, there is usually a model that represents a set of operations
and their parameters, and data, that constitutes the model inputs. The model is
trained to fit that data, that is, to apply a process to data that produces desired
outputs, for instance, label a group of images, predict the weather, denoise an
image, etc. [17]. The process can be divided into two steps, the training phase,
and the inference phase [17].

During the training phase, most of the times, there is a group of data, that
is labeled, and divided into subgroups - training and testing. A given model
is tweaked iteration by iteration using the training data so that the output
produced by the model predicts the label of the testing data. The underlying
concept of such process is to produce a model by showing it new data within
a perceivable similar context, so that the accuracy is the same [17]. There are
models capable of dealing with unlabeled data.

The inference phase occurs when a model is shown data that was not used to
perform training, and it corresponds to computations on the testing subgroup
or on new data.

Inference performed using the test subgroup is sometimes referred to as the
testing phase. For example, by training a model using handwritten digits, the
rate at which a model correctly predicts a digit should be identical during the
testing phase and inference phase.

The training methodologies can vary. Some of them include observing the
performance of a new generation, that is a similar model with its parameters
modified, one at a time, while others keep a record of several iterations of
the models and compare them to see which one is performing best [17]. Other
methodologies may employ subgroups of the training data one at the time, while
the entire training data is used by others, in order to modify the model [17].

2.1.4 Datasets

Datasets are a useful resource that machine learning engineers have at their
disposal. They correspond to large groups of labeled data that can be used to
train and test models. For example, datasets can be labeled images, weather
logs, audio files and its transcription, etc [17]. They allow the standardization of
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the training and testing processes when applied to the development of different
models. This allows for model accuracy of different models to be compared
using the same dataset [17].

The test subgroup is a subset of the dataset that is not utilized during the
training process of a model. It differs from the training group because it is
used to measure the performance of the model. By dividing the dataset into
subgroups, problems such as overfit can be mitigated [17]. Overfit occurs when a
model becomes too specialized in the training samples, thus unable to maintain
its performance when new similar data is given for inference [17].

An example of a dataset is MNIST [9]. It is a collection of labeled hand-
written digits, has a training set of 60.000 examples, and a test set of 10.000
samples. This dataset is usually used to train models that solve classification
problems and it is used for this study.

2.1.5 Accuracy

Accuracy rate or accuracy is a very important metric for classification problems
Since it measures the relation between correct predictions that a trained or
in-training model has, and the labeled inputs regarding a specific dataset. It
reflects the rate of correct precitions a model can produce in relation to its
wrong ones, when referring to classification models and problems.

For the same dataset and classification problem, a model with higher accu-
racy is preferred because it may have a chance to produce a correct prediction
more often.
When applying optimization processes to models so to improve their computa-
tion performance, accuracy degradation may occur, e.g. Post-training Quanti-
zation, pruning, drop-out [15]. It is best to choose an optimization process that
has lower accuracy drops, in order to preserve the original model capabilities.

2.1.6 Parameters

Some model layers perform operations that require parameters such as weights
and biases when referring to FC layers, and filters when referring to CONV
layers. These layers’ parameters are decided or adjusted during the training
phase. However, they need to be assigned at the definition stage of the model.
Usually, they are initialized randomly and changed during the training process
[17].

2.2 Development Frameworks

Machine Learning frameworks take advantage of the fact that most of the setup
and development processes between machine learning problems are the same.
Some of them provide different development platforms and technologies, while
others provide special inspection tools [15].

2.2.1 TensorFlow

TensorFlow, a development framework for machine learning, enables developers
to create, study and reuse machine learning models. It has a strong community
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and a vast library of intuitive examples. Python, a programming language, is
supported by TensorFlow, lowering the implementation complexity and allows
the developer to integrate other tools available within the Python ecosystem.
Numpy and Matplotlib are both Python libraries and together they provide a
Matlab-like experience.

TensorFlow also offers tools that are designed for specific hardware setups.
They translate the model into new operations either to run or to be trained in
distributed systems or in other platforms.

2.3 Machine Learning Computing Systems

Machine Learning, as its name implies, needs a computation system to operate.
Depending on the application, several solutions are available, which combine
software and hardware. Most of the times, the software implementation needs
to be optimized based on the available hardware [12].

Regarding hardware, like most computer science challenges, a Central Pro-
cess Unit (CPU) system is the most accessible option, but it is also the most
inefficient at performing this task. A CPU+GPU hybrid system shows signifi-
cant improvement and it is the industry’s standard for these types of problems
[12]. Better systems can be developed using more specific hardware, such as
FPGAs, that use tailored fitted implementations [3]. The most efficient solu-
tions are implemented using ASICs, and they can be found mainly in cloud
applications, IoT devices, and mobile phones [12].

2.3.1 CPU+GPU

CPU+GPU setup is the most common hardware implementation [12]. This ap-
proach can be found in conventional personal machines, servers, mobile phones
and other types of applications. By using a GPU, better and faster results
can be achieved, compared to a conventional CPU because they exploit the
parallelization possibilities of problems of this nature.

2.3.2 FPGA

Some of the most efficient systems for accelerating machine learning compu-
tations are implemented using FPGAs [3]. Some important points about the
FPGAs solutions are the following:

• FPGAs provide design flexibility and reconfigurability which cannot be
achieved with ASICs [3].

• FPGA implementations can be highly specialized to a certain model’s
needs, providing an advantage compared to the CPU+GPU.

• FPGA implementations imply lower implementation prices upfront when
compared to ASICs but higher than GPU.

• There are cloud services available that offer competitive options using this
technology.
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2.3.3 ASICs (TPU and other AI accelerators)

Tensor Processing Unit or TPU is developed by Google. It is an ASIC designed
to run Machine Learning models on the cloud [15].

Some mobile phones and specific applications already use a custom System
on a Chip (SoC) for AI, instead of the traditional CPU+GPU configuration, in
order to save energy and optimize the pipeline.

2.4 Machine Learning Optimizations

Due to the complexity regarding computation and inefficiency of the methods
used in machine learning, a priority at this moment is to optimize them. Several
stages of development can be tackled to improve efficiency, namely:

• Training: Since the training algorithms affect model performance, some
methods can achieve better results for the same model and dataset.

• Model: The model architecture affects its potential. By choosing better
models or redefining them, the same machine learning problem can be
solved more efficiently.

• Inference: The inference phase can be optimized by reducing the model’s
size or redefining the model. Alternatively, optimization can be achieved
with the employment of more efficient and faster hardware.

2.5 Post-Training Quantization

An optimized computing system strives to get the same output as before (or an
equivalent one) requiring less power while being faster.

This achievement can be obtained with better fabrication technologies, and
better design techniques.

By using more bits to represent a number in a digital system, the numerical
precision is increased. However, this can affect drastically the performance
(power, throughput) of the system when compared to an equivalent one that
uses fewer bits. There is a trade-off between the number of bits that a system
uses and its performance.

Machine Learning Models are typically trained using a 32-bit single-precision
floating-point format to represent numbers. It has been shown that by using
higher floating-point representation, some training methods and algorithms con-
verge better [15].

However, after a model has been trained, the higher precision provided by
that representation may be unnecessary, since a lower bit model can achieve
similar results to the 32-bit, using fewer bits [15].

The process of taking a model and changing the number of bits or its codi-
fication after it has been trained is called post-training quantization [15].

A valid way to optimize machine learning inference is by quantizing the
model to a lower-bit representation. The model’s size is by definition reduced
and the computations during inference are also optimized because fewer bits
are being moved/stored. With fewer bits per number, smaller memories can
be used, and so can smaller data buses, etc. By using smaller-bit models, the
inference hardware can also be optimized.
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Several post-training techniques have been proposed and some machine learn-
ing frameworks also provide solutions.

2.5.1 TensorFlow Lite

TensorFlow Lite is an addition to the TensorFlow ecosystem (See 2.2.1 Ten-
sorFlow), that allows a model to be transposed to a lower-bit representation,
therefore enabling it to be easily used in low-power devices and devices that use
smaller data types. Some computing systems only support integer operations
and it is also used to port a model to those cases. TensorFlow can aid during
training to optimize the parameters and models for those devices. However, it
can also be used for post-training quantization.

2.5.2 Posit & DeepFloat

Unums or Universal Numbers are a binary representation system for real num-
bers that also encompass arithmetic operations. They were proposed by John
Gustafson as an alternative to IEEE 754 system [5] (See Figure 2). There are
different types of Unums. Type III includes Posits, they are hardware optimized,
being able, for instance, to maintain the same bit size.

Posits have 4 main parts: a sign bit, a regime, an exponent and a fraction.
All parts have a variable number of bits excluding the sign bit. Their variation
is defined by < n, es >, n being the number of bits and es the maximum number
of bits dedicated to the exponent (See Annex B for its specification).

Figure 2: 16-bit floating-point Decoding example

Source: Making floating point math highly efficient for AI hardware [5]
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Figure 3: DeepFloat Decoding example

Source: Making floating-point math highly efficient for AI hardware [5]

8-bit (8, 1, 5, 5, 7)log or DeepFloat is a number format and computing method
proposed by Jeff Johnson in [6]. In this paper, it is suggested that this repre-
sentation can be a ”drop-in replacement for IEEE 754 binary32 single-precision
floating-point via round to nearest even for CNN inference on ResNet-50 on
ImageNet” [6].

This format uses a posit-like encoding. The main difference between posit
(8,1) and DeepFloat is that the faction part in the DeepFloat representation
corresponds to the log2(x) of the equivalent Posit number (See Figure 3). By
following the techniques described in this paper, it is suggested that one can
perform inference using a model, thus achieving similar accuracy results to the
original one, while using less power and area. To do so, the computing engine
or AI accelerator implements a special processing element that performs the
multiply-accumulate operation using a sequence of special techniques - ELMA.

ELMA takes advantage of the complexity of multiplications versus additions
and performs the multiplication as an addition because the fraction part of the
number is a log number. The additions and operations of accumulation are
stored using 16 bits so to preserve precision. The mapping between linear-to-
log and log-to-linear is performed using LUTs and they have a fixed error (See
Figure 4).

By transposing a model from a Float representation system to (8, 1, 5,
5, 7)log (DeepFloat), one is post-training quantizing the model. In the afore
mentioned paper, this representation was not used to train the model.

In order to quantize a model using DeepFloat, following this method, one
needs to take a pre-trained model and perform direct translation of the original
32-bit parameters to DeepFloat. For inference, the same layer operations must
be computed, using the ELMA system instead.

Despite being similar representation systems, DeepFloat does not follow all
Posit specifications. It is noteworthy, that DeepFloat can be perceived as a
Posit version because it uses a similar codification structure that is computed
differently with an expected similar behavior. Both versions have a higher con-
centration of represented values surrounding zero and most machine learning
models work in this region of the spectrum.
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Figure 4: ELMA diagram

DeepFloat Processing Element, Perform the operation of
Multiply–accumulate. The multiplication is performed in the log domain. The

Addition is performed in the linear domain. Source: Making floating-point
math highly efficient for AI hardware [5]
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3 DeepFloat vs TensorFlow Lite

A novel way of performing Post-training quantization of Machine Learning mod-
els is proposed in [6]. The number system itself is inspired by Unums and it is
referred to as DeepFloat or (8,1,5,5,7)log. It also proposes this new arithmetic
architecture denominated Exact Log-linear Multiply-Add (ELMA).

The author in [6] indicates, that both strategies in conjunction offer a solu-
tion that 1) provides low accuracy drops, 2) has a seamless integration with the
original float 32-bit model 3) offers a low-power and low-area or equivalent ones
to a 8-bit integer architecture. Given that DeepFloat does not require a quan-
tization process, the numerical system’s transposition is itself the quantization
process.

The previously mentioned study performs the power and area analysis us-
ing a systolic array architecture that uses the ELMA processing elements and
implements the accuracy study using the addition and multiplication systems
inside ELMA. These elements are programmed in an FPGA and used both as
a kernel and a backend to a Machine Learning Framework.

To explore this technology and improve upon the obtained results, an AI ac-
celerator that uses this architecture would facilitate the distribution and imple-
mentation of these systems. However, the performance of this technique needs
to be compared against other solutions in order to justify its implementation.

One of the objectives of the current work is to understand whether or not Deep-
Float is a good representation system to be used in an AI accelerator for infer-
ence. The said AI accelerator should also provide a better power performance
compared to traditional methods, as to justify its development. This type of
optimizations is hinted in previous research when using the DeepFloat method
[6]. Nonetheless, the accuracy degradation needs to be analyzed to justify the
efficiency gains.

