One - Phase Parabolic Free Boundary Problem in Convex Ring

Michael Poghosyan, Rafayel Teymurazyan*

Department of Mathematics and Mechanics Yerevan State University Alex Manoogian 1, 0025, Yerevan, ARMENIA e-mail: michael@ysu.am, rteymurazyan@gmail.com

Abstract

In this paper we study a free boundary problem for the heat equation in a convex ring. Here we prove that under some conditions on initial data, the considered problem has unique solution.

1 Introduction and statement of the problem

Let us be given a domain $\Omega_0 \subset \mathbb{R}^n \times [0, \infty)$ with Lipschitz regular (in time) boundary and with convex time sections for which the set $K_0 := \Omega_0 \cap \{t = 0\}$ is not empty, and a compactly supported continuous function $u_0(x), x \in \mathbb{R}^n \setminus K_0$ for which the set $K_1 := \operatorname{supp} u_0 \cup K_0$ is compact and convex. We assume, that Ω_0 expands in time. We are looking for a pair $(u, \Omega_1), \Omega_0 \subset \Omega_1 \subset \mathbb{R}^n \times [0, \infty)$ and $u \in C_{x,t}^{2,1}(\Omega_1 \setminus \overline{\Omega}_0) \cap C(\overline{\Omega}_1 \setminus \Omega_0)$ which is the solution for the following problem:

$$\begin{cases} u_t = \Delta u & \text{in } \Omega_1 \setminus \overline{\Omega}_0 \\ u(x,t) = 1 & \text{on } \Gamma_0 \\ u(x,t) = 0 & \text{on } \Gamma_1 \\ |\nabla u(x,t)| = 1 & \text{on } \Gamma_1 \\ u(x,0) = u_0(x) & \text{in } K_1 \setminus \overline{K}_0 \end{cases}$$
(1.1)

where Γ_i is the lateral boundary of Ω_i , i = 0, 1. Here the condition on the gradient is to be understood in classical sense, i.e.

$$\lim_{\substack{(x,t)\to(x_0,t_0)\\(x,t)\in\Omega_1\setminus\overline{\Omega}_0}} |\nabla u(x,t)| = 1 \text{ for every } (x_0,t_0)\in\Gamma_1.$$

^{*}The second author completed his work on this article at the University of Lisbon, Portugal.

This kind of problem was considered by A. Henrot and H. Shahgholian (see [3], [4]) in 2000 for the elliptic operator. In particular, they consider the following problem: for a given bounded domain $K \subset \mathbb{R}^n$ $(n \ge 2$ and K is convex) one seeks a larger domain Ω such that the gradient of the *p*-capacitary potential of $\Omega \setminus K$ has a prescribed magnitude on $\partial\Omega$ (the boundary of Ω).

Mathematically the problem, considered by A. Henrot and H. Shahgholian is formulated as follows: given a (not necessarily bounded) convex $K \setminus \mathbb{R}^n$, one looks for a function u and a domain $\Omega(\supset K)$ satisfying, for a given constant c > 0,

$$\begin{cases} \Delta_p u = 0 & \text{in } \Omega \setminus K \\ u(x,t) = 1 & \text{on } \partial K \\ u(x,t) = 0 & \text{on } \partial \Omega \\ |\nabla u(x,t)| = c & \text{on } \partial \Omega, \end{cases}$$

where Δ_p denotes the *p*-Laplace operator, i.e. $\Delta_p u := div(|\nabla u|^{p-2}\nabla u)$. The overdetermined boundary condition $|\nabla u| = c$ is to be understood in the following sense:

$$\liminf_{\Omega \ni y \to x} |\nabla u(y)| = \limsup_{\Omega \ni y \to x} |\nabla u(y)| = c, \text{ for every } x \in \partial \Omega.$$

A. Henrot and H. Shahgholian proved the following (see [3]): if K is convex domain, not necessarily bounded or regular, then there exists a classical solution Ω to the considered free boundary problem with $C^{2,\alpha}$ boundary $\partial\Omega$. Moreover, if K is bounded then the solution Ω is unique.

This kind of result the same others also got for the interior case (when one searches $K \supset \Omega$, [4]).

Later, in 2002, A. Petrosyan considered this kind of problem but now for the parabolic operator. In particular, the following problem was considered by A. Petrosyan (see [5]): find a nonnegative continuous function u in $Q_T = \mathbb{R}^n \times (0, T)$, T > 0, such that

$$\begin{cases} \Delta u - u_t = 0 & \text{in } \Omega = \{u > 0\} \\ |\nabla u| = 1 & \text{on } \partial \Omega \cap Q_T \\ u(\cdot, 0) = u_0, \end{cases}$$

with a given nonnegative initial function $u_0 \in C_0(\mathbb{R}^n)$ (here $\Delta = \Delta_x$ and $\nabla = \nabla_x$). A. Petrosyan proved, that under some conditions on u_0 , there exists a classical unique solution for considered problem for some T (see [5]).

The purpose of this paper is the following: we'll show, that under some assumptions on initial data, the problem (1.1) has a unique solution for a short time (i.e. for t < T for some T > 0). Here we will mainly follow the technique used by A. Henrot and H. Shahgholian in [3], [4] and then extended for a heat equation by A. Petrosyan in [5]. Throughout the paper we will use the following notations:

 $\partial_l \Omega$ = the lateral boundary of Ω ; $\Omega(t_0) = \Omega \cap \{t = t_0\}$; $\Omega^T = \Omega \cap \{t \leq T\}$; $Q_T = \mathbb{R}^n \times (0, T)$.

