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1. Introduction

In this work we obtain sharp geometric regularity estimates for bounded
weak solutions of quasilinear parabolic equations (possibly singular and de-
generate) of p-Laplacian type, whose prototype is given by

ut − div(|∇u|p−2∇u) = f. (1.1)

In order to assure the existence of solutions in suitable Sobolev spaces (see
[1, 2, 13, 22, 27] for more details), p is chosen such that

max

{

1,
2n

n+ 2

}

< p <∞.

In our studies the source term f is assumed to be in the anisotropic
Lebesgue space Lq,r(ΩT ) (where Ω ⊂ R

n is an open, bounded set, T > 0
and ΩT := Ω× (0, T )), which is a Banach space endowed with the following
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norm:

‖f‖Lq,r(ΩT ) :=

(

∫ T

0

(∫

Ω
|f(x, t)|qdx

)
r
q

dt

)
1
r

.

Throughout the paper we will assume the following compatibility condi-
tions:

{

1
r +

n
pq < 1;

max
{

0;
(

1− 1
r

)

(2− p)
}

≤ 2
r +

n
q < 1,

(C)

where q > n and r > 2. The first inequality provides the minimal integra-
bility condition, which guarantees the existence of bounded weak solutions
of (1.1) (see, [20, Ch.2, §1]). The second compatibility condition defines
the fashion in which the gradient of weak solution has a universal Hölder
modulus of continuity.

q

r

n
2−pn

n
q
+ 2

r
r−1
r

= 2− p

2

4−p
2−p

(2− p)
(

1− 1
r

)

< n
q + 2

r < 1

u

u

n
q + 2

r = 1

Figure 1. Regions of definition of n
q + 2

r ∈
[

(2− p)
(

1− 1
r

)

, 1
)

for max
{

1, 2n
n+2

}

< p < 2.

The regularity of weak solutions of quasilinear evolution problems received
wide attention in the last decades (see, for example, [1, 2, 9, 13, 16, 18, 20,
21, 22, 23, 25, 28, 29, 30, 31, 32, 39, 41, 42]) due to its connection to a number
of problems arising in biology, chemistry, mathematical physics, geometric
and free boundary problems, etc (cf. [10] and [25] for complete essays on
regularity of evolution equations with degenerate diffusion). Although weak
solutions of (1.1) under the compatibility assumptions (C) are known to be
locally of the class C1+α (in the parabolic sense) for some α ∈ (0, 1), the
sharp exponent is known only for some specific cases (see [5, 6, 26, 28, 33]).
This type of quantitative information plays an essential role in the study
of blow-up analysis, related geometric and free boundary problems and for
proving Liouville type results (see [3, 4, 12, 16, 18, 40] for some enlightening
examples).
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We recall (see [20, 25, 31, 32]) that when p > 2 and

1

r
+
n

pq
< 1 <

2

r
+
n

q
,

weak solutions of (1.1) are of class Cα for some α ∈ (0, 1). Using compact-
ness and geometric tangential methods (see [3, 4, 11, 12, 14, 19, 36, 37]) and
intrinsic scaling techniques (see [16, 20, 24, 41]), the sharp value of α was
revealed in [39, Theorem 3.4]. The latter, however, leaves open issues in the
following scenarios:

1

r
+
n

pq
< 1 and

2

r
+
n

q
= 1

and
1

r
+
n

pq
< 1 and

2

r
+
n

q
< 1.

In this work we will solve it in the second scenario. More precisely, our
main result reveals that bounded week solutions of (1.1) are locally of the
class C1+α (in the parabolic sense) in the critical zone (i.e. where gradient
is small enough, see Section 3), with

α := min







1−
(

n
q + 2

r

)

p
[

1−
(

n
pq +

1
r

)]

−
[

1−
(

n
q + 2

r

)] , α−
H







, (1.2)

where αH ∈ (0, 1] is the optimal regularity exponent for solutions of homo-
geneous case (f = 0). Note that the denominator in (1.2) is strictly positive.
Indeed,

p

[

1−

(

n

pq
+

1

r

)]

−

[

1−

(

n

q
+

2

r

)]

= (p − 1)

(

1−
1

r

)

+
1

r
> 0.

Such a quantitative estimate in (1.2) constituted a long-standing open is-
sue and it was solved up to now only in the linear setting (p = 2). Notwith-
standing, the analyse for the case p 6= 2 is considerably more challenging.

