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Abstract. In this paper, a comparison is made between two bilevel pro-
gramming models to design time-of-use tariffs in the electricity retail
market. The upper-level objective function consists of the maximization
of the retailer’s profit and the lower-level problem relates to the mini-
mization of the consumer’s cost. In the first model, the periods in which
prices apply are pre-defined and the aim is to determine the price values.
In the second model, which is developed for the first time in this paper,
both the periods and prices are decision variables, thus leading to a very
large search space for the upper-level problem due to the number of com-
binations periods-prices. For the model with variable periods, a hybrid
approach combining a genetic algorithm for the upper-level search with
a mixed-integer linear programming solver to obtain optimal solutions
to the lower-level problem is herein developed. Computational results
comparing the two models are presented.

Keywords: Bilevel optimization · Genetic algorithm · Mixed-integer
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1 Introduction

Major changes are underway in the electricity sector, namely regarding the evolu-
tion to smart grids, the increasing share of renewable sources, the dissemination
of electric vehicles, the deployment of distributed storage and the empowerment
of consumers/prosumers. Retail electricity markets are very competitive and re-
tail companies should design appropriate pricing schemes to offer to consumers,
who are increasingly sensitive to the need to manage consumption patterns in
an optimal manner by considering cost and comfort dimensions in their en-
ergy decisions. Energy service companies and grid operators provide automated
home energy management systems (HEMS), which manage consumption on the
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consumer’s behalf according to his preferences (e.g., time slots for appliance op-
eration). In general, retailers buy energy in spot markets (e.g., day ahead) or
through bilateral contracts. These prices seen by the retailer are increasingly
influenced by the grid status and the generation mix required to satisfy demand.
So, time-of-use prices have been increasingly adopted, thus fostering a “load fol-
lows supply” paradigm in such a way that benefits can be obtained for all players
in the energy supply chain (generators, grid operators, retailers and consumers).

There is a hierarchical interplay between a retailer and consumers. The re-
tailer establishes time-of-use prices (which can be valid for a long-term contract,
e.g. one year, or be dynamic, e.g. announced one day ahead) to maximize profits.
The consumer reacts by managing his consumption to minimize the electricity
bill, which can be facilitated by the use of HEMS. Therefore, the design of time-
of-use pricing schemes, i.e. specifying variable energy prices and the periods in
which they apply, considering the demand response, is of utmost importance
for the electricity retail business. This problem has been dealt with bilevel op-
timization (BLO) models, which are well suited to represent this hierarchical
decision setting. The retailer is the leader, who decides first by setting prices for
given periods, and the consumer is the follower, who reacts to these prices by
determining the appliance schedule that optimizes his cost function. Although
the retailer is the first to play, he must consider the consumer’s reaction because
it affects the retailer’s profit.

In BLO, the (lower-level) follower’s optimization problem is nested in the
constraints of the (upper-level) leader’s problem. BLO models are, in general,
very difficult to handle theoretically, methodologically and computationally [1].
Most approaches reported in the literature for designing time-of-use tariffs are
devoted to computing the energy prices for pre-defined periods (e.g., along one
day for daily cycle prices). This problem has been addressed by several authors,
e.g. in [2],[3], [4], [5], [6] and [7] among others, the last one using a trilevel model.

The problem of designing time-of-use pricing schemes becomes more real-
istic if, in addition to the price values, the periods in which prices apply are
also determined as a result of the optimization. However, this problem becomes
much more complex to solve. A general framework of models to optimize prices
and periods can be set as follows – models M1 to M4 – being the price values
decision variables in all of them; a certain discretization of the planning horizon
is considered (e.g., 24 hours discretized in 96 units of 15 minutes each) and the
periods to define the prices are ordered sets of time units (t.u.):

M1) periods are pre-defined;

M2) periods are variable, each one consisting of a set of contiguous t.u. (i.e.,
each period is defined by a start t.u. and an end t.u.), with a pre-specified number
of different periods (which implies a maximum number of different prices for the
whole planning horizon);

M3) a price is assigned to each t.u., but imposing a pre-specified maximum
number of different prices for the whole planning horizon;

M4) no restrictions, i.e. each t.u. may have a different price.
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Model M4 is the most general one (prices and periods are totally free) and
model M1 is the most restricted one (periods are pre-defined). Model M3 is more
general than model M2: in M3, prices may change from each t.u. to the next,
while in M2 prices may change only by the pre-defined number of periods. In
other words, M3 is an extension of M2, looking at each period as a set of possibly
non-contiguous t.u..

