One - Phase Parabolic Free Boundary Problem in Convex Ring

Michael Poghosyan, Rafayel Teymurazyan*
Department of Mathematics and Mechanics
Yerevan State University
Alex Manoogian 1, 0025, Yerevan, ARMENIA
e-mail: michael@ysu.am, rteymurazyan@gmail.com

Abstract

In this paper we study a free boundary problem for the heat equation in a convex ring. Here we prove that under some conditions on initial data, the considered problem has unique solution.

1 Introduction and statement of the problem

Let us be given a domain $\Omega_{0} \subset \mathbb{R}^{n} \times[0, \infty)$ with Lipschitz regular (in time) boundary and with convex time sections for which the set $K_{0}:=\Omega_{0} \cap\{t=0\}$ is not empty, and a compactly supported continuous function $u_{0}(x), x \in \mathbb{R}^{n} \backslash K_{0}$ for which the set $K_{1}:=\operatorname{supp} u_{0} \cup K_{0}$ is compact and convex. We assume, that Ω_{0} expands in time. We are looking for a pair $\left(u, \Omega_{1}\right), \Omega_{0} \subset \Omega_{1} \subset \mathbb{R}^{n} \times[0, \infty)$ and $u \in C_{x, t}^{2,1}\left(\Omega_{1} \backslash \bar{\Omega}_{0}\right) \cap C\left(\bar{\Omega}_{1} \backslash \Omega_{0}\right)$ which is the solution for the following problem:

$$
\begin{cases}u_{t}=\Delta u & \text { in } \Omega_{1} \backslash \bar{\Omega}_{0} \tag{1.1}\\ u(x, t)=1 & \text { on } \Gamma_{0} \\ u(x, t)=0 & \text { on } \Gamma_{1} \\ |\nabla u(x, t)|=1 & \text { on } \Gamma_{1} \\ u(x, 0)=u_{0}(x) & \text { in } K_{1} \backslash \bar{K}_{0}\end{cases}
$$

where Γ_{i} is the lateral boundary of $\Omega_{i}, i=0,1$. Here the condition on the gradient is to be understood in classical sense, i.e.

$$
\lim _{\substack{(x, t) \rightarrow\left(x_{0}, t_{0}\right) \\(x, t) \in \Omega_{1} \backslash \Omega_{0}}}|\nabla u(x, t)|=1 \text { for every }\left(x_{0}, t_{0}\right) \in \Gamma_{1} .
$$

[^0]This kind of problem was considered by A. Henrot and H. Shahgholian (see 3], [4]) in 2000 for the elliptic operator. In particular, they consider the following problem: for a given bounded domain $K \subset \mathbb{R}^{n}$ ($n \geq 2$ and K is convex) one seeks a larger domain Ω such that the gradient of the p-capacitary potential of $\Omega \backslash K$ has a prescribed magnitude on $\partial \Omega$ (the boundary of Ω).

Mathematically the problem, considered by A. Henrot and H. Shahgholian is formulated as follows: given a (not necessarily bounded) convex $K \backslash \mathbb{R}^{n}$, one looks for a function u and a domain $\Omega(\supset K)$ satisfying, for a given constant $c>0$,

$$
\begin{cases}\Delta_{p} u=0 & \text { in } \Omega \backslash \bar{K} \\ u(x, t)=1 & \text { on } \partial K \\ u(x, t)=0 & \text { on } \partial \Omega \\ |\nabla u(x, t)|=c & \text { on } \partial \Omega\end{cases}
$$

where Δ_{p} denotes the p-Laplace operator, i.e. $\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$. The overdetermined boundary condition $|\nabla u|=c$ is to be understood in the following sense:

$$
\liminf _{\Omega \ni y \rightarrow x}|\nabla u(y)|=\limsup _{\Omega \ni y \rightarrow x}|\nabla u(y)|=c, \text { for every } x \in \partial \Omega
$$

A. Henrot and H. Shahgholian proved the following (see [3]): if K is convex domain, not necessarily bounded or regular, then there exists a classical solution Ω to the considered free boundary problem with $C^{2, \alpha}$ boundary $\partial \Omega$. Moreover, if K is bounded then the solution Ω is unique.

This kind of result the same others also got for the interior case (when one searches $K \supset \Omega$, 4]).

Later, in 2002, A. Petrosyan considered this kind of problem but now for the parabolic operator. In particular, the following problem was considered by A. Petrosyan (see [5]): find a nonnegative continuous function u in $Q_{T}=\mathbb{R}^{n} \times(0, T)$, $T>0$, such that

$$
\begin{cases}\Delta u-u_{t}=0 & \text { in } \Omega=\{u>0\} \\ |\nabla u|=1 & \text { on } \partial \Omega \cap Q_{T} \\ u(\cdot, 0)=u_{0}, & \end{cases}
$$

with a given nonnegative initial function $u_{0} \in C_{0}\left(\mathbb{R}^{n}\right)$ (here $\Delta=\Delta_{x}$ and $\nabla=\nabla_{x}$). A. Petrosyan proved, that under some conditions on u_{0}, there exists a classical unique solution for considered problem for some T (see [5]).

The purpose of this paper is the following: we'll show, that under some assumptions on initial data, the problem (1.1) has a unique solution for a short time (i.e. for $t<T$ for some $T>0$). Here we will mainly follow the technique used by A. Henrot and H. Shahgholian in [3], 4] and then extended for a heat equation by A. Petrosyan in [5]. Throughout the paper we will use the following notations:
$\partial_{l} \Omega=$ the lateral boundary of $\Omega ; \Omega\left(t_{0}\right)=\Omega \cap\left\{t=t_{0}\right\} ; \Omega^{T}=\Omega \cap\{t \leq T\} ;$ $Q_{T}=\mathbb{R}^{n} \times(0, T)$.

2 Subsolutions and Supersolutions

Definition 2.1. The pair (u, Ω) is called a supersolution for (1.1) for a short time, if there exists a $T>0$ such that $\Omega \subset \mathbb{R}^{n} \times[0, T], \Omega_{0}^{T} \subset \Omega$ and the function $u \in C_{x, t}^{2,1}\left(\Omega \backslash \bar{\Omega}_{0}\right) \cap C\left(\bar{\Omega} \backslash \Omega_{0}\right)$ satisfies to the following conditions:
(a) $\quad u_{t}=\Delta u$ in $\Omega \backslash \bar{\Omega}_{0}$
(b) $\quad u(x, t)=1$ on $\Gamma_{0} \cap \mathbb{R}^{n} \times[0, T]$ and $u(x, t)=0$ on $\partial_{l} \Omega$
(c) $\quad \limsup _{(x, t) \rightarrow\left(x_{0}, t_{0}\right)}|\nabla u(x, t)| \leq 1$ for every $\left(x_{0}, t_{0}\right) \in \partial_{l} \Omega$ $(x, t) \in \Omega \backslash \bar{\Omega}_{0}$
(d) $u(x, 0) \geq u_{0}(x)$ for $x \in K_{1} \backslash \bar{K}_{0}$

Definition 2.2. The pair (u, Ω) is called a subsolution for (1.1) for a short time, if there exists a $T>0$ such that $\Omega \subset \mathbb{R}^{n} \times[0, T], \Omega_{0}^{T} \subset \Omega$ and the function $u \in C_{x, t}^{2,1}\left(\Omega \backslash \bar{\Omega}_{0}\right) \cap C\left(\bar{\Omega} \backslash \Omega_{0}\right)$ satisfies to the following conditions:
(a) $\quad u_{t}=\Delta u$ in $\Omega \backslash \bar{\Omega}_{0}$
(b) $\quad u(x, t)=1$ on $\Gamma_{0} \cap \mathbb{R}^{n} \times[0, T]$ and $u(x, t)=0$ on $\partial_{l} \Omega$
(c) $\liminf _{(x, t) \rightarrow\left(x_{0}, t_{0}\right)}|\nabla u(x, t)| \geq 1$ for every $\left(x_{0}, t_{0}\right) \in \partial_{l} \Omega$
(d)

$$
(x, t) \in \Omega \backslash \bar{\Omega}_{0}
$$

$$
u(x, 0) \leq u_{0}(x) \text { for } x \in K_{1} \backslash \bar{K}_{0}
$$

The pair (u, Ω) is called a strict subsolution for (1.1) for a short time, if it is a subsolution for (1.1) for a short time, and the sign $>$ holds in (c).

