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Abstract

In this paper we study a free boundary problem for the heat equation in
a convex ring. Here we prove that under some conditions on initial data, the
considered problem has unique solution.

1 Introduction and statement of the prob-

lem

Let us be given a domain Ω0 ⊂ Rn × [0,∞) with Lipschitz regular (in time)
boundary and with convex time sections for which the set K0 := Ω0 ∩{t = 0} is
not empty, and a compactly supported continuous function u0(x), x ∈ Rn \K0

for which the set K1 := suppu0∪K0 is compact and convex. We assume, that Ω0

expands in time. We are looking for a pair (u, Ω1),Ω0 ⊂ Ω1 ⊂ Rn × [0,∞) and
u ∈ C2,1

x,t (Ω1 \ Ω0) ∩ C(Ω1 \ Ω0) which is the solution for the following problem:
ut = ∆u in Ω1 \ Ω0

u(x, t) = 1 on Γ0

u(x, t) = 0 on Γ1

|∇u(x, t)| = 1 on Γ1

u(x, 0) = u0(x) in K1 \K0

(1.1)

where Γi is the lateral boundary of Ωi, i = 0, 1. Here the condition on the
gradient is to be understood in classical sense, i.e.

lim
(x,t)→(x0,t0)

(x,t)∈Ω1\Ω0

|∇u(x, t)| = 1 for every (x0, t0) ∈ Γ1.

∗The second author completed his work on this article at the University of Lisbon, Portugal.
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This kind of problem was considered by A. Henrot and H. Shahgholian (see [3],
[4]) in 2000 for the elliptic operator. In particular, they consider the following
problem: for a given bounded domain K ⊂ Rn (n ≥ 2 and K is convex) one
seeks a larger domain Ω such that the gradient of the p-capacitary potential of
Ω \K has a prescribed magnitude on ∂Ω (the boundary of Ω).

Mathematically the problem, considered by A. Henrot and H. Shahgholian
is formulated as follows: given a (not necessarily bounded) convex K \ Rn, one
looks for a function u and a domain Ω(⊃ K) satisfying, for a given constant
c > 0, 

∆pu = 0 in Ω \K
u(x, t) = 1 on ∂K
u(x, t) = 0 on ∂Ω
|∇u(x, t)| = c on ∂Ω,

where ∆p denotes the p-Laplace operator, i.e. ∆pu := div(|∇u|p−2∇u). The
overdetermined boundary condition |∇u| = c is to be understood in the following
sense:

lim inf
Ω3y→x

|∇u(y)| = lim sup
Ω3y→x

|∇u(y)| = c, for every x ∈ ∂Ω.

A. Henrot and H. Shahgholian proved the following (see [3]): if K is convex
domain, not necessarily bounded or regular, then there exists a classical solution
Ω to the considered free boundary problem with C2,α boundary ∂Ω. Moreover,
if K is bounded then the solution Ω is unique.

This kind of result the same others also got for the interior case (when one
searches K ⊃ Ω, [4]).

Later, in 2002, A. Petrosyan considered this kind of problem but now for the
parabolic operator. In particular, the following problem was considered by A.
Petrosyan (see [5]): find a nonnegative continuous function u in QT = Rn×(0, T ),
T > 0, such that 

∆u− ut = 0 in Ω = {u > 0}
|∇u| = 1 on ∂Ω ∩QT

u(·, 0) = u0,

with a given nonnegative initial function u0 ∈ C0(Rn) (here ∆ = ∆x and
∇ = ∇x). A. Petrosyan proved, that under some conditions on u0, there exists
a classical unique solution for considered problem for some T (see [5]).

The purpose of this paper is the following: we’ll show, that under some as-
sumptions on initial data, the problem (1.1) has a unique solution for a short
time (i.e. for t < T for some T > 0). Here we will mainly follow the tech-
nique used by A. Henrot and H. Shahgholian in [3], [4] and then extended for a
heat equation by A. Petrosyan in [5]. Throughout the paper we will use the
following notations:

∂lΩ = the lateral boundary of Ω; Ω(t0) = Ω ∩ {t = t0}; ΩT = Ω ∩ {t ≤ T};
QT = Rn × (0, T ).