Following the original research [6], DeepFloat shall be used as a drop-in
replacement for the 32-bit model, what constitutes a Post-Quantization process.

Two quantization processes shall be analyzed and compared: TensorFlow
Lite’s 8-bit integer quantization and DeepFloat’s 8-bit (8, 1, 5, 5, 7)log. If
the DeepFloat method provides worse results than the integer method, one
can consider that the integer method still holds good results, therefore the
DeepFloat approach may not bring forth a significant improvement that justifies
its development. If the opposite is verified, the accelerator’s development can be
justified and further models can be used with the accelerator, to further validate
the method. However, in order to implement the accelerator, a compiler and
a driver need to be developed as well, which may imply that undertaking such
efforts might not be justified.

The starting point of the evaluation method has been a model trained in
32-bits floating-point using Tensorflow. A compromise for not implementing a
full function accelerator to study this system is to use hardware simulations
for the main compute system. This allows a more efficient validation process,
since it proved to be faster and easier to iterate using software than hardware
designs. To do so, and to validate the hardware design process as well, hardware
simulations have aided the validation process.

The starting model shall be considered the original model and each quantized
model shall be regarded as derived from it, given each method applied.
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The development environment is composed by Tensorflow, the
accelerator and supports simulations that aid the validation process

Figure 5: Diagram to explain this work’s DeepFloat development process

The original model has been provided with a measurable accuracy and each
quantization process will affect it differently. All things consided, the accuracy
of a model is key and ideally the quantization method should strive to provide
the same accuracy as the original model. However, this is not always the case
and such degradation can enlighten on how to determine if a method is better
than other (See Figure 5).

3.1 Neural Networks Models: A Case Study

Neural Network (NN) and Deep Neural Networks (DNN) are layered and several
models can be designed using the same type of layers, although using different
sizes and placed differently.

The most common layers applied are Fully Connected (FC) and Convolu-
tional (CONV) layers. Almost every neural network model utilizes these layers,
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or the principles of these layers, and applies them in a specific configuration.
The models chosen to evaluate the post-training technique focus on these

types of layers. The results of a model are more dependent on to the way it was
trained and the dataset used, than the type of layers it is composed. However,
the type of operations will be same if the same layer is used by them. The
underlying belief backing this approach is that if these layers integrated into a
model degrade with a quantization method, they will also degrade when applied
to another model using the same method. Also, if a model uses some of these
layers, at least that section of the model will tend to degrade according to a
specific method. This approach regarding the given models is speculative but
one can contemplate if they represent the problem.

Bearing this in mind, the chosen models must present the following charac-
teristics:

• They must be shallow

• They must be from the TensorFlow documentation and community

• They must use a simple dataset

The two selected models have been denominated Model A and Model B, so to
ease their identification during this study. These were example models provided
by the tutorial documentation from TensorFlow [11]. They have been trained
using MNIST and this process has also been provided by example source code
[11]. The focus of this study has been the output of the training process, which
corresponds to two 32-bit models trained in 32-bit single precision floating point
(IEEE 754 standard).

The Model A is focused on the FC layers and Model B focus on CONV layers
to cover the more common types of layers used in NNs.

3.1.1 Model A

Model A is a linear-inference based model. It has been trained using the MNIST
dataset[9] and it is composed of one fully-connected layer (W [784, 10] b[10]
softmax). This model is an example model provided by the TensorFlow official
documentation [11] and it is trained for 2.000 iterations following the example
code (See Figure 6).

To implement the FC layers using the DeepFloat Post-training Quantization
technique, it has been subjected to some adaptation. The first step of this pro-
cess has been to extract both the 32-bit floating-point parameters from Model
A and 32-bit integer test-set from MNIST.

The (8,1,5,5,7)log model has been obtained by taking the original 32-bit float
model and mapping its parameters to (8,1,5,5,7)log, using an HDL module that
has been adapted from the source code provided from the DeepFloat GitHub
repository [6].

This module takes 32-bit Float inputs and maps them to a (8,1,5,5,7)log
representation. This operation has been performed by simulating the HDL
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module using Vivado R© Simulator - xsim. The inputs have also been mapped
to a (8,1,5,5,7)log representation.

The (8,1,5,5,7)log inference is performed using an adapted HDL systolic
array module that is available in the DeepFloat repository[6]. To do so, all of
the original model operations were decomposed in matrix multiplications.

For the numerical precision analysis, the model has been run in traditional
TensorFlow fashion, 32-bit float, and 8-bit (8,1,5,5,7)log. The inputs, the pa-
rameters, and the outputs were saved in both situations and then compared
against each-other.

For the classification analysis, the outputs from both models’ representations
were compared against the original labeled data and to each-other. The results
of the mentioned comparison are stated in Chapter 4.

The outputs, on the original model use softmax, and the model was trained
using this activation. During the quantization process, this activation has not
been used, however, the classification results have not been affected (See Section
2.1.2 for more information about softmax ).

Bias

Inputs

�

Weights

Bias

Outputs

Figure 6: Model A Diagram

(See Section 2.1.2 Layers - FC Layer)
Inputs [batch, 28 × 28 = 784]

Weights [784, 10] Bias[10]
Outputs [batch, 10]

3.1.2 Model B

The Model B has five layers, with the first tree being convolution layers ( L1:
X [batch, 28, 28, 1], stride 1, W1 [5, 5, 1, 4], B1 [4] ReLu; L2: Y1 [batch, 28,
28, 4], stride 2, W2 [5, 5, 4, 8], B2 [8] ReLu; L3: Y2 [batch, 14, 14, 8], stride
2, W3 [4, 4, 8, 12], Y3 [batch, 7, 7, 12] ⇒ reshaped to YY [batch, 7×7×12]
ReLu). The final two are fully connected layers (L4: W4 [7×7×12, 200], B4
[200]; L5: Y4 [batch, 200] ReLu; L5: W5 [200, 10], B5 [10], Y [batch, 10]
softmax). It has also been trained using the MNIST dataset[9]. This model is
also an example model provided by the TensorFlow official documentation[11]
and it was trained for 2.000 iterations following the example code (See Figure 7).
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Similarly to what succeeded with Model A, the first step of this process has
been to extract both the 32-bit floating-point parameters from Model B and
32-bit integer test-set from MNIST.

The adaptation process for the DeepFloat quantization for the FC layers is also
very similar to Model A but it uses a different approach for the CONV layers.

Layers 1, 2, 3, 4 have ReLu activations and the last one applies softmax.
In the DeepFloat version of Model B, the ReLu activations are implemented
but the softmax is excluded, as it occurred with Model A.

The numerical precision analysis and classification analysis are the same as in
Model A (See results on Chapter 4 Post-Training Model Quantization Results).

Input/L1 L2 L3 L4 L5

Convolution
Layer

Convolution
Layer

Convolution
Layer

Fully-Connected
Layer

Fully-Connected
Layer

(5x5)
nx28x28

(5x5x4)
nx28x28x4

(4x4x8)
nx14x14x8

nx7x7x12
nx588

nx200

Output

Output

nx10

Figure 7: Model B Diagram

Inspired by AlexNet Diagram

Both models can be considered small networks, and these types of networks
tend to be more affected by Post-training Quantization than deeper ones, since
smaller networks have higher accuracy degradation. By choosing these type of
models, one can avoid model resilience due to model plasticity and noise reduc-
tion capabilities, masking the accuracy degradation. By choosing a shallower
model, the idea is that the results are more focused on each quantization tech-
nique rather than on each model’s properties, allowing for a better comparison
study.

In both quantization processes, the same 32-bit floating-point model has been
quantized, i.e., the starting point for both methods takes on after the same
model and parameters. Although the implementation of both solutions is not
equivalent, the size of each model and activations before and after quantization
is the same in both situations, being the accuracy degradation the aim of this
study - one can achieve the same ”model compression”. Any gain obtained
by reducing the size of the model and feature maps is virtually the same in
both approaches, although in reality, this does not occur due to differences in
implementation architectures. The computation latency, resource utilization,
and computational architectures are not to be considered at the moment.
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3.2 TensorFlow Lite Implementation

The official description says that TensorFlow Lite is an open-source deep learn-
ing framework for on-device inference [15]. It integrates with TensorFlow very
easily and provides a post-training quantization feature.

As previously stated, this study aims to compare the optimization results
using 8-bit integers for inference and DeepFloat.

Figure 8: TensorFlow Lite Implementation Options

Source [15]

In order to implement the TensorFlow Lite post-quantizing 8-bit int ver-
sion, the tool has been configured so to optimize the model, using a repre-
sentative dataset, thus limiting its operation to 8-bit integers (See Figure 8).
The TensorFlow lite 8-bit quantization approximates floating point values using
real value = (int8 value− zero point)× scale [15].

The official documentation provides an example source code for this process.
That script has been adapted to use the MNIST dataset, Model A and Model
B. After the optimization process, the inference has been performed using the
test set and the results compared against the original 32-bit model.

3.3 DeepFloat Implementation

3.3.1 Posit & DeepFloat

Posit has a higher distribution concentration around zero. In neural networks,
given a set of parameters and activations, there is often a higher concentration
of values near zero. It can be perceived as a sign of a well-trained model.
These qualities reinforce the idea that DeepFloat should be able to provide
more resolution to computations in these areas, theoretically meaning, it has
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the potential of having more accuracy than traditional representation schemes,
given the same number of bits. These observations have been made for Posit.
The goal with DeepFloat is to have identical precision as in the 32-bit Float
model.

Figure 9: DeepFloat range distribution

It has been shown that some problems that arise during the Post-training
Quantization using Posit have cheap solutions.

One of them, as in other codification schemes, is underflow. For Posit and
DeepFloat this is common because most of the computations are being placed
around zero. To a lesser degree, overflow is also a problem. To solve such
problems, a scalar can be defined to expand or compress a set of numbers along
the DeepFloat range, minimizing the effects of overflow or underflow. In a given
layer, should the difference between the lowest and highest number be higher
than the range of the Posit number-set, there is a scalar that can be defined to
scale them to a representable size.

Figure 10: DeepFloat Multiplication underflow analysis using scalars

αa× αb = α2c
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If the activations of a layer are being targeted by underflow, and overflow is
nonexistent, that layer can also be scaled up.

The main problem arises when there is overflow and underflow at the same
time. For inference purposes, overflow is less present because the operations
are being performed more often around zero. When using scalars, the original
result can be obtained by multiplying the output by the inverse of the scalar.

Moreover, to implement Posit/DeepFloat to quantize operations, the origi-
nal model and the quantized model need to operare quite equally to minimize
errors. When a quantized model has either underflow or overflow problems, dif-
ferences are introduced. By using scalars, the underflow/overflow is overcome.
Nonetheless, complexity is being added to the inference process at the expense
of time and energy, what should be noteworthy.

Using Posit/DeepFloat for training, these problems would exist, though be-
coming less relevant because they are intrinsic to the model, due to the training
process.

3.3.2 Systolic Array Layer Decomposition

Figure 11 shows how Model A has been fed into the systolic array. Since the
systolic array performs matrix multiplications, the FC layers were converted into
matrix multiplications, instead of being performed as a matrix multiplication
and an addiction. In order to perform inference on the testing group, the inputs
have been grouped in a matrix with 32 columns, reducing to 313 the number of
multiplications, instead of 10.000 - ceil( test−set=10.000

systolic−size=32 ) = 313.

Inputs

Ones

Inputs

Ones

Zeros

Outputs

Bias

Weights
Zeros

Inputs

Ones

Zeros

Outputs
Zeros

Outputs

1, 2, ... 313 1, 2, ... 313

... ...