Definition 2.3. The pair (u, Ω) is called a classical solution for (1.1) for a short time, if it is supersolution and subsolution for (1.1) at the same time for a short time.

Throughout the paper we will assume that the function u_{0} satisfies the following conditions:

$$
\begin{align*}
& \Delta u_{0}(x)=0, x \in K_{1} \backslash \bar{K}_{0} \tag{2.1}\\
& u_{0}(x)=1, x \in \partial K_{0} \tag{2.2}\\
& u_{0} \in C^{0,1}\left(\bar{K}_{1} \backslash K_{0}\right) \text { and } \lim _{\substack{x \rightarrow x_{0} \\
x \in K_{1} \backslash \bar{K}_{0}}}\left|\nabla u_{0}(x)\right|=1 \text { for all } x_{0} \in \partial K_{1} \tag{2.3}
\end{align*}
$$

Suppose that the initial function u_{0} is starshaped with respect to a point x_{0} in the following sense:

$$
\begin{equation*}
u_{0}\left(\lambda x+x_{0}\right) \geq u_{0}\left(x+x_{0}\right) \tag{2.4}
\end{equation*}
$$

for every $\lambda \in(0,1)$ and $x \in \mathbb{R}^{n}$ such that $\lambda x+x_{0}$ and $x+x_{0}$ are in $K_{1} \backslash K_{0}$.

Let (u, Ω) be a supersolution of (1.1). Let λ and λ^{\prime} be two real numbers with $0<\lambda<\lambda^{\prime}<1$. Define

$$
\begin{equation*}
u^{\lambda}(x, t)=\frac{1}{\lambda^{\prime}} u\left(\lambda x, \lambda^{2} t\right) \tag{2.5}
\end{equation*}
$$

The rescaling of variables is taken so that u^{λ}, like u, satisfies the heat equation in the set $\Omega_{\lambda} \backslash\left(\bar{\Omega}_{0}\right)_{\lambda}$, where

$$
\Omega_{\lambda}=\left\{(x, t):\left(\lambda x, \lambda^{2} t\right) \in \Omega\right\}
$$

Lemma 2.4. Let the initial function u_{0} satisfy condition (2.4). Then every subsolution of (1.1) is smaller than every supersolution of (1.1).

Remark 2.5. In this lemma and further in the paper we say that a pair ($u^{\prime}, \Omega^{\prime}$) is smaller than (u, Ω), if $\Omega^{\prime} \subset \Omega$ and $u^{\prime} \leq u$ in the set where both functions are defined.

Proof. We follow to the proof of the lemma 2.4 in [5].
Let (u, Ω) be a supersolution and $\left(u^{\prime}, \Omega^{\prime}\right)$ a subsolution of (1.1). We need to proof only that $\Omega^{\prime} \subset \Omega$; the inequality $u^{\prime} \leq u$ will follow from this inclusion by the maximum principle.

In the case when $u \in \mathbf{C}^{1}\left(\bar{\Omega} \backslash \Omega_{0}\right)$ and $u^{\prime} \in \mathbf{C}^{1}\left(\overline{\Omega^{\prime}} \backslash \Omega_{0}\right)$, the statement can be proved by the Lavrent'ev rescaling method as follows. Suppose

$$
\lambda_{0}=\sup \left\{\lambda \in(0,1) / \Omega^{\prime} \subset \Omega_{\lambda}\right\}<1,
$$

where Ω_{λ} is defined as above. Then $\Omega^{\prime} \subset \Omega_{\lambda_{0}}$ and there is a common point $\left(x_{0}, t_{0}\right) \in \partial \Omega^{\prime} \cap \partial \Omega_{\lambda_{0}} \cap Q_{T}$. Let $\lambda_{0}<\lambda_{0}^{\prime}<1$ and $u^{\lambda_{0}}$ be as in (2.5). Then $u^{\prime} \leq u^{\lambda_{0}}$ in some neighborhood of $\left(x_{0}, t_{0}\right)$ in Ω^{\prime}. At the common point $\left(x_{0}, t_{0}\right)$ this inequality implies $\partial_{\nu} u^{\prime}\left(x_{0}, t_{0}\right) \leq \partial_{\nu} u^{\lambda_{0}}\left(x_{0}, t_{0}\right)$, where ν is the inward spatial normal vector for both $\partial \Omega^{\prime}$ and $\partial \Omega_{\lambda_{0}}$ at $\left(x_{0}, t_{0}\right)$ (recall that we are in \mathbf{C}^{1} case). This leads to a contradiction, since $\partial_{\nu} u^{\prime}\left(x_{0}, t_{0}\right)=\left|\nabla u^{\prime}\left(x_{0}, t_{0}\right)\right| \geq 1$ and $\partial_{\nu} u^{\lambda_{0}}\left(x_{0}, t_{0}\right)=\left|\nabla u^{\lambda_{0}}\left(x_{0}, t_{0}\right)\right|=\frac{\lambda_{0}}{\lambda_{0}}<1$. Therefore $\lambda_{0}=1$ and $\Omega^{\prime} \subset \Omega$.

The general case can be reduced to the considered regular case by the following procedure. Let $(\widetilde{u}, \widetilde{\Omega})$ be a subsolution. Choose $0<\lambda<\lambda^{\prime}<1$ close to 1 and regularize \widetilde{u} by setting

$$
u(x, t)=\left(\widetilde{u}^{\lambda}(x, t+h)-\eta\right)^{+}
$$

for small $h, \eta>0$. Analogously regularize a subsolution $\left(\widetilde{u}^{\prime}, \widetilde{\Omega}^{\prime}\right)$. Then we will arrive in the considered regular case and can finish the proof by letting first $h, \eta \rightarrow 0+$ and then $\lambda \rightarrow 1-$.

Remark 2.6. The above lemma leads us to the uniqueness: the problem (1.1) has at most one solution.

3 Classes \mathcal{B} and \mathcal{D}

Definition 3.1. We will say that the supersolution (u, Ω) is in class \mathcal{B}, if $\Omega(t)$ is convex and expands in time for all $t \in[0, T]$ (T is the same quantity appearing in the definition of supersolution) and moreover $\partial_{l} \Omega$ is Lipschitz regular in time.

