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MULTIPLICITY-FREE SKEW SCHUR FUNCTIONS WITH FULL
INTERVAL SUPPORT

OLGA AZENHAS, ALESSANDRO CONFLITTI, AND RICARDO MAMEDE

Abstract. It is known that the Schur expansion of a skew Schur function runs over the
interval of partitions, equipped with dominance order, defined by the least and the most
dominant Littlewood–Richardson filling of the skew shape. We characterise skew Schur
functions (and therefore the product of two Schur functions) which are multiplicity-free
and the resulting Schur expansion runs over the whole interval of partitions, i.e., skew
Schur functions having Littlewood–Richardson coefficients always equal to 1 over the full
interval.

1. Introduction and statement of results

The ring of symmetric functions has a linear basis of Schur functions sν indexed by par-
titions ν. Skew Schur functions sλ/µ are symmetric functions indexed by skew partitions
λ/µ, and they can be expressed as a linear combination of Schur functions by means of
the Littlewood–Richardson coefficients cλµ,ν , which are non-negative integers,

sλ/µ =
∑
ν

cλµ,νsν .

In particular, the product of two Schur functions is governed by these coefficients, sµsν =∑
λ c

λ
µ,νsλ. In representation theory, this basis is important because its elements occur as

characters of the general linear group GLn, and they correspond to characters of the sym-
metric group via the Frobenius map. Schur functions also have an intersection-theoretic
interpretation as representatives of Schubert classes in the cohomology ring of a Grass-
mannian. Thus Littlewood–Richardson coefficients amount to multiplicities of irreducible
representations, as well as to multiplicities in the decomposition of the cup product of
Schubert classes.

For any skew shape A, the support of A (or sA) is defined to be the set of the conjugates
of those partitions ν such that the Schur function sν appears with a positive integer
coefficient in the Schur expansion of sA. It is well known that the support of A, considered
as a subposet of the dominance lattice, has a top element, n, the conjugate of the partition
formed by the row lengths of A, and a bottom element, w, the partition formed by the
column lengths of A. More precisely, the Schur expansion above with A = λ/µ can be
written within the interval [w,n] in the dominance lattice, as

(1.1) sλ/µ =
∑

ν′∈[w,n]

cλµ,νsν .
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A very general problem is the classification of the shapes A whose support consists of
the whole interval [w,n] in the dominance lattice. In other words, given the triple of
partitions (µ, ν, λ), with µ ⊆ λ, we address the question under which conditions we have:
cλµ ν > 0 if and only if ν ′ ∈ [w,n], or cλµ ν > 0 if and only if µ ∪ ν � λ � µ + ν. Efforts
to this classification in the case of ribbon shapes have been in progress [19, 21, 10]. This
problem is equivalent to the classification of skew characters of the symmetric group and
Schubert products which obey the same properties [12, 13]. Here we answer the question
for which skew shapes A the Schur function sA can be expressed as

(1.2) sA =
∑

ν′∈[w,n]

sν ,

that is, with the coefficient cλµ,ν = 1 over the whole interval [w,n], and a corresponding
classification for Schur function products sµsν .

The main theorem, Theorem 1.1, gives a classification of the multiplicity-free skew Schur
functions sA with full interval support (1.2), up to a block of maximal width or maximal
depth, and up to a π-rotation and/or conjugation of the skew shape A. The classification
consists of a list of seven different configurations for A with rather delicate conditions
on relative part sizes of A in Figure 1.1. The subsequent Corollary 1.2 classifies the
multiplicity-free Schur functions products with full interval support. Our proofs combine
the classification of multiplicity-free skew Schur functions due to Gutschwager [12] and
to Thomas and Yong [26] (which implies the classification of multiplicity-free products
of Schur functions due to Stembridge [25]) with a procedure described in [1], here called
Algorithm 1 in Subsection 3.2. The algorithm is made of several steps and, given a skew
shape, produces all the Littlewood–Richardson fillings (from here on: LR fillings) from
the least to the most dominant one. Most of the steps in the algorithm are necessary to
understand which skew shapes are prevented to attain the full interval. A key tool towards
our classification is the family of skew shapes in (4.1) not attaining the full interval.

1.1. Schur support and multiplicity-freeness. The motivation to study full interval
multiplicity-free skew shapes A in (1.2) comes naturally when one writes the expansion
(1.1), and, in particular, when one imposes in this expansion all the coefficients to be
equal to 1. The dominance order “�” on partitions has been used before in the study of
Schur functions to prove that the monomial xµ = xµ11 x

µ2
2 · · · occurs in sλ if and only if

µ � λ (see [15, 17]), and to deduce necessary conditions on the support of a skew Schur
function sA, namely, that the LR filling contents of the skew shape A vary between those
defined by the least and the most dominant LR filling of A (see [1, 19, 28]). The starting
point of our study is a procedure described in [1], here Algorithm 1, which, given a sekw
shape, produces all the LR fillings from the least to the most dominant one. Indeed,
the multiplicity-free phenomenon has been extensively studied before by several authors.
In [25], the products of Schur functions that are multiplicity-free are completely classified,
i.e., products for which every coefficient in the resulting Schur function expansion is either
0 or 1. This is done both for Schur functions in infinitely many variables and for Schur
functions in finitely many variables. The latter is equivalent to a classification of all
multiplicity-free tensor products of irreducible representations of GLn or SLn, or in other
words, it is completely determined when the outer products of characters of the symmetric
groups have no multiplicity. Afterwards, in [3], the analogous classification for Schur P -
functions was achieved, which solved a similar problem for (projective) outer products
of spin characters of double covers of the symmetric groups, and finally, in [23], the
multiplicity-free problem for the expansion of Schur P -functions in terms of the Schur
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basis is solved, which in turn yields criteria for when an irreducible spin character of the
twisted symmetric groups in the product of a basic spin character with an irreducible
character of the symmetric groups is 0 or 1. The characterisation of multiplicity-free
skew Schur functions was solved in [12, 26]. Furthermore, using a different combinatorial
model, namely the hive model, in [7] results similar to those investigated in [12, 25, 26]
are obtained.

Another problem that has received much attention — see for instance [5, 8, 14, 13, 19,
20, 21, 16] — is to determine if the difference sA − sB of two skew Schur functions is
Schur-positive, i.e., if all of the coefficients are non-negative integers when this difference
is expanded as a linear combination of Schur functions. A strong necessary condition for
Schur positivity of sA− sB is that the support of B is contained in the support of A, and
therefore the ordering on skew shapes defined by support containment is related to the
Schur-positivity ordering.

1.2. Statement of the main results. We may assume our skew shape A without empty
rows or empty columns. If Ã is the skew Young diagram obtained from A by deleting
any empty row and any empty column, the corresponding skew Schur functions are equal
sA = sÃ. A skew Schur function without empty rows or empty columns is said to be basic
(cf. [7]). This identity allows each skew Schur function to be expressed as a basic skew
Schur function. Schur functions are also invariant under π-rotation and conjugation. The
classification in the main theorem of the full interval multiplicity-free skew shapes in (1.2)
consists of a list of seven different configurations comprising restrictions on the relative
part sizes as described in Figure 1.1 below.

Theorem 1.1 (Main Theorem). A basic skew Schur function sλ/µ is multiplicity-free
and its support is the whole Schur interval [w,n] if and only if, up to a block of maximal
width or maximal depth, and up to a π-rotation and/or conjugation, at least one of the
following is true:

(i) λ/µ is a partition or a π-rotation of a partition;
(ii) λ/µ is a two column or a two row diagram (A1 configuration);

(iii) λ/µ is an A2 configuration;
(iv) λ/µ is an A3 configuration;
(v) λ/µ is an A4 configuration;

(vi) λ/µ is an A6 configuration;
(vii) λ/µ is an A7 configuration,

as described in Figure 1.1.

As a consequence of Theorem 1.1 and the classification of multiplicity-free Schur func-
tion products [25], we get, in the corollary below, the characterisation of the multiplicity-
free Schur function products that attain the full interval. It reduces to the product of
two Schur functions whose indexing partitions are precisely given by the configurations:
partition, A1, and appropriate instances of A2 and A4 in Figure 1.1, as detailed in (c)
and (c’) of the corollary.

Corollary 1.2. The Schur function product sµsν is multiplicity-free and its support is the
whole Schur interval if and only if at least one of the following is true:

(a) µ or ν is the zero partition;
(b) µ and ν are both one row partitions or both one column partitions;
(c) µ = (1x) is a one column partition and ν = (z, 1y) is a hook such that either z = 2

and 1 ≤ x ≤ y + 1, or z ≥ 3 and x = 1 (or vice versa);
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A1 : ,

A2 :

abd c 1 ≤ a ≤ c+ 1,
1 ≤ d ≤ b+ 1,

b, c ≥ 0.
A3 :

x

ya

b
a = x = 1
b, y ≥ 1; or

a = 1, 1 ≤ x ≤ y + 1
b, y ≥ 1.

A4 :

x

y

a
a = 1, 1 ≤ x ≤ y + 1,

y ≥ 1; or
a ≥ 2, x = 1,

y ≥ 1. A6 :

a

x
a, x ≥ 1.

A7 :

k
w = (w1, k + 1, k + 1, 1)

w1 ≥ k + 2,
k ≥ 2,

Figure 1.1. The seven full interval multiplicity-free skew shapes (i)–(vii)
in Theorem 1.1, up to a block of maximal width or maximal depth, and up
to a π-rotation and/or conjugation, with the inner shape coloured in blue,
where in the A7 configuration, w is the partition formed by the column
lengths of the skew diagram.

(c’) µ = (x) is a one row partition and ν = (z, 1y) is a hook such that either y = 1 and
1 ≤ x ≤ z, or y ≥ 2 and x = 1 (or vice versa).

1.3. Organisation and contents. The paper is organised in five sections. In the next
section, which in turn is divided into four subsections, we give necessary definitions regard-
ing partitions, skew shapes and operations on them; the lattice of integer partitions with
dominance order; Littlewood–Richardson tableaux using the notion of complete sequence
of strings introduced in [1]; Schur, skew Schur functions, and, following the presentation
given in [7], the classification of multiplicity-free skew Schur functions due to Gutschwa-
ger [12] and to Thomas and Yong [26], and therefore the classification of multiplicity-free
products of Schur functions due to Stembridge [25]. In Section 3, the notion of Schur
interval and support of a skew diagram and therefore of skew Schur function, considering
the conjugate of the content of an LR tableau, are introduced. Algorithm 1 in [1], one of
the main tools in this work, is introduced. Some other related results in [1, 27] are also
recalled.

Section 4 is divided into two subsections. In Subsection 4.1, general skew shapes whose
support does not achieve the Schur interval are described. The reader should particularly
note Lemma 4.5 and Corollary 4.6, which give the family (4.1) of skew shapes with non-
full interval support. They will be extensively used in the remainder of the paper to
prevent full support. On the other hand, we observe that horizontal (and vertical) strips
have full support, and that the support of a disconnected skew shape is equal to the
Schur interval only if its components are ribbon shapes. (This is not sufficient, though.)
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Moreover, in Proposition 4.7, we conclude that the Schur function product sµsν has full
interval support only if µ and ν are either one row or one column partitions, or one of the
following holds: both are hooks, or they are a one row partition and a hook, or vice versa.
In Subsection 4.2, the support of specific skew shapes, which include all configurations
A2, A3, A4, A6 and A7, are analysed, and used in the last section, which is devoted to the
proof of our main theorem, Theorem 1.1, and furthermore to the proof of Corollary 1.2.
We remark that the strategy in the proof of Theorem 1.1 follows closely the one used in
[7, Lemma 7.1] as, roughly speaking, we have to shrink the multiplicity-free skew shapes
in order to fit the full Schur interval.