2 Subsolutions and Supersolutions

Definition 2.1. The pair (u, Ω) is called a **supersolution** for (1.1) for a short time, if there exists a T > 0 such that $\Omega \subset \mathbb{R}^n \times [0, T], \Omega_0^T \subset \Omega$ and the function $u \in C_{x,t}^{2,1}(\Omega \setminus \overline{\Omega}_0) \cap C(\overline{\Omega} \setminus \Omega_0)$ satisfies to the following conditions:

- (a) $u_t = \Delta u \text{ in } \Omega \setminus \overline{\Omega}_0$
- (b) $u(x,t) = 1 \text{ on } \Gamma_0 \cap \mathbb{R}^n \times [0,T] \text{ and } u(x,t) = 0 \text{ on } \partial_l \Omega$
- (c) $\limsup_{\substack{(x,t)\to(x_0,t_0)\\(x,t)\in\Omega\setminus\overline{\Omega}_0}} |\nabla u(x,t)| \le 1 \text{ for every } (x_0,t_0) \in \partial_l \Omega$
- (d) $u(x,0) \ge u_0(x) \text{ for } x \in K_1 \setminus \overline{K}_0$

Definition 2.2. The pair (u, Ω) is called a **subsolution** for (1.1) for a short time, if there exists a T > 0 such that $\Omega \subset \mathbb{R}^n \times [0, T], \Omega_0^T \subset \Omega$ and the function $u \in C_{x,t}^{2,1}(\Omega \setminus \overline{\Omega}_0) \cap C(\overline{\Omega} \setminus \Omega_0)$ satisfies to the following conditions:

- (a) $u_t = \Delta u \text{ in } \Omega \setminus \overline{\Omega}_0$
- (b) $u(x,t) = 1 \text{ on } \Gamma_0 \cap \mathbb{R}^n \times [0,T] \text{ and } u(x,t) = 0 \text{ on } \partial_l \Omega$
- (c) $\liminf_{\substack{(x,t)\to(x_0,t_0)\\(x,t)\in\Omega\setminus\overline{\Omega}_0}} |\nabla u(x,t)| \ge 1 \text{ for every } (x_0,t_0) \in \partial_l \Omega$
- (d) $u(x,0) \le u_0(x) \text{ for } x \in K_1 \setminus \overline{K}_0$

The pair (u, Ω) is called a **strict subsolution** for (1.1) for a short time, if it is a subsolution for (1.1) for a short time, and the sign > holds in (c).

Definition 2.3. The pair (u, Ω) is called a **classical solution** for (1.1) for a short time, if it is supersolution and subsolution for (1.1) at the same time for a short time.

Throughout the paper we will assume that the function u_0 satisfies the following conditions:

$$\Delta u_0(x) = 0, x \in K_1 \setminus \overline{K}_0 \tag{2.1}$$

$$u_0(x) = 1, x \in \partial K_0 \tag{2.2}$$

$$u_0 \in C^{0,1}(\overline{K}_1 \setminus K_0)$$
 and $\lim_{\substack{x \to x_0 \\ x \in K_1 \setminus \overline{K}_0}} |\nabla u_0(x)| = 1$ for all $x_0 \in \partial K_1$ (2.3)

Suppose that the initial function u_0 is *starshaped* with respect to a point x_0 in the following sense:

$$u_0(\lambda x + x_0) \ge u_0(x + x_0), \tag{2.4}$$

for every $\lambda \in (0,1)$ and $x \in \mathbb{R}^n$ such that $\lambda x + x_0$ and $x + x_0$ are in $K_1 \setminus K_0$.

Let (u, Ω) be a supersolution of (1.1). Let λ and λ' be two real numbers with $0 < \lambda < \lambda' < 1$. Define

$$u^{\lambda}(x,t) = \frac{1}{\lambda'}u(\lambda x, \lambda^2 t)$$
(2.5)

The rescaling of variables is taken so that u^{λ} , like u, satisfies the heat equation in the set $\Omega_{\lambda} \setminus (\overline{\Omega}_0)_{\lambda}$, where

$$\Omega_{\lambda} = \{ (x, t) : (\lambda x, \lambda^2 t) \in \Omega \}.$$

Lemma 2.4. Let the initial function u_0 satisfy condition (2.4). Then every subsolution of (1.1) is smaller than every supersolution of (1.1).

Remark 2.5. In this lemma and further in the paper we say that a pair (u', Ω') is smaller than (u, Ω) , if $\Omega' \subset \Omega$ and $u' \leq u$ in the set where both functions are defined.

Proof. We follow to the proof of the lemma 2.4 in [5].

Let (u, Ω) be a supersolution and (u', Ω') a subsolution of (1.1). We need to proof only that $\Omega' \subset \Omega$; the inequality $u' \leq u$ will follow from this inclusion by the maximum principle.

In the case when $u \in \mathbf{C}^1(\overline{\Omega} \setminus \Omega_0)$ and $u' \in \mathbf{C}^1(\overline{\Omega'} \setminus \Omega_0)$, the statement can be proved by the Lavrent'ev rescaling method as follows. Suppose

$$\lambda_0 = \sup\{\lambda \in (0,1)/\Omega' \subset \Omega_\lambda\} < 1,$$

where Ω_{λ} is defined as above. Then $\Omega' \subset \Omega_{\lambda_0}$ and there is a common point $(x_0, t_0) \in \partial \Omega' \cap \partial \Omega_{\lambda_0} \cap Q_T$. Let $\lambda_0 < \lambda'_0 < 1$ and u^{λ_0} be as in (2.5). Then $u' \leq u^{\lambda_0}$ in some neighborhood of (x_0, t_0) in Ω' . At the common point (x_0, t_0) this inequality implies $\partial_{\nu} u'(x_0, t_0) \leq \partial_{\nu} u^{\lambda_0}(x_0, t_0)$, where ν is the inward spatial normal vector for both $\partial \Omega'$ and $\partial \Omega_{\lambda_0}$ at (x_0, t_0) (recall that we are in \mathbf{C}^1 case). This leads to a contradiction, since $\partial_{\nu} u'(x_0, t_0) = |\nabla u'(x_0, t_0)| \geq 1$ and $\partial_{\nu} u^{\lambda_0}(x_0, t_0) = |\nabla u^{\lambda_0}(x_0, t_0)| = \frac{\lambda_0}{\lambda'_0} < 1$. Therefore $\lambda_0 = 1$ and $\Omega' \subset \Omega$.

The general case can be reduced to the considered regular case by the following procedure. Let $(\tilde{u}, \tilde{\Omega})$ be a subsolution. Choose $0 < \lambda < \lambda' < 1$ close to 1 and regularize \tilde{u} by setting

$$u(x,t) = (\widetilde{u}^{\lambda}(x,t+h) - \eta)^+$$

for small $h, \eta > 0$. Analogously regularize a subsolution $(\tilde{u}', \tilde{\Omega}')$. Then we will arrive in the considered regular case and can finish the proof by letting first $h, \eta \to 0+$ and then $\lambda \to 1-$.

Remark 2.6. The above lemma leads us to the uniqueness: the problem (1.1) has at most one solution.

3 Classes \mathcal{B} and \mathcal{D}

Definition 3.1. We will say that the supersolution (u, Ω) is in class \mathcal{B} , if $\Omega(t)$ is convex and expands in time for all $t \in [0, T]$ (*T* is the same quantity appearing in the definition of supersolution) and moreover $\partial_l \Omega$ is Lipschitz regular in time.