Remark 3.2. The Lipsichtz regularity in time is understood in the following sense: for every $\left(x_{0}, t_{0}\right) \in \partial_{l} \Omega$ there exists a neighborhood V such that

$$
\begin{equation*}
V \cap \Omega=\left\{x_{n}>f\left(x_{1}, \ldots, x_{n-1}, t\right)\right\} \cap V, \tag{3.1}
\end{equation*}
$$

for a suitable coordinate system and where f is a global defined function, uniformly Lipschitz in time. We point out in spatial coordinates f can be chosen to be convex, if time sections $\Omega(t)$ are convex.

Proposition 3.3. The class \mathcal{B} is not empty.
Proof. Without loss of generality we can assume that $(0, t) \in \Omega_{0}(t)$ for $0<t<\infty$. Let us denote by $G(x, t)$ the fundamental solution for the heat equation, i.e.

$$
G(x, t)= \begin{cases}(4 \pi t)^{\frac{-n}{2}} \cdot e^{\frac{-|x|^{2}}{4 t}}, & \text { if } t>0 \\ 0, & \text { if } t \leq 0\end{cases}
$$

Then we can choose such numbers $\varepsilon, \alpha>0$ and $C>0$ that for the function

$$
U(x, t):=C \cdot[G(x, t+\varepsilon)-\alpha]
$$

we'll have

$$
U(x, t)>1 \text { for }(x, t) \in \partial_{l} \Omega_{0}^{T}
$$

for some fixed T, and

$$
U(x, 0)>u_{0}(x) \text { in } K_{1} \backslash K_{0} .
$$

Denote $\Omega=\{(x, t): U(x, t)>0\}$. It is easy to see that Ω is expanding in $0<t<T$ for some $T>0$, and has Lipschitz regular (in t) lateral boundary. Then for any point $\left(x_{0}, t_{0}\right) \in \partial_{l} \Omega$ we have (since time sections of Ω are balls centered at the origin)

$$
\left|\nabla U\left(x_{0}, t_{0}\right)\right|=\frac{\partial U\left(x_{0}, t_{0}\right)}{\partial r}, \quad r:=|x| .
$$

Hence, by the choice of constants C and α we can reach to the property

$$
\left|\nabla U\left(x_{0}, t_{0}\right)\right|<1
$$

to be satisfied for any $\left(x_{0}, t_{0}\right) \in \partial_{l} \Omega^{T}$.
Now let $u(x, t)$ be the solution to the following Dirichlet problem:

$$
\begin{cases}\Delta u-u_{t}=0, & \text { in } \Omega^{T} \backslash \bar{\Omega}_{0}^{T} \\ u(x, t)=1, & \text { on }(x, t) \in \partial_{l} \Omega_{0}^{T} \\ u(x, t)=0, & \text { on }(x, t) \in \partial_{l} \Omega^{T} \\ u(x, 0)=u_{0}(x), & \text { in }\left(\Omega^{T} \backslash \Omega_{0}^{T}\right) \cap\{t=0\}\end{cases}
$$

Then by the comparison principle for parabolic equations it follows that $u(x, t)<U(x, t)$ for $(x, t) \in \Omega^{T} \backslash \bar{\Omega}_{0}^{T}$. Hence

$$
\limsup _{\substack{(x, t) \rightarrow\left(x_{0}, t_{0}\right) \\(x, t) \in \Omega^{T} \backslash \bar{\Omega}_{0}^{T}}}|\nabla u(x, t)| \leq \limsup _{(x, t) \rightarrow\left(x_{0}, t_{0}\right)}^{(x, t) \in \Omega^{T} \backslash \bar{\Omega}_{0}^{T}} \mid
$$

for any $\left(x_{0}, t_{0}\right) \in \partial_{l} \Omega^{T}$. This shows, that the pair $(u, \Omega) \in \mathcal{B}$.
Proposition 3.4. The class of strict supersolutions is not empty.

Proof. Let (u, Ω) be a supersolution of (1.1), and $u^{\lambda}(x, t)$ be as in (2.5) with $0<\lambda<\lambda^{\prime}<1$. Then we have

$$
\begin{cases}\left(u^{\lambda}\right)_{t}=\Delta u_{\lambda} & \text { in } \Omega_{\lambda} \backslash\left(\bar{\Omega}_{0}\right)_{\lambda} \\ u^{\lambda}(x, t)=\frac{1}{\lambda^{\prime}} & \text { on }\left(\Gamma_{0}\right)_{\lambda} \\ u^{\lambda}(x, t)=0 & \text { on } \partial_{l} \Omega_{\lambda} \\ u^{\lambda}(x, 0) \geq u_{0}(x) & \text { in }\left(K_{1}\right)_{\lambda} \backslash\left(\bar{K}_{0}\right)_{\lambda} \\ \lim \sup _{(x, t) \rightarrow\left(x_{0}, t_{0}\right)}\left|\nabla u^{\lambda}\right|<1 & \text { on } \partial_{l} \Omega_{\lambda} .\end{cases}
$$

Now let $v^{\lambda}(x, t)$ be a solution to the following Dirichlet problem:

$$
\left\{\begin{array}{lll}
v_{t}^{\lambda}=\Delta v^{\lambda} & \text { in } & \Omega_{\lambda} \backslash \bar{\Omega}_{0} \\
v^{\lambda}(x, t)=1 & \text { on } & \Gamma_{0} \\
v^{\lambda}(x, t)=0 & \text { on } & \partial_{l} \Omega_{\lambda} \\
v^{\lambda}(x, 0)=u_{0}(x) & \text { in } & \left(K_{1}\right)_{\lambda} \backslash \bar{K}_{0}
\end{array}\right.
$$

Then by the comparison principle for parabolic equations it follows that $v^{\lambda} \leq u^{\lambda}$ for $(x, t) \in \Omega_{\lambda} \backslash\left(\bar{\Omega}_{0}\right)_{\lambda}$. Hence

$$
\limsup _{(x, t) \rightarrow\left(x_{0}, t_{0}\right)}\left|\nabla v^{\lambda}(x, t)\right| \leq \limsup _{(x, t) \rightarrow\left(x_{0}, t_{0}\right)}\left|\nabla u^{\lambda}(x, t)\right|<1
$$

for all $\left(x_{0}, t_{0}\right) \in \partial_{l} \Omega_{\lambda}$. This shows, that the pair $\left(v^{\lambda}, \Omega_{\lambda}\right) \in \mathcal{B}$. Moreover, the selection $\lambda<\lambda^{\prime}<1$ makes the pair $\left(v^{\lambda}, \Omega_{\lambda}\right)$ not only a supersolution of (1.1), but also a strict supersolution.

Definition 3.5. We'll say that the subsolution (u, Ω) is in class \mathcal{D}, if $\Omega(t)$ is convex and expands in time for all $t \in[0, T]$ (T is the same as in the definition of subsolution) and moreover $\partial_{l} \Omega$ is Lipschitz regular in time.