2. Preliminaries

2.1. Partitions and diagrams. Let N denote the set of non-negative integers. A weakly
decreasing sequence of positive integers λ = (λ1, . . . , λ`(λ)) whose sum is n is said to be
a partition of n, denoted by λ ` n. We say that n is the size of λ, denoted by |λ|, and
we call the λi’s the parts of λ and `(λ) the length of λ. It is convenient to set λk = 0
for k > `(λ). We also let 0 denote the partition with length 0. The set of all partitions
of n ∈ N is denoted by Pn. If λi = λi+1 = · · · = λi+j−1 = a, we denote the sublist
λi, . . . , λi+j−1 by aj, for j > 0. We identify a partition λ ` n with its Young diagram, in
“English convention”, which we also denote by λ: containing λi left justified boxes in the
ith row, for 1 ≤ i ≤ `(λ), and use the matrix-type coordinates to refer to the boxes. For
example, if λ = (5, 4, 2), which we often abbreviate to 542, the Young diagram is

.

A partition with at most one part size is called a rectangle, and a partition with exactly
two different part sizes is called a fat hook. A fat hook is said to be a near rectangle if
it becomes a rectangle when one suppresses one row or one column, and just a hook if it
becomes a one row rectangle when we suppress a column. If µ is another partition, we
write λ ⊇ µ whenever µ is contained in λ as Young diagrams, or, equivalently, µi ≤ λi,
for all i ≥ 1. In this case, we define the skew diagram λ/µ which is obtained from λ by
removing µi boxes from the ith row of λ, for i = 1, . . . , `(µ). In particular, λ/0 = λ. The
size of λ/µ is |λ| − |µ|, denoted by |λ/µ|. A a skew diagram is connected if, regarded as a
union of solid squares, it has a connected interior; otherwise it is disconnected. A ribbon
shape is a connected skew diagram with no blocks of 2×2 squares. A skew diagram forms
a vertical (respectively horizontal) strip if it has no two boxes in the same row (respectively
column). In particular, they are disconnected skew diagrams or single rows or columns.

Example 2.1. The skew diagram for λ/µ = (4, 4, 2)/(2, 1) is

,

which is connected but it is not a ribbon shape. Instead, is a disconnected

skew diagram with two components and ; and is a ribbon shape. The

following are horizontal and vertical strips, respectively, , .
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The π-rotation of a skew diagram λ/µ, denoted by (λ/µ)π, is obtained by rotating
λ/µ by π radians. Denote by λ′ the partition obtained by transposing the diagram of
λ, called conjugate partition of λ, and set (λ/µ)′ := λ′/µ′. If λ ⊆ mn, then define its
mn-complement as the partition λ∗, where λ∗k = m− λn−k+1 for k = 1, 2, . . . , n.

Example 2.2. If λ/µ = (4, 4, 2)/(2, 1), then the 43-complement of λ, the π-rotation, and
the transposition are

λ∗ = , (λ/µ)π = , and (λ/µ)′ = ,

respectively.

A partition λ ⊆ mn naturally defines a lattice path from the southwest to the northeast
corner points of the rectangle. Following Thomas and Yong [26], we let the mn-shortness
of λ to be the length of the shortest straight line segment of the path of length m + n
from the southwest to northeast corner of mn that separates λ from the π-rotation of λ∗.
For instance, if λ = (4, 4, 2) then the path from the southwest to the northeast corner of
the 43 rectangle that borders λ is (2, 1, 2, 2), and therefore the 43-shortness of λ is 1.

The sum λ + µ of two partitions λ and µ is the partition whose parts are equal to
λi + µi, with i = 1, . . . ,max{`(λ), `(µ)}. Using conjugation, we define the union λ∪ µ :=
(λ′ + µ′)′. Equivalently, λ ∪ µ is obtained by taking all parts of λ jointly with those of µ
and rearranging all these parts in descending order.

Example 2.3. Let λ = and µ = . Then, λ+ µ = , λ ∪ µ = .

Fix a positive integer n, and let λ and µ be two partitions with length ≤ n. The product
λπ •n µ of two partitions λ and µ is defined as

(λ1 + µ1, . . . , λ1 + µn)/λ∗,

where λ∗ is the λn1 -complement. (When it is clear from the context we shall avoid the
subindex n in the notation •n.) Graphically, place λπ in the southeast corner of the
λ1 × n rectangle, and place µ in the northwest corner of the µ1 × n rectangle. Then,
form the (λ1 + µ1)× n rectangle by gluing together the λ1 × n rectangle and the µ1 × n
rectangle, in this order. The outcome is a connected skew diagram if n < `(λ) + `(µ) and
a disconnected one otherwise. As illustrated below with λ = (3, 22, 02) and µ = (2, 12, 02),
we obtain λπ •5 µ = (5, 42, 32)/(32, 12),

λπ • µ = .

2.2. Dominance order on partitions.

Definition 2.1. The dominance order on partitions λ, µ ` n is defined by setting λ � µ
if

λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi,

for i = 1, . . . ,min{`(λ), `(µ)}.
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(Pn,�) is a lattice with maximum element (n) and minimum element (1n), and is self-
dual under the map which sends each partition to its conjugate. Graphically, λ � µ if
and only if the diagram of λ is obtained by “lowering” at least one box in the diagram
of µ. Clearly λ � µ if and only if µ′ � λ′. Moreover, µ covers λ, written as λ � µ, if
and only if µ is obtained from λ by lifting exactly one box in the diagram of λ to the
next available position such that the transfer must be from some λi+1 to λi , or from λ′i−1
to λ′i. The interval [λ, µ] denotes the set of all partitions ν such that λ � ν � µ. The
chain λ = λ0 � λ1 � · · · � λk = µ, k ≥ 0, is said to be saturated if λi covers λi−1, for
i = 1, . . . , k [6, 11].

2.3. Littlewood–Richardson tableaux. A semi-standard Young tableau (SSYT) T of
shape λ/µ is a filling of the boxes in the diagram λ/µ with integers such that: (i) the
entries of each row weakly increase when read from left to right, and (ii) the entries of
each column strictly increase when read from top to bottom. The reading word w of a
SSYT T is the word obtained by reading the entries of T from right to left and top to
bottom [24]. If, for all positive integers i and j, the first j letters of w includes at least
as many i′s as (i + 1)′s, then we say that w is a lattice word. If αi is the number of i′s
appearing in T , and therefore in w, then the sequence (α1, α2, . . .) is called the content
of T , and of w. Clearly, the content of a lattice word is a partition. A SSYT T whose
word is a lattice word is said to be a Littlewood–Richardson tableau (LR tableau for
short). Frequently we write LR filling of the shape λ/µ to mean a filling of that shape
satisfying (i) and (ii) above, whose reading word is a lattice word. Indeed the resulting
SSYT is an LR tableau of shape λ/µ. Given the partition m = (m1, . . . ,ms)

′ the set of
all lattice words with content m is equal to the set of all shuffles of the s words 12 · · ·m1,
12 · · ·m2, . . . , 12 · · ·ms. Recall that a word w is a shuffle of the words u and v if u and v
can be embedded as subwords of w that occupy complementary sets of positions within
w. A shuffle w of the words u1, u2, . . . , uq is the empty word for q = 0, the word u1 for
q = 1, and is, otherwise, a shuffle of u1 with some shuffle of the words u2, . . . , uq [2].

Example 2.4. The following is a SSYT of shape λ/µ = (4, 3, 3, 2, 1)/(2, 1, 1), content
m = (4, 2, 2, 1) = (4, 3, 1, 1)′ and reading word w = 112132413:

1 1
1 2
2 3

1 4
3 .

The reading word w = 112132413 is a lattice word, and it is a shuffle of the four words
1234, 123, 1 and 1. Therefore this SSYT is an LR tableau.

Taking into account the shuffle property of a lattice word, we give another character-
isation of a LR tableau that we shall rather use in this work. This is based on [1, § 3],
especially Definitions 5 and 6 and Theorem 5, and we refer to it for proofs and further
details.

Definition 2.2. Given a semi-standard tableau T , a sequence Sk = (y1, y2, . . . , yk) of k
positive integers is a k-string (or just string, for short, when there is no ambiguity) of T if
y1 < · · · < yk and the rightmost box in row yj is labelled with j; the corresponding strip,
denoted by st (Sk), is the union of all rightmost boxes in rows yj, for all j = 1, . . . , k.

We say that Sk = (y1, y2, . . . , yk) ≤ St = (z1, z2, . . . , zt) if k ≥ t and yj ≤ zj for all
j = 1, . . . , t.



8 OLGA AZENHAS, ALESSANDRO CONFLITTI, AND RICARDO MAMEDE

We define in a recursive way (Sm1 , Sm2 , . . . Sms) a complete sequence of strings of the
tableau T having content (m1,m2, . . . ,ms)

′ (note that we are writing the content in terms
of its conjugate) if Sm1 is a string of T and (Sm2 , . . . Sms) is a complete sequence of strings
of the tableau T \ st (Sm1) (when this set is not empty) having content (m2, . . . ,ms)

′.
In other word, (Sm1 , Sm2 , . . . Sms) is a complete sequence of strings of T if Smj is a

string for T \ {
⋃j−1
k=1 st (Smk)} for all j = 1, . . . , s.

Example 2.5.

T =

1 1
1 2
2 3

1 4
3

is a LR tableau with content (4, 2, 2, 1) = (4, 3, 1, 1)′ and it admits S4 = (1, 2, 3, 4) ≤ S3 =
(1, 3, 5) ≤ S1 = (2) ≤ S1 = (4) as complete sequence of strings.

In fact, we have

T =

1 1
1 2
2 3

1 4
3

T \ st (S4) =

1
1
2

1
3

(T \ st (S4)) \ st (S3) =
1

1

((T \ st (S4)) \ st (S3)) \ st (S1) = 1 .

The following result is nothing but [1, Theorem 5].

Proposition 2.1. A semi-standard tableau with content m = (m1,m2, . . . ,ms)
′ is an LR

tableau if and only if it has a complete sequence of strings Sm1 , Sm2 , . . . , Sms; and, in
particular, there is always one satisfying Sm1 ≤ Sm2 ≤ · · · ≤ Sms.

2.4. Schur functions, skew Schur functions and multiplicity-free classification.
Let Λ denote the ring of symmetric functions in the variables x = (x1, x2, . . .) over Q, say.
The Schur functions sλ form an orthonormal basis for Λ [24], with respect to the Hall
inner product, and may be defined in terms of SSYT by

(2.1) sλ =
∑
T

xT ∈ Λ,

where the sum is over all SSYT of shape λ and xT denotes the monomial

x#1′s in T
1 x#2′s in T

2 · · · .

Replacing λ by λ/µ in (2.1) gives the definition of the skew Schur function sλ/µ ∈ Λ,
where now the sum is over all SSYT of shape λ/µ. For instance, the SSYT shown in the
Example 2.4 above contributes the monomial x41x

2
2x

2
3x

1
4 to s43321/211.
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The product of two Schur functions sµ and sν can be written as a positive linear
combination of Schur functions by the Littlewood–Richardson rule which states

sµsν =
∑
λ

cλµνsλ,

where the Littlewood–Richardson coefficient cλµν is the number of LR tableaux with shape
λ/µ and content ν [18]. The Littlewood–Richardson coefficients can also be used to
expand skew Schur functions sλ/µ in terms of Schur functions:

sλ/µ =
∑
ν

cλµνsν .

If cλµν is 0 or 1 for all λ (respectively all ν), then we say that the product of Schur functions
sµsν (respectively the skew Schur function sλ/µ) is multiplicity-free.

The Littlewood–Richardson coefficients satisfy a number of symmetry properties [24],
including:

(2.2) cλµν = cλνµ and cλµν = cλ
′

µ′ν′ .

Moreover, we have

(2.3) sλ = sλπ and sλ/µ = s(λ/µ)π .

Another useful fact about skew Schur functions is that

sλ/µ = sλ̃/µ̃,

where λ̃/µ̃ is the skew Young diagram obtained from λ/µ by deleting any empty row and
any empty column. A skew Schur function without empty rows or empty columns is said
to be basic [7]. Therefore, the previous identity allows each skew Schur function to be
expressed as a basic skew Schur function.

