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Let A ¼ ðaijÞ be an n-by-n matrix. For any real �, define the polynomial

P�ðAÞ ¼
X
�2Sn

a1�ð1Þ . . . an�ðnÞ �
‘ð�Þ,

where ‘ð�Þ is the number of inversions of the permutation � in the symmetric group Sn. We
prove that P�ðAÞ is a strictly increasing function of � 2 ½�1, 1�, for a Hermitian positive definite
nondiagonal matrix A, whose graph is a tree.
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1. Introduction

Given an n� n matrix A ¼ ðaijÞ and a real � we will be interested in the polynomial
P�ðAÞ, the �-permanent of A, defined as

P�ðAÞ ¼
X
�2Sn

Yn
i¼1

ai�ðiÞ

 !
�‘ð�Þ, ð1:1Þ

where ‘ð�Þ is the number of inversions of the permutation � in the symmetric group Sn

of degree n, i.e.,

‘ð�Þ ¼ # ði, jÞ 2 f1, . . . , ng2 j i < j and �ðiÞ > �ð jÞ
� �
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The �-permanent is a generalization of the determinant and of the permanent, making
� ¼ �1 and �¼ 1, respectively. Note also that P0ðAÞ ¼ a11. . . ann.

Using the positive definiteness of f ð�Þ ¼ �‘ð�Þ on Sn (cf [1]), Bapat proved:

LEMMA 1.1 ([2]) For any Hermitian positive semidefinite matrix A,

P�ðAÞ � 0 , if � 2 ½�1, 1�:

Bapat conjectured and proved for n � 3:

CONJECTURE 1.2 ([2]) Given an n� n Hermitian positive definite nondiagonal matrix A,
P�ðAÞ is a strictly increasing function of � 2 ½�1, 1�.

This conjecture has been proved for a tridiagonal positive definite matrix in [3].
If Conjecture 1.2 is true, then

detA � P�ðAÞ � perA,

and it will give a generalization of both the classical Hadamard inequality and the
permanental analogue proved by Marcus [4] more than three decades ago.

The aim of this note is to verify Conjecture 1.2 when the graph of A is a tree, in
addition to the given hypothesis. In the end an illustrative example is given.

2. Weighted digraphs

A graph G consists of a finite set V whose members are called vertices, and a set E
of 2-subset of V. By a digraph or directed graph D ¼ ðV,AÞ we mean the same finite
set V, and a subset A of V � V, whose members are called arcs. Note that an arc
is an ordered pair (i, j), whereas an edge of a graph is an unordered pair fi, jg. If
to each arc we assign a real or a complex number, we have a weighted digraph.
We write i � j, if fi, jg is an edge of G, with i 6¼ j. For background information
on graphs and digraphs, we refer the reader to [5].

A directed path from i1 to ir, Pi1, ir , in the digraph D is a sequence of distinct vertices
ði1, i2, . . . , ir�1, irÞ such that each arc ði1, i2Þ, . . . , ðir�1, irÞ is in A. If to the path Pi1, ir we
add the arc ðir, i1Þ, then we have a cycle (of length r). Analogously we can define the
same concepts for a graph. A tree is a connected graph without cycles.

Given an arc e ¼ ði, jÞ of D, Dne is obtained by deleting e but not the vertices i or j;
on the other hand, Dni is obtained by deleting i and all arcs including i.

Let A ¼ ðaijÞ be an n� n matrix. The graph of A, G(A), is the pair ðV, EÞ, where
V ¼ f1, . . . , ng and fi, jg is an edge if and only if aij 6¼ 0 or aji 6¼ 0. Analogously, the
(weighted) digraph of A ¼ ðaijÞ is a directed graph having (i, j) as an arc if and
only if aij 6¼ 0, for i 6¼ j. The matrix A can be viewed as a weighted adjacency
matrix of digraph D(A) on n vertices, with loops (arcs of the type (i, i)) allowed
on the vertices.
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3. A l-permanental formula

A systematic and detailed account of various determinantal formulas relating the
structure of the digraph and the associated matrix can be found in several papers
(cf [4,6–9]). For example, the following is well known:

THEOREM 3.1 Given an n� n matrix A ¼ ðaijÞ and i 2 f1, . . . , ng, let us assume that
fc1, . . . , cmg is the set of all (directed ) cycles in DðAÞ ¼ D containing the vertex i. Then

detA ¼
Xm
j¼1

ð�1Þ‘ðcj Þ detAðD n cjÞ
Y

e2AðcjÞ

ae: ð3:1Þ

Notice that if D n cj is disconnected, then detAðD n cjÞ is a product of the determi-
nants of the weighted adjacency matrices of each component.