2 Subsolutions and Supersolutions
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Definition 2.1. The pair (u, Ω) is called a supersolution for (1.1) for a short
time, if there exists a T > 0 such that Ω ⊂ Rn× [0, T ],ΩT

0 ⊂ Ω and the function
u ∈ C2,1

x,t (Ω \ Ω0) ∩ C(Ω \ Ω0) satisfies to the following conditions:

(a) ut = ∆u in Ω \ Ω0

(b) u(x, t) = 1 on Γ0 ∩ Rn × [0, T ] and u(x, t) = 0 on ∂lΩ
(c) lim sup

(x,t)→(x0,t0)

(x,t)∈Ω\Ω0

|∇u(x, t)| ≤ 1 for every (x0, t0) ∈ ∂lΩ

(d) u(x, 0) ≥ u0(x) for x ∈ K1 \K0

Definition 2.2. The pair (u,Ω) is called a subsolution for (1.1) for a short
time, if there exists a T > 0 such that Ω ⊂ Rn× [0, T ],ΩT

0 ⊂ Ω and the function
u ∈ C2,1

x,t (Ω \ Ω0) ∩ C(Ω \ Ω0) satisfies to the following conditions:

(a) ut = ∆u in Ω \ Ω0

(b) u(x, t) = 1 on Γ0 ∩ Rn × [0, T ] and u(x, t) = 0 on ∂lΩ
(c) lim inf

(x,t)→(x0,t0)

(x,t)∈Ω\Ω0

|∇u(x, t)| ≥ 1 for every (x0, t0) ∈ ∂lΩ

(d) u(x, 0) ≤ u0(x) for x ∈ K1 \K0

The pair (u, Ω) is called a strict subsolution for (1.1) for a short time, if it
is a subsolution for (1.1) for a short time, and the sign > holds in (c).

Definition 2.3. The pair (u, Ω) is called a classical solution for (1.1) for a
short time, if it is supersolution and subsolution for (1.1) at the same time for
a short time.

Throughout the paper we will assume that the function u0 satisfies the fol-
lowing conditions:

∆u0(x) = 0, x ∈ K1 \K0 (2.1)
u0(x) = 1, x ∈ ∂K0 (2.2)
u0 ∈ C0,1(K1 \K0) and lim

x→x0

x∈K1\K0

|∇u0(x)| = 1 for all x0 ∈ ∂K1 (2.3)

Suppose that the initial function u0 is starshaped with respect to a point x0 in
the following sense:

u0(λx + x0) ≥ u0(x + x0), (2.4)

for every λ ∈ (0, 1) and x ∈ Rn such that λx + x0 and x + x0 are in K1 \K0.

Let (u, Ω) be a supersolution of (1.1). Let λ and λ′ be two real numbers with
0 < λ < λ′ < 1. Define

uλ(x, t) =
1
λ′

u(λx, λ2t) (2.5)

The rescaling of variables is taken so that uλ, like u, satisfies the heat equation
in the set Ωλ \ (Ω0)λ, where

Ωλ = {(x, t) : (λx, λ2t) ∈ Ω}.
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Lemma 2.4. Let the initial function u0 satisfy condition (2.4). Then every
subsolution of (1.1) is smaller than every supersolution of (1.1).

Remark 2.5. In this lemma and further in the paper we say that a pair (u′,Ω′)
is smaller than (u, Ω), if Ω′ ⊂ Ω and u′ ≤ u in the set where both functions are
defined.

Proof. We follow to the proof of the lemma 2.4 in [5].
Let (u, Ω) be a supersolution and (u′,Ω′) a subsolution of (1.1). We need to

proof only that Ω′ ⊂ Ω; the inequality u′ ≤ u will follow from this inclusion by
the maximum principle.

In the case when u ∈ C1(Ω \Ω0) and u′ ∈ C1(Ω′ \Ω0), the statement can be
proved by the Lavrent’ev rescaling method as follows. Suppose

λ0 = sup{λ ∈ (0, 1)/Ω′ ⊂ Ωλ} < 1,

where Ωλ is defined as above. Then Ω′ ⊂ Ωλ0 and there is a common point
(x0, t0) ∈ ∂Ω′ ∩ ∂Ωλ0 ∩ QT . Let λ0 < λ′0 < 1 and uλ0 be as in (2.5). Then
u′ ≤ uλ0 in some neighborhood of (x0, t0) in Ω′. At the common point (x0, t0)
this inequality implies ∂νu

′(x0, t0) ≤ ∂νu
λ0(x0, t0), where ν is the inward spa-

tial normal vector for both ∂Ω′ and ∂Ωλ0 at (x0, t0) (recall that we are in C1

case). This leads to a contradiction, since ∂νu
′(x0, t0) = |∇u′(x0, t0)| ≥ 1 and

∂νu
λ0(x0, t0) = |∇uλ0(x0, t0)| = λ0

λ′0
< 1. Therefore λ0 = 1 and Ω′ ⊂ Ω.

The general case can be reduced to the considered regular case by the fol-
lowing procedure. Let (ũ, Ω̃) be a subsolution. Choose 0 < λ < λ′ < 1 close to
1 and regularize ũ by setting

u(x, t) = (ũλ(x, t + h)− η)+

for small h, η > 0. Analogously regularize a subsolution (ũ′, Ω̃′). Then we will
arrive in the considered regular case and can finish the proof by letting first
h, η → 0+ and then λ → 1−. �

Remark 2.6. The above lemma leads us to the uniqueness: the problem (1.1)
has at most one solution.

