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Abstract

A new generation of industrial systems are growing, in a new industrial
evolution that connects wireless technologies with powerful devices,
capable to make their own decisions. In the Industry 4.0 paradigm,

industrial systems are becoming more powerful and complex in order to keep
with the requirements needed to build Cyber Physical Systems (CPSs). To
achieve such paradigm, Industrial Wireless Sensor Networks (IWSNs) are a key-
technology capable to achieve micro-intelligence, with low-cost, and mobility,
reducing even further today’s already short production cycles, and at the same
time allowing new industrial applications. Specifically, in the last decade, more
reliable and deterministic standards were proposed, all of them sharing the same
base technology, the IEEE802.15.4 standard. At the same time, until now, In-
dustrial Control Systems (ICSs) have remained disconnected from the Inter-
net, relying in the airgap principle to ensure security. Nevertheless, there is a
lack of post-deployment tools to monitor technologies like the WirelessHART,
ISA100.11a, WIA-PA and the ZigBee standards, contrary to what happens with
most common wired technologies. The lack of these tools can be explained by
several characteristics present in current Internet of Things (IoT) devices like the
fragmentation of the operating systems, the need to develop specific firmware
for each application, different hardware architectures; etc.

Thus, in this thesis, and looking for the current challenges of Industrial IoT
(IIoT) technologies, a monitoring model is proposed, capable not only to mon-
itor current industrial networks based on the IEEE802.15.4 standard, but also
the in-node components of sensor nodes, in several hardware and firmware ar-
chitectures. The proposed architecture explores several techniques to obtain
free monitoring metrics; agents in charge of processing these metrics; and relies
in management standards to share all the monitoring information. To prove
the performance of this proposal, a WirelessHART testbed was built, as well
as the different components presented in the architectural model. Additionally,
using representative anomalies, injected in a WirelessHART testbed, an Anom-
aly Detection system capable to detect network anomalies and security attacks
was built, proving the effectiveness of the presented model in the network per-
spective. In the same way, in order to prove the effectiveness in the detection
of firmware and hardware anomalies, an Anomaly Detection system for in-node
components was also built. The two Anomaly Detection systems were able to
detect with high recall and low false positive ratio the anomalies inserted in the
systems, proving that the proposed model can be used as a post-deployment
tool in real industrial scenarios.

Keywords: Monitoring; Industrial IoT; Wireless Sensor Networks; Anomaly
Detection; WirelessHART; ISA100.11a; WIA-PA; ZigBee; Industry 4.0; Fault
Taxonomy; Attack tools; Anomaly Injection.





Resumo

A tualmente assiste-se a uma nova geração de sistemas industriais, numa
evolução que junta tecnologias sem fios com dispositivos embebidos,
cada vez mais inteligentes e capazes. No âmbito da Indústria 4.0, os

sistemas industriais tornaram-se mais potentes e complexos, em resposta aos
requisitos impostos pelos novos Sistemas Ciber-Físicos. No panorama atual,
as Redes de Sensores Sem Fios Industriais são uma tecnologia-chave, capaz de
fornecer micro-inteligência, e mobilidade, a um baixo-custo, reduzindo cada vez
mais os ciclos de produção industrial, e permitindo novos tipos de aplicações.
Por esta razão, durante a última década, várias tecnologias baseadas na norma
IEEE802.15.4 foram desenvolvidas e propostas, oferecendo técnicas de transmis-
são mais fiáveis e determinísticas. Ainda, no domínio da segurança, assistimos
também a uma mudança de paradigma neste tipo de sistemas. O paradigma
utilizado até então, regia-se através de políticas de segurança que privilegiavam
o isolamento. Porém, a conexão destes sistemas à Internet origina um novo
conjunto de ameaças externas, que tem crescido progressivamente. De modo a
manter a fiabilidade, as ferramentas de monitorização em ambiente de produção
permitem uma constante monitorização dos sistemas, prevenindo eventuais fal-
has. Contudo, existe uma ausência de ferramentas para normas como o Wire-
lessHART, ISA100.11a, WIA-PA e ZigBee, ao contrário do que acontece no caso
das tecnologias legadas. Esta lacuna pode ser explicada pelas diferentes carac-
terísticas presentes nos dispositivos IoT, como por exemplo, a fragmentação dos
sistemas operativos, a necessidade de desenvolver firmware específico para cada
aplicação, e os diferentes tipos de arquitecturas de hardware existentes.

O trabalho desenvolvido nesta tese, apresenta um novo modelo de arquitetura de
monitorização, não só capaz de monitorizar as tecnologias industriais baseadas
na norma IEEE802.15.4, como também os próprios componentes internos dos
nós-sensores (em diferentes arquiteturas de firmware e hardware). O modelo de
arquitetura proposto apresenta técnicas que permitem obter métricas de estado
sem custos, partilhadas através de protocolos de gestão, por agentes responsá-
veis pela respetiva aquisição. Para confirmar o baixo impacto da arquitetura
proposta foi criada uma testbed utilizando a norma WirelessHART, com todos
os agentes. Adicionalmente, para provar a eficácia e utilidade da arquitetura
foram desenvolvidos dois sistemas de deteção de anomalias: o primeiro permite
a deteção de anomalias de rede; e o segundo possibilita a deteção de anomalias
no firmware e hardware nos nós-sensores. Estes sistemas foram avaliados, at-
ravés da injeção de anomalias de rede, firmware e hardware. Os dois sistemas
de deteção propostos conseguiram identificar os comportamentos anómalos com
alto recall e baixo false positive ratio, provando assim, que o modelo proposto
poderá ser utilizado como ferramenta de diagnóstico em redes de sensores sem
fios industriais.

Palavras-chave: Monitorização; IoT Industrial; Redes de Sensores Sem



Fios; Detecção de Anomalias; WirelessHART; ISA100.11a; WIA-PA; ZigBee;
Indústria 4.0; Taxonomia de Falhas; Ferramentas de Ataque; Injeção de Anom-
alias.
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Introduction

”Success consists of going
from failure to failure without
loss of enthusiasm”

(Winston Churchill)
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CHAPTER 1. INTRODUCTION

I oT wireless based solutions are growing and being deployed in the indus-
trial field. However, at the same time, there is a lack of post-deployment
tools to monitor these technologies. Such tools are needed as an answer to

the security challenges bought by the connection of the industry to the Internet,
and by the increase of hardware and firmware complexity. The work presented
in this thesis aims the proposing of a monitoring architecture that can be used
to improve the reliability and security of current industrial IEEE802.15.4 based
technologies by supporting monitoring at all domains (network itself, node firm-
ware, and node hardware). The proposed solution proves that it is possible to
build new post-deployment tools that monitor the network and the in-node com-
ponents of sensor nodes, with low impact on sensor nodes resources and without
the need of extra hardware. The motivation and problem statement of this thesis
are presented below, followed by the main objectives and contributions. At the
end of the chapter the outline of this thesis is presented.

1.1 Motivation and Problem Statement

The Internet of Things (IoT) currently makes it possible to have a world sensed
by and connected to all kinds of devices. Wireless Sensor Network (WSN) tech-
nology is the key for connecting physical and virtual environments. This tech-
nology is growing up so rapidly that in 2011 Cisco-IBSG estimated that globally
there would be 50 billion interconnected “things” by 2020 [Evans, 2011]. The
IoT paradigm leads to an extremely large number of new opportunities and
technical challenges in several fields, and in the industrial field in particular.
In industry, wired technologies continue to be prevalent [Chang et al., 2016;
Petersen and Carlsen, 2011]. Digital technologies like ModBus, ProfiBus, Can-
Bus, HART [Nobre et al., 2015], and even analogue technologies like 4-20mA
[Kim et al., 2008], are used to monitor and control most processes. Despite
the high reliability of such technologies, proven over many years, wired tech-
nologies are expensive, difficult to install, time consuming, and unable to cope
with the requirements of Cyber Physical Systems (CPSs) and Industry 4.0. In
Industry 4.0, CPSs will confer micro intelligence (namely processing and net-
working capabilities) to industrial objects, reducing even further today’s already
short production cycles [Trappey et al., 2016]. Thus, WSNs or, more specifically,
Industrial Wireless Sensor Networks (IWSNs), are fundamental for meeting the
requirements of Industry 4.0.

IWSNs characteristics like low operating costs, self-organization, self-
configuration, flexibility, rapid-deployment, and easy upgrading, make them
ideal to industrial scenarios. However, despite all of these favourable character-
istics, the adoption of WSNs in industry requires standards, dependability, ease
of use, network security, extended battery lifetime, low cost, and IP connectivity
[Wang and Jiang, 2016]. In recent years, considerable effort was made in order to
design technologies that meet these requirements, and to standardize IWSN solu-
tions. Standards like IEEE 802.15.4[IEEE, 2006] and IEEE 802.15.1[IEEE, 2002]
are the technology foundation of many industrial applications for process and
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CHAPTER 1. INTRODUCTION

factory automation. IEEE 802.15.4 is the base technology for standards such as
ZigBee[Alliance, 2015], WirelessHART[IEC, 2010], ISA100.11a[ISA, 2009], and
WIA-PA[IEC, 2015]. These are widely used in process automation applications
in the areas of chemical manufacturing, pulp & paper, oil & gas, and glass &
mineral. On the other hand, IEEE 802.15.1 is the base technology for stand-
ards such as WISA[Scheible et al., 2007] and WSAN-FA[Wang and Jiang, 2016],
widely used in factory automation applications in the areas of assembly process
for automotive, consumer products and electronics [Zand et al., 2012a].

Nevertheless, although standards compliance is necessary, it is not enough to
guarantee IWSN reliability per se. Sensor node components, either at hardware
or firmware levels, and the network itself, can be at the root of a variety of
faults (see chapter 3). Sensor nodes are inherently resource-constrained devices
in terms of energy, processing power and memory capacity. In this respect, the
Internet Engineering Task Force (IETF) recently defined three classes of devices
[Bormann et al., 2014]: Class 0 for devices with less than 10KB of RAM and
100KB of flash memory; Class 1 for devices with around 10KB of RAM and
100KB of flash; and Class 2 for devices that have more resources but are still
quite constrained when compared to high-end devices. In addition to the men-
tioned device constraints, sensor, network, and application heterogeneity lead to
extremely complex IWSN solutions and, consequently, to fault-proneness. These
characteristics impose adequate, carefully-designed strategies in the development
of sensor nodes firmware, hardware architectures, and operating systems (OSs)
kernel (e.g., choosing between exokernel, microkernel, monolithic approach or
hybrid approach) [Hahm et al., 2016]. As an way of example, OEM manu-
facturers can build their products based on a single chip (comprising wireless
communications and processing capabilities) [Instruments, 2017a], or using a
microcontroller and a separate radio (connected by Serial Peripheral Interface
(SPI) or Universal Asynchronous Receiver-Transmitter (UART)) [Instruments,
2017b]. Furthermore, applications may be developed on “bare metal” (which
makes them very hardware-specific), or using one of the available OSs (e.g., Con-
tiki[Dunkels et al., 2004], RIOT[Baccelli et al., 2013], FreeRTOS[Barry, 2018]).
Another important component is the network. For instance, despite the inclusion
of security mechanisms in all of the referred standards, there are known attacks
on WirelessHART, ZigBee ISA100.11a, and WIA-PA [Alcaraz and Lopez, 2010;
Raza et al., 2009; Islam et al., 2012; Qi et al., 2014]. Additionally, some of these
technologies, namely WirelessHART, ZigBee, and WIA-PA, are not immune
to interference from equipment complying with other standards, such as IEEE
802.11, when operating in the ISM 2.4GHz frequency band. Such problems
may lead to early sensor node energy depletion, and subsequent replacement,
increasing the costs of network operation.

Vulnerabilities in industrial systems have also been explored by attackers in cy-
berwar. Examples of attacks to wired-based technologies are the Stuxnet and the
Slammer worms [Do et al., 2017], each one infecting the Supervisory Control and
Data Acquisition (SCADA) software and causing significant damage in indus-
trial assets and, consequently, economic losses. Furthermore, with the addition
of micro-intelligence to these systems, the hardware and software components
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are becoming more complex. Thus, is inevitable that such systems contain more
software vulnerabilities and, at the same time, become vulnerable to hardware
failures [Chaturvedi, 2016]. The Taum Sauk incident in 2005 is an example of
such failure. The incident report showed that sensors failed to indicate that the
reservoir was full, and, consequently, the water overflowed, resulting in the col-
lapse of the reservoir. In the cyber-security topic, IWSNs have been neglected
by the scientific and industrial community in the last years, by proposing solu-
tions that only address wired-based technologies. As a consequence of IWSN
faulty nature, post-deployment tools are needed in order to adequately monitor
IWSNs, thus contributing to the global system reliability and security.

In the last decade, a wide range of WSN post-deployment tools [Rodrigues et al.,
2013] were developed. Some of them can improve the reliability of WSNs by
detecting network, firmware, and/or hardware problems. These tools help de-
velopers in both deployment and post-deployment environments by making sev-
eral firmware- and hardware-related metrics accessible, and by detecting prob-
lems, using for instance, sniffers or sink nodes. However, despite the effort to
build such tools, most of them were designed for specific applications, require
specific or dedicated hardware, consume non-negligible amounts of energy, do
not implement security mechanisms, are complex to configure and/or to use,
and do not allow the centralized management of multiple industrial standards
like ZigBee, WirelessHART, ISA100.11a, and WIA-PA.

1.2 Objectives and Contributions

The aim of this thesis is to improve the security and reliability of IWSNs us-
ing monitoring techniques that continuously monitor the condition of current
IWSN systems in post-deployment environments. This is done by a new archi-
tecture capable to monitor the condition of the sensor nodes components and
the network of IEEE802.15.4 based technologies. To perform such tasks, the
architecture relies in free-metrics already available in the technologies used in
this field.

In order to be successfully adopted in real-deployments, the architecture is de-
signed in order to: 1) have low impact on the sensor node resources; 2) have
low impact on the network traffic; 3) introduce minimal delay in the firmware
of the sensor nodes; and 4) not have a major impact on the development phase.
Furthermore, the architecture is designed to be modular and compatible with
different hardware and firmware architectures, and to be supported by the Zig-
Bee, WirelessHART, ISA100.11a, and WIA-PA standards.

The development of such architecture brings attention to more specific activities,
in order to design all the components and evaluate them in terms of perform-
ance and effectiveness. Specifically, an extensive review of the state-of-the-art in
terms of current diagnostic tools approaches, network metrics, industrial stand-
ards techniques, and management protocols is presented, and current open issues
and opportunities identified. To measure the performance and effectiveness of
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the architecture a WirelessHART testbed was developed. The proposed monit-
oring components were also developed and tested in this testbed, by measuring
their impact on the system. Lastly, to measure the effectiveness of the pro-
posed solution, several anomalies were injected in the network, hardware and
firmware of the WirelessHART testbed. The data was collected by the monit-
oring system and then anomaly detection algorithms were used to identify the
anomalies.

As result of all this work, this thesis has succeeded in producing the follow
contributions:

Contribution 1, A Review of the Network Metrics and Management Pro-
tocols for IWSN

By reviewing current diagnostic tools, an opportunity was identi-
fied. Most of the proposed network tools rely on extra hardware to
collect metrics. These types of solutions are expensive, when used in
large IWSN deployments. Thus, a review of free available metrics in the
ZigBee, WirelessHART, ISA100.11a and WIA-PA standards was made,
and several metrics described in section 2. These metrics were identified
in a deep analysis made to each standard. Additionally, another gap in
the state of the art of management protocols was identified. Thus, section
2 also presents a review of the current management protocols in the IoT
field.

Contribution 2, A Review of Hardware and Firmware Monitoring Techniques
To propose a broad architecture capable of monitoring so different aspects
of the IWSN systems, a review of current monitoring techniques used to
monitor the condition of hardware and the firmware of sensor nodes was
done. This review presents in my point-of-view a contribution that cannot
be found in current state of the art and gives important contributions to
the definition of future architectures in the field (see section 2.4).

Contribution 3, A Taxonomy of Faults for WSN
Monitoring systems are intrinsically related with fault identification, fault
detection, fault recover and fault prevention mechanisms. Additionally, to
measure the effectiveness of anomaly detection mechanisms in the field,
a comprehensive fault characterization is needed, in order to identify the
characteristics, behaviour, and the impact of faults in the WSN systems.
Thus, the third contribution of this thesis is a taxonomy of faults in
WSNs presented in section 3. The taxonomy extends and complements
existing taxonomies, but with the specifics of WSNs.

Contribution 4, A Monitoring Architecture for IEEE802.15.4 IWSN based
standards

As the main contribution, section 4 presents the monitoring archi-
tecture proposed in this thesis. Relying in free metrics already available
on the network standards and hardware platforms, this architecture is
unique in such approach. To support the integration of the architecture in
the different firmware, network and hardware architectures, an extensive
analysis to the standards and technologies is made, and solutions are
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presented to the different layers (e.g., network transport, security, time
synchronization). For instance, as a monitoring tool that sends monitoring
data over networks that rely on low bandwidth, the appropriate transport
services available in each standard (WirelessHART, ISA100.11a, WIA-PA,
ZigBee) are selected.

Contribution 5, A new Advertisement based attack to the WirelessHART
Standard

To show the effectiveness of the proposed architecture, a deep ana-
lysis to the WirelessHART security scheme was made in order to generate
representative network attacks. By monitoring the network with the
proposed architecture, a new attack vector was identified and presented.
This new attack allows network outsiders to perform an exhaustion attack
to nodes that pretend to join to the network, by forging advertisement
packets. The attack is described in section 5.

Contribution 6, An Anomaly Detection System for Network Anomalies
The effectiveness of the monitoring architecture was proved in the three
monitoring domains. In the network domain, several attacks were
conducted over the WirelessHART testbed, and the monitoring data
collected using the monitoring architecture. Here, it was proved that
using the in-node metrics and the network metrics available in the
WirelessHART testbed it was possible to detect the injected anomalies,
using outlier classifiers like One Class Support Vector Machine (OCSVM).
This contribution is presented in section 5.

Contribution 7, An Anomaly Detection System for Hardware and Firmware
Anomalies

In the same way as the last contribution, the firmware and the
hardware domains of the architecture were also tested, by the injection
of different anomalies in these two domains. Here, a representative
firmware attack was conducted, and several hardware anomalies injected
in the testbed. The monitoring data collected was used to compare three
different types of anomaly classifier approaches: a linear model based, a
proximity based, and a neural network based. The results show that the
proposed architecture can also be used with good results, in the detection
of firmware and hardware anomalies.

1.3 Outline of the Thesis

The remainder of this thesis is organized in 7 chapters. Chapter 2 presents the
state of the art on industrial technologies, metrics and current diagnostic tools
approaches from the hardware, firmware and network perspectives. Chapter 3
presents a novel taxonomy of faults for WSNs, that allows a fault characteriza-
tion using 11 viewpoints. Chapter 4 presents the monitoring architecture with
all the proposed components, and the recommended approaches to be used in
the different standards(ZigBee, WirelessHART, ISA100.11a and WIA-PA). At
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the end of this chapter, a testbed using the WirelessHART standard is presented,
and the impact of the monitoring architecture evaluated. Chapter 5 evaluates
the effectiveness of the architecture in the detection of attacks made to the Wire-
lessHART network. This chapter also presents a novel exhaustion attack that
can be directed to systems complying with this standard. Chapter 6 presents
several attacks and anomalies conducted to the firmware and hardware of the
WirelessHART testbed. This chapter presents the effectiveness of the architec-
ture in the detection of new and unknown attacks to three different anomaly
detection classifiers. Lastly, Chapter 7 sums up this thesis and its contribu-
tions, and provide some insights on future work that can be conducted in the
monitoring field.
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General Background
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CHAPTER 2. GENERAL BACKGROUND

I ndustrial sensor networks are evolving every day, in an industry now open to
the Internet, where technology is accessible everywhere. The new industrial
revolution, the Industry 4.0 along with CPSs, bring new challenges for

these technologies, in terms of security (the ability of the system to protect itself
against accidental or deliberate intrusion), availability (the ability of the system
to deliver services when requested) and reliability (the ability of the system to
deliver services as specified) [Sommerville, 2010]. In this chapter, the state of the
art is presented concerning the technologies and techniques used in the industrial
field. This chapter starts by presenting the industrial application requirements
and categories, followed by a deep analysis of the current industrial wired and
wireless standards. To propose a monitoring architecture that can be supported
by the four main industrial standards (ZigBee, WirelessHART, ISA100.11a and
WIA-PA), hardware, firmware and network monitoring techniques are revised in
order to present current approaches, and identify open issues and opportunities.
Furthermore, recent management protocols are also presented and discussed.
At the end of the chapter, current efforts made by the industry and academic
community in the fields of security and reliability are presented in a broader
perspective, identifying the lack of solutions for wireless based technologies.
This chapter sets up the foundation for the monitoring architecture proposed in
the next chapter.

