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Abstract. Being able to accurately forecast the evolution of wheat prices can be 
a valuable tool. Most of the published works apply classical forecasting models 
to wheat price time series, and they not always do out of-sample testing. In this 
work five modelling approaches for wheat price forecasts will be compared, us-
ing only past values of the time series. The models’ performance is assessed con-
sidering out-of-sample data only, by considering a sliding and growing time win-
dow that will define the data used to determine the models’ parameters, and the 
data used for out-of-sample forecasts. 
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1 Introduction 

According to Food and Agriculture Organization of the United Nations (FAO), wheat 
is the most important grain source for humans, and is grown in more land than any other 
commercial crop [1]. The demand has also increased due to their use as biofuels.  

Wheat prices can be influenced by many different factors: competition in the main 
international wheat markets, existing regulations and policies, weather conditions, 
among other factors. Being able to develop models capable of accurately modelling and 
being able to explain wheat prices evolution is, thus, a difficult challenge. The United 
States (US) farm programs or the European Union Common Agricultural Policy are 
examples of policy factors influencing wheat production and price [2]. Brunner [3], 
examines the historical effects of El Niño on world primary commodity prices, reaching 
the conclusion that it has statistically significant economic effects. Hill et al. [4] evalu-
ate the effect of using seasonal climate forecasts on international wheat economy. 
Ubilava [5] also follows this trend, reaching the conclusion that El Niño influences 
wheat prices. 

In [6] the authors present an asymmetric-error generalized autoregressive condi-
tional heteroscedasticity (GARCH) model, applying it to forecasts of U.S. soybean, 
sorghum and wheat prices. GARCH models can capture the phenomenon of volatility 
clustering, characterized by periods where the dependent variable presents high vola-
tility, and others where the time series are almost constant. The authors use wheat prices 
from 1913 to 2000, adjusted for inflation.  
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Benavides [7] studies the volatility accuracy of volatility forecast models for wheat 
future prices returns, applying GARCH and ARCH models, and also an option implied 
and a composite forecast model. The authors recommend the use of the composite fore-
cast model if both historical values and option implied volatility forecasts are available.  

Yang et al. [2] study wheat future prices and volatility transmission for the United 
States, Canada and European Union in the period 1996 to 2002. They observe that Ca-
nadian prices are more influenced by the US prices than the other way around. Europe, 
on the other hand, appears to be self-dependent, having some influence on the US prices 
on the long run. The authors reach the conclusion that none of the three markets can be 
identified as being the international market leader. 

In [8] the authors study the relationships among wheat prices from five different 
countries in the period 1981-1999. The objective is to discover dynamic causal rela-
tionships among these prices. Contradicting previous results, the authors reach the con-
clusion that US and Canada are leaders in these markets, with US having significant 
effects on the three markets other than Canada. 

Roche and McQuinn [9] consider the Irish grain market and the influence of the 
British grain prices on Irish prices. The authors use a multivariate GARCH model, 
where relative effects of past variances and covariances are determined entirely by the 
data and are not decided by the user.  

A season-average futures price forecasting model for corn, soybeans and wheat is 
presented in [10]. This model considers future prices, farm prices and marketing 
weights.  

Jumah and Kunst [11] consider barley and wheat prices and study the use of seasonal 
models, since these grains are subject to seasonal variation due to the biological growth 
of the plant, related also to climatic factors. The authors observe that prices tend to 
increase in the first and fourth quarter of the year, and to fall in the third, although 
seasonal cycles are different for different countries. 

Arshad and Hameed [12] investigate the relationships between cereal prices and pe-
troleum prices. Data from 1980 to 2008 was considered, and the authors reached evi-
dence of a long-run equilibrium relationship between the two product prices. 