These four time-of-use pricing models may have further variations due to
additional constraints on periods (e.g., minimum number of t.u. in each period)
or prices (e.g., minimum difference between different prices). Further constraints
may be introduced in the time dimension or in price magnitudes.

Models M1 and M2 are more realistic to be implemented in electricity re-
tail markets, namely having in mind consumer’s acceptance. By increasing the
number of combinations of prices and periods, model M2 offers the retailer the
expectation of increasing profits with respect to the ones obtained with model
M1 (which is a particular case of M2). This paper is devoted to model M2: a
maximum number of different periods is specified; the problem consists of de-
termining the start and the end t.u. for each period and the corresponding price
value. A comparison with model M1 is carried out.

Our previous works have been devoted to model M1 [4]-[6] and M3+M4 [8]
using hybrid approaches combining a meta-heuristic (particle swarm optimiza-
tion or genetic algorithm) to perform the upper-level search for prices and a
solver to obtain the solution to the lower-level mixed-integer linear program-
ming (MILP) problem for each price setting. Although models M3 and M4 are
interesting from a conceptual perspective, in practice they may induce an ex-
cessive change of prices that probably would not be accepted by consumers, or
even regulatory authorities, as a viable tariff option.

It should be noticed that the problem of designing time-of-use electricity
tariffs falls into the broad category of price setting problems ([9],[10]) which
includes, e.g., the toll setting problem (the problem of defining highway tolls,
where costumers want to minimize their individual generalized travel costs). In
these problems, the leader typically seeks to maximize revenues (or profits) raised
from taxes or tariffs, while consumers specify consumption or production levels
aiming to minimize costs. Therefore, the present study may also act as a lever for
future works in pricing setting problems aiming to balance demand along time,
which have not yet been addressed in the literature using optimization models.
An example may be the definition of happy hours and drink/food prices in bars
and restaurants.

In section 2, the main concepts of BLO are presented and bilevel models for
price setting problems in the electricity retail market are outlined, considering
i) variable prices only (M1 model) and ii) variable prices and periods of time
(variable period model – M2 model). In section 3, a genetic algorithm for the
variable period model is described. Numerical results comparing the two models
are presented in Section 4 and the main conclusions are drawn in section 5.
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2 Bilevel modelling of electricity prices

A general BLO problem can be formulated as follows:

max
x∈X

F (x, y)

s.t. G(x, y) ≤ 0

y ∈ arg min
y∈Y

{f(x, y) : g(x, y) ≤ 0}

where x ∈ IRn1 is the vector of variables controlled by the leader – the decision
maker at the upper-level problem – and y ∈ IRn2 is the vector of variables
controlled by the follower – the decision maker at the lower-level problem.

In a bilevel problem, the decision process is sequential as the leader makes
his decisions first by setting the values of the variables x. Then, the follower re-
acts by choosing the y values that optimize his objective function on the feasible
solutions restricted by the fixed x. The bilevel problem is the leader’s problem.
However, the leader must incorporate into the optimization process the reac-
tion of the follower because this affects the leader’s objective value and even
the feasibility of the solution. It is difficult to find global optimal solutions to
bilevel optimization problems due to their inherent non-convexity. Even the lin-
ear bilevel problem is NP-hard [1].

In Alves et al. [4], a bilevel problem was considered to model the interaction
between the electricity retailer (leader) and a cluster of consumers (follower)
with similar consumption and demand response profiles. The retailer buys en-
ergy in the wholesale market and wants to determine the prices xi to be charged
to the consumers in I pre-defined periods Pi (i = 1, . . . , I) of a planning horizon
discretized into T time units (t = 1, . . . , T ), in order to maximize his profit.
The consumer aims to minimize the electricity bill, by reacting to the electricity
prices communicated by the retailer and deciding on the operation of control-
lable appliances. In [4] only shiftable appliances were considered, in addition
to a base load not deemed for control (e.g., tv set, oven, fridge, etc.). Shiftable
appliances are typically cyclic loads, such as dishwashers or laundry machines,
whose operation cycle can be shifted in time but not interrupted once initiated.

In Soares et al. [6], the bilevel model in [4] was extended by including other
types of controllable appliances with different physical features and type of con-
trol: in addition to shiftable appliances, a thermostatic load (air conditioning sys-
tem) and interruptible appliances have been modelled in the lower-level problem.
Interruptible appliances are loads whose operation can be interrupted provided
that the necessary amount of energy is supplied during a required time slot
(e.g. charge of an electric vehicle). In both studies ([4], [6]) the lower-level opti-
mization model is a mixed-integer programming problem, which can be solved
by an exact MILP solver (for instance, CPLEX) for each instantiation of the
upper-level variables x.