Figure 11: Model A DeepFloat implementation

FC Layer as a product

Model B is composed by CONV layers and to optimize its computations for
the systolic array, they are converted into products. Figure 12 shows how the
im2col transformation has been performed. The sliding window is overlaid and
captures a subsection so to create an input matrix, thus allowing the CONV
layer to be computed as a matrix multiplication. For this model, some output
matrices are bigger than 32 by 32, so the input matrices have been divided into
several smaller matrices and reconstructed at the end.
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Filter Inputa) b)

Figure 12: CONV Layer as a product

a) A window with the filter size is placed over the original layer input and the
overlapping section is stored in the new input matrix.

b) The sliding windows moves to the next section using stride

Algorithm 1: Im2Col Adaptation (CONV to FC)

Input: sizei, depth, stride, filtersize, layer
Result: Translated Input

pad = filterSize−stride
2

finalSize = ceil((sizei−filterSize+pad+floor(pad))
stride+1

result = ones((filterSize× filterSize, k, finalSize, finalSize))

halfF ilter = floor( filterSize
2 )

padDim = ceil(sizei+ pad+ floor(pad))

for k ← 0 to depth do
for ic ← stride to floor(padDim− pad) by stride do

for jc ← stride to floor(padDim− pad) by stride do
for i← −halfF ilter to filterSize− halfF ilter do

for j ← −halfF ilter to filterSize− halfF ilter do
result[ (j+halfFilter)*filterSize+(i+halfFilter), k,
floor( jc

2−1 ), floor( ic
2−1 )]

= layer[(jc + j) ∗ padDim+ (ic + i), k]
end

end

end

end

end
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3.3.3 HDL Simulation

While developing HDL, one has tools to aid the implementation process. This
technology is not compiled to be used in a CPU but its digital behavior can be
simulated using a testbench. A testbench is a special module that is designed
to produce stimuli for an HDL module, working both as a debug and testing
tool. It gives one insight about module behavior. The results from the use
of a testbench are known as simulations. After a module has been tested and
validated, a similar technique can be used but instead of validating and testing
the module, it aids in the development process of the rest of the system.

The original source-code from DeepFloat provides a systolic array that per-
forms matrix multiplication. For this work, the simulations have been used to
validate the model performance when using DeepFloat [6]. The systolic array is
simulated using a testbench - a special module that can feed and read outputs
from the systolic array. The inputs and outputs can be text files that function
as memories. By changing the text files, different matrix multiplications can be
defined. The systolic array is configured as 32 by 32 grid, in order to allow the
multiplication of matrices than are 32 by m and n by 32. This configuration
has been selected to allow a faster implementation of Model A, and it can be
considered to be a good trade-off regarding size and parallelization.

Model A and Model B have been simulated using the systolic array to per-
form all computations for the DeepFloat version of the quantized model, al-
lowing the inference accuracy to be measured without the development of an
accelerator architecture.

3.3.4 Simulation Setup

To simulate the HDL modules, it has been employed xsim, a tool provided along
Vivado by Xilinx. The HDL modules undergo an elaboration and compilation
phase and the input files and outputs can be provided by the tool. Vivado gen-
erates a simulation script that allows for the toolchain to be called from another
program. This has proven itself to be a very powerful option. To automate the
simulation process the logic is programmed using Python, a technology tradi-
tionally used in machine learning. Doing so, allows both the hardware element
and the Machine Learning development environment to work together in a more
streamlined way. The underlying concept is that a Python script can be used to
generate the text files that the simulations require, call the simulation process
and in the end analyze the results. This setup has modularity but also abstracts
the hardware modules after they have been validated. Furthermore, the Python
script can be used to control the pipeline, asides the fact that by using software,
one can iterate faster than by designing/re-designing a pipeline in HDL. This
may be of great advantage because the systolic array demands data to be fed
in a very specific manner.

The text files can be perceived as memories and the Python script as the
pipeline, implemented in software. The computations have been performed
by simulating the hardware that represents the systolic array. In essence, the
system operates using software but represents hardware.

The testbench, in this case, has been used as a computation method rather
than as a validation one.
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3.3.5 HDL Adaptation Process

The Deepfloat GitHub repository has provided the source code to reproduce the
results of the article. There is a folder with the HDL modules that describes a
Deepfloat systolic array. This systolic array has also a testbench validating it.
The systolic array has been used in the original research only for the area and
energy analysis. However, in this study it has been adopted for computation
purposes.

There are also modules that translate 32-bit floating-point to the format
used by DeepFloat (a Posit-like format) and back again by implementing them
as testbenches. These modules have also been adapted for this study by using
text files as memories.

The adaptation process has consisted of taking the testbenches, but instead
of generating data to validate the modules by simulation, they have been fed
from text files and have saved the produced outputs to another text file, com-
puted through simulation. As for the translation modules, they have taken the
numbers to be translated from a file and a file has been created with the trans-
lation, for example. They have taken the parameters of a module in 32-bit float
and produced a file with the parameters in DeepFloat. For the systolic adapta-
tion, the same concept has been employed, but the inputs can be considered as
two matrices that shall be multiplied, since they both have been stored in files
instead of having been generated so to validate the systolic array. The output
is the product of both matrices, stored in a text file.

For proper systolic array use, the matrices need to be fed in a specific manner
because of the way it was designed (See Feeding - Algorithm 3).

By using text-files, inspection tools can be easily developed, allowing faster
debugging processes.

3.3.6 DeepFloat Architecture

Not all matrices are 32 by 32, so when they are smaller than that, they must
be zero-padded. An algorithm is responsible for padding (See Algorithm 2).

Algorithm 2: Padding

Input: inputfile, outputfile,inn, inm, tile = 32
Result: Padded Matrix File (32 by 32)

paddedmatrix = table of zeros with size tile by tile
inputmatrix = load(inputfile)

for i← 0 to inn do
for j ← 0 to inm do

paddedmatrix = inputmatrix[j × tile+ i]
end

end
write(outputfile) = paddedmatrix

The output matrix from the systolic array cannot be larger than 32 by 32. Con-
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sidering this, to perform multiplications with larger outputs, the input matrices
need to be separated into smaller input matrices.

When feeding the matrices to the systolic array, for the first and last 32 cy-
cles of clock, padding (or placement of zeros) is required to ensure that the
multiplication is being performed correctly (See Algorithm 3).

3.4 Inspection Tools

During the implementation stage, it has been of utmost importance to under-
stand if all elements are functioning properly. The debugging process usually
consists of examining the inputs and outputs of each layer while the model is
being fed. Considering that all the inputs and outputs from the simulations are
stored in text files, this task can be accomplished by several procedures (See
Figure 13). The inspection can be implemented automatically in a script, but
since this solution may vary according to each situation, it has been deemed ap-
propriate to use a generic GUI to run an inspection script on the background,
able to achieve the same results, thus providing flexibility. This inspection tool
has been implemented using wxpython and allows one to select a text file and
choose its corresponding matrix dimensions. It allows one to inspect both the
size and heatmap of a matrix. The heatmap can provide very useful debug in-
formation, namely in outputs with visually important information, such as with
CONV layers.

Figure 13: Tool GUI designed for matrix inspection
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Algorithm 3: Feeding

Input: inputfile, outputfile, inn, inm
Result: Feed Matrix File (inn by inm)

inputmatrix = load(inputfile)

for nout ← 0 to inm + inn − 1 do
for m← 0 to inm do

// Innit

if nout ≤ m then
if m ≤ nout then

outputfile.Add(inputmatrix[inm×(nout −m) +m])]
else

outputfile.AddZero
end

end
// Middle

else if (nout > m) and (nout < inn) then
outputfile.Add(inputmatrix[inm×(nout −m) +m])]

end
// End

else if nout ≥ inm then
if m > (nout − inn) then

outputfile.Add(inputmatrix[inm×(nout −m) +m])]
else

outputfile.AddZero
end

end

end

end
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Figure 14: Heatmap generated from the matrix inspection tool

In this example, a column of ones can be easily identified around index 25.

3.5 Quantization analysis

For simplification, classification models have been used as examples for the
definition of these concepts.

Due to the quantization process, one can define a numerical error associated
with the process of mapping the parameters of a model from one domain to
another. During the inference phase, there have been results expected from
each layer’s operations that diverge from those obtained when using the original
model. Also, the classification of an input can suffer alterations, depending on
the quantization method, thus resulting in different model accuracy.

Considering this, error metrics can be defined as associated with the quan-
tization process: Numerical Error and Classification Error.

3.5.1 Numerical Error

The numerical error can be defined as the difference between the computations
from the original model and the quantized model. The DeepFloat quantization
method has strived to represent and map the original information, having used
an 8-bit format. In this case, it is suitable to use a numerical error. The
TensorFlow Lite method does not attempt to perform a direct translation of
the original range, so a numerical error is not appliable.
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3.5.2 Classification Error

The classification error can be defined as the difference between the original
model classification and the quantized model classification given an input. For
example, if the classification for a given input is identical in the original model
and in the quantizatized model, the classification error is 0. The classification
error has been shown to be different from the accuracy, because the accuracy
concerns the performance of all labeled groups, regarding classification prob-
lems. The classification error can either be used to examine at each test input
or it can be used to observe groups of labeled inputs.

The error analysis, other than the accuracy, has provided an insight into the
degradation of the model and can denote potential problems or validate the
processes used.

3.6 Error analysis - Theoretic Model

During this study, there has been the need to predict the DeepFloat quanti-
zation outcome, isolated from its direct implementation. This allows: 1) The
validation of each model’s simulations and implementations, as there is a pre-
diction to confront besides the original model results; 2) Understanding how
DeepFloat performs in other simulations without its empiric implementation.
This understanding can aid the interpretation of the results, besides looking at
them as facts. This can be viewed as a theoretic prediction.

From the numerical error (See Chapter 3.5.1 Numerical Error) a theoretic error
concept can be derived from specific situations. The DeepFloat quantization
method, for example, is deterministic and aims to emulate the original op-
erations and computations. To optimize its performance this method trades
numerical precision for model size reduction and power efficiency.

Given its structure and behavior, the error provided by this method can be
both defined and theorized - Theoretic Error. By modeling this error, one can
predict the outcome of a DeepFloat, by using the original model together with
the Theoretic Error, by accumulation.

This Theoretic Error is a powerful tool, because it has provided insight on
the degradation of a model by understanding its limitations without empiric
accuracy measurements.

DeepFloat’s operation core is ELMA (See Section 2.5.2 Posit DeepFloat Figure
4). Thus, by studying its structure a theoretic error can be proposed. ELMA
has two main sections and two numerical basis for each one. The multiplications
have been performed in the log domain and the multiplication output range has
been limited to 256 possible outcomes. Hence, a multiplication error can be
defined. The addition inside ELMA has been performed in the linear domain
using 16 bits, reducing virtually the accumulation error to none, as stated in
the original paper [6]. Considering such particularity, a linear-to-log and log-to-
linear error can be defined.
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Multiplication Error

The multiplication error was modeled using the DeepFloat range and the sys-
tolic array. A row vector with the DeepFloat range can be multiplied by itself
transposed using the systolic array. The product corresponds to all multipli-
cation possibilities that exist for DeepFloat. By performing the same with the
DeepFloat range in floating-point and subtracting it to the DeepFloat multipli-
cation matrix, a multiplication error matrix can be defined Emuli,j . By using
a row, the error from the multiplication has been isolated.

The systolic array is configured in order to compute a product with size 32 by
32. However, DeepFloat has 256 values, generating a multiplication matrix table
with the size 256 by 256 (256 because DeepFloat is represented using 8 bits).
To create this multiplication matrix, the range vector can be divided in 8 parts,
generating 64 parts than can be put together to create the full multiplication
matrix (See Figure 15).

32-bit floating-point DeepFloat

Figure 15: Multiplication Matrix on 32-bit float and 8-bit DeepFloat

Both images depict the distribution of the multiplication table. In blue are the
positive regions and in red the negative.

Emuli,j difference between these two matrices
Original DeepFloat (without infinity): [−4.096; +4.096]

Multiplication range DeepFloat (without infinity): [−4.096; +4.096]
Multiplication range from DeepFloat using floating-point:

[−16.777.216; +16.777.216]

Linear-to-Log Error

The linear to log theoretic error (Elin(x)) is approximated by taking into ac-
count the DeepFloat range distribution (See Figure 9) and floating-point. Inside
ELMA the accumulators have 16-bits, but because its error is virtually zero, it
is considered the same as the former. The DeepFloat range has a Float repre-
sentation and it can be used to compute the error for a number outside of this
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range. For this model, the error is the difference between a value and its nearest
correspondent in the DeepFloat range, as shown in Figure 16. This linear-to-log
and log-to-linear error model may not provide a perfect representation of the
reality, though coming very close to do so.