Algieri [13] develops a vector error correction model considering a broad range of 
explanatory variables: market-specific variables, macroeconomic variables, financial 
factors and weather conditions. The author considers data within the period 1980-2012. 
The author states that changes observed in wheat prices are like a roller coaster, and 
seem to be inconsistent with supply and demand fundamentals. Wheat price movements 
can be explained looking at speculation, global demand and real effective exchange 
rate. Speculation in the futures market is one of the reasons justifying wider price 
changes. Chen et al. [14] had already considered the effect of exchange rates in com-
modity prices. In [15] it is also possible to find the development a structural vector 
autoregression model for wheat price variation, considering four structural factors: 
global real economic activity and commodity demand; wheat-specific supply and de-
mand factors; speculative or precautionary demand; financial speculation, commodity 
index trading and comovement. The authors conclude that wheat price spikes can be 
mostly explained by shocks to current supply. 
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Ahumada and Cornejo [16] focus on three cereals: corn, soybeans and wheat. They 
try to improve the accuracy of price forecast models by explicitly using price 
crossdependence among these products, considering equilibrium correction models.  

There are not many examples in the literature of machine learning approaches ap-
plied to wheat price forecasting. Khamis and Abdullah [17] investigate the use of back-
propagation neural networks and nonlinear autoregressive models with exogenous in-
puts networks to estimate the price of wheat using as inputs the prices of other three 
grains: oats, barley and soybeans. Historical values from 1978 to 2012 were used, and 
the authors concluded that the latter model performed better. 

In this paper we present a different approach for wheat price forecasting. The main 
goal is to be able to predict the monthly wheat prices for the next six months period 
using information on past prices only. A rolling window is considered, where prices 
that become known are incorporated into the training of the forecasting model, and new 
predictions are made for the next six months. Five different methods are tested: Auto-
regressive Integrated Moving Average (ARIMA) models, Classification and Regres-
sion Trees (CART), Random Forests (RF), Support Vector Machines (SVM) and Mul-
tivariate Adaptive Regression Splines (MARS). All the models are tested on out-of-
sample data. 

In the next section the data used is described and an exploratory analysis is per-
formed. The models that are used are also described. Section 3 presents the main com-
putational results. Section 4 presents the main conclusions and paths for future research. 

2 Materials and Methods 

2.1 Data 

According to the United States Wheat Associates, there are six classes of wheat grown 
in the United States that differ on color, hardness and growing season. In this work we 
consider the export prices of hard red winter wheat (accounting for about 40% of the 
total wheat production), delivered at the United States Gulf port for prompt or thirty 
days shipment. One of the decisions that has to be made is whether real prices or nom-
inal prices should be modelled and predicted. Real prices (also known as constant 
prices) are indexed to a given year. All values are “deflated”, meaning that the effect of 
the inflation with respect to that year is removed. Nominal prices (also known as current 
prices) include the effect of inflation. In this paper we choose to work with nominal 
prices. Monthly prices from February 1992 to February 2017 are considered. Figure 1 
shows the price evolution during this time period. Looking at Figure 1, it is not possible 
to clearly identify trends, cycles or seasonality. This is also the case looking at Figure 
2, where the three components of the time series are depicted: seasonal component, 
trend-cycle component, remainder component, considering an additive model based on 
[18] (STL decomposition). Figure 3 presents the same data but with all values of the 
same month plotted together. The horizontal lines indicate the mean value for each 
month. The plot is not particularly revealing, since there are not many differences for 
the different months. 
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Fig. 1. Evolution of Hard Red Winter Wheat Prices 

 

Fig. 2. STL decomposition 
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Fig. 3. Seasonal plot of monthly prices 

In this work we propose to use forecasting models to predict monthly prices considering 
past information on prices only. It is thus important to understand whether there is a 
linear relationship between lagged values of this time series. One way of visually de-
tecting autocorrelations is by looking at the Autocorrelation Function (ACF) and Partial 
Autocorrelation Function (PACF) plots. Defining as 𝑦  the value of the time series at 
time period t and 𝑦  the value of the time series k periods before, the ACF plot will 
show the autocorrelations between 𝑦  and 𝑦  for different values of k (Figure 4). As 
can be observed, the ACF declines very slowly. Up to 24 lags are statistically signifi-
cantly different from zero.  