2.1 IWSN Applications and Requirements

Over the past years, computing systems kept increasing their processing cap-
ability according to the Moore’s law (either by reducing basic components size
or by adding complex multi-core approaches to parallel processing). In a dif-
ferent path, WSN focus on the creation of smaller, more efficient and cheaper
devices due to its application-dependent nature. Contrary to computer net-
works, WSNs follow a more single-purpose design that usually serves only one
specific application-domain. So, in the design of WSN it is important the identi-
fication of the application domain and requirements in order to choose the best
technology and standards.

IWSN applications have distinct requirements in comparison with common WSN
applications. To identify the specific requirements for each application type, the
Internet Society of Automation (ISA) created six classes [Kumar S. et al., 2014],

Table 2.1: Industrial applications defined by ISA
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based on the criticality and the importance of the applications (table 2.1). Each
class is classified according the message response time, the Quality of Service
(QoS) requirements, and belongs to a specific industrial category such as monit-
oring, control and safety. The first type, the safety systems, represent all systems
where actions and events are required in order of ms or s (e.g., fire alarms and
safeguard systems). The second one, the closed loop regulatory control systems
represent control systems where the information acquired by IWSN is used to
control the industrial systems, using sometimes time requirements stricter than
the safety systems. Thirdly, closed loop supervisory systems represent control
systems where a reaction only occurs when a certain trend is observed. On the
other hand, the open loop control represents control systems where an operator
is inside the control loop. In these systems an operator analyses the data and
undertakes the control of the system if a trend is observed. The alerting systems
group represents monitoring systems based on regular/event-based alerts (e.g.
a system that monitors the water temperature). Lastly but not least, the less
strict system in time constraints is the information gathering systems. These
systems are only used for data collecting and forwarding.

ISA defines industrial applications based on time and QoS requirements. How-
ever, there are other important requirements, that should also be mentioned,
and taking into account when working with IWSNs. The authors of the follow-
ing papers [Kumar S. et al., 2014; Zand et al., 2012a; Gungor and Hancke, 2009;
Islam et al., 2012] identify some of these requirements and design goals:

• Data Aggregation: Different applications require different levels of data
accuracy. To cope with the overhead and redundant data being forward
in the network some applications require that the network support data
aggregation of the sensed data in each node or in cluster-heads;

• Energy Consumption: In IWSN it is essential the proper management of
the energy consumed by each node, in order to maximize the node/network
lifetime and reduce the cost of the system (e.g. node lifetime can be
improved with the minimization of radio duty cycle; network lifetime can
be improved by using load balancing techniques);

• Interoperability: In this domain, it is essential the compatibility with exist-
ing legacy systems and others wireless solutions. For instance, some IWSN
standards like WirelessHART and ISA100.11a (see section 2.2.2) already
support old legacy systems like HART, but a more flexible solutions is
required (e.g. by using Lightweight M2M (LwM2M) protocol);

• Fault Tolerance, Reliability and Robustness: In industrial critical applica-
tions, IWSNs need to be fault-tolerant and robust against failures. Using
robust routing protocols, IWSNs can support topology changes and pre-
vent network failure due to faulty nodes. Moreover, the delivery of the
data between nodes must use data verification and correction methods, to
prevent wireless communication errors;
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• Low-Delay: The response time of safety systems and closed loop regu-
latory control systems use latencies that rounds the ms or s. In these
applications, IWSNs have to insure real-time guarantees, similar to ana-
logue wired communications (e.g. ISA50 technology);

• Minimal Cost and Compactness: IWSNs intend to reduce CAPEX and
OPEX with the utilization of wireless communications instead of wired
communications. Furthermore, sensor nodes must be small to make it
easier to deploy them in large industrial networks (e.g. in some industrial
applications like oil&gas, refineries and smart grid the installation time
and cost can be higher because of safety and health requirements [Kelava
et al., 2008]);

• Predictable Behaviour : In large networks, it is crucial the prediction of
the network behaviour. Complex solutions tend to be more difficult to
analyse, more favourable to faults and involve high costs in implement-
ation, testing and deployment. IWSN solutions need to be simple with
predictable behaviour, and proper monitoring and management systems
should be used in post-deployment scenarios;

• Quality of Service (QoS): To guarantee low latency in industrial systems
it is essential that IWSNs have QoS mechanisms to prevent outdated data
in control systems. QoS requirements can be divided in application spe-
cific QoS and network specific QoS. Application specific requirements are
represented with a higher level of abstraction (e.g. the coverage of the net-
work, the maximum number of nodes, etc). On the other hand, network
specific requirements are represented with lower level of abstraction, con-
sequently with much more detail (e.g. latency, reliability and availability
requirements). As presented in the ISA industrial application classific-
ation, safety and control applications have more demanding Quality of
Service (QoS) requirements;

• Resistance to Noise and Co-Existence: Industrial environments have many
noise sources like machinery, engine vibrations, metallic frictions, humid-
ity, temperature fluctuation and other wireless networks that communicate
in ISM radio bands [Islam et al., 2012]. Moreover, IWSNs communicate
with low-power signals that are more susceptible to noise. IWSNs must
have specific radio techniques that prevent the disruption of the commu-
nication and guarantee the co-existence of several networks operating in
the same radio band;

• Scalability and Self Organization: Scalability can be supported in different
ways in IWSNs. Protocols and standards should be modular to allow the
integration of new applications and network requirements, before and after
the network deployment. Furthermore, to support large networks with a
lot of nodes, IWSNs must support automatic mechanisms that configure
the network keeping their QoS requirements;
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• Service Differentiation: As a consequence of the different combination
of sensor types, service differentiation is required in IWSN. Using this
technique, IWSNs can assign different priorities in different ways (e.g. by
node, packet, time, etc). For instance, in an IWSN that monitor and
control some industrial assets, the control traffic will have higher priority
than the monitoring traffic;

• Secure Design: Security mechanisms should be implemented in IWSNs, in
order to protect the network from common attack types such as eavesdrop,
interference and jamming. Moreover, without security, the network cannot
assure some of the QoS requirements. The design of security mechanisms
should be present in every detail of network design and should consider
the IWSNs resource limitations.

This topic highlights the main industrial applications categories presented by
ISA, as well as, the requirements addressed by the academic community. The
identification of these requirements is important to the monitoring architec-
ture definition. Additionally, it is important to notice that industrial networks
have two main application types: control and monitoring applications. Con-
trol applications have highly restrictive QoS requirements since operator actions
should be immediately executed. In a different way, monitoring application
requirements are less demanding, depending only on the application require-
ments.

2.2 Technologies for Industrial IoT

Reliable, controlled operation, and the use of standardized technologies are key
aspects to the adoption of WSNs in industrial applications [Palattella et al.,
2014]. In best-effort type networks, all devices in the network obtain an un-
specified data rate and delivery time, depending on the traffic load [Kobayashi,
2015]. As a result, data is delivered without any quality of service guarantees.
However, in general, industrial process automation applications have stringent
latency requirements. For instance, monitoring applications should guarantee an
average latency of 100ms; control applications should guarantee 10ms to 100ms
latency; and, lastly, safety applications should guarantee a maximum latency of
10ms [ISA, 2009]. To meet these requirements (see previous section), IWSNs
may have to pre-allocate network bandwidth and physical resources, thus avoid-
ing statistical effects that lead to insufficient bandwidth, uncontrolled jitter, and
congestion losses. With these constraints in mind, this section surveys the main
industrial technologies and standards (namely, HART, ModBus, IEEE 802.15.4,
ZigBeePRO, WirelessHART, ISA100.11a and WIA-PA), highlighting their main
features, monitoring functionalities, and applicable management protocols.
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2.2.1 Industrial Wired Standards

In order to overcome the need for an industrial-level network standard, the
ISA50 was proposed in 1972 [ISA, 1972] as an analogue communication standard.
Despite having been replaced by more recent digital protocols (e.g., Foundation
Fieldbus), it is still found in many instrumentation systems due to its use by
the HART protocol. The fundamental principle of the protocol is related to the
minimum current of the measuring device. A sensor that measures temperature
between 0ºC and 20ºC converts this signal to an electrical current ranging from
4 to 20mA, where 20mA corresponds to a 20ºC, and the 0ºC to 4mA. By staying
above a minimal level of electrical current, the system can distinguish between
a zero value measurement (4mA) and a network failure corresponding to a lack
of energy. The first 4mA is used to power the measurement device, while the
remaining 16mA is used for control. The advantage of using 4-20mA, compared
to other approaches such as 0-20mA is the capability of detecting open circuits
(in which the current is zero) and the possibility of powering devices through
the communication cable.

To cope with the great diversity of equipment that uses ISA50 standard, the
HART protocol was created in order to enable analogue circuits to support di-
gital communications. Developed in 1980 by Rosenmount, the HART protocol
allows for an analog-to-digital signal conversion for devices that abide to the 4-
20mA standard. Later on, the protocol was opened and it is now maintained by
the HART Communication Foundation [FieldComm, 2014]. Sending messages
on a 4-20mA network is made possible by making use of FSK modulation tech-
nique. Thus, the “1” bit is represented by a frequency of 1200Hz and the “0” bit
by a 2200Hz one. This modulation does not affect the analogue communications
since these are done on the 10Hz range. Regarding the transmission rate, the
HART protocol communicates at 1200bps, which is quite slow by today’s stand-
ards. The communication paradigm in HART adopts a Master-Slave philosophy.
Communication is always initiated by the master, which sends a command mes-
sage and waits for a response. On their side, the slave waits for this command
and sends a response in return. Commands may belong to three types: uni-
versal, common and proprietary. The first two types of commands are specified
in the protocol while the latter may be modified depending on the application.
The most used network topology in HART is point-to-point. Message size may
vary between 10 and 30 bytes and is composed by the following fields: preamble,
start byte, address, command, number of data bytes, status, data, and check-
sum. Thanks to a popularity that remains even in today’s world, the HART
protocol is still widely used and actually has been bestowed with a wireless ver-
sion known as WirelessHART (see section 2.2.2), which can be integrated with
traditional HART in industrial networks.

Modbus was developed by Modicon [Fovino et al., 2009] in 1979 as a protocol
independent of the link and physical layers. The protocol can operate over
different physical layers, such as Ethernet and Serial. While being initially con-
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ceived to work with point-to-point topology, the protocol can be easily applied
to multi-drop and peer-to-peer networks, as well as work with TCP/IP. Simil-
arly to HART, Modbus applies a Master-Slave philosophy which allows a master
device to command up to 247 slave devices. Master devices are usually com-
puters or Programmable Logic Controllers(PLCs) while slaves tend to be simple
units scattered through the terrain that acquire sensory data. Communication
begins with the master device querying the PLCs about the desired data and
waiting for a response. A message in the Modbus protocol is composed by the
device address, function code, data bytes and error check fields. Commands
sent by the master contain different function codes, which identify the operation
to be executed by the slave and terminate with an error check for insuring the
integrity of the transmitted data.

Lastly, the CAN protocol is a synchronous protocol introduced in 1986 by Robert
Bosch GmbH [Bosch, 1991], and is the main protocol of the automotive industry.
As many other network protocols, the CAN protocol follows the OSI layer model
but restricts it to only three layers: Physical (PHY) layer, Media Access Control
(MAC) layer and Application (APP) layer. On the PHY layer, the protocol uses
NRZ-5 modulation and synchronizes the communication between the different
Electronic Control Unit(ECUs) through two different types of synchronization
mechanisms: hard synchronization and soft synchronization. At the MAC layer,
the protocol uses the CSMA in order to avoid collisions. Every CAN message is
identified by a unique ID which defines the priority of the message on the bus.
In this way, when an ECU wants to transmit a message, it has to wait until
to the other ECUs with minor IDs. Since these units are capable of hearing
every message on the bus, the application layer includes a filter which blocks
all messages except those with a specific ID. In CAN, the network maximum
throughput is influenced by the length of the bus, which also determines the
signal propagation time.

2.2.2 IWSN Standards

This subsection analyses the characteristic features of each of the main IWSN
standards, namely ZigBee, WirelessHART, ISA100.11a, and WIA-PA. The ana-
lysis is done on a per-OSI-layer basis, starting with the physical layer and work-
ing up to the application layer. Table 2.2, below, presents a summary of the
referred features, and may be used as guidance by the reader.

IEEE 802.15.4 [IEEE, 2006] is a standard for low-rate wireless personal area net-
works (LR-WPANs) that specifies the PHY and MAC layers. This layers design
was optimized for very low-power consumption, high reliability (using mesh net-
works), low-data rates, and low-cost. ZigBee, WirelessHART, ISA100.11a, and
WIA-PA have, all of them, adopted IEEE 802.15.4 at the PHY layer. However,
because WirelessHART, ISA100.11a, and WIA-PA target worldwide adoption,
they have chosen to use the 2.4 GHz frequency band only, as opposed to ZigBee,

— 15 —



CHAPTER 2. GENERAL BACKGROUND

which can use the 868MHz and 915MHz bands as well [Zand et al., 2012a].

At the MAC layer, there are significant differences in the adoption of the IEEE
802.15.4 by each of the four standards. At this layer, networks can work in
beacon or non-beacon modes of operation. When using the beacon mode, sensor
nodes receive a specific message that is used to synchronize the network devices
and, at the same time, to identify the network, and to describe the structure of
the frame. Beacon networks are capable of detecting other beacon networks, and,
for this reason, beacon networks can coexist in the same geographical area. Ad-
ditionally, IEEE 802.15.4 uses a superframe structure in order to manage nodes
channel access. The superframe is formed by three different parts: Conten-
tion Access Period (CAP), Contention Free Period (CFP), and inactive period.
This superframe structure is used in ZigBee and WIA-PA, because these two
standards operate in beacon mode. On the other hand, WirelessHART and
ISA100.11a do not operate in beacon-mode, as their developers considered that
this mode is not good enough for industrial applications (Note: WIA-PA also
shares the same view, however, its authors opted for maintaining full compatib-
ility with IEEE 802.15.4-based networks, and implement additional features at
Data Link (DLL) layer). As a result, WirelessHART and ISA100.11a implemen-
ted their own superframes [Kumar S. et al., 2014]. WirelessHART superframe
is composed of 10ms timeslots, while ISA100.11a can operate in any of three
superframe modes (short, long, and hybrid). Finally, ZigBee can use a slot-
ted or unslotted CSMA/CA mechanism for managing the access to the wireless
medium, while the remaining standards (WirelessHART, ISA100.11a and WIA-
PA) use Time Division Multiple Access (TDMA) and Carrier Sense Multiple
Access (CSMA), providing a high and medium level of latency determinism,
respectively.

Neither WirelessHART or ISA100.11a implement the full IEEE 802.15.4 MAC

Table 2.2: Summary of main features, adapted from [Wang and Jiang, 2016;
Zand et al., 2012a]

Layer ZigBee WirelessHART ISA100.11a WIA-PA

APP Object-oriented;
Profile Defined Protocol;

Command-oriented;
HART protocol;

Object-oriented;
Native Protocol;

Multi-wired field bus protocols;

Object-oriented;
Profibus/FF/HART Protocol;

Virtual Device

APS
Discovery of New Device;

Binding;
Fragmentation /reassembly;

- Basic Tunnelling;
Smart Tunnelling;

Data Communication
and Management Services;

TP -
Block Data Transfer;

Reliable Stream Transport;
Convergence;

Optional Security Features;
Connectionless Services; -

NWK
Tree Routing/ AODV Routing;

Address Assignment;
Network Joining/disjoining

Graph/Source/Superframe
Routing

Addressing (6LowPAN);
Routing Address Translation;
Fragmentation/reassembly;

Addressing;
Static Routing;

Fragmentation/reassembly;

DL - Slot Timing Communication;
Time Synched TDMA/CSMA;

Channel Hopping;

Grapgh/Source/Superframe Routing;
Slot Timing Communication;

Duocast Transaction;
Time Synched TDMA/CSMA;

Channel Hopping;

Frequency Hopping;
Aggregation and Disaggregation;

Time Synchronization

MAC IEEE 802.15.4
Mac Layer

IEEE 802.15.4
Mac LayerIEEE 802.15.4

Mac Layer
(partially implemented)

IEEE 802.15.4
Mac Layer

(partially implemented)

PHY
IEEE 802.15.4 PHY

868M/915M/2.4GHz Radio
Data rate: 20Kb/; 40Kb/s; 250Kb/s

IEEE 802.15.4 PHY
2.4 GHz Radio

Data rate 250Kb/s

IEEE 802.15.4 PHY
2.4 GHz Radio

Data rate 250Kb/s

IEEE 802.15.4 PHY
2.4 GHz Radio

Data rate 250Kb/s
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layer, as they consider that the MAC layer of IEEE 802.15.4 is not capable of
delivering the deterministic latency needed by industrial applications. As such,
these standards extend and complement medium access mechanisms with func-
tionality at the DLL [Wang and Jiang, 2016], namely, Time Synchronized Chan-
nel Hopping (TSCH), which then evolved to the new IEEE 802.15.4.e stand-
ard. The TSCH mechanism offers two significant improvements: the possibil-
ity to have deterministic latency (communication resources are pre-allocated);
and a mechanism of channel hopping that minimizes interference with nearby
devices that operate in the same frequency, such as IEEE 802.11 devices. On
the other hand, the WIA-PA follows the IEEE 802.15.4 standard at the DLL,
including functionalities like time synchronization and frequency hopping tech-
niques. Lastly, ZigBee does not implement any mechanism at this layer. It is
also worthwhile mentioning that, in addition to extending/complementing MAC
layer functionality, the DLL is also used by ISA100.11a for implementing some
network-related functions, specifically in what concerns routing. In fact, this
standard implements two types of routing: one at the DL layer, that handles all
the IEEE 802.15.4 traffic, and another one at Network (NWK) layer, responsible
for handling the IPv6 backbone traffic, as we will see below.

At the NWK layer, the choice of supported functionality and routing protocols
is often influenced by the network architectures [Zand et al., 2012a]. For in-
stance, ZigBee offers the possibility of having star, tree, and mesh topologies,
and defines several field devices: coordinator, routers, and end-devices. Tree
routing and Z-AODV protocols are used when the network operates in tree or
mesh topology, respectively. Despite the fact that mesh networks can be con-
sidered more reliable, in ZigBee the utilization of this topology is not suitable
for industrial applications, due to the overhead and non-deterministic latency of
on-demand protocols like Z-AODV [Wang and Jiang, 2016]. In the case of Wire-
lessHART, the basic network devices are: field devices, gateway, access points,
and network and security manager. Typically, WirelessHART gateways support
the role of security and network manager, and access point.

WirelessHART networks may operate in star or mesh topologies. However, the
mesh topology is the most used one, due to its flexibility, inherent fault-tolerance,
and ease of deployment and configuration. With this topology, routing can be
done by using graph routing or source routing. When graph routing is used,
the network manager needs to compute all graphs in the network and share
them with sensor nodes. All communications using graph routing always con-
sider two different paths to ensure reliability. In contrast, when source rout-
ing is used, network packets are forward between intermediate devices without
the need for prior route information (the path of the packet is specified in the
packet itself)[Petersen and Carlsen, 2011]. Differently from the other standards,
ISA100.11a specifies two types of networks: the IEEE802.15.4 based network,
and backbone network. In the WSN, ISA100.11a defines three device types:
routing devices, field devices and handheld devices. The routing mechanisms
available in this network are the same as the ones in WirelessHART. Addition-
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ally, in the infrastructure (i.e., backbone) side, ISA100.11a uses 6LowPAN, thus
allowing for direct communication between external IP devices and ISA100.11a
devices. Lastly, WIA-PA supports a hierarchical topology that uses star and
mesh, or star-only topology. In the case of the mesh topology, the network
operates using routers and gateways, while in the star topology the network
is composed of routers and field/handheld devices. At this level, field devices
are cluster members that acquire sensor information and send it to the cluster
heads (routers). Then, the cluster-heads form the mesh network. Each routing
device in the network shares its neighbour information with the network man-
ager, and then the network manager computes and shares the static routes. For
each pair of devices that want to communicate, at least two routing paths are
assigned.

The Transport (TP) layer is responsible for providing host-to-host communic-
ation services between applications. As can be seen in table 2.2, only Wire-
lessHART and ISA100.11a implement data transport functions at this layer,
supporting different service level agreements. Optionally, ISA100.11a offers end-
to-end security at this layer. In contrast to ISA100.11a and WirelessHART,
WIA-PA provides different service level agreements at the Application Sub-Layer
(APS), and not at the transport layer. The service-level agreements available in
each standard are presented in section IV, sub-section B. Last but not least, Zig-
Bee does not support any transport layer functionality nor does it support traffic
differentiation at the APS. Moreover, in ZigBee, fragmentation, reassembly, and
device discovery are implemented at the APS.

