Application of Hydroalcoholic Solutions of Formaldehyde in Preparation of Acetylsalicylic Acid Gastro-Resistant Capsules

M. E. Pina a; A. T. Sousa a

* Laboratory of Galenic and Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000 Coimbra, Portugal

Online Publication Date: 16 May 2002

To link to this Article: DOI: 10.1081/DDC-120003005
URL: http://dx.doi.org/10.1081/DDC-120003005

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Application of Hydroalcoholic Solutions of Formaldehyde in Preparation of Acetylsalicylic Acid Gastro-resistant Capsules

M. E. Pina* and A. T. Sousa

Laboratory of Galenic and Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000 Coimbra, Portugal

ABSTRACT

Enteric coating of hard gelatin capsules by application of hydroalcoholic solutions of formaldehyde was studied and developed in accordance with previous publications. It is possible to affirm that this coating constitutes a simple, stable, reproducible, and inexpensive method, being a valid alternative to those which have been proposed. The aim of the present investigation is the preparation of acetylsalicylic acid gelatin capsules with good conditions of gastro-resistance and enteros solubility.

Key Words: Acetylsalicylic acid; Disintegration; Drug release; Formaldehyde; Gastro-resistant capsules; Stability

INTRODUCTION

Acetylsalicylic acid is one of the most useful drugs because of its analgesic, antipyretic, anti-inflammatory, and inhibitory effects on platelet aggregation. However, the use of this drug can cause complications such as gastro-irritation, ulcers, and gastric hemorrhage. These problems can be diminished by an enteric coating that eliminates dissolution in the stomach, thus protecting the gastric mucosa from the erosive action of acetylsalicylic acid (1,2).

The high enteric absorption of acetylsalicylic acid can seem contradictory if only the pH partition theory is considered (3). Several studies demonstrate that apparently ionized drugs in totality can be absorbed, because a pH value of 5.3 is present at the intestinal epithelium, which defines the dissociation degree of the drug that is absorbed. On the
other hand it was proved that, when a drug has high permeability through the intestinal mucosa, its absorption rate is related to the circulation rate, which is higher than in the gastric mucosa. These two facts, associated with the greater intestinal surface, explain the high enteric absorption of the acetylsalicylic acid (4,5). Paying attention to previous considerations, it is possible to affirm that this drug must be submitted to an enteric coating.

The basis of the described enteric procedure is the crosslinking of gelatin with formaldehyde. In previous work, this reaction was monitored by Fourier transform-infrared (FT-IR) spectroscopy. Principal component regression analysis of the spectra recorded at different times was carried out in order to ensure that spectral vibration was more objectively analyzed. The results demonstrate that the reaction is initialized by the lysine–methylol formation and is subsequently followed by arginine–methylol, which in turn reacts with lysine–methylol to originate arginine–lysine crosslinks (6).

The main purpose of this study is to obtain stable gastro-resistant acetylsalicylic gelatin capsules, taking into consideration that not more than 10% of the drug should be released from capsules on in vitro dissolution in simulated gastric fluid (2 hr), and that in a subsequent test using simulated intestinal fluid (0.75 hr), not less than 75% of the active ingredient should be dissolved (7,8).

MATERIALS AND METHODS

Materials

The materials employed were as follows: 00, 0 hard gelatin capsules (colorless; Capsugel, Colmar, France), 0 hard gelatin capsules (not transparent; Capsugel). Acetylsalicylic acid (125–315 µm; 125–400 µm; Bayer, Coimbra, Portugal). Simulated gastric and intestinal fluids [preparation carried out in accordance with USP XXII (8)]. Ethyl alcohol 75% (v/v), formaldehyde (36.6% w/w), and sodium hydroxide, all of analytical grade (Merck, Lisboa, Portugal).

Formulations

Preliminary tests were carried out to define the acetylsalicylic acid granulometry and the conditions of formaldehyde treatment, which allowed us to obtain the previously established properties.

Relative to the drug release in simulated gastric fluid, the best results were achieved when the capsules were filled with acetylsalicylic acid (125–315 µm) but the drug showed a “clumping effect,” with a low drug release in simulated intestinal fluid; this fact was observed by other researchers (9,10). So, the capsules were filled manually with acetylsalicylic acid (125–400 µm) and sealed in accordance with previous work (11–13).