Remark 3.2. The Lipsichtz regularity in time is understood in the following sense: for every $(x_0, t_0) \in \partial_l \Omega$ there exists a neighborhood V such that

$$V \cap \Omega = \{x_n > f(x_1, \dots, x_{n-1}, t)\} \cap V, \tag{3.1}$$

for a suitable coordinate system and where f is a global defined function, uniformly Lipschitz in time. We point out in spatial coordinates f can be chosen to be convex, if time sections $\Omega(t)$ are convex.

Proposition 3.3. The class \mathcal{B} is not empty.

Proof. Without loss of generality we can assume that $(0,t) \in \Omega_0(t)$ for $0 < t < \infty$. Let us denote by G(x,t) the fundamental solution for the heat equation, i.e.

$$G(x,t) = \begin{cases} (4\pi t)^{\frac{-n}{2}} \cdot e^{\frac{-|x|^2}{4t}}, & \text{if } t > 0\\ 0, & \text{if } t \le 0 \end{cases}$$

Then we can choose such numbers $\varepsilon, \alpha > 0$ and C > 0 that for the function

$$U(x,t) := C \cdot [G(x,t+\varepsilon) - \alpha]$$

we'll have

$$U(x,t) > 1$$
 for $(x,t) \in \partial_l \Omega_0^T$

for some fixed T, and

$$U(x,0) > u_0(x) \text{ in } K_1 \setminus K_0.$$

Denote $\Omega = \{(x,t) : U(x,t) > 0\}$. It is easy to see that Ω is expanding in 0 < t < T for some T > 0, and has Lipschitz regular (in t) lateral boundary. Then for any point $(x_0, t_0) \in \partial_l \Omega$ we have (since time sections of Ω are balls centered at the origin)

$$|\nabla U(x_0, t_0)| = \frac{\partial U(x_0, t_0)}{\partial r}, \quad r := |x|.$$

Hence, by the choice of constants C and α we can reach to the property

$$|\nabla U(x_0, t_0)| < 1$$

to be satisfied for any $(x_0, t_0) \in \partial_l \Omega^T$.

Now let u(x,t) be the solution to the following Dirichlet problem:

$$\begin{cases} \Delta u - u_t = 0, & \text{in } \Omega^T \setminus \overline{\Omega}_0^T \\ u(x,t) = 1, & \text{on } (x,t) \in \partial_l \Omega_0^T \\ u(x,t) = 0, & \text{on } (x,t) \in \partial_l \Omega^T \\ u(x,0) = u_0(x), & \text{in } (\Omega^T \setminus \Omega_0^T) \cap \{t = 0\} \end{cases}$$

Then by the comparison principle for parabolic equations it follows that u(x,t) < U(x,t) for $(x,t) \in \Omega^T \setminus \overline{\Omega}_0^T$. Hence

$$\begin{split} & \limsup_{\substack{(x,t)\to(x_0,t_0)\\(x,t)\in\Omega^T\setminus\overline{\Omega}_0^T}} |\nabla u(x,t)| \leq \limsup_{\substack{(x,t)\to(x_0,t_0)\\(x,t)\in\Omega^T\setminus\overline{\Omega}_0^T}} |\nabla U(x,t)| < 1 \end{split}$$

for any $(x_0, t_0) \in \partial_l \Omega^T$. This shows, that the pair $(u, \Omega) \in \mathcal{B}$.

Proposition 3.4. The class of strict supersolutions is not empty.

Proof. Let (u, Ω) be a supersolution of (1.1), and $u^{\lambda}(x, t)$ be as in (2.5) with $0 < \lambda < \lambda' < 1$. Then we have

$$\begin{cases} (u^{\lambda})_t = \Delta u_{\lambda} & \text{in } \Omega_{\lambda} \setminus (\overline{\Omega}_0)_{\lambda} \\ u^{\lambda}(x,t) = \frac{1}{\lambda'} & \text{on } (\Gamma_0)_{\lambda} \\ u^{\lambda}(x,t) = 0 & \text{on } \partial_l \Omega_{\lambda} \\ u^{\lambda}(x,0) \ge u_0(x) & \text{in } (K_1)_{\lambda} \setminus (\overline{K}_0)_{\lambda} \\ \lim \sup_{(x,t) \to (x_0,t_0)} |\nabla u^{\lambda}| < 1 & \text{on } \partial_l \Omega_{\lambda}. \end{cases}$$

Now let $v^{\lambda}(x,t)$ be a solution to the following Dirichlet problem:

$$\begin{cases} v_t^{\lambda} = \Delta v^{\lambda} & \text{in } \Omega_{\lambda} \setminus \overline{\Omega}_0 \\ v^{\lambda}(x,t) = 1 & \text{on } \Gamma_0 \\ v^{\lambda}(x,t) = 0 & \text{on } \partial_l \Omega_{\lambda} \\ v^{\lambda}(x,0) = u_0(x) & \text{in } (K_1)_{\lambda} \setminus \overline{K}_0, \end{cases}$$

Then by the comparison principle for parabolic equations it follows that $v^{\lambda} \leq u^{\lambda}$ for $(x,t) \in \Omega_{\lambda} \setminus (\overline{\Omega}_0)_{\lambda}$. Hence

$$\limsup_{(x,t)\to(x_0,t_0)} |\nabla v^{\lambda}(x,t)| \le \limsup_{(x,t)\to(x_0,t_0)} |\nabla u^{\lambda}(x,t)| < 1$$

for all $(x_0, t_0) \in \partial_t \Omega_{\lambda}$. This shows, that the pair $(v^{\lambda}, \Omega_{\lambda}) \in \mathcal{B}$. Moreover, the selection $\lambda < \lambda' < 1$ makes the pair $(v^{\lambda}, \Omega_{\lambda})$ not only a supersolution of (1.1), but also a strict supersolution.

Definition 3.5. We'll say that the subsolution (u, Ω) is in class \mathcal{D} , if $\Omega(t)$ is convex and expands in time for all $t \in [0, T]$ (*T* is the same as in the definition of subsolution) and moreover $\partial_l \Omega$ is Lipschitz regular in time.

Proposition 3.6. The class \mathcal{D} is not empty.