3 Classes B and D
Definition 3.1. We will say that the supersolution (u,Ω) is in class B, if Ω(t)
is convex and expands in time for all t ∈ [0, T ] (T is the same quantity appearing
in the definition of supersolution) and moreover ∂lΩ is Lipschitz regular in time.

Remark 3.2. The Lipsichtz regularity in time is understood in the following
sense: for every (x0, t0) ∈ ∂lΩ there exists a neighborhood V such that

V ∩ Ω = {xn > f(x1, . . . , xn−1, t)} ∩ V, (3.1)

for a suitable coordinate system and where f is a global defined function, uni-
formly Lipschitz in time. We point out in spatial coordinates f can be chosen to
be convex, if time sections Ω(t) are convex.
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Proposition 3.3. The class B is not empty.

Proof. Without loss of generality we can assume that (0, t) ∈ Ω0(t) for
0 < t < ∞. Let us denote by G(x, t) the fundamental solution for the heat
equation, i.e.

G(x, t) =

{
(4πt)

−n
2 · e

−|x|2
4t , if t > 0

0, if t ≤ 0.

Then we can choose such numbers ε, α > 0 and C > 0 that for the function

U(x, t) := C · [G(x, t + ε)− α]

we’ll have
U(x, t) > 1 for (x, t) ∈ ∂lΩT

0

for some fixed T , and

U(x, 0) > u0(x) in K1 \K0.

Denote Ω = {(x, t) : U(x, t) > 0}. It is easy to see that Ω is expanding in
0 < t < T for some T > 0, and has Lipschitz regular (in t) lateral boundary.
Then for any point (x0, t0) ∈ ∂lΩ we have (since time sections of Ω are balls
centered at the origin)

|∇U(x0, t0)| =
∂U(x0, t0)

∂r
, r := |x|.

Hence, by the choice of constants C and α we can reach to the property

|∇U(x0, t0)| < 1

to be satisfied for any (x0, t0) ∈ ∂lΩT .
Now let u(x, t) be the solution to the following Dirichlet problem:

∆u− ut = 0, in ΩT \ ΩT
0

u(x, t) = 1, on (x, t) ∈ ∂lΩT
0

u(x, t) = 0, on (x, t) ∈ ∂lΩT

u(x, 0) = u0(x), in (ΩT \ ΩT
0 ) ∩ {t = 0}

Then by the comparison principle for parabolic equations it follows that
u(x, t) < U(x, t) for (x, t) ∈ ΩT \ ΩT

0 . Hence

lim sup
(x,t)→(x0,t0)

(x,t)∈ΩT \ΩT
0

|∇u(x, t)| ≤ lim sup
(x,t)→(x0,t0)

(x,t)∈ΩT \ΩT
0

|∇U(x, t)| < 1

for any (x0, t0) ∈ ∂lΩT . This shows, that the pair (u,Ω) ∈ B.�

Proposition 3.4. The class of strict supersolutions is not empty.
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Proof. Let (u, Ω) be a supersolution of (1.1), and uλ(x, t) be as in (2.5) with
0 < λ < λ′ < 1. Then we have

(uλ)t = ∆uλ in Ωλ \ (Ω0)λ

uλ(x, t) = 1
λ′ on (Γ0)λ

uλ(x, t) = 0 on ∂lΩλ

uλ(x, 0) ≥ u0(x) in (K1)λ \ (K0)λ

lim sup(x,t)→(x0,t0) |∇uλ| < 1 on ∂lΩλ.

Now let vλ(x, t) be a solution to the following Dirichlet problem:
vλ
t = ∆vλ in Ωλ \ Ω0

vλ(x, t) = 1 on Γ0

vλ(x, t) = 0 on ∂lΩλ

vλ(x, 0) = u0(x) in (K1)λ \K0,

Then by the comparison principle for parabolic equations it follows that vλ ≤ uλ

for (x, t) ∈ Ωλ \ (Ω0)λ. Hence

lim sup
(x,t)→(x0,t0)

|∇vλ(x, t)| ≤ lim sup
(x,t)→(x0,t0)

|∇uλ(x, t)| < 1

for all (x0, t0) ∈ ∂lΩλ. This shows, that the pair (vλ,Ωλ) ∈ B. Moreover, the
selection λ < λ′ < 1 makes the pair (vλ,Ωλ) not only a supersolution of (1.1),
but also a strict supersolution.�

Definition 3.5. We’ll say that the subsolution (u,Ω) is in class D, if Ω(t) is
convex and expands in time for all t ∈ [0, T ] (T is the same as in the definition
of subsolution) and moreover ∂lΩ is Lipschitz regular in time.

Proposition 3.6. The class D is not empty.