In our approach, we makes use of an adjusted θ−intrinsic scaling technique
inspired by [39] and [41] (see also [16]), where θ > 0 is the intrinsic scaling
factor for the temporal variable, which depends on the magnitude of the
gradient inside the critical zone in the following way:

θ := 2 + (2− p) logρ(ρ
α + |∇u(0, 0)|), (1.3)

where ρ ∈
(

0, 12
)

is a universal constant (see Lemma 3.2 for details). Fur-
thermore, when p ≥ 2 our result remains true outside of the critical zone as
well (see Section 3.2 for details).

Our estimates are natural extensions (regarding to C1+α scenario) of those
obtained in [39, Theorem 3.4] and [36, Theorem 4.1] concerning of Cα range,
and to some extent, of those from [7], [8, Theorem 5.5 and 5.9], [19, Section
5], [37, Theorem 3]. The novelty of our approach consists of removing the
restriction of analyzing the desired C1+α regularity estimates just along
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the a priori unknown set of critical points of solutions (i.e. along the set
where gradient vanishes), where the diffusivity of the equation collapses
(see, for example, [15, 16, 17, 18, 37] and [38], where sharp and improved
regularity estimates are obtained along the set of certain degenerate points
of solutions). Furthermore, unlike [16], [19], [39], we also treat the singular

case, i.e., when max
{

1, 2n
n+2

}

< p < 2, which is a non-trivial task, because

in this setting the degeneracy degree of p-Laplacian blows-up along critical
points.

Heuristically, in order to obtain the desired C1+α regularity estimate, one
should approach solutions by suitable affine functions. However, in a specific
iterative scheme, these functions “are not in the kernel of operator”, which
provides an accumulative error in each step of approximation (see section
3 for details, also compare with [4], [19, Section 4 and 5] and [37]). To
overcome this obstacle, we use a technique based on the notion of geometric
tangential analysis. More precisely, by using a suitable approximation argu-
ment, we show that for each inhomogeneous equation with flattened source
term there exists a fine tangential profile, which connects to weak solutions
with a small prescribed approximation error - transporting the regularity
back to the original equation (Lemma 2.1 and 3.1). We then iterate this es-
timate in a systematic manner, properly adjusted to the intrinsic scaling of
equation. Inspired by the recent results from [5, 6, 8] and [39], we obtain an
estimate (Theorem 3.2), which provides a precise control of the oscillation
of weak solution of (1.1) in terms of the magnitude of its gradient.

Another fundamental aspect in our approach concerns to the geometry
of the parabolic cylinders for which our geometric estimates hold. Unlike
[39] (see also [14] and [16]), we must adjust such cylinders according to
range of p. Summarily, for the singular case, we consider the standard
parabolic cylinder with the θ-intrinsic geometry. On the other hand, for
the degenerate counterpart, we must correct the geometry of corresponding
cylinders by adjusting (in a suitable manner) its height in order to access
the desired regularity estimate via an iterative proceeding (see Section 3 for
a complete explanation about such a construction).

It is worth mentioning, that under appropriate structural conditions, the
techniques used in this paper allow one to treat the case of more general
evolution equations as follows

ut − div(A(x, t,∇u)) = f,

as long as the operator has suitable p-Laplacian structure, which gives access
to existence and regularity theory to weak solutions (see, [20, Ch.2, §1]).

Observe that our result is in accordance with well-known estimates ob-
tained in some specific cases. For example, when p = 2 from (1.2) we obtain

α = 1−
(n

q
+

2

r

)

,
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which is the optimal C1+α exponent for the inhomogeneous heat equation
(as was obtained by energy methods in [28], see also [19] for the fully non-
linear setting). Another example would be the case of bounded (or else,
independent) in time force term, that is, roughly speaking, r = ∞, then
(1.2) implies

α = min

{

q − n

q(p− 1)
, α−

H

}

,

which is the optimal C1,α regularity exponent for the elliptic equation for
p ≥ 2 (see [7]). Moreover, if also q = ∞ (i.e. the source term is bounded),
then (1.2) gives

α = min

{

1

p− 1
, α−

H

}

,

which is the expected optimal regularity in certain scenarios of elliptic equa-
tions (see [5], [6] and [8]).