We can easily generalize (3.1) to the �-permanent defined in (1.1):

P�ðAÞ ¼
Xm
j¼1

Y
e2AðcjÞ

ae

0
@

1
AP�ðAðD n cjÞÞ�

‘ðcjÞ:

If A is Hermitian, then we have:

THEOREM 3.2 Given an n� n Hermitian matrix A ¼ ðaijÞ and i 2 f1, . . . , ng, let us
assume that fc1, . . . , cmg is the set of all cycles in GðAÞ ¼ G containing the vertex i. Then

P�ðAÞ ¼ aiiP� A G n ið Þð Þ þ
X
i�j

jaijj
2P� A G n ijð Þð Þ�‘ðijÞ

þ
Xm
j¼1

Y
e2EðcjÞ

ae

0
@

1
AP� A G n cj

� �� �
�‘ðcjÞ: ð3:2Þ

Since a tree has no cycles, we may establish the corollary:

COROLLARY 3.3 Given an n� n Hermitian matrix A ¼ ðaijÞ whose graph is a tree T and
i 2 f1, . . . , ng, then

P�ðAÞ ¼ aiiP�ðAðT n iÞÞ þ
X
i�j

jaijj
2P�ðAðT n ijÞÞ�‘ðijÞ: ð3:3Þ

Notice that if i<j, then ‘ðijÞ ¼ 2ð j � iÞ � 1, and therefore ‘ðijÞ is always odd.

4. The conjecture for trees

Given a Hermitian matrix A ¼ AðGÞ and a subset of indexes S let us denote throughout
by AS the complementary principal submatrix of A in the rows and columns defined
by S, i.e., AS ¼ AðG n SÞ.
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In this section we prove that under the conditions of Conjecture 1.2, the derivative
of P�ðAÞ with respect to � is positive, when the graph of A is a tree.

LEMMA 4.1 If A ¼ ðaijÞ is an n� n Hermitian matrix whose graph is a tree, then

d

d�
P�ðAÞ ¼

X
i�j

‘ðijÞjaijj
2P�ðAijÞ�

‘ðijÞ�1, ð4:1Þ

with i<j.

Proof We use induction on the order n. For n¼ 2,

P�ðAÞ ¼ a11a22 þ �a212 and
d

d�
P�ðAÞ ¼ a212:

Suppose now that the result is true for matrices with order less than n. Since,
from (3.3),

P�ðAÞ ¼ a11P�ðA1Þ þ
X
1�j

ja1jj
2P�ðA1jÞ�

‘ð1jÞ,

we have

d

d�
P�ðAÞ ¼ a11

d

d�
P�ðA1Þ þ

X
1�j

‘ð1jÞja1jj
2P�ðA1jÞ�

‘ð1jÞ�1

þ
X
1�j

ja1jj
2 d

d�
P�ðA1jÞ�

‘ð1jÞ:

Assume without loss of generality that if k � 1, then k<j, for all j 6� 1. By inductive
hypothesis:

d

d�
P�ðAÞ ¼ a11

X
1<i�j

‘ðijÞjaijj
2P�ðA1ijÞ�

‘ðijÞ�1

þ
X
1�k

‘ð1kÞja1kj
2P�ðA1kÞ�

‘ð1kÞ�1

þ
X
1�k

ja1kj
2
X
k<i�j

‘ðijÞjaijj
2P�ðA1kijÞ�

‘ðijÞ�1 �‘ð1kÞ

¼
X
1<i�j

‘ðijÞjaijj
2P�ðAijÞ�

‘ðijÞ�1

þ
X
1�k

‘ð1kÞja1kj
2P�ðA1kÞ�

‘ð1kÞ�1,

from (3.3). Hence we get (4.1). g

Since the graph of a tridiagonal matrix is a path, the result of Lal [3] is obtained as a
corollary.

COROLLARY 4.2 If A ¼ ðaijÞ is an n� n Hermitian tridiagonal matrix, then

d

d�
P�ðAÞ ¼

Xn�1

i¼1

jai, iþ1j
2P�ðAi, iþ1Þ:

From (4.1) and Lemma 1.1 we get the main result of this note.
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THEOREM 4.3 Given an n� n Hermitian positive definite matrix A whose graph is a tree,
P�ðAÞ is a strictly increasing function of � 2 ½�1, 1�.

5. An example

Consider the Hermitian matrix

A ¼

a11 a12 0 0 0
a12 a22 a23 0 0
0 a23 a33 a34 a35
0 0 a34 a44 0
0 0 a35 0 a55

0
BBBB@

1
CCCCA:

The graph of A is the tree

Notice that

P�ðAÞ ¼ a212a
2
35a44 �

4 þ a11a22a
2
35a44 �

3 þ a212a
2
34a55 �

2

þ ða212a33a44a55 þ a11a
2
23a44a55 þ a11a22a

2
34a55Þ�þ a11a22a33a44a55

Then the derivative of P�ðAÞ is

d

d�
P�ðAÞ ¼ 4 a212a

2
35a44 �

3 þ 3 a11a22a
2
35a44 �

2 þ 2 a212a
2
34a55 �

þ a212a33a44a55 þ a11a
2
23a44a55 þ a11a22a

2
34a55 ð5:1Þ

On the other hand, by Lemma 4.1

d

d�
P�ðAÞ ¼ a212 a33a44a55 þ a234a55 �þ a235a44 �

3
� �

þ a223 a11a44a55ð Þ

þ a234 a11a22a55 þ a212a55 �
� �

þ 3a235 a11a22a44 þ a212a44 �
� �

�2,

which is the equal to (5.1).
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For example, consider the matrix

A ¼

2 1=2 0 0 0
1=2 1 �1=4 0 0
0 �1=4 3 1 �2=3
0 0 1 1 0
0 0 �2=3 0 1

0
BBBB@

1
CCCCA:

Then

P�ðAÞ ¼
1

9
�4 þ

8

9
�3 þ

1

4
�2 þ

23

8
�þ 6:

whose graph, for � 2 ½�1, 1�, is
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