Proof. Note, that we have
∆u0(x) = 0 in K1 \K0

u0(x) = 1 on ∂K0

u0(x) = 0 on ∂K1

lim x→x0

x∈K1\K0

|∇u0(x)| = 1 for all x0 ∈ ∂K1,

Let us define v(x, t) in the following way:

v(x, t) = u0(x) , x ∈ ET
1 \ ET

0 , (3.2)

where ET
1 = K1 × [0, T ) and ET

0 = K0 × [0, T ). Then
vt = ∆v in ET

1 \ E
T
0

v(x, t) = 0 on ∂lE
T
1

v(x, t) = 1 on ∂lE
T
0

lim(x,t)→(x0,t0)

(x,t)∈ET
1 \ET

0

|∇v(x, t)| = 1 for all (x0, t0) ∈ ∂lE
T
1 .
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Let u(x, t) be the solution of the following Dirichlet problem:
ut = ∆u in ET

1 \ ΩT
0

u(x, t) = 0 on ∂lE
T
1

u(x, t) = 1 on ΓT
0

u(x, 0) = u0(x) x ∈ K1 \K0.

Since Ω0 expands in time, we have ET
0 ⊂ ΩT

0 and from the comparison principle
we conclude, that

v(x, t) ≤ u(x, t) in ET
1 \ ΩT

0 .

This implies

lim inf
(x,t)→(x0,t0)

(x,t)∈ET
1 \ΩT

0

|∇u(x, t)| ≥ lim inf
(x,t)→(x0,t0)

(x,t)∈ET
1 \ΩT

0

|∇v(x, t)| = 1 for all (x0, t0) ∈ ∂lE
T
1 .

So, for any T the pair (ET
1 , u) belongs to the class D.�

4 The minimal element of B
If the class B has a minimal element, then it is a good candidate for a classical

solution of (1.1). We set

Ω∗ =

 ⋂
(u,Ω)∈B

Ω

o

, (4.1)

where Ao denotes the set of interior points of A. Recalling Proposition 3.6 and
Lemma 2.4, we can assist, that Ω∗ does not coincide with Ω0.

Let also u∗ be a solution to the following Dirichlet problem:
u∗t = ∆u∗ in Ω∗ \ Ω0

u∗(x, t) = 1 on Γ0

u∗(x, t) = 0 on ∂lΩ∗

u∗(x, 0) = u0(x) in K1 \K0.

(4.2)

In this section we show that under some conditions on u0 (conditions (2.1)−(2.4))
and for small T ≤ T (u0) the pair (u∗,Ω∗) is the minimal element of B and in fact
a classical solution of (1.1). The following lemma plays one of the fundamental
roles in our study.

Lemma 4.1. Let u0 satisfy (2.1) − (2.4) and let Ω∗ be given by (4.1). Then
∂Ω∗ ∩Qβ is Lipschitz regular in time for some β > 0.

Proof. Let (u,Ω) ∈ B. For small ε, h > 0 let us define

w(x, t) =
1

1− ε
u((1− ε)x, (1− ε)2(t + h))

in Q(1−ε)−2T−h. Now w(x, t) will satisfy the heat equation in the set Ω1−ε,h \
Ω0

1−ε,h, where

Ω1−ε,h = {(x, t) : ((1− ε)x, (1− ε)2(t + h)) ∈ Ω},
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Ω0
1−ε,h = {(x, t) : ((1− ε)x, (1− ε)2(t + h)) ∈ Ω0}.

Let as prove, that w(x, 0) ≥ u0(x) in Ω1−ε,h \ Ω0
1−ε,h ∩ {t = 0}. In view of

Proposition 3.6 and (2.4)

w(x, 0) =
1

1− ε
u((1− ε)x, (1− ε)2h) ≥ 1

1− ε
v((1− ε)x, (1− ε)2h) =

=
1

1− ε
u0((1− ε)x) ≥ u0(x),

where v(x, t) is defined in (3.2).
Now consider the following Dirichlet boundary problem:

w̃t = ∆w̃ in (Ω1−ε,h \ Ω0) ∩ {t > 0}
w̃ = 1 on Γ0

w̃ = 0 on ∂lΩ1−ε,h

w̃ = u0 in Ω1−ε,h \ Ω0
1−ε,h ∩ {t = 0}.

Then, using comparison principle, we’ll obtain w̃ ≤ w in Ω1−ε,h \ Ω0
1−ε,h, and

hence,
lim sup

(x,t)→(x0,t0)

(x,t)∈Ω1−ε,h\Ω
0
1−ε,h

|∇w̃| ≤ lim sup
(x,t)→(x0,t0)

(x,t)∈Ω1−ε,h\Ω
0
1−ε,h

|∇w| ≤ 1,

for all (x0, t0) ∈ ∂lΩ1−ε,h, and we obtain, that (w̃,Ω1−ε,h) ∈ B.
Note now, that the time levels of Ω1−ε,h are given by the identity

1
1− ε

Ω(t) = Ω1−ε,h

(
t

(1− ε)2
− h

)
.