Coating Procedure

The different capsules were subjected to the following regime:

- formaldehyde concentration 3% (prepared from formaldehyde 36.6% w/w 8.2 g, ethyl alcohol 95% v/v 71.1 g, and water 20.7 g);
- alc. degree of formaldehyde solution 75% (v/v);
- immersion time in formaldehyde solution 15 min;
- first drying at 37°C for 30 min;
- washing with alcohol 75% (v/v) for 15 min;
- second drying at 37°C for 16 hr

or:

- second drying at 37°C for 30 min+15.5 hr at ambient temperature.

Characteristics of the Formulations

The appearance of capsule shells and contents was observed. The weight uniformity was determined in accordance with Farmacopeia Portuguesa V (FPV) (14).

Capsule Size

The studies were carried out with acetylsalicylic acid capsules (00, 665 mg) and (0, 476 mg); the referred amounts allowed their filling up.

Quantification of Free and Residual Formaldehyde

The values of free and residual formaldehyde were respectively determined by high-performance liquid chromatography (HPLC) measurements (12,15).
Quantification of Active Substance

Drug concentrations in simulated gastric and intestinal fluids were determined spectrophotometrically from the formulations at 303 nm (16,17).

Disintegration Testing

The disintegration performance of capsules was evaluated as described previously (12).

Dissolution Testing

The different capsules (attached with a few turns of wire helix that would otherwise float) were subjected to dissolution testing using a dissolution apparatus with rotative paddle (Hanson Research, Northbridge, CA, USA) for 2 hr in simulated gastric fluid maintained at 37°C and at speed 50 rpm. After this time the intact capsules were first rinsed in water and immediately immersed in simulated intestinal fluid for 75 min. Filtered samples were withdrawn and analyzed spectrophotometrically, at regular intervals.

Stability Studies

During the storage, the gastro-resistant dosage forms are subjected to physical and chemical alterations than can modify the bioavailability and bioavailability of drugs (18,19). Paying attention to these considerations, residual formaldehyde, disintegration, and dissolution tests were determined on capsules, immediately after coating and at the end of 1, 2, 3, and 6 months of holding the capsules packed in plastic bottles, well stoppered, at 37°C and a relative humidity of 20–25%, or at ambient temperature and a relative humidity of 40–50%.

RESULTS AND DISCUSSION

Characteristics of the Formulations

During our study the capsules presented no physical or content modifications. Weight uniformity was in accordance with the limits of FPV (14).

Determination of “Free” and Residual Formaldehyde

The results from Table 1 demonstrate that higher values are represented by colorless capsules (00), validating the previous results (12). The colorless and not transparent capsules (0) showed identical results, which indicates that the presence of titanium dioxide does not affect the coating procedure.

On the other hand Tables 2 and 3 indicate that the residual formaldehyde changed with the inverse ratio of the ageing time, but from 3 months of storage onwards stabilization is evident. These results are in accordance with a previous study (12). The residual formaldehyde concentration does not constitute any difficulty for capsule administration (20).

Table 1

<table>
<thead>
<tr>
<th>Batch</th>
<th>“Free” Formaldehyde</th>
<th>SD</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorless 0</td>
<td>0.662±0.041</td>
<td>0.033</td>
<td>4.94</td>
</tr>
<tr>
<td>Colorless 0</td>
<td>0.438±0.027</td>
<td>0.022</td>
<td>4.95</td>
</tr>
<tr>
<td>Not transparent 0</td>
<td>0.456±0.007</td>
<td>0.005</td>
<td>1.20</td>
</tr>
</tbody>
</table>

*Mean values of five experiments±confidence interval (95%).

*Standard deviation.