If λ/µ is not connected, and consists of two components A and B, which may themselves
be either Young diagrams or skew Young diagrams, then the combinatorial definition of
(skew) Schur function (2.1) gives (see [24, 7])

sλ/µ = sAsB = sBsA.

Example 2.6. If λ/µ = 5522/421 = , we have the disconnected components

A = and B = .

Therefore, s5522/421 = s22/1s33/2.

Any product sAsB of skew Schur functions sA and sB is again a skew Schur function,
as the figure below makes evident,

A

B

.
In particular, a product of Schur functions sµsν may be seen as a skew Schur function

with A = µ and B = ν in the previous picture.
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For the following characterisation of the basic multiplicity-free skew Schur function,
jointly due to Gutschwager and to Thomas and Yong, we follow [7].

Theorem 2.2 (Gutschwager [12], Thomas and Yong [26]). The basic skew Schur
function sλ/µ is multiplicity-free if and only if at least one of the following is true:

R0 µ or λ∗ is the zero partition 0;
R1 µ or λ∗ is a rectangle of mn-shortness 1;
R2 µ is a rectangle of mn-shortness 2 and λ∗ is a fat hook (or vice versa);
R3 µ is a rectangle and λ∗ is a fat hook of mn-shortness 1 (or vice versa);
R4 µ and λ∗ are rectangles;

where λ∗ is the mn-complement of λ with m = λ1 and n = λ′1.

In particular, for partitions µ and ν, the product sµsν of Schur functions is a skew
Schur function, and we get the following characterisation of the multiplicity-free product
of skew Schur functions, due to Stembridge, as a corollary of the above theorem.

Corollary 2.3 (Stembridge [25]). The Schur function product sµsν is multiplicity-free
if and only if at least one of the following is true:

P0 µ or ν is the zero partition 0;
P1 µ or ν is a one-line rectangle;
P2 µ is a two-line rectangle and ν is a fat hook (or vice versa);
P3 µ is a rectangle and ν is a near rectangle (or vice versa);
P4 µ and ν are rectangles.

3. The Schur interval

3.1. Skew Schur function support. Given partitions µ ⊆ λ, let A denote the skew
diagram λ/µ. We associate to the skew diagram A two partitions: rows(A) obtained
by sorting the row lengths of A into weakly decreasing order, and similarly cols(A) by
sorting column lengths [1, 19]. It is known that cols(A) � rows(A)′ [17, 15, 28, 1, 19].
For abbreviation, we write w := cols(A) and n := rows(A)′. (When there is danger
of confusion, we write w(A) and n(A), respectively.) If A consists of two disconnected
partitions φ and θ, then w = φ ∪ θ and n = φ+ θ.

Definition 3.1. The interval [w,n] = {ν ∈ P|A| : w � ν � n} is called the Schur interval
of A.

The Schur interval of A and Aπ is the same, and due to the equivalence w � ν � n if
and only if n′ � ν ′ � w′, the Schur interval of A′ is [n′,w′].

Suppose that n = (n1, . . . , ns). We may decompose A = λ/µ into a sequence of ni-
vertical strips Vi, for i = 1, 2, . . . , s, as follows:

1. i := 0. Do V0 := ∅ and λ0/µ := λ/µ = A = A \ V0.
2. i := i+1. Define the ni-vertical strip Vi formed by the rightmost box of each row in

the skew-diagram λi−1/µ = A\(V0∪V1∪· · ·∪Vi−1). Let λi/µ := A\(V0∪V1∪· · ·∪Vi)
be the skew diagram obtained by removing that strip.

3. If i = s, stop. Else go to 2.

Let V = (V1, . . . , Vs) denote the sequence of vertical strips obtained by the previous
process, called the V -sequence of A. This means that each entry of n is obtained by
successively pushing up some boxes in each entry of w: n1 is the number of non-empty
rows of A; n2 is the number of rows of A of length at least 2, . . . , and ns is the number of
rows of length s. Hence, ns is the number of rows of the strip Vs = A \ (V1 ∪ · · · ∪ Vs−1),
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consisting of the leftmost boxes in each row of A with longest length s = `(n). Each
vertical strip Vi intersects the rows of A with longest length s, and, therefore, `(w) ≥ `(n).

We shall denote the minimum and the maximum of supp(λi/µ) by wi and ni, respec-
tively, for i = 1, . . . , s−1. If w = (w1, . . . , wr), then r = `(w) is the number of non-empty
columns of A, and w1 is the length of the longest column of A.

Example 3.1. Consider the skew diagram A = , with maximal filling n = (4, 3, 3).

The V1 strip of A is and A \ V1 = . Next, we consider the V2 strip

and A \ (V1 ∪ V2) = coincides with the V3 strip.

Definition 3.2. Given the skew diagram A, the support supp(A) of A, or of sA, is the
set of those partitions ν ′ for which sν appears with non-zero coefficient when we expand
sA in terms of Schur functions. Equivalently,

supp(A) = {ν ′ : cλµν > 0}.
Notice that we have defined the support of A in terms of the conjugate of the contents

of the LR fillings of A. From [17, 15, 28, 1, 19], we know that ν ∈ supp(A) only if
cols(A) � ν � rows(A)′ and therefore supp(A) ⊆ [w,n]. Due to the rotation symmetry
(2.3), the support of a skew diagram A equals the support of Aπ. Moreover, by the
conjugation symmetry of the Littlewood–Richardson coefficients (2.2) and the equivalence
λ � µ⇔ µ′ � λ′, we know that ν ∈ supp(A) if and only if ν ′ ∈ supp(A′).

It is furthermore known that w and n are in supp(A) and the coefficients cλµ,w′ and cλµ,n′
are both equal to 1 (see [1, 19]). The only LR tableau with shape A and content w′ is
obtained by filling the boxes of each column, from top to bottom, with the integers 1, 2, . . ..
To describe the only LR tableau with shape A and content n′, let V = (V1, . . . , Vs) be
the V -sequence of A. The LR tableau with shape A and content n′ is obtained by filling
each vertical strip Vi with the integers 1, . . . , ni, i = 1, . . . , s.

Although w′ and n′ are the most and the least dominant LR filling contents of A,
respectively, since w and n are the minimum and maximum of supp(A), we will refer to
the corresponding LR fillings of A as the minimum and maximum ones. The reason for
this terminology comes from the fact that the lattice words with those contents w′ and
n′ are shuffles of the words 12 . . . wi and 12 . . . ni, respectively, i ≥ 1, and the partitions
defined by their lengths satisfy w = (w1, . . . wr) � n = (n1, . . . , ns).

Example 3.2. The LR fillings of A = 5442211/331 with the least and most dominant
conjugate contents (which are w = cols(A) and n = rows(A)′, respectively), are

1 1
2

1 1 3
1 2
2 3
3
4

1 1
2

1 2 3
3 4
4 5
6
7

,

where w = (4, 3, 3, 1, 1) � n = (7, 4, 1). The lattice word of content w′ is a shuffle of
the words 1234, 123, 123, 1, 1 with lengths given by w; the lattice word of content n′ is a
shuffle of the words 1234567, 1234, 1 with lengths given by n.

The example below shows that, in general, we have supp(A) $ [w,n].
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Example 3.3. (1) The support of A = is only the set {w = 3222,n = 3321}, and
therefore sA = s441 + s432. In this case, supp(A) = {w = 3222,n = 3321} = [w,n].

(2) The Schur interval of A = is the chain w = 2111 ≺ 221 ≺ n = 311 while
supp(A) = {213, 312} $ [w,n].

3.2. An algorithm to construct LR tableaux. The next algorithm provides a proce-
dure to systematically construct all partitions in supp(λ/µ)∩ [w,n]. During the process,
all LR tableaux of shape λ/µ are also exhibited. We remark that the algorithm is essen-
tially a rephrasing of Lemmas 3 and 4 and Algorithm 4 in [1, § 4], so we refer there for
further details and proofs.

Algorithm 1.

Procedure 1.
Input of the procedure: an LR tableau T of shape λ/µ and content m = (m1,m2, . . . ,ms)

′

(therefore it admits a complete sequence of strings (Sm1 , Sm2 , . . . Sms) because of Propo-
sition 2.1).

If, for all j = 1, . . . , s, the strip st
(
Smj

)
intersects all rows of the tableau

T \ {
⋃j−1
k=1 st (Smk)}, then Output of the procedure: T (i.e., the procedure does noth-

ing)

else

Begin

t := min{j = 1, . . . , s s. t. st
(
Smj

)
does not achieve all rows of the

tableau T \ {
⋃j−1
k=1 st (Smk)}}.

t1 := min{j such that the row j in the tableau T \ {
⋃t−1
k=1 st (Smk)} is not

achieved by st (Smt)}.
X := set of boxes made of the rightmost (with respect to the tableau
T \ {

⋃t−1
k=1 st (Smk)}) box in rows (t1

⋃
{j > t1 such that j ∈ Smt})

(i.e., X := rightmost (with respect to the tableau T \ {
⋃t−1
k=1 st (Smk)}) box in

row t1
⋃

(st (Smt) below row t1)).

Output of the procedure: T1 := tableau obtained by T increasing by one
the filling of the set X.

End

Input of the algorithm: µ ⊆ λ.

n := (rows(λ/µ))′.

w := cols(λ/µ).

n := number of columns of λ/µ.

for i = 0, 1, . . . , n−1 do (λ/µ)n−i := the skew diagram defined by the n−i, n−i+1, . . . , n
columns of λ/µ.

T {0} := the LR tableau with shape λ/µ and content w′.

T [n] := the LR tableau of shape (λ/µ)n.

i := 0.
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Repeat

Begin

To each LR tableau T ∈ T [n−i] adjoin to the leftmost column of T the (n − i − 1)-st
column of T {0} such that the LR tableau obtained is of shape (λ/µ)n−i−1.

Apply the Procedure to construct all LR tableaux of shape (λ/µ)n−i−1 containing T ∈
T [n−i], and denote this set by T [n−i−1].

Add the remaining columns of T {0} to each LR tableau T [n−i−1], obtaining a set, denoted
by T {i+1}, of LR tableaux of shape λ/µ.

Output of the algorithm: set T {i+1}.

i := i+ 1.

End

until i = n.

This algorithm produces a sequence of sets of LR tableaux of shape λ/µ

(3.1) T {0} ⊆ T {1} ⊆ T {2} ⊆ · · · ⊆ T {n},

such that, if G is in T {i} with conjugate content γ, and B is in T {i−1} with conjugate
content β, then β � γ, for all i = 0, . . . , n.

Example 3.4. To make things clear, we present here some instances of application of
Procedure 1.

1 1
2 2

1 3 3
2 4
5 −→

1 1
2 2

1 3 3
4 4
5

1 1
1 2 2
2 3
3 4
5 −→

1 1
1 2 2
3 3
4 4
5

1
1 1

1 2 2
2 −→

1
1 2

1 2 3
2

Note that in the first two instances the conjugate content of the output covers the
conjugate content of the input in dominance order, whereas in the third instance it does
not.

As an easy consequence of the algorithm above, we exhibit a chain in supp(A), with
respect to dominance order, that goes from w = (w1, . . . , wr) to n = (n1, . . . , ns). Start
with the minimum LR filling of A, that is, the only filling of A with content w′. If one
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fills the vertical strip V1 with 12 . . . n1 then λ1/µ has the minimum LR filling, and one
gets an LR filling of A with conjugate content

σ1 := (n1) ∪w1,

where w1 is the minimum of the supp(λ1/µ). From Algorithm 1, one knows that w � σ1 �
n. (It is worth noting that the partition σ1 is obtained by subtraction from the entries
2, . . . , r of w, and adding these non-negative quantities to the first entry. Graphically,
these operations correspond to lifting the rightmost box in some of the rows of A to the
first row, and thus we have w � σ1.) One may now repeat the above argument with the
skew diagram λ1/µ and we are led to a chain of partitions

(3.2) w � σ1 � σ2 � · · · � σs−2 � σs−1 = n,

where σi := (n1, · · · , ni) ∪ wi ∈ supp(λ/µ) and wi is the minimum of supp(λi/µ), for
1 ≤ i ≤ s− 1. We have wi−1 � (ni) ∪wi, for 1 ≤ i ≤ s− 1, with w0 := w.