In the current study, we consider bilevel models with a consumer’s problem
including J shiftable appliances (j = 1 . . . J) and K interruptible appliances (k =
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1 . . .K) as the controllable loads. The consumer wants to determine the times of
the operation of these loads in order to minimize the electricity bill, ensuring that
the operation of each load is within a specified comfort time slot defined by a start
t.u. and an end t.u. within the planning horizon {1, . . . , T}: [t1j , t

2
j ], j = 1 . . . J and

[t1k, t
2
k], k = 1 . . .K, respectively, for shiftable and interruptible appliances. Each

shiftable appliance j has a load diagram specifying the power (qshifjr ) required at
each stage r (one t.u.) of its operation cycle with duration dj . Each interruptible
appliance k has the requirement that the energy Ek should be supplied during
the given comfort time slot, being qintk the power requested at each t.u. when
the load is operating. The electricity bill includes an energy component (cost of
the energy consumed by all loads) and a power component (the retailer defines
multiple levels of contracted power, P cont

l , l = 1 . . . L, with different prices el and
the consumer pays for the power level corresponding to the peak).

The electricity prices in each period Pi are controlled at the upper-level: xi,
i = 1, . . . , I, where I is the number of periods Pi.

The lower-level decision variables are binary variables: vkt, which specify, for
each interruptible appliance k, whether it is operating or not at each time unit t
of the respective comfort time slot; in the case of shiftable appliances, the binary
variables are wjrt, which further include the index r to specify the stage of the
operation cycle in which the load is operating at each t. These binary variables
define auxiliary real variables pt, ∀t, which represent the power requested from
the grid by all loads: shiftable, interruptible and also a (constant) base load
bt not deemed for control. These variables, together with the electricity prices
set by the leader, define the cost of energy for the consumer:

∑I
i=1

∑
t∈Pi

xipt.
Binary decision variables ul ∈ {0, 1}, l = 1 . . . L, are also used to model the power
component, identifying the peak power level the consumer should be charged for
in the whole planning horizon:

∑L
l=1 elul (the constraints ensure that only one

ul is equal to 1).

The formulation of the lower-level combinatorial optimization problem is:

min
p,u

f =

I∑
i=1

∑
t∈Pi

xipt +

L∑
l=1

elul (1)

s.t.

pt = bt +

J∑
j=1

dj∑
r=1

qshifjr wjrt +

K∑
k=1

qintk vkt, t = 1, . . . , T (2)

dj∑
r=1

wjrt ≤ 1, j = 1, . . . , J ; t = t1j , . . . , t
2
j (3)

wj(r+1)(t+1) ≥ wjrt, j = 1, . . . , J ; r = 1, . . . , dj − 1; t = t1j , . . . , t
2
j − 1 (4)

t2j∑
t=t1j

wjrt = 1, j = 1, . . . , J ; r = 1, . . . , dj (5)
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t2j−dj+1∑
t=t1j

wj1t ≥ 1, j = 1, . . . , J (6)

wjrt = 0, j = 1, . . . , J ; r = 1, . . . , dj ; t < t1j ∨ t > t2j (7)

t2k∑
t=t1k

qintk vkt = Ek k = 1, . . . ,K (8)

vkt = 0, k = 1, . . . ,K; t < t1k ∨ t > t2k (9)

L∑
l=1

ul = 1 (10)

pt ≤
L∑
l=1

P cont
l ul, t = 1, . . . , T (11)

ul ∈ {0, 1}, l = 1, . . . , L (12)

wjrt ∈ {0, 1}, j = 1, . . . , J ; r = 1, . . . , dj ; t = t1j , . . . , t
2
j (13)

vkt ∈ {0, 1}, k = 1, . . . ,K; t = t1k, . . . , t
2
k (14)

where constraints (2) define the power requested at each t by all loads, con-
straints (3) - (7) model the operation of the shiftable appliances, (8) - (9) model
the operation of the interruptible appliances and (10) - (11) model the contracted
power.

For a given x = (x1, . . . , xI), the lower-level problem is a MILP problem with
a large number of binary variables and constraints. The genetic algorithm used
to perform the upper-level search calls the MILP solver CPLEX to solve the
lower-level problem (as a black-box).