The PACF measures the relationship between 𝑦  and 𝑦  after removing the effects 
of other time lags (from 1 to k−1). Figure 5 depicts the PACF plot. After the first lag, 
the PACF drops dramatically. Most PACFs after lag 2 are statistically insignificant. A 
stationary time series is such that its properties will not depend on the time of the ob-
servation. When a series is not stationary, it is possible to make it stationary by differ-
encing. One way to determine if differencing can be beneficial is to use unit root tests. 
One of such tests is the Augmented Dickey-Fuller Test (ADF). The null-hypothesis for 
an ADF test is that the data are non-stationary. So large p-values are indicative of non-
stationarity, and small p-values suggest stationarity. Using the usual 5% threshold, dif-
ferencing is required if the p-value is greater than 0.05. Applying ADF test to this time 
series, the p-value is 0.14. Another popular unit root test is the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test. This reverses the hypotheses, so the null-hypothesis is that 
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the data are stationary. In this case, small p-values (e.g., less than 0.05) suggest that 
differencing is required. In this case the p-value obtained is equal to 0.01. Figure 6 
shows the series after first order differencing. This series is now stationary as can be 
concluded by looking at the ADF and KPSS tests, that present p values equal to 0.01 
and 0.10 respectively. 

 

 

Fig. 4. ACF plot 

 

Fig. 5. PACF plot 
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Fig. 6. First Order Differencing 

2.2 Forecasting Models 

In this paper five different forecasting models are used. All models were developed 
using R language and libraries. The classical ARIMA model was applied to this time 
series. Four different machine learning models will also be applied, namely Classifica-
tion and Regression Tree (CART), Random Forests (RF), Support Vector Machines 
(SVM) and Multivariate Adaptive Regression Splines (MARS). Considering the ma-
chine learning frameworks, different models were developed for each of the forecasting 
horizons. This means that a model will be trained to forecast prices one month in ahead, 
another model to forecast two months in ahead, and so on. As most of these models 
have parameters that have to be fixed a priori, different parameters were tested and the 
model that presented the best cross validation (CV) error in the training set was chosen. 
The CV error is calculated by considering, within the training set, a sample set that is 
not used for training but only for testing the model. CV error was also used for deciding 
how many time lags should be considered in the input variables set. A short description 
of each of the models is presented next. It should be noticed that, unlike ARIMA mod-
els, machine learning models do not need to consider assumptions regarding the sta-
tionarity of the time series. 
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ARIMA.  
An ARIMA(p,d,q) is an autoregressive integrated moving average model where p 

represents the number of autoregressive terms, d represents the number of times the 
time series was differenced in order to become stationary and q is the number of moving 
average terms. Different models are obtained with different values of p, d and q. The 
model considered was the best one according to the Akaike Information Criteria (AIC), 
returned by using the function auto.arima from the R forecast package. Both seasonal 
and non-seasonal models were tested. The best model was a non-seasonal 
ARIMA(0,1,1). The obtained residuals are depicted in Figure 7. Figures 8 and 9 present 
the ACF and PACF plots for the residuals. None of the autocorrelations and partial 
autocorrelations is individually statistically significant. The Box-Pierce presents a 
p-value equal to 0.79. The Ljung-Box statistics present a p-value equal to 0.67. High 
p-values allow us to conclude that the residuals estimated are purely random. 

 

Fig. 7. ARIMA residuals 

Classification and Regression Tree.  
CART models are represented by binary trees with different splitting rules in non-

leaf nodes [19]. In each node the algorithm will decide which variable gives the best 
split, by using a given criteria that corresponds to the minimization of a cost function 
(like the maximization of between-groups sum-of-squares error, for instance). The leaf 
nodes of the tree represent a given output variable that is used for making the prediction. 
After building the tree, it is usual to run a pruning algorithm, that will try to remove 
leaf nodes if they do not contribute to a decrease in the cost function, aiming at achiev-
ing a less complex model. 