The application (APP) layer is the layer at which the connection between leg-
acy systems and IEEE 802.15.4-based systems takes place [Zand et al., 2012a;
Wang and Jiang, 2016]. At this layer, there are two important options that
can be identified. WirelessHART uses a command-oriented approach; altern-
atively, ISA100.11a, ZigBee, and WIA-PA use a more flexible object-oriented
approach. Object-oriented approaches are more flexible than command-oriented
approaches because they allow for protocol translation by mapping attributes
from one protocol to the other. As for native applications, ZigBee supports the
ZigBee profiles; WirelessHART supports the HART protocol; WIA-PA supports
native protocols like Profibus, Foundation Fieldbus(FF), and HART; last but
not least, ISA100.11a supports the ISA100.11 application protocol.

2.2.3 IWSN Reports

IWSN standard technologies make device and network state information avail-
able to a variety of entities, e.g., network neighbours or a central management
device. In general, this information is shared between nodes to compute routes,
allocate bandwidth, calculate link costs between network devices, or generate
alarms when critical events occur (e.g., link failure, route failure, low battery
level, etc). This subsection presents the network and data link layer reports
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available in each of the standards being considered in this thesis [Alliance, 2015;
IEC, 2010; ISA, 2009; IEC, 2015], and describes the context in which the reports
are used. Table 2.3 presents a summary of the referred reports, and may be used
as guidance for the discussion.

Table 2.3: IWSN Network metrics

Standard Network reports Metrics Report
type Visibility

ZigBeePRO
Network Status

No route available; Tree link failure;
Non-tree link failure; low battery level;

No routing capacity; No indirect
capacity; Indirect transaction expiry;
Target device unavailable; Target
address unallocated; Parent link

failure; Validate route; Source route
failure; Many-to-one route failure;

Address conflict; PAN identifier failure;
Network address update; Bad frame
counter; Bad key sequence number;

Event
Coordin-
ator or
routers

Link status Neighbour network address; Incoming
cost; Outgoing cost Periodic

Network report Radio channel condition; PAN ID
conflict

Event/Peri-
odic

WirelessHART

Device Health

Packets generated by device; Packets
terminated by device; DL mic failures;
NWK mic failures; Power status; CRC

errors;

Periodic

Network
manager

Neighbour Health
List

Total number of neighbours; Nickname
of Neighbour; Mean RSL; Packets

transmitted to the neighbour; Packets
received from the neighbour; Failed

transmissions

Periodic

Neighbour Signal
Levels

Total number of neighbours; Nickname
of neighbour; RSL of neighbour in DB; Periodic

Alarms

Path Down (Nickname of the
neighbour); Source Route Failed

(Nickname of the neighbour and NWK
MIC from the NPDU failed routing);
Graph Route Failed (Graph ID of the

failed route);

Event

ISA100.11a

Connectivity Alert
per Channel

Attempted unicast transitions for all
channels; Percentage of time

transmissions on channel x did not
receive an ACK); Percentage of time

transmissions on channel x aborted due
to CCA;

Periodic

System
Manager

Connectivity Alert
per Neighbour

RSSI level; RSQI level; Valid packets
received by the neighbour; Successful
unicast transmissions to the neighbour;

Unsuccessful unicast transmission;
Number of unicast transmissions

aborted (by CCA); Number of NACKS
received; Standard deviation clock

correction;

Periodic

Neighbour
discovery Alert

Total number of neighbours; Neighbour
address; Neighbour RSSI; Neighbour

RSQI;
Periodic

WIA-PA

Path Failure report Route ID Periodic

Network
Gateway

Device Status
report

Number of sent packets; Number of
received packets; Number of MAC
layer mic failures detected; Battery

level; Number of restarts; Uptime since
last restart

Periodic

Channel Status
report

Channel Id; Neighbour device address;
LQI; Channel packet loss rate; Channel

retransmission count
Periodic

Neighbour Reports

Neighbour address; Backoff counter;
BackoffExponent; Last time

communicated; Average RSL; Packets
transmitted; Ack packets; Packets

received; Broadcast packets;

Periodic

— 19 —



CHAPTER 2. GENERAL BACKGROUND

The ZigBee standard comprises three report types that are used for sharing
network- and node-related information: 1) link status report; 2) network status
report, and 3) network report. Link status reports share sensor node’s neigh-
bours incoming and outgoing link costs. The report is broadcasted by ZigBee
coordinators and routers in one-hop fashion. This report is useful during network
discovery, to find neighbour devices, and in the operation phase for updating the
devices’ neighbour table. Network status reports are sent by devices in order to
report errors and other events that arise at the network layer. The report can
be sent in unicast or broadcast modes over the network, and can only pertain to
an event at a time. The list of the possible reported events is presented in the
Table 2.3. Lastly, network reports allow a device to report network events, like
Personal Area Network (PAN) conflict, or the radio channel condition to the
coordinator. As limitation, in the tree topology, some of these packets may not
be received by the ZigBee coordinator, due to the presence of routing devices,
that make their own routing decisions. On the other hand, when using a star
topology, all the packets will be received by the ZigBee coordinator.

Contrary to what happens in ZigBee, in WirelessHART the network manager
controls all communication in the network, and only authorizes new services if
resources are available. Consequently, field devices (here with full network cap-
abilities) must share node state and network based information with the network
manager. In WirelessHART, all network reports are sent to the network man-
ager by using the maintenance service. WirelessHART specifies four types of
reports: 1) device health; 2) neighbour health list; 3) neighbour signal levels;
and 4) alarm report. Device health reports summarize all the communication
statistics of a unique field device and are periodically sent to the network man-
ager. The statistics include generated packets by device, terminated packets by
device, power status, and others.

Neighbour health list reports include statistics about the communication with
all neighbours linked to a field device. These reports include the total number of
linked neighbours, the mean Received Signal Level (RSL) to the neighbour, and
packets and errors statistics. Neighbour signal level reports include statistics of
discovered but not linked neighbour devices detected by a field device. When
a device wants to connect to the network it usually sends a join request and a
neighbour signal level report. Lastly, WirelessHART defines several alarm types:
path down alarm; source route failed alarm; and graph route failed alarm.

Similarly to what happens in WirelessHART, in ISA100.11a networks, the sys-
tem manager controls all communication in the network. However, in this stand-
ard, WSN routing takes place at the DLL, due to the use of 6LoWPAN at the
NWK layer. Network metrics in ISA100.11a are shared at the MAC layer, in-
stead of being shared at the NWK layer. ISA100.11a defines two groups of
network reports: 1) connectivity alerts, and 2) neighbour discovery alert. Con-
nectivity alerts comprise two types of reports: per-neighbour report, and per-
channel report. Per-neighbour reports contain neighbours’ connection statist-
ics. On the other hand, per-channel reports contain per-channel all-neighbours
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statistics, and convey them to the system manager. Finally, neighbour discov-
ery alerts are sent periodically to the system manager with a list of overheard
neighbours. The system manager makes new routing decisions based on these
reports. Per-neighbour reports, per-channel reports, and neighbour discovery
alert, are similar to WirelessHART’s neighbour health list, device health, and
neighbour signal level, respectively.

In WIA-PA, route computation is also performed by the network gateway, sim-
ilarly to WirelessHART and ISA100.11a. WIA-PA defines four types of reports:
1) device status report; 2) channel condition report, 3) neighbour report, and
4) path failure report. Device status reports include statistics about the condi-
tion of field devices and routers, such as the number of packets exchanged with
neighbours, number of restarts, and uptime. Channel condition reports send
statistics grouped by channel and neighbour to the network gateway. These stat-
istics include link quality, packet loss rate, and number of transmission retries.
Neighbour reports, also received by the network gateway, group neighbours stat-
istics and neighbours scheduling details, such as backoff counter and exponent,
transmitted and received packets, and number of acknowledgments. Lastly, path
failure reports are generated when a route path failure occurs. These reports are
sent by a routing device to the network gateway, whenever the retransmission
counter of a specific path exceeds a given threshold.

2.3 Management of Constrained Devices

Network management emerged in traditional networks with the need to con-
trol and monitor networks as they grew up in size and complexity. ISO/IEC
7498-4 [ISO/IEC 7498-4, 1989] was one of the first initiatives to establish a
management framework, by defining a set of functional areas, namely: fault,
configuration, accounting, performance, and security management. Further-
more, ISO/IEC 7498-4 proposed the use of managed objects as abstractions for
network resources, which, in turn, contain several attributes. In current proto-
cols, managed objects can be defined using several syntaxes, like Structure of
Management Information (SMI)v2 [McCloghrie et al., 1999], Yet Another Next
Generation(YANG) [Bjorklund, 2010], and Extensible Markup Language(XML)
[OMA, 2017]. Managed objects data are stored in management databases and
accessed by management protocols. In this sub-section, we identify two types
of management protocols: 1) protocols designed for traditional networks; and
2) protocols designed for networks of resource-constrained devices, that can also
be used in some traditional networks.

As one of most used protocols for the management of IP devices, Simple Net-
work Management Protocol(SNMP)[Case et al., 1990] provides most of the basic
functionality defined in ISO/IEC 7498-4. The standard specifies an architecture
based on agents and managers. Devices being monitored run SNMP agents that
share the device state information with an SNMP manager, by using query/re-
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sponse interactions and trap notifications. Each SNMP agent has a collection of
managed objects whose data is stored in a Management Information Base (MIB).
Each object is identified using a specific Object Identifier (OID). Despite the suc-
cess of SNMP for monitoring purposes, the protocol failed to provide an effective
and reliable way to configure devices. Thus, IETF started a working group that
wrote an informational RFC [Schoenwaelder, 2003] with several requirements
that coming network management standards should implemented. This work
was the basis for the NETCONF [Enns et al., 2011] protocol. Differently from
SNMP’s manager-agent architecture, Network Configuration (NETCONF) uses
a client-server architecture. The server runs on a management device (SNMP
agent) and shares the monitoring information (also by query/response and noti-
fication messages) with the client (SNMP manager). Additionally, when devices
need to be configured, the client may send several configuration commands in
one or several transactions. The transactions supported in NETCONF give
operators the capability of sending out-of-order commands, and of performing
rollback and commit operations.

The management protocols mentioned up to now were designed for traditional
networks. In [Sehgal et al., 2012], the authors implemented traditional network
management protocols in networks of constrained devices, and concluded that
SNMP and NETCONF are not suitable for this type of networks. For instance,
the use of TLS encryption in NETCONF adds significant overhead in terms of
session time (i.e. in the order of seconds). In later years, with the growth of
IoT, new solutions that address resource-constrained devices and 6LowPAN net-
works were proposed. These solutions also take advantage of transport protocols
specially designed for resource-constrained devices, like Constrained Application
Protocol (CoAP) [Shelby et al., 2014].

One of the first solutions developed with a focus on the management of 6LowPAN
networks was the LoWPAN Network Management (LNMP) protocol [Mukhtar
et al., 2008]. The LNMP protocol implements a solution based on SNMP that
targets 6LowPAN networks. In this solution, 6LowPAN gateways convert the
information from 6LowPAN networks to SNMP MIBs and make it available over
IP. On the other hand, other management architectures were evaluated, and new
research directions that take advantage of new technologies like HTTP appeared.
In [Marotta et al., 2014], the authors evaluated the use of different architectures
like SNMP, Resource-Oriented Architecture (ROA), and Service-Oriented Ar-
chitecture (SOA), and concluded that ROA architectures are more suitable for
resource-constrained devices in terms of response time and power consumption,
and are less sensitive to changes in timeout. As a result, a RESTful version of
NETCONF was created, named RESTCONF [Bierman et al., 2017]. Distinct
from NETCONF, that uses SSH and TCP, RESTCONF allows the communic-
ation between server and client using HTTP operations. Using HTTP at the
application layer enables clients to receive notifications without maintaining a
permanent connection with the server, as it is the case of NETCONF (one of
its major drawbacks). The syntax used in RESTCONF is YANG, the same
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Table 2.4: Network management protocols revision

Standard Modeling
Language

Supported
Operations

Resource
Con-

strained
Devices
Support

Notifica-
tions

Support
Used Protocols

SNMP SMIv2 Monitoring/Configura-
tion No Yes UDP

NETCONF YANG Monitoring/Configura-
tion No No SSH/SSL/HTTP

REST-
CONF YANG Monitoring/Configura-

tion Yes Yes HTTP/TLS/TCP

COMI YANG/SMIv2 Monitoring/Configura-
tion Yes Yes CoAP/DTLS/UDP

LWM2M XML/YANG
Monitoring/Configura-

tion/Application
management

Yes Yes CoAP/DTLS/UDP
and SMS

syntax used in NETCONF. Also using an ROA-based architecture but with a
different application protocol, the CoAP Management Interface [Bierman et al.,
2017] (COMI) is an internet draft that intends to provide access to resources
specified in YANG or SMIv2, using CoAP. The draft defines, as in the cases of
NETCONF and RESTCONF, a separation between operational and configura-
tion data store, the use of DTLS, and a conversion of YANG string identifiers
to numeric identifiers that contributes to reducing the payload size.

LwM2M [OMA, 2017] is also a protocol designed for resource-constrained
devices. This protocol provides device management and application manage-
ment, an aspect that differs from the previously mentioned network manage-
ment protocols. As COMI, LwM2M also supports the use of CoAP at the ap-
plication layer. Being a REST-based protocol, LwM2M uses GET/PUT/POST
operations to perform read/write/execute operations over the managed objects
resources. In this protocol, the definition of managed objects is done using
XML. An extensive list of managed objects is available in OMA [OMA, 2018].
In addition to these, OMA allows the creation of specific objects by individuals,
organizations, and companies.

Summing up, in this sub-section a set of network management protocols were
presented. By analysing the protocols presented here, we identified protocols
suitable to managing traditional networks (switches, routers, computers), and
protocols designed for networks of resource-constrained devices (e.g., sensor
nodes). An important trend is that new protocols like LwM2M use general-
purpose languages to describe the managed objects (e.g., XML), instead of
YANG and SMIv2. All of these management protocols can be incorporated into
the different gateways identified in the industrial standards presented before
(i.e., ZigBee coordinator, WirelessHART network manager, ISA100.11a system
manager, and WIA-PA network gateway), because these roles are performed by
unconstrained devices. Finally, protocols like SNMP, NETCONF, RESTCONF,
COMI and LwM2M cannot be directly used in sensor nodes, because current
standard industrial technologies do not allow running application protocols other
than their own. Thus, the management of these kinds of networks can only be
done in a standardized way at gateway level. Only new standards like 6tisch
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[Thubert et al., 2016] support the management of sensor node devices using
COMI or LwM2M, because 6tisch uses the CoAP protocol at the application
level. Nevertheless, due to the fact that no 6tisch-based products are available
and, consequently, it is not yet used in industrial settings, 6tisch will not be
addressed in this thesis.

2.4 Survey of Current Diagnostic Tools

The design of a diagnostic tool applicable to low-end IoT devices, like WSN
nodes, is a tough task due to their characteristics and diversity. WSN nodes
have limited resources, support a variety of application architectures, and rely
on complex network mechanisms. In addition, WSN applications can be de-
veloped for a specific operating system, or even almost from scratch. These
characteristics make it difficult, or even impossible, to develop a common dia-
gnostic tool for all kinds of scenarios, and, at the same time, compatible with
several operating systems. Despite this, in the last decade several diagnostic
tools were proposed in order to provide inside views on WSNs’ and nodes’ be-
haviour. In [Rodrigues et al., 2013], the authors analyse an extensive set of
diagnostic tools. In this section, some of the tools described in [Rodrigues et al.,
2013], as well as more recent tools like [Bhadriraju et al., 2012; Dong et al.,
2014; Schuster et al., 2014; Dong et al., 2013; Rodenas-Herráiz et al., 2017], will
be presented from a diagnostic target perspective, organizing their presentation
into network-based, firmware-based, and hardware-based tools.

2.4.1 Network Tools

The nature of wireless communications makes this technology unreliable and
failure-prone. In this context, diagnostic tools that are able to collect network
metrics and evaluate the state of the network are essential. Three types of
approaches can be used to collect network information: 1) passive, using extra
hardware to collect network information without interference; 2) active, using
on-node available resources; and 3) hybrid, using a mix of active and passive
approaches.

When passive approaches are used, the acquisition of network-related informa-
tion is made by installing extra sniffer nodes or sniffer capabilities in the existing
sink nodes. These diagnostic tools may differ in the type of sniffer nodes, in the
storage approach, and in the way the gathered information is transmitted. Spe-
cifically, some of the existing solutions use sink sniffer nodes to collect traffic
data from the network; others use extra networks of sniffers deployed with the
main WSN; others use sniffer nodes that collect data and store it in memory;
and lastly, the most expensive in terms of network installation, send network-
related information by wired technologies (e.g. SNIF[Ringwald et al., 2006],
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SNTS[Khan et al., 2007], PDA[Romer and Ma, 2009], LiveNet[Chen et al., 2008]
and L-SNMS[Yuan et al., 2015]).

Differently from passive tools that rely on extra hardware to monitor the net-
work, active approaches use on-node metrics already available in sensors nodes.
Active tools are easy to install, do not need extra hardware and, consequently,
are less expensive when compared to passive approaches. However, active tools
may have impact on node resources, as memory, energy, processing, and network
throughput are needed to collect, store, and transport network-related inform-
ation. Some of the tools gather traffic metrics from the sensor nodes’ operating
system, others from the network layer, and others directly from sink nodes. Also,
there is a specific set of tools that use software scripts deployed in sensor nodes
to collect statistics about the network traffic seen by the node. Subsequently
to data acquisition, the transport of network-related information can be made
using the main application channel or a secondary channel. To minimize the im-
pact of data transport, some tools use compression and aggregation techniques
so as to reduce the traffic overhead. Examples of this type of tools are Mari-
onete [Whitehouse et al., 2006], Megs [Lodder et al., 2008], Memento[Rost and
Balakrishnan, 2006], Wringer[Tavakoli et al., 2008], 6PANview[Bhadriraju et al.,
2012], and D2[Dong et al., 2013].

Lastly, hybrid approaches use a mix of methods described in the cases of the
active and passive approaches. Examples of this type of tools are Sympathy
[Ramanathan et al., 2005] and Dustminer[Khan et al., 2008].

2.4.2 Firmware Tools

Another source of faults commonly addressed by diagnostic tools is the sensor
nodes’ firmware. After firmware development, sensor nodes are deployed in
the field and, in some cases, faults may stay in a dormant state until an input
activates them. If the error is not properly handled, a firmware failure may occur
and sensor node data may not be delivered or may be corrupted. In an extreme
although not uncommon situation, a firmware fault may even prevent a sensor
node from entering sleep mode and, eventually, lead to battery exhaustion. With
the aim of promptly detecting firmware faults, there are diagnostic tools that
help developers in either the development phase, or in the WSN deployment
phase.

Tools that are used during the development phase usually require debugging
interfaces, specific hardware implemented in the microcontrollers architecture,
and Integrated Development Environments (IDEs) that allow accessing the avail-
able functionality. Examples of these technologies are: the old Joint Test Action
Group (JTAG) interface used to program microcontrollers and to have access
to special internal registers (e.g., hardware and software breakpoints); UART
ports used for outputting log messages that are useful for debugging purposes;
the EnergyTrace[Instruments, 2017d] technology, from Texas, that allows de-
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velopers to measure the impact of firmware on nodes energy consumption; and
the CoreSight[Arm, 2017] technology, implemented by Advanced Risc Machine
(ARM) in their microcontrollers, which allows performance profiling, memory
access, real-time tracing, and software debugging through a new type of inter-
faces, namely the Serial Wire Debug and the Serial Wire Output Pin (examples
of variables that can be access using this type of technology are cycles per instruc-
tions, sleep cycles, and exceptions). On top of that, IDEs like Code Compose
Studio (CCS)[Instruments, 2017c], among others, enable access to these tools
and help developers to detect code faults.

None of the development phase diagnostic technologies are suitable for post-
deployment, because they require a wired connection between nodes and the
tool’s hardware. Consequently, in the last decade, several deployment phase
tools were proposed that are able to provide monitoring information, although
with considerable limitations when compared to the functionality delivered by
development phase tools. Some examples are [Schuster et al., 2014], Nuc-
leos[Tolle and Culler, 2005], Enverilog[Luo et al., 2006], Marionete[Whitehouse
et al., 2006], Clairvoyant[Yang et al., 2007], NodeMD[Krunic et al., 2007],
L-SNMS[Yuan et al., 2008], LIS[Shea et al., 2009], Memento[Rost and Bal-
akrishnan, 2006], Dustminer[Khan et al., 2008], DT[Cao et al., 2008], Tracea-
lyzer[Holenderski et al., 2010], and Dylog[Dong et al., 2014]. Despite their limit-
ations, these tools allow WSN operators/managers to collect operating systems
variables (e.g., task queue state, number of reboots), main application variables,
and application events and states (like function call traces). This information
is usually stored in flash, RAM, or sent via the application main channel using
logs. In order to deliver all of these without requiring an extra effort during the
main application development, code instrumentation techniques are used, which
make it possible to automate the process of adding firmware metrics collection
and transmission functionality. Firmware data is usually sent using one of two
paradigms: event-driven or query-driven. Additionally, some of the tools im-
plement extra functionality, such as: source-level debugging, offering commands
similar to hardware debugging (break, stop, watch, backtrace, etc); remote call
specific functions; remote reprogramming; and specification of trace log events
triggering conditions. Tools that usually read and write large amounts of data
from/to flash memory (e.g., Tracealyzer) are not, in general, appropriated for
industrial WSN technologies due to the energy wasted in the process.