Systolic Error Model

A product between two matrices can be defined as follows:

A is an m × n matrix and B is an n × p

i = 1, ..., m and j = 1, ..., p

n∑

k=1

aikbkj = cij

Taking the previous considerations into account regarding the DeepFloat and
the ELMA structure, the previous definition can be adjusted, so to incorporate
the linear-to-log error and the multiplication errors. This model can be used
for the systolic array error. In order to apply the error model to an entire
neural network, one must consider the initial transposition of the inputs and
parameters from floating-point to DeepFloat - linear-to-log error.

i = 1, ..., m and j = 1, ..., p

n∑

k=1

(aikbkj + Emul(ik, kj)) = cmulij

cij = Elin(cmulij)

As illustrated by Figure 19, the error model is not perfect, but it is an attempt
at modeling the DeepFloat error. By understanding how Emuli,j and Elin(x)
affect matrix multiplication, the quantization error can be minimized. This
model also demonstrates that the usage of the systolic array has affected the
error, because of Elin(x). As illustrated by Figure 20, Emuli,j does not follow
a perfectly smooth curve, therefore meaning that two adjacent multiplication
results can have a positive or negative error component. A slight shift on the
input matrices may result in very different outputs due to the power of com-
pounding. Further reasearch would be beneficial for a better understanding of
this. The performance of the Theoretic Model has been illustrated by Figure
19, where an example can be found with its visual representation.
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a) Linear-to-Log
/Log-to-linear

Theoretic Error
Horizontal axis: DeepFloat Range

Vertical axis: Error

b) Real Error (Orange) on top of the
Linear-to-Log/Log-to-linear Theoretic

Error (Blue)
Horizontal axis: DeepFloat Range

Vertical axis: Error

Linear-to-Log/Log-to-linear Theoretic Error (Module)
Horizontal axis: DeepFloat Range

Vertical axis: Error

Figure 16: Linear-to-Log Theoretic Error

(Units: Error FP32)
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10000 inner samples

10000 inner samples

Figure 17: Infered Multiplication Error: 3D Visualization

Difference between the two multiplication Matrices (See Figure 15)
Vertical axis: Error
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Model A Output L1 Float 32-bit

Model A Output L1 Theoretic DeepFloat

Theoretic Error (Floating-point - DeepFloat
Theoretic)

Figure 18: Application Example for Model B L1

Using the Error Model, a DeepFloat predicted output can be generated
(Theoretic DeepFloat)
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Figure 19: DeepFloat Theoretic Model Multiplication Example

Average Error for the Theoretic DeepFloat Model and Deepfloat is 0.98 for
this example (A and B are two 32 by 32 matrices initialize with random

uniform numbers between -0.5 and 0.5)
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3.7 Computing systems

The study has been developed using two machines. The DeepFloat inference
results were obtained using Machine 2, due to the simulations. All other data
was obtained using Machine 1.

Machine 1 Hardware OS: Ubuntu 18.04.3 LTS
CPU: Intel(R) Core(TM) i5 CPU M
450 @ 2.40GHz
GPU: NVIDIA Corporation GT216M
[GeForce GT 325M] (rev a2)
RAM: ∼ 4GB

Software tensorflow 1.5.0
tensorflow-estimator 1.13.0
Python 3.6.7
Vivado v2019.1 (64-bit)

Machine 2 Hardware OS: Linux release 7.6.1810 (Core)
CPU: Intel(R) Core(TM) i7-4770K CPU
@ 3.50GHz
GPU: NVIDIA Corporation GK110
[GeForce GTX TITAN] (rev a1)
RAM: ∼ 32GB

Software tensorflow-estimator 1.14.0
tensorflow-gpu 1.14.0
Python 3.6.8
Vivado v2019.1 (64-bit)

Table 2: Computing Systems Setup
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4 Post-Training Model Quantization Results

4.1 Model A

4.1.1 Classification Analysis - Accuracy Degradation
Using TensorFlow & DeepFloat Simulations

Counts Total
32-bit float model - correct predictions 9,216 10,000 92.16%
8-bit (8,1,5,5,7)log model - correct predictions 9,200 10,000 92.00%
32-bit float model - incorrect predictions 784 10,000 7.84%
8-bit (8,1,5,5,7)log model - incorrect predictions 800 10,000 8.00%
Same prediction before and after quantization 9,902 10,000 99.02%

Table 3: Model A TensorFlow 32-bit float & 8-bit DeepFloat

Table 3 shows that the trained Model A only has 0.16% of accuracy drop after
its quantization when using DeepFloat. It also demonstrates that 99.02% of
the classifications are identical before and after quantization, resulting in 0.98%
of different classifications. This information can mean that not all the differ-
ent classifications after the quantization correspond to accuracy loss (0.98% >
0.16%). In this case, accuracy has only dropped by 0.16%. The accuracy is a key
metric for a model performance. However, because it is a quantization problem,
the percentage of different classifications holds a very important metric as well.
In order to better understand these results, one can perform a classification
analysis.

Ideally, the percentage of accuracy drop and the percentage of different clas-
sifications should be low and very close. Because the percentages are so low,
and it is a shallow model, these are top performing results for this quantization
process. The initial accuracy is high and after the quantization is still very high.

4.1.2 Context Classification Analysis

TensorFlow 32-bit float

Correct answer (Label) Correct classifications Incorrect classifications Total
0 962 12 980
1 1,106 29 1,135
2 907 125 1,032
3 907 103 1,010
4 910 72 982
5 776 116 892
6 904 54 958
7 954 74 1,028
8 901 73 974
9 889 120 1,009

Table 4: Model A Context Classification TensorFlow 32-bit Float (MNIST)

Table 4 and Table 5 give better insight into the distinctions between the classifi-
cation differences and why its percentage differs from the accuracy degradation.
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DeepFloat 8-bit (8,1,5,5,7)log

Correct answer (Label) Correct classifications Incorrect classifications Total
0 967 13 980
1 1,108 27 1,135
2 914 118 1,032
3 912 98 1,010
4 916 66 982
5 773 119 892
6 897 61 958
7 950 78 1,028
8 892 82 974
9 871 138 1,009

Table 5: Model A Context Classification 8-bit DeepFloat (MNIST)

For example, the images labeled with the number 9, 120 times out of 1,009
(11.89%) are incorrectly classified in the original model but only 38 times of
1,009 (3.77%) in the DeepFloat version of the same model. The opposite phe-
nomena also can be verified. For example, the images labeled with the number
8, in the original model display incorrect classification times out of 974 (7.49%).
And incorrectly classified 82 times out of 974 (8.42%) in the DeepFloat version
of the model. In none of the classification possibilities, do both versions of the
model have the same behavior.

When using DeepFloat, since it is a quantization process, the accuracy degra-
dation is expected, meaning that some of the images that have the correct clas-
sification in the original model will most likely obtain incorrect classifications in
the quantized model. This would lead one to assume that the number of incor-
rect classifications is bigger in the quantization version, which has been verified.
However, when all of the classification groups are separated and individually
analyzed, this assumption does not provide any true meaning.

Both the parameters and the input images in the DeepFloat version have
been quantized and the computations have been performed using the systolic
array. There is still a vast array of possibilities to explore, in order to explain
such behavior. Nevertheless, no pattern nor explanation has been found. A
speculative answer would be that given the nature of the problem - to classify
handwritten, with hard edges, a quantization process as drastic as this, can have
a significant effect on important edges, changing the input meaning.

Another possible answer could be that, since the classification is given by
the biggest output, if other outputs are closer to the right output answer in the
original model, in the quantization version, due to accumulative error, such as
the outputs shift, incorrect classifications or right classification can be triggered.
This is mainly due to positive and negative shifts in the bigger outputs, which
can explain both situations.

These are some explanations that would benefit from further investigation.
However, even without definitive answers, it is still possible to compare this
quantization technique with others, because the ultimate performance metric is
the accuracy. These answers would, however, help to generalize the viability of
DeepFloat without comparative testing against other quantization techniques.

35



4.1.3 Classification Analysis - Accuracy Degradation
Using TensorFlow Lite

Counts Total
32-bit float model number of correct predictions 9,236 10,000 92.36%
8-bit int model number of correct predictions 9,235 10,000 92.35%
32 bit float model number of incorrect predictions 764 10,000 7.64%
8-bit int model number of incorrect predictions 765 10,000 7.65%
Same prediction before and after quantization 9,965 10,000 99.65%

Table 6: Model A TensorFlow Lite 32-bit Converted & Optimized 8-bit Model

When using TensorFlow Lite, the trained model must be converted. The con-
verted model is then tested, displaying differences in its accuracy. The origi-
nal Model A has 92.16% accuracy after training and the converted model has
92.36% (0.20% increase). To implement this conversion, the code from the of-
ficial documentation page has been adapted [11] [15]. This difference has not
been expected and no reason has been so far found, though, there is an accuracy
increase. No retraining has been performed during conversion. Looking at the
TensorFlow Lite implementation options (Figure 8), they correspond to a model
not optimized.

To implement the 8-bit quantization version of the model, some optimization
steps have been implemented. This implementation follows the official example
code. The representative dataset used is the training data and the operations
are converted to int8. (See Figure 8). The accuracy of the quantized version
is 92.35% corresponding to a 0.01% accuracy drop, compared to the converted
model and 0.19% increase regarding the accuracy of the original model.

The obtained data (Tables 6 and 3) shows that using TensorFlow Lite, for
the Model A trained with MNIST, results in a lower accuracy degradation from
the converted model to the optimized (quantized) version than the degrada-
tion from the original model to the DeepFloat version. They also show that
the TensorFlow Lite quantized version has a bigger accuracy than the original
model.

4.1.4 Context Classification Analysis

TensorFlow Lite 32-bit float

As in the quantization from the original model to DeepFloat, in the quantization
from the converted model to the optimized model, higher counts of incorrect
classifications have been expected in the optimized version. In Table 6, the
difference is 1 count. However, by grouping the classification counts per label,
the majority of the classification groups show more incorrect classifications that
the original converted model. In some cases like label 4, the opposite has been
verified (See Tables 7 and 8).

Another noteworthy key result, is that the converted model has a lower
incorrect count compared to the original model for the labels 1, 2, 4, 5, 6, 9 (See
Tables 4 and 7 ). These results cascade to the optimized (quantized) version of
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Correct answer (Label) Correct classifications Incorrect classifications Total
0 959 21 980
1 1,114 21 1,135
2 932 100 1,032
3 901 109 1,010
4 922 60 982
5 785 107 892
6 916 42 958
7 947 81 1,028
8 852 122 974
9 908 101 1,009

Table 7: Model A Context Classification TensorFlow Lite 32-bit Float (MNIST)

TensorFlow Lite 8-bit int

Correct answer (Label) Correct classifications Incorrect classifications Total
0 961 19 980
1 1,114 21 1,135
2 934 98 1,032
3 906 104 1,010
4 923 59 982
5 786 106 892
6 915 43 958
7 945 83 1,028
8 851 123 974
9 900 109 1,009

Table 8: Model A Context Classification TensorFlow Lite 8-bit int (MNIST)

the model, its incorrect predictions are still higher than the original TensorFlow
32-bit model, and 8-bit DeepFloat.

Understanding why the converted model has higher accuracy than the origi-
nal model is yet to be explained, but it may give insight into why the TensorFlow
Lite quantized version performs better than the 8-bit DeepFloat version in terms
of accuracy.

The accuracy degradation from the original model is 0.16% for DeepFloat
and -0.19% for TensorFlow Lite. When comparing the quantized version be-
tween the original and the converted models, the accuracy degradation from
TensorFlow Lite is still proven to be lower. The accuracy degradation from the
optimized model for TensorFlow Lite is 0.01% (<0.16%).

The conclusion that can be obtained from this case study (Model A trained
using MNIST) is that quantizing the model using TensorFlow Lite offers the
best results when compared to DeepFloat.

By analyzing more complex models or models with different layers these
results may change because the concepts/behaviors than lead to these results
are not fully explored and this evidence is thus empiric. However, this case
study has made some valid observations, and highlights some important analysis
strategies such as grouping the labels when studying the accuracy degradation.
Comparing accuracy degradation in both methods is also important, even when
using an experimental result.
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4.2 Model B

4.2.1 Classification Analysis - Accuracy Degradation
Using TensorFlow & DeepFloat Simulations

Counts Total
32 bit float model number of correct predictions 9,886 10,000 98.86%
32 bit float model number of incorrect predictions 114 10,000 1.14%

Table 9: Model B TensorFlow 32-bit float

Table 9 shows that the accuracy of Model B trained with MNIST using the
original script is 98.86%, which is higher than Model A (92.16% Table 3). As
previously stated, Model B has 5 layers, 3 CONV and 2 FC and Model A
has 1 FC layer. The differences in accuracy can be attributed to each model’s
structure. Model B uses CONV layers meaning it is deeper, thus tending to
provide higher accuracy in this specific situation.