Proof. Note, that we have

$$\begin{cases} \Delta u_0(x) = 0 & \text{in } K_1 \setminus \overline{K}_0 \\ u_0(x) = 1 & \text{on } \partial K_0 \\ u_0(x) = 0 & \text{on } \partial K_1 \\ \lim_{x \to x_0 \atop x \in K_1 \setminus \overline{K}_0} |\nabla u_0(x)| = 1 & \text{for all } x_0 \in \partial K_1, \end{cases}$$

Let us define v(x,t) in the following way:

$$v(x,t) = u_0(x) , x \in E_1^T \setminus E_0^T,$$
 (3.2)

where $E_1^T = K_1 \times [0, T)$ and $E_0^T = K_0 \times [0, T)$. Then

$$\begin{cases} v_t = \Delta v & \text{in } E_1^T \setminus \overline{E}_0^T \\ v(x,t) = 0 & \text{on } \partial_l E_1^T \\ v(x,t) = 1 & \text{on } \partial_l E_0^T \\ \lim_{\substack{(x,t) \to (x_0,t_0) \\ (x,t) \in E_1^T \setminus E_0^T}} |\nabla v(x,t)| = 1 & \text{for all } (x_0,t_0) \in \partial_l E_1^T. \end{cases}$$

Let u(x,t) be the solution of the following Dirichlet problem:

$$\begin{cases} u_t = \Delta u & \text{in } E_1^T \setminus \overline{\Omega}_0^T \\ u(x,t) = 0 & \text{on } \partial_t E_1^T \\ u(x,t) = 1 & \text{on } \Gamma_0^T \\ u(x,0) = u_0(x) & x \in K_1 \setminus K_0. \end{cases}$$

Since Ω_0 expands in time, we have $E_0^T \subset \Omega_0^T$ and from the comparison principle we conclude, that

$$v(x,t) \le u(x,t)$$
 in $E_1^T \setminus \overline{\Omega}_0^T$.

This implies

$$\liminf_{\substack{(x,t)\to(x_0,t_0)\\(x,t)\in E_1^T \setminus \Omega_0^T}} |\nabla u(x,t)| \ge \liminf_{\substack{(x,t)\to(x_0,t_0)\\(x,t)\in E_1^T \setminus \Omega_0^T}} |\nabla v(x,t)| = 1 \text{ for all } (x_0,t_0) \in \partial_l E_1^T$$

So, for any T the pair (E_1^T, u) belongs to the class $\mathcal{D}.\blacksquare$

4 The minimal element of \mathcal{B}

If the class \mathcal{B} has a minimal element, then it is a good candidate for a classical solution of (1.1). We set

$$\Omega^* = \left(\bigcap_{(u,\Omega)\in\mathcal{B}}\Omega\right)^o,\tag{4.1}$$

where A^o denotes the set of interior points of A. Recalling Proposition 3.6 and Lemma 2.4, we can assist, that Ω^* does not coincide with Ω_0 .

Let also u^* be a solution to the following Dirichlet problem:

$$\begin{cases} u_t^* = \Delta u^* & \text{in } \Omega^* \setminus \overline{\Omega}_0 \\ u^*(x,t) = 1 & \text{on } \Gamma_0 \\ u^*(x,t) = 0 & \text{on } \partial_l \Omega^* \\ u^*(x,0) = u_0(x) & \text{in } K_1 \setminus \overline{K}_0. \end{cases}$$
(4.2)

In this section we show that under some conditions on u_0 (conditions (2.1)-(2.4)) and for small $T \leq T(u_0)$ the pair (u^*, Ω^*) is the minimal element of \mathcal{B} and in fact a classical solution of (1.1). The following lemma plays one of the fundamental roles in our study.

Lemma 4.1. Let u_0 satisfy (2.1) - (2.4) and let Ω^* be given by (4.1). Then $\partial \Omega^* \cap Q_\beta$ is Lipschitz regular in time for some $\beta > 0$.

Proof. Let $(u, \Omega) \in \mathcal{B}$. For small $\varepsilon, h > 0$ let us define

$$w(x,t) = \frac{1}{1-\varepsilon}u((1-\varepsilon)x, (1-\varepsilon)^2(t+h))$$

in $Q_{(1-\varepsilon)^{-2}T-h}$. Now w(x,t) will satisfy the heat equation in the set $\Omega_{1-\varepsilon,h} \setminus \overline{\Omega}_{1-\varepsilon,h}^{0}$, where

$$\Omega_{1-\varepsilon,h} = \{(x,t) : ((1-\varepsilon)x, (1-\varepsilon)^2(t+h)) \in \Omega\},\$$

$$\Omega^0_{1-\varepsilon,h} = \{(x,t) : ((1-\varepsilon)x, (1-\varepsilon)^2(t+h)) \in \Omega_0\}.$$

Let as prove, that $w(x,0) \geq u_0(x)$ in $\overline{\Omega_{1-\varepsilon,h} \setminus \Omega_{1-\varepsilon,h}^0} \cap \{t = 0\}$. In view of Proposition 3.6 and (2.4)

$$w(x,0) = \frac{1}{1-\varepsilon}u((1-\varepsilon)x, (1-\varepsilon)^2h) \ge \frac{1}{1-\varepsilon}v((1-\varepsilon)x, (1-\varepsilon)^2h) =$$
$$= \frac{1}{1-\varepsilon}u_0((1-\varepsilon)x) \ge u_0(x),$$

where v(x,t) is defined in (3.2).

Now consider the following Dirichlet boundary problem:

$$\begin{cases} \tilde{w}_t = \Delta \tilde{w} & \text{in } (\Omega_{1-\varepsilon,h} \setminus \overline{\Omega}_0) \cap \{t > 0\} \\ \tilde{w} = 1 & \text{on } \Gamma_0 \\ \tilde{w} = 0 & \text{on } \frac{\partial_l \Omega_{1-\varepsilon,h}}{\Omega_{1-\varepsilon,h} \setminus \Omega_{1-\varepsilon,h}^0} \cap \{t = 0\} \end{cases}$$

Then, using comparison principle, we'll obtain $\tilde{w} \leq w$ in $\Omega_{1-\varepsilon,h} \setminus \overline{\Omega}_{1-\varepsilon,h}^{0}$, and hence,

$$\begin{split} & \limsup_{\substack{(x,t) \to (x_0,t_0) \\ (x,t) \in \Omega_{1-\varepsilon,h} \setminus \overline{\Omega}_{1-\varepsilon,h}^0}} & |\nabla \tilde{w}| \leq 1, \\ & (x,t) \in \Omega_{1-\varepsilon,h} \setminus \overline{\Omega}_{1-\varepsilon,h}^0 \\ & (x,t) \in \Omega_{1-\varepsilon,h} \setminus \overline{\Omega}_{1-\varepsilon,h}^0 \end{split}$$

for all $(x_0, t_0) \in \partial_l \Omega_{1-\varepsilon,h}$, and we obtain, that $(\tilde{w}, \Omega_{1-\varepsilon,h}) \in \mathcal{B}$. Note now, that the time levels of $\Omega_{1-\varepsilon,h}$ are given by the identity

$$\frac{1}{1-\varepsilon}\Omega(t) = \Omega_{1-\varepsilon,h}\bigg(\frac{t}{(1-\varepsilon)^2} - h\bigg).$$