2.4.3 Hardware Tools

Finally, a source of faults that diagnostic tools also commonly address is hard-
ware faults. Hardware faults may occur before and/or after WSN deployment,
and are due to one or more of several reasons, such as: bad hardware design,
external environment phenomena, aging, and extreme temperatures. Hardware
diagnostic tools can be divided in two groups: 1) external-physical-tools that
are used by developers and operators; and 2) on-node-tools that infer hardware
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faults using available hardware resources.

The first group of tools consists of physical tools/equipment that operators and
developers use to check hardware condition and the occurrence of faults. Tools
like oscilloscopes, multimeters, and logic analysers are connected to the target
system in order to check the condition of the electronics and the existence of
faults. These tools are frequently used during the development phase, where de-
velopers search for electronics defects and for communication problems between
hardware modules (e.g., using logic analysers [Saleae, 2018]).

On-node-tools use a different approach. This type of tools is designed during the
hardware and/or firmware development phase, with the specific purpose of col-
lecting state information from the different modules using on-node components.
In [Scherer and Horváth, 2012], the authors use the ARM CoreSight technology
to create a WDP (Watch Dog Processor), by polling the main processor memory
variables and setting conditions on these variables. Also using the same tech-
nology, in [Scherer and Horvath, 2014] the authors extend Hardware in Loop
(HIL) tests, by incorporating some metrics provided by the CoreSight techno-
logy. Moreover, in [Dutta et al., 2008] the authors propose a technique to read
the energy wasted in boards that use switching regulators. By collecting these
metrics, operators and developers are able to detect hardware faults that occur
during the deployment phase without using external tools.

2.5 Solutions and Approaches: Security and Reliability

Information Communication Technologies (ICTs) are changing the industrial
mindset. Nevertheless, Industrial Control Systems(ICSs) significantly differ from
common ICT systems, when system requirements and priorities are considered.
In ICS, availability is one of the most important requirements, followed by in-
tegrity and confidentiality (AIC). Nevertheless, the European Network and In-
formation Security Agency (ENISA) [Knowles et al., 2015] are providing a new
alternative definition for the field. According to them, current ICSs should priv-
ilege safety, reliability and availability (SRA), instead of AIC. Moreover, SRA
is recognised as being intrinsically related with security.

Regarding the increase of cyber security attacks to ICSs, the security of ICSs
have been scrutinized from different perspectives. Governments, industry, and
standardization bodies have been proposing new standards, guidelines, and best
practices for the various industrial domains (e.g., oil & gas, chemical, nuclear)
[Knowles et al., 2015]. At the same time, in the academic research community, a
deluge of different solutions that focus on ICS technologies and standards have
been proposed. In general, some of these solutions try to incorporate already
known techniques used in ICT systems. Examples of such solutions are: software
layer solutions; firewalls that prevent specific attacks to industrial protocols like
DNP3; Intrusion Detection Systems (IDSs), using open-source technologies like
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Snort; honeypots, that try to prevent attacks to real systems and, at the same
time, collect attack vectors; hardware monitoring solutions (Shadow Security
Units), that are directly attached to control devices for monitoring their beha-
viour [Graveto et al., 2019]; and, lastly, machine-learning-based IDSs. Never-
theless, part of these efforts only address problems related with the introduction
of ICT networking technologies, such as Ethernet and IP in industrial systems,
and/or with network components, and do not address critical security issues that
can also be found in hardware and firmware components, as well [Robertson and
Riley, 2018].

Despite the fact that ICT-based solutions are increasingly being used in critical
infrastructures and application areas, of which the nuclear field [Kim et al., 2018]
is an example, little effort is being done in order to develop efficient and effective
post-deployment monitoring solutions with emphasis on security and reliability.
Some architectural proposals, nevertheless, target specific standards, like [Kim
et al., 2019]. However, these solutions usually address the network part only,
and do not propose solutions for hardware and firmware security.

On the other hand, reliability is usually achieved with fault-tolerance techniques
and diagnostic tools. In the WSN domain, fault-tolerance techniques are a well-
known field of research. There are several proposals that address network faults,
as well as several works that try to prevent faults in sensor readings [Chouikhi
et al., 2015]. The next chapter presents some of these techniques and tools,
that can be used in WSN-based solutions and applied to industrial wireless
standards.

2.6 Summary of the Chapter

Security and reliability are, nowadays, two important requirements in industrial
systems, that keep evolving in order to deal with some of the challenges presented
by the Industry 4.0. In terms of security, a special attention has been devoted
to the development of new monitoring systems, that rely on techniques and
solutions used on the ICT field. However, part of this effort is only made for
legacy systems, based on wired standards and technologies.

As presented in section 2.1, IWSN differ from other technologies, providing great
benefits for industrial applications but with some constrains. At the same time,
the technology is fragmented. There are several hardware architectures, several
firmware approaches, and different network protocols, hampering the develop-
ment of monitoring systems like the ones that exist for wired technologies. At
the same time, in the research and industry communities there are some propos-
als of monitoring techniques, specific for each field. Some of these techniques can
be used for free to monitor IWSN systems, and at the same time, increase their
reliability and security. For instance, current industrial network standards share
network metrics to perform routing operations, however, the use of these metrics
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in monitoring systems could not be found in any similar proposal. Lastly, with
the increase of IoT solutions, and the increase of Machine-to-Machine (M2M)
communications, new management protocols appeared in the last years, im-
proving the interoperability between different solutions. All these technologies
together allow the proposal of a new monitoring architecture, that is presented
in chapter 4.
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”Simplicity is prerequisite for
reliability.”
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O ver the last decade, WSNs went from being a promising technology to
the main enabler of countless IoT applications in all types of areas.
In industry, WSNs are now used for monitoring and controlling in-

dustrial processes, with the benefits of low installation costs, self-organization,
self-configuration, and added functionality. Nevertheless, despite the fact that
base WSN technologies are quite stable and subject to standardization, they
have kept one of their main characteristics: fault-proneness. As presented in
section 2.4, in recent years considerable effort has been made in order to provide
mechanisms that increase the availability, reliability and maintainability of this
type of networks. In this context, a whole range of techniques such as fault
detection, fault identification and fault diagnosis used in other research fields
are now being applied to WSNs. Unfortunately, this has not led to a consistent,
comprehensive WSN fault taxonomy that can be used to characterize and/or
classify faults. Neglecting the importance of WSN fault characterization (e.g.,
when using supervised and semi-supervised algorithms for anomaly detection)
may lead to bad classifiers and, consequently, bad fault handling procedures
and/or tools. In this chapter, we start by reviewing base fault management con-
cepts and techniques that can be applied to WSN. We then proceed to propose
and present a comprehensive WSN fault taxonomy that can be used not only
in general purpose WSNs but also in IWSN. Finally, the proposed taxonomy is
validated by applying it to an extensive set of faults described in the literature.
Additionally, it will be used in chapters 5 and 6 that focus on injecting network,
hardware, and firmware anomalies in a WirelessHART testbed.

3.1 Introduction

Despite the benefits of using WSN in industrial applications, there are also some
drawbacks that are delaying the deployment of IWSNs, specifically their fault-
prone nature, as proved by many deployment experiences [Warriach et al., 2012].
In general, sensor nodes are resource-constrained and fragile, sensor readings
can be incorrect, network links are failure prone, network congestion is common,
packets may be corrupted or lost [Paradis and Han, 2007] and, lastly, sensor node
components may also fail [Mahapatro and Khilar, 2013]. This faulty nature of
WSNs not only make the maintenance of sensor nodes and networks difficult,
but may also result in severe consequences for human lives, the environment, and
the economy, when used in critical WSN applications. Moreover, WSNs may
serve different types of applications with distinct requirements, as potentiated
by the widespread use of WSN technology in daily life, making fault detection
extremely difficult. In this IoT scenario, sensor nodes must have mechanisms
that monitor and detect their own faults as well as neighbors’ faults. Addition-
ally, mechanisms for detecting network faults and global application faults must
be also in place.

Increasing the quality of hardware and software in production and development
processes may be one possible solution for decreasing fault occurrence in WSNs.

— 32 —



CHAPTER 3. WSN FAULTS

However, this alone will not prevent the occurrence of faults and it will increase
the cost of WSNs. Thus, in recent years, significant attention has been given
to using several techniques such as fault detection, fault identification, fault
tolerance, fault diagnosis, fault injection and anomaly detection. Using these
techniques, some authors proposed solutions that: detect faults in sensors, thus
increasing the quality of sensor data [Warriach et al., 2012]; detect faults in
the routing layer, using a fault tolerant routing mechanism [Ma et al., 2006];
inject faults at assembly level, thus detecting hardware and software faults at
design phase [Cinque et al., 2009]; and increase the performance of the network,
detecting network and global faults.

Despite the growing concern with WSN fault management and the existence
of several surveys on fault tolerance applied to WSN [Mahapatro and Khilar,
2013; de Souza et al., 2007], there is no full, comprehensive, consistent, generally
adopted WSN fault taxonomy, as existing work either concentrates on describing
fault causes or on presenting techniques and algorithms for dealing with specific
faults, without trying to characterize and understand the nature of faults in
WSN. In our view, this partial analysis of WSN faults has considerable impact
on existing fault handling techniques and tools and is the main reason for the
non-adoption of these techniques in real scenarios, as shown in [Rodrigues et al.,
2013], which also demonstrates that current WSN diagnostic tools have low
maturity, stability and support, and most of them are not available for real
world deployments.

In this context, the contributions of this chapter are the following: i) a review
of fault management concepts and techniques and their application to wireless
sensor networks; ii) a proposal for a comprehensive, consistent WSN/IWSN fault
taxonomy that can be used as reference by WSN researchers, developers, integ-
rators and users, as well as by developers and users of tools for fault detection,
fault diagnosis and fault handling; iii) validation of the proposed taxonomy using
an extensive set of faults described in the literature.

The remainder of this chapter is organized as follows. The motivation for this
work is presented in section 3.2. Base concepts and techniques, especially those
pertaining to fault tolerance, are presented in section 3.3. The proposed WSN
fault taxonomy is presented in 3.4. This section also includes the application of
the proposed taxonomy to an extensive set of faults described in the literature.
In section 3.5 we compare our work with related work. Finally, section 3.6 sums
up this chapter with some conclusions and guidelines for future research.

3.2 Motivation

As the number of WSN deployments increases, researchers and practitioners
are now realizing the need for post-deployment diagnostic tools, like the one
presented in this thesis. The fragile, complex and failure-prone nature of WSN
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led to the use of redundancy and other fault tolerance techniques in this type of
networks, but this alone is not enough to make them reliable. Failures do happen
and, thus, diagnostic tools must be in place in order to identify their cause,
nature, and help identifying ways of dealing with them. In this line, the offer of
diagnostic tools has been increasing since 2005. However, despite the increasing
number of currently available tools, none of them can be considered “ready
to use” in real-world WSN applications such as, for instance, the application
addressed in [Tran et al., 2015]. With this in mind, section 2.4 presents and
compares some of the available WSN diagnostic tools, in order to understand
the main limitations of current post-deployment diagnostic tools. This allowed
us to clearly identify the main reasons for the low adoption of these tools in real
deployments. Actually, the majority of analyzed WSN diagnostic tools have
low maturity, stability and support. Most of them were tested in laboratory
testbeds only. In general, they do not support security mechanisms (encryption
and authentication) and are not portable because they were only designed for a
specific operating system.

The analysis of the existing literature, made us realize that, contrary to what
happens in order fields, there is a very important piece missing in the area of
WSN fault management: a fault taxonomy that can be used to understand and
classify the different types of faults in WSN in a comprehensive manner. This
is, thus, the main contribution of this chapter.

3.3 Concepts and Techniques

Before proceeding to the presentation of the proposed taxonomy, it is important
to define and understand the basic concepts and terminology that it will be used
throughout the chapter and thesis. In view of this, this section starts by adapting
the concepts of systems, components and services introduced in [Avižienis et al.,
2004] to the WSN domain. We then proceed to revise the definitions of fault,
error and failure presented in [de Souza et al., 2007; Avižienis et al., 2004; IEEE
Std, 1994] and to illustrate their use in WSN through an example. Last but not
least, common fault management techniques are put into perspective.

3.3.1 Systems, Components and Services in WSN

Computing systems are formed by systems and components that deliver services,
as defined in [Avižienis et al., 2004] (see Figures 3.1 and 3.2). A system can be
described as an abstract entity that interacts with other entities, such as other
systems like hardware, software, humans and physical world. Physically or logic-
ally, each system has a system boundary, which establishes the border between
the system and the external environment. The system boundary provides one or
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more service access points that collectively form the service interface, through
which services are delivered according to a specified system behavior.

The system behavior is determined by an internal sequence of states, as specified
in the requirements specification, where functional and non-functional require-
ments are described. Furthermore, each system generates its own behavior using
its structure, which determines how its set of components are organized and in-
teract with each other (see Figure 3.2). On the other hand, each component can
be regarded as another system recursively, until a component is considered an
atomic component. Using this terminology, a WSN can be described as a system
with its components and structure that delivers services to other systems (see
Figure 3.3). The components of the WSN system are the sensor nodes, which, in
turn, are made up of other systems, recursively, according to a given structure.
Specifically, each sensor node system has its own components (other systems)
that can be logical, such as processing, communications and data acquisition, or
physical, such as radio, sensors and batteries. All of these components/systems
cooperate in a sensor node system in order to deliver sensor nodes services. In
a broader perspective, all sensor nodes in a WSN cooperate in order to deliver
WSN services to other external systems.

3.3.2 Faults, Errors, Failures and Anomalies

As seen in the previous subsection, systems deliver services to external systems,
according to a given behavior. In the service lifecycle, any state in which the
system behavior is in accordance with the system specification is called correct
service state. Faults or errors may happen while the system is in a correct service
state. If they are properly handled, these faults or errors will not have impact

Figure 3.1: Systems, services and environment
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Figure 3.2: System components

Figure 3.3: WSN system, components and services

on the system state. On the other hand, when some of these faults or errors are
not properly handled, the service deviates from the correct service, generating
a service failure or simply failure, thus delivering an incorrect service. Several
definitions for fault, error, failure and anomaly can be found in the literature
[de Souza et al., 2007; Avižienis et al., 2004; IEEE Std, 1994; Birolini, 1999].
However, in this thesis we use the definitions presented in [de Souza et al., 2007;
Avižienis et al., 2004; IEEE Std, 1994] as they are commonly accepted in the
area of dependable systems:

• Fault: any kind of defect that can lead to an error, and consequently the
cause of an error [de Souza et al., 2007; Avižienis et al., 2004];

• Error: an incorrect system state. Such state may lead to a failure if it is
not handled, i.e., to a deviation from the correct service [de Souza et al.,
2007; Avižienis et al., 2004];

• Failure: the deviation of a system from its specification, i.e., deviation
of the delivered service from the correct service [de Souza et al., 2007;
Avižienis et al., 2004];

• Anomaly: any abnormality, irregularity, inconsistency, or variance from
expectations (term used with a broad meaning), in other words, the de-
viation of a system from its normal behavior leading or not to a system
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failure.

In order to illustrate the use of the above definitions in the context of WSNs,
Figure 3.4 presents an example of a sensor node system anomaly. In this scen-
ario, a sensor node periodically sends sensed data to other sensor nodes in the
system. However, the battery voltage level of the sensor node is low and its mi-
croprocessor powers off several times, performing several reboots. As a result,
the sensor node cannot send the data to the other sensor nodes, thus deviating
from the correct service.

Analysing this scenario, the fault (1) is the low battery voltage. The error (2) is
the state of the microprocessor, which powers off several times, and the failure
(3) occurs when the sensor node cannot delivery its services to the WSN. As
described in [Warriach et al., 2012], this type of fault may produce other types of
faults (4) in the sensor node system, such as a stuck-at-fault fault, where sensor
sample readings experience zero or roughly zero difference over a period greater
than expected.

3.3.3 Fault Management Techniques

Being a technology used in several types of applications, where some of them
are critical, with strict requirements in terms of availability, reliability, safety,
integrity and maintainability, WSNs must resort to techniques that overcome or
work around their faulty nature because it cannot be assumed that all sources
of errors can and/or will be eliminated. In light of this, in latter years several
fault management techniques have been proposed, with the aim of preventing
the interruption of services delivered by WSNs, thus increasing the availability
of WSN systems by decreasing both the number of failures and the Mean Time
To Repair (MTTR) . In general, in the context of fault management techniques,
fault tolerance techniques prevent the occurrence of failures in WSNs, and re-
cover services when failures cannot be avoided or circumvented, using specific
techniques such as hardware replication. In this respect, the following fault
management techniques are relevant and will be presented next:

Figure 3.4: Sensor node system anomaly example
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1. Fault prevention: Usually, the first fault prevention measures in any
system are taken at design phase. In this phase, assumptions and re-
quirements are specified and the system is built in order to meet these
requirements. In WSNd, fault prevention [Paradis and Han, 2007] is used
both at design and deployment phases, e.g., by ensuring adequate network
coverage or by setting up the network and configuring network parameters
in order to achieve communication redundancy. Additionally, complement-
ary techniques may also be used in fault prevention, such as dependability
benchmarking and fault injection [Cinque et al., 2009; Ali and Tixeuil,
2010; Coronato and Testa, 2013; Sailhan et al., 2010; Fairbairn et al., 2013].
In general, in WSN dependability benchmarking, the impact of external
environment conditions like time, location, weather or natural hazards are
evaluated in order to understand the behavior of WSN under extreme con-
ditions. Concurrently, in order to create these extreme conditions, fault
injection is used for generating faults in these scenarios. So, dependabil-
ity benchmarking and fault injection can be seen as complementary fault
prevention techniques;

2. Fault detection: After WSN design and deployment, it is crucial to
detect faults when they occur during the WSN operational phase [War-
riach et al., 2012; de Souza et al., 2007; Koushanfar et al., 2003]. Ideally,
fault detection should be performed at all system levels, e.g., sensor nodes,
network, and application level. This requires monitoring the system com-
ponents, and classifying faults in a binary mode as true or false. In order
to perform the classification task, several types of parameters (named fea-
tures in the pattern recognition field) are collected and analyzed (e.g.,
packet loss, energy, CPU cycles). In [Mahapatro and Khilar, 2013] the
authors present the concept of WSN fault diagnosis that corresponds, in
fact, to network-wide WSN fault detection. Instead of detecting faults in
each sensor node system, faults are detected at network level, requiring
each sensor node to have a global view of the network;

3. Fault isolation and identification: Subsequently, after detecting the
existence of one or more faults, fault identification must be performed
[Warriach et al., 2012; Paradis and Han, 2007]. This requires fault isolation
[Paradis and Han, 2007], through which correlated faults are identified and
several fault hypotheses are proposed. After that, fault hypotheses are
tested in order to unambiguously identify the fault type;

4. Fault recovery: The final stage of fault management is fault recovery.
After the detection and identification of faults, recovery techniques are
applied to services, components and systems in order to maintain them
working as specified. Some of the recovery techniques may include the
replication of vital components, the creation of alternate routing paths, or
the adjustment of the sending rate of sensors if congestion in the network
is found.
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3.4 WSN Fault Taxonomy

This section presents the proposed WSN fault taxonomy. The purpose of this
taxonomy is for it to be used as reference by researchers, developers, integrators
and users, eliminating ambiguity and, ultimately, enabling the use of a common
and coherent perception of WSN faults.

One outstanding paper on basic concepts and taxonomy in dependable and
secure computing is presented in [Avižienis et al., 2004] and, in fact, it served
as the main basis for the taxonomy presented in the current report. It should
be noted that the authors of [Avižienis et al., 2004] explicitly mention that their
proposed taxonomy is not closed and should be completed as new technological
fields arise. This is the case with the current thesis, that extends this taxonomy
to the WSN field.

The taxonomy proposed in the current chapter was developed as the result of
an extensive analysis of the literature and state of art on WSN faults, fault
tolerance, dependability and secure computing. Through this analysis, we were
able to identify a comprehensive set of WSN faults, which were subsequently
organized into different viewpoints and types, as presented in Figure 3.5

In this section, in addition to presenting and explaining each of the WSN fault
types, we will provide examples of each fault type and their respective refer-
ences, for further reading. The description of the various faults will be done
according to the identified viewpoints (Figure 3.5), namely, phase of creation or
occurrence, system boundaries, phenomenological cause, dimension, objective,
intent, capability, persistence, state, reproducibility and source system.

