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Abstract. We show that the Nine Lemma holds for special Schreier exten-
sions of monoids with operations. This fact is used to obtain a push forward

construction for special Schreier extensions with abelian kernel. This construc-
tion permits to give a functorial description of the Baer sum of such extensions.

1. Introduction

Actions of a group B on a group X are classically defined as group homomor-
phisms from B to the group Aut(X) of automorphisms of X. There is a well
known equivalence between group actions and split extensions, obtained via the
semidirect product construction. Monoid actions are defined similarly: an action
of a monoid B on a monoid X is a monoid homomorphism from B to the monoid
End(X) of endomorphisms of X. It is not difficult to see that these actions do not
correspond to all split epimorphisms of monoids; hence the question of what are
the split extensions of monoids that correspond to such actions arises naturally.
Such split extensions were identified in [17, 11]: they are the so-called Schreier split
epimorphisms. A split epimorphism

A
f
// B

soo

of monoids is a Schreier split epimorphism if every element a ∈ A can be decom-
posed uniquely as a = x · sf(a) for some x in the kernel of f .

It turns out that the class of Schreier split epimorphisms has a much better be-
havior than the class of all split epimorphisms of monoids, in the sense that several
homological and algebraic properties of split epimorphisms of groups are still valid
for Schreier split epimorphisms, but not for all split epimorphisms of monoids. A
paradigmatic example is the Split Short Five Lemma [3, Theorem 4.2]. Another
important one is the fact that a Schreier split epimorphism is the cokernel of its
kernel [3, Proposition 2.6]. Other important properties of Schreier split epimor-
phisms have been studied in [2, 4], and extended to other algebraic structures, like
semirings and, more generally, monoids with operations [11]. Schreier split exten-
sions correspond bijectively to actions in every category of monoids with operations,
so these algebraic structures have a behavior which is very similar to the one of
monoids. We recall in Section 2 how this bijection is obtained.

Other interesting properties appear when we consider Schreier relations. An
internal reflexive relation (i.e. a reflexive relation which is compatible with the
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operations) on an object A is called a Schreier reflexive relation [2, 3] if the split
epimorphism given by the first projection and the reflexivity morphism is a Schreier
one (see Section 2 below for more details). It happens that every Schreier reflexive
relation is transitive, and it is symmetric if and only if the kernel of the first pro-
jection is a group [3, Theorem 5.5]. So, Schreier reflexive relations have a property
which is typical of all reflexive relations in Mal’tsev varieties [9].

The notions of Schreier reflexive relation and of Schreier congruence allowed
to introduce the one of special Schreier homomorphism [2]. A homomorphism
f : A→ B in a category of monoids with operations is special Schreier if its kernel
congruence is a Schreier one. A special Schreier homomorphism induces a partial
subtraction on its domain: the subtraction between two elements of A exists if they
have the same image under f (again, see Section 2 below). In particular, the kernel
of a special Schreier homomorphism is a group. Moreover, the Short Five Lemma
holds for special Schreier extensions, i.e. for special Schreier surjective homomor-
phisms [2, Proposition 7.2.1].

A special Schreier extension f : A → B with abelian kernel X determines an
action of B on X, as it is explained at the beginning of Section 4. Then it is a nat-
ural question whether there is an abelian group structure on the set SExt(B,X,ϕ)
of isomorphic classes of special Schreier extensions of an object B by an abelian
object X inducing the action ϕ, which generalizes the classical Baer sum of group
extensions. The existence of the Baer sum for monoids was deduced in [2] by using
categorical arguments. An explicit description of the Baer sum, in terms of factor
sets, was then presented in [12]. This gives an interpretation in terms of extensions
of the low dimensional cohomology theory for monoids described in [13, 15, 16],
which was obtained by generalizing to monoids the classical bar resolution used
to compute group cohomology. Different approaches to the cohomology theory of
monoids have been considered in [22, 5, 8], where different notions of extensions
were considered. Looking at a monoid as a category with one object, our approach
can also be compared to the one of [6, 7], where the low-dimensional cohomology of
small categories was described by means of suitable extensions, that particularize
to special Schreier ones in the case of monoids.

The aim of the present paper is to set the basis for a description of the coho-
mology of every category of monoids with operations by means of special Schreier
extensions. This would give an interpretation of cohomology for several algebraic
structures beyond monoids; some of the main examples are semirings and semi-
lattices. In order to start the development of such cohomology theories, we first
show that the Nine Lemma holds for special Schreier extensions in every category of
monoids with operations (Section 3). The fact that this classical homological lemma
holds for such extensions is a further evidence that the categories of monoids with
operations have, relatively to these extensions, a homological behavior which is very
similar to the one of group-like structures. In fact, we will use the Nine Lemma
in Section 4 to describe a push forward construction for special Schreier extensions
with abelian kernel. More specifically, given a special Schreier extension f : A→ B
with abelian kernel X, inducing the action ϕ of B on X, and a morphism g : X → Y
of abelian objects which is equivariant with respect to the action ϕ and to a given
action ψ of B on Y , we build a special Schreier extension of B by Y which induces
the action ψ and which is universal with respect to all special Schreier extensions
of B (in a sense that will be explained in Theorem 4.2 below). This will allow
us to give, in Section 5, an alternative, functorial description of the Baer sum of
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special Schreier extensions with abelian kernel for the case of monoids. This new
description is important to give a description of cohomology of monoids which is
independent from the bar resolution.

Constructing the push forward construction for special Schreier extensions of
any length would give a complete description of the cohomology of monoids with
operations in terms of special Schreier extensions. This is material for a future
work.

2. Schreier split epimorphisms and special Schreier extensions

The aim of this section is to recall from [11, 3, 2] the notions of Schreier split
epimorphism, Schreier congruence and special Schreier extension that will be used
in the rest of the paper.

2.1. Schreier split epimorphisms. We start by recalling the definition of monoids
with operations, introduced in [11] in order to extend to a wider context the descrip-
tion of crossed semimodules of monoids obtained by Patchkoria [17]. The definition
(as well as the main result in [11]) is inspired by Porter’s definition of groups with
operations [20], which is itself a generalization of the one of categories of interest
in the sense of [14].

Definition 2.1. Let Ω be a set of finitary operations such that the following con-
ditions hold: if Ωi is the set of i-ary operations in Ω, then:

(1) Ω = Ω0 ∪ Ω1 ∪ Ω2;
(2) There is a binary operation + ∈ Ω2 (not necessarily commutative) and a

constant 0 ∈ Ω0 satisfying the usual axioms for monoids;
(3) Ω0 = {0};
(4) Let Ω′2 = Ω2\{+}; if ∗ ∈ Ω′2, then ∗◦, defined by x ∗◦ y = y ∗ x, is also in

Ω′2;
(5) Any ∗ ∈ Ω′2 is left distributive w.r.t. +, i.e.:

a ∗ (b+ c) = a ∗ b+ a ∗ c;

(6) For any ∗ ∈ Ω′2 we have b ∗ 0 = 0;
(7) Any ω ∈ Ω1 satisfies the following conditions:

- ω(x+ y) = ω(x) + ω(y);
- for any ∗ ∈ Ω′2, ω(a ∗ b) = ω(a) ∗ b.

Let moreover E be a set of axioms including the ones above. We will denote by C
the category of (Ω, E)-algebras. We call the objects of C monoids with operations.