The table below provides a global picture (recent advances) between the
elliptic (cf. [5], [6], [7] and [36, Theorem 4.1]) and parabolic regularity theory
(cf. [39, Theorem 3.4], see also [19]) for equations of p−Laplacian type:

f ∈ Lq(B1) Sharp Regularity f ∈ Lq,r(Q1) Sharp Regularity

n
p
< q < n C

0,min{α−

0 ,β(n,p,q)}

loc
n
q
+ 2

r
> 1 > 1

r
+ n

pq
par − Cα

loc, p > 2

q = n Open problem n
q
+ 2

r
= 1 > 1

r
+ n

pq
Open problem

n < q < ∞ C
1,min

{

α−

H
, q−n

q(p−1)

}

loc , p > 2 Condition (C) par− C1+α
loc

q = ∞ C
1,min

{

α−

H
, 1
p−1

}

loc . p > 2 q = r = ∞ C
1,min

{

α−

H
, 1
p−1

}

loc
Elliptic Theory Parabolic Theory

Up to date, the sharp regularity on the borderline conditions q = n and
q = ∞ (resp. n

q + 2
r = 1 and q = r = ∞) were established (in general) just

for some special sceneries, in particular for the linear case and for p-Poisson
equation in 2−D, see [5, Theorem 1], [6, Theorem 2], [19] and [28] for details.

The paper is organized as follows: in Section 2 we show that solutions
of (1.1) can be approximated by suitable p-caloric functions. In Section 3
we prove the main result of this paper (Theorem 3.1) by obtaining sharp
estimates inside and outside of the critical zone. As a consequence, we
find precisely how the modulus of continuity degenerates (improves) along
certain ε-layers related to borderline conditions in (C) (Corollary 3.2 and
Corollary 3.3).

2. Preliminaries

In this section we prove that weak solutions of (1.1) can be approximated
by p-caloric functions. We start by the notion of weak solutions.

Definition 2.1. A function u ∈ Cloc(0, T ;L
2(Ω)) ∩ Lp

loc(0, T ;W
1,p
loc (Ω)) is

called a weak solution of (1.1) in Ω× (0, T ], if for every compact set K ⊂ Ω,
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every [t1, t2] ⊂ (0, T ] and ψ ∈ H1
loc(0, T ;L

2(K)) ∩ Lp
loc(0, T ;W

1,p
loc (K)) there

holds
∫

K
uψ dx

∣

∣

∣

∣

t2

t1

+

∫ t2

t1

∫

K

[

−uψt + |∇u|p−2∇u · ∇ψ
]

dx dt =

∫ t2

t1

∫

K
fψ dx dt.

An equivalent definition of weak solutions via Steklov average allows to
prove the next Caccioppoli type estimate, which plays an essential role in
proving the existence of p-caloric approximation of weak solutions.

Proposition 2.1. Let K × [t1, t2] ⊂ Ω × (0, T ]. If u is a weak solution
of (1.1), then there exists a constant C > 0, depending only on n, p and
K × [t1, t2] such that

sup
t1<t<t2

∫

K
u2ξp dx+

∫ t2

t1

∫

K
|∇u|pξp dx dt

≤

∫ t2

t1

∫

K
|u|p(ξp + |∇ξ|p) dx dt+ C

∫ t2

t1

∫

K
u2ξp−1|ξt| dx dt+ C‖f‖Lq,r ,

for every ξ ∈ C∞
0 (K × (t1, t2); [0, 1]).

Proof. We sketch the proof here. It follows by taking ψ = uhξ
p as a test

function, where uh is Steklov average of u, i.e.

uh :=







1

h

∫ t+h

t
u(·, τ) dτ if t ∈ (0, T − h],

0 if t ∈ (T − h, T ].

With the usual combination of integrating in time, passing to the limit as
h → 0 and applying Young’s inequality, we get the desired estimate. We
refer the reader to [24, Ch.3, §6] for details. �

In order to state the next result, we set

Qρ(x0, t0) := Bρ × (t0 − ρθ, t0],

where Bρ is the ball of radius ρ > 0 centered at the origin. Note that

Q1 := Q1(0, 0) = B1 × (−1, 0].

Lemma 2.1. If u is a weak solution of (1.1) in Q1 with ‖u‖L∞(Q1) ≤ 1, then
∀ε > 0 there exists δ = δ(p, n, ε) > 0 such that whenever ‖f‖Lq,r(Q1) ≤ δ
there exists a p-caloric function φ : Q1/2 → R such that

max
{

‖u− φ‖L∞(Q1/2), ‖∇(u− φ)‖L∞(Q1/2)

}

< ε. (2.1)

Proof. We argue by contradiction. Thus, for an ε0 > 0 there is a sequence

uk ∈ Cloc(−1, 0;L2(B1)) ∩ L
p
loc(−1, 0;W 1,p

loc (B1))

and a sequence
fk ∈ Lq,r(Q1)

such that
(uk)t − div(|∇uk|

p−2∇uk) = fk in Q1 (2.2)
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with

‖uk‖L∞(Q1) ≤ 1 and ‖fk‖Lq,r(Q1) = o(1) as k → ∞, (2.3)

and at the same time

either ‖uk − φ‖L∞(Q1/2) > ε0 or ‖∇(uk − φ)‖L∞(Q1/2) > ε0, (2.4)

for any p-caloric function in Q1/2, i.e.