The next example illustrates this construction.

Example 3.5. Consider the skew diagram A in Example 3.2 and its sequence V =
(V1, V2, V3) of vertical strips. Start with the minimum LR filling of A where w =
(4, 3, 3, 1, 1), and apply Algorithm 1 to produce LR tableaux such that: the vertical strip
V1 is filled with the word 1234567, and the vertical strips V1 and V2 are filled with 1234567
and 1234, respectively (hence V3 is filled with 1),

T {0} =

1 1
2

1 1 3
1 2
2 3
3
4 ,

1 1
2

1 1 3
1 4
2 5
6
7 ,

1 1
2

1 2 3
3 4
4 5
6
7 .

The conjugate contents are: w; σ1 = (72111) = (7)∪(2111), with w1 = 2111 the conjugate

content of the minimum LR filling of A \ V1 = ; and n = (741) = (74) ∪ (1), with
w2 = (1) the conjugate content of the minimum LR filling of A \ (V1 ∪ V2) = V3 = . We
have w ≺ σ1 ≺ σ2 = n.

Definition 3.3. The skew diagrams A and B are said to be equal up to a block of
maximal depth if, for some x ∈ N and n ≥ max{`(A), `(B)}, we have A = uπ •n v and
B = [u + (xn)]π •n v, with u and v partitions. Similarly, they are said to be equal up to
a block of maximal width if A = (uπ •n v)′ and B = ([u+ (xn)]π •n v)′.

Example 3.6. Let u = (3, 2, 2, 0), v = (3, 1, 1, 0) and n = 4. Then

A = uπ • v = and B = [u+ (24)]π • v =

are equal up to a block of maximal depth (24).

Lemma 3.1. Let A and B be skew diagrams, and let u and v be partitions with
max{`(u), `(v)} ≤ n. Let x ∈ N.

(a) If A = uπ•n v and B = [uπ+(xn)]•n v, then [w(B),n(B)] = [nx∪w(A), nx∪n(A)].
If A = (uπ •n v)′ and B = ([uπ + (xn)] •n v)′, then [w(B),n(B)] = [xn+w(A), xn+
n(A)].
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(b) ([1, Lemma 5]) If A = uπ •n v and B = uπ + (xn) •n v, then c ∈ supp(B) if and
only if c = b∪ (nx) with b ∈ supp(A). If A = (uπ •n v)′ and B = (uπ + (xn) •n v)′,
then c ∈ supp(B) if and only if c = b+ (xn) with b ∈ supp(A).

Note that this follows from the conjugation symmetry and Algorithm 1. In the applica-
tion of this algorithm, the rectangle (xn) of length n is always filled with x words 12 · · ·n.
Therefore, if c is an element of the support of B, then it has the form b ∪ (nx) for some
partition b in the support of A.

Example 3.7. The following skew diagrams are equal up to a block of maximal depth and
maximal width

A = , B = , C = ,

w(A) = 111 � n(A) = 21; w(B) = 333 = 23 + w(A) � n(B) = 23 + n(A) = 432;
w(C) = 4333 = 41 ∪w(B) � n(C) = 4 ∪ n(B) = 4432.

Next, the skew shapes whose support has only one element, that is, w = n, are char-
acterised, and, therefore, the skew Schur functions which are Schur functions. Note that,
in (3.2), we have σi = w, 1 ≤ i ≤ s− 1, if and only if A or Aπ is a partition.

Proposition 3.2. Let A be a skew diagram and let u, v and ν be partitions. Then,

(a) ([1, Theorems 3, 16]; [4, Lemma 4.4]) w = n = ν if and only if A = ν or
A = νπ. In this case, supp(A) = {w = n} = [w,n].

(b) ([27]) sA = sν if and only if A = ν or A = νπ.

In the next proposition, we characterise the skew diagrams A whose supports have only
two elements, that is, supp(A) = {w,n}, and, in particular, those whose Schur interval
has only two elements, [w,n] = {w,n}. This was shown in [1] by means of Algorithm 1.
Consider the skew diagrams: F1 = ((a+ 1)x, a)/(ax), and F̃1 = (a+ 1, ax)/(a), a, x ≥ 1:

F1 F̃1
.(3.3)

Proposition 3.3 ([1, Theorem 16]). Let A be a skew diagram with w � n. Then,
supp(A) = {w,n} if and only if, up to a π-rotation or conjugation, and up to a block of

maximal width or maximal depth, A is either an F1 or an F̃1 configuration. In particular,
if A is a disconnected two column (row) diagram, with one connected component being a
single box, then we have w C n and supp(A) = [w,n] = {w,n}.

Remark 3.1. Note that, when applying Algorithm 1 to F1, we find that the only string
in the minimum LR filling of F1 that we can stretch is the string of length x, which can
only be stretched in one way, which gives rise to the maximum LR filling. Therefore, the
support of F1 is formed by only w = (x, 1a) � n = (x+1, 1a−1). If a, x ≥ 2, the partition
n does not cover w (for instance ξ = (x, 2, 1a−2) ∈ [w,n]), and therefore the support is
not the full interval. The proof is similar for F̃1, considering its π-rotation.

Example 3.8. Proposition 3.3 can be used together with Lemma 3.1 to show that the

support of the skew diagram λ/µ = (5, 33)/(12) = is not the entire Schur
interval. By Lemma 3.1, it is enough to consider the support of the simple skew diagram



16 OLGA AZENHAS, ALESSANDRO CONFLITTI, AND RICARDO MAMEDE

α/β = obtained from λ/µ by removing the block (24). Since the resulting diagram
is the π-rotation of an F1 configuration with a, x ≥ 2, the support of λ/µ is strictly
contained in its Schur interval.

4. Recognition of full and non-full interval supports

In the rest of the paper, the general philosophy of the application of Algorithm 1 to
a skew diagram A consists in the prolongation of its strings, starting with the minimum
LR filling of A, in any possible way. We remark that in [1] a characterisation is given
when, in Algorithm 1, the partition corresponding to the content of the output covers
the partition corresponding to the content of the input in dominance order. Thus, when
applying a step of the algorithm, we can check whether the partition corresponding to the
new content covers the preceding one. If not, then we have a “suspicious” interval that
may contain a partition not in the support of A.

4.1. Bad configurations. We start this section with the analysis of some particular
configurations of boxes such that their appearance in a skew diagram A implies that A
has non-full support, supp(A) $ [w,n].

Lemma 4.1. If A is a skew diagram and the support of A \ V1 is not the entire Schur
interval, then neither is the support of A.

Proof. Let [w1,n1] be the Schur interval of A \ V1 and w1 � ξ � n1 such that ξ /∈
supp(A \ V1). Then w � (n1) ∪ ξ � n and (n1) ∪ ξ /∈ supp(A) since the only way to put
the string n1 · · · 21 in A is to fill the strip V1 with it and what remains is A \ V1. �

We observe that, if supp(A\V1) attains the Schur interval, this does not mean that the
same happens to A, as one can see in the next example.

Lemma 4.2. Let A be a skew diagram with two or more connected components. If there
is a component containing a two by two block of boxes, then the support of A is not the
entire Schur interval.

Proof. Let n = (n1, . . . , ns). Recall that ni−1 = (ni, . . . , ns) is the maximum of supp(A \⋃i−1
k=1 Vk), i = 2, · · · s, and that ni is the number of rows of A \

⋃i−1
k=1 Vk, for all i. Since

there is a 2 by 2 block in one of the connected components of A, there must exist a column
in A\V1 whose length is at least 2. Let w1 = (w1, . . . , w`, 1

q), with w` ≥ 2 for some ` ≥ 1
and q ≥ 0. Clearly (n2, . . . , ns) < (w1, . . . , w` − 1, 1q+1), and from (3.2) we have

σ1 = (n1, w1, . . . , w`, 1
q) ∈ [w,n].

Note that `(w) ≥ `(w1) + o, where o is the number of components of A. Since A has at
least two components, we have `(w) ≥ `(σ) + 2. Then, the partition

ξ := (n1, w1, . . . , w` − 1, 1q+1)

clearly satisfies w � ξ � σ. Moreover, since (w1, . . . , w` − 1, 1q+1) � w1, it follows that
(w1, . . . , w` − 1, 1q+1) /∈ supp(A \ V1), and therefore we conclude that ξ /∈ supp(A). �

Example 4.1. The support of the skew diagram A = is not the entire Schur interval
since it has two connected components, and one of them has a 2 by 2 block. We may
follow the proof of the previous lemma to get a partition in the Schur interval that does
not belong to the support of A. Note that w = (2, 2, 1), n = (3, 2), w1 = (2) = n1, w �
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σ1 = (3, 2) = n, and [w,n] = {w = 221, ξ = 311,n = 32} with ξ /∈ supp(A) = {w,n}.
Note also that A \ V1 = V2 and V2 is a column of A.

Corollary 4.3. If A is a skew diagram with two or more components and the support of
A is the whole Schur interval [w,n], then the components of A are ribbon shapes.

Corollary 4.4. Let A be a skew diagram such that `(w) > `(n) = s (equivalently, it has
no block of maximal width), and the strip Vs is a column of A of length greater than or
equal to 2. Then the support of A is not [w,n].

Proof. Since `(w) > `(n) = s, A is not a partition, and since Vs is a column, A has
precisely |Vs| ≥ 2 rows of length s ≥ 2 such that they form a rectangle, hence containing
a 2× 2 block of boxes. If A is disconnected, then we are done. Otherwise, as all vertical
strips Vi, 1 ≤ i ≤ s, traverse that rectangle, we may delete the vertical strips V1, . . . , Vk,
for some k with 1 ≤ k < s− 1, until we get a disconnected skew diagram. At this point,
the conditions of Lemma 4.2 are satisfied, and, due to Lemma 4.1, we are also done in
this case. �

Example 4.2. For instance, it follows from Corollary 4.4 that the supports of the skew
diagrams

A = ; B = ; C = ; D =

are strictly contained in the Schur interval [w,n]. For A, for instance, we have w = 4321
and n = 442, where V3 is a column of A of length two, and `(w) = `(n) + 1. The
Schur interval is [w,n] = {w = 4321, 4411, 433, n = 442}, and we have ξ = 4411 /∈
supp(A) = {w = 4321, 433; n = 442}. Therefore sA = sw + s433 + sn. For D, we have
ξ = 4311 ∈ [w = 323,n = 432] \ supp(D).

Lemma 4.5. Let A be a connected skew diagram such that

w = (w1, . . . , wr) � σ1 = [(n1) ∪w1] = (n1, w2, . . . , w`, w`+1, . . . , wr) � n = (n1, . . . , ns),

for some ` with 3 ≤ ` ≤ r such that wk ≤ wk for k = 2, . . . , ` and 0 < w` < w`. Moreover,
assume the existence of two integers i and j with 2 ≤ i < j ≤ ` such that wi ≥ wj + 2
and wj > wj. Then the support of A is not the entire Schur interval.

Proof. Consider the partition ξ obtained from σ1 by replacing the entries wi and wj by
wi − 1 and wj + 1, respectively. It is clear that ξ � σ1 � n. Note also that, while ξ is
obtained from σ1 by lowering one box from one row of length wi to one of length wj, w
is obtained from σ1 by lowering n1−w1 = w2 + · · ·+w`− (w2 + · · ·+w` ≥ 1) boxes from
the first row to some rows which include the one of length wj, since wj > wj. Thus, w
can be obtained from ξ by lowering k = n1 − w1 boxes, in particular, wi − wi + 1 boxes
to row i and wj − wj − 1 to row j. Thus w � ξ � σ1.