Running over all $(u, \Omega) \in \mathcal{B}$, we may conclude therefore, that

$$\frac{1}{1-\varepsilon}\Omega^*(t) \supset \Omega^*\left(\frac{t}{(1-\varepsilon)^2} - h\right).$$
(4.3)

Since $\Omega^*(t)$ expands in time, the inclusion (4.3) is not trivial, if

$$\frac{t}{(1-\varepsilon)^2} - h < t.$$

The latter is equivalent to the inequality $t < \frac{h(1-\varepsilon)^2}{\varepsilon(2-\varepsilon)} (=\beta)$. Besides, (4.3) implies also the Lipschitz regularity of $\partial_l \Omega^*$ in time variable.

For the supersolutions $(u, \Omega) \in \mathcal{B}$ of (1.1) one can replace the gradient condition (c) in Definition 2.1 with

$$\lim_{\substack{(x,t)\to(x_0,t_0)\\(x,t)\in\Omega\setminus\overline{\Omega}_0}}\frac{u(x,t)}{d_\Omega(x,t)} \le 1$$

for every $(x_0, t_0) \in \partial_l \Omega$, where

$$d_{\Omega}(x,t) = dist(x,\partial\Omega(t)).$$

This is taken care in the next lemma ([5], Lemma 5.1).

Lemma 4.2. Let Ω be a bounded domain in Q_T such that $\Omega(t)$ are convex for $t \in (0,T)$ and $\partial_l \Omega$ is Lipschitz regular in time. Let also u be a nonnegative function, continuously vanishing on $\partial_l \Omega$, and such that $\Delta u - u_t = 0$ in Ω . Then

$$\lim_{\substack{(x,t)\to(x_0,t_0)\\(x,t)\in\Omega\setminus\overline{\Omega}_0}} \sup_{|\nabla u(x,t)| = \limsup_{\substack{(x,t)\to(x_0,t_0)\\(x,t)\in\Omega\setminus\overline{\Omega}_0}} \frac{u(x,t)}{d_{\Omega}(x,t)},\tag{4.4}$$

for every $(x_0, t_0) \in \partial_l \Omega$.

The following lemma is an elliptic counterpart of the lemma above and is proved in a similar way (see [5]).

Lemma 4.3. Let D be a bounded spatial convex domain and u a nonnegative function in D, continuously vanishing on ∂D and such that $\Delta u = f$ in D with f bounded. Then

$$\limsup_{D \ni x \to x_0} |\nabla u(x)| = \limsup_{D \ni x \to x_0} \frac{u(x)}{d(x)},\tag{4.5}$$

where $d(x) = dist(x, \partial D)$.

Let u_0 satisfy (2.1) - (2.4).

Lemma 4.4. The pair (u^*, Ω^*) is the minimal element of \mathcal{B} .

Proof. The only thing we have to verify now is that (u^*, Ω^*) is a supersolution of (1.1). Let $(u_k, \Omega_k) \in \mathcal{B}$ be such that

- (i) $\Omega^* = (\cap_k \Omega_k)^o;$
- (*ii*) the sequence $\{\Omega_k\}$ is decreasing.
- (*iii*) $u_k(x, 0) = u_0(x)$.

We can construct such a sequence as follows. First of all, it is easy to prove, using separability of \mathbb{R}^n and convexity property of sets in \mathcal{B} , that we can find a sequence $(u_k, \Omega_k) \in \mathcal{B}$ such that $\Omega^* = (\bigcap_k \Omega_k)^o$. Next, in order to have (*ii*) we observe the following. Denote $\Omega_{k,m} := \Omega_k \cap \Omega_m$, and let $u_{k,m}$ be the solution of the following Dirichlet problem:

$$\begin{array}{ll} \partial_t u_{k,m} = \Delta u_{k,m} & \text{in} \quad \Omega_{k,m} \setminus \overline{\Omega}_0 \\ u_{k,m}(x,t) = 1 & \text{on} \quad \Gamma_0 \\ u_{k,m}(x,t) = 0 & \text{on} \quad \partial_l \Omega_{k,m} \\ u_{k,m}(x,0) = \min\{u_k(\cdot,0), u_m(\cdot,0)\} & \text{in} \quad (\Omega_{k,m} \setminus \overline{\Omega}_0) \cap \{t=0\}, \end{array}$$

then

$$u_{k,m}(x,t) \le \min\{u_k(x,t), u_m(x,t)\}$$
 for every $(x,t) \in \Omega_{k,m}$.

Besides, for the distance functions we will have

 $d_{\Omega_{k,m}}(x,t) = \min\{d_{\Omega_k}(x,t), d_{\Omega_m}(x,t)\} \quad \text{for every} \quad (x,t) \in \Omega_{k,m} \setminus \overline{\Omega}_0 .$

Therefore, using Lemma 4.2, we can conclude that $(u_{k,m}, \Omega_{k,m}) \in \mathcal{B}$. If now (*ii*) is not satisfied, we can replace Ω_k by the intersection of all Ω_m with $m \leq k$ and thus to make $\{\Omega_k\}$ decreasing.