Running over all (u, Ω) ∈ B, we may conclude therefore, that

1
1− ε

Ω∗(t) ⊃ Ω∗
(

t

(1− ε)2
− h

)
. (4.3)

Since Ω∗(t) expands in time, the inclusion (4.3) is not trivial, if

t

(1− ε)2
− h < t.

The latter is equivalent to the inequality t < h(1−ε)2

ε(2−ε) (= β). Besides, (4.3) implies
also the Lipschitz regularity of ∂lΩ∗ in time variable.�

For the supersolutions (u, Ω) ∈ B of (1.1) one can replace the gradient con-
dition (c) in Definition 2.1 with

lim sup
(x,t)→(x0,t0)

(x,t)∈Ω\Ω0

u(x, t)
dΩ(x, t)

≤ 1

for every (x0, t0) ∈ ∂lΩ, where

dΩ(x, t) = dist(x, ∂Ω(t)).

This is taken care in the next lemma ([5], Lemma 5.1).
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Lemma 4.2. Let Ω be a bounded domain in QT such that Ω(t) are convex for
t ∈ (0, T ) and ∂lΩ is Lipschitz regular in time. Let also u be a nonnegative
function, continuously vanishing on ∂lΩ, and such that ∆u−ut = 0 in Ω. Then

lim sup
(x,t)→(x0,t0)

(x,t)∈Ω\Ω0

|∇u(x, t)| = lim sup
(x,t)→(x0,t0)

(x,t)∈Ω\Ω0

u(x, t)
dΩ(x, t)

, (4.4)

for every (x0, t0) ∈ ∂lΩ.

The following lemma is an elliptic counterpart of the lemma above and is
proved in a similar way (see [5]).

Lemma 4.3. Let D be a bounded spatial convex domain and u a nonnegative
function in D, continuously vanishing on ∂D and such that ∆u = f in D with
f bounded. Then

lim sup
D3x→x0

|∇u(x)| = lim sup
D3x→x0

u(x)
d(x)

, (4.5)

where d(x) = dist(x, ∂D).

Let u0 satisfy (2.1)− (2.4).

Lemma 4.4. The pair (u∗,Ω∗) is the minimal element of B.

Proof. The only thing we have to verify now is that (u∗,Ω∗) is a supersolu-
tion of (1.1). Let (uk,Ωk) ∈ B be such that

(i) Ω∗ = (∩kΩk)
o;

(ii) the sequence {Ωk} is decreasing.

(iii) uk(x, 0) = u0(x).

We can construct such a sequence as follows. First of all, it is easy to prove,
using separability of Rn and convexity property of sets in B, that we can find a
sequence (uk,Ωk) ∈ B such that Ω∗ = (∩kΩk)

o. Next, in order to have (ii) we
observe the following. Denote Ωk,m := Ωk ∩Ωm, and let uk,m be the solution of
the following Dirichlet problem:

∂tuk,m = ∆uk,m in Ωk,m \ Ω0

uk,m(x, t) = 1 on Γ0

uk,m(x, t) = 0 on ∂lΩk,m

uk,m(x, 0) = min{uk(·, 0), um(·, 0)} in (Ωk,m \ Ω0) ∩ {t = 0},

then

uk,m(x, t) ≤ min{uk(x, t), um(x, t)} for every (x, t) ∈ Ωk,m.

Besides, for the distance functions we will have

dΩk,m
(x, t) = min{dΩk

(x, t), dΩm(x, t)} for every (x, t) ∈ Ωk,m \ Ω0 .
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Therefore, using Lemma 4.2, we can conclude that (uk,m,Ωk,m) ∈ B. If now
(ii) is not satisfied, we can replace Ωk by the intersection of all Ωm with m ≤ k
and thus to make {Ωk} decreasing.
Now let (uk,Ωk) ∈ B with Ωk decreasing. Denote by ũk the solution of the
following Dirichlet problem:

(ũk)t = ∆ũk in Ωk \ Ω0

ũk = 1 on Γ0

ũk = 0 on ∂lΩk

ũk(x, 0) = u0(x) on {t = 0} ∩ (Ωk \ Ω0).

We have uk ≥ ũk on the parabolic boundary of Ωk \ Ω0, so, by comparison
principle, we can deduce that uk ≥ ũk in Ωk \ Ω0. It follows that

lim sup
(x,t)→(x0,t0)

(x,t)∈Ωk\Ω0

|∇ũk(x, t)| ≤ lim sup
(x,t)→(x0,t0)

(x,t)∈Ωk\Ω0

|∇uk(x, t)| ≤ 1 for all (x0, t0) ∈ ∂lΩk,

and hence (ũk,Ωk) ∈ B with ũk(x, 0) = u0(x).
So, we can assume from now, that (uk,Ωk) ∈ B, Ωk decreases and uk(x, 0) =
u0(x).