Examples of categories of monoids with operations are the categories of monoids,
commutative monoids, semirings (i.e. rings where the additive structure is not nec-
essarily a group, but just a commutative monoid), join-semilattices with a bottom
element, distributive lattices with a bottom element (or a top one). The algebraic
structures covered by Porter’s definition, such as groups, rings, associative algebras,
Lie algebras and many others, can also be seen as examples of monoids with oper-
ations (although, in order to include these examples, condition (7) above should be
slightly modified, see [11] for more details).

Definition 2.2 ([11], Definition 2.6). A split epimorphism A
f
// B

soo in a cat-

egory C of monoids with operations is said to be a Schreier split epimorphism
when, for any a ∈ A, there exists a unique x in the kernel Ker(f) of f such that
a = x+ sf(a).
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In other terms, a Schreier split epimorphism is a split epimorphism (A,B, f, s)
equipped with a unique set-theoretical map q : A 99K Ker(f), called the Schreier
retraction of (A,B, f, s), with the property that, for any a ∈ A, we have:

a = q(a) + sf(a).

The following proposition was originally proved for the case of monoids, but it
holds (with the same proof) for monoids with operations:

Proposition 2.3 ([3], Proposition 2.4). A split epimorphism (A,B, f, s) is a Schreier
split epimorphism if and only if there exists a set-theoretical map q : A 99K Ker(f)
such that:

q(a) + sf(a) = a

q(x+ s(b)) = x

for every a ∈ A, x ∈ Ker(f) and b ∈ B.

The definition of Schreier split epimorphism for the case of monoids was first
implicitly considered in [17], in connection with the notion of Schreier internal
category. Later, in [10], the definition of Schreier split epimorphism was considered
in the wider context of Jónsson-Tarski varieties, i.e. varieties (in the sense of
universal algebra) whose corresponding theories contain a unique constant 0 and a
binary operation + satisfying the equalities 0 + x = x + 0 = x for any x. In the
present paper, we restrict our attention only to the case of monoids with operations.
The reason is that, in such a context, the Schreier split epimorphisms are equivalent
to actions in the sense explained here below.

Definition 2.4 ([11], Definitions 2.4 and 2.5). Let X and B be two objects of a
category C of monoids with operations. A pre-action of B on X is a set, indexed
by the set Ω2 of binary operations, of set-theoretical maps α∗ : B×X → X, ∗ ∈ Ω2.

Given a pre-action α = {α∗|∗ ∈ Ω2} of B on X, the semidirect product XoαB
of X and B with respect to α is the Ω-algebra with underlying set X × B and
operations defined by:

(x1, b1) + (x2, b2) = (x1 + α+(b1, x2), b1 + b2),

(x1, b1) ∗ (x2, b2) = (x1 ∗ x2 + α∗(b1, x2) + α∗◦(b2, x1), b1 ∗ b2), for ∗ ∈ Ω′2,

ω(x, b) = (ω(x), ω(b)), for ω ∈ Ω1.

We say that the pre-action α is an action if the semidirect product X oα B is an
object of C.

The equivalence between Schreier split extensions and actions is obtained in

the following way. Given a Schreier split epimorphism A
f
// B

soo with kernel

k : X → A, the corresponding action α of B on X is given by

α+(b, x) = q(s(b) + k(x)),

α∗(b, x) = q(s(b) ∗ k(x)), for ∗ ∈ Ω′2.

Conversely, given an action α of B on X, we can build a Schreier split epimorphism

X oα B
πB

// B
〈0,1〉oo where πB is the canonical projection on B and 〈0, 1〉 sends b

to (0, b). We refer to [11] for more details on this equivalence. If we consider
the particular case of monoids, the actions we are considering are just the classical
monoid actions: an action of a monoidB on a monoidX is a monoid homomorphism
ϕ : B → End(X), where End(X) is the monoid of endomorphisms of X.
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Proposition 2.5 ([3], Proposition 3.4). Every split epimorphism (A,B, f, s) such
that (B,+) is a group is a Schreier split epimorphism.

Proof. It suffices to write any a ∈ A as a = (a− sf(a)) + sf(a). �

2.2. Schreier internal relations. An internal relation on an object A in a cat-
egory of monoids with operations is a relation R which is compatible with all the
operations. It can be described equivalently as a subobject of the product A× A.
By considering the homomorphic inclusion

R� A×A

and by composing it with the two projections of the product, we get two parallel
homomorphisms

R
r1 //
r2
// A,

that are the first and the second projection of the relation. More explicitly, denot-
ing an element of R by a pair (x, y), such that x and y belong to A and are linked
by the relation R, we have that r1(x, y) = x and r2(x, y) = y.

An internal relation is reflexive when r1 and r2 have a common section σ : A→ R.
In the notation above, we have that σ(a) = (a, a) for any a ∈ A.

Definition 2.6 ([3], Definition 5.1). An internal reflexive relation

R
r2
//

r1 //
Aσoo

is a Schreier reflexive relation if the split epimorphism (R,A, r1, σ) is a Schreier
one.

It is well known that, in a Malt’sev variety [9], every internal reflexive relation is
a congruence. This is false for the varieties of monoids with operations. However,
a partial version of this result can be recovered for Schreier reflexive relations:

Theorem 2.7 ([4], Corollary 6.11). Any Schreier reflexive relation is transitive. It
is a congruence if and only if (Ker(r1),+) is a group.

We will call Schreier congruence a Schreier reflexive relation which is a congru-
ence. Since all categories of monoids with operations are Barr-exact [1], all congru-
ences are kernel congruences: given a homomorphism f : A → B, the correspond-
ing kernel congruence Eq(f) is defined by: a1Eq(f)a2 if and only if f(a1) = f(a2).
Eq(f) can be represented by the following diagram:

Eq(f)
f2

//

f1 //
A,〈1,1〉oo

where 〈1, 1〉 is the diagonal of A: 〈1, 1〉(a) = (a, a). Thanks to the symmetry of the
relation, the split epimorphisms (f1, 〈1, 1〉) and (f2, 〈1, 1〉) are isomorphic. Hence,
if one of the two is a Schreier split epimorphism, the other is such, too.

2.3. Special Schreier homomorphisms. We recall from [2, 4] the following no-
tion:

Definition 2.8. A homomorphism f : A→ B is a special Schreier homomorphism
if the kernel congruence Eq(f) is a Schreier congruence.
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In other terms, a homomorphism f : A→ B is a special Schreier homomorphism
if and only if the split epimorphism

X
〈k,0〉 // Eq(f)

f2

// A,
〈1,1〉oo

where 〈k, 0〉 is the morphism sending x ∈ X to (k(x), 0), is a Schreier split epimor-
phism.

A weaker notion of Schreier extensions for monoids was introduced in [21], and
further studed in [16, 18] in connection with cohomology. The notion we are con-
sidering is stronger, whence the name “special Schreier”.

As a consequence of Theorem 2.7, we have that the kernel of a special Schreier ho-
momorphism, which is isomorphic to the kernel of each of the projections
f1, f2 : Eq(f) → A, is a group w.r.t. the operation +. A Schreier split epimor-
phism is not always a special Schreier homomorphism: it happens if and only if its
kernel is a group w.r.t. + ([4], Proposition 6.9).