φt − div(|∇φ|p−2∇φ) = 0 in Q1/2.

We now fix a cutoff function ξ ∈ C∞
0 (Q1, [0, 1]) such that ξ ≡ 1 in Q1/2 and

ξ ≡ 0 on Qc
9/10. From Proposition 2.1 we obtain

‖uk‖V (Q1/2) ≤ sup
−1<t<0

∫

B1

u2kξ
p +

∫ 0

−1

∫

B1

|∇uk|
pξp

≤

∫ 0

−1

∫

B1

|uk|
p(ξp + |∇ξ|p) +

∫ 0

−1

∫

B1

u2kξ
p−1|ξt|+ ‖fk‖Lq,r

≤ C(ξ, p, n) + o(1) as k → ∞,

where

V (Ω× I) := L∞
(

I;L2(Ω)
)

∩ Lp
(

I;W 1,p(Ω)
)

,

and C > 0 is a constant depending only on ξ, p and dimension. Therefore,
up to a subsequence uk converges weakly in V

(

Q1/2

)

. Hence,

‖(uk)t‖Lℓ,1(Q1/2)
≤ C,

where ℓ := p
p−1 < p, p ≥ 2 (see [34]), and

‖(uk)t‖L2(Q1/2)
≤ C,

when max
{

1, 2n
n+2

}

< p < 2 (see [2]). Making use of the embedding

W 1,p →֒ Lp ⊂ Lℓ,

whenever p ≥ 2 and

L2 →֒ Lp,

whenever max
{

1, 2n
n+2

}

< p < 2, we deduce (see [35, Corollary 4]) that

uk → φ strongly in Lp(Q1/2), (2.5)

for a function φ. Using (2.3) and (2.5) and passing to the limit in (2.2), one
concludes that φ is a p-caloric function. Moreover, since uk is a bounded
weak solution of (2.2), then its spacial gradient is locally Hölder continuous
(see [9, 13, 20, 21, 22, 23, 25, 31, 32, 42]), implying that the convergence
uk → φ is locally uniform in C1. Therefore,

max
{

‖uk − φ‖L∞(Q1/2), ‖∇(uk − φ)‖L∞(Q1/2)

}

→ 0 as k → ∞,

which contradicts to (2.4). �
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Remark 2.1. Note that if u is any weak solution of (1.1) in Q1, then it is
possible to normalize it in such a way, that the normalized function satisfies
conditions of Lemma 2.1. More precisely, for a δ > 0 and s > 0 fixed, there
exists positive constant µ = µ(δ, s) such that the function

v(x, t) := µsu(µsx, µτ t),

satisfies the conditions of Lemma 2.1, where τ := 2s(p− 1) > 0.

To see this, observe that

vt −∆pv = µs+τut(µ
sx, µτ t)− µ(2p−1)s(∆pu)(µ

sx, µτ t).

Since τ = 2s(p − 1), then

τ + s = (2p − 1)s.

On the other hand, v is a weak solution of

vt − div(|∇v|p−2∇v) = µ(2p−1)sf(µsx, µ(2p−1)st) =: g(x, t).

We estimate

‖g‖Lq,r(Q1) ≤ µ
(2p−1)s−

(

sn
q
+

(2p−1)s
r

)

‖f‖Lq,r(Qµ).

Set

κ := (2p − 1)s −
(

sn
q + (2p−1)s

r

)

= s
[

(p − 1)
(

1− 1
r

)

+ 1
r

]

+ sp
[

1−
(

n
pq +

1
r

)]

.

Using the minimal integrability condition from (C), we point out that κ > 0
for any s > 0. Therefore, for δ > 0 fixed, if we choose

0 < µ < min

{

1,

(

1

‖u‖L∞(Q1)

)
1
s

,

(

δ

‖f‖Lq,r(Q1)

)
1
κ

}

,

then ‖v‖L∞(Q1) ≤ 1 and ‖g‖Lq,r(Q1) ≤ δ.
Next, we analyse some aspects of scaling factor. Set

α̂ :=
1−

(

n
q + 2

r

)

p
[

1−
(

n
pq +

1
r

)]

−
[

1−
(

n
q + 2

r

)] .