To quantize Model B to DeepFloat, the same methods used for Model A have
been applied. The parameters and inputs have been converted to DeepFloat.
To validate its implementation, some inputs have been fed to Model B. During
this validation, none of the two inputs studied (Figures 20 and 23) have been
correctly classified, meaning that the output with the higher value is not the
one that pairs with each input label. These inputs have been correctly classified
when using the original TensorFlow 32-bit float model. The DeepFloat version
of this model has also proven to take a significantly greater amount of time
to simulate, because the layers are more complex. Understanding its behavior
before the accuracy evaluation is necessary to validate its implementation.

Because the first 3 layers are CONV, the outputs from each one of these,
especially the first ones, hold meaningful visual information than can be used
for debugging and to understand what is happening within each layer by using
visual inspection.

For instance, Figure 20 depicts the number 7. When this image is fed to the
original model and to the DeepFloat model, it is evident the divergence that
occurs layer after layer (Figures 21 and 22). A hypothetic solution for this
divergence, would be that after each layer there is a ReLu activation that ”turns-
off” the negative outputs of each layer. Studying this example, one can observe
that by using the Model B DeepFloat quantization, some output values are
”pushed” into the negative direction and are turned to 0 after the activation, if
they are negative. This effect accumulates layer after layer as depicted in Figure
22. The output of the third layer is very different in the original model and the
quantized version. Should the final classification be correct, this difference would
be irrelevant, however the opposite is true. Another example using a different
image shows the same behavior, making this hypothesis a stronger explanation
(See Figures 23, 24 and 25).

There are 10 outputs on the last layer, corresponding to the 10 Arabic numerals.
Since there are only 10 outputs to this model, and because there is this classi-
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fication problem with the input samples studied with the quantized model, it
has been very difficult to understand if a correct classification can be either at-
tributed to the model performance or random events, e.g., accumulation of noise
provided by the activation and quantization. Also, each classification using the
DeepFloat version of the model has had a duration of 40 minutes. This number
can go down with an accelerator or the parallelization of the simulations, but
it is a steep cost for all the 10,000 test images to measure its accuracy. For
these reasons Table 9 only has the accuracy results for the original TensorFlow
32-bit Float model. Other methods can be used to compare the DeepFloat
quantization to the TensorFlow Lite (See Classification Analysis - Accuracy
DegradationUsing TensorFlow Lite).

Input Image depicting the
number 7 (Example 1)

L1 Float Output ReLU L1 DeepFloat Output ReLU

Figure 20: Model B Input and L1 Outputs (Example 1)
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L2 Float Output L2 DeepFloat Output

L2 Float Output ReLU L2 DeepFloat Output ReLU

Figure 21: Model B L2 Outputs (Example 1)

L3 Float Output L3 DeepFloat Output

L3 Float Output ReLU L3 DeepFloat Output ReLU

Figure 22: Model B L3 Outputs (Example 1)
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Input Image depicting the
number 2 (Example 2)

L1 Float Output ReLU L1 DeepFloat Output ReLU

Figure 23: Model B Input and L1 Outputs (Example 2)

L2 Float Output L2 DeepFloat Output

L2 Float Output ReLU L2 DeepFloat Output ReLU

Figure 24: Model B L2 Outputs (Example 2)
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L3 Float Output L3 DeepFloat Output

L3 Float Output ReLU L3 DeepFloat Output ReLU

Figure 25: Model B L3 Outputs (Example 2)

4.2.2 Context Classification Analysis

32-bit float

Correct answer (Label) Correct classifications Incorrect classifications Total
0 974 6 980
1 1,127 8 1,135
2 1,021 11 1,032
3 1,003 7 1,010
4 969 13 982
5 880 12 892
6 947 11 958
7 1,015 13 1,028
8 961 13 974
9 989 20 1,009

Table 10: Model B Context Classification TensorFlow Lite 32-bit Float (MNIST)

Table 10 depicts the classification results from the original Model B grouped by
label. The accuracy per label is higher than the original model (See Table 4)
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4.2.3 Classification Analysis - Accuracy Degradation
Using TensorFlow Lite

Counts Total
32 bit float model number of correct predictions 9,884 10,000 98.84%
8-bit int model number of correct predictions 9,890 10,000 98.90%
32 bit float model number of incorrect predictions 116 10,000 1.16%
8-bit int model number of incorrect predictions 110 10,000 1.10%
Same prediction on both models 9,992 10,000 99.92%
Same prediction on both models (correct) 9,884 10,000 98.84%
Same prediction on both models (incorrect) 108 10,000 1.08%

Table 11: Model B TensorFlow Lite 32-bit Converted & Optimized 8-bit Model

Like the Model A, Model B is quantized using TensorFlow Lite. Table 11 shows
that the original model converted has 98.84% accuracy as the original model
has 98.86% (a 0.02% accuracy drop). This accuracy drop has yet to be fully
understood, however, it is very low. Regarding Model A, the converted version
has had a higher accuracy, representing the opposite behavior.

The TensorFlow Lite quantized version has an accuracy of 98.90% and it
represents an accuracy increase of 0.06% from the converted version and 0.04%
from the original model. These differences, though not significative, may present
a different situation than Model A. The quantized version has higher accuracy
than the converted and original models, hinting that the accuracy for the quan-
tized model provided by TensorFlow Lite is going to be similar to the original
model, if one assumes a similar structure.

This accuracy study can be used to place constraints to the accuracy results
that the DeepFloat quantized model should achieve, in order to be comparable.
The TensorFlow Lite method has had an accuracy increase of 0.04% from the
original 32-bit TensorFlow Model, meaning that the DeepFloat version, to be
further competitive, must have at least the same accuracy performance.

Taking into consideration the two examples given to study the behavior per layer
when using DeepFloat, their output classifications correspond to discrepancies
between the labels and model classification. By only considering these two
inputs’ images, the DeepFloat version has at least a 0.02% accuracy drop. It
has also been hinted by the analysis that the noise provided by DeepFloat and
the ReLu activations have been present in all classification outputs. These
results mean that the TensorFlow Lite method, in order to quantize the Model
B, has provided better results. The DeepFloat method has at least a 0.02%
accuracy drop as the TensorFlow Lite method has had an accuracy increase,
hence preserving at least the same accuracy as the original model.
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4.2.4 Context Classification Analysis

32-bit float

Correct answer (Label) Correct classifications Incorrect classifications Total
0 976 4 980
1 1,130 5 1,135
2 1,021 11 1,032
3 1,002 8 1,010
4 972 10 982
5 879 13 892
6 942 16 958
7 1,015 13 1,028
8 958 16 974
9 989 20 1,009

Table 12: Model B Context Classification TensorFlow Lite 32-bit Float (MNIST)

8-bit int

Correct answer (Label) Correct classifications Incorrect classifications Total
0 976 4 980
1 1,130 5 1,135
2 1,022 10 1,032
3 1,002 8 1,010
4 974 8 982
5 880 12 892
6 942 16 958
7 1,017 11 1,028
8 958 16 974
9 989 20 1,009

Table 13: Model B Context Classification TensorFlow Lite 8-bit int (MNIST)

Table 11 and Table 13 show that the TensorFlow Lite model has had an ac-
curacy increase for the classification groups corresponding to the numbers 2,
4, 5 and 7, when compared to the converted model. Despite this increase not
being fully understood, like Model A, due to the nature of the problem and
the simplicity of the dataset, a quantization process can act as an edge definer
to the input images, increasing in some cases its performance. This conclusion
is speculative and requires further research. Nevertheless, the empiric results
allows a comparative discussion about the accuracy results between the two
quantization processes.

Comparing Table 11 and Table 10, differences between the classification accu-
racy from the original Model B and the converted model appear. They are
not reflected in the accuracy drop (0.02%). Some output groups see accuracy
improvements(3, 5, 6 and 8) and others see accuracy drops (0, 1 and 4). Just
like with Model A, this analysis does not provide useful information other than
there is a small shift on accuracy when converting the models.

Taking into consideration the classification accuracy of the original Model B
and both quantization methods, the TensorFlow Lite method has shown better
results.
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5 Conclusion

This study takes on after [6]. In [6], the systolic array was not used to measure
the accuracy of any model and the parallelization aspect of the implementation
was not explored. The systolic array was used to study how an ASIC setup
performs in terms of power and area, when compared to a traditional 8/32 bit
system.

Although the parallelization techniques are independent of the format that is
being used, this study shows options on how to implement and parallelize two
of the most used types of layers - FC and CONV. This work also uses hardware
simulations alongside a collection of Python scripts, in order to implement the
DeepFloat solutions. Some inspection tools for debugging were also proposed.

The theoretic model proposed for the error also shows how the operations
are implemented in the systolic array matters, due to the accumulation of error.
Two operations can be mathematical equivalent but its implementations will
affect the result and they will not achieve the same computed result at the end
if implemented differently.

By analyzing these two models and their accuracy in the original format (32-bit
Float), in the TensorFlow Lite int8 and DeepFloat 8-bit quantization versions,
one can verify that the TensorFlow Lite solution presents similar, if not bet-
ter, results, taking into consideration that it uses already existing computation
systems, that are both well distributed and well established.

DeepFloat presents a new method to perform post-training quantization. How-
ever, in both case studies, Model A and Model B, the results provided by Ten-
sorFlow Lite for the same amount of bit reduction are better (lower accuracy
degradation). This means that the DeepFloat Post-training Quantization tech-
nique may not be the best option for the case studies of Model A and Model B.
These two cases are isolated and these results cannot be directly translated to
other models, but they can highlight the importance of defining an error instead
of focusing on the accuracy degradation of each method. This study also tries
to define a theoretic error for DeepFloat, in order to find a solution for this
problem, and it could benefit from further development.

5.1 Future Work

This study does not define a generic test or theoretic model that allows both
DeepFloat and TensorFlow to be analyzed without an experiment that uses a
real working model, but it highlights its importance.

Ideally, a robust model would allow engineers to understand both methods
strengths and fragilities and in which context they perform the best, but said
model is yet to be defined. For the area to evolve, the speculation and the
empiric observations need to be replaced by the knowledge provided by a global
understanding of the Post-training Quantization technique. This belief can be
applied to other emerging techniques such as new machine learning architectures
and optimization processes.
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At a first glance, accuracy is an important metric, since it gives insight on a
very specific Machine Learning problem. Nonetheless, it does not provide much
value to the global pool of knowledge on how an architecture can be implemented
to solve a specific problem.

An accelerator architecture for DeepFloat should be implemented. Since the
implementation is heavily dependent on hardware, a software infrastructure
can lead to faster iterations, without relying on the systolic implementation or
kernels - distributed alongside the original paper. On a first stage, the imple-
mentation of a library allows for an easier access of basic arithmetic building
blocks would be a a great improvement for the distribution of DeepFloat.

On a second stage, should the DeepFloat technology be proved to be useful in
other use cases, implementing a hardware accelerator on GPU or FPGA would
improve the inference performance that software is unable to provide.

Furthermore, if deemed fitting, a reusable HDL accelerator can be developed
to complement other AI cores, given that the DeepFloat quantization seamlessly
integrates with the already supported 32-bit single precision. Another possibility
is to develop a core that only uses this architecture for IoT devices.

Lastly, this study only focus on the inference phase. Sould TensorFlow Lite
be proven to be a better alternative for a Post-training Quantization problem,
it does not mean that DeepFloat is not better suited for training, since it uses
fewer bits and power, when compared to traditional approaches. Another inter-
esting path for further research concerns the implementation of this format and
architecture in other contexts.
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Abstract

Reducing hardware overhead of neural networks for faster or lower power infer-
ence and training is an active area of research. Uniform quantization using inte-
ger multiply-add has been thoroughly investigated, which requires learning many
quantization parameters, fine-tuning training or other prerequisites. Little effort
is made to improve floating point relative to this baseline; it remains energy inef-
ficient, and word size reduction yields drastic loss in needed dynamic range. We
improve floating point to be more energy efficient than equivalent bit width integer
hardware on a 28 nm ASIC process while retaining accuracy in 8 bits with a novel
hybrid log multiply/linear add, Kulisch accumulation and tapered encodings from
Gustafson’s posit format. With no network retraining, and drop-in replacement of
all math and float32 parameters via round-to-nearest-even only, this open-sourced
8-bit log float is within 0.9% top-1 and 0.2% top-5 accuracy of the original float32
ResNet-50 CNN model on ImageNet. Unlike int8 quantization, it is still a general
purpose floating point arithmetic, interpretable out-of-the-box. Our 8/38-bit log
float multiply-add is synthesized and power profiled at 28 nm at 0.96× the power
and 1.12× the area of 8/32-bit integer multiply-add. In 16 bits, our log float
multiply-add is 0.59× the power and 0.68× the area of IEEE 754 float16 fused
multiply-add, maintaining the same signficand precision and dynamic range, prov-
ing useful for training ASICs as well.