Proposition 3.6. The class \mathcal{D} is not empty.
Proof. Note, that we have

$$
\begin{cases}\Delta u_{0}(x)=0 & \text { in } K_{1} \backslash \bar{K}_{0} \\ u_{0}(x)=1 & \text { on } \partial K_{0} \\ u_{0}(x)=0 & \text { on } \partial K_{1} \\ \lim _{\substack{x \rightarrow x_{0} \backslash \bar{K}_{0}}}\left|\nabla u_{0}(x)\right|=1 & \text { for all } x_{0} \in \partial K_{1}\end{cases}
$$

Let us define $v(x, t)$ in the following way:

$$
\begin{equation*}
v(x, t)=u_{0}(x), x \in E_{1}^{T} \backslash E_{0}^{T} \tag{3.2}
\end{equation*}
$$

where $E_{1}^{T}=K_{1} \times[0, T)$ and $E_{0}^{T}=K_{0} \times[0, T)$. Then

$$
\begin{cases}v_{t}=\Delta v & \text { in } E_{1}^{T} \backslash \bar{E}_{0}^{T} \\ v(x, t)=0 & \text { on } \partial_{l} E_{1}^{T} \\ v(x, t)=1 & \text { on } \partial_{l} E_{0}^{T} \\ \lim _{(x, t) \rightarrow\left(x_{0}, t_{0}\right)}|\nabla v(x, t)|=1 & \text { for all }\left(x_{0}, t_{0}\right) \in \partial_{l} E_{1}^{T}\end{cases}
$$

Let $u(x, t)$ be the solution of the following Dirichlet problem:

$$
\begin{cases}u_{t}=\Delta u & \text { in } E_{1}^{T} \backslash \bar{\Omega}_{0}^{T} \\ u(x, t)=0 & \text { on } \partial_{l} E_{1}^{T} \\ u(x, t)=1 & \text { on } \Gamma_{0}^{T} \\ u(x, 0)=u_{0}(x) & x \in K_{1} \backslash K_{0}\end{cases}
$$

Since Ω_{0} expands in time, we have $E_{0}^{T} \subset \Omega_{0}^{T}$ and from the comparison principle we conclude, that

$$
v(x, t) \leq u(x, t) \text { in } E_{1}^{T} \backslash \bar{\Omega}_{0}^{T} .
$$

This implies

$$
\liminf _{\substack{(x, t) \rightarrow\left(x_{0}, t_{0}\right) \\(x, t) \in E_{1}^{T} \backslash \Omega_{0}^{T}}}|\nabla u(x, t)| \geq \liminf _{\substack{(x, t) \rightarrow\left(x_{0}, t_{0}\right) \\(x, t) \in E_{1}^{T} \backslash \Omega_{0}^{T}}}|\nabla v(x, t)|=1 \text { for all }\left(x_{0}, t_{0}\right) \in \partial_{l} E_{1}^{T} \text {. }
$$

So, for any T the pair (E_{1}^{T}, u) belongs to the class \mathcal{D}.

4 The minimal element of \mathcal{B}

If the class \mathcal{B} has a minimal element, then it is a good candidate for a classical solution of (1.1). We set

$$
\begin{equation*}
\Omega^{*}=\left(\bigcap_{(u, \Omega) \in \mathcal{B}} \Omega\right)^{o}, \tag{4.1}
\end{equation*}
$$

where A^{o} denotes the set of interior points of A. Recalling Proposition 3.6 and Lemma 2.4, we can assist, that Ω^{*} does not coincide with Ω_{0}.

Let also u^{*} be a solution to the following Dirichlet problem:

$$
\left\{\begin{array}{lll}
u_{t}^{*}=\Delta u^{*} & \text { in } & \Omega^{*} \backslash \bar{\Omega}_{0} \tag{4.2}\\
u^{*}(x, t)=1 & \text { on } & \Gamma_{0} \\
u^{*}(x, t)=0 & \text { on } & \partial_{l} \Omega^{*} \\
u^{*}(x, 0)=u_{0}(x) & \text { in } & K_{1} \backslash \bar{K}_{0}
\end{array}\right.
$$

In this section we show that under some conditions on u_{0} (conditions (2.1)-(2.4)) and for small $T \leq T\left(u_{0}\right)$ the pair (u^{*}, Ω^{*}) is the minimal element of \mathcal{B} and in fact a classical solution of (1.1). The following lemma plays one of the fundamental roles in our study.

Lemma 4.1. Let u_{0} satisfy (2.1) - (2.4) and let Ω^{*} be given by (4.1). Then $\partial \Omega^{*} \cap Q_{\beta}$ is Lipschitz regular in time for some $\beta>0$.

Proof. Let $(u, \Omega) \in \mathcal{B}$. For small $\varepsilon, h>0$ let us define

$$
w(x, t)=\frac{1}{1-\varepsilon} u\left((1-\varepsilon) x,(1-\varepsilon)^{2}(t+h)\right)
$$

in $Q_{(1-\varepsilon)^{-2} T-h}$. Now $w(x, t)$ will satisfy the heat equation in the set $\Omega_{1-\varepsilon, h} \backslash$ $\bar{\Omega}_{1-\varepsilon, h}^{0}$, where

$$
\Omega_{1-\varepsilon, h}=\left\{(x, t):\left((1-\varepsilon) x,(1-\varepsilon)^{2}(t+h)\right) \in \Omega\right\},
$$

$$
\Omega_{1-\varepsilon, h}^{0}=\left\{(x, t):\left((1-\varepsilon) x,(1-\varepsilon)^{2}(t+h)\right) \in \Omega_{0}\right\}
$$

Let as prove, that $w(x, 0) \geq u_{0}(x)$ in $\overline{\Omega_{1-\varepsilon, h} \backslash \Omega_{1-\varepsilon, h}^{0}} \cap\{t=0\}$. In view of Proposition 3.6 and (2.4)

$$
\begin{gathered}
w(x, 0)=\frac{1}{1-\varepsilon} u\left((1-\varepsilon) x,(1-\varepsilon)^{2} h\right) \geq \frac{1}{1-\varepsilon} v\left((1-\varepsilon) x,(1-\varepsilon)^{2} h\right)= \\
=\frac{1}{1-\varepsilon} u_{0}((1-\varepsilon) x) \geq u_{0}(x)
\end{gathered}
$$

where $v(x, t)$ is defined in (3.2).
Now consider the following Dirichlet boundary problem:

$$
\begin{cases}\tilde{w}_{t}=\Delta \tilde{w} & \text { in }\left(\Omega_{1-\varepsilon, h} \backslash \bar{\Omega}_{0}\right) \cap\{t>0\} \\ \tilde{w}=1 & \text { on } \Gamma_{0} \\ \tilde{w}=0 & \text { on } \partial_{l} \Omega_{1-\varepsilon, h} \\ \tilde{w}=u_{0} & \text { in } \overline{\Omega_{1-\varepsilon, h} \backslash \Omega_{1-\varepsilon, h}^{0} \cap\{t=0\}}\end{cases}
$$

Then, using comparison principle, we'll obtain $\tilde{w} \leq w$ in $\Omega_{1-\varepsilon, h} \backslash \bar{\Omega}_{1-\varepsilon, h}^{0}$, and hence,

$$
\limsup _{\substack{(x, t) \rightarrow\left(x_{0}, t_{0}\right) \\(x, t) \in \Omega_{1-\varepsilon, h} \backslash \bar{\Omega}_{1-\varepsilon, h}^{0}}}|\nabla \tilde{w}| \leq \limsup _{\substack{(x, t) \rightarrow\left(x_{0}, t_{0}\right) \\(x, t) \in \Omega_{1-\varepsilon, h} \backslash \bar{\Omega}_{1-\varepsilon, h}^{0}}}|\nabla w| \leq 1,
$$

for all $\left(x_{0}, t_{0}\right) \in \partial_{l} \Omega_{1-\varepsilon, h}$, and we obtain, that $\left(\tilde{w}, \Omega_{1-\varepsilon, h}\right) \in \mathcal{B}$.
Note now, that the time levels of $\Omega_{1-\varepsilon, h}$ are given by the identity

$$
\frac{1}{1-\varepsilon} \Omega(t)=\Omega_{1-\varepsilon, h}\left(\frac{t}{(1-\varepsilon)^{2}}-h\right)
$$

Running over all $(u, \Omega) \in \mathcal{B}$, we may conclude therefore, that

$$
\begin{equation*}
\frac{1}{1-\varepsilon} \Omega^{*}(t) \supset \Omega^{*}\left(\frac{t}{(1-\varepsilon)^{2}}-h\right) \tag{4.3}
\end{equation*}
$$

Since $\Omega^{*}(t)$ expands in time, the inclusion (4.3) is not trivial, if

$$
\frac{t}{(1-\varepsilon)^{2}}-h<t
$$

The latter is equivalent to the inequality $t<\frac{h(1-\varepsilon)^{2}}{\varepsilon(2-\varepsilon)}(=\beta)$. Besides, (4.3) implies also the Lipschitz regularity of $\partial_{l} \Omega^{*}$ in time variable.