To make a forecast considering a vector of new and unseen input variables, it is only 
necessary to go from the top to the bottom of the tree, respecting the rules in each node. 
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There is one and only one path from the root of the tree to each one of the leaves. 
Package rpart has been used in the computational tests performed. 

Random Forests.  
Random Forests can be interpreted as an ensemble of predictors. They are a combi-

nation of tree predictors such that each tree is constructed based on a sampling of the 
available training samples [20]. Each tree in the forest is also built considering a random 
selection of input variables that will determine the splitting rules in each node. Package 
randomForest for R has been used in the computational tests performed. 

Support Vector Machines.  
Support Vector Machines (SVM) are supervised learning models that were initially 

used as linear classifiers. They use kernels to extend data into a high dimensional fea-
ture space to improve the classification performance [21]. SVM can be applied to both 
classification problems and regression problems. SVM implementations require the 
user to define some parameters (the kernel function and a cost parameter that deter-
mines the trade off between model complexity and allowed deviations) [22]. Kernels 
usually considered are the linear kernel, the Gaussian basis function, the polynomial 
kernel, the Bessel function, the Laplace radial basis function. When there is no prior 
knowledge about the data, Gaussian, Laplace basis function and Bessel kernels are con-
sidered to be general-purpose kernels and thus an appropriate choice [23]. Package 
Kernlab was used in the computational tests performed.  

Multivariate Adaptive Regression Splines.  
MARS has been first introduced by Friedman [24], and it is described by its author 

as a “flexible nonparametric regression modelling”. The method produces continuous 
models with continuous derivatives, which is a differentiating aspect from the recursive 
partitioning approaches. MARS builds models that are weighted sums of basis func-
tions, such that each basis function is either a constant, a function of the form max(0,x-
constant) or max(0, constant-x), or a product of two or more of these functions. The 
algorithm begins by considering one single region. Then this region is recursively split, 
by defining a basis function, a predictor variable and a split point. The cost function to 
be minimized is the lack of fit of the model. Package earth has been used in the com-
putational tests performed. 

2.3 Methods 

The forecasting models will be tested in out-of-sample data only. Prices from February 
1992 to February 2012 will be used to estimate the models’ parameters. These models 
will then be used to forecast price values for the next six months (March 2012-August 
2012). Then the in-sample time window will consider one more month (including 
March 2012). The models’ parameters are again estimated. New forecasts will be done 
for the next six months (April 2012-September 2012). The process will continue until 
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the end of the available dataset. The last forecasting window will consider months from 
September 2016 to February 2017, being the models built with data until August 2016. 
This means that the models will be evaluated considering out of sample data, in a total 
of five years (60 months) predictions. Figure 8 illustrates the operation of the growing 
sliding window. 

 
February 1992 ... ... ... February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012
February 1992 ... ... ... February 2012 March 2012 April 2012 May 2012 June 2012 July 2012 August 2012 September 2012

... ... ... ... ... ... ... ... ... ... ... ... ...
February 1992 ... ... ... ... ... August 2016 September 2016 October 2016 November 2016 December 2016 January 2017 February 2017  

Fig. 8. Table 1: In–sample and out-of-sample data 

It is possible to calculate different forecasting metrics to assess the performance of the 
different models. Consider that 𝑦  is the observed value at period t,  𝑦  is the forecasted 
value for that time period, made k periods in advance, and that there are forecasts for 

periods tT. Mean relative absolute error (MAE) can be calculate as ∑
|  |

∈ #𝑇⁄ . 

Maximum relative absolute error (MaxAE) can be calculated as 𝑚𝑎𝑥
|  |

, ∀𝑡 ∈ 𝑇 . 

Root Mean Square Error (RMSE) is calculated as
∑ ( )∈

#
  . These error metrics 

are calculated for all the forecasting futures considered (one to six months). The ability 
of correctly forecasting whether the price will increase or decrease in the future is also 
going to be considered. 