Observe that α ≤ α̂, where is defined by (1.2). Now, as in (1.3) we consider

θ(α) = 2 + (2− p) logλ(λ
α + |∇u(0, 0)|).

By assuming that |∇u(0, 0)| ≤ λα for λ≪ 1 we have

λα̂ ≤ λα̂ + |∇u(0, 0)| ≤ λα + |∇u(0, 0)| ≤ 1.

Hence,

α̂ ≥ logλ(λ
α̂ + |∇u(0, 0)|) ≥ logλ(λ

α + |∇u(0, 0)|) ≥ 0.

For max
{

1, 2n
n+2

}

< p ≤ 2 we have the following

2 ≤ θ(α) ≤ 2 + (2− p)α̂.
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On the other hand, if p > 2 we obtain

2 + (2− p)α̂ ≤ θ(α) ≤ 2.

Therefore,

min{2, 2 + (2− p)α̂} ≤ θ(α) ≤ max{2, 2 + (2− p)α̂}.

Moreover, it is easy to check (for p > 2) that

2 + (2− p)α̂ =
1 + 2

p−2 +
n
q

1− 1
r +

1
p−2

∈ (1, 2).

In other words, for p > 2

1 <
1 + 2

p−2 +
n
q

1− 1
r +

1
p−2

≤ θ(α) ≤ 2.

Finally, for max
{

1, 2n
n+2

}

< p ≤ 2 we have

2 ≤ 2 + (2− p)α̂ ≤ 3.

Consequently, for max
{

1, 2n
n+2

}

< p ≤ 2

2 ≤ θ(α) ≤ 3.

3. Sharp regularity estimates

In this section we prove the main result of the paper. Let Sα
ρ be the

critical zone of solutions, i.e.

Sα
ρ (Q1) := {(x, t) ∈ Q1; |∇u(x, t)| ≤ ρα} ,

where ρ > 0 is small, and α is defined by (1.2). In order to proceed, we
define corrected parabolic cylinder

Q̂ρk(x0, t0) := Bρ ×
(

t0 − ρθ(σ+k−1), t0

]

,

where k ∈ N and

σ := min

{

1,
2

2 + (2− p)α̂

}

.

Remark 3.1. If max
{

1, 2n
n+2

}

< p ≤ 2, then

Q̂ρ(x0, t0) = Qρ(x0, t0).

If p > 2, then Q̂ρ(x0, t0) ⊂ Qρ(x0, t0). Also, for any max
{

1, 2n
n+2

}

< p <∞

one has σθ ≥ 2.

The following theorem is the main result of this paper. We will prove it
by analysing sharp estimates inside and outside of the critical zone.
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Theorem 3.1. Let K ⊂⊂ Q1, u be a bounded weak solution of (1.1) in
Q1 and let (C) hold. If (x0, t0) ∈ Sα

ρ (K), ρ > 0, then u is C1+α (in the
parabolic) at (x0, t0), i.e., there exists a constant M > 0 such that

sup
Q̂ρ(x0,t0)∩K

|u(x, t)− u(x0, t0)−∇u(x0, t0) · (x− x0)| ≤Mρ1+α,

for ρ > 0 small enough, and α is defined by (1.2). Moreover, if p > 2 and
(x0, t0) /∈ S

α
ρ (K ∩Q1), then the conclusion of the theorem is still true.

3.1. Sharp estimates in the critical zone. Using an iterative argument,
we prove the desired regularity estimate in the critical zone. The estimate
in Lemma 2.1 can be further improved up to the sharp exponent in our
compatibility regime (C). The following lemma serves that purpose and
provides the first step of such iteration.

Lemma 3.1. Let u be a weak solution of (1.1) in Q1 with ‖u‖L∞(Q1) ≤ 1.

There exist δ > 0 and λ ∈
(

0, 12
)

such that if ‖f‖Lq,r(Q1) ≤ δ, then

sup
Q̂λ

|u(x, t)− u(0, 0) −∇u(0, 0) · x| ≤ λ1+α,

where α is defined by (1.2).

Proof. Let ε > 0. From Lemma 2.1 we know that there exists a p-caloric
function φ and δ > 0, such that whenever ‖f‖Lq,r(Q1) ≤ δ, then (2.1) holds.