For the supersolutions $(u, \Omega) \in \mathcal{B}$ of (1.1) one can replace the gradient condition (c) in Definition 2.1 with

$$
\limsup _{\substack{(x, t) \rightarrow\left(x_{0}, t_{0}\right) \\(x, t) \in \Omega \backslash \bar{\Omega}_{0}}} \frac{u(x, t)}{d_{\Omega}(x, t)} \leq 1
$$

for every $\left(x_{0}, t_{0}\right) \in \partial_{l} \Omega$, where

$$
d_{\Omega}(x, t)=\operatorname{dist}(x, \partial \Omega(t))
$$

This is taken care in the next lemma ([5], Lemma 5.1).

Lemma 4.2. Let Ω be a bounded domain in Q_{T} such that $\Omega(t)$ are convex for $t \in(0, T)$ and $\partial_{l} \Omega$ is Lipschitz regular in time. Let also u be a nonnegative function, continuously vanishing on $\partial_{l} \Omega$, and such that $\Delta u-u_{t}=0$ in Ω. Then

$$
\begin{equation*}
\limsup _{\substack{(x, t) \rightarrow\left(x_{0}, t_{0}\right) \\(x, t) \in \Omega \backslash \Omega_{0}}}|\nabla u(x, t)|=\limsup _{\substack{(x, t) \rightarrow\left(x_{0}, t_{0}\right) \\(x, t) \in \Omega \backslash \Omega_{0}}} \frac{u(x, t)}{d_{\Omega}(x, t)}, \tag{4.4}
\end{equation*}
$$

for every $\left(x_{0}, t_{0}\right) \in \partial_{l} \Omega$.
The following lemma is an elliptic counterpart of the lemma above and is proved in a similar way (see [5]).

Lemma 4.3. Let D be a bounded spatial convex domain and u a nonnegative function in D, continuously vanishing on ∂D and such that $\Delta u=f$ in D with f bounded. Then

$$
\begin{equation*}
\limsup _{D \ni x \rightarrow x_{0}}|\nabla u(x)|=\limsup _{D \ni x \rightarrow x_{0}} \frac{u(x)}{d(x)}, \tag{4.5}
\end{equation*}
$$

where $d(x)=\operatorname{dist}(x, \partial D)$.
Let u_{0} satisfy (2.1) - (2.4).
Lemma 4.4. The pair $\left(u^{*}, \Omega^{*}\right)$ is the minimal element of \mathcal{B}.
Proof. The only thing we have to verify now is that $\left(u^{*}, \Omega^{*}\right)$ is a supersolution of (1.1). Let $\left(u_{k}, \Omega_{k}\right) \in \mathcal{B}$ be such that
(i) $\Omega^{*}=\left(\cap_{k} \Omega_{k}\right)^{o}$;
(ii) the sequence $\left\{\Omega_{k}\right\}$ is decreasing.
(iii) $u_{k}(x, 0)=u_{0}(x)$.

We can construct such a sequence as follows. First of all, it is easy to prove, using separability of \mathbb{R}^{n} and convexity property of sets in \mathcal{B}, that we can find a sequence $\left(u_{k}, \Omega_{k}\right) \in \mathcal{B}$ such that $\Omega^{*}=\left(\cap_{k} \Omega_{k}\right)^{o}$. Next, in order to have (ii) we observe the following. Denote $\Omega_{k, m}:=\Omega_{k} \cap \Omega_{m}$, and let $u_{k, m}$ be the solution of the following Dirichlet problem:

$$
\begin{cases}\partial_{t} u_{k, m}=\Delta u_{k, m} & \text { in } \Omega_{k, m} \backslash \bar{\Omega}_{0} \\ u_{k, m}(x, t)=1 & \text { on } \Gamma_{0} \\ u_{k, m}(x, t)=0 & \text { on } \partial_{l} \Omega_{k, m} \\ u_{k, m}(x, 0)=\min \left\{u_{k}(\cdot, 0), u_{m}(\cdot, 0)\right\} & \text { in }\left(\Omega_{k, m} \backslash \bar{\Omega}_{0}\right) \cap\{t=0\},\end{cases}
$$

then

$$
u_{k, m}(x, t) \leq \min \left\{u_{k}(x, t), u_{m}(x, t)\right\} \quad \text { for every } \quad(x, t) \in \Omega_{k, m} .
$$

Besides, for the distance functions we will have

$$
d_{\Omega_{k, m}}(x, t)=\min \left\{d_{\Omega_{k}}(x, t), d_{\Omega_{m}}(x, t)\right\} \quad \text { for every } \quad(x, t) \in \Omega_{k, m} \backslash \bar{\Omega}_{0} .
$$

Therefore, using Lemma 4.2, we can conclude that $\left(u_{k, m}, \Omega_{k, m}\right) \in \mathcal{B}$. If now (ii) is not satisfied, we can replace Ω_{k} by the intersection of all Ω_{m} with $m \leq k$ and thus to make $\left\{\Omega_{k}\right\}$ decreasing.
Now let $\left(u_{k}, \Omega_{k}\right) \in \mathcal{B}$ with Ω_{k} decreasing. Denote by \tilde{u}_{k} the solution of the following Dirichlet problem:

$$
\left\{\begin{array}{lll}
\left(\tilde{u}_{k}\right)_{t}=\Delta \tilde{u}_{k} & \text { in } & \Omega_{k} \backslash \bar{\Omega}_{0} \\
\tilde{u}_{k}=1 & \text { on } & \Gamma_{0} \\
\tilde{u}_{k}=0 & \text { on } & \partial_{l} \Omega_{k} \\
\tilde{u}_{k}(x, 0)=u_{0}(x) & \text { on } & \{t=0\} \cap\left(\overline{\Omega_{k} \backslash \Omega_{0}}\right) .
\end{array}\right.
$$

We have $u_{k} \geq \tilde{u}_{k}$ on the parabolic boundary of $\Omega_{k} \backslash \Omega_{0}$, so, by comparison principle, we can deduce that $u_{k} \geq \tilde{u}_{k}$ in $\Omega_{k} \backslash \Omega_{0}$. It follows that

$$
\limsup _{\substack{(x, t) \rightarrow\left(x_{0}, t_{0}\right) \\(x, t) \in \Omega_{k} \backslash \Omega_{0}}}\left|\nabla \tilde{u}_{k}(x, t)\right| \leq \limsup _{\substack{(x, t) \rightarrow\left(x_{0}, t_{0}\right) \\(x, t) \in \Omega_{k} \backslash \bar{\Omega}_{0}}}\left|\nabla u_{k}(x, t)\right| \leq 1 \text { for all }\left(x_{0}, t_{0}\right) \in \partial_{l} \Omega_{k},
$$

and hence $\left(\tilde{u}_{k}, \Omega_{k}\right) \in \mathcal{B}$ with $\tilde{u}_{k}(x, 0)=u_{0}(x)$.
So, we can assume from now, that $\left(u_{k}, \Omega_{k}\right) \in \mathcal{B}, \Omega_{k}$ decreases and $u_{k}(x, 0)=$ $u_{0}(x)$.