3 Computational Results 

Each of the models developed was tested in out-of-sample data, as explained in Section 
2.3. The capability of predicting wheat prices one up to six months ahead is evaluated 
using different performance measures. All models were also compared with a naïve 
model that considers the prediction 𝑦 = 𝑦 , meaning that the prediction made k 
months ahead will simply be equal to the current price. 

Table 2 presents the results considering MAE. Table 3 presents MaxAE results, and 
table 4 RMSE results. The best value found is highlighted in each one of the tables. 

Table 2. Mean Absolute Error (MAE) 

 months ahead 

 1 2 3 4 5 6 

ARIMA 4,34% 9,49% 12,87% 16,05% 18,73% 21,29% 

CART 5,43% 9,06% 13,54% 16,17% 16,86% 18,95% 

RF 4,35% 9,15% 12,55% 15,25% 19,31% 21,74% 

SVM 2,55% 5,40% 8,07% 11,72% 14,35% 15,88% 

MARS 2,22% 5,67% 8,09% 11,83% 15,48% 18,60% 

Näive 4,54% 7,52% 9,68% 11,78% 13,12% 14,55% 
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Table 3. Maximum Absolute Error (MaxAE) 

 months ahead 

 1 2 3 4 5 6 

ARIMA 21,58% 27,85% 37,66% 35,29% 45,21% 50,73% 

CART 16,61% 23,55% 28,99% 41,52% 57,48% 61,70% 

RF 15,79% 25,40% 27,22% 31,05% 46,23% 71,73% 

SVM 8,89% 14,37% 24,76% 30,71% 35,04% 36,33% 

MARS 6,77% 16,77% 23,10% 32,09% 39,05% 38,79% 

Näive 21,90% 25,37% 27,15% 36,32% 35,28% 33,33% 

 

Table 4. Root Mean Square Error 

 months ahead 

 1 2 3 4 5 6 

ARIMA 14,45 26,81 34,95 39,15 44,29 48,16 

CART 15,57 21,97 32,71 39,10 41,05 43,92 

RF 12,83 25,91 32,44 36,81 45,40 48,92 

SVM 7,58 14,66 23,14 31,89 37,82 38,90 

MARS 6,17 15,50 22,43 32,04 39,23 43,61 

Näive 14,79 23,27 29,49 33,87 35,76 36,87 
 

 
As expected, the models’ performance deteriorates as the forecasting horizon in-

creases. No model is the “best” model under all the possible performance criteria. We 
can, however, conclude that SVM and MARS models present the best results for one 
to four months forecasts. It is interesting to note that the näive model achieves the best 
results for five and six months forecasts. 

Models were also tested for the capacity of accurately forecasting if the future time 
series value would be greater or lower than the current one. Accuracy results are pre-
sented in table 5. In this case, SVM presents the best results for all forecasting horizons. 
Results are very good in predicting the increase or decrease in future price compared 
with the current one for one and two months forecasts.  

As it was possible to obtain very good results with MARS for one month forecasts, 
it makes sense to try to develop two to six months forecast models incorporating these 
predictions. This means that only one month prediction models are developed, since 
longer term predictions will consider as input variables the values already predicted for 
the shorter term forecasts. Figure 9 illustrates this situation. After having forecasts for 
the next month, it is possible to include these values as input data in longer term fore-
casts, so that two months forecasts still use the one month forecast model, and so on. 
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Table 5. Accuracy in Trend 

 months ahead 

 1 2 3 4 5 6 

ARIMA 55,93% 54,39% 50,91% 45,28% 50,98% 55,10% 

CART 61,02% 50,88% 52,73% 49,06% 47,06% 48,98% 

RF 69,49% 49,12% 58,18% 50,94% 47,06% 42,86% 

SVM 86,44% 75,44% 69,09% 56,60% 58,82% 61,22% 

MARS 84,75% 75,44% 65,45% 56,60% 47,06% 40,82% 
 
 
 