Taking λ ∈
(

0, 12
)

(to be chosen a posteriori) and (x, t) ∈ Q̂λ, and from
Hölder gradient continuity (cf. [9, 13, 20, 21, 22, 23, 25, 31, 32, 42]) we then
estimate

sup
Q̂λ

|u(x, t)− u(0, 0) −∇u(0, 0) · x|

≤ sup
Q̂λ

|φ(x, t)− φ(0, 0) −∇φ(0, 0) · x|

+ sup
Q̂λ

|(u− φ)(x, t)| + |(u− φ)(0, 0)| + |∇(u− φ)(0, 0)|

≤ C sup
Q̂λ

(

|x|+
√

|t|
)1+αH

+ 3ε

≤ Cλ(1+αH )min{1, θσ2 } + 3ε

≤ Cλ1+αH + 3ε, (3.1)

where C > 0 is a universal constant. By fixing

λ ∈

(

0,min

{

1

2
,

(

1

2C

) 1
αH−α

})

, (3.2)

and choosing ε ∈
(

0, 16λ
1+α
)

in (3.1), we conclude the proof. �
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Note that the previous lemma is not enough to proceed with an iterative
scheme, because a priori we do not know the equation which is satisfied by

(u− Lk)(λ
kx, λkθt)

λk(1+α)
,

where {Lk}k∈N is sequence of affine functions (compare with [4], [14, Theo-
rem 2] and [19, Section 5 and 6] in the fully nonlinear setting). Nevertheless,

it provides the following information on the oscillation of u in Q̂λ.

Corollary 3.1. Under the conditions of Lemma 3.1 one has

sup
Q̂λ

|u(x, t)− u(0, 0)| ≤ λ1+α + λ|∇u(0, 0)|,

where λ is a constant satisfying (3.2), and α is defined by (1.2).

Proof. Using Lemma 3.1 we estimate

sup
Q̂λ

|u(x, t)− u(0, 0)| ≤ sup
Q̂λ

|u(x, t)− u(0, 0)−∇u(0, 0) · x|+ sup
Q̂λ

|∇u(0, 0) · x|

≤ λ1+α + λ|∇u(0, 0)|.

�

In order to obtain a precise control on the influence of magnitude of the
gradient of u, we iterate solutions (using Corollary 3.1) in corrected λ-adic
cylinders.

Lemma 3.2. Under the assumptions of Lemma 3.1 one has

sup
Q̂

λk

|u(x, t)− u(0, 0)| ≤ λk(1+α) + |∇u(0, 0)|

k−1
∑

j=0

λk+jα, (3.3)

where λ is a constant satisfying (3.2) and α is defined by (1.2).

Proof. We argue by induction. When k = 1, we have (3.3) from Lemma 3.1.
Suppose now that (3.3) holds for all the values of l = 1, 2, · · · , k. Our aim

is to prove it for l = k + 1. Define vk : Q̂1 := B1 × (−λθ(σ−1), 0] given by

vk(x, t) :=
u(λkx, λkθt)− u(0, 0)

λk(1+α) + |∇u(0, 0)|
k−1
∑

j=0
λk+jα

,

where θ > 0 is a constant to be chosen later. By induction hypothesis
‖vk‖L∞(Q̂1)

≤ 1. Note also that vk(0, 0) = 0,

(vk)t(x, t) =
λkθut(λ

kx, λkθt)

λk(1+α) + |∇u(0, 0)|
k−1
∑

j=0
λk+jα

,

∇vk(x, t) =
λk∇u(λkx, λkθt)

λk(1+α) + |∇u(0, 0)|
k−1
∑

j=0
λk+jα
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and

∆pvk(x, t) =
λkp(∆pu)(λ

kx, λkθt)
(

λk(1+α) + |∇u(0, 0)|
k−1
∑

j=0
λk+jα

)p−1 .

Choosing

θ := 2 + logλk



λkα + |∇u(0, 0)|
k−1
∑

j=0

λjα





2−p

,

we obtain

(vk)t −∆pvk =
λkpf(λkx, λkθt)

(

λk(1+α) + |∇u(0, 0)|
k−1
∑

j=0
λk+jα

)p−1 =: fk(x, t).