2.1 Bilevel model with pre-defined periods (M1)

The bilevel model M1, in which only the prices xi are decision variables for the
retailer because the periods Pi are pre-specified (models in [4]-[6]), can be stated
as follows:

max
x

F =

I∑
i=1

∑
t∈Pi

xipt +

L∑
l=1

elul −
T∑
t=1

πtpt

s.t.

x ≤ xi ≤ x̄ , i = 1, · · · , I

1

T

I∑
i=1

P̄ixi ≤ xAVG

(1)− (14)

where πt is the energy price seen by the retailer in the spot market at each
t ∈ {1, . . . , T} and P̄i denotes the amplitude of Pi, i.e. P̄i = P 2

i − P 1
i + 1
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where P 1
i , P 2

i delimit each period Pi , i ∈ {1, . . . , I} (the start and end t.u.,
respectively). In order to enforce market competitiveness of retailer prices, the
upper-level constraints impose minimum and maximum values on prices in each
period Pi and an average price (xAVG) value during the whole planning horizon.
In the present study, we consider the same minimum and maximum price values
throughout the planning horizon (x and x̄, respectively).

2.2 Bilevel model with variable periods (M2)

In model M1, the prices to be established in each pre-defined period were the
only decision variables. Model M2 builds on model M1 to offer the retailer the
possibility of optimizing not just the price values but also the periods in which
they apply. This is accomplished by defining a number of periods (which, for
instance, may result from regulatory obligations) and determining their optimal
start and end t.u. within the planning horizon. The imposition of a number of
periods I constrains the maximum number of different price values.

Each period Pi is defined by a start t.u. (P 1
i ) and an end t.u. (P 2

i ). Thus,
the upper-level variables of M2 are: xi, P

1
i and P 2

i , i = 1, . . . , I. Two sets of
constraints characterize the upper-level problem of Model M2: constraints on
prices x (the same as in M1 but with P 1

i and P 2
i being decision variables) and

constraints that ensure continuity of the periods. Only either P 1
i or P 2

i need
to be considered, because these variables depend on each other (P 1

i+1 = P 2
i +

1), but both are represented in the model below to improve clarity. Continuity
constraints ensure that the first period starts at t = 1, the last one ends at t = T ,
and the periods are chained: P 1

1 ≤ P 2
1 = P 1

2 − 1, . . . , P 2
I−1 + 1 = P 1

I ≤ P 2
I = T .

For instance, suppose that one t.u. is 15 min and the planning horizon starts
at 00:00 h; P 1

1 = 1, meaning that period P1 includes, at least, the first 15 min
of the day; if, for instance, P 2

1 = 4, then the first period is [00:00, 01:00[ h and
the second period starts at P 1

2 = 5, which means that P2 includes at least t = 5,
i.e., [01:00, 01:15[ h. The model M2 can be stated as follows:

max
x,P 1,P 2

F =

I∑
i=1

∑
t∈[P 1

i ,P
2
i ]

xipt +

L∑
l=1

elul −
T∑
t=1

πtpt

s.t.

x ≤ xi ≤ x̄ , i = 1, · · · , I

1

T

I∑
i=1

(P 2
i − P 1

i + 1)xi ≤ xAVG

P 1
1 = 1; P 2

I = T

P 1
i+1 = P 2

i + 1, i = 1, · · · , I − 1

P 2
i ≥ P 1

i , i = 1, · · · , I
P 1
i , P

2
i integer, i = 1, · · · , I
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min
p,u

f =

I∑
i=1

∑
t∈[P 1

i ,P
2
i ]

xipt +

L∑
l=1

elul

s.t. (2)− (14)

Other conditions may be imposed on the periods, which we call aggregation
constraints, e.g. the following ones.

– The length of each period must be a multiple of a given number of units of
time. Consider, for instance, that the planning horizon is discretized in units
of quarter-hour (which is generally used for measurements in power systems
and enables a fine grain analysis of appliance operation) and the prices must
be defined for periods that are multiple of half-hour or one hour (e.g., for
regulatory reasons). Therefore, the amplitude of each period (P 2

i − P 1
i + 1)

must be multiple of 2 or 4, respectively. For a multiple of β units of time,
and provided that T is multiple of β, the following constraints are included:

P 2
i − P 1

i + 1 = βki, i = 1, · · · , I (15)

ki integer, 1 ≤ ki ≤ T
β , i = 1, · · · , I

– Each period must have a minimum length C, where C is a constant:

P 2
i − P 1

i + 1 ≥ C, i = 1, · · · , I (16)

In the present study, we have considered constraints (15) with β = 2, which
also ensure a minimum length of C = 2. Since the quarter-hour is the t.u.
considered, the periods are then multiple of half-hour.