3.4.1 Phase of Creation or Occurrence

WSNs go through different stages in their lifecycle and consequently different
types of faults can occur in these stages. In the taxonomy proposed in [Aviži-
enis et al., 2004] the authors only consider two phases, namely the development
phase and the operational phase. Nevertheless, our experience in WSN deploy-
ment [Tran et al., 2015] in industrial environments clearly showed us that the
characteristics of WSNs justify the need for two more fault types: requirements
phase faults, and deployment phase faults. Thus, from the viewpoint of phase of
creation or occurrence, the following four fault types should be considered:

1. Requirement faults: WSN design starts with the requirements stage
where functional and non-functional requirements are specified. In this
stage, some requirements may be ambiguous and specification errors may
occur, leading to requirement faults. For instance, routing protocols may
have been chosen on the assumption of a specific deployment scenario or
specific sensor node mobility patterns. Thus, if some of these assumptions
are not met, the used routing protocol may not be able to cope with
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Figure 3.5: Taxonomy of faults in WSNs

network changes in time, leading to dropped messages and other types of
performance degradation;

2. Development faults: In the development phase, software, firmware, and
hardware are produced according to the requirements specified in the pre-
vious phase. Nevertheless, some faults may occur due to a variety of
reasons. For instance, during software and/or firmware development, vul-
nerabilities/flaws in security policies might be introduced without aware-
ness. In addition to software and firmware faults, hardware production
faults may also be introduced in sensor nodes as, for instance, physical
bridging during welding and assembly processes, thus leading to hardware
malfunction;

3. Deployment faults: After software/firmware development and hardware
production, the next phase is the deployment of the network. WSNs can
be used in an extremely large variety of application scenarios, and each ap-
plication can have its specific deployment characteristics with its specific
deployment faults potential. Based on our field knowledge, we identi-
fied two broad categories of WSN deployments: unplanned deployment,
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and planned deployment. In unplanned deployment, sensor nodes are ran-
domly placed and the network configures itself. In this type of deployment,
traffic congestion faults and degraded or route failure faults usually occur
due to sensor nodes positioning or unforeseen interference. On the other
hand, in planned deployment, used for instance in industrial scenarios
where sensor nodes need to be placed near specific machinery to mon-
itor and control industrial processes, unforeseen ambient noise faults and
channel noise faults are two examples of faults that can happen;

4. Operational faults: lastly, after WSN deployment, when the network is
operating, faults may also occur. For instance, in this phase an operator
may wrongly configure the system parameters, thus leading to failures.

Table 3.1 provides examples and references to all of the mentioned types of phase
of creation or occurrence faults.

Table 3.1: Phase of creation or occurrence fault examples

Requirements

Poor design, architectural faults, hardware and
software design faults, incorrect algorithms [Ma
et al., 2006]; wrong requirements (e.g., a sensor
not provisioned for snow) [de Souza et al., 2007];
wrong routing protocol and wrong topology [Ali
and Tixeuil, 2010].

Development

Software coding mistakes vulnerabilities/flaws
in security mechanisms, manufacturing imper-
fections, poor component selection, poor con-
struction [Ma et al., 2006].

Deployment

Route misconfiguration during deployment;
physical faults due to equipment damage during
deployment; wrong topology [Ali and Tixeuil,
2010].

Operational

Battery depletion [Paradis and Han, 2007]; wa-
ter infiltrations [Sailhan et al., 2010]; wrong con-
figuration or reconfiguration parameters [Aviži-
enis et al., 2004].

3.4.2 System Boundary

As mentioned in section 3.3, each system has its own system boundary, which
marks the border between the system and the external environment. In this
respect, faults can occur inside the WSN system or in external systems (i.e., in
the environment) and propagate into the system by interaction between external
systems and the WSN system. Thus, in terms of system boundary, two types of
faults should be considered:

1. Internal faults: These are faults that originate inside the WSN system,
i.e., in one or more of the components that make up the WSN system.
For instance, firmware or hardware component faults are internal faults,
as their source is a component inside the WSN system;

— 41 —



CHAPTER 3. WSN FAULTS

2. External faults: These are faults that originate outside the system or
component domain [Ma et al., 2006] and that propagate into the WSN
system. Channel noise, radiation, electromagnetic interference, operator
mistakes, and environmental extremes are examples of external faults that
may produce several types of errors and, consequently, system and com-
ponent failures.

Table 3.2 provides examples and references to the mentioned types of faults,
from the system boundary point of view.

Table 3.2: Fault examples from the system boundary point of view

Internal faults

Bit-flip faults in memory or special registers, lo-
gical bridging, physical bridging [Cinque et al.,
2009]; memory error fault, registers error fault
[Ali and Tixeuil, 2010].

External faults

Battle damages, channel noise, environmental
extremes (earthquakes, floods, fire, hurricanes),
operator mistakes, radiation and electromag-
netic interference [Ma et al., 2006]; overheating
[Avižienis et al., 2004].

3.4.3 Phenomenological Cause

Systems are subject to all sorts of phenomenological effects that may cause
errors and, subsequently, lead to failures. From a phenomenological cause point
of view, faults can be classified into two different types:

1. Natural faults [Sailhan et al., 2010]: These are faults caused by nat-
ural phenomena that may cause errors in the WSN system. Water infilt-
ration and battery degradation are two examples of phenomena that can
originate natural faults. Water infiltration may lead to hardware degrada-
tion, and battery degradation may be triggered by an increase in ambient
temperature. On other hand, natural faults like power transients cause
physical deterioration in sensor nodes hardware;

2. Human-made faults [Sailhan et al., 2010]: Humans may also cause
faults, either intentionally or unintentionally, in all of the stages of the
WSN lifecycle. For instance, a wrong pointer initialization (a fault that
can be originated in development phase due to a mistake or bad decision)
may result in pointer-initiated memory violation faults and, consequently,
may lead to a segmentation fault.

Table 3.3 provides examples and references to the mentioned types of faults,
from the phenomenological cause point of view.
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Table 3.3: Fault examples from the phenomenological cause point of view

Natural faults

Battery degradation, direct sunlight that
swamps infrared signals, short circuit caused by
water infiltration resulting in high or low sensor
readings [Sailhan et al., 2010].

Human-made
faults

Memory corruption, memory leaks and pointer-
initiated memory violation [Sailhan et al., 2010];
configuration and reconfiguration faults, errata
faults, error in maintenance or operating manu-
als, faulty human-made tools, logic bombs, un-
released file-locks, and unterminated threads
[Avižienis et al., 2004].

3.4.4 Dimension

WSN system components can be looked at from one of two perspectives or di-
mensions: on one side, they consist of pieces of hardware that physically support
their operation and, on the other hand, they comprise software/firmware mod-
ules that logically determine their functionality. Either of these perspectives is
also applicable when we are dealing with faults and their classification.

1. Software faults [Koushanfar et al., 2003]: These are all faults directly
or indirectly originated by firmware or software. These include all software
faults originated in development process and all software faults resulting
from the interaction with other systems. For instance, a trap door is
a bypass access control accidentally or intentionally inserted in software
(fault) that produces a security flaw (error), and consequently makes the
system vulnerable to malicious actions (failure);

2. Hardware faults [Koushanfar et al., 2003]: These are faults from
electronic and/or mechanical WSN components and systems. In hardware
production, an imperfection (fault) created in the welding process of elec-
tronic components can lead to intermittent system or component delivery
(error), leading to a failure. On the other hand, physical faults are a spe-
cific kind of hardware faults that occur in hardware not by design errors
but by physical phenomena that damage or compromise the electronic
components. For instance, ageing may cause sensors to return inaccurate
readings, eventually leading them to stop working.

Table 3.4 provides examples and references to the mentioned types of
faults.

3.4.5 Objective

As seen in section 3.4.3, several faults are human-made. These can be classified
according to the objective with which they were caused as malicious or non-
malicious.
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Table 3.4: Software and hardware dimension fault examples

Software faults

Authenticated byzantine faults, byzantine
faults, fail-stop fault, timing fault [Mahapatro
and Khilar, 2013]; deadlock fault, live lock
fault and stack overflow [Rodrigues et al.,
2013]; asynchronous fault, registry fault [Ali
and Tixeuil, 2010]; missing ”AND EXPR” in
expression used as branch condition, missing
”If (cond) statement(s)”, missing small and
localized part of the algorithm, missing variable
initialization/assignment, wrong arithmetic
expression used in parameter of function call,
wrong logical expression used as branch condi-
tion, wrong value assigned to a variable, wrong
variable used in parameter of function call;
software aging.[Koushanfar et al., 2003].

Hardware faults

Deterioration of sensor (aging), frozen sensor,
sensor unreported value [Warriach et al., 2012];
manufacturing imperfections [Ma et al., 2006];
flipping bits in code/data memory and flipping
bits in processor register [Sailhan et al., 2010].
Physical faults: environmental influence fault
[Ali and Tixeuil, 2010], radiation and electro-
magnetic interference fault [Ma et al., 2006],
atmospheric perturbation fault and electromag-
netic interference [Mahapatro and Khilar, 2013].

1. Malicious faults [Fairbairn et al., 2013]: These are faults whose ob-
jective is to harm the system. A peak in system service (fault) can be de-
liberately caused in WSN (generally known as a denial of service attack),
leading to network congestion (error), and consequently to local resources
exhaustion (failure). Moreover, security breaches [Ma et al., 2006], when
introduced with intention, can be seen as malicious faults generated with
the aim of compromising the integrity of the network, or of exposing the
network to malicious attacks;

2. Non-malicious faults [Fairbairn et al., 2013]: These are human-made
faults generated in an unintentional way. For instance, an operator can ac-
cidentally misconfigure a system or component leading to a network error
and, consequently, to a failure. This type of faults also includes faults that
result from omission of an action that should have been performed, and
also faults where humans unintentionally perform wrong acts [Avižienis
et al., 2004], as will be seen in the next sub-section.

Table 3.5 provides examples and references to the mentioned types of faults,
from the objective point of view.
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Table 3.5: Fault examples from the objective point of view

Malicious faults

Peak in service, physical damage (corrosion,
strokes, fires) [Ali and Tixeuil, 2010]; Trojan
horses, viruses, worms, zombies [Avižienis et al.,
2004].

Non-malicious
faults

External or object interference; errors in main-
tenance or in operating manual[Avižienis et al.,
2004]; poor component selection[Ma et al.,
2006]; omissions; wrong acts.

3.4.6 Intent

From the perspective of the intent with which they were caused, faults can be
subdivided into deliberate and non-deliberate faults, as described below.

1. Deliberate faults [Avižienis et al., 2004]: these are faults caused
by bad decisions that may or may not have a malicious objective. For
instance, a defective or wrongly planned network installation is a deliberate
decision that can lead to low radio coverage faults and other environmental
faults;

2. Non-deliberate faults [Avižienis et al., 2004]: these pertain to all
faults that derive from mistakes, i.e., actions for which the causing hu-
man (developer, operator, or other) is not aware of. For instance, a
missing “AND” expression used as branch condition is a non-deliberate
non-malicious fault if unintentionally caused by a developer.

Table 3.6 provides examples and references to the mentioned types of faults,
from the intent point of view.

Table 3.6: Fault examples from the intent point of view

Deliberate faults

All malicious faults introduced in table 5; wrong
logical expression used as branch condition,
wrong value assigned to a variable [Koushan-
far et al., 2003]; use of off-the-shelf components
with unknown faults and bugs[Avižienis et al.,
2004].

Non-deliberate
faults

Missing ”AND” in expression used as branch
condition, missing ”If (cond) statement(s)”,
missing small and localized part of the al-
gorithm, missing variable initialization/assign-
ment [Koushanfar et al., 2003]; software coding
mistakes [Ma et al., 2006].

3.4.7 Capability

Until now we identified two important viewpoints that characterize human faults
by objective and intent. Furthermore, we also highlighted that humans may
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cause faults in WSN with non-malicious purposes due to bad decisions or mis-
takes. Another important viewpoint is that of the capability of the person or
persons that cause the fault. From this perspective, faults can be classified
into accidental faults or incompetence faults [Avižienis et al., 2004], as described
below.

1. Accidental faults [Ali and Tixeuil, 2010]: these are faults that occur
by accident, not because of the lack of capability of the human agent. For
instance, replacing the battery of the wrong sensor node because during
installation the node was wrongly tagged may disable an entire network
region if the node in question is a node route key;

2. Incompetence faults: these result from a wrong action performed be-
cause of lack of professional expertise. For instance, in the development
phase of a WSN, the developer may generate bugs when developing firm-
ware using a technology or programming language he/she is not proficient
in.

Table 3.7 provides examples and references to the mentioned types of faults,
from the capability point of view.

Table 3.7: Fault examples from the capability point of view

Accidental faults

Ambient noise (when introduced by human ac-
tion) [Ali and Tixeuil, 2010], software coding
mistakes, insertion of a wrong sensor calibration
parameter by mistake [Ma et al., 2006].

Incompetence
faults

Wrong sensor model [Koushanfar et al., 2003],
vulnerabilities/flaws in security policies and
mechanisms [Ma et al., 2006]; wrong specific-
ation [Avižienis et al., 2004]; wrong arithmetic
expression used in parameter of function call
[Koushanfar et al., 2003].

3.4.8 Persistence

Another important viewpoint for faults classification is persistence, according to
which we can identify three types of faults:

1. Transient faults [Mahapatro and Khilar, 2013]: These represent
temporary faults caused by a specific event (usually by interaction with
an external system) that occurs in very specific conditions and in a short
period of time. Very often, if the same conditions appear though on a
different instant in time, the fault may not appear. For instance, if a
sensor node A is using a service delivered by sensor node B, a failure in
service delivered by B may induce a fault in sensor node A. However, if
sensor node A tries to access the service delivered by sensor node B at
another point in time, the system may deliver the correct service and the
fault in sensor node A will not occur;
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2. Intermittent faults [Mahapatro and Khilar, 2013]: These are a
type of temporary faults that occur randomly and repeatedly. This type
of fault may occur in logic components (software) or physical components
(hardware). Low battery voltage may lead to intermittent hardware faults;

3. Permanent faults [Mahapatro and Khilar, 2013]: These are faults
that always produce errors. A bug in the main firmware loop of sensor
node will always generate an error when it is called.

Table 3.8 provides examples and references to the mentioned types of faults,
from the persistence point of view.

Table 3.8: Fault examples from the persistence point of view

Transient faults
Timing fault [Mahapatro and Khilar, 2013]; con-
figuration and reconfiguration faults ; node mo-
bility faults [Avižienis et al., 2004].

Intermittent
faults

Atmospheric perturbation fault, authenticated
byzantine fault, byzantine fault, electromag-
netic interference fault: fail-stop fault; hardware
noise fault; incorrect computation fault [Ma-
hapatro and Khilar, 2013], faults caused by elec-
trode sensors used in soil deployments.

Permanent faults
Crash fault [Mahapatro and Khilar, 2013]; phys-
ical damage faults (corrosion, strokes, fires) [Ali
and Tixeuil, 2010].

3.4.9 State

Some faults occur when certain conditions are met. Others manifest themselves
independently of the input conditions. Examples of the former are undetected
bugs introduced in specific software/firmware routines during the development
phase. If the testing phase is not exhaustive enough, some of these bugs may
go undetected and cause faults under rare circumstances only. So, according to
their state, faults can be classified into two categories:

1. Dormant faults [Avižienis et al., 2004]: These are faults that do not
cause errors until some specific conditions are met in the system, e.g.,
a specific input, or the execution of certain lines of code, or even both.
Dormant faults may stay inactive in the system for long periods of time.
For instance, physical bridging can cause a fault that does not manifest
itself until a specific input or activation pattern occurs;

2. Active faults [Avižienis et al., 2004]: Contrary to dormant faults,
these faults stay active in the system, causing errors regardless activation
input or other conditions. For instance, offset data faults are active faults
that remain so until sensor calibration takes place.

Table 3.9 provides further examples and references to the mentioned types of
faults, from the perspective of their state.
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Table 3.9: Fault examples from the state perspective

Active faults

Direct sunlight that swamps the infrared signal
[Sailhan et al., 2010]; offset sensor bias that al-
ways changes the sensor reading, stuck at fault
(sensor sends the same value over a period of
time).

Dormant faults

Errors in maintenance or operating manual, lo-
gic bomb [Avižienis et al., 2004]; trapdoors in
code; unterminated threads; undetected soft-
ware bugs.

3.4.10 Reproducibility

When dealing with faults, namely in the development, training and execution of
fault handling algorithms used to identify, classify, inject and/or handle faults,
the ideal situation is that faults are reproducible. Unfortunately, this is not al-
ways the case, making fault handling extremely difficult. In what reproducibility
is concerned, there are two types of faults:

1. Solid faults [Avižienis et al., 2004]: these are faults whose activation
is reproducible, due to their predictable nature. One example of such fault
is a pointer-initiated memory violation;

2. Elusive faults [Avižienis et al., 2004]: this comprises faults whose
activation is not systematically reproducible, such as communication faults
originated by signal noise and/or RF interference.

Table 3.10, below, provides further examples and references concerning solid and
elusive faults.

Table 3.10: Fault examples from the reproducibility perspective

Solid faults

Calibration faults (gain data fault and offset
data fault), low battery fault; deadlock fault,
live-lock fault; pointer-initiated memory viola-
tion fault; limited communication bandwidth,
limited memory, limited power and low battery
faults, limited computational capability.

Elusive faults

Ambient noise [Ali and Tixeuil, 2010]; pat-
tern sensitive faults [Avižienis et al., 2004]; sig-
nal fluctuation, signal attenuation; RF interfer-
ences, multipath fading and multipath interfer-
ence [Alena et al., 2011].

3.4.11 Source System

As mentioned in section 3.3, WSN systems comprise several components or
sub-systems, of which we highlight the energy supply sub-system, the data ac-
quisition sub-system, the processing and storage sub-system, and the commu-
nication sub-system. All of them may be sources of faults and should be taken
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into account for fault characterization. Thus, from the perspective of the source
systems, faults can be characterized as:

1. Energy supply faults [Ma et al., 2006]: these pertain to faults that
originate in the sensor node power source. WSNs can be deployed in all
types of indoor or outdoor scenarios, in which they are subject to all kinds
of conditions that can affect the performance of the power source, usually
batteries or super-capacitors. For instance, abnormally high battery tem-
perature causes battery degradation, leading to battery low voltage which,
in turn, may lead to data faults, network faults, etc.;

2. Data acquisition faults [Warriach et al., 2012]: these are faults
that occur due to biased or faulty sensor readings. Hardware malfunction
(fault) may occur in the sensors’ data acquisition sub-system, leading to
a series of incorrect sample readings (error) as, for instance, when zero
difference samples occur over a period of time. If this error is not properly
detected and handled, the sensor node data will be useless (failure);

3. Processing and storage faults: these may occur in WSN hardware
and/or software/firmware, affecting either the quality and consistency of
the stored data or the operations that are performed on them. For in-
stance, bit flips in memory or special registers can corrupt the stored data.
Another example is an abnormal increase in the processor temperature,
which may cause the drifting of the clock and desynchronize the sensor
node from the network, originating several network faults, especially when
using TDMA based mechanisms;

4. Communication faults [Sailhan et al., 2010]: due to the inherently
distributed and dynamic nature of WSNs, communication is one of the
major sources of faults in sensor networks. Wireless communications are
usually subject to considerable interference (e.g., ambient noise, channel
noise, multipath fading, RF interference, etc.) that affects the communic-
ation between sensor nodes. Moreover, at networking level, sensor nodes
may also be subject to several types of faults. Routing faults can be caused
by errors in routing algorithms and/or protocols, which can lead packets to
be caught in network loops (error) and never to arrive at their destination
(failure). Additionally, sensor nodes may also suffer from faults related to
message processing. For instance, when sink sensor nodes cannot dispatch
messages faster than they receive them, there may be local congestion in
the buffers between the various protocol layers and some messages may
have to be dropped;

Table 3.11, below, provides examples and references to the mentioned types of
faults, from the source system point of view.
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Table 3.11: Fault examples from the source system perspective

Energy supply
faults

Battery degradation fault [Sailhan et al., 2010];
limited power fault[Ma et al., 2006]; low battery
voltage faults [Mahapatro and Khilar, 2013].

Data acquisition
faults

Gain data fault, offset data fault [Warriach
et al., 2012]; software aggregation bug [de Souza
et al., 2007].

Processing and
storage faults

Limited memory fault, limited computation
capability fault [Ma et al., 2006]; incorrect com-
putation faults[Mahapatro and Khilar, 2013];
memory errors [Ali and Tixeuil, 2010]; memory
corruption [Sailhan et al., 2010]; omission com-
putation.