Table 2

<table>
<thead>
<tr>
<th>Batch</th>
<th>Residual Formaldehyde</th>
<th>After Coating</th>
<th>1 Month</th>
<th>3 Months</th>
<th>6 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorless 0</td>
<td>0.411±0.015</td>
<td>0.102±0.007</td>
<td>0.077±0.007</td>
<td>0.066±0.002</td>
<td></td>
</tr>
<tr>
<td>Colorless 0</td>
<td>0.312±0.010</td>
<td>0.078±0.001</td>
<td>0.048±0.005</td>
<td>0.041±0.002</td>
<td></td>
</tr>
<tr>
<td>Not transparent 0</td>
<td>0.310±0.020</td>
<td>0.075±0.004</td>
<td>0.041±0.003</td>
<td>0.039±0.004</td>
<td></td>
</tr>
</tbody>
</table>

*Mean values of five experiments±confidence interval (95%).
Disintegration Time of Capsules

The disintegration time of uncoated capsules was 2 min in simulated gastric fluid. Tables 4 and 5 show that the disintegration performance was constant during storage for all capsules.

Dissolution Testing

The results related to the dissolution profiles of the studied formulations are shown in Figs. 1–7. The described results allow us to conclude the following: the studied coating makes it possible to obtain capsules with a good gastro-resistance, presenting an acetylsalicylic acid release in simulated gastric fluid lower than 5% and in simulated intestinal fluid greater than 85% at the end of 45 min for all kinds of capsules tested. The drying procedure, size, or gelatin composition did not influence the obtained results.

Stability Studies

Analyzing the identical results of residual formaldehyde, disintegration, and dissolution times for all tested capsules after 1, 3, and 6 months of storage,

Table 3

<table>
<thead>
<tr>
<th>Batch</th>
<th>Residual Formaldehydea (mg/capsule)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After Coating</td>
</tr>
<tr>
<td>Colorless 00</td>
<td>0.428±0.007</td>
</tr>
<tr>
<td>Colorless 0</td>
<td>0.335±0.012</td>
</tr>
<tr>
<td>Not transparent 0</td>
<td>0.336±0.008</td>
</tr>
</tbody>
</table>

aMean values from five experiments ± confidence interval (95%).

Table 4

<table>
<thead>
<tr>
<th>Batch</th>
<th>Disintegration Timea (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After Coating</td>
</tr>
<tr>
<td>Colorless 00</td>
<td>9.1±0.7</td>
</tr>
<tr>
<td>Colorless 0</td>
<td>8.5±0.6</td>
</tr>
<tr>
<td>Not transparent 0</td>
<td>8.9±0.3</td>
</tr>
</tbody>
</table>

aMean values from five experiments ± confidence interval (95%).

Table 5

<table>
<thead>
<tr>
<th>Batch</th>
<th>Disintegration Timea (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After Coating</td>
</tr>
<tr>
<td>Colorless 00</td>
<td>8.7±0.3</td>
</tr>
<tr>
<td>Colorless 0</td>
<td>8.7±0.6</td>
</tr>
<tr>
<td>Not transparent 0</td>
<td>8.6±0.5</td>
</tr>
</tbody>
</table>

aMean values from five experiments ± confidence interval (95%).
Figures 1-6 illustrate the dissolution profiles of Acetylsalicylic Acid gastro-resistant capsules under various conditions.

Figure 1. Dissolution profile of uncoated capsules.

Figure 2. Dissolution profile of dried 00 capsules at 37°C.

Figure 3. Dissolution profile of dried 00 capsules at ambient temperature.

Figure 4. Dissolution profile of dried colorless 0 capsules at 37°C.

Figure 5. Dissolution profile of dried colorless 0 capsules at ambient temperature.

Figure 6. Dissolution profile of dried not transparent 0 capsules at 37°C.
at 37°C and at ambient temperature, we verify a stabilization of the coating procedure.

CONCLUSIONS

The studied coating allowed us to obtain stable acetylsalicylic acid gelatin capsules with a good gastro-resistance and enteros solubility, in accordance with the proposed objectives.

The properties of prepared gelatin capsules are identical to those obtained by other researchers, although using a different experimental methodology (21,22).

From these results it is possible to affirm that the application of formaldehyde constitutes a valid alternative to those methods developed for the enteric coating of acetylsalicylic acid gelatin capsules.

ACKNOWLEDGMENT

The authors acknowledge the financial support of the Centro de Estudos Farmacêuticos, Faculty of Pharmacy, University of Coimbra.

REFERENCES