1 Introduction

Reducing the computational complexity of neural networks (NNs) while maintaining accuracy en-
compasses a long line of research in NN design, training and inference. Different computer arith-
metic primitives have been considered, including fixed-point [21], uniform quantization via 8 bit
integer [15], ternary [20] and binary/low-bit representations [29, 3, 1]. Some implementations are
efficiently implemented on CPU/GPU ISAs [35, 33], while others demand custom hardware [10].
Instead of developing quantization techniques increasingly divorced from the original implementa-
tion, we seek to improve floating point itself, and let word size reduction yield efficiency for us. It
is historically known to be up to 10× less energy efficient in hardware implementations than integer
math [14]. Typical implementation is encumbered with IEEE 754 standard compliance [37], de-
manding specific forms such as fused multiply-add (FMA) that we will show as being inefficient and
imprecise. Memory movement (SRAM/DRAM/flip-flops) dominates power consumption; word bit
length reduction thus provides obvious advantages beyond just reducing adder and multiplier area.

We explore encodings to better capture dynamic range with acceptable precision in smaller word
sizes, and more efficient summation and multiplication (Sections 3-5), for a reduction in chip power
and area. Significant inspiration for our work is found in logarithmic number systems (LNS) [2] and
the work of Miyashita et al. [24] that finds logarithmic quantizers better suited to data distributions in
NNs, and alternative visions of floating point from Gustafson [11, 12] and Kulisch [19]. We sidestep
prior LNS design issues with numerical approximation and repurpose ideas from Gustafson and

Preprint. Work in progress.



Table 1: Dynamic range and significand fractional precision of math types considered

Word Encoding Range in decibels Fraction
bits type 20 log10(fmax/fmin) bits (max)
8 symmetric integer [−27 + 1, 27 − 1] 42.1 —
8 (8, 0) posit or (8, 0, α, β, γ) log 72.2 5
8 (4, 3) float (w/o denormals) 83.7 3
16 symmetric integer [−215 + 1, 215 − 1] 90.3 —
8 (4, 3) float (w/ denormals) 101.8 3
8 (8, 1) posit or (8, 1, α, β, γ) log 144.5 4
16 (5, 10) float16 (w/o denormals) 180.6 10
16 (5, 10) float16 (w/ denormals) 240.8 10
12 (12, 1) posit or (12, 1, α, β, γ) log 240.8 8
8 (8, 2) posit or (8, 2, α, β, γ) log 289.0 3
16 (16, 1) posit or (16, 1, α, β, γ) log 337.2 12

Kulisch, producing a general-purpose arithmetic that is effective on CNNs [13] without quantization
tinkering or re-training (Section 7), and can be as efficient as integer math in hardware (Section 8).

2 Floating point variants for NNs

There are few studies on NNs for floating point variants beyond those provided for in CPU/GPU
ISAs. [4] shows a kind of 8 bit floating point for communicating gradients, but this is not used
for general computation. Flexpoint [17] and the Brainwave NPU [6] use variants of block floating
point [36], representing data as a collection of significands with a shared exponent. This requires
controlled dynamic range variation and increased management cost, but saves on data movement
and hardware resources. For going to 8 bits in our work, we seek to improve the encoding and hard-
ware for a reasonable tradeoff between dynamic range and precision, with less machinery needed in
software.

For different precisions, [5] shows reduced-precision floating point for training smaller networks on
MNIST and CIFAR-10, with (6, 5)1 floating point without denormal significands being comparable
to float32 on these examples. (8, 7) bfloat16 is available on Google’s TPUv2 [9]. This form main-
tains the same normalized exponent range as float32, except with reduced precision and smaller
multipliers. However, the forms of encoding and computation for many of these variants are not
substantially different than implementations available with common ISAs, hardened FPGA IP, and
the like. We will seek to improve the encoding, precision and computation efficiency of floating
point to find a solution that is quite different in practice than standard (e, s) floating point.

3 Space-efficient encodings

IEEE 754-style fixed width field encodings are not optimal for most data distributions seen in prac-
tice; float32 maintains the same significand precision at 10−10 as at 1010. Straightforward imple-
mentation of this design in 8 bits will result in sizable space encoding NaNs, ∼ 6% for (4, 3) float.
Denormals use similar space and are expensive in hardware [26]; not implementing them restricts
the dynamic range of the type (Table 1). Tapered floating point can solve this problem: within a
fixed-sized word, exponent and significand field size varies, with a third field indicating relative size.
To quote Morris (1971): “users of floating-point numbers are seldom, if ever, concerned simultane-
ously with loss of accuracy and with overflow. If this is so, then the range of possible representation
can be extended [with tapering] to an extreme degree and the slight loss of accuracy will be unno-
ticed.” [25]

A more efficient representation for tapered floating point is the recent posit format by Gustafson [12].
It has no explicit size field; the exponent is encoded using a Golomb-Rice prefix-free code [8, 22],
with the exponent e encoded as a Golomb-Rice quotient and remainder (q, r) with q in unary and r
in binary (in posit terminology, q is the regime). Remainder encoding size is defined by the exponent

1Throughout, (e, s)-float refers to IEEE 754-style floating point, with sign bit, e-bit biased exponent and
s-bit 0.s or 1.s fixed point significand; float16/float32 are shorthand for IEEE 754 binary16/binary32.
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scale s, where 2s is the Golomb-Rice divisor. Any space not used by the exponent encoding is used
by the significand, which unlike IEEE 754 always has a leading 1; gradual underflow (and overflow)
is handled by tapering. A posit number system is characterized by (N, s), where N is the word
length in bits and s is the exponent scale. The minimum and maximum positive finite numbers in
(N, s) are fmin = 2−(N−2)2s and fmax = 2(N−2)2s . The number line is represented much as the
projective reals, with a single point at ±∞ bounding −fmax and fmax. ±∞ and 0 have special
encodings; there is no NaN. The number system allows any choice of N ≥ 3 and 0 ≤ s ≤ N − 3.

s controls the dynamic range achievable; e.g., 8-bit (8, 5)-posit fmax = 2192 is larger than fmax in
float32. (8, 0) and (8, 1) are more reasonable values to choose for 8-bit floating point representations,
with fmax of 64 and 4096 accordingly. Precision is maximized in the range ±[2−(s+1), 2s+1) with
N − 3− s significand fraction bits, tapering to no fraction bits at ±fmax.

4 Accumulator efficiency and precision

A sum of scalar products
∑

i aibi is a frequent operation in linear algebra. For CNNs like ResNet-
50 [13], we accumulate up to 4,608 (2d convolution with k = 3× 3, cin = 512) such products.

Integer addition is associative (excepting overflow); the order of operations does not matter and
thus it allows for error-free parallelization. In typical accelerator use, the accumulation type is 32
bits. Typical floating point addition is notorious for its lack of associativity; this presents problems
with reproducibility, parallelization and rounding error [26]. Facilities such as fused multiply-add
(FMA) that perform a sum and product c+ aibi with a single rounding can reduce error and further
pipeline operations when computing sums of products. Such machinery cannot avoid rounding error
involved with tiny (8-bit) floating point types; the accumulator can become larger in magnitude than
the product being accumulated into it, and the significand words no longer overlap as needed even
with rounding (yielding c+ ab = c); increasing accumulator size a bit only defers this problem.

There is a more efficient and precise method than FMA available. A Kulisch accumulator [19] is
a fixed point register that is wide enough to contain both the largest and smallest possible scalar
product of floating point values ±(f2

max + f2
min). It provides associative, error-free calculation

(excepting a single, final rounding) of a sum of scalar floating point products; a float significand
to be accumulated is shifted based on exponent to align with the accumulator for the sum. Final
rounding to floating point is performed after all sums are made. A similar operation known as
Auflaufenlassen was available in Konrad Zuse’s Z3 as early as 1941 [18], though it is not found in
modern computers.

We will term this operation of summing scalar products in a Kulisch accumulator exact multiply add
(EMA). For an inner product, given a rounding function2 r(·) with the argument evaluated at infinite
precision, EMA calculates r(

∑
i aibi), whereas FMA calculates r(anbn + r(an−1bn−1 + r(· · · +

r(a1b1+0) · · · ))). Both EMA and FMA can be implemented for any floating point type. Gustafson
proposed Kulisch accumulators to be standard for posits, terming them quires.

Depending upon float dynamic range, EMA can be considerably more efficient than FMA in hard-
ware. FMA must mutually align the addends c and the product ab, including renormalization logic
for subtraction cancellation, and the proper alignment cannot be computed until fairly late in the
process. Extra machinery to reduce latency such as the leading zero (LZ) anticipator or three path
architectures have been invented [28]. If multiply-add needs to be pipelined for timing closure, EMA
knows upfront the location of the floating point of c needed in alignment (as it is fixed), and can thus
accumulate a new product into it every clock cycle, while a FMA must hold onto the starting value of
the accumulator c until later in the process, increasing the pipeline non-combinational area and often
requiring greater use of an external register file (for multiple accumulators ci in concurrent use) and
effective “loop unrolling” at software level to fill all pipeline slots. The rounding performed every
FMA requires additional logic, and rounding error can still compound greatly across repeated sums.

2r(·, b) is a rounding function that produces b fractional bits, and ri(·, b) is the i-th fractional bit returned.
We assume IEEE 754-style round-to-nearest-even (with sticky bit OR-reduction) for r(·).
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5 Multiplier efficiency

Floating point with EMA is still expensive, as there is added shifter, LZ counter, rounding, etc. logic.
Integer MAC and float FMA/EMA both involve multiplication of fixed-point values; for int8/32
MAC this multiply is 63.4% of the combinational power in our analysis at 28 nm (Section 8).

A logarithmic number system (LNS) [16] avoids hardware multipliers entirely, where we round and
encode logB(x) for some base B to represent a number x ∈ R. Hitherto we have considered linear
domain representations, where x ∈ R is rounded and encoded as x in integer, fixed or floating point
representation (note that floating point is itself a combination of linear and log encodings). Log
domain operations on linear x > 0, y > 0 represented as i = log2(x), j = log2(y) are:

log2(x ± y) = i+ σ±(j − i)

log2(xy) = i+ j [2]
log2(x/y) = i− j

As values x ≤ 0 are outside the log domain, sign and zero are handled separately [31], as is ±∞. We
encode B = 2 log numbers with a sign bit and a signed fixed-point number of the form m.f , which
represents the linear domain value ±2(m+

∑
i fi/2

i). For add/sub, without loss of generality, order
j ≤ i, and σ±(x) = log2(1 ± 2x); this is the historical weak point of a LNS, as implementations
use costly LUTs or piecewise linear approximation of σ±(x). This can be more expensive than
hardware multipliers. The approximation log2(1 + x) ≈ x for x ∈ [0, 1] could also be used [24],
but this adds significant error, especially with repeated sums.

σ±(x) need only be evaluated if one wishes to keep the partial sum in the log domain. As with
Kulisch accumulation versus FMA, we accumulate in a different representation than the scalar prod-
uct for efficiency. For

∑
i aibi, we multiply aibi in the log domain, and then approximate as a linear

domain floating point value for accumulation. Translating log domain m.f to linear is easier than
σ±(x), as we can just consider the fractional portion f ; m is linear domain multiplication by 2m

(floating point exponent addition or fixed point bit shift). A LUT maps f ∈ [0, 1) to p(f) = 2f − 1.
p(f) is the linear representation of the log number fractional part; the LUT maps all bits of f to a
desired number of bits α of p(f) or r(p(f), α), for a (2fbits × α)-bit LUT. Linear approximation of
m.f is the floating point value ±2m(1 +

∑α
i=1 2

−iri(p(f), α)). This is expanded in the usual way
for Kulisch accumulation. Just as Kulisch accumulation is efficient for linear domain values up to a
reasonably wide dynamic range, it proves quite efficient for our linear approximations of log values.

To convert a linear domain value back to log domain, we map g ∈ [0, 1) to q(g) = log2(1 + g). g
is a linear domain fixed-point fraction; to control the size of the LUT we only consider β bits via
rounding of g. q(r(g, β)) is similarly rounded to a desired γ bits; note that this latter rounding is log
domain. r(q(r(g, β)), γ) is then a (2β×γ)-bit LUT. We also choose α ≥ fbits+1, β ≥ α, γ = fbits
to ensure that log-to-linear-to-log conversion of f is the identity, or f = r(q(r(r(p(f), α), β)), γ).