We are interested, in particular, in special Schreier surjective homomorphisms.
We recall some relevant facts about them that will be used in the rest of the paper.
We start with the following proposition, whose proof is the same as the one of
Proposition 7.1.3 in [2]:

Proposition 2.9. Every special Schreier surjective homomorphism f : A → B is
the cokernel of its kernel. In other terms, the following sequence is an extension of
B by Ker(f):

Ker(f)
� ,2 k // A

f // // B.

Thanks to the previous proposition, a special Schreier surjective homomorphism
can be called a special Schreier extension.

Lemma 2.10. Let f : A→ B be a special Schreier extension. Denote by k : X → A
the kernel of f . Then there exists a (unique) map q : Eq(f) 99K X which satisfies
the following conditions, for every a ∈ A, (a1, a2), (a′1, a

′
2) ∈ Eq(f), x ∈ X and

∗ ∈ Ω′2:

(i) kq(a1, a2) + a2 = a1;
(ii) q(k(x) + a, a) = x;
(iii) kq(a+ k(x), a) + a = a+ k(x);
(iv) q(a1 + a′1, a2 + a′2) = q(a1, a2) + q(a2 + kq(a′1, a

′
2), a2);

(v) q(a ∗ k(x), 0) = a ∗ k(x);
(vi) kq(a1 ∗a′1, a2 ∗a′2) = kq(a1, a2)∗kq(a′1, a′2)+a2 ∗kq(a′1, a′2)+a′2 ∗◦kq(a1, a2).

Proof. The conditions of the lemma are straightforward consequences of the defini-
tion of a special Schreier extension and of the properties of the Schreier retraction
q: see the proofs of Corollary 2.8 in [12] and of Proposition 6.0.11 in [2] for more
details in the particular cases of monoids and semirings. �

We observe that Condition (i) in the previous lemma means that the map q
endows the monoid (A,+) with a partial subtraction: the subtraction between two
elements of A exists when they have the same image by the homomorphism f .
More precisely:

Corollary 2.11. A monoid homomorphism f : A→ B is a special Schreier homo-
morphism if and only if, for every a1, a2 ∈ A such that f(a1) = f(a2) there exists
a unique element x in the kernel of f such that a2 = x+ a1.
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Proposition 2.12 ([2], Proposition 7.2.1). The Short Five Lemma holds for special
Schreier extensions: given a commutative diagram

X

u

��

� ,2 k // A
f // //

v

��

B

w

��
X ′

� ,2
k′
// A′

f ′
// // B′

whose rows are special Schreier extensions, if u and w are isomorphisms, then also
v is.

3. The Nine Lemma

We prove now, separately, the three possible versions of the Nine Lemma for
special Schreier extensions (observe that they are independent from each other).
We start by recalling the following well-known lemma.

Lemma 3.1. In any category, given a commutative diagram of the form

A

t

��

� ,2 l // B

h

��

g // C

m

��
X

� ,2
k
// Y

f
// Z,

where l = Ker(g) and k = Ker(f), if m is a monomorphism, then the left-hand side
square is a pullback.

Theorem 3.2 (the Lower Nine Lemma). Given a commutative diagram of homo-
morphisms in a category C of monoids with operations:

(1) N � ,2 η //_��
l
��

H_��
r

��

λ // // K_��
s

��
X

� ,2 σ //

f
����

Y
ϕ // //

g
����

Z

p
����

A
α
// B

β
// C,

suppose that the three columns and the first two rows are special Schreier extensions.
Then the lower row also is.

Proof. We divide the proof in several steps:

(1) β is a surjective homomorphism, because βg = pϕ is.
(2) βα is the zero homomorphism, i.e. βα(a) = 0 for all a ∈ a. Indeed,

βαf = βgσ = pϕσ = 0 and this implies that βα = 0 since f is surjective.
(3) α is a monomorphism. In order to prove this, let a1, a2 ∈ A be such

that α(a1) = α(a2). Since f is surjective, there exist xi ∈ X such that
f(xi) = ai. Then gσ(x1) = αf(x1) = αf(x2) = gσ(x2), which means that
(σ(x1), σ(x2)) ∈ Eq(g). Since g is a special Schreier homomorphism, there
exists a unique h ∈ H such that σ(x2) = r(h) + σ(x1). Being ϕσ = 0, we
get that

0 = ϕσ(x2) = ϕ(r(h) + σ(x1)) = ϕr(h) + ϕσ(x1) = sλ(h) + 0 = sλ(h).
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From the fact that s is a monomorphism we obtain that λ(h) = 0 or, in
other terms, that h belongs to the kernel of λ. Hence there exists a (unique)
n ∈ N such that η(n) = h. So

σ(x2) = rη(n) + σ(x1) = σl(n) + σ(x1) = σ(l(n) + x1).

σ is a monomorphism, hence x2 = l(n) +x1. From fl = 0 we conclude that

a2 = f(x2) = fl(n) + f(x1) = f(x1) = a1.

(4) A is the kernel of β. From points (2) and (3) we already know that A is
contained in the kernel of β. For the other inclusion, suppose that β(b) = 0.
Being g surjective, there exists y ∈ Y such that g(y) = b. Since

pϕ(y) = βg(y) = β(b) = 0,

there exists a (unique) k ∈ K such that s(k) = ϕ(y). Let h ∈ H be such
that λ(h) = k. Then

ϕr(h) = sλ(h) = s(k) = ϕ(y).

But (H,+) is a group, because it is the kernel of a special Schreier homo-
morphism. Hence we get that ϕ(y− r(h)) = 0. So there is x ∈ X such that
σ(x) = y − r(h). Call a = f(x). Then

α(a) = αf(x) = gσ(x) = g(y)− gr(h) = g(y) = b

and hence Ker(β) ⊆ A.
(5) β is a special Schreier homomorphism. We have to prove that, for all

b1, b2 ∈ B such that β(b1) = β(b2) there exists a unique a ∈ A such that
b2 = α(a) + b1. Let us first prove the existence of such an a. Given b1 and
b2 as above, let yi ∈ Y be such that g(yi) = bi. We have

pϕ(y1) = βg(y1) = β(b1) = β(b2) = βg(y2) = pϕ(y2),

hence (ϕ(y1), ϕ(y2)) ∈ Eq(p). From the fact that p is a special Schreier
homomorphism we deduce that there exists a unique k ∈ K such that
ϕ(y2) = s(k) + ϕ(y1). Choosing h ∈ H such that λ(h) = k, we get

ϕ(y2) = sλ(h) + ϕ(y1) = ϕr(h) + ϕ(y1) = ϕ(r(h) + y1),

and so (r(h) + y1, y2) ∈ Eq(ϕ). ϕ is a special Schreier homomorphism,
hence there exists a unique x ∈ X such that y2 = σ(x) + r(h) + y1. So we
obtain that

b2 = g(y2) = g(σ(x)+r(h)+y1) = gσ(x)+gr(h)+g(y1) = αf(x)+0+g(y1) = αf(x)+b1,

hence a = f(x) is the element of A we were looking for. To conclude the
proof, we need to show that such an a is unique. Suppose that ā ∈ A is
such that b2 = α(ā) + b1. Let x̄ ∈ X be such that f(x̄) = ā; moreover, let
h ∈ H be such that ϕ(y2) = ϕr(h) + ϕ(y1) as above. Then

g(σ(x̄)+r(h)+y1) = gσ(x̄)+gr(h)+g(y1) = αf(x̄)+b1 = α(ā)+b1 = b2 = g(y2),

so that (σ(x̄)+ r(h)+y1, y2) ∈ Eq(g). Being g a special Schreier homomor-
phism, there exists a unique h̄ ∈ H such that y2 = r(h̄) + σ(x̄) + r(h) + y1.
Observe now that, since H and X are normal subgroups of the monoid
(Y,+), kernels of g and ϕ, respectively, then the element r(h̄) + σ(x̄) −
r(h̄)−σ(x̄) belongs to H ∩X. Indeed, it is immediate to see that it belongs
both to the kernels of g and ϕ. But the intersection H ∩X is N , because
the upper left square in Diagram (1) is a pullback (thanks to Lemma 3.1).
This means that there exists n ∈ N such that

σl(n) = r(h̄) + σ(x̄)− r(h̄)− σ(x̄)
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or, in other terms,

r(h̄) + σ(x̄) = σl(n) + σ(x̄) + r(h̄).