Moreover, we have ξ1 ≺ w1, where ξ1 denotes the partition obtained from ξ by removing
the first entry. Thus ξ1 /∈ supp(A\V1). By Lemma 4.1, we conclude that ξ /∈ supp(A). �

Example 4.3. We can use the lemma above to conclude that the support of the connected

skew diagram A = is not the entire Schur interval. Indeed, we have w = (4, 4, 2) �
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σ1 = (6, 3, 1) � n = (6, 4), with w1 = (w2, w3) = (3, 1), ` = r = 3, and the last two
entries of σ1 differ by 2, and they are strictly smaller than the corresponding entries of w.
Thus by lowering one box from row two to row three in σ1, one obtains ξ = 622, and w
can be obtained from ξ by lowering w2−w2 +1 = 2 boxes to row two, and w3−w3−1 = 0
boxes to row three.

As a consequence of the last lemma, we describe below a large group of skew diagrams
whose support is strictly contained in the Schur interval. Let F0 be a skew diagram
having two columns of the same length, starting and ending on the same rows, say x and
y, and such that all columns to the right of those two equal columns end at least two rows
above row y, with at least one of these columns starting at least one row above row x, as
illustrated by

(4.1) F0

≥ 2

≥ 1

.

Denote by F0′, F0π and F0π
′

the skew diagrams which are, in this order, the conjugate,
the π-rotation, and the conjugate of the π-rotation of an F0 skew diagram.

Corollary 4.6. The supports of the skew diagrams F0, F0′, F0π, and F0π
′

are strictly
contained in the Schur interval.

Proof. Due to the conjugate symmetry in (2.2) and to the π-rotation symmetry (2.3), it
is enough to consider the F0 configuration. Denote by a + b the length of column Wi,
which is also the length of column Wi+1 of F0, where b ≥ 0 is the number of boxes that
column Wi+1 shares with the column to its right, and a ≥ 2 is the number of boxes of
Wi+1 with no right neighbour.

Consider F0 \ V1 and w1 = (w2, . . . , w`, w`+1, . . . , wq) with wf = a + b and wg = b
satisfying wf ≥ wg + 2, for some integers f, g, ` with 2 ≤ f < g ≤ ` ≤ q. By Lemma 4.5,
it follows that supp(F0) is strictly contained in the Schur interval. �

Example 4.4. (a) To illustrate the previous corollary, consider the skew diagram

A = ,

with w = (3, 3, 2, 2, 2, 1) and n = (5, 4, 3, 1). Clearly, A is a F0 configuration since the
third and fourth columns have the same length and they start in the same row, to its right
all columns end two rows above the last row of these columns, and there are columns that
start one row above the first row of these columns. Thus, by the previous corollary, the
support of A is not the entire Schur interval. Moreover, following the proof of Lemma 4.5,
we construct the partition ξ = (5, 23, 12) which belongs to the interval [w,n] but is not
an element of supp(A).

(b) Consider now the skew diagram

B = .
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We have w = 443322 � ξ = 533322 � sigma1 = 543222 with r = 6 and ` = 4, and
ξ /∈ supp(B).

We are now in the position to conclude the following statement from Remark 3.1 and
Corollary 4.3.

Proposition 4.7. If A is a skew diagram with two or more components, and the support of
A is the whole Schur interval, then the components of A are ribbon shapes. In particular,
the Schur function product sµsν has Littlewood–Richardson coefficients always positive
over the full interval only if µ and ν are either rows or columns, or one of the following
holds: both are hooks, they are a one-line rectangle and a hook, or vice-versa.

4.2. Recognition of full configurations. Next we examine some particular configu-
rations which are needed to characterise the multiplicity-free skew Schur functions that
achieve the full interval. We start with the two row (column) skew diagrams. (The one
row (column) case is a partition and, therefore, the support is [w,n] = {w = n}.)

Proposition 4.8 ([1, Theorem 15]). If λ/µ has exactly two rows, then supp(λ/µ) =
[w,n] and it is a saturated chain. More generally, if λ/µ is a skew diagram with one of
the configurations (4.2), then the support of λ/µ is the entire interval [w,n], and it is a
saturated chain.

Let λ/µ = (2a, 1b)/(1c) be a two column skew diagram. Lemma 3.1 shows that the
support of a skew diagram A = ((x+ 2)a+b, (x+ 1)c)/(1a), obtained by inserting a block
(xa+b+c) of maximal length between the two columns of λ/µ, or a skew diagram B =
((n + 2)a+b, 1c)/((x + 1)a) obtained by adding the partition (na+b) to λ and (na) to µ, is
again equal to its entire Schur interval. This construction, together with its conjugates,
yields four cases, whose schematic representations are shown below. These diagrams have
been arranged so that the ones in the right column are the conjugates of those in the left
column below.

(4.2)

.

A two column or a two row disconnected skew diagram is called an A1 configuration.

.(4.3)

Skew Schur functions whose shapes are strips made either of columns or rows always
attain the full interval. Let en be the elementary symmetric function of degree n and hn
the complete homogeneous symmetric function of degree n. Then

s(1n) =
∑

i1<...<in

xi1 . . . xin = en, sn =
∑

i1≤...≤in

xi1 . . . xin = hn.
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Let µ = (µ1, . . . , µl) be a partition and A = (1µ1) ⊕ · · · ⊕ (1µl). The Schur interval of A
is [µ, (|µ|)]. It is known (see [9, 24]) that

sA = eµ := eµ1eµ2 . . . eµl =
∑
λ

Kλ,µsλ′ .

The Kostka number Kλ,µ is non-zero if and only if µ � λ, equivalently, λ ∈ [µ, (|µ|)].
Hence, sA =

∑
λ∈[µ,(1|µ|)]Kλ,µsλ′ , and supp(A) equals its Schur interval. Thus supp(A′)

or the support of hµ is its Schur interval [(1|µ|), (µ′)]. Therefore, if A is a direct sum of
either columns or rows, the support of A equals its Schur interval.

Consider now skew diagrams λ/µ with three rows (columns) where µ = (d + c) is a
one row (column) rectangle and λ∗ = (a + b + c, a) is a fat hook, or vice versa, for some
integers a, d ≥ 1 and b, c ≥ 0. There are four cases, as illustrated by

F2

abd c

F2π

dca b

(4.4)

F2′
a

b

c

d

F2π
′ d

c

b

a

.

The diagrams have been arranged so that those on the right are the π-rotations of the
diagrams on the left, and the diagrams in the second row are the conjugates of the ones
in the first row.

If the diagrams in (4.4) satisfy the additional conditions a ≤ c+ 1 and d ≤ b+ 1, then
they are called A2, A2π, A2′ and A2π

′
configurations, as illustrated above, replacing the

letter F by A.

Proposition 4.9. Let λ/µ be one of the skew diagrams in (4.4). Then the support of
λ/µ coincides with its Schur interval if and only if it is an A2, A2π, A2′ or an A2π

′

configuration.

Proof. By assumption a, d ≥ 1 and b, c ≥ 0. If a = 0 or d = 0, we are in the case
of two columns (rows) that we already studied in Proposition 4.8. Due to the rotation
and conjugation symmetry, we only consider case F2′. We will start by showing that, if
a > c + 1 or d > b + 1, the support of λ/µ is not the entire Schur interval. For the first
case, a > c+ 1, just note that with k := a− (c+ 1) the partition

ξ = (d+ c+ b+ k, d+ b+ c+ 1)

belongs to the Schur interval of λ/µ, since the first entry of w is max{d + c + b, b + a}
and the first entry of n is d + c + b + a. Moreover, we have ξ /∈ supp(λ/µ) since, when
placing the string of length d+ c+ b+ k in λ/µ, we must place the integer d+ b+ c+ 1
in the first column of the diagram, leaving no room to place the second string.

For the case d > b + 1, note that the entries of w are b + c + d, a + b and d, and that
σ1 = (a + b + c + d, d, b) with d ≥ b + 2. By Lemma 4.5, it follows that the support of
λ/µ is not the entire Schur interval.
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Thus, if a > c + 1 or d > b + 1, the support of λ/µ does not coincide with its Schur
interval. For the rest of the proof, assume a ≤ c+ 1 and d ≤ b+ 1. Then we have

w = (d+ c+ b, b+ a, d) � n = (d+ c+ b+ a, d+ b).

Let ξ = (ξ1, ξ2, ξ3) ∈ [w,n]. We will show that ξ ∈ supp(λ/µ). Since w � ξ � n, we must
have

d+ c+ b ≤ ξ1 ≤ d+ c+ b+ a and d+ c+ 2b+ a ≤ ξ1 + ξ2 ≤ 2d+ c+ 2b+ a.

Then ξ1 = d+ c+ b+k and a+ b−k ≤ ξ2 ≤ d+a+ b−k, for some k ∈ {0, . . . , a}. Due to
Algorithm 1, this means that, for each k ∈ {0, . . . , a}, after placing (in the unique possible
way) the string of length ξ1 in the diagram λ/µ, we must insert the strings of length ξ2, ξ3
in the skew diagram λ̃/µ obtained by removing the boxes of the string of length ξ1. The

Schur interval of λ̃/µ is [w̃ = (b+a−k, d), ñ = (d+b+a−k)]. Since λ̃/µ has two columns,

by Proposition 4.8, we have [w̃ = (b+ a− k, d), ñ = (d+ b+ a− k)] = supp(λ̃/µ). On the

other hand, we have w̃ � (ξ2, ξ3) � ñ, hence (ξ2, ξ3) ∈ supp(λ̃/µ). Finally, note that, if
k ≥ 0, it follows from the inequality a− k < c+ 1 that ξ2 ≤ d+ b+ a− k < d+ c+ b+ 1.
Therefore we also have ξ ∈ supp(λ/µ). �

Example 4.5. The skew diagram λ/µ = is an A2π configuration with d = 1
and c = b = a = 2. Therefore, its Schur interval coincides with its support.

The next configuration that we consider is the ribbon skew diagram λ/µ, with µ =
((a+ b+ 1)x, ay) and λ∗ = ((b+ 1)y+1), for some integers a, b, x, y ≥ 1, as illustrated by

(4.5) F3

x

ya

b

.

An F3 configuration (4.5) with a = x = 1, or a = 1 and x ≤ y + 1, or a ≤ b + 1 and
x = 1, is called an A3 configuration.

Proposition 4.10. Let λ/µ be a skew diagram with a configuration (4.5). Then its
support equals its Schur interval if and only if it is an A3 configuration. Moreover, if
a = x = 1, the support of A3 is

[w,n] = {w, ξ2 = (y + 2, 2, 2, 1b−1), ξ3 = (y + 2, 3, 1b), ξ1 = (y + 3, 1b+2),n},

and the skew Schur function sλ/µ = sw′ + sξ′1 + sξ′2 + sξ′3 + sn′ has exactly five components
all with multiplicity 1.

Proof. We start by noticing that, when both integers a and x are strictly greater than 1,
then the minimum and maximum of the supp(λ/µ) are given by

w = (w1, w2, 1
a+b) � n = (x+ y + 2, 2min{b+1,a}, 1a+b+1−2min{b+1,a}),

with w1 = max{y + 2, x + 1}, w2 = min{y + 2, x + 1} and min{b + 1, a} ≥ 2. Therefore,
we can consider the partition

ξ := (w1, w2, 3, 1
a+b−3).

It is straightforward to check that w � ξ � n and that ξ is not in the support of λ/µ.
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In the case a = x = 1, in which the minimum and maximum of the support are given
by

w = (y + 2, 2, 1b+1) � n = (y + 3, 2, 1b),

the Schur interval is [w,n] = {w, (y + 3, 1b+2), (y + 2, 2, 2, 1b−1), (y + 2, 3, 1b),n}, and we
can check directly that this interval is equal to supp(λ/µ).

So we are left with the case a = 1 and x > 1, since the remaining case is obtained by
conjugation symmetry. The minimum and maximum of the support are

w = (w1, w2, 1
b+1) � n = (x+ y + 2, 2, 1b),

where w1 and w2 are defined as in the previous case. Thus, if ξ is a partition in the Schur
interval, it must satisfy ξ = (ξ1, ξ2, ξ3, 1

b), for some integers ξi. Moreover, we must have

max{y + 2, x+ 1} ≤ ξ1 ≤ x+ y + 2,
x+ y + 3 ≤ ξ1 + ξ2 ≤ x+ y + 4,

and
x+ y + 4 ≤ ξ1 + ξ2 + ξ3 ≤ x+ y + 5.