Denote now by ω_{k} the solution of the following Dirichlet problem:

$$
\left\{\begin{array}{lll}
\left(\omega_{k}\right)_{t}=\Delta \omega_{k} & \text { in } & \Omega_{k} \backslash \bar{\Omega}_{0} \\
\omega_{k}(x, t)=1 & \text { on } & \Gamma_{0} \\
\omega_{k}(x, t)=0 & \text { on } & \partial_{l} \Omega_{k} \\
\omega_{k}(x, 0)=1 & \text { in } & \left(\Omega_{k} \backslash \bar{\Omega}_{0}\right) \cap\{t=0\} .
\end{array}\right.
$$

Let now (w, W) be some subsolution for (1.1). Then, using Lemma 2.4, we can deduce that $u_{k}(x, t) \geq w(x, t)$ in W and hence:

$$
\left|\nabla u_{k}(x, t)\right| \leq|\nabla w(x, t)| \text { on } \Gamma_{0} .
$$

Let us denote

$$
M:=\sup _{(x, t) \in \Gamma_{0}}|\nabla w(x, t)| \text { and } C:=\sup _{x \in K_{1} \backslash K_{0}}\left|\nabla u_{0}(x)\right| \text {. }
$$

We want to prove that

$$
\left|\nabla u_{k}(x, t)\right| \leq 1+(C+M-1) \omega_{k}(x, t) \text { for all }(x, t) \in \Omega_{k} \backslash \bar{\Omega}_{0} .
$$

To prove this, let us note that $|\nabla u(x, t)|$ is subcaloric in $\Omega_{k} \backslash \overline{\Omega_{0}}$ and

$$
\left|\nabla u_{k}(x, t)\right| \leq 1+(C+M-1) \omega_{k}(x, t)
$$

on parabolic boundary of $\Omega_{k} \backslash \bar{\Omega}_{0}$. So the comparison principle applies, and we obtain the desired inequality.

For the next step, observe that since u_{k} are caloric in $\Omega_{k} \backslash \bar{\Omega}_{0}$ and uniformly bounded, a subsequence of $\left\{u_{k}\right\}$ will converge in C^{1} norm on compact subsets
of $\Omega^{*} \backslash \bar{\Omega}_{0}$ to a function u^{*}. We may assume also that over this subsequence, the corresponding ω_{k} converge to ω^{*}, with

$$
\left\{\begin{array}{lll}
\partial_{t} \omega^{*}=\Delta \omega^{*} & \text { in } & \Omega^{*} \backslash \bar{\Omega}_{0} \\
\omega^{*}(x, t)=1 & \text { on } & \Gamma_{0} \\
\omega^{*}(x, t)=0 & \text { on } & \partial_{l} \Omega^{*} \\
\omega^{*}(x, 0)=1 & \text { in } & \left(\Omega^{*} \backslash \bar{\Omega}_{0}\right) \cap\{t=0\}
\end{array}\right.
$$

Then in the limit we will obtain

$$
\left|\nabla u^{*}(x, t)\right| \leq 1+(C+M-1) \omega^{*}(x, t)
$$

for every (x, t) in $\Omega^{*} \backslash \bar{\Omega}_{0}$. As a consequence, $\left(u^{*}, \Omega^{*}\right)$ is in \mathcal{B} and therefore is its minimal element.

5 Further properties of the minimal element

The method used in this and the next section is due to A. Henrot and H. Shahgholian [3], 4]. For caloric functions this method used in [5].

Definition 5.1. A point $(x, t) \in \partial_{l} \Omega$, where $\Omega(t)$ is convex, is said to be extreme, if $x \in \partial \Omega(t)$ is extreme for $\Omega(t)$. The latter means that x is not a convex combination of points on $\partial \Omega(t)$, other than x.

Lemma 5.2. Under the conditions $(2.1)-(2.4)$ on u_{0} the pair $\left(u^{*}, \Omega^{*}\right)$ satisfies

$$
\begin{equation*}
\limsup _{\substack{(x, t) \rightarrow\left(x_{0}, t_{0}\right) \\(x, t) \in \Omega^{*} \backslash \bar{\Omega}_{0}}}\left|\nabla u^{*}(x, t)\right|=1 \tag{5.1}
\end{equation*}
$$

for every extreme point $\left(x_{0}, t_{0}\right) \in \partial \Omega^{*} \cap Q_{\lambda}, \lambda \leq \beta$.
Proof. Let us point out that it is enough to prove the lemma in the case when x_{0} is an extremal point of $\partial \Omega^{*}\left(t_{0}\right)$, which means that there is a spatial supporting hyperplane to $\Omega^{*}\left(t_{0}\right)$, touching $\partial \Omega^{*}\left(t_{0}\right)$ at x_{0} only. This follows from the fact that the extremal points are dense among the extreme points.

Suppose now $x_{0} \in \partial \Omega^{*}\left(t_{0}\right)$ is an extremal, and that (5.1) is not true. Then, in view of Lemmas 4.2 and 4.1, there exists a (space-time) neighborhood V of $\left(x_{0}, t_{0}\right)$ and $\alpha>0$ such that

$$
\begin{equation*}
u^{*}(x, t) \leq(1-\alpha) d_{\Omega^{*}}(x, t) \tag{5.2}
\end{equation*}
$$

for every $(x, t) \in V \cap \Omega^{*}$. We may assume additionally that the intersection $V \cap \Omega^{*}$ is given by (3.1).

Let now Π be a spatial supporting hyperplane to $\Omega^{*}\left(t_{0}\right)$, such that $\Pi \cap$ $\partial \Omega^{*}\left(t_{0}\right)=\left\{x_{0}\right\}$. By translation and rotation, we may assume that $x_{0}=0$ and that $\Pi=\left\{x_{n}=0\right\}$. Moreover, let $\Omega^{*}\left(t_{0}\right) \subset\left\{x_{n}>0\right\}$. Using the extremality of $\left(x_{0}, t_{0}\right)$, it is easy to see that there are $\delta_{0}>0$ and $\eta_{0}>0$ such that

$$
\left\{(x, t) \in \Omega^{*}: x_{n} \leq \eta_{0} \text { and } t \in\left[t_{0}, t_{0}+\delta_{0}\right]\right\} \subset V
$$

Let us consider the function

$$
h(t)=-\min _{x \in \Omega^{*}(t)} x_{n}, t \in\left[t_{0}, t_{0}+\delta_{0}\right] .
$$

