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Let A(G) be a Hermitian matrix whose graph is a given graph G. From the interlacing theorem,
it is known that mAðGniÞð�Þ � mAðGÞð�Þ � 1, where mAðGÞð�Þ is the multiplicity of the eigenvalue
� of A(G). In this note we improve this inequality for some paths with more than one vertex.
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1. Introduction and preliminaries

Spectra of ordinary adjacency matrices of graphs are relatively well known, but for
more general adjacency matrices this cannot be said. In the last few years, motivated
essentially by the works of Genin and Maybee [1] as well as Parter [2], Johnson, Leal
Duarte and others (cf [3–6,15]) developed the study of the multiplicities of eigenvalues
of real acyclic matrices.

Given an undirected finite graph G, possibly with loops, we write i � j, if the vertices
i and j are adjacent. If S is a subset of the vertex set of G, then GnS is the subgraph of G
induced by the vertices not in S. In particular, if i 2 VðGÞ, then G n i is the graph
obtained by removing i and all of its incident edges. For more details on graph
theory, the reader is referred to [7,8].

Let A ¼ ðaijÞ be a Hermitian matrix. The (weighted) graph of A, G(A), is determined
entirely by the off-diagonal entries of A: the vertex set is f1, . . . , ng and i and j are
adjacent if and only if aij 6¼ 0. Given a graph G, a matrix whose graph is G is denoted
by A(G). In particular, if A is a 01-matrix, with main diagonal equal to zero, then A
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is the adjacency matrix of G(A). Further, HðGÞ denotes the set of all n� n Hermitian
matrices which share a common graph G, i.e.,

HðGÞ ¼ A jA ¼ A�, GðAÞ ¼ G
� �

:

We denote by ’ðG, �Þ, or simply ’(G), the characteristic polynomial of A(G), i.e.,
’ðG, �Þ ¼ det ð�I � AðGÞÞ, sometimes referred to as the characteristic polynomial of G.

The general interlacing theorem between the eigenvalues of a Hermitian matrix and
any principal submatrix is well known in the literature (see e.g. [9]).

THEOREM 1.1 Let G be a graph on n vertices and AðGÞ 2 HðGÞ. Then all eigenvalues of
A(G) are real, say �1 � �2 � � � � � �n. Furthermore, if i is a vertex in G and
�1 � �2 � � � � � �n�1 are the eigenvalues of AðG n iÞ, then

�1 � �1 � �2 � �2 � � � � � �n�1 � �n,

i.e., the eigenvalues of A(G) interlace those of AðG n iÞ.

This theorem has a well-known corollary for tridiagonal matrices already proved
elsewhere.

COROLLARY 1.2 Let P be a path on n vertices and A 2 HðPÞ. Then A has n distinct real
eigenvalues.

In this note, we prove some relations between the multiplicities of an eigenvalue
whenever a path is taken away from the graph. In particular, if the graph is a tree,
a connected graph without cycles, then the multiplicity of an eigenvalue cannot go
down by more than 1. This result will be a natural generalization of a consequence
of Theorem 1.1 for trees. An example will be given.

2. Some properties of a characteristic polynomial of a graph

There are important similarities between orthogonal polynomials (for more details see
e.g. [10]) and the characteristic polynomial of a tree. Heilmann and Lieb [11] have
already connected orthogonal and matchings polynomials (cf, e.g. [12,13]).

For any vertices i and j of the graph of A, say G, define wijðAÞ ¼ aij. Given
a (weighted) path P in G with more than one vertex, let us define wðPÞ ¼Q

ðk, ‘Þ wk, ‘ðPÞ, where the product is taken over the weights of the edges ðk, ‘Þ of P.
We denote by Pij , the set of all paths connecting the vertex i to the vertex j. The
polynomial

’ijðG, �Þ ¼
X
P2Pij

wðPÞ’ðG n P, �Þ

can be regarded as the ij-entry of the adjoint of �I � AðGÞ (cf [13]). Notice that
’jiðG, �Þ ¼ ’ijðG, �Þ. Therefore

’ðG, �Þ’ðGni,�Þ � ’ðG,�Þ’ðGni, �Þ ¼ ð�� �Þ
Xn
j¼1

’ijðG, �Þ’ijðG,�Þ , ð2:1Þ

for any i 2 f1, . . . , ng.
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When A is acyclic, i.e., the graph of A is a tree T, since Pij has only one element, say
Pij, we get, for any vertex i,

’ðT , �Þ’ðTni,�Þ � ’ðT ,�Þ’ðTni, �Þ ¼ ð�� �Þ
Xn
j¼1

wðPijÞ
�� ��2’ðTnPij, �Þ’ðT n Pij,�Þ:

In analogy to the orthogonal polynomials, this equality is the so-called Christoffel–
Darboux Identity (cf [10,14]).