February 1992 ... August 2016 September 2016
February 1992 ... August 2016 prediction September 2016 October 2016
February 1992 ... August 2016 prediction September 2016 prediction October 2016 November 2016
February 1992 ... August 2016 prediction September 2016 prediction October 2016 prediction November 2016 December 2016
February 1992 ... August 2016 prediction September 2016 prediction October 2016 prediction November 2016 prediction December 2016 January 2017
February 1992 ... August 2016 prediction September 2016 prediction October 2016 prediction November 2016 prediction December 2016 prediction January 2017 February 2017

 

Fig. 9. Incorporating previous predicted values in longer term forecasts: grey cells represent fore-
casted values 

 
Tables 6 to 9 show the performance metrics for this new approach, comparing with 

the initial MARS models and also with the best performance obtained earlier. It is pos-
sible to conclude that the performance for two to four months forecasts improves, since 
this methodology obtains the best results for MAE and RMSE. 

Table 6. Mean Absolute Error (MAE) 

 2 3 4 5 6 

Best previous result 5,40% 8,07% 11,72% 13,12% 14,55% 

MARS 5,67% 8,09% 11,83% 15,48% 18,60% 
MARS including previous 
forecasted values 3,52% 7,58% 10,79% 13,24% 14,55% 

 

Table 7. Maximum relative absolute error (MaxAE) 

 2 3 4 5 6 

Best previous result 14,37% 23,10% 30,71% 35,04% 33,33% 

MARS 16,77% 23,10% 32,09% 39,05% 38,79% 
MARS including previ-
ous 
forecasted values 14,04% 24,06% 35,52% 37,76% 47,27% 
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Table 8. Root Mean Square Error (RMSE) 

 2 3 4 5 6 

Best previous result 14,66 22,43 31,89 35,76 36,87 

MARS 15,50 22,43 32,04 39,23 43,61 
MARS including previous 
forecasted values 10,69 21,53 30,00 35,49 37,99 

 

Table 9. Accuracy in Trend 

 2 3 4 5 6 

Best previous result 75,44% 69,09% 56,60% 58,82% 61,22% 

MARS 84,75% 75,44% 65,45% 56,60% 47,06% 
MARS including 
previous 
forecasted values 89,47% 74,55% 60,38% 52,94% 51,02% 

 
 
Figures 10a. to 10f. illustrate the forecasting values obtained by these models for t+k 

time period, with t the current time period and k the future time horizon, k=1,…,6. 
Figure 11 illustrates the results obtained but from a different point of view: at time t 

it is possible to predict prices for t+k, for k=1,…,6. Figure 11 considers the prediction 
of prices between September 2016 and February 2016, using data available until August 
2016. As can be seen in the figure, the forecasting value is capturing very well the trend 
of the price evolution. 

 
 

 
Fig. 10 a. 1 month Fig. 10 b. 2 months 



14 

 
Fig. 10 b. 3 months Fig. 10 b. 4 months 

 
Fig. 10 b. 5 months Fig. 10 b. 6 months 

 

 

Fig. 10. Prediction based on one month forecast MARS models, incorporating previous predic-
tions 

 

 

Fig. 11. Forecasts for the last six months of the available dataset 
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4 Conclusions 

In this paper we have presented five different types of models to forecast wheat price 
one up to six months ahead, considering as predictor variables past time series values 
only. As far as the authors know, it is the first time that the machine learning models 
used are applied to this problem. The methodology used is different from other pub-
lished works, since we aim at forecasting at the present time the prices for the next six 
months. All models were tested considering different performance criteria and using 
out-of-sample data.  

Although it is not possible to select one approach as the best one under all criteria, 
the approach based on MARS that includes previous forecasted values seems to be the 
one with most consistent results. 

As future work, it is possible to devise a forecasting model that considers an ensem-
ble of different predictors. An ensemble can be understood as a collection of learning 
algorithms that are simultaneously used for making more reliable and accurate predic-
tions than its individual components [25]. This collection can consider different ma-
chine learning based models, or the same type of models but trained using different 
sample sets or different input variables. It is also possible to consider the application of 
classification algorithms capable of accurately predicting the future increase or de-
crease in the price. 
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