We will name this (somewhat inaccurately) exact log-linear multiply-add (ELMA). The log product
and linear sum are each exact, but the log product is not represented exactly by r(p(f)) as this
requires infinite precision, unlike EMA which is exact except for a final rounding. The intermediate
log product avoids overflow or underflow with an extra bit for the product’s m. If a linear-to-log
mapping is desired (returning a log number after summation), there is also loss via r(q(g)).

Combining log-to-linear mapping with Kulisch accumulation makes log domain multiply-add effi-
cient and reasonably accurate. Small p and q LUTs reduce well in combinational logic. They are
practical for 16-bit types too, as compression can be used to reduce the size. For larger types they are
impractical, as α, β, γ need to scale with 2fbits , at which point σ± is a better strategy. As with FMA,
repeated summation via σ± is subject to magnitude difference error (e.g., the c+ ab = c case). Our
approximation introduces error with r(p(f)) and r(q(g)), but mitigates repeated summation error
and is immune to magnitude differences. This tradeoff seems acceptable in practice (Section 7).

An 8-bit log number by default suffers from the same problem as 8-bit IEEE-style floating point;
the dynamic range is limited by the fixed point encoding. We can use the same tapering as used
in (N, s) posit for m.f log numbers. m is encoded as an exponent, and f as a floating point sig-
nificand. fmin and fmax are then exactly the same for posit-tapered base-2 log or linear domain
values. Setting γ = fbits (which is at maximum (N − 3− s) for posits) introduces additional taper-
ing rounding error, as subsequent rounding in encoding is performed outside regimes of maximum
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Table 2: ResNet-50 ImageNet validation set accuracy per math type

Math type Multiply-add type top-1 acc (%) top-5 acc (%)
float32 FMA 76.130 92.862
(8, 1, 5, 5, 7) log ELMA -0.90 -0.20

(7, 1) posit EMA -4.63 -2.28
(8, 0) posit EMA -76.03 -92.36
(8, 1) posit EMA -0.87 -0.19
(8, 2) posit EMA -2.20 -0.85
(9, 1) posit EMA -0.30 -0.09

Jacob et al. [15]:
float32 FMA 76.400 n/a
int8/32 MAC -1.50 n/a
Migacz [23]:
float32 FMA 73.230 91.180
int8/32 MAC -0.20 -0.03

precision. γ is increased up to 3 bits (guard, round and sticky bits in typical round-to-nearest-even)
to improve accuracy here. This encoding we will refer to as (N, s, α, β, γ) log (posit tapered). We
can similarly choose to encode log numbers using an IEEE 754 format (with biased exponents, NaN
representations etc.); we use this for our ELMA comparison against float16 FMA in Section 8.

6 Additional hardware details

To make EMA/ELMA more energy efficient, we restrict accumulator range to [f2
min, fmax]; han-

dling temporary underflow rather than overflow is more important in our experience. Kulisch accu-
mulator conversion back to log or linear N-bit types uses a LZ counter and shifter but can be sub-
stantially amortized in two ways. First, many sums are performed, with final conversion done only
once per inner product. Energy for the majority of work is thus lower than MAC/FMA (Section 8);
increased area for increased energy efficiency is generally useful in the era of “dark silicon” [32],
or conversion module instances can be rationed (limiting throughput) and/or clock gated. Second,
structures with local operand reuse (e.g., systolic arrays, fixed-function convolvers) naturally require
fewer converter instances, reducing area (discussion in Section 8 as well). EMA and FMA accuracy
are the same for a single sum c + ab; our power advantage would disappear in this domain, but the
vast majority of flops/ops in NNs require repeated rather than singular sums. Note that int8/32 usage
itself requires some conversion back to int8 in the end that we do not evaluate.

7 FPGA experiments

Our implementation is in SystemVerilog for ASIC evaluation, built into an FPGA design with Intel
FPGA OpenCL RTL integration support, with rudimentary PyTorch [27] integration. Source code is
available at github.com/facebookresearch/deepfloat. We evaluate (N, s) posit and
(N, s, α, β, γ) log arithmetic on the ResNet-50 CNN [13] with the ImageNet ILSVRC12 validation
set [30]. We use float32 trained parameters from the PyTorch model zoo, with batch normalization
fused into preceding affine layers [15]. float32 parameters and network input are converted to our
formats via round-to-nearest-even; no other adjustment of these values is performed. When convert-
ing into or out of a Kulisch accumulator, we can add a small exponent bias factor, adjusting the input
exponent by m, or the output exponent by n. This is effectively free (a small adder). No changes
are made to any activations except for such a bias of n = −4 at the last (fully connected) layer to
recenter unnormalized log probabilities from around 16.0 to 1.0. Without this we have an additional
loss in top-1 of around 0.5-1%, with little change to top-5. If the Kulisch accumulator itself can be
directly considered for top-k comparison, this avoids the need as well. All math is replaced with the
corresponding posit or log versions; average pooling is via division of the Kulisch accumulator.

Our results are in Table 2, along with two int8/32 quantization comparisons. (8, 0) linear posit has
insufficient dynamic range to work; activations are quickly rounded to zero. Our (8, 1, 5, 5, 7)
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Table 3: Chip area and power for 28 nm, 1-cycle multiply-add at 500 MHz

Component Area µm2 Power µW
int8/32 MAC PE 336.672 283
multiply 121.212 108.0
add 117.810 62.3
non-combinational 96.768 112.7

(8, 1, 5, 5, 7) log ELMA PE 376.110 272
log multiply (9 bit adder) 32.760 17.1
r(p(f)) (16x5 bit LUT) 8.946 5.4
Kulisch shift (6 → 38 bit) 81.774 71.0
Kulisch add (38 bit) 123.732 54.2
non-combinational 126.756 124.3

float16 (w/o denormals) FMA PE 1545.012 1358
(5, 10) (11, 11, 10) log ELMA PE 1043.154 805
(this log is (5, 10) float16-style encoding, same dynamic range;
denormals for log and float16 here are unhandled and flush to zero)

32x32 systolic w/ int8/32 MAC PEs 348231 226000
32x32 systolic w/ (8, 1, 5, 5, 7) log ELMA PEs 457738 195500

log result remains very close to (8, 1) linear posit. The int8/32 results listed do not start from the
same float32 parameters as our trained network, so they are not directly comparable. They use train-
ing with simulated quantization [15] and KL-divergence calibration with sampled activations [23],
whereas we perform math in the usual way in our log or linear domain arithmetic after rounding in-
put and parameters. We obtain reasonably similar precision without retraining, sampling activations
or learning quantization parameters, while retaining general floating point representations in 8 bits.

8 ASIC evaluation

We use Synopsys Design Compiler and PrimeTime PX with a commercially available 28 nm library,
target clock 500 MHz. Process corners are SS@-40◦C synthesis, TT@25◦C power analysis at 0.81V.
Table 3 investigates multiply-add PEs, and as a proxy for an accelerator design, a 32x32 matrix
multiplication systolic array with these PEs. The float16 FMA is Synopsys DesignWare dw_fp_mac.
We accumulate to the C matrix in place (stationary C), shifting out values upon completion. The
int8/32 array outputs unprocessed int32; for ELMA, Kulisch accumulators are shifted across the PEs
for C output and converted to 8 bit log at the boundary via 32 conversion/encoder modules. The 1024
PEs within do not include these (as discussed in Section 6). 64 posit taper decoders are included
for where A and B are passed as input. Power analysis uses testbench waves for 128-d vectors with
elements drawn from N(0, 1); int8 quantization has a max of 2σ. PEs evaluate a variety of these
inner products, and the systolic arrays a variety of GEMMs with these vectors.

ELMA saves 90.9 µW over int8/32 on multiplication, but loses 68.3 µW on the add. ELMA non-
combinational demands are higher with additional state required (Kulisch and decoded log numbers),
but could be reduced by not handling underflow all the way to f2

min. Despite the larger Kulisch adder,
effectively only 6 bits are summed (with carry) each cycle versus up to 16 with int8/32; strategies
for 500+ bit Kulisch accumulators [34] might work in this small regime to further take advantage
of this. Our 16-bit ELMA α = 11 p(f) combinational LUT is 386 µm2 despite compression, now
a significant portion of the design. Larger α likely needs a compiled ROM or explicit compute of
p(f).

A more in-depth analysis for our work would need to determine a Pareto frontier between fre-
quency/latency, per-operation energy, area, pipeline depth, math implementation and accuracy sim-
ilar to the Galal et al. FPU generator work [7], to see precisely in what regimes ELMA is advanta-
geous. We provide our limited analysis here, however rough, to help motivate future investigation.
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9 Conclusions

DNNs are resilient to many forms of numerical tinkering; they allow re-evaluation of design deci-
sions made long ago at the bottom of the hardware stack with reduced fear of failure. The design
space of hardware real number representations is indeed quite large and underexplored [22], as is as
the opportunity to improve hardware efficiency and software simplicity with alternative designs and
judicious use of numerical approximation. Log domain representations, posits, Kulisch accumula-
tion and combinations such as ELMA show that floating point efficiency and applicability can be
substantially improved upon. We plan on continuing investigation of this arithmetic design space at
the hardware level with DNN training, and on general numerical algorithms in the future.
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1 Overview

1.1 Scope

This standard specifies the storage format and mathematical behavior of posit numbers, and the set of func-
tions a posit arithmetic system must support, including basic arithmetic operations. It includes a description
of how results are to be rounded, what situations generate an exception, and whether those exceptions are
handled by the implementation or by the user.

1.2 Purpose

This standard provides a system for computing with real numbers represented in a computer using fixed-size
binary values. Deviations from mathematical behavior (including loss of accuracy) are kept to a minimum
while preserving the ability to represent a wide dynamic range of values. All features are accessible by
programming languages; the source program and input data are sufficient to specify the output exactly on
any computer system, similar to the way 2’s complement integer arithmetic produces bitwise-identical results.

1.3 Inclusions

This standard specifies:

• Formats for binary data, for computation and data interchange

• Addition, subtraction, multiplication, division, dot product, compare, and other operations

• Mathematical functions such as logarithm, exponential, trigonometric, and hyperbolic functions

• Conversions of other number representations to posit format

• Conversions between different posit formats

• Exception handling when a result is not a real number (NaR).

1.4 Requirements vs. Recommendations

All descriptions herein are requirements of the behavior of the system. The decision of how to satisfy the
requirements (using any combination of hardware and software) is up to the implementer of this standard,
but all functionality must be provided and behave as described for a system to be posit-compliant.

1.5 Programming Environment

A programming environment may claim to be compliant with this standard if it supports at least one of the
four precisions (8, 16, 32, 64) completely. If it includes more than one precision, then it must also provide
the ability to convert between those precisions.
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2 Definitions, abbreviations, and acronyms

2.1 Definitions

correct rounding This standard’s method of converting an infinitely precise value to a posit. A posit so
obtained is said to be correctly rounded.

es exponent size. The maximum number of bits 0, 1, 2, 3, . . . that are available for expressing the exponent.

exponent The part of the power-of-two scaling determined by the exponent bits.

exponent bits A field of bits within a posit that, in combination with the regime bits, determines the
power-of-two scaling of the fraction.

exponent size es

format A set of bits and the definition of their meaning.

fraction The component of a posit containing its significant binary digits after the binary point; 0 ≤
fraction < 1.

hidden bit An assumed 1 bit before the MSB of the fraction.

LSB least significant bit

lg logarithm base 2

MSB most significant bit

maxpos The largest real value expressible as a posit.

minpos The smallest nonzero value expressible as a posit.