From (2.1) several identities can be derived:

LEMMA 2.1 Let G be a (weighted ) graph on n vertices. For every pair of vertices i, j of G,

’0ðG, �Þ’ðGni, �Þ � ’ðG, �Þ’0ðGni, �Þ ¼
Xn
k¼1

’ikðG, �Þ
2

’0ðG, �Þ2 � ’00ðG, �Þ’ðG, �Þ ¼
Xn
k, ‘¼1

’k‘ðG, �Þ
2

ð2:2Þ

’ðGni, �Þ’ðGn j, �Þ � ’ðGnij, �Þ’ðG, �Þ ¼ ’ijðG, �Þ
2: ð2:3Þ

3. Relations between the multiplicities

Throughout, mAð�Þ denotes the (algebraic) multiplicity of the eigenvalue � of a
Hermitian matrix A. From Theorem 1.1 we have

mAðTniÞð�Þ ¼ mAðGÞð�Þ þ 1, mAðGniÞð�Þ ¼ mAðGÞð�Þ, or mAðGniÞð�Þ ¼ mAðGÞð�Þ � 1,

for any matrix A(G) in HðGÞ, and for any vertex i in G. Notice that G has at least
one vertex such that mAðGniÞð�Þ ¼ mAðGÞð�Þ � 1. Indeed, the multiplicity of � as zero
of ’0ðG, �Þ is mAðGÞð�Þ � 1. If mAðTniÞð�Þ � mAðGÞð�Þ for all vertices i in G, then the
multiplicity of � as zero of ’0ðT , �Þ is at least mAðTÞð�Þ, since ’0ðG, �Þ ¼

Pn
k¼1 ’ðGnk, �Þ.

We now state the main result of this note.

THEOREM 3.1 Let P be a path in the graph G and A(G) in HðGÞ. If � is an eigenvalue
of A(G), then the multiplicity of � as zero of each ’ijðG, �Þ is at least mAðGÞð�Þ � 1. In
particular, if P is a path which does not intersect any cycle in G, then
mAðGnPÞð�Þ � mAðGÞð�Þ � 1. g

Proof Suppose that � is an eigenvalue of A(G) with mAðGÞð�Þ > 1. Then � is a zero of
’0ðG, �Þ2 � ’00ðG, �Þ’ðG, �Þ with multiplicity at least 2mAð�Þ � 2. From (2.2), � is a zero
of the nonnegative sum

Pn
i, j¼1 ’ijðG, �Þ

2, and therefore � as a zero of each ’ijðG, �Þ has
multiplicity at least mAðGÞð�Þ � 1.

COROLLARY 3.2 Let P be a path in the tree T and AðTÞ 2 HðTÞ. If � is an eigenvalue
of A(T), then mAðTnPÞð�Þ � mAðTÞð�Þ � 1.
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We finally point out that if mAðGnPij Þð�Þ ¼ mAðGÞð�Þ � 1 for some vertex j such that Pij

does not intersect any cycle of G, then mAðGniÞð�Þ ¼ mAðGÞð�Þ � 1. In fact, suppose that
mAðGniÞð�Þ � mAðGÞð�Þ. For any jð6¼ iÞ the multiplicity of � as a zero of
’ðGni, �Þ’ðGn j, �Þ � ’ðGnij, �Þ’ðG, �Þ is at least 2mAðGÞð�Þ � 1. Indeed, by (2.3), it is at
least 2mAðGÞð�Þ, hence mAðGnPij Þð�Þ � mAðGÞð�Þ.

We end this note with an example. Set

A ¼

2 �i 0 0 0 0 0

i �1 1=2 0 0 1 1� i

0 1=2 �3 2 �1 0 0

0 0 2 1 1 0 0

0 0 �1 1 1 0 0

0 1 0 0 0 1 0

0 1þ i 0 0 0 0 1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

The graph of A, say G, is

1 2

5

46

7

3

For the Hermitian matrix A, 1 is an eigenvalue of multiplicity two. Consider the path
627. Then 1 is also an eigenvalue of AðGn627Þ with multiplicity one. Hence, we may
conclude mAðGn6Þð1Þ ¼ mAðGÞð1Þ � 1 ¼ 1.
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