Denote now by ωk the solution of the following Dirichlet problem:
(ωk)t = ∆ωk in Ωk \ Ω0

ωk(x, t) = 1 on Γ0

ωk(x, t) = 0 on ∂lΩk

ωk(x, 0) = 1 in (Ωk \ Ω0) ∩ {t = 0}.

Let now (w,W ) be some subsolution for (1.1). Then, using Lemma 2.4, we can
deduce that uk(x, t) ≥ w(x, t) in W and hence:

|∇uk(x, t)| ≤ |∇w(x, t)| on Γ0.

Let us denote

M := sup
(x,t)∈Γ0

|∇w(x, t)| and C := sup
x∈K1\K0

|∇u0(x)|.

We want to prove that

|∇uk(x, t)| ≤ 1 + (C + M − 1)ωk(x, t) for all (x, t) ∈ Ωk \ Ω0.

To prove this, let us note that |∇u(x, t)| is subcaloric in Ωk \ Ω0 and

|∇uk(x, t)| ≤ 1 + (C + M − 1)ωk(x, t)

on parabolic boundary of Ωk \ Ω0. So the comparison principle applies, and we
obtain the desired inequality.

For the next step, observe that since uk are caloric in Ωk \ Ω0 and uniformly
bounded, a subsequence of {uk} will converge in C1 norm on compact subsets
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of Ω∗ \Ω0 to a function u∗. We may assume also that over this subsequence, the
corresponding ωk converge to ω∗, with

∂tω
∗ = ∆ω∗ in Ω∗ \ Ω0

ω∗(x, t) = 1 on Γ0

ω∗(x, t) = 0 on ∂lΩ∗

ω∗(x, 0) = 1 in (Ω∗ \ Ω0) ∩ {t = 0}.

Then in the limit we will obtain

|∇u∗(x, t)| ≤ 1 + (C + M − 1)ω∗(x, t)

for every (x, t) in Ω∗ \Ω0. As a consequence, (u∗,Ω∗) is in B and therefore is its
minimal element.�

5 Further properties of the minimal element

The method used in this and the next section is due to A. Henrot and H.
Shahgholian [3], [4]. For caloric functions this method used in [5].

Definition 5.1. A point (x, t) ∈ ∂lΩ, where Ω(t) is convex, is said to be extreme,
if x ∈ ∂Ω(t) is extreme for Ω(t). The latter means that x is not a convex
combination of points on ∂Ω(t), other than x.

Lemma 5.2. Under the conditions (2.1)− (2.4) on u0 the pair (u∗,Ω∗) satisfies

lim sup
(x,t)→(x0,t0)

(x,t)∈Ω∗\Ω0

|∇u∗(x, t)| = 1 (5.1)

for every extreme point (x0, t0) ∈ ∂Ω∗ ∩Qλ, λ ≤ β.

Proof. Let us point out that it is enough to prove the lemma in the case
when x0 is an extremal point of ∂Ω∗(t0), which means that there is a spatial
supporting hyperplane to Ω∗(t0), touching ∂Ω∗(t0) at x0 only. This follows from
the fact that the extremal points are dense among the extreme points.

Suppose now x0 ∈ ∂Ω∗(t0) is an extremal, and that (5.1) is not true. Then,
in view of Lemmas 4.2 and 4.1, there exists a (space-time) neighborhood V of
(x0, t0) and α > 0 such that

u∗(x, t) ≤ (1− α)dΩ∗(x, t) (5.2)

for every (x, t) ∈ V ∩ Ω∗. We may assume additionally that the intersection
V ∩ Ω∗ is given by (3.1).

Let now Π be a spatial supporting hyperplane to Ω∗(t0), such that Π ∩
∂Ω∗(t0) = {x0}. By translation and rotation, we may assume that x0 = 0 and
that Π = {xn = 0}. Moreover, let Ω∗(t0) ⊂ {xn > 0}. Using the extremality of
(x0, t0), it is easy to see that there are δ0 > 0 and η0 > 0 such that

{(x, t) ∈ Ω∗ : xn ≤ η0 and t ∈ [t0, t0 + δ0]} ⊂ V.
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Let us consider the function

h(t) = − min
x∈Ω∗(t)

xn, t ∈ [t0, t0 + δ0].

In view of Lipschitz regularity of ∂lΩ∗ in time,

h(t) ≤ L(t− t0)

for t ∈ [t0, t0 + δ0], where L is the Lipschitz constant of f in t.
Let now η1 ∈ (0, η0) be very small and a constant C ≥ L be chosen such that

h(t0 + δ0) ≤ Cδ0 − η1.