Communication
faults

Message, packet and data manipulation modi-
fication/corruption/removal and addition fault
[Sailhan et al., 2010]; misguided messages fault
[de Souza et al., 2007]; corrupted routing main-
tenance packets fault [Rodrigues et al., 2013];
routing loops fault [Miao et al., 2013]; degraded
route path fault [Ma et al., 2006]; bad network
installation [Sailhan et al., 2010].

3.5 Related Work

Fault tolerance is a long-established field, in which there are numerous studies
and taxonomy proposals. Nevertheless, WSNs have specific characteristics that
require extending and adapting existing fault taxonomies to the reality of this
type of networks. To the best of our knowledge, this proposal is the first attempt
to specify a taxonomy of faults for WSNs.

Concepts and taxonomy in dependable and secure computing are presented in
several pieces of work as, for instance, in [Avižienis et al., 2004] and [Jalote, 1994].
The taxonomy presented in [Avižienis et al., 2004] can be seen as a reference,
well-accepted taxonomy for dependable and secure computing in general that,
although applicable to WSNs, does no cover all of its needs.

Several other papers present surveys related to fault tolerance and diagnosis,
although without the purpose of defining a full WSN fault taxonomy. In this
category we highlight [Mahapatro and Khilar, 2013; Ma et al., 2006; de Souza
et al., 2007]. In [Mahapatro and Khilar, 2013] the authors classify WSNs faults
based on duration (permanent, intermittent, transient), underlying cause, and
the behavior of the failure component (hard or soft). In this context, they
identify several fault types (crash, omission, timing, fail-stop and byzantine).
In [Ma et al., 2006] the authors identify several WSN faults and proposed three
new types: specification mistakes, implementation mistakes and component mis-
takes. Lastly, in [de Souza et al., 2007] the authors survey fault tolerance tech-
niques in WSN and address several types of faults (node faults, network faults,
sink faults), classifying them into crash or omission, timing, value and arbitrary.
Other papers focus on proposing new WSN fault tolerance techniques and, in
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doing so, describe several fault types addressed by their proposed technique, thus
constituting an alternate source of fault classification. In this category we high-
light the papers in [Warriach et al., 2012; Cinque et al., 2009; Ali and Tixeuil,
2010; Sailhan et al., 2010; Koushanfar et al., 2003], as they provide relevant con-
tributions to WSN faults classification. In [Warriach et al., 2012] the authors
present two types of faults that affect the performance of WSN: system faults
and data faults. In [Cinque et al., 2009] the authors address a hardware fault
injection tool and, based on this tool, present several examples of fault types,
such as transient and permanent faults, arbitrary faults, hardware faults and
data faults. In [Ali and Tixeuil, 2010] the authors describe faults using the time
perspective (transient, intermittent and permanent) and using a hybrid model.
In [Sailhan et al., 2010] the authors also present several examples of WSN faults
and fault types, including active faults, dormant faults, data faults, exclusive
faults and elusive faults. Lastly, in [Koushanfar et al., 2003] the authors address
faults that are directly related to sensors and sensing, such as offset faults, frozen
sensor faults, sensor aging faults and sensor function faults.

The analysis of the existing literature on WSN faults clearly shows that related
work focuses the attention in specific fault tolerance algorithms and methods,
rather than on proposing a comprehensive WSN fault taxonomy. This, in our
view, leads to fault and diagnostic tools that are partial and/or too specific, with
limited applicability in real world scenarios, as highlighted in our previous work
[Rodrigues et al., 2013]. Moreover, most studies address faults based on a single
dimension, e.g., the cause/origin dimension, which does not provide enough
information for fault classification. By proposing a comprehensive WSN fault
taxonomy, the current proposal addresses the shortcomings of existing related
work.

3.6 Summary of the Chapter

A WSN fault taxonomy is needed to better understand and classify the various
types of faults that can occur in WSN systems and, thus, helping in the develop-
ment of fault management tools. In this chapter a review of fault management
concepts and techniques and their application to wireless sensor networks was
presented, as well as a proposal for a comprehensive, consistent WSN fault
taxonomy. This taxonomy can be used by WSN researchers, tool developers, in-
tegrators and users. While presenting the taxonomy, examples of a large variety
of faults were given and references to existing literature were provided. In the
scope of this thesis, this chapter contributed to a better identification of fault
characteristics, which is of key importance to the following chapters.
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Chapter 4
The Proposed Monitoring
Architecture

”The important thing in
science is not so much to
obtain new facts as to
discover new ways of thinking
about them.”

(Sir William Bragg)
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C urrent WSN diagnostic tools have several drawbacks, as already poin-
ted in section 2.4. In our opinion, some of these drawbacks are ham-
pering the use of WSNs in industry because nowadays, to the best

of our knowledge, there aren’t multi-network, standard-compliant monitoring
tools that support the IWSN technologies addressed in this proposal (ZigBee,
ISA100.11a, WirelessHART, WIA-PA). In order to make this clear, in sections
2.2, 2.3, and 2.4, a review of the state-of-the-art in what concerns the main
Industrial IoT standards, network management, and diagnostic tools was made.
As a result, some questions arose: How can multiple networks, possibly compris-
ing equipment compliant with different standards, be monitored in an integrated
way? How to add management functionality at gateway level? How can firm-
ware and hardware be monitored without extra costs in hardware, firmware, and
network?

In what concerns network monitoring, three important aspects were identified
in sections 2.2 and 2.4: the set of techniques used by current diagnostic tools
to monitor the network; the available metrics, provided by almost all industrial
standards, that can be collected and shared at gateway level; and the current
management standards. In what concerns hardware and firmware monitoring,
several approaches and technologies were also presented, as well as log techniques
that can be used to convey hardware and firmware metrics inside the network.
Thus, the review made in these sections identified several crucial points and
research directions that led us to the proposal of this architecture and related
properties. Implementations of the proposed architecture will lead to diagnostic
tools that are totally compatible with industrial standards. In this respect, a
proof-of-concept implementation will be presented in section 4.6.4, which also
discusses evaluation results.

It should be highlighted that the current architectural proposal goes well beyond
identifying components and respective abstract relations. More than defining the
requirements, interactions, and roles to be performed by each architecture com-
ponent, this section defines technologies, approaches, and protocols to be used
in realistic, practical industrial scenarios. For instance, this section addresses
the techniques and technologies for collecting hardware, firmware, and network
metrics; defines the services used in each standard for conveying the monitor-
ing information; and identifies the management protocols and technologies for
dealing with the monitoring information.

The remainder of this chapter is organized as follows: initially, the proposed
monitoring architecture is presented, providing the reader with a global view of
its components and their main roles; subsequently, each component is described
in detail, by specifying their role and requirements. Moreover, the technologies
applicable to each component will be identified.
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4.1 Architecture Overview

With the emergence of several IWSN standards and the increase in the number
of IWSN deployments, it is crucial to define an architecture able to monitor
multiple-network, standard-compliant technologies. The proposed architecture,
presented in Figure 4.1, pretends to be flexible, scalable, energy-efficient, low-
cost, and multi-standard solution in order to cover hardware, firmware, and
network monitoring. In order to ease the adoption by IWSN vendors, OEM
producers, and developers, the architecture was designed according to six main
guidelines: i) it should support the monitoring of multiple IWSNs; ii) it should
support multiple IWSN standards; iii) it should not lead to a significant increase
in energy expenditure; iv) the collection of hardware metrics should not increase
the cost of manufacturing the devices; v) the acquisition of metrics should not
have a significant impact on the main application size and delay, nor should it
lead to a large traffic overhead; vi) the network metrics defined by each IWSN
standard should be used; and lastly, vii) the collection of sensor-node metrics
(hardware/firmware) and network metrics should be independent. The pro-
posed architecture has five base modules: 1) sensor node monitoring agent; 2)
gateway monitoring agent; 3) monitoring logger; 4) management agents; 5) and
management system.

The sensor node monitoring agent is responsible for the collection of node mon-
itoring data (hardware and firmware metrics), and the sending of these metrics
to the network gateway. The latter will forward the metrics to the monitoring
logger, where they will be parsed and stored. The monitoring agent will use the
most appropriate service in each industrial standard for forwarding the metrics.
These metrics are encapsulated in a specific application format. During its op-
eration (either when collecting information or when sending it), the monitoring
agent should minimize the impact on the available resources.

Each industrial gateway has a pair of agents (one monitoring agent and one
management agent). The gateway monitoring agent is the component that col-
lects the network metrics and the gateway state (globally called management
objects) and stores them in a local database (the datastore). These are then
accessed in a standardized way by management systems, through the services
delivered by the gateway management agent. In order to support the interoper-
ability with management systems, the gateway also stores the representation of
the management objects (i.e., IWSN standard metrics, and gateway state).

On the other hand, the handling of the collected sensor node monitoring data
is carried out by a monitoring logger component, which parses the log messages
and stores them in its datastore. The monitoring logger is a software compon-
ent with two main sub-components: log parser and management agent. The
log parser is the component that receives the log messages from the gateway,
parses them, and stores them in the local datastore. Like the gateway, the mon-
itoring logger locally stores a representation of the management objects. This
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Figure 4.1: Proposed monitoring architecture

representation enables the management agent to share the sensor node metrics
with the management system in a standardized way (i.e. by using description
languages such as SMIv2, XML and YANG). It should be noted that the mon-
itoring logger is a logical component that can be deployed either on the gateway
(if the manufacturer supports it) or on the management system.

The management system receives network monitoring data from the gateway
management agent, and sensor node data (hardware and firmware metrics) from
the monitoring logger management agent. Besides the traditional functions
of configuring the monitoring capabilities of IWSN devices, the management
system can include, for instance, a diagnostic tool that alerts operators or de-
velopers of critical events in the network, hardware, or firmware. Thus, the man-
agement system is capable of monitoring sensor nodes and network behaviour of
multiple IWSNs using the standards addressed in this thesis. This chapter out-
lined a proposal for a monitoring architecture for IWSNs that: does not require
any modification to IWSN standardized technologies, benefits from the man-
agement information provided by each IWSN standard, and communicates with
management systems in a standardized way. This addresses requirements i), ii),
vi) and vii), identified in the beginning of this section. The next sub-sections
detail each architecture component and show how the identified questions and
requirements (especially, the ones more related with implementation strategies)
are address by this proposal.

4.2 Sensor Node Monitoring Agent Overview

Sensor node metrics (hardware and firmware) are collected by the sensor node
monitoring agent, as opposed to network metrics, which are collect by the gate-
way monitoring agent. Independence between the acquisition of network and
sensor node metrics is one of the main features of the proposed architecture.
This makes it possible to monitor the network independently from the acquisi-
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tion of sensor node metrics. This separation also allows having closed modules
in IWSN gateways (provided by IWSN vendors) and a more open monitoring
logger module (that can be extended by developers if needed).

This section presents and discusses the main requirements for hardware and
firmware metrics acquisition in the sensor node monitoring agent, and provides
guidelines as to the technologies that can be used in this scope. Additionally,
the approaches used in the transport of the logged data over the IWSN will be
also presented.

4.2.1 Hardware Metrics Collection

In order to persuade IWSN vendors and OEM producers to incorporate real-time
monitoring in sensor nodes’ hardware, the monitoring techniques used by the
sensor node monitoring agent should meet the following requirements: the added
hardware components should not significantly increase the cost of sensor node
manufacturing; the board space required by monitoring components should be
minimal; the energy consumed by the hardware monitoring components should
have a negligible impact on the battery life; processing and memory overhead
should be minimum; and lastly, access to the hardware metrics should be seam-
less across all hardware platforms.

Regarding the latter requirement, considering the techniques presented in section
2.4, those who enable direct access to microcontroller metrics (by using internal
hardware registers and hardware counters) have a higher level of portability
when compared to external physical tools. From the sensor node monitoring
agent perspective, seamless access to hardware metrics, regardless the underly-
ing technology, is extremely important. By using different Board Support Pack-
ages (BSPs) developed by hardware manufactures (e.g., Drivelib [Instruments,
2019]), or by using interfaces available in the sensor nodes operating systems
(e.g., Contiki, RIOT), it is possible for sensor node monitoring agents to gather
hardware metrics directly from each hardware platform. Hardware monitoring
techniques that collect vast quantities of data to infer the hardware conditions
are not appropriate for IWSN application scenarios.

The work performed in [Scherer and Horváth, 2012; Scherer and Horvath, 2014;
Dutta et al., 2008; Rodrigues et al., 2014] presents a set of metrics that can
be collected with little cost and extra value to assess the health of hardware
components. Specifically, in [Dutta et al., 2008] the authors present a low-cost
technique that, using an extra wire connected to an Microcontroller Unit (MCU)
hardware counter, enables the measurement of sensor nodes energy consumption.
This technique was used in [Rodrigues et al., 2014], in an anomaly detection
system, with good results, and proved its low footprint in terms of memory, cost,
and processing load. Using the same MCU technology (the MSP430 family),
in [Rodrigues et al., 2014] the authors present a technique that enables data
acquisition on microcontroller cycles and execution time. In 16-bit architectures,
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the MSP430 family is one of the most used microcontrollers in WSN hardware
due to its low power consumption. On the other hand, in 32-bit architectures,
ARM microcontrollers are the most used ones. For these platforms, the work
presented in [Scherer and Horváth, 2012; Scherer and Horvath, 2014] describes
a set of metrics that can be collected from the CoreSight technology available in
the ARM architecture. The Data Watch Point (DWT) block can provide several
measurement statistics, such as interrupt overhead, and sleep cycles. Another
block, the Embedded Trace Macrocell (ETM), can provide statistics concerning
the number of executed or skipped instructions.

Summing up, the monitoring of hardware condition can be performed at hard-
ware level in compliance with the defined requirements. Furthermore, the pro-
posed methods allow data acquisition for different types of microcontroller ar-
chitectures and technologies. A set of techniques already addressed and proven
by the scientific community were presented, and are recommended for use in the
proposed architecture

4.2.2 Firmware Metrics Collection

Development of firmware for sensor nodes can be made using one of two types
of approaches: the “bare metal” approach or the OS-based approach. When the
“bare metal” approach is used, the application is usually developed in C or C++,
and access to the hardware is made by the BSP supplied by the manufacturer,
resulting in a very hardware-dependent development. This type of development
is less portable than OS-based development, in which hardware operations are
managed by the OS. Developers only have to call OS generic functions that will,
in turn, be translated into hardware-specific calls.

Firmware monitoring techniques used by the sensor node monitoring agent
should support the monitoring of applications developed either using bare metal
or OS-based approaches. Thus, as main requirements, firmware monitoring
techniques should: be application independent; support, at least, C and C++
(according to [Hahm et al., 2016] most OSs use these languages); be OS-
independent; when enabled, have a negligible impact on the execution of the
main application (i.e. a minimal increase in the microcontroller’s load); min-
imize the use of RAM, program memory, and external memory; be easy to
integrate into the developers work flow; and not depend on physical access to
the hardware. Similar to hardware monitoring techniques, firmware techniques
that collect vast quantities of data and need physical access are not appropriate
to this architecture.

From the set of techniques used in the tools presented in section 2.4, instru-
mentation techniques are the only ones that fulfil the mentioned requirements.
Tools that use instrumentation techniques with scripting languages allow de-
velopers to easily integrate them in their daily workflow and, at the same time,
provide code tracing, debugging, profiling, and performance counters. Support-
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ing instrumentation in C and C++ languages allows the use of instrumentation
techniques in almost all OSs. In the proposed architecture, the sensor node mon-
itoring tool collects firmware metrics by using instrumentation techniques.

In [Dong et al., 2014; Schuster et al., 2014; Dong et al., 2013; Shea et al., 2009]
the authors present some technologies, techniques, and metrics that use code
instrumentation. For instance, in [Shea et al., 2009] the authors use the C Inter-
mediate Language (CIL) to instrument the C source code. The instrumentation
code is inserted by a parser before building the binary file. Using a similar
approach, in [Schuster et al., 2014] the authors use the PYCParser tool to in-
strument the code to support logging. On the other hand, in [Dong et al., 2014;
Bhadriraju et al., 2012] the authors use binary instrumentation to inject the
monitoring code using the trampoline technique. Differently from the other in-
strumentation techniques, in binary instrumentation, developers do not need to
have access to the source code to change the program flow. Using trampoline
techniques, the displaced instructions are executed and then another jump is
made back to the actual code. This method allows the use of instrumentation
in running code. These techniques allow the collection of several firmware state
and identification metrics like: function header, control flow (if, else, switch),
function footer, function calls, variables values, and number of variable assign-
ments.

In conclusion, from all the techniques presented in section 2.4, solutions that
need physical access to hardware interfaces (e.g. JTAG) to collect firmware
monitoring metrics cannot be used in real industrial deployments. For this
reason, the sensor node monitoring agent proposed in the current architecture
collects firmware metrics using techniques deployed in the firmware by code
instrumentation.

4.2.3 Transport of Collected Data

IWSN standards were engineered to optimize four important sensor node re-
sources: node battery, reliability, latency and network bandwidth. In this type
of networks, sensor nodes should operate during several years, and network re-
sources should be optimized for conveying the collected data with a variety of
QoS requirements. Typically, the transport of sensor node monitoring informa-
tion has lower priority than the main application traffic because the collection of
this information cannot compromise the sensor node main application (nor its
operating lifetime). Thus, the transport of sensor node monitoring data made
by the sensor node monitoring agent should fulfil the following requirements: the
monitoring information should be sent using appropriate network services and
without compromising the main sensor application; the monitoring information
storage should have a minor impact on the sensor node resources (for instance
using a First In First Out (FIFO) buffer in RAM, and dropping data when the
buffer is full); when available, data should have a network timestamp to make
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it possible to correlate several events in the network; when security is enabled
for the main application, the monitoring data should also be secured; when log
packets exceed the maximum payload size and no fragmentation and reassembly
mechanisms are available in the underlying layers, the sensor node monitoring
agent should support fragmentation and reassembly mechanisms; lastly, the im-
pact of such operations on battery life should be minimal.

Regarding the timestamp requirement, from the set of the four analysed stand-
ards ZigBee is the only one that does not define a time standard in its specifica-
tion. On the other hand, WirelessHART, ISA100.11a, and WIA-PA define their
own time standard as Universal Time Coordinated (UTC), International Atomic
Time (TAI), and UTC, respectively, and provide services to synchronize sensor
nodes [Wang and Jiang, 2016]. Consequently, in ZigBee, sensor node monitoring
data cannot be correlated without implementing additional mechanisms in the
sensor nodes that enable to synchronize the network time between nodes.

As already mentioned, the Maximum Transmission Unit (MTU) in IEEE802.15.4
is 127 bytes. Thus, all of the four standards use fragmentation and reassembly
mechanisms to overcome this limitation. WIA-PA and ISA100.11a implement
this mechanism at the network layer, unlike ZigBee that implements it at the
application support sub-layer. WirelessHART also supports the transport of
large packets but, in this case, sensor nodes need to allocate a special type
of transport service - the block data transfer. This service only allows the
existence of a unique block transfer service for the whole network [Wang and
Jiang, 2016; Alliance, 2015]. Thus, in WirelessHART, the transport of blocks of
data that exceed the maximum MTU size requires fragmentation and reassembly
to be implemented at application level, if the block data transfer service is not
used.

Another important aspect is the security of sensor node monitoring data. All
of the industrial standards within the scope of this architecture offer end-to-end
encryption. In the cases of ZigBee, WirelessHART, and ISA100.11a, security
is managed using a centralized approach. On the other hand, WIA-PA uses
a distributed approach, where the security manager together with the routing
devices configure the security measures and forward the keys to field devices.
All the standards under consideration provide encryption using symmetric keys,
although ISA100.11a can also use asymmetric encryption in device joining pro-
cesses. Last but not least, the highest level of IEEE 802.15.4 security policy
is AES-128-CCM. Consequently, most IEEE802.15.4 radio chips support AES-
128-CCM operations at hardware level [Wang and Jiang, 2016].

In order to minimize the impact on the main application traffic, the approach to
transporting sensor nodes monitoring data should be carefully selected for each
standard, as presented below.

In WirelessHART, data transport can be done using one out of four types of
services: block transfer service, maintenance service, periodic service, and event
service. The block transfer service can only be used by one sensor node at a
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time. Thus, this service is not appropriate to transport sensor node monitoring
data. The maintenance service provides the network with a minimal bandwidth
for basic sensor nodes control and management operations. Because this is a
low bandwidth service, it cannot handle the transport of sensor node monitor-
ing data. The event service is used by applications to send data packets during
unexpected events, such as alarms and warnings (when this service is reques-
ted, the radio needs to define the latency associated to the service)[Technology,
2017]. Finally, the publish service is used to periodically send data, like sensor
readings (when this service is requested, the radio needs to define the interval for
sending the data)[Zand et al., 2012b]. Taking into consideration the character-
istics of each service, we conclude that the most appropriate service to transport
the data is the publish service, since the event service is a service used by ap-
plications with latency constraints, and the monitoring data does not have such
requirement.