Hence

y2 = σl(n) + σ(x̄) + r(h̄) + r(h) + y1 = σ(l(n) + x̄) + r(h̄+ h) + y1.

Applying ϕ to this last equality and using that ϕσ = 0 we get

ϕ(y2) = ϕσ(l(n)+x̄)+ϕr(h̄+h)+ϕ(y1) = ϕr(h̄+h)+ϕ(y1) = sλ(h̄+h)+ϕ(y1).

But, being p a special Schreier homomorphism, we know that there exists
a unique k ∈ K such that ϕ(y2) = s(k) +ϕ(y1). We proved that both λ(h)
and λ(h̄+ h) satisfy this equation, and hence

λ(h̄) + λ(h) = λ(h̄+ h) = λ(h).

Since (H,+) is a group, this implies that λ(h̄) = 0. So there exists n̄ ∈ N
such that η(n̄) = h̄. From this we get

y2 = r(h̄)+σ(x̄)+r(h)+y1 = rη(n̄)+σ(x̄)+r(h)+y1 = σ(l(n̄)+ x̄)+r(h)+y1.

Using now the uniqueness of x as an element of X such that y2 = σ(x) +
r(h) + y1, we obtain that x = l(n̄) + x̄. Then

a = f(x) = fl(n̄) + f(x̄) = 0 + f(x̄) = f(x̄) = ā,

and this concludes the proof.

�

Theorem 3.3 (the Upper Nine Lemma). Given a commutative diagram of homo-
morphisms in a category C of monoids with operations:

(2) N
η //_��

l
��

H_��
r

��

λ // K_��
s

��
X � ,2 σ //

f
����

Y
ϕ // //

g
����

Z

p
����

A
� ,2

α
// B

β
// // C,

suppose that the three columns and the last two rows are special Schreier extensions.
Then the upper row also is.

Proof. (1) η is a monomorphism, because rη = σl is.
(2) λη is the zero homomorphism. Indeed,

sλη = ϕσl = 0

and this implies that λη = 0 since s is a monomorphism.
(3) λ is a surjective homomorphism. Indeed, consider k ∈ K. Since ϕ is

surjective, there exists y ∈ Y such that ϕ(y) = s(k). Then

βg(y) = pϕ(y) = ps(k) = 0,

hence there exists a ∈ A such that α(a) = g(y). Thanks to the surjectivity
of f , we find x ∈ X such that f(x) = a. From the equality

gσ(x) = αf(x) = α(a) = g(y)

we obtain that (σ(x), y) ∈ Eq(g). Being g special Schreier, there exists a
unique h ∈ H such that y = r(h) + σ(x). (X,+) is a group, so the last
equality can be rewritten as r(h) = y − σ(x). From this we get

sλ(h) = ϕr(h) = ϕ(y)− ϕσ(x) = ϕ(y) = s(k).
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s is a monomorphism, so we conclude that λ(h) = k.
(4) N is the kernel of λ. From points (1) and (2) we already know that N is

contained in the kernel of λ. Let then h ∈ H such that λ(h) = 0. Then
ϕr(h) = sλ(h) = 0, hence there exists x ∈ X such that σ(x) = r(h). This
means that σ(x) = r(h) belongs to the intersection of H and X, which is
N thanks to Lemma 3.1. Hence there exists n ∈ N such that η(n) = h.

(5) Since N , H and K are groups w.r.t. + (which is a consequence of the fact
that the three columns are special Schreier extensions), the fact that λ is a
surjective homomorphism and η is its kernel immediately implies that the
upper row of Diagram (2) is a special Schreier extension. Indeed, it follows
immediately from Proposition 2.5 that every extension of groups is special
Schreier.

�

We would like to stress the strong asymmetry between the proofs of the Lower
and the Upper Nine Lemma: the first is much more complicated than the second.
This happens because, since the columns are special Schreier extensions, the upper
row lies in the category of groups, in which every surjective homomorphism is a
special Schreier extension.

Theorem 3.4 (the Middle Nine Lemma). Given a commutative diagram of homo-
morphisms in a category C of monoids with operations:

(3) N
� ,2 η //_��

l
��

H_��
r

��

λ // // K_��
s

��
X

σ //

f
����

Y
ϕ //

g
����

Z

p
����

A
� ,2

α
// B

β
// // C,

suppose that the three columns, the upper and the lower row are special Schreier
extensions. Suppose moreover that ϕσ = 0. Then the middle row is a special
Schreier extension, too.

Proof. (1) σ is a monomorphism. In order to prove this, let x1, x2 ∈ X be such
that σ(x1) = σ(x2). Then

αf(x1) = gσ(x1) = gσ(x2) = αf(x2).

Since α is a monomorphism, we get that (x1, x2) ∈ Eq(f). Being f special
Schreier, there exists a unique n ∈ N such that x2 = l(n) + x1 and hence

σ(x1) = σ(x2) = σl(n) + σ(x1) = rη(n) + σ(x1).

Thanks to the fact that g is a special Schreier homomorphism, the last
equality forces rη(n) = 0, and so n = 0. Then x1 = x2.

(2) ϕ is surjective. Indeed, consider z ∈ Z. Being β surjective, there exists
b ∈ B such that β(b) = p(z). Choosing y ∈ Y with g(y) = b we get

pϕ(y) = βg(y) = β(b) = p(z).

Using that p is special Schreier, we conclude that there exists a unique
k ∈ K such that z = s(k) + ϕ(y). Choosing h ∈ H such that λ(h) = k we
obtain that s(k) = sλ(h) = ϕr(h), hence z = ϕr(h) + ϕ(y) = ϕ(r(h) + y).
So ϕ is surjective.
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(3) X is the kernel of ϕ. Thanks to point (1) and the hypothesis that ϕσ = 0,
we already know that X is contained in the kernel of ϕ. Conversely, let
y ∈ Y be such that ϕ(y) = 0. Then βg(y) = pϕ(y) = 0 and so there exists
a ∈ A such that α(a) = g(y). Choosing x ∈ X such that f(x) = a we get

gσ(x) = αf(x) = α(a) = g(y).

Using the fact that g is special Schreier we find a unique h ∈ H such that
y = r(h) + σ(x). Then

0 = ϕ(y) = ϕr(h) + ϕσ(x) = ϕr(h) = sλ(h).