NaR Not a real. A value that has infinite magnitude, is indeterminate, is multi-valued, or requires an
imaginary component to express (like

√
−1) is represented as NaR .

nbits number of bits. The precision of a posit format, the total number of bits (8, 16, 32, or 64).

not a real number NaR

number of bits nbits

pintmax posit integer maximum. The largest consecutive integer expressible as a posit.

posit A real number that is exactly representable using a fixed number of bits in the format described in
this standard, or a NaR .

precision The number of bits available for expressing a quantity.

quire A fixed-point format capable of storing sums of products of posits without rounding, up to some large
number of such products.

regime A subfield of a posit consisting of some number of identical bits terminated by the opposite bit or
the end of the number, that contributes to the specification of the power-of-two scaling of the fraction.

sign The value +1 for positive numbers, -1 for negative numbers. Exception values 0 and NaR have no sign.

sign bit The MSB of a posit or quire, 0 or 1.

significand The implicit 1 bit followed by the fraction bits; 1 ≤ significand < 2.

universal number unum

unum universal numbers express real numbers (posits) and ranges of real numbers (valids).
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unum seed useed

useed unum seed. A value obtained by starting with 2 and squaring repeatedly es times: 2, 4, 16, 256,
. . . influencing the way the projective real circle of unums gets populated.
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property posit8 posit16 posit32 posit64
Max significand bits 6 13 28 59
Max exponent bits, es 0 1 2 3
minpos 2−6 ≈ 1.5× 10−2 2−28 ≈ 3.7× 10−9 2−120 ≈ 7.5× 10−37 2−496 ≈ 4.9× 10−150

maxpos 26 ≈ 6.4× 101 228 ≈ 2.7× 108 2120 ≈ 1.3× 1036 2496 ≈ 2.0× 10149

pintmax 8 256 222 252

quire bits 32 128 512 2048
Exact sum quire limit 32767 243 − 1 2151 − 1 2559 − 1
Exact dot product quire limit 127 32767 231 − 1 263 − 1

Table 1: Properties of posit formats

3 Posit and quire formats

3.1 Overview

3.1.1 Formats

This clause defines posit formats, which are used to represent a finite set of real numbers. Posit formats are
specified by their precision, nbits. For each posit format, there is also a format of size nbits2/2 that is used
to contain exact sums of products of posits. All properties such as dynamic range, accuracy, quire size and
format, are determined solely by the precision.

There are four precisions described in this standard: 8, 16, 32, and 64. We sometimes refer to the four
corresponding formats as posit8, posit16, posit32, and posit64.

3.1.2 Compliance

An implementation is compliant with this standard if it supports full functionality of at least one precision
(8, 16, 32, or 64). If the implementation supports more than one precision, then it must support conversions
between the precisions that it supports.

Note: If hardware supports posit multiplication, addition, subtraction, and the quire, all remaining
functionality can be supported with software.

3.1.3 Represented data

Within each format, a posit represents either NaR, or a number of the form m × 2n, where m and n are
integers limited to a range symmetrical about and including zero. The maximum m range is −2p < m < 2p

where p = nbits− lg(nbits) + 1 is the maximum number of significant digits (bits).

The smallest positive posit, minpos, is 2
1
8nbits(2−nbits) and the largest positive posit, maxpos, is the

reciprocal of minpos, or 2
1
8nbits(nbits−2). Every posit is an integer multiple of minpos. Every real number

maps to a unique posit representation; there are no redundant representations.
The quire represents either NaR or an integer multiple of minpos2, represented as a 2’s complement binary

number with 2nbits
2/2 bits. This enables it to add a list of posits or a list of exact products of posits without

rounding error and thereby satisfy the associative and distributive laws of algebra up to some minimum
length. Sums of lists longer than that minimum are capable of integer overflow.

Posits can exactly express all integers i in a range −pintmax ≤ i ≤ pintmax; outside that range, integers
exist that cannot be expressed as a posit without rounding to a different integer.

The values for the posit formats are summarized in properties-table.
The exact sum quire limit and exact dot product quire limit are the number of additions or multiplication-

additions up to which the quire cannot overflow. Up to these limits, the quire obeys the associative law of
addition and the distributive law.
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S (sign) R (regime) E (exponent) F (fraction)

1 bit MSB LSBr + 1 bits

R0 . . . . . .Rr

MSB LSBe bits

E0 . . . . . .Ee−1

MSB LSBf bits

F0 . . . . . .Ff−1

Figure 1: General binary posit format

S (sign) R (regime)

1 bit MSB LSBr bits

R0 . . . . . .Rr−1

Figure 2: Binary posit format with zero-length exponent and fraction

3.2 Binary interchange format encoding

3.2.1 Posit format encoding

All posits have just one encoding in a binary interchange format shown in posit format encoding-general and
posit format encoding-signedregime. The four fields are:

1. Sign bit S

2. Regime R consisting of r bits identical to R0, terminated by 1−R0 (r+ 1 bits total length) or the end
of the posit (r bits total length).

3. Exponent E represented by e exponent bits, terminated by a maximum of es or the end of the posit

4. Fraction F represented by f fraction bits, terminated by the end of the posit

The meaning of each field is as follows:

1. S is its literal value, 0 or 1.

2. R is −r if R0 is 0, and r − 1 if R0 is 1.

3. E is an es-bit unsigned integer, with 0 bit padding in the least significant bits if the exponent field has
fewer than es bits because of the regime length.

4. F represents an unsigned integer divided by 2f .

Note
The exponent field size e and fraction field size f can each be 0, in which case they represent 0; 0 ≤ e ≤ es

and 0 ≤ f ≤ nbits− lg(nbits). The hidden bit is 1 even if f is 0.
The representation (S,R,E, F ) of the posit and value v of the datum represented are inferred from the

fields as follows:

1. If S = 0 and all other fields contain only 0 bits, then v = 0.

2. If S = 1 and all other fields contain only 0 bits, then v is NaR and undefined.

3. If any bits in the (R,E, F ) are 1, then (1− 3S + F )× 2(−1)S(R×2
es

+E+S).
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S (sign) C (carry guard) I (integer) F (fraction)

1 bit MSB LSBc bits

C0 . . . . . .Cc−1

MSB LSBnq bits

I0 . . . . . . Inq−1

MSB LSBnq bits

F0 . . . . . .Fnq−1

Figure 3: Binary quire format

3.2.2 Quire format encoding

The quire is a fixed-point 2’s complement value of length nbits2/2 which is 32, 128, 512, or 2048 bits for the
posit sizes 8, 16, 32, and 64 respectively.

The number of bits for the fraction is nq = 1/4nbits2 − 1/2nbits. The integer part also has nq bits. The
carry guard has c = nbits − 1 bits to guarantee that sums of products cannot overflow, up to 2nbits−1 − 1
products.

The representation (S,C, I, F ) of the quire and value v of the datum represented are inferred from the
fields as follows:

1. If S = 1 and all other fields contain only 0 bits, then v is NaR and undefined.

2. For all other cases, the value v is the 2’s complement signed integer represented by all bits, divided by
2nq.
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4 Rounding

4.1 Definition and Method

Rounding is the substitution of an expressible posit for any exact real number that is not expressible as a
posit. The results of all operations are regarded as mathematically exact prior to rounding.

The method for rounding a real value x is as follows:

1. If x is exactly expressible as a posit, it is unchanged.

2. If |x| > maxpos, x is rounded to sign(x) * maxpos .

3. If 0 < |x| < minpos, x is rounded to sign(x) * minpos .

4. For all other values, the value is rounded to the nearest binary value if the posit were encoded to infinite
precision beyond the nbits length; if two posits are equally near, the one with binary encoding ending
in 0 is selected.

Note: Rule (4) has the effect of rounding to the posit with the nearest logarithm when the dropped bit
is an exponent bit, and to the nearest posit by absolute difference in other cases.

4.2 Fused Operations

A fused operation is an expression with two or more operations that is not rounded until the entire expres-
sion is evaluated exactly. Fused operations are distinct from non-fused operations and must be explicitly
requested in a posit-compliant programming environment. Fused operations are those expressible as sums
and differences of the exact product of two posits; no other fused operations are allowed.

All fused operations can be performed as accumulations in a . A particular posit environment may perform
fused operations without using a quire, but may not fuse any operations that cannot be performed as exact
dot products of vectors with posit components. Exact sums are dot products where one vector consists of
all 1 values. The fused multiply-add operation ab+ c is a dot product of vectors (a, 1) and (b, c). A complex
product (a+ bi)× (c+di) can be performed as two fused operations, ac− bd and ad+ bc. An expression such
as abc or ab/d is not in the form of the sum or difference of products and may not be fused.
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5 Operations

5.1 Guiding principles

If NaR is the input to an operation, the result is also NaR . For a function f(p) of a posit p, the mathematical
value y is the limit f(x) as x approaches p within the domain of the function, from any direction. If that
limit is a determinate real number, the operation should return the closest posit to y using the rounding
rules of clause 4. Similarly, for functions of more than one argument; the limits for each argument are taken
without correlation to one another. If the limit is not a real number, the result is NaR .

Many functions are identical to standard 2’s complement integer operations. The internal processor flags
for those posit operations behave identically.

5.2 Mathematical functions

The following functions shall be supported, with correct rounding for all input arguments per clause 4. If
cases can produce NaR from non-NaR inputs, the function description notes those cases.

5.2.1 Elementary functions of one argument

negate(posit) is identical to 2’s complement integer negation.
abs(posit) is identical to 2’s complement integer absolute value.
round(posit) converts posit to the nearest posit with integer value, and the nearest even integer if two

integers are equally far from posit.
sign(posit) returns 1 if the value of posit is positive, and -1 if the value of posit is 1. If posit is zero or

NaR, sign(posit) returns 0.

5.2.2 Elementary functions of two arguments

addition(posit1, posit2) returns posit1 + posit2 , rounded

subtraction(posit1, posit2) returns posit1 - posit2 , rounded

multiplication(posit1, posit2) returns posit1 * posit2 , rounded

division(posit1, posit2) returns NaR if posit2 is 0, else posit1 / posit2 , rounded

5.2.3 Comparison functions of two arguments

All comparison functions are identical to the comparisons of the posit bit strings regarded as 2’s complement
integers, so there is no need for separate machine-level instructions. The value NaR has the bit string of the
most negative integer, so NaR < posit returns True if posit is not NaR . The posit environment shall
support:

boolean compareEqual(posit1 , posit2)

boolean compareNotEqual(posit1 , posit2)

boolean compareGreater(posit1 , posit2)

boolean compareGreaterEqual(posit1 , posit2)

boolean compareLess(posit1 , posit2)

boolean compareLessEqual(posit1 , posit2)

Note: Testing if a posit is NaR is not an exception: compareEqual(NaR, posit).

5.2.4 Functions of one argument

sqrt(posit) returns NaR if posit < 0, else the square root of posit, rounded.
rSqrt(posit) returns NaR if posit < 0, else 1/sqrt(posit), rounded.
exp(posit) returns eposit, rounded.
expm1(posit) returns eposit − 1, rounded.
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exp2(posit) returns 2posit, rounded.
exp2m1(posit) returns 2posit − 1, rounded.
exp10(posit) returns 10posit, rounded.
exp10m1(posit) returns 10posit − 1, rounded.
log(posit) returns loge(posit), rounded. Returns NaR if posit ≤ 0.
logp1(posit) returns loge(posit+ 1), rounded. Returns NaR if posit ≤ −1.
log2(posit) returns log2(posit), rounded. Returns NaR if posit ≤ 0.
log2p1(posit) returns log2(posit+ 1), rounded. Returns NaR if posit ≤ −1.
log10(posit) returns log10(posit), rounded. Returns NaR if posit ≤ 0.
log10p1(posit) returns log10(posit+ 1), rounded. Returns NaR if posit ≤ −1.
sin(posit) returns sin(posit), rounded.
sinPi(posit) returns sin(π × posit), rounded.
cos(posit) returns cos(posit), rounded.
cosPi(posit) returns cos(π × posit), rounded.
tan(posit) returns tan(posit), rounded.
tanPi(posit) returns tan(π × posit), rounded.
asin(posit) returns NaR if |posit| > 1, else arcsin(posit), rounded.
asinPi(posit) returns NaR if |posit| > 1, else arcsin(posit) / π, rounded.
acos(posit) returns NaR if |posit| > 1, else arccos(posit), rounded.
acosPi(posit) returns NaR if |posit| > 1, else arccos(posit) / π, rounded.
atan(posit) returns arctan(posit), rounded.
atanPi(posit) returns arctan(posit) / π, rounded.
sinh(posit) returns sin(posit), rounded.
cosh(posit) returns cos(posit), rounded.
tanh(posit) returns tan(posit), rounded.
asinh(posit) returns NaR if |posit| > 1, else arcsin(posit), rounded.
acosh(posit) returns NaR if |posit| > 1, else arccos(posit), rounded.
atanh(posit) returns arctan(posit), rounded.

5.2.5 Functions of two posit arguments

hypot(posit1, posit2) returns the square root of posit12 + posit22, rounded.
pow(posit1, posit2) returns posit1posit2, rounded. (exceptions. . . )
atan2(posit1, posit2) atan2Pi**(posit1, posit2)

5.2.6 Functions of a posit argument and an integer argument

compound(posit, n) returns NaR if x ≤ − 1, else (1 + x)n, rounded
pown(posit, n) returns NaR if . . . ,
rootn(posit, n)
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6 Conversion to and from character format

6.1 Guiding principles

Complete section on conversion to and from character format
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7 Language support

7.1 Guiding principles

Complete section on language support
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