Further, we can find δ1 ∈ (0, δ0] such that

h(t0 + δ1) = Cδ1 − η1

and
h(t) ≥ C(t− t0)− η1

for every t ∈ [t0, t0 + δ1].
Define now a domain Ω ⊂ QT by giving its time sections as follows

Ω(t) =


Ω∗(t), t ∈ (t0 + δ1, T )
Ω∗(t) ∩ {xn > η1 − C(t− t0)}, t ∈ [t0, t0 + δ1]
Ω(t0) ∩ Ω∗(t), t ∈ (0, t0).

(5.3)

Let also u be a solution to the following Dirichlet problem:
∆u− ut = 0 in Ω \ Ω0

u = 0 on ∂lΩ
u = 1 on ∂lΩ0

u = u0 in Ω ∩ {t = 0} \K0.

We claim that if η1 is small enough, then (u, Ω) is in B. This will lead to a
contradiction since Ω∗ is not a subset of Ω and the lemma will follow. Since Ω
has convex time sections and expands in time, we need to verify only that (u, Ω)
is a supersolution of (1.1).

There exists ε = ε(n, L) > 0 such that in a neighborhood of (x0, t0) the
function

w∗(x) = w∗(x; t) = u∗(x, t) + u∗(x, t)1+ε

is subharmonic in x, ([1], Lemma 5). Moreover the size of the neighborhood
depends only on n and L. We may suppose V has this property. Next, note
that we can take C ≤ L + 1 if η1 is sufficiently small and δ0 is fixed. This will
make the boundary of new constructed Ω (L + 1)-Lipschitz in time. Therefore
we may assume also, that

w(x) = w(x; t) = u(x, t) + u(x, t)1+ε

is subharmonic in the neighborhood V .
Now let us prove that (u, Ω) is indeed a supersolution.
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Case 1. t̃ ∈ (t0 + δ1, T ). Since Ω ⊂ Ω∗, it follows that u ≤ u∗,so we have

lim
(x,t)→(x̃,t̃)
(x,t)∈Ω\Ω0

u(x, t)
dΩ(x, t)

≤ lim
(x,t)→(x̃,t̃)
(x,t)∈Ω∗\Ω0

u∗(x, t)
dΩ∗(x, t)

≤ 1

for every (x̃, t̃) ∈ ∂lΩ, t̃ > t0.
Case 2. t̃ ∈ [t0, t0 + δ1]. First of all, since Ω(t) ⊂ Ω∗(t) for these t, we have

also u ≤ u∗ there. Let now consider a part D(t) of Ω∗(t) between the planes:
Π1 = {xn = η1−C(t− t0)} and Π0 = {xn = η0−C(t− t0)}. Compare there two
functions w(x) = w(x; t) and l(x) = xn− (η1−C(t− t0)). On Π1 both functions
are 0. Next

l(x) = η0 − η1 on Π0

To estimate w on Π0, let us first estimate u on Π0. Thus, recalling (5.2) we
conclude

u(x, t) ≤ u∗(x, t) ≤ (1− α)dΩ∗(x, t) ≤ (1− α)(xn − L(t− t0)) ≤ (1− α)η0

and therefore, if η0 is small enough, we will obtain

w(x) ≤ (1− α/2)η0 on Π0.

Choose now η1 so small that (1− α/2)η0 ≤ η0 − η1. Then w ≤ l on ∂D(t) and,
since w is subharmonic and l is harmonic (linear), we conclude that w ≤ l in
D(t). Along with u ≤ u∗ this gives

lim sup
(x,t)→(x̃,t̃)

(x,t)∈Ω\Ω0

u(x, t)
dΩ(x, t)

≤ 1, (5.4)

where (x̃, t̃) ∈ ∂lΩ, t is free to vary within [t0, t0 + δ1].
Case 3. t̃ ∈ (0, t0). Since Ω(t) expand in time, and u0 is harmonic, consid-

ering the time derivative ut in Ω, we can infer from the maximum principle for
the heat equation that ut ≥ 0 in Ω. Remembering that Ω ⊂ Ω∗, we have u ≤ u∗.
In the case of (x̃, t̃) ∈ ∂lΩ ∩ ∂lΩ∗, we can write

lim
(x,t)→(x̃,t̃)

(x,t)∈Ω\Ω0

u(x, t)
dΩ(x, t)

≤ lim
(x,t)→(x̃,t̃)

(x,t)∈Ω∗\Ω0

u∗(x, t)
d∗Ω(x, t)

≤ 1.