Now let $(u_k, \Omega_k) \in \mathcal{B}$ with Ω_k decreasing. Denote by \tilde{u}_k the solution of the following Dirichlet problem:

$$\begin{cases} (\tilde{u}_k)_t = \Delta \tilde{u}_k & \text{in} \quad \Omega_k \setminus \overline{\Omega}_0 \\ \tilde{u}_k = 1 & \text{on} \quad \Gamma_0 \\ \tilde{u}_k = 0 & \text{on} \quad \partial_l \Omega_k \\ \tilde{u}_k(x,0) = u_0(x) & \text{on} \quad \{t=0\} \cap (\overline{\Omega_k \setminus \Omega_0}) \end{cases}$$

We have $u_k \geq \tilde{u}_k$ on the parabolic boundary of $\Omega_k \setminus \Omega_0$, so, by comparison principle, we can deduce that $u_k \geq \tilde{u}_k$ in $\Omega_k \setminus \Omega_0$. It follows that

$$\lim_{\substack{(x,t)\to(x_0,t_0)\\(x,t)\in\Omega_k\setminus\overline{\Omega}_0}} |\nabla \tilde{u}_k(x,t)| \leq \limsup_{\substack{(x,t)\to(x_0,t_0)\\(x,t)\in\Omega_k\setminus\overline{\Omega}_0}} |\nabla u_k(x,t)| \leq 1 \text{ for all } (x_0,t_0) \in \partial_l \Omega_k,$$

and hence $(\tilde{u}_k, \Omega_k) \in \mathcal{B}$ with $\tilde{u}_k(x, 0) = u_0(x)$. So, we can assume from now, that $(u_k, \Omega_k) \in \mathcal{B}$, Ω_k decreases and $u_k(x, 0) = u_0(x)$.

Denote now by ω_k the solution of the following Dirichlet problem:

$$\begin{cases} (\omega_k)_t = \Delta \omega_k & \text{in} \quad \Omega_k \setminus \overline{\Omega}_0 \\ \omega_k(x,t) = 1 & \text{on} \quad \Gamma_0 \\ \omega_k(x,t) = 0 & \text{on} \quad \partial_l \Omega_k \\ \omega_k(x,0) = 1 & \text{in} \quad (\Omega_k \setminus \overline{\Omega}_0) \cap \{t=0\} \end{cases}$$

Let now (w, W) be some subsolution for (1.1). Then, using Lemma 2.4, we can deduce that $u_k(x, t) \ge w(x, t)$ in W and hence:

$$|\nabla u_k(x,t)| \leq |\nabla w(x,t)|$$
 on Γ_0 .

Let us denote

$$M := \sup_{(x,t)\in\Gamma_0} |\nabla w(x,t)| \text{ and } C := \sup_{x\in K_1\setminus K_0} |\nabla u_0(x)|.$$

We want to prove that

$$|\nabla u_k(x,t)| \leq 1 + (C+M-1)\omega_k(x,t)$$
 for all $(x,t) \in \Omega_k \setminus \overline{\Omega}_0$.

To prove this, let us note that $|\nabla u(x,t)|$ is subcaloric in $\Omega_k \setminus \overline{\Omega_0}$ and

$$|\nabla u_k(x,t)| \le 1 + (C+M-1)\omega_k(x,t)$$

on parabolic boundary of $\Omega_k \setminus \overline{\Omega}_0$. So the comparison principle applies, and we obtain the desired inequality.

For the next step, observe that since u_k are caloric in $\Omega_k \setminus \overline{\Omega}_0$ and uniformly bounded, a subsequence of $\{u_k\}$ will converge in C^1 norm on compact subsets of $\Omega^* \setminus \Omega_0$ to a function u^* . We may assume also that over this subsequence, the corresponding ω_k converge to ω^* , with

$$\begin{cases} \partial_t \omega^* = \Delta \omega^* & \text{in} \quad \Omega^* \setminus \overline{\Omega}_0 \\ \omega^*(x,t) = 1 & \text{on} \quad \Gamma_0 \\ \omega^*(x,t) = 0 & \text{on} \quad \partial_t \Omega^* \\ \omega^*(x,0) = 1 & \text{in} \quad (\Omega^* \setminus \overline{\Omega}_0) \cap \{t=0\} \end{cases}$$

Then in the limit we will obtain

$$|\nabla u^*(x,t)| \le 1 + (C+M-1)\omega^*(x,t)$$

for every (x, t) in $\Omega^* \setminus \overline{\Omega}_0$. As a consequence, (u^*, Ω^*) is in \mathcal{B} and therefore is its minimal element.

5 Further properties of the minimal element

The method used in this and the next section is due to A. Henrot and H. Shahgholian [3], [4]. For caloric functions this method used in [5].

Definition 5.1. A point $(x,t) \in \partial_l \Omega$, where $\Omega(t)$ is convex, is said to be extreme, if $x \in \partial \Omega(t)$ is extreme for $\Omega(t)$. The latter means that x is not a convex combination of points on $\partial \Omega(t)$, other than x.

Lemma 5.2. Under the conditions (2.1) - (2.4) on u_0 the pair (u^*, Ω^*) satisfies

$$\lim_{\substack{(x,t)\to(x_0,t_0)\\(x,t)\in\Omega^*\setminus\overline{\Omega}_0}} |\nabla u^*(x,t)| = 1$$
(5.1)

for every extreme point $(x_0, t_0) \in \partial \Omega^* \cap Q_\lambda, \ \lambda \leq \beta$.

Proof. Let us point out that it is enough to prove the lemma in the case when x_0 is an extremal point of $\partial \Omega^*(t_0)$, which means that there is a spatial supporting hyperplane to $\Omega^*(t_0)$, touching $\partial \Omega^*(t_0)$ at x_0 only. This follows from the fact that the extremal points are dense among the extreme points.

Suppose now $x_0 \in \partial \Omega^*(t_0)$ is an extremal, and that (5.1) is not true. Then, in view of Lemmas 4.2 and 4.1, there exists a (space-time) neighborhood V of (x_0, t_0) and $\alpha > 0$ such that

$$u^{*}(x,t) \le (1-\alpha)d_{\Omega^{*}}(x,t)$$
 (5.2)

for every $(x,t) \in V \cap \Omega^*$. We may assume additionally that the intersection $V \cap \Omega^*$ is given by (3.1).

Let now Π be a spatial supporting hyperplane to $\Omega^*(t_0)$, such that $\Pi \cap \partial \Omega^*(t_0) = \{x_0\}$. By translation and rotation, we may assume that $x_0 = 0$ and that $\Pi = \{x_n = 0\}$. Moreover, let $\Omega^*(t_0) \subset \{x_n > 0\}$. Using the extremality of (x_0, t_0) , it is easy to see that there are $\delta_0 > 0$ and $\eta_0 > 0$ such that

$$\{(x,t) \in \Omega^* : x_n \le \eta_0 \text{ and } t \in [t_0, t_0 + \delta_0]\} \subset V.$$

Let us consider the function

$$h(t) = -\min_{x \in \Omega^*(t)} x_n, \ t \in [t_0, t_0 + \delta_0].$$

In view of Lipschitz regularity of $\partial_l \Omega^*$ in time,

$$h(t) \le L(t - t_0)$$

for $t \in [t_0, t_0 + \delta_0]$, where L is the Lipschitz constant of f in t.