In view of Lipschitz regularity of $\partial_{l} \Omega^{*}$ in time,

$$
h(t) \leq L\left(t-t_{0}\right)
$$

for $t \in\left[t_{0}, t_{0}+\delta_{0}\right]$, where L is the Lipschitz constant of f in t.
Let now $\eta_{1} \in\left(0, \eta_{0}\right)$ be very small and a constant $C \geq L$ be chosen such that

$$
h\left(t_{0}+\delta_{0}\right) \leq C \delta_{0}-\eta_{1} .
$$

Further, we can find $\delta_{1} \in\left(0, \delta_{0}\right]$ such that

$$
h\left(t_{0}+\delta_{1}\right)=C \delta_{1}-\eta_{1}
$$

and

$$
h(t) \geq C\left(t-t_{0}\right)-\eta_{1}
$$

for every $t \in\left[t_{0}, t_{0}+\delta_{1}\right]$.
Define now a domain $\Omega \subset Q_{T}$ by giving its time sections as follows

$$
\Omega(t)= \begin{cases}\Omega^{*}(t), & t \in\left(t_{0}+\delta_{1}, T\right) \tag{5.3}\\ \Omega^{*}(t) \cap\left\{x_{n}>\eta_{1}-C\left(t-t_{0}\right)\right\}, & t \in\left[t_{0}, t_{0}+\delta_{1}\right] \\ \Omega\left(t_{0}\right) \cap \Omega^{*}(t), & t \in\left(0, t_{0}\right) .\end{cases}
$$

Let also u be a solution to the following Dirichlet problem:

$$
\left\{\begin{array}{lll}
\Delta u-u_{t}=0 & \text { in } & \Omega \backslash \bar{\Omega}_{0} \\
u=0 & \text { on } & \partial_{l} \Omega \\
u=1 & \text { on } & \partial_{l} \Omega_{0} \\
u=u_{0} & \text { in } & \Omega \cap\{t=0\} \backslash \bar{K}_{0} .
\end{array}\right.
$$

We claim that if η_{1} is small enough, then (u, Ω) is in \mathcal{B}. This will lead to a contradiction since Ω^{*} is not a subset of Ω and the lemma will follow. Since Ω has convex time sections and expands in time, we need to verify only that (u, Ω) is a supersolution of (1.1).

There exists $\varepsilon=\varepsilon(n, L)>0$ such that in a neighborhood of $\left(x_{0}, t_{0}\right)$ the function

$$
w^{*}(x)=w^{*}(x ; t)=u^{*}(x, t)+u^{*}(x, t)^{1+\varepsilon}
$$

is subharmonic in x, (1 , Lemma 5). Moreover the size of the neighborhood depends only on n and L. We may suppose V has this property. Next, note that we can take $C \leq L+1$ if η_{1} is sufficiently small and δ_{0} is fixed. This will make the boundary of new constructed $\Omega(L+1)$-Lipschitz in time. Therefore we may assume also, that

$$
w(x)=w(x ; t)=u(x, t)+u(x, t)^{1+\varepsilon}
$$

is subharmonic in the neighborhood V.
Now let us prove that (u, Ω) is indeed a supersolution.

Case 1. $\tilde{t} \in\left(t_{0}+\delta_{1}, T\right)$. Since $\Omega \subset \Omega^{*}$, it follows that $u \leq u^{*}$,so we have

$$
\lim _{\substack{(x, t) \rightarrow(\tilde{x}, \tilde{t}) \\(x, t) \in \Omega \backslash \Omega_{0}}} \frac{u(x, t)}{d_{\Omega}(x, t)} \leq \lim _{\substack{(x, t) \rightarrow(\tilde{x}, \tilde{t}) \\(x, t) \in \Omega^{*} \backslash \Omega_{0}}} \frac{u^{*}(x, t)}{d_{\Omega^{*}}(x, t)} \leq 1
$$

for every $(\tilde{x}, \tilde{t}) \in \partial_{l} \Omega, \tilde{t}>t_{0}$.
Case 2. $\tilde{t} \in\left[t_{0}, t_{0}+\delta_{1}\right]$. First of all, since $\Omega(t) \subset \Omega^{*}(t)$ for these t, we have also $u \leq u^{*}$ there. Let now consider a part $D(t)$ of $\Omega^{*}(t)$ between the planes: $\Pi_{1}=\left\{x_{n}=\eta_{1}-C\left(t-t_{0}\right)\right\}$ and $\Pi_{0}=\left\{x_{n}=\eta_{0}-C\left(t-t_{0}\right)\right\}$. Compare there two functions $w(x)=w(x ; t)$ and $l(x)=x_{n}-\left(\eta_{1}-C\left(t-t_{0}\right)\right)$. On Π_{1} both functions are 0 . Next

$$
l(x)=\eta_{0}-\eta_{1} \text { on } \Pi_{0}
$$

To estimate w on Π_{0}, let us first estimate u on Π_{0}. Thus, recalling (5.2) we conclude

$$
u(x, t) \leq u^{*}(x, t) \leq(1-\alpha) d_{\Omega^{*}}(x, t) \leq(1-\alpha)\left(x_{n}-L\left(t-t_{0}\right)\right) \leq(1-\alpha) \eta_{0}
$$

and therefore, if η_{0} is small enough, we will obtain

$$
w(x) \leq(1-\alpha / 2) \eta_{0} \text { on } \Pi_{0}
$$

Choose now η_{1} so small that $(1-\alpha / 2) \eta_{0} \leq \eta_{0}-\eta_{1}$. Then $w \leq l$ on $\partial D(t)$ and, since w is subharmonic and l is harmonic (linear), we conclude that $w \leq l$ in $D(t)$. Along with $u \leq u^{*}$ this gives

$$
\begin{equation*}
\limsup _{\substack{(x, t) \rightarrow(\tilde{x}, \tilde{t}) \\(x, t) \in \Omega \backslash \bar{\Omega}_{0}}} \frac{u(x, t)}{d_{\Omega}(x, t)} \leq 1, \tag{5.4}
\end{equation*}
$$

where $(\tilde{x}, \tilde{t}) \in \partial_{l} \Omega, t$ is free to vary within $\left[t_{0}, t_{0}+\delta_{1}\right]$.
Case 3. $\tilde{t} \in\left(0, t_{0}\right)$. Since $\Omega(t)$ expand in time, and u_{0} is harmonic, considering the time derivative u_{t} in Ω, we can infer from the maximum principle for the heat equation that $u_{t} \geq 0$ in Ω. Remembering that $\Omega \subset \Omega^{*}$, we have $u \leq u^{*}$. In the case of $(\tilde{x}, \tilde{t}) \in \partial_{l} \Omega \cap \partial_{l} \Omega^{*}$, we can write

$$
\lim _{\substack{(x, t) \rightarrow(\tilde{x}, \tilde{t}) \\(x, t) \in \Omega \backslash \Omega_{0}}} \frac{u(x, t)}{d_{\Omega}(x, t)} \leq \lim _{\substack{(x, t) \rightarrow(\tilde{x}, \tilde{t}) \\(x, t) \in \Omega^{*} \backslash \Omega_{0}}} \frac{u^{*}(x, t)}{d_{\Omega}^{*}(x, t)} \leq 1
$$

The second possibility of $(\tilde{x}, \tilde{t}) \in \partial_{l} \Omega$ is the case $\tilde{t} \in\left(0, t_{0}\right)$ is to be on the cylindrical boundary obtained from vertical movement of $\partial_{l} \Omega\left(t_{0}\right)$. In this case

$$
d_{\Omega}(x, \tilde{t})=d_{\Omega}\left(x, t_{0}\right)
$$

and, using $u_{t} \geq 0$, we obtain $u(x, \tilde{t}) \leq u\left(x, t_{0}\right)$, which leads

$$
\lim _{\substack{(x, t) \rightarrow(\tilde{x}, \tilde{t}) \\(x, t) \in \Omega \backslash \Omega_{0}}} \frac{u(x, t)}{d_{\Omega}(x, t)} \leq \lim _{\substack{(x, t) \rightarrow\left(\tilde{x}, t_{0}\right) \\(x, t) \in \Omega \backslash \Omega_{0}}} \frac{u\left(x, t_{0}\right)}{d_{\Omega}\left(x, t_{0}\right)} \leq 1
$$

Summing up, we see that (5.4) holds for all $t \in(0, T)$, and by Lemma 4.2 this implies $(u, \Omega) \in \mathcal{B}$, which is a contradiction.