The electricity prices charged to the consumer (xi, i = 1, . . . , I) and the
prices seen by the retailer in the spot market (πt, t = 1, . . . , T )) are presented in
e/KWh. So, an adequate scale factor α is applied in the upper and lower-level
objective functions of M1 and M2 to convert the prices into the t.u. used in
these models. That is, xi and πt are replaced by αxi and απt, respectively. In
this study, α = 1/4.

3 A genetic algorithm for the variable period model

We aim at comparing results obtained for models M1 and M2. The algorithm
presented in [4] has been adapted to deal with model M1 considering prices with
4 decimal places (as it is usual in electricity bills presented to consumers) instead
of real numbers. The algorithm consists of a genetic algorithm (GA) to deal with
the upper-level search combined with CPLEX to find the optimal solution to the
lower-level problem for each x vector. The individuals dealt with by the GA are
the price vectors x = (x1, x2, . . . , xI). The upper-level constraints of M1 are
ensured by a repair routine [4], which has been adjusted in the present work to
prices with a fixed number of decimal places and is also used in the approach
developed for model M2. This routine is briefly described below.
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The approach developed for the variable period model M2 is also a hybrid
GA-solver. The individuals are composed by two vectors, one for prices (as in
model M1) and the other for periods. Since the start t.u. of each period is the
end t.u. of the previous period +1 (P 1

i = P 2
i−1 + 1), the periods are represented

only by their end t.u. : P 2 = (P 2
1 , P

2
2 , . . . , P

2
I−1, T ) with increasing integer values

P 2
i < P 2

i+1. This vector has dimension I, but the last component is fixed to T .
These two vectors define each upper-level solution and are illustrated in Fig. 1.

Fig. 1. Encoding of an upper-level solution in model M2

A population of N individuals (xn, P 2,n), n = 1, . . . , N evolves throughout
G iterations of the GA. The vector of start t.u. P 1,n corresponding to P 2,n is:
P 1,n = (1, P 2,n

1 +1, . . . , P 2,n
I−1+1). For each individual, the lower-level problem of

M2 with P 1 = P 1,n, P 2 = P 2,n and x = xn is exactly solved. Let yn = (pn, un)
be the optimal solution obtained for this lower-level instance (vector p of power
required by all load operation and vector u of binary variables that determine the
contracted power). Each solution is then evaluated by the upper-level objective
function F (xn, P 1,n, P 2,n, yn), which gives its fitness.

The general description of the GA is presented below.

Step 1 - Create the initial population with N individuals (n = 1, . . . , N)
– Generate each P 2,n: I − 1 different integer numbers are randomly

drawn; these values are then sorted by increasing order. In order to
satisfy the time limits and the aggregation constraints (15), multiples
of β are generated in the range (1, T − 1); P 2,n

I = T, ∀n.
– Generate each xn: a real number with 4 decimal places is randomly

generated in [x, x̄] for each component xni ; xn is then repaired to
satisfy also the average price constraint (repair routine).

Step 2 - Obtain the lower-level solutions: for each individual, the P 1,n

vector associated with P 2,n is defined and the lower-level problem is
solved for (xn, P 1,n, P 2,n) to obtain yn. Compute its fitness value, Fn.

While the maximum number of generations G is not achieved do
Step 3 - Selection and Reproduction
– Select N pairs of individuals for being parents: one parent is ran-

domly chosen and the other is the winner of a binary tournament
with replacement.

– In order to ensure that all P 2 values will satisfy the aggregation
constraints, their scale is changed by dividing all values by β, which
will be recovered at the final of the reproduction phase; after scaling,
P 2
I = T̃ = T/β .
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– For each pair of parents (P 2′ , x′) and (P 2′′ , x′′), an one-point crossover
operator is separately applied to P 2 and x. For P 2, the last compo-
nent (equal to T̃ ) never changes.

– Apply mutation to each offspring with a given probability of changing
each gene of x and of P 2. The mutation of an xi consists of adding
or subtracting a positive perturbation randomly generated in the
range [0, 0.2(x̄ − x)], ensuring that xi remains within bounds. The
mutation of P 2

i consists of adding or subtracting 1 t.u., ensuring that
1 ≤ P 2

i < T̃ . In this study, the mutation probability is 0.05 as in [4].
– For each offspring P 2 vector , sort P 2

i (i = 1, . . . , I−1) by increasing
order and adjust it to contain no repeated values, since there are no
periods with duration 0; convert P 2 to the original scale (see Fig. 2
for an example).