Let now $\eta_1 \in (0, \eta_0)$ be very small and a constant $C \ge L$ be chosen such that

$$h(t_0 + \delta_0) \le C\delta_0 - \eta_1$$

Further, we can find $\delta_1 \in (0, \delta_0]$ such that

$$h(t_0 + \delta_1) = C\delta_1 - \eta_1$$

and

$$h(t) \ge C(t - t_0) - \eta_1$$

for every $t \in [t_0, t_0 + \delta_1]$.

Define now a domain $\Omega \subset Q_T$ by giving its time sections as follows

$$\Omega(t) = \begin{cases}
\Omega^*(t), & t \in (t_0 + \delta_1, T) \\
\Omega^*(t) \cap \{x_n > \eta_1 - C(t - t_0)\}, & t \in [t_0, t_0 + \delta_1] \\
\Omega(t_0) \cap \Omega^*(t), & t \in (0, t_0).
\end{cases}$$
(5.3)

Let also u be a solution to the following Dirichlet problem:

$$\begin{cases} \Delta u - u_t = 0 & \text{in} \quad \Omega \setminus \overline{\Omega}_0 \\ u = 0 & \text{on} \quad \partial_l \Omega \\ u = 1 & \text{on} \quad \partial_l \Omega_0 \\ u = u_0 & \text{in} \quad \Omega \cap \{t = 0\} \setminus \overline{K}_0 \end{cases}$$

We claim that if η_1 is small enough, then (u, Ω) is in \mathcal{B} . This will lead to a contradiction since Ω^* is not a subset of Ω and the lemma will follow. Since Ω has convex time sections and expands in time, we need to verify only that (u, Ω) is a supersolution of (1.1).

There exists $\varepsilon = \varepsilon(n, L) > 0$ such that in a neighborhood of (x_0, t_0) the function

$$w^*(x) = w^*(x;t) = u^*(x,t) + u^*(x,t)^{1+\varepsilon}$$

is subharmonic in x, ([1], Lemma 5). Moreover the size of the neighborhood depends only on n and L. We may suppose V has this property. Next, note that we can take $C \leq L + 1$ if η_1 is sufficiently small and δ_0 is fixed. This will make the boundary of new constructed Ω (L + 1)-Lipschitz in time. Therefore we may assume also, that

$$w(x) = w(x;t) = u(x,t) + u(x,t)^{1+\varepsilon}$$

is subharmonic in the neighborhood V.

Now let us prove that (u, Ω) is indeed a supersolution.

Case 1. $\tilde{t} \in (t_0 + \delta_1, T)$. Since $\Omega \subset \Omega^*$, it follows that $u \leq u^*$, so we have

$$\lim_{\substack{(x,t)\to(\tilde{x},\tilde{t})\\(x,t)\in\Omega\setminus\Omega_0}}\frac{u(x,t)}{d_{\Omega}(x,t)} \le \lim_{\substack{(x,t)\to(\tilde{x},\tilde{t})\\(x,t)\in\Omega^*\setminus\Omega_0}}\frac{u^*(x,t)}{d_{\Omega^*}(x,t)} \le 1$$

for every $(\tilde{x}, \tilde{t}) \in \partial_l \Omega, \ \tilde{t} > t_0$.

Case 2. $\tilde{t} \in [t_0, t_0 + \delta_1]$. First of all, since $\Omega(t) \subset \Omega^*(t)$ for these t, we have also $u \leq u^*$ there. Let now consider a part D(t) of $\Omega^*(t)$ between the planes: $\Pi_1 = \{x_n = \eta_1 - C(t - t_0)\}$ and $\Pi_0 = \{x_n = \eta_0 - C(t - t_0)\}$. Compare there two functions w(x) = w(x; t) and $l(x) = x_n - (\eta_1 - C(t - t_0))$. On Π_1 both functions are 0. Next

$$l(x) = \eta_0 - \eta_1 \text{ on } \Pi_0$$

To estimate w on Π_0 , let us first estimate u on Π_0 . Thus, recalling (5.2) we conclude

$$u(x,t) \le u^*(x,t) \le (1-\alpha)d_{\Omega^*}(x,t) \le (1-\alpha)(x_n - L(t-t_0)) \le (1-\alpha)\eta_0$$

and therefore, if η_0 is small enough, we will obtain

$$w(x) \le (1 - \alpha/2)\eta_0$$
 on Π_0 .

Choose now η_1 so small that $(1 - \alpha/2)\eta_0 \leq \eta_0 - \eta_1$. Then $w \leq l$ on $\partial D(t)$ and, since w is subharmonic and l is harmonic (linear), we conclude that $w \leq l$ in D(t). Along with $u \leq u^*$ this gives

$$\limsup_{\substack{(x,t)\to(\tilde{x},\tilde{t})\\(x,t)\in\Omega\setminus\overline{\Omega}_0}}\frac{u(x,t)}{d_{\Omega}(x,t)} \le 1,$$
(5.4)

where $(\tilde{x}, \tilde{t}) \in \partial_l \Omega$, t is free to vary within $[t_0, t_0 + \delta_1]$.

Case 3. $\tilde{t} \in (0, t_0)$. Since $\Omega(t)$ expand in time, and u_0 is harmonic, considering the time derivative u_t in Ω , we can infer from the maximum principle for the heat equation that $u_t \geq 0$ in Ω . Remembering that $\Omega \subset \Omega^*$, we have $u \leq u^*$. In the case of $(\tilde{x}, \tilde{t}) \in \partial_l \Omega \cap \partial_l \Omega^*$, we can write

$$\lim_{\substack{(x,t)\to(\tilde{x},\tilde{t})\\(x,t)\in\Omega\setminus\overline{\Omega}_0}}\frac{u(x,t)}{d_{\Omega}(x,t)} \leq \lim_{\substack{(x,t)\to(\tilde{x},\tilde{t})\\(x,t)\in\Omega^*\setminus\overline{\Omega}_0}}\frac{u^*(x,t)}{d_{\Omega}^*(x,t)} \leq 1.$$

The second possibility of $(\tilde{x}, \tilde{t}) \in \partial_l \Omega$ is the case $\tilde{t} \in (0, t_0)$ is to be on the cylindrical boundary obtained from vertical movement of $\partial_l \Omega(t_0)$. In this case

$$d_{\Omega}(x,\tilde{t}) = d_{\Omega}(x,t_0),$$

and, using $u_t \ge 0$, we obtain $u(x, \tilde{t}) \le u(x, t_0)$, which leads

$$\lim_{\substack{(x,t)\to(\tilde{x},\tilde{t})\\(x,t)\in\Omega\setminus\overline{\Omega}_0}}\frac{u(x,t)}{d_{\Omega}(x,t)} \leq \lim_{\substack{(x,t)\to(\tilde{x},t_0)\\(x,t)\in\Omega\setminus\overline{\Omega}_0}}\frac{u(x,t_0)}{d_{\Omega}(x,t_0)} \leq 1.$$

Summing up, we see that (5.4) holds for all $t \in (0,T)$, and by Lemma 4.2 this implies $(u, \Omega) \in \mathcal{B}$, which is a contradiction.