Being s injective, we obtain that λ(h) = 0, so there is n ∈ N such that
h = η(n). But then

y = r(h) + σ(x) = rη(n) + σ(x) = σl(n) + σ(x) = σ(l(n) + x)

belongs to the image of X.
(4) ϕ is a special Schreier homomorphism. Let y1, y2 ∈ Y be such that ϕ(y1) =

ϕ(y2). We have to show that there exists a unique x ∈ X such that y2 =
σ(x) + y1. Observe that

βg(y1) = pϕ(y1) = pϕ(y2) = βg(y2),

so that (g(y1), g(y2)) ∈ Eq(β). Being β special Schreier, there exists a
unique a ∈ A such that

g(y2) = α(a) + g(y2).

Choosing x ∈ X such that f(x) = a, we get that α(a) = αf(x) = gσ(x),
and so

g(y2) = gσ(x) + g(y1) = g(σ(x) + y1),

which means that (σ(x)+y1, y2) ∈ Eq(g). Then there exists a unique h ∈ H
such that

y2 = r(h) + σ(x) + y1.

Applying ϕ to this equality we obtain

ϕ(y2) = ϕr(h) + ϕσ(x) + ϕ(y1) = sλ(h) + ϕ(y1).

By assumption ϕ(y1) = ϕ(y2), hence we have that

ϕ(y1) = sλ(h) + ϕ(y1).

But the fact that p is special Schreier forces λ(h) = 0. Then there exists
n ∈ N such that η(n) = h. Hence we have that

y2 = r(h) + σ(x) + y1 = rη(n) + σ(x) + y1 = σl(n) + σ(x) + y1 = σ(l(n) + x) + y1,

so l(n) + x is the element of X we were looking for. It remains to show its
uniqueness. For that, suppose there are x, x′ ∈ X such that

y2 = σ(x) + y1 = σ(x′) + y1.

Then

αf(x) + g(y1) = gσ(x) + g(y1) = g(y2) = gσ(x′) + g(y1) = αf(x′) + g(y1).

But (A,+) is a group, hence

g(y1) = α(−f(x) + f(x′)) + g(y1).

From the fact that g is special Schreier we conclude that −f(x)+f(x′) = 0,
which means that f(x) = f(x′). Being f special Schreier, there exists a
unique n′ ∈ N such that x′ = l(n′) + x. We must show that n′ = 0. From
the equality

σ(x) + y1 = σ(x′) + y1 = σl(n′) + σ(x) + y1 = rη(n′) + σ(x) + y1,
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and from the fact that g is special Schreier, we obtain rη(n′) = 0, which
means that n′ = 0 since r and η are monomorphisms. This concludes the
proof.

�

4. The push forward construction

In this section we develop a push forward construction for special Schreier ex-
tensions with abelian kernel. We start with the following

Definition 4.1. An object X in a category C of monoids with operations is abelian
if (X,+) is an abelian group and x ∗ y = 0 for all x, y ∈ X and all ∗ ∈ Ω′2.

We observe that the abelian objects defined as above are precisely the internal
abelian groups in a category C of monoids with operations.

We describe now how to associate an action with a special Schreier extension.
Let

(4) X
� ,2 k // A

f // // B

be a special Schreier extension with abelian kernel. This means that the split
epimorphism

X
〈k,0〉 // Eq(f)

f2

// A
〈1,1〉oo

is a Schreier split epimorphism. As we explained in Section 2, this split epimorphism
corresponds to an action α of A on X. Putting then

(5) ϕ+(b, x) = α+(a, x) = q(a+ k(x), a)

ϕ∗(b, x) = α∗(a, x) = q(a ∗ k(x), 0)

for any a ∈ A such that f(a) = b, we obtain an action ϕ of B on X: it is well
defined thanks to the fact that X is an abelian object. Indeed, if f(a) = f(a′),
then Lemma 2.10 tells us that kq(a, a′) + a′ = a. Then:

a+ k(x) = kq(a, a′) + a′ + k(x) = kq(a, a′) + kq(a′ + k(x), a′) + a′;

this, thanks to the fact that (X,+) is abelian, is equal to

kq(a′ + k(x), a′) + kq(a, a′) + a′ = kq(a′ + k(x), a′) + a.

On the other hand,

a+ k(x) = kq(a+ k(x), a) + a,

and the uniqueness in the Schreier condition says that

α+(a, x) = q(a+ k(x), a) = q(a′ + k(x), a′) = α+(a′, x).

Considering now any binary operation ∗ ∈ Ω′2, we have

kq(a ∗ k(x), 0) = a ∗ k(x) = (kq(a, a′) + a′) ∗ k(x) = kq(a, a′) ∗ k(x) + a′ ∗ k(x) =

= 0 + a′ ∗ k(x) = a′ ∗ k(x) = kq(a′ ∗ k(x), 0),

since kq(a, a′) ∗ k(x) = 0, being X abelian. This proves that

α∗(a, x) = q(a ∗ k(x), 0) = q(a′ ∗ k(x), 0) = α∗(a
′, x).
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Theorem 4.2. Consider the following situation:

(6) X

g

��

� ,2 k // A
f // // B,

Y

where:

- f is a special Schreier extension with abelian kernel (with Schreier retraction
q : Eq(f)→ X);

- ϕ is the corresponding action of B on X, defined as in (5);
- Y is an abelian object, equipped with an action ψ of B on it;
- g is a morphism which is equivariant w.r.t. the actions, which means that,

for all b ∈ B and all x ∈ X,

g(ϕ+(b, x)) = ψ+(b, g(x)) and g(ϕ∗(b, x)) = ψ∗(b, g(x)).

Then there exists a special Schreier extension f ′ with kernel Y and codomain B,
which induces the action ψ and is universal among all such extensions, meaning
that given any diagram of the form

(7) X

u

��

g

��

� ,2 k // A

v

��

f // //

g′

��

B

Y � ,2 k
′
//

r

��

C
f ′ // //

α

��

B

Z � ,2
l
// E

p
// // B,

where p is a special Schreier extension with abelian kernel Z, r is an equivariant
morphism, (u, v) is a morphism of extensions and u = rg, then there exists a unique
homomorphism α such that v = αg′ and (r, α) is a morphism of extensions.

Proof. The morphism f and the action ψ induce an action ζ of A on Y given by

ζ+(a, y) = ψ+(f(a), y), ζ∗(a, y) = ψ∗(f(a), y).

We can then build the semidirect product Y oζ A of Y and A w.r.t. ζ. Since Y is
an abelian object, this gives us a special Schreier extension with abelian kernel:

Y � ,2〈1,0〉 // Y oζ A
πA

// A.
〈0,1〉oo

Consider now the map h : X → Y oζ A defined by

h(x) = (−g(x), k(x)).

It is clearly injective, since k is. Moreover, it is a homomorphism, indeed:

h(x1) + h(x2) = (−g(x1), k(x1)) + (−g(x2), k(x2)) =

= (−g(x1) + ζ+(k(x1),−g(x2)), k(x1) + k(x2)) =

= (−g(x1) + ψ+(fk(x1),−g(x2)), k(x1) + k(x2)),

and since k is the kernel of f the last expression is equal to

(−g(x1)− g(x2), k(x1) + k(x2)) = (−(g(x1 + x2), k(x1 + x2)) = h(x1 + x2),

where the first equality holds because (Y,+) is an abelian group. Moreover, if
∗ ∈ Ω′2,

h(x1) ∗ h(x2) = (−g(x1), k(x1)) ∗ (−g(x2), k(x2)) =

= ((−g(x1)) ∗ (−g(x2)) + ζ∗(k(x1),−g(x2)) + ζ∗◦(k(x2),−g(x1)), k(x1) ∗ k(x2)) =
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= (0 + ψ∗(fk(x1),−g(x2)) + ψ∗◦(fk(x2),−g(x1)), k(x1 ∗ x2)) = (0, 0) = h(x1 ∗ x2),

since x1, x2 ∈ Ker(f) and X is abelian.