ZigBee does not specify services for data transport, leaving this to the applic-
ation layer. According to the ZigBee specification [Alliance, 2015], in order to
guarantee compatibility among different manufactures, ZigBee devices need to
implement application profiles (also called endpoints). An endpoint is a ZigBee
application for a specific domain with a set of clusters (or application messages)
that can be mandatory or not. In turn, clusters are composed by attributes
that represent the exchanged data. ZigBee sensor nodes that implement the
same ZigBee profile (endpoint) are able to communicate with each other. In the
context of this architecture, the sensor node monitoring agent is an endpoint
and a set of cluster messages that can be sent to the ZigBee coordinator (that
must also support the same endpoint).

Compared to the other standards, ISA100.11a is by far the most complex
and customizable standard. Instead of using the term services, used in Wire-
lessHART, in ISA100.11a contracts establish the resources allocated by the sys-
tem manager to devices. Before a device can send data to another device, a
contract needs to be created. Contracts are identified by an ID, unique within
the scope of the device (but not necessarily so in the scope of the network), and
are unidirectional. The system manager is the device that has the authority
to assign, modify and revoke contracts. Like WirelessHART services, there are
several types of contracts and attributes that can be used for establishing service
levels. Firstly, contracts may be of two types: periodic, that schedule network
resources for the periodic sending of data; or, otherwise, non-periodic. Secondly,
contracts can also be negotiable. The system manager may change or revoke
the contract to make resources available to other high priority contracts. Lastly,
contracts can have several levels of priorities: best effort queued, used in client-
server communications; real time sequential, used in voice and video applica-
tions; real time buffer, used for periodic communications; and network control,
used for managing network devices by the system manager. Message retransmis-
sion can, additionally, be enabled or disabled inside the contract. Thus, sensor
node monitoring agents that run inside an ISA100.11a network should request
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Table 4.1: Network transport revision

Standard
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sequential, real-time buffer
and network control
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Publish/subscribe VCRs,
source/sink VCRs, and
client/server VCRs

Source/sink
VCR or

Client/server
VCR

a non-periodic contract type, that can be negotiated and revoked if needed. In
this way, the system manager can revoke the contract of the sensor node mon-
itoring agent, thus guaranteeing that the main sensor application can deliver
sensor data without disruption. Additionally, the contract priority used by the
sensor node monitoring agent should have the best effort queued type.

In the case of WIA-PA, networks may operate in two distinct modes: a hierarch-
ical network topology that combines star and mesh, or a star-only topology. The
star-only topology is a special case of the hierarchical network. For this reason,
this topology uses the same services available in the hierarchical topology for
data transport. In WIA-PA, the Virtual Communication Relationship (VCR) is
the main standard block to access the objects specified in the User Application
Objects (UAOs). VCRs distinguish the routing and communication resources
allocated to each UAO. Each VCR has a VCR identifier, a source UAO ID, a des-
tination UAO ID, address of source device/destination device and the VCR type.
Similar to WirelessHART services and ISA100.11a contracts, in WIA-PA, VCRs
can be classified according to the application scope: publish/subscriber (P/S)
VCRs, used for publishing periodic data; report source/sink (R/S) VCRs, used
for transferring aperiodic events and trend reports (alarms); and client/server
(C/S) VCRs, used for transferring aperiodic and dynamic paired unicast mes-
sages (for getting and setting operations in UAO). Additionally, VCRs also
provide aggregation methods. In this architecture, the sensor node monitor-
ing agent data are UAOs capable of representing log messages. Thus, sensor
node monitoring agents, available in each field device, as well as routing devices,
need to select the appropriate VCR. P/S VCRs are appropriate for real-time
operations, using exclusive timeslots in intra and inter-cluster communication.
For this reason, this type of VCR should not be used for sending the monitor-
ing data. On the other hand, R/S and C/S VCRs use the CAP period of the
IEEE802.15.4 slot inside clusters, and use shared timeslots in inter-cluster op-
erations. Thus, C/S and R/S VCRs are the most appropriate for transporting
sensor node monitoring data in WIA-PA networks.
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4.3 Gateway Monitoring Agent

The gateway monitoring agent is the component in charge of representing man-
agement objects data in a standardised way, and of sending network monitoring
data to the management systems. This agent also deals with data from multiple
standards. The gateway monitoring agent is independent from the sensor node
monitoring agent, thus allowing the separation of sensor node data collection
from network monitoring data coleection. In this context, gateway monitoring
agents must meet the follow requirements: network monitoring should not sig-
nificantly increase the cost of equipment nor the cost of installation; collecting
network metrics should add low overhead to the gateway; monitoring should be
energy-efficient; the monitoring solution should be easy to install and should be
extensible; and, lastly, gateway monitoring agents should support widely used
industrial standards, namely the ones addressed in this thesis.

Considering the three types of techniques identified in section 2.4.1 (active, pass-
ive, and hybrid), active type techniques are the only ones that are easy to install
and do not rely on extra hardware to perform monitoring tasks. However, this
type of techniques usually consumes sensor node resources, as pointed in section
2.4. On the other hand, in section 2.2.3, the revision made to the metrics shared
between nodes showed us that the standards under consideration can support
the sharing of critical information related to network and sensor node state,
which can be used for resource allocation and routing tasks. Thus, by using
these metrics, active tools will be capable of fulfilling the identified require-
ments without spending significant sensor node resources. Furthermore, some
current industrial solutions available on the market already provide these met-
rics at the gateway, using proprietary libraries. The only disadvantage of active
type techniques is the partial coverage in ZigBee networks because some metrics
cannot be gathered by the coordinator. This arises from the fact that, in ZigBee,
route computation is done in a distributed fashion for some topologies.

4.4 Monitoring Logger

As shown in table 2.2, the standards under consideration use different application
approaches. Specifically, ZigBee, ISA100.11a, and WIA-PA use object-oriented
representation, whereas WirelessHART uses a command-oriented representa-
tion. Sensor node monitoring data needs to comply with the representation
defined in each standard, which leads to different representations for the same
sensor node data. To solve this issue, the monitoring logger is the component
that parses distinct standard representations into the same representation.

The monitoring logger should fulfil the following requirements: support the con-
nection to the different standards “gateways”; support the parsing of the distinct
application protocols using a sub-component (the log parser); support the rep-
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resentation of sensor node monitoring data in the languages supported by the
management protocols; allow access to the monitoring data by management
systems, using the management agent; and, lastly, store the sensor node monit-
oring data in a datastore. As a software component, the monitoring logger can
be installed as an extra software module in industrial gateways or in another
compatible equipment.

4.5 Management Agents and Management System

Management systems are one of the building blocks of current IP-based net-
works. By monitoring the networks and their equipment, operators and manu-
factures can maximize the network uptime, improving the delivered quality of
service. When applied to IWSNs, network and sensor node monitoring can also
provide similar benefits. It is unthinkable to have a large IWSN that uses one
or more standards without a central management system to perform predictive
maintenance of sensor nodes. As presented in the previous sections, hardware,
firmware and network monitoring data can be delivered by the sensor node mon-
itoring agent and by the gateway monitoring agent, respectively. However, a key
to the puzzle of this architecture is missing. To improve interoperability between
these agents, different manufactures, and diagnostic tools, appropriate manage-
ment protocols and syntax languages are needed. In this context, management
agents should fulfill the following requirements: agents should allow the repres-
entation of sensor node and network data as managed objects; when needed,
managed objects should be able to be extended, supporting additional monit-
oring metrics; management agents should be able to share management object
information with management systems, updating the model used in management
systems when needed; the management protocol should be able to support se-
curity mechanisms; management agents should run in IWSN gateways, for which
the minimum hardware requirements should be set to IETF Class 2 [Bormann
et al., 2014] (e.g., gateways that can support, for instance, a simplified version
of Linux-based operating system); management protocols should support noti-
fication messages (query-based architectures can be heavy for IWSN gateways
and are not scalable); lastly, the management agent must operate in IP networks
(IWSN gateways must be able to be connected to an IP network).

When network management technologies were previously analyzed in section
2.3, some protocols, syntaxes, and key features were identified. Current net-
work management protocols can be divided into protocols designed for resource-
constrained devices, and protocols for traditional networks. While traditional
network management protocols are more mature and widespread, resource-
constrained management protocols use more advanced, simpler, and modern
technologies for representing management objects (e.g., YANG), and for data
transport (e.g., CoAP, HTTP). Here, we highlight that protocols designed for
resource-constrained devices can also be used in more powerful devices, like
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IWSN gateways. However, there are other aspects that need to be addressed
regarding the requirements defined in this section. From the set of syntaxes for
representing management models, XML and YANG are the most flexible and
most simple languages. The learning curve to describe management objects us-
ing SMIv2 is longer than using languages like YANG and XML. Thus, SMIv2
is not recommended in the scope of this architecture. Consequently, SNMP
is also not recommended for this architecture. Moreover, when working with
data models, one important requirement is the sharing of the model with man-
agement systems. From the remaining protocols proposed in the scope of this
architecture, NETCONF [Enns et al., 2011], COMI[der Stok et al., 2017], REST-
CONF[Bierman et al., 2017], and LwM2M[OMA, 2017] allow the discovery of
the models and of the resources available in each management node, by using
discovery commands or specific URIs that enable to retrieve the used models.
Additionally, other important requirement is the use of notification messages.
By creating subscriptions to different management topics, diagnostic tools will
be able to have the monitoring information in real time and without extra effort,
contrary to what happens in query-based protocols that need to actively look
for the monitoring information. Considering the set of analysed management
protocols, the only one that does not support notifications is the NETCONF
protocol. Before a client and a server can exchange management messages,
NETCONF has to establish a permanent connection using SSH and TCP. Thus,
it is impossible to notify management clients in the case of a connection loss.
RESTCONF, LWM2M, and COMI have support for notification messages.

Lastly, one of the main characteristics of protocols for resource-constrained
devices is the capability to use the protocols in the node itself (something they
were developed for). However, in IWSNs, for which application protocols are
statically specified by the standard, it is not possible to use other protocols in
sensor nodes, such as the management protocols we have been addressing. The
only option is to represent managed objects in the gateway of each standard.
The authors of [Chang and Lin, 2016] present a solution to monitor and man-
age legacy systems with LWM2M protocol, by using several LWM2M clients to
represent each legacy device behind the gateway. Additionally, as presented in
[Raposo, 2017], using the YANG language it is possible to represent the net-
work metrics shared with a gateway in a WirelessHART network. In this way,
COMI and RESTCONF can also be used in the gateway to represent legacy
devices.

4.6 Building a Proof-of-Concept

In the previous section, the monitoring architecture was presented as well as its
components, requirements, and available solutions for each component in light
of the existing standards and protocols. Being a general monitoring architecture
that integrates several network standards, hardware technologies, and firmware
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Figure 4.2: Validation of the monitoring architecture using a WirelessHART
testbed

architectures, a proof-of-concept implementation of such architecture showing
each supporting technology and monitoring technique is unfeasible. Thus, in
this chapter, a proof-of-concept scenario is presented using a small testbed with
a WirelessHART network. Using some of the technologies and solutions already
presented in the sections 2.3 and 2.4, we set out to prove that the proposed
architecture is able to monitor the network and the sensor nodes (hardware and
firmware) operations, with low impact on IWSN resources.

This section starts by presenting the test scenario, comprising the industrial
application, and the deployed hardware and firmware components. Secondly,
the collected metrics and associated mechanisms are presented. Thirdly, data
acquisition and processing of sensor node metrics are explained. Lastly, the
impact on the network and sensor node resources is analysed and discussed.

4.6.1 Test Scenario

The proposed monitoring architecture was tested using a typical industrial ap-
plication. The proof-of-concept scenario consisted of four sensor nodes and a
WirelessHART gateway. On one hand, sensor nodes monitor the temperature
of the industrial assets and send their readings to the gateway. On the other
hand, the gateway controls all the traffic in the network, performing the role
of a network and security manager (Figure 4.2, on the left). According to the
proposed monitoring architecture, WirelessHART sensor nodes and the gateway
are capable of sharing sensor node monitoring data and network metrics.

The firmware deployed in the sensor nodes can be divided into two distinct
modules: the industrial application, and the sensor node monitoring agent. The
industrial application is responsible for temperature sampling and for controlling
the network operations (by sending control messages to the radio, such as net-
work joining, network notifications, and service requests). On the other hand,
the sensor node monitoring agent collects hardware and firmware metrics and
sends them by using a specific network service.
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As presented in the sensor node monitoring agent description, section 4.2.3,
WirelessHART defines four types of service level agreements: block transfer
service, maintenance service, periodic service and event service. The proof-of-
concept application running at the microcontroller requests the following services
to the gateway: a publish service, for sending temperature data every minute;
an event service, for sending alarms if the temperature rises above a certain
threshold (the verification is made every 30 seconds); an additional publish
service that is requested and deleted each time the sensor node needs to send
monitoring data (every 15 minutes); and, lastly, a maintenance service, directly
allocated by the radio that handles all the control messages between the radio
and the network manager.

In terms of hardware, the sensor nodes are formed by three components (Figure
4.2, on the right): radio, microcontroller and power supply. The radio (Linear
DC9003A-C) handles the communication tasks with other network nodes and
with the microcontroller. The microcontroller (Texas MSP430F5 launchpad)
runs the industrial application and the sensor node monitoring agent. At the
same time, the microontroller is connected to the WirelessHART radio over
UART, and to temperature sensor (ADT7301) over SPI. Lastly, the power supply
is formed by a pack of batteries and a DC/DC converter used to supply energy
to the radio and the microcontroller. Two of the nodes use TPS62740EVM-186
buck converters, and the other two use TPS61291EVM-569 boost converters. In
addition to assuring a predefined voltage level, by using these DC/DC converters,
we can measure the energy expenditure of each sensor node almost for free and
in real time.

The gateway (LTP5903CEN-WHR) controls all network operations, manages
the network, performs security operations and, at the same time, connects the
IWSN with the industrial network through an IP network. Additionally, an
application running at the gateway allows the subscription of specific types of
messages (e.g., application messages, sensor node monitoring data messages, and
network report messages). This application performs the role of the gateway
monitoring agent, collecting the reports identified in table 2.3.

Finally, the monitoring logger was developed as a python application that imple-
ments the log parser sub-component. When the monitoring logger application
starts, a specific subscription is made to the network manager in order for it to
receive the sensor node monitoring messages. After that, when the data arrives
at the sub-component, the log parser converts the packets to JSON objects and
stores them in a datastore.

In this proof-of-concept scenario, we only intend to measure the impact of the
architecture on sensor node resources (memory, processing, energy) and on the
network operation (overhead in relation to the sensor node traffic). Thus, we
did not implement the management agents presented in the architecture (at
the gateway and at the monitoring logger). Such agents were already presen-
ted and are freely available, as described in [Špírek, 2017; Eclipse, 2017], and,
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thus, their implementation in this proof-of-concept scenario would not provide
relevant added-value. However, we should emphasize that the WirelessHART
network metrics management models that would be required for such imple-
mentation were already created by us and are available for download in [Raposo,
2017].

4.6.2 Collected Metrics

The architecture proposed in this thesis allows the collection of hardware, firm-
ware, and network metrics using agents deployed in sensor nodes and network
gateways. In this chapter, some of the requirements were presented, as well
as some monitoring techniques already explored by other researchers. Thus, to
prove that this architecture has low impact on sensor nodes resources, our test
scenario implements some of these techniques, enabling the collection of met-
rics from the hardware of the Texas MSP430F5 launchpad, from the industrial
application, and from the WirelessHART network.

Collecting hardware metrics was done using techniques that directly access the
registers and counters of the Texas MSP430F5 launchpad. As this is a 16-bit
microcontroller, the implemented techniques were the ones presented in [Dutta
et al., 2008; Rodrigues et al., 2014], comprising a processing metric, an energy
metric, and a time metric. The processing metric gives the number of instruc-
tions executed by the microcontroller. Using switching regulators in combination
with the technique presented in [Dutta et al., 2008], it was possible to have an
energy metric that provides the energy spent by sensor nodes. Lastly, the time
metric gives a time measurement in milliseconds.

Specifically, the metrics were implemented in the following way. Firstly, there
are two possible approaches to implement the processing metric in the Texas
MSP430F5529 launchpad: 1) by configuring pin P7.7 to output the MCLK clock
and connecting it to a hardware counter; or 2) by using the same clock source
and same frequency of the MCLK clock in SMCLK, and configuring a counter to
count it. As the Texas MSP430F5 launchpad does not give us access to pin P7.7,
the second approach was used, and TimerA2 was configured to be sourced by the
SMCLK. Secondly, the energy metric was obtained by connecting the output of
the inductor used in the switching regulator (used as a DC/DC converter, either
the TPS62740EVM-186 or the TPS61291EVM-569) to the TimerA1 clock signal
input (P1.6) of the microcontroller. Lastly, the time metric was obtained using
the TimerB, configured to be sourced by the Auxiliary Clock (ACLK) (being
sourced by ACLK allows to count time even during sleep periods such as Low
Power Mode 3 (LPM-3)).

Apart from hardware metrics, the architecture also enables firmware monitoring
by using instrumentation techniques applied to the main application code. In
order to prove that it is possible to collect some metrics with low impact on
the sensor node resources, manual instrumentation of the code was performed,
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Figure 4.3: On the left, (a) the application architecture and the sensor node
monitoring agent acquiring the state information. On the right, (b)
the request of the WirelessHART publish service

with the objective of obtaining a trace of function calls. Specifically, the func-
tion calls trace was obtained by assigning a specific ID to each function in the
code. Additionally, the instrumentation code enabled each executed function to
collect the function identifier, the function duration, the spent energy, and the
processing load (by using the metrics collected from the hardware). The details
of the data processing and transport over the network will be presented in the
following sub-section. Lastly, after collecting the metrics concerning the sensor
node state (hardware and firmware), the gateway monitoring agent collects the
reports identified in table 2.3, namely device health report, neighbour health list
report, neighbour signal levels, and network alarms.

4.6.3 Sensor Node Instrumentation and Monitoring Information Pro-
cessing

The proof-of-concept implementation presented here aims at demonstrating the
applicability of the proposed architecture to several software development scen-
arios. Specifically, the architecture should support OS-based applications as
well as “bare metal” applications, as in the current case. With this in mind, the
application was developed based on a function-queue-scheduling architecture.
Similar to what happens in OS-based approaches, the functions are added to
a queue of function pointers, and called when appropriate. The scheduler is
responsible for getting the next function in the queue, which will then be ex-
ecuted. On completion, the microcontroller is put in low power mode (LPM) to
save energy.

The main topic of this section is, nevertheless, the sensor node monitoring agent
and its interactions with the BSP, the main application, and the network (figure
4.3). The sensor node monitoring agent is a library developed in C/C++ that
collects the sensor node state data, stores it, and triggers a periodic event to
send the monitoring data over the network. By manually inserting a simple call
to the sensor node monitoring agent at the beginning of each function to be
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monitored (see figure 4.3(a)(1)), it is possible to record the state of the sensor
node’s firmware and hardware. The monitoring information is then stored in a
ring buffer (figure 4.3(a)(2)), until it is sent over the network. In addition, the
hardware state data is collected directly by the sensor node monitoring agent
library from the BSP (figure 4.3(a)(3)).

Last but not least, as illustrated in the figure 4.3 (b), when there is sufficient
data to fill an IEEE 802.15.4 data packet payload, the sensor node monitoring
agent requests a publish service to send the data available in the ring buffer
(4). If the network has enough resources to send the data at the requested rate,
an authorization is received (5), and the sending process starts (6-7). In case
the network does not have enough resources, the microcontroller will receive a
service denial, and the sending of the log will be postponed. When no more
data is available in the ring buffer, the sensor node monitoring agent requests
the deletion of the service in order to free the network resources (8).

4.6.4 Results

In order to show that the proposed architecture can be implemented in industrial
scenarios with efficiency and low impact on resource consumption, some exper-
iments were conducted, whose results are described in this sub-section.

The performed tests can be divided in two groups: tests that measure the im-
pact on the sensor node resources, and tests that measure the network operation
overhead introduced by the sensor node monitoring agent. It should be noted
that, as presented in section 2.2.3, the industrial standards addressed in this pa-
per already share network metrics to perform routing and other network related
operations and, thus, these metrics do not add extra overhead to the network
operation. Hence, the only network overhead is the one caused by sensor node
monitoring agents.