There are two possibilities for the sum ξ1 + ξ2. As ξ3 ≥ 1, when this sum equals x+ y+ 3,
it follows that ξ3 must be either 1 or 2, and if ξ1 + ξ2 = x + y + 4 then ξ3 = 1. Consider
ξ1 + ξ2 = x + y + 3. We have w̃1 := (w1, w2) � (ξ1, ξ2) � ñ1 := (x + y + 2, 1), where
w̃1 and ñ1 are the minimum and maximum LR fillings of the two column skew diagram
Ã obtained from λ/µ by removing all except the second and last columns. Since, by
Proposition 4.8, we have supp(Ã) = [w̃1, ñ1], we conclude that we may place strings of
length ξ1 and ξ2 using only the second and last columns of λ/µ. As the remaining entries
of ξ are equal to 1, and, at most one, equal to 2, it follows that ξ ∈ supp(λ/µ).

Assume now that ξ1 + ξ2 = x + y + 4. In this case, we have (ξ1, ξ2) ∈ [w̃2, ñ2], where
w̃2 = (w1, w2, 1) and ñ2 = (x + y + 2, 2) are the minimum and maximum LR fillings of
the skew diagram B obtained from λ/µ removing all columns except the first two and
the last one. Note that B is an F2π

′
configuration as in (4.4), and, by Proposition 4.9,

we have supp(B) = [w̃2, ñ2] if and only if x ≤ y + 1. Thus, if x ≤ y + 1, we find
that (ξ1, ξ2) ∈ supp(B) and similarly, as before, it follows that ξ ∈ supp(λ/µ). If, on
the other hand, we have x > y + 1, then, by Proposition 4.9, we can consider a partition
(σ1, σ2) ∈ [w̃2, ñ2] which is not in the set supp(B). It follows that σ := (σ1, σ2, 1

b) ∈ [w,n]
but σ /∈ supp(λ/µ). �

In the next lemmas, we analyse some families of skew diagrams needed in the sequel.

We start with skew diagrams λ/µ of types F4 and F̃4 defined by the partitions λ =
((a + 2)x, a + 1, 1y) and µ = ((a + 1)x), respectively, for some a, x, y ≥ 1 such that
not both x and y are equal to 1, and by the partitions λ = ((a + b + 1)x, a + b, a) and
µ = ((a+ b)x), for some integers b ≥ 1 and a, x > 1, as illustrated by

(4.6)

F4

x

y

a

F̃4

x
a b

.

Note that, if we let x = y = 1 in an F4 configuration, or x = 1 in an F̃4 configuration,
then we get an F2 configuration.

An F4 configuration with a = 1 and x ≤ y + 1, or a ≥ 2 and x = 1, is called an A4
configuration.
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Proposition 4.11. (i) If λ/µ is a skew diagram with configuration F4, then its support
is equal to the Schur interval if and only if it is an A4 configuration. Moreover, if a ≥ 2
and x = 1, the support of A4 is [w,n] = {w, ξ = (y + 1, 2, 1a−1),n}, and the skew Schur
function sλ/µ = sw′ + sξ′ + sn′ has exactly three components all with multiplicity 1.

(ii) The support of F̃4 is strictly contained in the Schur interval.

Proof. We start with an F4 configuration. If a ≥ 2, then the minimum and maximum of
supp(λ/µ) are

w = (w1, w2, 1
a) � n = (x+ y + 1, 1a),

with w1 = max{x, y+ 1}, w2 = min{x, y+ 1} and `(w) = `(n) + 1. If x ≥ 2, the partition
ξ := (w1, w2, 2, 1

a−2) satisfies `(ξ) = `(n), and thus w � ξ � n, but it is not in the
support of λ/µ since the strings of length w1 and w2 must fill the first and last columns,
leaving no space for the string of length 2. On the other hand, if x = 1, then the Schur
interval of λ/µ is

[w,n] = {w, (y + 1, 2, 1a−1),n} = supp(λ/µ).

Assume now that a = 1. If x > y + 1, then w = (x, y + 1, 1) � n = (x+ y + 1, 1), and
ξ := (x, y+ 2) ∈ [w,n], but clearly ξ /∈ supp(λ/µ). If otherwise, we have x ≤ y+ 1. Then
the minimum and the maximum of λ/µ are given by

w = (y + 1, x, 1) � n = (x+ y + 1, 1).

A partition ξ = (ξ1, ξ2, ξ3) ∈ [w,n] must satisfy y + 1 ≤ ξ1 ≤ x + y + 1 and x + y + 1 ≤
ξ1 + ξ2 ≤ x + y + 2 with ξ3 ∈ {0, 1}. Let ξ1 = y + 1 + k, for some k ∈ {0, . . . , y + 1}.
Then, we get x− k ≤ ξ2 ≤ x + 1− k, and since x ≤ y + 1 it follows that the partition ξ
belongs to the support of λ/µ.

Finally, suppose that λ/µ is an F̃4 configuration. Then the minimum and maximum
of supp(λ/µ) are

w = (x, 2a, 1b) � n = (x+ 2, 2a−1, 1b),

and, since a ≥ 2, the vector ξ := (x+ 2, 2a−2, 1b+2) is a partition and satisfies w � ξ � n,
but ξ /∈ supp(λ/µ). �

The next skew diagrams λ/µ are F5, F̃5 and F̂5, respectively, defined by the partitions:
µ = ((a + b)x+y) and λ∗ = (b + 2, 1y+1), with a, x ≥ 2 and b, y ≥ 0; µ = ((a + 1)x+y)
and λ∗ = ((a + 2)z, 1y+1), with a ≥ 2, y ≥ 0 and x, z ≥ 1; and µ = ((a + b + c)x, a) and
λ∗ = (c + 1), with x ≥ 2 and either a, b, c ≥ 1 or b = 0 and a, c ≥ 1 with a + c ≥ 3, as
illustrated by

(4.7)

F5

y

x

a b

F̃5
z

y

x

a
F̂5

x
a
b c

.

Lemma 4.12. The supports of F5, F̃5 and F̂5 are strictly contained in the Schur interval.

Proof. The minimum and maximum of the support of F5 are

w = (x+ y + 1, x, 2a, 1b) � n = (x+ y + 2, x+ 2, 2a−2, 1b+1),

with `(w) = `(n) + 1. Since a, x > 1, we may consider the partition

ξ := (x+ y + 1, x+ 1, 3, 2a−2, 1b),

which is an element of the Schur interval, but it is not in the support of F5.
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In the case of F̃5, we have

w = (w1, w2, w3, 1
a) � n = (x+ y + z + 1, x+ 1, 1a),

with w1, w2, w3 the lengths of the first and the two last columns of F̃5 in decreasing order.
Take

ξ := (x+ y + z + 1, x, 2, 1a−1) ∈ [w,n].

Since, after placing the strings of length x+y+z+1 and x in the unique possible positions

in F̃5, we are left with only a single row, it follows that ξ /∈ supp(F̃5).

Finally, we consider the case of an F̂5 configuration. If b ≥ 1, the minimum and the
maximum of the support are given by

w = (x+ 1, 2b, 1a+c) � n = (x+ 2, 2b, 2min{a−1,c}, 1a−1+c−2min{a−1,c}).

It is easy to check that the partition ξ := (x + 1, 3, 2b−11a+c−1) is an element of the

Schur interval but is not in the support of F̂5. Similarly, if b = 0, the partition ξ =

(x+ 1, 3, 1a+c−3) belongs to the Schur interval but not to the support of F̂5. �

The next family of skew diagrams λ/µ is denoted by F6, and it is defined by partitions
λ = (a+ b+ 1, (a+ 1)x, 1y) and µ = (1), for some integers a, x > 0 and b, y ≥ 1,

(4.8) F6
y

x

a b

.

If b = y = 1 an F6 configuration is called an A6 configuration.

Proposition 4.13. The support of a skew diagram λ/µ which is an F6 configuration
equals the Schur interval if and only if it is an A6 configuration. Moreover, in this case,
the support is

[w,n] = {w = ((x+ 1)a+1, 1), ξ = (x+ 2, (x+ 1)a−1, x, 1),n = (x+ 2, (x+ 1)a) : a, x ≥ 1},
and the skew Schur function sλ/µ = sw′+sξ′+sn′ has three components all with multiplicity
1.

Proof. We consider the case b ≥ 2. Notice that the case y ≥ 2 is the conjugate of the
former. In our case, the minimum and the maximum of the support are

w = (x+ y, (x+ 1)a, 1b) � n = (x+ y + 1, (x+ 1)a, 1b−1),

and we can consider the partition ξ := (x + y, (x + 1)a, 2, 1b−2) ∈ [w,n], which clearly
does not belong to the support of λ/µ.

For the remaining case y = b = 1, notice that the Schur interval is given by

[w,n] = {w = ((x+ 1)a+1, 1), ξ = (x+ 2, (x+ 1)a−1, x, 1),n = (x+ 2, (x+ 1)a)}.
Since ξ ∈ supp(λ/µ), the result follows. �

In the next lemma, we analyse the support of a skew diagram λ/µ, with ` + 1 ≥ 4
columns, having the form

(4.9) F7
y

x

,
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where the first ` columns end in the same row and have pairwise distinct lengths, x is the
length of the last column, and λ∗ = (1y). Moreover, by Lemma 3.1, we assume without
loss of generality that the next-to-last column starts at least one row below the topmost
box of the last column, and that the first column has length ≤ y. Denote by (w1, . . . , w`)
the partition formed by the first ` columns of the diagram, and let k ≥ 0 be the number
of rows that the last two columns share.

A skew diagram F7 such that ` = 3, x = w2, w3 = 1 and k = w2 − 1 is called an A7
configuration.

We distinguish two cases: either (i) w2 ≤ y, or (ii) w2 > y. In the first case, the last
column shares rows only with column `, and, in the second case, the last column shares
rows with at least columns ` and ` − 1. Examples of A7 configurations of types (i) and
(ii) are shown below:

(i) , (ii) .

In the next two lemmas we show that the support of an A7 configuration is the entire
Schur interval.

Lemma 4.14. Let λ/µ be an F7 configuration (4.9) such that w2 ≤ y. Then the support
of λ/µ equals the Schur interval if and only if ` = 3, w3 = 1, x = w2 and k = w2 − 1.

Proof. The condition w2 ≤ y means that the last column of λ/µ may share rows only
with the next-to-last column. Then, the minimum and maximum of the support of λ/µ
are given by

w = (w1, . . . , w`) ∪ {x} � n = (w1 + x− k, w2 + k, w3, . . . , w`),

with `(w) = `(n) + 1.
Note that, if w` ≥ 2, it follows from Corollary 4.4 that supp(λ/µ)  [w,n], and if

` ≥ 4 and w` = 1, the partition ξ := (w1 + x − k, w2 + k, w3, . . . , w`−1 − 1, 1, 1) shows
that supp(λ/µ)  [w,n]. Moreover, if k = 0, the skew diagram is disconnected, and, by
Lemma 4.2, the support of λ/µ is not the entire Schur interval.

So, assuming ` = 3, k > 0 and w3 = 1, we have

w = (w1, w2, 1) ∪ {x} � n = (w1 + x− k, w2 + k, 1).

If x < w2 then 1 ≤ k < x < w2, and, in particular, we get w2 ≥ k + 2. Since w2 and k
are the lengths of the second and third columns of λ1/µ (see page 10 for the definition of
λ1/µ), it follows from Lemma 4.5 that supp(λ/µ)  [w,n]. The same situation happens
if x > w2, since in this case the partition ξ := (w1, w2 + 1) ∪ (x) satisfies w � ξ � n, but
it does not belong to the support of λ/µ.