– Repair each x vector of the offspring to also satisfy the average price
constraint and keeping 4 decimal places (repair routine).

– Obtain the lower-level solutions for the offspring as in Step 2.
Step 4 - Replacement
Form the next population by copying the solution with best F obtained
thus far (which is either in the current population or in the offspring) and
by performing N − 1 binary tournaments without replacement between
individuals of the current population and the offspring population.

End While
Return the solution with the highest fitness F .

Fig. 2 illustrates the reproduction process (without mutation) of two 6-period
vectors, P 2′ and P 2′′ , for a planning horizon of T = 96 t.u. of quarter-hour and
β = 2 (periods should be multiple of half-hours). The vectors P 2′ and P 2′′ at the
top of Fig. 2 have already been scaled to half-hour units (thus, T̃ = 48). After
applying crossover and sorting by ascending order the values of the offspring
P 2 (P 2

i , i = 1, . . . , I − 1), if there are two equal values then the second one is
incremented by 1. In this example, this only happened once for value 27. If a
modified value becomes equal to the next, then this process is repeated until all
duplicate values are eliminated. If the second to the last value (P 2

I−1) is equal

to the last one (T̃ ), the chromosome is discarded and another one must be
generated.

In this work, a one-point crossover operator has been used both for P 2 and
x vectors. A geometric crossover operator for the prices x had been used in
the study [8] for models M3 and M4, but the results with the GA were not
encouraging.

The repair routine implemented in both algorithms (for M1 and M2 models)
ensures that prices are within bounds (x ≤ xi ≤ x̄, i = 1, . . . , I) and satisfy the

average price constraint ( 1
T

∑I
i=1 P̄ixi ≤ xAVG with P̄i = P 2

i − P 1
i + 1). Since

the aim is to maximize the retailer’s profit, the repair operations attempt to
set prices as close as possible to satisfying the average price constraint as an
equality, keeping all values with a fixed number of d decimal places (we have
been working with d = 4). The repair routine operates as follows. Firstly, the xi
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Fig. 2. Crossover and adjustment of periods

are truncated to d decimal places and pushed into bounds. Let A be the set of
indices i of x that can still change; initially, A = {1, . . . , I}. The following cycle
is repeated until a valid x is obtained or A = ∅:

(1) xi ← trunc(xi + δ, d), ∀i ∈ A, with

δ =
TxAVG −

∑I
i=1 P̄ixi∑

i∈A P̄i

(2) if all xi are within the bounds, then stop: a valid x has been obtained;
otherwise, push into the closest bound (x or x̄) any xi that is out of bounds,
A← A \ {i} and return to (1) if A 6= ∅.

4 Results

A case study has been used to compare results obtained with the M1 and M2
models using the respective hybrid GA algorithms. A 24-hour planning horizon
(starting at 00:00 h) is considered, which is discretized into t.u. of quarter-hour,
leading to a planning horizon {1, . . . , 96}. The consumer’s problem includes five
controllable appliances: three shiftable loads (dishwasher, laundry machine and
clothes dryer) and two interruptible loads (electric water heater and electric
vehicle). The data concerning the consumer’s problem were obtained from actual
audit information and some values were estimated; they can be found in the
Supplementary Material of [6], including the operation cycles of the loads, the
comfort time slots allowed for the operation of each load, the base load, the
contracted power levels and their costs, as well as the prices seen by the retailer
at the spot market. These data define a lower-level problem with 559 binary
variables.

Six periods of time Pi, i = 1, . . . , 6, are considered for defining the electricity
prices to be charged by the retailer to the consumer (as in [6]). In model M1,
the pre-defined periods [P 1

i , P
2
i ], i = 1, . . . , 6, are: [1-28], [29-44], [45-56], [57-

72], [73-84], [85-96]. These periods reproduce realistic time-of-use tariff schemes
being currently used and induce good solutions to the retailer (thus, imposing
more challenges to M2 to yield better solutions). In model M2, the periods
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are decision variables. In both models, the minimum and maximum prices that
can be charged to the consumer are: x = 0.08 e/kWh and x̄ = 0.35 e/kWh.
The average price over the entire planning horizon cannot exceed xAVG = 0.18
e/kWh.