Let c : Y oζ A→ C be the cokernel of h, i.e. the quotient w.r.t. the congruence
Rh on Y oζ A generated by h(X). We first observe that this congruence Rh has a
very simple description. Indeed, consider the following relation on Y oζ A:

(8) (y1, a1)R(y2, a2) if ∃ x ∈ X such that

(y2, a2) = (−g(x), k(x)) + (y1, a1) = (−g(x) + y1, k(x) + a1),

where the last equality holds because the elements in the image of k act trivially
on A. This relation R is clearly an equivalence relation (symmetry comes from
the fact that (X,+) is a group). Let us show that it is a congruence, i.e. that
it is compatible with the operations in Y oζ A. Then it will be necessarily the
congruence Rh generated by h(X). In order to do this, suppose that

(y1, a1)R(y2, a2) and (y′1, a
′
1)R(y′2, a

′
2),

so that there exist x, x′ ∈ X such that

(y2, a2) = (−g(x), k(x)) + (y1, a1) = (−g(x) + y1, k(x) + a1)

and
(y′2, a

′
2) = (−g(x′), k(x′)) + (y′1, a

′
1) = (−g(x′) + y′1, k(x′) + a′1).

We want to prove that there exist x̄, x̃ ∈ X such that

(9) (y2, a2) + (y′2, a
′
2) = (−g(x̄), k(x̄)) + (y1, a1) + (y′1, a

′
1),

and

(10) (y2, a2) ∗ (y′2, a
′
2) = (−g(x̃), k(x̃)) + ((y1, a1) ∗ (y′1, a

′
1)).

We have

(11) (y2, a2) + (y′2, a
′
2) = (−g(x) + y1, k(x) + a1) + (−g(x′) + y′1, k(x′) + a′1) =

= (−g(x) + y1 + ζ+((k(x) + a1),−g(x′) + y′1), k(x) + a1 + k(x′) + a′1).

Observe that (a1 + k(x′), a1) ∈ Eq(f); hence, by Lemma 2.10, we have

kq(a1 + k(x′), a1) + a1 = a1 + k(x′)

and so

k(x) + a1 + k(x′) + a′1 = k(x) + kq(a1 + k(x′), a1) + a1 + a′1.

This gives us a candidate for the element x̄ we were looking for, namely x̄ =
x+ q(a1 + k(x′), a1). Replacing this expression in the right side of (9), we get

(−g(x+ q(a1 + k(x′), a1)), k(x+ q(a1 + k(x′), a1))) + (y1, a1) + (y′1, a
′
1) =

= (−g(x)−gq(a1+k(x′), a1), k(x)+kq(a1+k(x′), a1))+(y1+ψ+(f(a1), y′1), a1+a′1)

and, using the fact that the elements of k(X) act trivially, this is equal to

(−g(x)−gq(a1 +k(x′), a1) +y1 +ψ+(f(a1), y′1), k(x) +kq(a1 +k(x′), a1) +a1 +a′1).

We already proved that the second component is the same as in (11). Let us
check that this is the case for the first component, too. Using the fact that
q(a1 + k(x′), a1) = ϕ+(f(a1), x′), the first component is equal to

−g(x)− gϕ+(f(a1), x′) + y1 + ψ+(f(a1), y′1).

Using equivariance of g, this is equal to

−g(x)− ψ+(f(a1), g(x′)) + y1 + ψ+(f(a1), y′1).

The first component in (11) is

−g(x) + y1 + ζ+(k(x) + a1,−g(x′) + y′1) =
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= −g(x) + y1 + ζ+(a1,−g(x′) + y′1) =

= −g(x) + y1 − ψ+(f(a1), g(x′)) + ψ+(f(a1), y′1),

and the two expressions are the same because (Y,+) is an abelian group.
Let now ∗ ∈ Ω′2; in order to prove (10), we first observe that

(y2, a2) ∗ (y′2, a
′
2) = (−g(x) + y1, k(x) + a1) ∗ (−g(x′) + y′1, k(x′) + a′1) =

((−g(x)+y1)∗(−g(x′)+y′1)+ψ∗(f(k(x)+a1),−g(x′)+y′1)+ψ∗◦(f(k(x′)+a′1),−g(x)+y1),

(k(x) + a1) ∗ (k(x′) + a1)),

and using the distributivity and the fact that X and Y are abelian, this is equal to
(12)
(ψ∗(f(a1),−g(x′))+ψ∗(f(a1), y′1)+ψ∗◦(f(a′1),−g(x))+ψ∗◦(f(a′1), y1), k(x)∗a′1+a1∗k(x′)+a1∗a′1).

Since k(x) ∗ a′1 + a1 ∗ k(x′) ∈ Ker(f), we can choose

x̃ = q(k(x) ∗ a′1 + a1 ∗ k(x′), 0)

and we get

(−g(x̃), k(x̃)) + ((y1, a1) ∗ (y′1, a
′
1)) =

= (−gq(k(x) ∗ a′1 + a1 ∗ k(x′), 0), kq(k(x) ∗ a′1 + a1 ∗ k(x′), 0))+

+(y1 ∗ y′1 + ψ∗(f(a1), y′1) + ψ∗◦(f(a′1), y1), a1 ∗ a′1) =

= (−gq(k(x)∗a′1+a1∗k(x′), 0), k(x)∗a′1+a1∗k(x′))+(ψ∗(f(a1), y′1)+ψ∗◦(f(a′1), y1), a1∗a′1) =

(13)
= (−gq(k(x)∗a′1+a1∗k(x′), 0)+ψ∗(f(a1), y′1)+ψ∗◦(f(a′1), y1), k(x)∗a′1+a1∗k(x′)+a1∗a′1),

where the last equality holds since the elements of Ker(f) act trivially. Now, since
the second components in (12) and in (13) are equal, it suffices to show that the
first components also are. Using the fact that (Y,+) is an abelian group, it is the
same to show that

−gq(k(x) ∗ a′1 + a1 ∗ k(x′), 0) = ψ∗(f(a1),−g(x′)) + ψ∗◦(f(a′1),−g(x)).

Thanks to the equivariance of g, we have that

ψ∗(f(a1),−g(x′)) + ψ∗◦(f(a′1),−g(x)) = −gϕ∗(f(a1), x′)− gϕ∗◦(f(a′1), x) =

= −g(q(a1 ∗ k(x′), 0) + q(a′1 ∗◦ k(x), 0)) = −g(q(a1 ∗ k(x′), 0) + q(k(x) ∗ a′1, 0))

and, applying the monomorphism k, it is immediate to check that

q(k(x) ∗ a′1 + a1 ∗ k(x′), 0) = q(a1 ∗ k(x′), 0) + q(k(x) ∗ a′1, 0).

This concludes the proof that R is a congruence and that it coincides with Rh.