We are, therefore, left with the case ` = 3, k > 0, x = w2 and w3 = 1. Note that
1 ≤ k ≤ w2 − 1. If k < w2 − 1, the second and third columns of λ1/µ have lengths w2

and k, respectively, and by Lemma 4.5, we find that the support of λ/µ is not the entire
Schur interval. So we must also consider k = w2 − 1. In this case, the minimum and the
maximum of the support are given by

w = (w1, w2, w2, 1) � n = (w1 + 1, w2 + w2 − 1, 1).

Let ξ := (ξ1, ξ2, ξ3, ξ4) ∈ [w,n], and note that w1 ≤ ξ1 ≤ w1 + 1.
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If ξ1 = w1, then the inequalities w � ξ � n imply that α � (ξ2, ξ3, ξ4) � β, where α
and β are the minimum and the maximum of the support of the skew diagram A obtained
from λ/µ by removing the third column. Since A is an A2π

′
configuration, it follows that

(ξ2, ξ3, ξ4) ∈ supp(A), and therefore ξ ∈ supp(λ/µ).
For the remaining case ξ1 = w1+1, the situation is analogous, since in this case we have

w1 � (ξ2, ξ3, ξ4) � n1, where w1 and n1 are the minimum and the maximum LR filling of
A \ V1. Since this diagram is also an A2π

′
configuration, we find that ξ ∈ supp(λ/µ). �

Lemma 4.15. Let λ/µ be an F7 configuration (4.9) such that w2 > y. Then the support
of λ/µ equals the Schur interval if and only if ` = 3, w3 = 1, x = w2 and k = w2 − 1.

Proof. We start the proof by showing that, if the conditions ` = 3, w3 = 1, x = w2 and
k = w2 − 1 are not satisfied, then the support of λ/µ is not the entire Schur interval.
Consider the minimal and maximal fillings of the diagram,

w = (w1, w2, . . . , w`) ∪ (x) � n = (n1, n2, . . . , ns),

where n1 = x+ y, n2 = w1 and `(w) > `(n).
Note that, if k = 0, the diagram λ/µ is disconnected, with one of the connected

components having a 2 by 2 block. In this case, by Lemma 4.2, supp(λ/µ) is not the entire
Schur interval. So, assume k > 0. If x > w2, then the partition ξ := (w1, . . . , w`−2, w`−1 +
1, w` − 1) ∪ (x) shows that supp(λ/µ) is strictly contained in the Schur interval [w,n].
On the other hand, if x < w2, then 1 ≤ k < x < w2, and this implies w2 ≥ k + 2. Since
k and w2 are the lengths of two columns of λ1/µ, it follows from Lemma 4.5 that also in
this case the support of λ/µ is not the entire Schur interval.

So, for the rest of the proof we assume x = w2, and therefore

w = (w1, w2, w2, w3, . . . , w`) � n = (n1, n2, . . . , ns),

with n1 = w2 + y and n2 = w1. Note that this implies y ≥ 2.
If ` ≥ 4, then the partition ξ := (w1, w2, w2, . . . , w`−2, w`−1 + 1, w` − 1) clearly shows

that supp(λ/µ) is not the entire Schur interval. Thus, consider ` = 3, and note that, since
1 ≤ k ≤ w2− 1, it follows from Lemma 4.5 that supp(λ/µ) ( [w,n] except if k = w2− 1.

So, assume now that ` = 3, x = w2 and k = w2 − 1. Then n1 = w2 + y = w1 + 1, and
the minimal and maximal fillings are now

w = (w1, w2, w2, w3) � n = (w1 + 1, w1, w3 + h),

where h > 0 is the number of rows that the second and the last columns share. It follows
that, if w3 ≥ 2, the partition ξ := (w1, w2 + 1, w2 + 1, w3 − 2) satisfies w � ξ � n but is
not in the support of λ/µ.

To finish the proof, consider ` = 3, w3 = 1, x = w2 and k = w2 − 1, and let ξ =
(ξ1, ξ2, ξ3, ξ4) be a partition in the Schur interval [w,n]. Using the same argument used
in the proof of Lemma 4.14, it is easy to show that ξ belongs to the support of λ/µ, and
it follows that in this case the support of λ/µ is the entire Schur interval. �

From Lemmas 4.14 and 4.15 we deduce the following result.

Corollary 4.16. If the skew diagram λ/µ is an F7 configuration, then its support is the
Schur interval if and only if λ/µ is an A7 configuration.
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5. Full interval linear expansion of multiplicity-free skew Schur
functions

We are now ready to identify the basic multiplicity-free skew Schur functions whose
support is the entire interval [w,n]. Our strategy and terminology follows closely the one
used in the proof of [7, Lemma 7.1].

Proof of Theorem 1.1. If λ/µ satisfies one or more of the conditions listed in the theo-
rem, then the corresponding Schur function is multiplicity-free. These conditions imply
particular instances of the configurations R0–R4 described in Theorem 2.2; namely A1 is
in R4; A2 is in R1, or R3; A3 and A4 are in R3; A6 is in R1 or R3; and A7 is in R1.
The strategy for the converse is to use Corollary 4.6 to analyse the support of the basic
multiplicity-free skew Schur function sλ/µ listed under cases R0–R4 in Theorem 2.2. We
next consider, in bold, the five cases, R0–R4, albeit not in numerical order.

R0. If µ or λ∗ is the zero partition 0 then either λ/µ or (λ/µ)π is a partition. This means
that the minimum and maximum LR fillings of λ/µ coincide and therefore, supp(λ/µ) =
[w,n] = {n = w}.

R4. In this case both µ and λ∗ are rectangles, and thus λ is a fat hook. Due to
Lemma 3.1, we may assume that λ = ((a+ b)x, by) and µ = (ax, 0y) with a, b, x, y ≥ 1, as
illustrated below:

λ/µ =
y

x

a b

.

Since λ/µ has two disconnected components, by Lemma 4.2, it follows that, if any of
the components has a 2 by 2 block, then its support is not the entire Schur interval. Thus,
we are left with four cases to analyse. If a = b = 1 or if x = y = 1, we get a two column
or a two row diagram. In both cases, by Proposition 4.8, the Schur interval coincides
with the support of λ/µ. In any other case, we get either an F1 or an F1π configuration,
and, by Proposition 3.3, we find that the support of λ/µ is strictly contained in its Schur
interval.

Therefore, by Lemma 3.1, we find that if both µ and λ∗ are rectangles, then supp(λ/µ) =
[w,n] = {n,w} if and only if λ/µ satisfies conditions (ii) of the theorem.

R2. The two main subcases, µ a rectangle of mn-shortness 2 and λ∗ a fat hook, and
vice versa, are denoted by S2 and S2π, respectively. Each has four subcases, as illustrated
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by

S2(a) S2π(a) S2(a′) S2π(a′)

S2(b) S2π(b) S2(b′) S2π(b′)

.

These skew Young diagrams are arranged so that those of type S2π are the π-rotations
of those of type S2, and the right-hand block of four (3rd and 4th column) consists of
the conjugates of the left-hand block of four (1st and 2nd column). Due to the rotation
symmetry and the conjugate symmetry, we have only to consider two cases, which we
select to be S2(a) and S2(b).

S2(a). In this case λ = ((a+ b+ c+ d)x, (a+ b+ c)y, (a+ b)z) and µ = (ax+y+z−2) with
x+ y+ z ≥ 4, for some integers a, b, c, d, x, y, z such that a ≥ 2, c, d, x, y, z ≥ 1 and b ≥ 0,
as illustrated in the following figure:

a b c d
x

y

z
.

By Lemma 3.1, we may assume that b = 0. We start by noticing that, if z = 2, the skew
diagram λ/µ is disconnected with a 2 by 2 block, in which case we have supp(λ/µ)  
[w,n], by Lemma 4.2. Assume now that z = 1, and note that, by the hypothesis on
λ/µ, the length of the diagram is greater than or equal to 4. Therefore, an F0π or an
F0′ configuration appears if c ≥ 2 or if x, d ≥ 2, respectively. Again, in these cases
the support of λ/µ is strictly contained in the Schur interval by Corollary 4.6. Now,
if c = x = 1, we get an F5 configuration, and if c = d = 1, we get the conjugate of
an F5 configuration. By Lemma 4.12, we get that supp(λ/µ)  [w,n]. Therefore, in all
subcases, the support of the skew diagram S2(a) is strictly contained in its Schur interval.

The analysis of case S2(b) is completely analogous to the previous one.

R3. The two main subcases, µ a rectangle and λ∗ a fat hook of mn-shortness 1, and
vice versa, are denoted by S3 and S3π, respectively. Each has six subcases, as illustrated
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by

S3(a) S3π(a) S3(a′) S3π(a′)

S3(b) S3π(b) S3(b′) S3π(b′)

S3(c) S3π(c) S3(c′) S3π(c′)

.

As before, these skew Young diagrams are arranged so that those of type S3π are the
π-rotations of those of type S3. This time the right-hand block of six consists of the
conjugates of the left-hand block of six. Due to the rotation symmetry and the conjugation
symmetry, we only have to consider three cases. We choose these to be S3(a), S3(b′) and
S3(c′).

S3(a). There are two subcases which, by Lemma 3.1, may be reduced to (i) µ = (ax+1)
and λ∗ = ((b+ c)z, cx+y) for some integers a, b, c, z ≥ 1 and x, y ≥ 0 such that x+ y ≥ 1;
and (ii) µ = ((a+ b)x+1) and λ∗ = ((b+ c+ d)z, cy+x) where a, b, c, z, y ≥ 1 and d, x ≥ 0,
as illustrated below:

(i)

a b c

x
y

z (ii)

a b d c

x
y

z

.

In the subcase S3(a)(i), we start by identifying an F0, F0π or an F0π
′

configuration in
the diagram whenever a, z ≥ 2 or if x ≥ 1 and b ≥ 2, or even if a, y ≥ 2. In these cases,
the support of the skew diagram is not the entire Schur interval by Corollary 4.6. There
remain thus six cases to consider.

If a = 1 and x = 0 we get an F6 configuration, and by Lemma 4.8 we have supp(λ/µ) =
[w,n] if and only if λ/µ is an A6 configuration. If a = b = 1 and x > 0, we get the

conjugate of the π-rotation of an F̂5 configuration if c ≥ 2, and an F2′ configuration if
c = 1. By Proposition 4.9 and Lemma 4.12, we find that in these cases, supp(λ/µ) = [w,n]
if and only if λ/µ is an A2 configuration.

Assume now that a ≥ 2 and z = 1. Then, if y = x = 0 we get a two row skew
diagram, the configuration (ii) of the statement under proof, and thus its support equals
the Schur interval. If y = 0 and b = 1, we get the conjugate of an F4 configuration,
and, by Lemma 4.11, its support is equal to the Schur interval if and only if λ/µ is
an A4 configuration. Finally, if y = 1 and x = 0 we get an F2 configuration, and if

y = 1 and b = 1 we get the transpose of an F̃5 configuration. By Proposition 4.9 and
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Lemma 4.12, we find that the support is equal to the Schur interval if and only if λ/µ is
an A2 configuration.

Consider now the subcase S3(a)(ii). If a, z ≥ 2, we have an F0 configuration, and if
x ≥ 1 and d ≥ 2, we have an F0π configuration. Note also that, if y ≥ 2, we have an F0′π

configuration. So we are left with six cases to analyse, all having y = 1.
If d = 0 and z = 1, we get an F2 configuration (recall that we restrict ourselves

to basic skew Schur functions); if d = 0 and a = 1, we get either an F2 or an F̂5

configuration; if d = 1 and z = 1, we get the conjugate of an F̃5 configuration; if d = 1
and a = 1, we get the π-rotation of an F3 configuration; if x = 0 and z = 1, we also

get an F2 configuration; and finally, if x = 0 and a = 1, we get the π-rotation of an F̂5
configuration. Using Propositions 4.9, 4.10 and Lemma 4.12, it follows that the support
of λ/µ is the full Schur interval if and only if λ/µ is an A2 or an A3 configuration.