We then estimate

‖fk‖Lq,r(Q̂1)
=

(

∫ 0

−λθ(σ−1)

(∫

B1

|fk(x, t)|
q dx

) r
q

dt

)
1
r

= λ
k[1−(n

q + θ
r )]

(

λkα+|∇u(0,0)|
k−1
∑

j=0
λjα

)p−1‖f‖Lq,r(Q̂λk)

= λ
k[1−(n

q +2
r )]

(

λkα+|∇u(0,0)|
k−1
∑

j=0
λjα

)p[1−( n
pq+1

r )]−[1−(n
q +2

r )]
‖f‖Lq,r(Q̂λk)

≤ λ
k
{[

1−
(

n
q
+ 2

r

)]

−α
{

p
[

1−
(

n
pq

+ 1
r

)]

−
[

1−
(

n
q
+ 2

r

)]}}

‖f‖Lq,r(Q1)

≤ δ0.

Hence, one can apply Lemma 3.1 to vk and obtain

sup
Q̂λ

|vk(x, t)− vk(0, 0)| ≤ λ1+α + λ|∇vk(0, 0)|,

or else

sup
Q̂λ

|u(λkx, λkθt)− u(0, 0)|

λk(1+α) + |∇u(0, 0)|
k−1
∑

j=0
λk+jα

≤ λ1+α +
λk+1|∇u(0, 0)|

λk(1+α) + |∇u(0, 0)|
k−1
∑

j=0
λk+jα

,

which, by scaling back provides

sup
Q̂

λk+1

|u(x, t)− u(0, 0)| ≤ λ(k+1)(1+α) + |∇u(0, 0)|
k
∑

j=0

λk+1+jα.

The latter is (3.3) for k + 1. �

The next result leads to a sharp regularity estimate in the critical zone.
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Theorem 3.2. Under the assumptions of Lemma 3.1 there exists a universal
constant M > 1 such that

sup
Q̂ρ

|u(x, t) − u(0, 0)| ≤Mρ1+α
(

1 + |∇u(0, 0)|ρ−α
)

, ∀ρ ∈ (0, λ),

where λ is a constant satisfying (3.2), and α is defined by (1.2).

Proof. Take ρ ∈ (0, λ) and choose k ∈ N such that λk+1 < ρ ≤ λk. Using
Lemma 3.2, we estimate

sup
Q̂ρ

|u(x, t) − u(0, 0)|

ρ1+α
≤

1

λ1+α
sup
Q̂

λk

|u(x, t) − u(0, 0)|

λk(1+α)

≤
1

λ1+α











1 + |∇u(0, 0)|

k−1
∑

j=0
λk+jα

λk(1+α)











=
1

λ1+α



1 + |∇u(0, 0)|λ−kα
k−1
∑

j=0

λjα





≤
1

λ1+α

(

1 +
1

1− λα

)

(

1 + |∇u(0, 0)|λ−kα
)

≤
1

λ1+α

(

1 +
1

1− λα

)

(

1 + |∇u(0, 0)|ρ−α
)

,

which concludes the proof. �

As a consequence, we obtain the first part of Theorem 3.1.

Proof of the first part of Theorem 3.1. Without loss of generality, we may
assume that K = Q 1

2
and (x0, t0) = (0, 0). Using Theorem 3.2 (re-scaled

according to Remark 2.1, if needed), we estimate

sup
Q̂ρ

|u(x, t)− u(0, 0) −∇u(0, 0) · x| ≤ sup
Q̂ρ

|u(x, t)− u(0, 0)| + |∇u(0, 0)|ρ

≤ M
(

1 + |∇u(0, 0)|ρ−α
)

ρ1+α + ρ1+α

≤ 3Mρ1+α.

�

3.2. Sharp estimates outside of the critical zone. Next, we assume
p > 2 and prove the conclusion of Theorem 3.1, despite having (x0, t0) /∈
Sα
ρ (K ∩ Q1), i.e., when |∇u(x0, t0)| > ρα, thus, completing the proof of

Theorem 3.1. As before, without loss of generality, we assume that (x0, t0) =

(0, 0). Since |∇u| is continuous, one can define τ = |∇u(0, 0)|1/α > 0. Take
any ρ ∈ (0, λ). We then analyse all the possible cases.
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Case 1. If ρ ∈ [τ, λ), then from Theorem 3.2 we obtain

sup
Q̂ρ

|u(x, t) − u(0, 0)| ≤Mρ1+α
(

1 + |∇u(0, 0)|τ−α
)

,

for a constant M > 1. Hence, u is C1+α (in the parabolic sense) at the
origin.

Case 2. If ρ ∈ (0, τ), then in order to apply Theorem 3.2, we need to
properly re-scale u. Let

v(x, t) :=
u(τx, τγt)− u(0, 0)

τ1+α
,

where γ := 2 + α(2 − p). Observe that in Q̂1 := B1 ×
(

−τγ(σ−1), 0
]

the
function v is a weak solution of

vt −∆pv = τ1−α(p−1)f(τx, τγt) := g(x, t).