The second possibility of (x̃, t̃) ∈ ∂lΩ is the case t̃ ∈ (0, t0) is to be on the
cylindrical boundary obtained from vertical movement of ∂lΩ(t0). In this case

dΩ(x, t̃) = dΩ(x, t0),

and, using ut ≥ 0, we obtain u(x, t̃) ≤ u(x, t0), which leads

lim
(x,t)→(x̃,t̃)

(x,t)∈Ω\Ω0

u(x, t)
dΩ(x, t)

≤ lim
(x,t)→(x̃,t0)

(x,t)∈Ω\Ω0

u(x, t0)
dΩ(x, t0)

≤ 1.

Summing up, we see that (5.4) holds for all t ∈ (0, T ), and by Lemma 4.2 this
implies (u, Ω) ∈ B, which is a contradiction.�
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6 The main theorem

Theorem 6.1. Let u0 satisfy (2.1)− (2.4). Then the minimal element (u∗,Ω∗)
of B is a classical solution of (1.1) for a short time. Moreover, this classical
solution is unique.

Before the proof of the theorem let us recall some facts, which are proved in
[5] (and it is not hard to see that this lemmas are true for convex rings also).

Lemma 6.2. Let D be a bounded spatial convex domain with C1 regular bound-
ary, V a neighborhood of ∂D and w a smooth positive subharmonic function in
D ∩ V , continuously vanishing in ∂D. If the level lines {w = s} are strictly
convex surfaces for 0 < s < s0, then the condition

lim sup
x→x0

x∈D∩V

|∇w(x)| ≥ 1

for every extreme point x0 ∈ ∂D implies that

|∇w(x)| ≥ 1

for every x with 0 < w(x) < s0.

Lemma 6.3. Let D be a bounded spatial convex domain and x0 a singular point
on ∂D, such that there are more than one supporting hyperplanes to D at x0.
Let also V be a neighborhood of x0 and w a subharmonic function in D ∩ V ,
continuously vanishing on ∂D ∩ V . Then

lim
x→x0

x∈D∩V

w(x)
d(x)

= 0,

where d(x) = dist(x, ∂D).

Proof of Theorem 6.1. First observe that we need only to show that
(u∗,Ω∗) is a subsolution. The uniqueness follows from the Lemma 2.4 (see the
Remark 2.6). For the rest we again follow to the proof of the similar theorem in
[5].

Recall that from the Lemma 5.2 we know that

lim sup
(x,t)→(x0,t0)

(x,t)∈Ω∗\Ω0

|∇u∗(x, t)| = 1

for every extreme point (x0, t0) ∈ ∂Ω∗∩Qβ . Denote by R the set of all t0 ∈ (0, β)
such that

lim sup
x→x0

x∈Ω∗(t0)

|∇u∗(x, t0)| = 1

for every extreme point x0 ∈ ∂Ω∗(t0).
Note that the complement (0, β) \ R is a union of a countable family of

nowhere dense subsets of (0, β) (see [5]).
As in the proof of Lemma 5.2, consider now the function

w∗(x) = w∗(x; t) = u∗(x, t) + u∗(x, t)1+ε.
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Let t0 ∈ (0, β). There exists ε > 0, δ > 0 and s0 > 0 such that w∗ = w∗(·; t)
is subharmonic in a convex ring D(t) = {0 < w∗(x, t) < s0} whenever t ∈
(t0− δ, t0 + δ) ([1], Lemma 5; the fact, that D(t) is a convex ring, can be proved
as in [2], Theorem 3).

Now, we point out that if t ∈ R, then ∂Ω∗(t) is C1 regular. Otherwise there
would exist a singular extreme point x0 ∈ ∂Ω∗(t) with

lim
x→x0

x∈Ω∗(t)

|∇u∗(x, t)| = 0, (6.1)

which contradicts to the definition of R. Indeed, if x0 ∈ ∂Ω∗(t) is singular then
by Lemma 6.3

w∗(x; t)
dΩ(x, t)

→ 0,

or, equivalently,
u∗(x, t)
dΩ(x, t)

→ 0

as x → x0, and (6.1) will follow from the Lemma 4.3.
Let now t ∈ (t0 − δ, t0 + δ) ∩R. Then Lemma 6.2 implies that

|∇w∗(x; t)| ≥ 1,

if 0 < w∗(x; t) < s0 and t is as above. The inequality is extended for all
t ∈ (t0−δ, t0+δ) because of everywhere density of R and continuity of |∇w∗(x; t)|
in Ω∗. Since |∇w∗| and ∇u∗ are asymptotically equivalent when u∗ → 0, we
obtain immediately that

lim inf
(x,t)→(x0,t0)

(x,t)∈Ω∗\Ω0

|∇u∗(x, t)| ≥ 1

whenever x0 ∈ ∂Ω∗(t0). Since t0 was arbitrary, we conclude, that (u∗,Ω∗) is
indeed a classical solution of (1.1) in Qβ.�
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