S3(b′). Using Lemma 3.1, we may assume that λ = ((a + b + 1)x, (a + 1)y+z, at) and
µ = (ax+y), for some integers a, b, x, t ≥ 1, and y, z ≥ 0 such that y+ z ≥ 1, as illustrated
by

λ/µ =

a b
x

y

z

t .

If a, t ≥ 2 or a, z ≥ 2, we get an F0 or an F0π
′

configuration. In these cases we know
from Corollary 4.6 that the support of the configuration is not the entire Schur interval.
An F0′ configuration also appears whenever b, x ≥ 2, and again the support of λ/µ is
strictly contained in its Schur interval. So we are left with six cases to analyse.

If a = b = 1, we get an F2′ configuration, and if a = x = 1, we get either an

F2′ configuration (if b = 1), or the conjugate of the π-rotation of an F̂5 configuration
(otherwise). By Proposition 4.9 and Lemma 4.12, it follows that in these cases the support
of λ/µ is equal to the entire Schur interval if and only if λ/µ is an A2 configuration.

Assume now that a ≥ 2 and t = z = 1. If also b = 1, we get an F5, and if x = 1, we

get the conjugate of an F̃5 configuration. Again, by Lemma 4.12, it follows that in these
cases the support of λ/µ is strictly contained in the Schur interval. For the remaining

two cases, assume that a ≥ 2, t = 1 and z = 0. If b = 1, we get the conjugate of an F̃4
configuration, and if x = 1, we get the conjugate of an F4 configuration. In these cases,
by Lemma 4.11, the support of λ/µ is the full Schur interval if and only if λ/µ is the
conjugate of an A4 configuration.

S3(c′). Due to Lemma 3.1, there are only two subcases to study: (i) µ = (ax+y) and
λ∗ = ((b + 1)t, 1z+y) for some integers a, b, x, t ≥ 1 and y, z ≥ 0 such that y + z ≥ 1; and
(ii) µ = ((a + b)x+y) and λ∗ = ((b + c + 1)t, 1z+y) with a, b, x, t, z ≥ 1 and y, c ≥ 0, as
illustrated below:

(i)

a b
x
y

z

t (ii)

a b c
x
y

z

t

.

In subcase S3(c′)(i), we have F0 and F0π configurations whenever a, t ≥ 2 or b, x+y ≥ 2,
respectively. In these cases, we have supp(λ/µ)  [w,n] by Corollary 4.6. It remains to
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consider four cases. If a = b = 1, we get an F2′ configuration, and if a = x + y = 1, we
get an F6 configuration. Then, Proposition 4.9 and Lemma 4.8 show that, in each case,
the support of λ/µ is equal to the Schur interval if and only if λ/µ is an A2′ or an A6
configuration.

Assume now that a ≥ 2 and t = 1. If b = 1, we get the diagram

a
x
y
z

.

Now, an F0′ configuration appears if z ≥ 2, and, if z = 1, we get the conjugate of an F̃5
configuration. By Theorem 4.6 and Lemma 4.12, it follows that in these cases the Schur
interval contains the support of λ/µ strictly. On the other hand, if x + y = 1, then we
must have x = 1 and y = 0, and thus λ/µ has the form

a b

z
.

As before, an F0′ configuration appears if z ≥ 2, and, if z = 1, we get an F2 configuration,
in which case, by Corollary 4.6 and Proposition 4.9, respectively, we find that the Schur
interval equals the support of λ/µ if and only it is an A2 configuration.

Consider now the subcase S3(c′)(ii). If a, t ≥ 2 or z ≥ 2 or c, x + y ≥ 2, we get F0,
F0π

′
or F0π configurations on λ/µ. In all these cases, using Corollary 4.6, we find that

supp(λ/µ)  [w,n]. So we may assume z = 1.

If we have c = 0, we get an F4 or an F̃4 configuration if a = 1 and t = 1. In this case,
by Lemma 4.11, the support of λ/µ is equal to its entire Schur interval if and only if the
λ/µ is an A4 configuration.

If c = 1, then we get either an F5, an F̃5 or an F3 configuration if a, x ≥ 2 and t = 1,
or if a = 1 and t, x ≥ 2, or if a = t = x = 1. In these cases, by Proposition 4.10 and
Lemma 4.12, the support of the skew diagram is equal to the Schur interval if and only if
λ/µ is an A3 configuration.

Finally, assume that c ≥ 2 and x+ y = 1. If t = 1, we get an F3 configuration, and, if

a = 1 and t ≥ 2, we get the π-rotation of an F̂5 configuration. By Proposition 4.9 and
Lemma 4.12, we find that, in these cases, supp(λ/µ) = [w,n] if and only if λ/µ is an A3
configuration.
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R1. There are two main subcases. We denote them by S1 and S1π in which µ and λ∗

are rectangles of mn-shortness 1. Each has four subcases, as illustrated by

S1(a) S1π(a) S1(a′) S1π(a′)

S1(b) S1π(b) S1(b′) S1π(b′)

.

These skew Young diagrams are arranged so that those of type S1π are the π-rotations
of their left neighbour of type S1. Moreover, the right-hand block of four consists of
the conjugates of the left-hand block of four. Due to the rotation symmetry and the
conjugation symmetry, it is therefore only necessary to consider two cases. We select
these to be S1π(a′) and S1π(b).

S1π(a′). Using Lemma 3.1, we may assume that

λ/µ = .

Moreover, we may assume that the diagram has at least 4 columns, three of them but
the first have different sizes, otherwise we are in case R3 or R4. In this case, λ/µ is
disconnected and the largest component has a 2 by 2 block. By Lemma 4.2, it follows
that the support of λ/µ is not the full Schur interval.

S1π(b). We may use again Lemma 3.1 to reduce our study to the skew diagrams of the
form

λ/µ =

a

x

y
,

where a + 1 is the number of columns of the diagram, for which we assume that among
the first a there are at least three distinct lengths (otherwise we are in one of the previous
cases), x is the length of the last column and λ∗ = (y). Moreover, we assume without
loss of generality that the next-to-last column starts at least one row below the topmost
box of the last column, and that the first column has length ≤ y. Note that, if there are
at least two columns among the first a ones having the same length and y ≥ 2, then λ/µ
is an F0 configuration. We are left with two cases: either (i) y = 1, or (ii) the first a
columns have pairwise distinct lengths. In the first case, the minimal and maximal fillings
of λ/µ are

w = (x, ns11 , . . . , n
sr
r , 1

sr+1) � n = (x+ 1, ns11 , . . . , n
sr
r , 1

sr+1−1),
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with x ≥ n1 > · · · > nr > 1 and r ≥ 2. Therefore, the partition

ξ := (x, ns11 , . . . , nr + 1, nsr−1r , 1sr+1−1)

shows that the support of λ/µ is not the entire admissible interval.
Finally, assume that among the first a columns of λ/µ there are no two with the same

length, and that y ≥ 2. By Corollary 4.16, it follows that the support of λ/µ is equal to
the Schur interval if and only if λ/µ is an A7 configuration. �

Example 5.1. Let λ/µ = ((b + 3)2, 2y+1)/(b + 2, 1y+1) be an A3 configuration. Here we
have w = (y + 2, 2, 1b+1) � n = (y + 3, 2, 1b). Then

sλ/µ = s(y+2,2,1b+1)′ + s(y+2,2,2,1b−1)′ + s(y+2,3,1b)′ + s(y+3,1b+2)′ + s(y+3,2,1b)′ .

Example 5.2. Let λ/µ = (44, 32)/(3, 2, 13) be an A7 configuration. Here we have w =
(5, 4, 4, 1) � n = (6, 5, 3). Then

sλ/µ = s(5,4,4,1)′ + s(5,5,3,1)′ + s(6,4,3,1)′ + s(5,5,4)′ + s(6,5,2,1)′ + s(6,4,4)′ + s(6,5,3)′ .

The characterisation of the multiplicity-free Schur function products that attain the full
interval, given in Corollary 1.2, is now a consequence of Theorem 1.1, and of Corollary 2.3.

We list now explicitly the partitions (µ, ν, λ) for which cλµ ν = 1 for all λ ∈ [µ∪ν, µ+ν].
Recall that the Pieri rule expresses the product of a Schur function and a single row
(column) Schur function in terms of Schur functions [22, 9, 24]. These are precisely the
cases where the Hasse diagram of the interval [µ ∪ ν, µ+ ν] is given by the Pieri rule.

Corollary 5.1. Let (µ, ν, λ) be a triple of partitions.

(a) If µ or ν is the zero partition, then cλµ,0 = 1 if and only if µ = λ.

(b) If µ = (1x) and ν = (1y) (or vice versa), with x ≥ y ≥ 1, then cλµ,ν = 1 if and only
if λ ∈ [(1x+y); (2y, 1x−y)].

(b’) If µ = (x) and ν = (y) (or vice versa), with x ≥ y ≥ 1, then cλµ,ν = 1 if and only
if λ ∈ [(x, y); (x+ y)].

(c) If µ = (1x) and ν = (2, 1y) are partitions such that 1 ≤ x ≤ y + 1 (or vice versa),
then cλµ,ν = 1 if and only if λ ∈ [(2, 1x+y); (3, 2x−1, 1y−x+1)].

(c’) If µ = (x) and ν = (z, 1) are partitions such that 1 ≤ x ≤ z, (or vice versa), then
cλµ,ν = 1 if and only if λ ∈ [(z, x, 1); (z + x+ 1, 1)].

(d) If µ = (1) and ν = (a, 1y) are partitions such that a ≥ 3, y ≥ 1 (or vice versa),
then cλµ,ν = 1 if and only if λ ∈ [(a, 1y+1); (a+ 1, 1y)].

(d’) If µ = (1) and ν = (z, 1a) are partitions such that a ≥ 2, z ≥ 1 (or vice versa),
then cλµ,ν = 1 if and only if λ ∈ [(z, 1a+1); (z + 1, 1a)].

Remark 5.1. We may also explicitly list the multiplicity-free Schur function products
whose support is an interval, that is, those whose number of components (summands) is
the cardinality of the Schur interval.

(a) s0sν = sν has 1 component.

(b) The conjugate Schur interval [(1x+y); (2y, 1x−y)] is a saturated chain. The decom-
position

s(1x)s(1y) = s(2y , 1x−y) + s(2y−1, 1x−y+2) + · · ·+ s(21, 1x+y−2) + s(1y+x), x ≥ y ≥ 1,

has y + 1 components. In particular, if y = 1, then s(1x)s(1) = s(2, 1x−1) + s(11+x)
has 2 components.
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(b’) This case arises as the conjugate of (b).

(c) There are two cases for the conjugate Schur interval [(2, 1x+y), (3, 2x−1, 1y−x+1)],
with 1 ≤ x ≤ y + 1. If y = x− 1, then

s1xs2 1x−1 = s(xx 1)′ + s(x+1x−1 1)′ + s(x+1x)′ + s(x+2x−2 1)′ + s(x+2x−1)′ + s(x+3x−3 1)′ + · · ·

+s(2x−1 1 1)′ + s(2x−1 2)′ + s(2x 1)′ , x ≥ 1; and

and, if y > x− 1, then

s(2, 1x−1+k)s(1x) = s(x+k, x, 1)′ + s(x+k, x+1)′ + s(x+1+k, x−1, 1)′ + s(x+1+k, x)′ + s(x+2+k, x−2, 1)′+

+s(x+2+k, x−1)′+s(x+3+k, x−3, 1)′+· · ·+s(2x−1+k, 1, 1)′+s(2x−1+k, 2)′+s(2x+k, 1)′ , x ≥ 1, k > 0.

(c’) This case arises as the conjugate of (c).

(d) The conjugate Schur interval [(a, 1y+1); (a+ 1, 1y)], a ≥ 3, y ≥ 1, has 3 elements,

s(a, 1y)s1 = s(a, 1y+1) + s(a, 2, 1y−1) + s(a+1, 1y), a ≥ 3, y ≥ 1.

(d’) It is the conjugate of (d).
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