6 The main theorem

Theorem 6.1. Let u_{0} satisfy (2.1) - (2.4). Then the minimal element $\left(u^{*}, \Omega^{*}\right)$ of \mathcal{B} is a classical solution of (1.1) for a short time. Moreover, this classical solution is unique.

Before the proof of the theorem let us recall some facts, which are proved in [5] (and it is not hard to see that this lemmas are true for convex rings also).

Lemma 6.2. Let D be a bounded spatial convex domain with C^{1} regular boundary, V a neighborhood of ∂D and w a smooth positive subharmonic function in $D \cap V$, continuously vanishing in ∂D. If the level lines $\{w=s\}$ are strictly convex surfaces for $0<s<s_{0}$, then the condition

$$
\limsup _{\substack{x \rightarrow x_{0} \\ x \in D \cap V}}|\nabla w(x)| \geq 1
$$

for every extreme point $x_{0} \in \partial D$ implies that

$$
|\nabla w(x)| \geq 1
$$

for every x with $0<w(x)<s_{0}$.
Lemma 6.3. Let D be a bounded spatial convex domain and x_{0} a singular point on ∂D, such that there are more than one supporting hyperplanes to D at x_{0}. Let also V be a neighborhood of x_{0} and w a subharmonic function in $D \cap V$, continuously vanishing on $\partial D \cap V$. Then

$$
\lim _{\substack{x \rightarrow x_{0} \\ x \in D \cap V}} \frac{w(x)}{d(x)}=0
$$

where $d(x)=\operatorname{dist}(x, \partial D)$.
Proof of Theorem 6.1. First observe that we need only to show that $\left(u^{*}, \Omega^{*}\right)$ is a subsolution. The uniqueness follows from the Lemma 2.4 (see the Remark 2.6). For the rest we again follow to the proof of the similar theorem in [5].

Recall that from the Lemma 5.2 we know that

$$
\begin{aligned}
& \limsup _{(x, t) \rightarrow\left(x_{0}, t_{0}\right)}^{(x, t) \in \Omega^{*} \backslash \Omega_{0}} \\
& \left(\Omega_{0}\right) \\
&
\end{aligned}\left|\nabla u^{*}(x, t)\right|=1
$$

for every extreme point $\left(x_{0}, t_{0}\right) \in \partial \Omega^{*} \cap Q_{\beta}$. Denote by \Re the set of all $t_{0} \in(0, \beta)$ such that

$$
\limsup _{\substack{x \rightarrow x_{0} \\ x \in \Omega^{*}\left(t_{0}\right)}}\left|\nabla u^{*}\left(x, t_{0}\right)\right|=1
$$

for every extreme point $x_{0} \in \partial \Omega^{*}\left(t_{0}\right)$.
Note that the complement $(0, \beta) \backslash \Re$ is a union of a countable family of nowhere dense subsets of $(0, \beta)$ (see [5]).

As in the proof of Lemma 5.2, consider now the function

$$
w^{*}(x)=w^{*}(x ; t)=u^{*}(x, t)+u^{*}(x, t)^{1+\varepsilon} .
$$

Let $t_{0} \in(0, \beta)$. There exists $\varepsilon>0, \delta>0$ and $s_{0}>0$ such that $w^{*}=w^{*}(\cdot ; t)$ is subharmonic in a convex ring $D(t)=\left\{0<w^{*}(x, t)<s_{0}\right\}$ whenever $t \in$ $\left(t_{0}-\delta, t_{0}+\delta\right)(1]$, Lemma 5 ; the fact, that $D(t)$ is a convex ring, can be proved as in [2], Theorem 3).

Now, we point out that if $t \in \mathfrak{R}$, then $\partial \Omega^{*}(t)$ is C^{1} regular. Otherwise there would exist a singular extreme point $x_{0} \in \partial \Omega^{*}(t)$ with

$$
\begin{equation*}
\lim _{\substack{x \rightarrow x_{0} \\ x \in \Omega^{*}(t)}}\left|\nabla u^{*}(x, t)\right|=0, \tag{6.1}
\end{equation*}
$$

which contradicts to the definition of \mathfrak{R}. Indeed, if $x_{0} \in \partial \Omega^{*}(t)$ is singular then by Lemma 6.3

$$
\frac{w^{*}(x ; t)}{d_{\Omega}(x, t)} \rightarrow 0,
$$

or, equivalently,

$$
\frac{u^{*}(x, t)}{d_{\Omega}(x, t)} \rightarrow 0
$$

as $x \rightarrow x_{0}$, and (6.1) will follow from the Lemma 4.3.
Let now $t \in\left(t_{0}-\delta, t_{0}+\delta\right) \cap \Re$. Then Lemma 6.2 implies that

$$
\left|\nabla w^{*}(x ; t)\right| \geq 1,
$$

if $0<w^{*}(x ; t)<s_{0}$ and t is as above. The inequality is extended for all $t \in\left(t_{0}-\delta, t_{0}+\delta\right)$ because of everywhere density of \mathfrak{R} and continuity of $\left|\nabla w^{*}(x ; t)\right|$ in Ω^{*}. Since $\left|\nabla w^{*}\right|$ and ∇u^{*} are asymptotically equivalent when $u^{*} \rightarrow 0$, we obtain immediately that

$$
\underset{\substack{(x, t) \rightarrow\left(x_{0}, t_{0}\right) \\(x, t) \in \Omega^{*} \backslash\left(\Omega_{0}\right.}}{ }\left|\nabla u^{*}(x, t)\right| \geq 1
$$

whenever $x_{0} \in \partial \Omega^{*}\left(t_{0}\right)$. Since t_{0} was arbitrary, we conclude, that $\left(u^{*}, \Omega^{*}\right)$ is indeed a classical solution of (1.1) in Q_{β}

References

[1] I. Athanasopoulos, L. Caffarelli and S. Salsa, Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, Annals of Math. 143(1996), 413-434.
[2] J.I. Diaz, B. Kawohl, On convexity and starshapedness of level sets for some nonlinear elliptic and parabolic problems on convex rings, J. Math. Anal. Appl. 177 (1993), no. 1, 263-286.
[3] A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem for the p-Laplace operator: (I) the exterior case, J. Reine Angew. Math. 521(2000), 85-97.
[4] A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem for the p-Laplace operator: (II) the interior case, Indiana Univ. Math. J. 49(2000), no 1, 311-323.
[5] A. Petrosyan, On existence and uniqueness in a free boundary problem from combustion, Comm. Partial Differential Equations, 27(3-4), 2002, 763-789.

[^0]: *The second author completed his work on this article at the University of Lisbon, Portugal.