We started by running the algorithms (for M1 and M2) considering differ-
ent parameterizations of the population size (N) and number of generations
(G) in order to choose a configuration that provides a satisfactory compromise
between the quality of the solution obtained vs. the computation time needed.
The following parameterizations were attempted for N ×G: 30× 100, 30× 200,
40 × 150, the last two requiring similar computation effort, since both require
solving 6000 lower-level MILP problems, which is the most demanding part of
the computational effort. Ten independent runs were performed with M1 and
M2 for each parameterization. In order to allow a better comparison, an equal
rand-seed (seed used for the generation of random numbers) was considered for
runs with the same index. For instance, run k started with rand-seed rk for all
parameterizations N × G in M1 and M2. The best, worst, average and stan-
dard deviation of the retailer’s profit (F ) obtained over the 10 runs for each
parametrization in each model are reported in Table 1. All F values are in e
and refer to a cluster of 1000 consumers with similar consumption and demand
response profiles. The best values for each model are highlighted in bold.

Table 1. Results of different combinations of the population size and number of gen-
erations for M1 and M2

M1 (N ×G) M2 (N ×G)
F values 30 × 100 30 × 200 40 × 150 30 × 100 30 × 200 40 × 150

Maximum 6038.67 6039.24 6039.27 6145.12 6151.16 6145.75
Minimum 6026.96 6035.99 6028.68 6070.72 6070.72 6070.72
Average 6034.49 6037.57 6036.80 6116.18 6121.14 6108.95
Stand.dev. 3.387 0.963 2.773 26.930 27.813 21.981

From this experiment, we can observe (Table 1):

– Better retailer’s profit can be obtained when the retailer can set prices and
periods (model M2) over setting prices only (model M1) (1.85% improvement
in the best cases). This result was expected, because the M2 solution space,
say S(M2), includes the M1 solution space, i.e., S(M1) ⊆ S(M2). Although
theoretically expected, it should be noticed that in our previous work [8] with
models with more degrees of freedom – referred to as M3 and M4 above –
the population-based approaches experienced several difficulties to efficiently
explore broader upper-level spaces, yielding better results for the M3 model
than for M4, in spite of M3 being a constrained M4. In the present work
this has not happened: the algorithm proposed herein provides good results
for M2, with values for F systematically higher than the ones obtained with
M1, also providing better figures (in any of the parameterizations) than the
results obtained in [8] for M3 and M4, although S(M2) ⊆ S(M3) ⊆ S(M4).
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– The improvement of the results from 30 × 100 to 30 × 200 is small, being
slightly higher in M2 than in M1. The average improvement in M1 is 0.05%,
while in M2 is 0.08%. The solution space S(M2) is much larger than S(M1)
due to the combinatorial explosion of the price-periods combinations. This
may explain why M2 benefits more than M1 from a longer search process;
this may also justify the higher standard deviations in M2 than in M1. The
improvement of F from 100 to 200 generations does not seem relevant given
the large increase in the computational effort, which doubles.

– The parameterization 40× 150 does not produce better results, still looking
slightly worse than 30 × 200, although 10 runs are not enough to support
strong conclusions.

The non-parametric Kruskal-Wallis test was applied to assess whether the dif-
ferences of the F values obtained with the different parameterizations in each
model are statistically significant, considering a significance level of α = 0.01. In
both models, the differences are not statistically significant. The Mann-Whitney
test comparing the results of M1 and M2 for the same parameterizations led to
the conclusion that the differences are statistically significant in all the three
cases.

The algorithms were run in a computer with an Intel Core i7-7700 CPU 3.6
GHz, 64 GB RAM. The computation time of each generation is similar for M1
and M2, which is on average less than 4” for the population size of 30 and 5”
for the population size of 40. The total computation time of one complete run is
about 6’– 6’30” for the parametrization 30× 100 and about 12’ – 13’30” for the
parametrizations 30× 200 and 40× 150, which have similar computation times.

Given the results obtained in this experiment, we have adopted the 30 ×
100 parameterization because it presents a good compromise between solution
quality and computation time. The best solution (maximum F ) obtained for M1
has F = 6038.67 and the best solution obtained for M2 has F = 6145.12. We
refer to these solutions as SolM1 and SolM2, respectively. The periods [P 1

i , P
2
i ],

i = 1, . . . , 6, computed in SolM2 are: [1-8], [9-12], [13-16], [17-48], [49-52], [53-96].
Fig. 3 compares the pre-defined periods in M1 with the ones obtained with M2,
showing the times of the day (h) that delimit the periods; {1, . . . , 96} corresponds
to 00:00h - 24:00h where t = 1 represents the t.u. from 00:00 h to 00:15h, and so
on. A significant difference between the periods of M1 and M2 can be observed:
P1 is the longer period in M1 ranging from 00:00h to 07:00h, while M2 defines
three of the six periods from 00:00h to 04:00h. The longer period of M2 ranges
from 13:00h to 24:00h.