Knowing now that c : Y oζ A → C is the quotient w.r.t. the congruence (8), it
is immediate to see that h(X) is the kernel of c, i.e. the zero-class of the relation
Rh. Moreover, c is a special Schreier extension. Indeed, suppose that c(y1, a1) =
c(y2, a2). This means that (y1, a1)Rh(y2, a2), so that there exists x ∈ X such that

(y2, a2) = (−g(x), k(x)) + (y1, a1) = (−g(x) + y1, k(x) + a1).

In particular, this says that a2 = k(x) + a1. But then (a2, a1) ∈ Eq(f), and f is a
special Schreier extension, so x is necessarily equal to q(a2, a1). Hence there is a
unique x ∈ X with the required property.
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Consider now the following commutative diagram:

1 //

��

X_��
h

��

X_��
k

��
Y � ,2〈1,0〉 // Y oζ A

c
����

πA // // A

f
����

Y
k′

// C
f ′

// B,

where k′ = c〈1, 0〉 and f ′ is induced by the universal property of the cokernel c. By
hypothesis and by what we just proved, the three columns and the first two rows
are special Schreier extensions. The Lower Nine Lemma (Theorem 3.2) gives then
that the lower row also is. This is the push forward of f along g we were looking for.

We still have to prove that the action of B on Y determined by f ′ coincides with
ψ and that our construction is universal. Let us denote by [(y, a)] an element of C,
i.e. an equivalence class of the relation Rh. Then

f ′([(y, a)]) = f ′c(y, a) = fπA(y, a) = f(a).

Denoting by q′ the unique map Eq(f ′)→ Y determined by the fact that f ′ is special
Schreier, we have that the action χ of B on Y induced by f ′ is given by

χ+(b, y) = q′([(ȳ, ā)] + [(y, 0)], [ȳ, ā]),

χ∗(b, y) = q′([(ȳ, ā)] ∗ [(y, 0)], 0)

for all ā ∈ A such that f(ā) = b. In particular, we can choose ȳ = 0. Hence:

χ+(b, y) = q′([(0, ā)] + [(y, 0)], [(0, ā)]) = q′([(ψ+(f(ā), y), ā)], [(0, ā)])

and

χ∗(b, y) = q′([(0, ā)] ∗ [(y, 0)], 0) = q′([(ψ∗(f(ā), y), 0)], 0).

But q′([(ψ+(f(ā), y), ā)], [(0, ā)]) = q′([(ψ+(b, y), ā)], [(0, ā)]) is the unique element
t ∈ Y such that

k′(t) + [(0, ā)] = [(ψ+(b, y), ā)];

computing the left-hand side of the equality, we obtain

k′(t) + [(0, ā)] = [(t, 0)] + [(0, ā)] = [(t, ā)],

and so χ+(b, y) = ψ+(b, y). Similarly, q′([(ψ∗(f(ā), y), 0)], 0) = q′([(ψ∗(b, y), 0)], 0)
is the unique element w ∈ Y such that

k′(w) = [(ψ∗(b, y), 0)],

and so χ∗(b, y) = ψ∗(b, y).

In order to prove the universality of our construction, consider Diagram (7).
Let us denote by τ the action of B on Z determined by p. We first define a map
β : Y oζ A→ E by putting

β(y, a) = lr(y) + v(a).

It is a homomorphism, indeed

β((y1, a1) + (y2, a2)) = β(y1 + ψ+(f(a1), y2), a1 + a2) =

= lr(y1) + lrψ+(f(a1), y2) + v(a1) + v(a2) =

= lr(y1) + lτ+(f(a1), r(y2)) + v(a1) + v(a2),
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where the last equality holds because r is equivariant. Since τ is induced by p, the
last expression is equal to

lr(y1) + lτ+(pv(a1), r(y2)) + v(a1) + v(a2) =

= lr(y1) + lqp(v(a1) + lr(y2), v(a1)) + v(a1) + v(a2),

where qp is the Schreier retraction associated with the special Schreier extension p.
The properties of qp give that the last expression is

lr(y1) + v(a1) + lr(y2) + v(a2) = β(y1, a1) + β(y2, a2).

If ∗ ∈ Ω′2, then

β((y1, a1) ∗ (y2, a2)) = β(y1 ∗ y2 + ψ∗(f(a1), y2) + ψ∗◦(f(a2), y1), a1 ∗ a2) =

= lrψ∗(f(a1), y2) + lrψ∗◦(f(a2), y1) + v(a1 ∗ a2).

By equivariance of r, this is equal to

lτ∗(pv(a1), r(y2)) + lτ∗◦(pv(a2), r(y1)) + v(a1) ∗ v(a2) =

= lqp(v(a1) ∗ lr(y2), 0) + lqp(lr(y1) ∗ v(a2), 0) + v(a1) ∗ v(a2).

The properties of qp give that this is equal to

v(a1) ∗ lr(y2) + lr(y1) ∗ v(a2) + v(a1) ∗ v(a2) =

lr(y1) ∗ lr(y2) + v(a1) ∗ lr(y2) + lr(y1) ∗ v(a2) + v(a1) ∗ v(a2) =

= (lr(y1) + v(a1)) ∗ (lr(y2) + v(a2)) = β(y1, a1) ∗ β(y2, a2).

Moreover, we have that

βh(x) = β(−g(x), k(x)) = −lrg(x) + vk(x) = −lu(x) + lu(x) = 0

for all x ∈ X. Being c the cokernel of h, we conclude that there exists a unique
morphism α : C → E such that αc = β, and so

αg′ = αc〈0, 1〉 = β〈0, 1〉 = v.

Moreover, (r, α) is a morphism of extensions, indeed:

αk′(y) = αc(y, 0) = β(y, 0) = lr(y)

and

pα([(y, a)]) = pβ(y, a) = plr(y) + pv(a) = 0 + pv(a) = f(a) = f ′([(y, a)]).

�

We conclude this section by mentioning that a similar push forward construction,
in the particular case of monoids, has been obtained independently in [19] for a wider
class of extensions, whose kernels are commutative monoids but not necessarily
abelian groups. However, in [19] a weaker universality of the construction is proved:
the existence of a morphism α as in Diagram (7) was obtained only when r is an
identity.
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5. The Baer sum of special Schreier extensions with abelian kernel

We now show that the push forward construction described in the previous sec-
tion allows, in the particular case of monoids, to define the Baer sum of special
Schreier extensions with abelian kernel. A construction of the Baer sum was al-
ready given in [12], using factor sets as in the case of classical group extensions.
We remark that a similar construction was announced in [13]. We will show that
the two approaches give the same result. The advantage of the approach via the
push forward is that it is functorial, and this can be useful to give an interpretation
of cohomology of monoids in terms of special Schreier extensions. An extension
of the same functorial construction of the Baer sum to the case of any category
of monoids with operations, together with a description of the cohomology of such
structures by means of special Schreier extensions is material for a future work.

We start by recalling briefly the construction given in [12]. For the sake of
uniformity with [12], in this section we will use the multiplicative notation for the
monoid operation.

Definition 5.1 ([12], Definition 3.1). Given a monoid B, an abelian group X and
an action ϕ : B → End(X) of B on X, a factor set is a map g : B×B → X which
satisfies, for all b, b1, b2, b3 ∈ B, the following conditions:

(i) g(b, 1) = g(1, b) = 1;
(ii) g(b1, b2) · g(b1 · b2, b3) = ϕ(b1)(g(b2, b3)) · g(b1, b2 · b3).