Note also that

‖g‖Lq,r(Q̃1)
≤ τ

−α(p−1)+1−
(

n
q
+ γ

r

)

‖f‖Lq,r(Q̂τ )
.

The choice of α in (1.2) guarantees that

−α(p− 1) + 1−
(n

q
+
γ

r

)

≥ 0.

Using Theorem 3.2 and taking into account that v(0, 0) = 0 and |∇v(0, 0)| =
1, we get

sup
Q̂1

|v(x, t)| = sup
Q̂τ

|u(x, t) − u(0, 0)|

τ1+α
≤M(1 + |∇u(0, 0)|τ−α).

On the other hand, u ∈ C1+β
loc for some β ∈ (0, 1) (see [9, 13, 20, 21, 22, 23,

25, 31, 32, 42]). Hence, there exists σ > 0 small enough such that

|∇v(x, t)| >
1

2
, ∀(x, t) ∈ Q̂ς .

Therefore, v is a weak solution of a uniformly parabolic equation, i.e.

vt − div(A(x, t)∇v) = f,

where A(x, t) is (Hölder) continuous and 0 < a < A(x, t) < b <∞, for some
constants a and b. Thus, v ∈ C1+β∗

locally (see [19, 28]), where the sharp
exponent is given by

β∗ := 1−
(n

q
+

2

r

)

≥ α.

The last inequality is true, since p ≥ 2. In particular, v ∈ C1+α, so there is
a universal constant C > 0 such that

sup
Q̂ρ0

|v(x, t) −∇v(0, 0) · x| ≤ Cρ1+α
0 , ∀ρ0 ∈

(

0,
ς

2

)

,
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that is

sup
Q̂ρ0

∣

∣

∣

u(τx, τγt)− u(0, 0)

τ1+α
− τ−α∇u(0, 0) · x

∣

∣

∣
≤ Cρ1+α

0 ,

or else

sup
Q̂ρ0

|u(τx, τγt)− u(0, 0) −∇u(0, 0) · (τx)| ≤ C(τρ0)
1+α.

The latter implies for ρ0 ∈
(

0, τς2

)

sup
Q̂ρ0

|u(x, t)− u(0, 0) −∇u(0, 0) · x| ≤ Cρ1+α
0 ,

which means that u is C1+α at the origin.

Finally, if ρ0 ∈
[

τς
2 , τ

)

, then

sup
Q̂ρ0

|u(x, t)− u(0, 0) −∇u(0, 0) · x| ≤ sup
Q̂ρ0

|u(x, t)− u(0, 0)| + |∇u(0, 0)|τ

≤ Cτ1+α

≤ C

(

2

ς

)1+α

ρ1+α
0

= Cρ1+α
0 .

Therefore, the desired estimate is true, and the proof of Theorem 3.1 is
complete.

The next result shows precisely how the C1+α modulus of continuity for

solutions of (1.1) degenerates along the ε-levels of κ(n, p, q) = 1−
(

n
q + 2

r

)

as ε vanishes.

Corollary 3.2. Let u be a bounded weak solution of (1.1) under the com-
patibility conditions (C). For any fixed 0 < s < 1 and for ε ≪ 1, if

f ∈ L
n

s(1−ε)
, 2
(1−s)ε (Q1), then u is C1+αε (in the parabolic sense), where

αε = min

{

2ε

2(p − 1)− (p− 2)(1 − s)ε
, α−

H

}

→ 0 as ε→ 0 + .

Finally, we also obtain how the C1+α modulus of continuity for solutions
of (1.1) “improves asymptotically” along the ε−levels of

ς(n, p, q, r) =
nr

(r − 1)q
+

2

r − 1
− (2− p)

as ε→ 0, in the singular scenery, i.e., max
{

1, 2n
n+2

}

< p < 2.

Corollary 3.3. Let u be a bounded weak solution of (1.1) under the compat-
ibility conditions (C). For any 0 < s < 1 and for 0 < ε ≪ 1 small enough,
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if max
{

1, 2n
n+2

}

< p < 2 and f ∈ Lq,r(Q1), where q = nr
(r−1)[(1−s)(ε+2−p)]

and r = 2
s(ε+2−p) + 1, then u is C1+αε (in the parabolic sense), and

αε → αH as ε→ 0 + .
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