Considering the periods of M2 in SolM2 (shown in Fig. 3), we have further
intensified the search in an attempt to improve the prices for these periods.
Accordingly, these periods were fixed, and the M1 model was solved for these pre-
defined periods. Five independent runs were performed from scratch (without
injecting SolM2 in the initial population) for the parameterization N × G =
30 × 100. The solutions obtained ranged from F = 6147.0 to F = 6155.5, with
an average of F = 6151.1, i.e., all improving F (SolM2) = 6145.12. The best
solution (F = 6155.5) is also better that the one provided by running M2 for
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Fig. 3. Pre-defined periods in M1 and the best periods given by the algorithm for M2
in the 30 × 100 parameterization (SolM2)

30 × 200. This result suggests that it is better to execute the algorithm for the
variable period model M2 during 100 iterations and then intensify the search for
prices by using M1 for the best periods obtained than extending the search for
periods and prices using M2 until 200 iterations. We have further experimented
to run M2 for N ×G = 30× 500. The best and average values obtained over 10
runs were F = 6152.85 and F = 6126.82, both being worse than the respective
values obtained with the strategy M2+M1 (with G = 100 in each one).

Let us denote by SolM2+M1 the best solution obtained in the experiment
M2+M1, which has the same periods as SolM2 but slightly different prices. Table
2 shows the prices in SolM1, SolM2 and SolM2+M1. Fig.4 compares the best prices
obtained for M1 (SolM1 with a retailer’s profit of 6038.67) and for M2 (SolM2+M1

with a retailer’s profit of 6155.50). Although a maximum of 6 different prices
was allowed, solutions SolM1 and SolM2+M1 have fewer than 6 different prices (4
and 5, respectively).

Table 2. Prices in the best solutions obtained for M1 and M2 in the 30 × 100 param-
eterization (SolM1 and SolM2) and after the intensification of the search for M2 with
M1 (SolM2+M1)

Prices (e/kWh)
P1 P2 P3 P4 P5 P6

Periods [1-28] [29-44] [45-56] [57-72] [73-84] [85-96]
SolM1 Prices 0.2976 0.2986 0.08 0.0803 0.0803 0.08

Periods [1-8] [9-12] [13-16] [17-48] [49-52] [53-96]
SolM2 Prices 0.2689 0.2384 0.2701 0.2890 0.0804 0.0801
SolM2+M1 Prices 0.2683 0.2360 0.2793 0.2885 0.08 0.08
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Fig. 4. Prices obtained for the models M1 (SolM1 ) and M2 (SolM2+M1).

5 Conclusions

This paper presented a comparison between two bilevel programming models
to assist electricity retail companies to design optimal time-of-use tariffs. In the
upper-level problem, the retailer maximizes the profit and in the lower-level
problem the consumer minimizes the cost using his flexibility in the use of ap-
pliances in face of the time-differentiated prices. A bilevel model was previously
presented by the authors in which the periods for setting the different prices were
pre-defined and the aim was to determine the price values that maximize the
retailer’s profit. In this paper, a new more general model is proposed in which
both the periods and prices are decision variables, thus leading to a very large
search space for the upper-level problem due to the vast number of combinations
periods-prices. To deal with this variable period model, a hybrid approach com-
bining a genetic algorithm for the upper-level search with a mixed-integer linear
programming solver to obtain optimal solutions to the lower-level problem has
been developed. Specific encoding as well as crossover and mutation operators
have been designed to make the most of the physical features of the problem.

The algorithm has been able to compute good quality solutions obtaining
higher profit when the retailer can establish prices and periods over setting prices
only, with a moderate computation effort. This information is of utmost impor-
tance for a retailer designing tariff options to offer consumers in very competitive
electricity retail markets.

In order to cope with the complexity of the variable period model, additional
experiments consisted of using the period configuration determined in this new
model as an input of the pre-defined period model aiming to further improve
prices. This intensification strategy proved useful since better solutions have
been obtained in comparison with solutions found with a higher computation
effort in the variable period model.
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Further work will involve a comprehensive study of time-of-use pricing prob-
lems vs. adequate features of algorithmic approaches, including using algorithms
based on strategies other that the hybridization of metaheuristics with mathe-
matical programming solvers.
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