Given a special Schreier extension with abelian kernel

(14) X � ,2 k // A
f // // B,

we can associate with it a factor set in the following way: let s : B → A be a set-
theoretical section of f (it exists, since f is surjective). Let us choose s such that
s(1) = 1. Then, for any b1, b2 ∈ B:

f(s(b1) · s(b2)) = b1 · b2 = f(s(b1 · b2)).

Hence the pair (s(b1)·s(b2), s(b1·b2)) belongs to Eq(f). We define a map g : B×B →
X by putting:

g(b1, b2) = q(s(b1) · s(b2), s(b1 · b2)),

where q is the Schreier map associated with f . Such a map g is a factor set ([12],
Proposition 3.3). Moreover, thanks to Proposition 3.4 in [12], the extension (14) is
isomorphic to an extension of the form

X � ,2〈1,0〉 // X ×B πB // // B,

where the monoid operation on X ×B is defined by:

(x1, b1) · (x2, b2) = (x1 · ϕ(b1)(x2) · g(b1, b2), b1 · b2).

Choosing two different sections for f , the corresponding factor sets differ by an
inner factor set :

Definition 5.2. A factor set g is an inner factor set if it is of the form

g(b1, b2) = h(b1) · ϕ(b1)(h(b2)) · h(b1 · b2)−1

for some map h : B → X such that h(1) = 1.

The set F(B,X,ϕ) of all the factor sets corresponding to a given action ϕ : B →
End(X) is a subgroup of the abelian group XB×B , where the group operation is
the pointwise multiplication. Its subset IF(B,X,ϕ) of inner factor sets is a normal
subgroup of F(B,X,ϕ). Let us denote by SExt(B,X,ϕ) the set of isomorphic
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classes of special Schreier extensions of a monoid B by an abelian group X inducing
the action ϕ : B → End(X). Since the Short Five Lemma holds for special Schreier
extensions ([2], Proposition 7.2.1), two special Schreier extensions of B by X are
isomorphic as soon as there exists a morphism of extensions between them. We
have the following

Theorem 5.3 ([12], Theorem 3.7). The set SExt(B,X,ϕ) of isomorphic classes of
special Schreier extensions of a monoid B by an abelian group X inducing the action
ϕ : B → End(X) is in bijection with the factor abelian group

F(B,X,ϕ)

IF(B,X,ϕ)
.

By means of this bijection, we can endow SExt(B,X,ϕ) with an abelian group
structure, which we call the Baer sum. The unit of this abelian group is the iso-
morphic class of the split extension obtained by taking the semidirect product of
X and B with respect to the action ϕ.

We propose now an alternative description of the Baer sum. Given two special
Schreier extensions

X � ,2 k1 // A1
f1 // // B and X � ,2 k2 // A2

f2 // // B

with abelian kernel X which induce the same action ϕ : B → End(X), let us first
consider their direct product:

X ×X � ,2k1×k2// A1 ×A2
f1×f2 // // B ×B

and pull it back along the diagonal morphism ∆B : B → B×B defined by ∆B(b) =
(b, b):

X ×X � ,2 〈k1,k2〉 // P

��

f̄ // // B

∆B

��
X ×X � ,2

k1×k2
// A1 ×A2

f1×f2
// // B ×B.

Special Schreier extensions are stable under pullback along any morphism ([2],
Proposition 7.1.4), hence f̄ is a special Schreier extension. Moreover, it is easy to
check that the corresponding action ϕ̄ : B → End(X ×X) is given by

ϕ̄(b)(x1, x2) = (ϕ(b)(x1), ϕ(b)(x2)).

Since X is an abelian group, its multiplication m : X×X → X is a homomorphism,
and it is equivariant w.r.t. the actions ϕ̄ and ϕ, since

ϕ(b)(x1 · x2) = ϕ(b)(x1) · ϕ(b)(x2) = m(ϕ̄(b)(x1, x2)).

We can then take the push forward of f̄ along m:

X ×X

m

��

� ,2〈k1,k2〉// P

c

��

f̄ // // B

X � ,2
k′

// C
f ′
// // B,

thus obtaining a special Schreier extension f ′ which induces the same action ϕ. We
now show that such an extension is the same that we would obtain by taking the
Baer sum of f1 and f2 by means of factor sets.
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Let us choose two sections s1 and s2 of f1 and f2, respectively, with the property
that si(1) = 1. The corresponding factor sets are then given by

g1(b, b′) = q1(s1(b) · s1(b′), s1(b · b′)),

g2(b, b′) = q2(s2(b) · s2(b′), s2(b · b′)),
where q1 and q2 are the Schreier maps associated with f1 and f2. We observe that
the pullback P is the set

P = { (a1, a2) ∈ A1 ×A2 | f1(a1) = f2(a2) }.

The monoid C is then a quotient of the semidirect product X o P . We can then
consider the section s′ of f ′ defined by

s′(b) = [(1, s1(b), s2(b))].

The corresponding factor set is

g′(b, b′) = q′(s′(b) · s′(b′), s′(b · b′)),

where q′ is the Schreier retraction associated with f ′. We want to prove that

g′(b, b′) = g1(b, b′) · g2(b, b′).

Thanks to the properties of q′, it suffices to prove that the element g1(b, b′) ·g2(b, b′)
of X is such that

k′(g1(b, b′) · g2(b, b′)) · [(1, s1(b · b′), s2(b · b′))] = [(1, s1(b) · s1(b′), s2(b) · s2(b′))].

But

k′(g1(b, b′) · g2(b, b′)) = [(g1(b, b′) · g2(b, b′), 1, 1)],

so we have to show that

[(g1(b, b′) · g2(b, b′), 1, 1)] · [(1, s1(b · b′), s2(b · b′))] = [(1, s1(b) · s1(b′), s2(b) · s2(b′))]

or, in other terms,

[(g1(b, b′) · g2(b, b′), s1(b · b′), s2(b · b′))] = [(1, s1(b) · s1(b′), s2(b) · s2(b′))].

The two equivalence classes coincide if and only if there is a pair (x1, x2) ∈ X ×X
such that

(1, s1(b) · s1(b′), s2(b) · s2(b′)) = h(x1, x2) · (g1(b, b′) · g2(b, b′), s1(b · b′), s2(b · b′)),

where h : X ×X → X o P is the monomorphism given by

h(x1, x2) = ((x1 · x2)−1, k1(x1), k2(x2)).

If we choose xi = gi(b, b
′), we get:

h(x1, x2) · (g1(b, b′) · g2(b, b′), s1(b · b′), s2(b · b′)) =

= ((g1(b, b′)·g2(b, b′))−1, k1g1(b, b′), k2g2(b, b′))·(g1(b, b′)·g2(b, b′), s1(b·b′), s2(b·b′)).
Since the elements of P of the form (k1(x1), k2(x2)) act trivially on X (because
f̄(k1(x1), k2(x2)) = 1), the last expression is equal to

((g1(b, b′) · g2(b, b′))−1 · g1(b, b′) · g2(b, b′), k1g1(b, b′) · s1(b, b′), k2g2(b, b′) · s2(b, b′)) =

= (1, s1(b) · s1(b′), s2(b) · s2(b′))

and the proof is completed.
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