6 The main theorem

Theorem 6.1. Let u_0 satisfy (2.1) - (2.4). Then the minimal element (u^*, Ω^*) of \mathcal{B} is a classical solution of (1.1) for a short time. Moreover, this classical solution is unique.

Before the proof of the theorem let us recall some facts, which are proved in [5] (and it is not hard to see that this lemmas are true for convex rings also).

Lemma 6.2. Let D be a bounded spatial convex domain with C^1 regular boundary, V a neighborhood of ∂D and w a smooth positive subharmonic function in $D \cap V$, continuously vanishing in ∂D . If the level lines $\{w = s\}$ are strictly convex surfaces for $0 < s < s_0$, then the condition

$$\limsup_{\substack{x \to x_0 \\ x \in D \cap V}} |\nabla w(x)| \ge 1$$

for every extreme point $x_0 \in \partial D$ implies that

$$|\nabla w(x)| \ge 1$$

for every x with $0 < w(x) < s_0$.

Lemma 6.3. Let D be a bounded spatial convex domain and x_0 a singular point on ∂D , such that there are more than one supporting hyperplanes to D at x_0 . Let also V be a neighborhood of x_0 and w a subharmonic function in $D \cap V$, continuously vanishing on $\partial D \cap V$. Then

$$\lim_{\substack{x \to x_0 \\ x \in D \cap V}} \frac{w(x)}{d(x)} = 0,$$

where $d(x) = dist(x, \partial D)$.

Proof of Theorem 6.1. First observe that we need only to show that (u^*, Ω^*) is a subsolution. The uniqueness follows from the Lemma 2.4 (see the Remark 2.6). For the rest we again follow to the proof of the similar theorem in [5].

Recall that from the Lemma 5.2 we know that

$$\limsup_{\substack{(x,t)\to(x_0,t_0)\\(x,t)\in\Omega^*\setminus\overline{\Omega}_0}} |\nabla u^*(x,t)| = 1$$

for every extreme point $(x_0, t_0) \in \partial \Omega^* \cap Q_\beta$. Denote by \mathfrak{R} the set of all $t_0 \in (0, \beta)$ such that

$$\limsup_{\substack{x \to x_0 \\ x \in \Omega^*(t_0)}} |\nabla u^*(x, t_0)| = 1$$

for every extreme point $x_0 \in \partial \Omega^*(t_0)$.

Note that the complement $(0,\beta) \setminus \mathfrak{R}$ is a union of a countable family of nowhere dense subsets of $(0,\beta)$ (see [5]).

As in the proof of Lemma 5.2, consider now the function

$$w^*(x) = w^*(x;t) = u^*(x,t) + u^*(x,t)^{1+\varepsilon}.$$

Let $t_0 \in (0, \beta)$. There exists $\varepsilon > 0$, $\delta > 0$ and $s_0 > 0$ such that $w^* = w^*(\cdot; t)$ is subharmonic in a convex ring $D(t) = \{0 < w^*(x, t) < s_0\}$ whenever $t \in (t_0 - \delta, t_0 + \delta)$ ([1], Lemma 5; the fact, that D(t) is a convex ring, can be proved as in [2], Theorem 3).

Now, we point out that if $t \in \mathfrak{R}$, then $\partial \Omega^*(t)$ is C^1 regular. Otherwise there would exist a singular extreme point $x_0 \in \partial \Omega^*(t)$ with

$$\lim_{\substack{x \to x_0 \\ x \in \Omega^*(t)}} |\nabla u^*(x,t)| = 0,$$
(6.1)

which contradicts to the definition of \mathfrak{R} . Indeed, if $x_0 \in \partial \Omega^*(t)$ is singular then by Lemma 6.3

$$\frac{w^*(x;t)}{d_{\Omega}(x,t)} \to 0,$$
$$\frac{u^*(x,t)}{d_{\Omega}(x,t)} \to 0$$

or, equivalently,

as $x \to x_0$, and (6.1) will follow from the Lemma 4.3. Let now $t \in (t_0 - \delta, t_0 + \delta) \cap \mathfrak{R}$. Then Lemma 6.2 implies that

$$|\nabla w^*(x;t)| \ge 1,$$

if $0 < w^*(x;t) < s_0$ and t is as above. The inequality is extended for all $t \in (t_0 - \delta, t_0 + \delta)$ because of everywhere density of \mathfrak{R} and continuity of $|\nabla w^*(x;t)|$ in Ω^* . Since $|\nabla w^*|$ and ∇u^* are asymptotically equivalent when $u^* \to 0$, we obtain immediately that

$$\liminf_{\substack{(x,t)\to(x_0,t_0)\\(x,t)\in\Omega^*\setminus\overline{\Omega}_0}} |\nabla u^*(x,t)| \ge 1$$

whenever $x_0 \in \partial \Omega^*(t_0)$. Since t_0 was arbitrary, we conclude, that (u^*, Ω^*) is indeed a classical solution of (1.1) in Q_β .

References

- I. Athanasopoulos, L. Caffarelli and S. Salsa, Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, Annals of Math. 143(1996), 413–434.
- [2] J.I. Diaz, B. Kawohl, On convexity and starshapedness of level sets for some nonlinear elliptic and parabolic problems on convex rings, J. Math. Anal. Appl. 177 (1993), no. 1, 263–286.
- [3] A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem for the *p*-Laplace operator: (I) the exterior case, J. Reine Angew. Math. 521(2000), 85–97.
- [4] A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem for the *p*-Laplace operator: (II) the interior case, Indiana Univ. Math. J. 49(2000), no 1, 311–323.
- [5] A. Petrosyan, On existence and uniqueness in a free boundary problem from combustion, Comm. Partial Differential Equations, 27(3-4), 2002, 763–789.