For the first group of tests, the used hardware and software were, respectively,
the Texas Instrument MSP-FET (with EnergyTrace technology support) and the
Code Composer Studio (CCS) connected directly to the launchpad debug pins
and bypassing the board debugger. In the second group of tests, the gateway
monitoring agent was used to collect the impact of the traffic generated by the
sensor node monitoring agent on the network and by collecting device health
reports. The results presented in figure 4.4 show (a) the impact of the hardware
techniques on the sensor node battery lifetime; (b) the overall impact of the
sensor node monitoring agent on the sensor node lifetime; (c)(d) the impact of
the sensor node monitoring agent on the microcontroller processing and memory,
respectively; and (e) the overhead caused by the transport of the sensor node
monitoring data over the network.

In order to measure the impact of the hardware monitoring metrics on sensor
node resources, a simplified version of the industrial application was developed
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with the objective of guaranteeing the independence of each added metric. In
this test, the energy expenditure was measured by the MSP-FET. Each test

Figure 4.4: Obtained results
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was performed during 30 seconds. Additionally, the radio was disconnected in
order to allow the easy detection of the comparatively small increase of energy
expenditure caused by each hardware metric.

As shown in the figure 4.4 (a), the energy spent by the MSP430 in LPM3
without any hardware metric enabled is around 4.1µA. Enabling the processing
metric does not increase the energy spent by the microcontroller. In this LPM,
the MCLK and the SMCLK are turned off and, consequently, the processing
metric interrupt will not occur when the microcontroller is in LPM. On the
other hand, the energy counter increases the microcontroller energy expenditure
in LPM, because even in this LPM mode the system consumes energy and, as
a result, the interrupt associated with the energy counter mechanism will be
executed (this interrupt is tied with an hardware counter that is sourced by
an external clock). In this mode, when enabled, the microcontroller counter
consumes 12.1µA (σ=0.00). Lastly, the time counter, sourced by the ACLK
consumes around 33.2µA (σ=0.05).

Contrary to the significant increase in energy consumption in LPM associated to
each metric, the energy spent by the complete solution in active mode with the
radio on (acquisition plus transport of the monitoring data) only corresponds
to a 3.5% increase (figure 4.4 (b)) in relation to a non-monitoring situation.
Using two AA NiMh batteries (1.2v, 1900mA), the lifetime of the sensor node is
658 days (σ=6) without monitoring and 635 days (σ=12) with the sensor node
monitoring agent enabled.

The latency generated by adding the monitoring mechanisms to the sensor nodes
firmware, as well as the microcontroller’s memory taken by the monitoring mech-
anisms are also two relevant aspects in assessing a monitoring solution. The
firmware graphs, in figure 4.4 (c) and (d), show the number of cycles executed
by the microcontroller in three firmware functions, and the RAM and ROM re-
quirements, respectively, with and without monitoring. In terms of processing
overhead, the manual instrumentation performed in the code of each function
inserts an average of 758 cycles (σ=3), adding 93µs of latency at 8MHz clock.
As can be seen in (c), the overhead is quite small, when compared to the cycles
spent to execute the functions without monitoring, representing 5.1%, 1.2%, and
2.2%, for functions 1, 2, and 3, respectively. An analysis in terms of memory was
also made, measuring the increase of flash memory and RAM. In what concerns
flash memory, the main application without monitoring occupies 18.590KB, as
represented in figure 4.4 (d). Adding the sensor node monitoring agent and the
instrumentation code, the application size increases to 34.659KB. This repres-
ents 12.26% of the total capacity of the flash memory in this microcontroller ver-
sion (131.072KB). Lastly, as also presented in figure 4.4 (d), the main application
without monitoring takes 1.631KB of RAM. Adding the sensor node monitoring
agent to the application increased RAM usage to 2.506KB. When compared to
the initial utilization, the sensor node monitoring agent only consumes an addi-
tional 8.54% of all the RAM available in the microcontroller (10.240KB).
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Table 4.2: Evaluation results overview

Metric Value
Node Lifetime -3.5%
Overhead latency 93µs
Flash overhead
(each instrumented function)

+13
bytes

RAM overhead
(each instrumented function)

+14
bytes

Flash usage *12.26%
RAM usage *8.54%
Network traffic +46%
*when compared with the max capacity available

The network overhead caused by the sensor node monitoring agent was also
measured. Using health reports collected every fifty minutes by the gateway
monitoring agent, we were capable of measuring the traffic generated by a leaf
node in normal operation and with the monitoring capabilities enabled. As can
be seen in figure 4.4 (e), the main application sends 76 packets/hour (σ=0)
on average. Most of this traffic is generated by the publish service that sends
the temperate values every minute. Enabling the sensor node monitoring agent
causes a traffic increase of 46%, sending an average of 165 packets per hour
(σ=9), of which 89 packets are generated by the sensor node monitoring agent.
In WirelessHART, the IEEE802.15.4 payload is limited to 94 bytes per packet.
Thus, each packet sent by the sensor node monitoring agent is capable of carrying
6 log entries, each with log ID and function details (function id, duration metric,
processing metric, and energy metric).

Summing up, the assessment of the proposed monitoring architecture, carried
out through this proof-of-concept implementation, shows its low impact and
high efficiency in what concerns sensor node resources and network. Table 4.2
summarises the obtained results. By causing a mere 3.5% reduction in sensor
nodes’ battery lifetime, introducing a 93µs latency overhead in each function, oc-
cupying 12.26% of flash memory, and using 8.54% of RAM, the implementation
enabled the monitoring of hardware and firmware in sensor nodes. Despite the
increase of 46% in network traffic generated by sensor nodes, the proposed solu-
tion, here implemented for WirelessHART, used network resources in a smart
way. The monitoring data was only sent when the network had resources to send
it, requesting the service and deleting it each time the sensor node monitoring
agent needed to send monitoring data. Using this approach, the sensor node
monitoring agent only requested free network resources, not used by the main
industrial application.

4.7 Related Work

To the best of our knowledge, the architecture presented in this chapter is the
first multi-domain architecture that proposes a solution to monitor the hard-
ware, firmware and the network condition of IWSNs in the process-automation
domain. Seeing that, in this section, a comparison is only possible within solu-
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tions presented in the context of Industry 4.0, specifically, solutions that im-
prove the reliability of the network and integrate monitoring techniques. Ad-
ditionally, only solutions proposed to the industrial standards addressed were
considered.

From the first perspective, the authors of [Quan Wang, 2010; Grimaldi et al.,
2016] propose techniques that improve the reliability of the network at routing
schedule-level: by using a finite-state Markov model [Quan Wang, 2010], and
by specify scheduling emergency and recovery mechanisms when a path-down
alarm occurs[Grimaldi et al., 2016]. On the other hand, the work presented in
[Kunzel et al., 2012; Neumann et al., 2017; Lampin and Barthel, 2018] proposes
several techniques and platforms that can be used to monitor some IWSNs. In
[Kunzel et al., 2012] the authors develop a passive monitoring tool for evalu-
ation of the deployed WirelessHART networks using passive sniffers deployed in
the network area. Additionally, in [Neumann et al., 2017] the authors propose
an hybrid monitoring technique to monitor wireless and wired industrial tech-
nologies in the scope of the project HiFlecs. Lastly, in [Lampin and Barthel,
2018] the authors present a debugging tool that is able to collect in the Sensor-
Lab2 environment routing topology information and end-to-end performance, by
debugging the information using UART ports and then convert it to TCP/IP
messages. Finally, some authors also show some concerns in the lack of integ-
ration solutions between the industrial standards [Jose Da Cunha et al., 2017;
Tanyakom et al., 2017; Teslya and Ryabchikov, 2018]. In [Jose Da Cunha et al.,
2017] the authors presented how the Message Queuing Telemetry Transport
(MQTT) protocol can be used together with ISA S5.1 and ISA95/88 standards
to represent the monitoring and control in topics using the URI scheme. Lastly,
in [Tanyakom et al., 2017] the authors present how the WirelessHART standard
and the ISA100.11a standard can be integrated using the Modbus protocol and
a proprietary software called Wonderware InTouch.

When compared the reliability solutions already proposed by other researchers
with the architecture proposed in this chapter some differences appear. Most of
the work performed in this field is not taking in consideration the main com-
ponents that may produce faults in a IWSN (as described in chapter 3). Ad-
ditionally, most part of the work focus on a specific problem like [Quan Wang,
2010; Grimaldi et al., 2016], and do not address the needs of monitoring several
process automation networks at the same point. Additionally, some of the works
that present solutions to monitor these standards [Kunzel et al., 2012; Neumann
et al., 2017; Lampin and Barthel, 2018], keep proposing passive monitoring tools
that need extra networks to be installed, adding extra costs to a technology de-
signed to be low-cost. Lastly, most of the work [Jose Da Cunha et al., 2017;
Tanyakom et al., 2017; Teslya and Ryabchikov, 2018] in the field of integration
focus their effort in the representation of the sensor data, and any of them try
to explore the use of management protocols like LWM2M and COMI (protocols
specific for constrained devices) to represent and make available the monitoring
data.
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4.8 Summary of the Chapter

As a starting point for new management models and diagnostic tools, we strongly
believe that the architecture presented in this chapter will open new research
directions and proposals that will lead to better diagnostic tools for IWSN stand-
ards (ZigBee, WirelessHART, ISA100.11a, and WIA-PA). Specifically, the pro-
posed architecture offers the possibility of having IWSN management systems
able to monitor individual sensor nodes and the network as a whole, in both the
development and deployments phases.

Being a comprehensive architecture that addresses the most important indus-
trial standards in the process-automation domain, addressing several hardware
technologies, and several firmware architectures, it was not practical to build a
prototype that demonstrate all the technologies and models that can be suppor-
ted. Thus, in this chapter, when the architectural components were described,
some possible solutions were presented in order to provide some guidelines for
further implementation. Nevertheless, as shown by our proof-of-concept imple-
mentation, the architecture can be used to perform the monitoring of a variety of
sensor and network-wide parameters in a way that does not increase the cost of
node manufacturing, does not have significant impact on sensor node resources,
and does not steal network bandwidth from the main application.

In the next chapter, the proposed architecture will be explored in the three
proposed dimensions (hardware, firmware and the network) in order to show its
effectiveness.
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Chapter 5
Attack, detect and explore new
vulnerabilities in WirelessHART

”When Wireless is fully
applied the earth will be
converted into a huge brain,
capable of response in every
one of its parts.”

(Nikola Tesla)
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CHAPTER 5. ATTACK, DETECT AND EXPLORE NEW
VULNERABILITIES IN WIRELESSHART

I ndustrial Control Systems are now exploring the use of Internet of Things
technologies not only to make them fitter to their job but also to explore
the advantages that come from connecting them to the Internet. Neverthe-

less, with this paradigm shift, new threats appear, of which the stuxnet worm
is just an example, and Intrusion Detection Systems architectures and solutions
were and still are being considered. However, most existing projects concentrate
on high level system aspects and thus neglect security aspects at wireless com-
munication standards level, such as WirelessHART (the standard with largest
market share), choosing not to address security solutions to common, known
attacks identified by the community. In this chapter, using the monitoring ar-
chitecture proposed, we will monitor the WirelessHART testbed, and at the
same time, conduct network attacks from an outsider perspective. As main
contributions this chapter presents a new exhaustion attack for WirelessHART
that, until now, to the best of our knowledge, has not been yet described. Addi-
tionally, the presented work proves that using classifiers like One Class Support
Vector Machines (OCSVM), and our monitoring architecture we are capable to
detect the new exhaustion attack and more common attacks like jamming and
collision.

5.1 Introduction

ICS networks differ from networks in other common IT fields. Here, requirements
like reliability, availability and security must take precedence over all the others.
Standards like WirelessHART take into consideration these requirements in their
design. Through a combination of techniques at the Data Link Layer (DLL), like
TDMA and channel hopping (for more detail, see section 2.2.2), the standard
enables deterministic communications and enhanced immunity to interferences.
At the same time, by using the IEEE802.15.4 Physical (PHY) layer and part
of its MAC layer, the standard is able to achieve low power consumption and
low cost (namely, by using IEEE802.15.4-based radios). Additionally, at the
application layer, the use of HART [Nobre et al., 2015] commands makes the
technology backward compatible with existing Supervisory Control and Data
Acquisition (SCADA) systems.

However, the introduction of new IoT technologies in ICS networks is shifting
the connection paradigm of the critical infrastructures. Until now, critical infra-
structures have been operating as separate networks, disconnected from public
Internet infrastructures, but this paradigm is changing, exposing these systems
to a new set of threats (e.g., stuxnet, slammer, mariposa [Pasqualetti et al.,
2015]). In the case of stuxnet, the worm was used to launch cyber-attacks on
important critical infrastructures, specifically against Iran’s nuclear program.
Consequently, in later years, several projects have emerged in this field propos-
ing several architectural models to monitor these networks and to detect this
type of threats [Maglaras et al., 2018]. However, most of these projects design
their IDS for existing wired technologies like Modbus, CanBus and Profibus,
neglecting the fact that wireless technologies like WirelessHART (as well as,
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ISA100.11, ZigBee, WIA-PA and the new 6TiSCH) are increasingly being used
and present new and distinct risks, given their wireless nature and resource
constrained characteristics. As a result, in this chapter, we will explore this
perspective, in what concerns the WirelessHART standard, presenting the ef-
fectiveness of the presented architecture to detect such attacks.

So far, to the best of our knowledge, work performed on this topic has been made
in a more theoretical perspective or/and by using simulators. In their research,
the authors of [Raza et al., 2009; Alcaraz and Lopez, 2010; Bayou et al., 2016]
present a set of threats to the WirelessHART standard but we were not able to
identify papers that explore these threats either in real scenarios or in testbeds.
Additionally, most of the proposed solutions focus on the ZigBee standard [Wang
and Jiang, 2016]. Consequently, there is also a lack of solutions, specifically for
the WirelessHART, as well as a more general approach to monitor the network of
the four main standards (WirelessHART, ISA100.11a, ZigBee, WIA-PA). In this
chapter, the monitoring architecture will be used to monitor and detect some
of the network threats identified in [Raza et al., 2009; Alcaraz and Lopez, 2010;
Bayou et al., 2016]. As main contributions of this chapter: 1) we prove that it is
possible (by using the network metrics available in the standard) to identify and
detect threats like jamming, exhaustion, and collision attacks conducted from
an outsider prespective; 2) additionally, a new exhausting attack is presented,
that explores vulnerabilities of the join phase of WirelessHART-based networks.
To detect this new attack vector, we use not only the standard network metrics
but also the in-node metrics related with the hardware and firmware (proposed
in the architecture). Using a OCSVM, we show that it is possible to detect this
type of attacks with good precision and recall. Lastly, this chapter also presents
how these attacks were made and describes the tools and the low-cost hardware
used to conduct them.

The remainder of this chapter is organized as follows, Section 5.2 presents the
WirelessHART standard from a security perspective, and identifies some design
flaws that can be explored. In section 5.3, the hardware tools used to conduct
the attacks are presented. Section 5.4 details the conducted attacks and the
best metrics that can be used for their identification. Section 5.5 presents the
attacks detection results using the OCSVM classifier. Lastly, section 5.6 sums
up the chapter.

5.2 WirelessHART from a Security Perspective

This section addresses two main topics. In the first topic a brief description of
the security characteristics of the WirelessHART is made, complementing part
of the discussion already started in section 2.2.2. In the second topic, an analysis
to the already recognized security threats will be presented, using the threats
identified in [Raza et al., 2009; Alcaraz and Lopez, 2010; Bayou et al., 2016].
The analysis will be conducted from an outside attacker perspective.
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5.2.1 WirelessHART Security

As already mentioned (see section 2.1), one of the most important requirements
of the industrial networks is the determinism of the communication processes.
To guarantee low network latency, WirelessHART networks use a MAC scheme
that combines TDMA techniques with frequency changes. On one hand, in the
time domain, all nodes should synchronize with their neighbours to know the
precise timing to transmit or to listen, according to the Absolut Slot Number
(ASN). The network consists of a set of timeslots with 10 milliseconds duration,
that are combined to create one or several superframes. Each timeslot represents
a communication opportunity between two nodes and can be contention free or
not. On the other hand, in the frequency domain, sensor nodes use a pseudo-
random channel each time they need to listen or transmit, statistically avoiding
possible channel interferences. The frame and timeslot structures are presented
in figure 5.1. A timeslot guarantees the transmission of the information and its
acknowledgement. Before the sender starts transmitting, the receiver node turns
on the radio in RX mode, during a guard time. If the receiver node does not
receive data in this period, then the node goes back to sleep mode and waits for
the next timeslot. Otherwise, it waits the transmission to finish, validates it and
sends the acknowledgement to the transmitter node. In [Wang and Jiang, 2016]
the authors present an exhaustive analysis of the standard’s architecture.

In terms of security [IEC, 2010; Raza et al., 2009; Alcaraz and Lopez, 2010;
Bayou et al., 2016], the standard offers confidentiality, authenticity, and integrity,
either in hop-by-hop and in end-to-end communication, using the Advanced
Encryption Standard (AES) with a 128-bit key. Being a mesh network, nodes
need to rely on their neighbours to forward the data to the network manager.
In detail, the Data Link Layer (DLL) provides data authenticity and integrity
on a hop-by-hop communication basis (at this level, data is not encrypted),
protecting the network from outsiders (devices that are not part of the network
and may compromise the network through physical or logic attacks[Alcaraz and
Lopez, 2010]). Additionally, end-to-end security is provided by the Network
Layer (NWK) (only the header of the NWK frame is not encrypted), protecting
the end-to-end communication from malicious insiders.

Figure 5.1: On the left (a) the timeslot structure in time and frequency. On the
right, (b) the DLL frame and the NWK packet structures
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As presented in figure 5.1 (b), the DLL and NWK layers have a Message Integrity
Code (MIC). This field provides source integrity, by authenticating the sending
device as a valid neighbour. The MIC is calculated using the AES-CCM mode
with the following parameters: a 128-bit network key, a 13 byte-string that con-
tains the ASN concatenated with the source address, and the Data Link Layer
PDU (DLPDU) to be encrypted. On the other hand, the MIC of NWK layer is
calculated over the entire Network Layer Protocol Data Unit (NLPDU) using:
the NLPDU header, the NLPDU payload, a 13-byte nonce, and the 128-bit ses-
sion key (SK), used in communications between devices and the gateway.

To achieve different levels of security, the standard defines a set of security
keys that allow to secure the exchange of messages between the network devices
and/or with the Network Manager (NM) hop-by-hop and end-to-end. The keys
specified in the standard are: 1) the well-known key (WK), 2) the join key (JK),
3) the network key(NK), 4) the broadcast session key (BK) and a 5) unicast
session key (UK). Firstly, the WK (1) is a special key that is already defined
in the standard specification and used in the transmission of the advertisement
messages between the joining device and the devices already connected to the
network. Secondly, the JK (2) is manually distributed by the Security Admin-
istrator (SA) in the deployment phase. This key acts as a password that the
device uses to authenticate with the NM in the join procedure. The key is used
to receive the remaining keys (NK, UK and BK) in the security handshake.
Thirdly, the NK (3) is distributed by the NM to the joining devices, in the se-
curity handshake, and used to compute the MIC of the DLPDUs to authenticate
the communication between two neighbour devices. Lastly, the BK (4) and the
UKs (5) are used to send unicast and broadcast data end-to-end between the
network manager and the network devices.

After the analysis performed in this section is easy to understand that the se-
curity of the WirelessHART protocol depends of the secrecy of the JK. If an
attacker was able to obtain this key, the attacker can initiate join procedures by
itself and connect to the network in order to obtain all the remaining keys in
security handshake (NK, UK and BK). Having access to this information, the
attacker will be able to compute the MIC of messages, and as a result exchange
valid messages with the neighbours and with the NM. Thus, the attacks made to
a WirelessHART network can be divided in two types: outsider attacks, attacks
made by nodes that do not have access to the join key; and insider attacks,
nodes that have access to the JK and, consequently, to all the other keys.

5.2.2 Threat Analysis

Despite the specification of several security measures in wireless network stand-
ards, these networks are still the target of several attacks. WirelessHART is
not an exception. In [Raza et al., 2009; Alcaraz and Lopez, 2010] the authors
present a security analysis of the standard, describing some of the threats that
can be explored by malicious attackers. In this analysis we will focus on the
terminology and on the concepts used in [Alcaraz and Lopez, 2010], and, as
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already mentioned, from an outsider perspective. Only the relevant attacks and
security concepts for this topic will be analysed.

In [Alcaraz and Lopez, 2010] the authors split their threat model into three main
groups: confidentiality, integrity and availability attacks. Attacks on confidenti-
ality are related with the capability of an attacker to obtain unauthorized access
to any information exchanged in the network. On the other hand, integrity
attacks are related to the capability of an attacker to manipulate information
in exchanged messages (e.g., routing messages), and use it to change the be-
haviour of the network. Lastly, availability attacks try to disrupt the network,
preventing it from providing its services. This type of attack in WSNs is usually
performed with the aim of exhausting the sensor nodes resources, such as their
energy.

In what concerns availability attacks, a WirelessHART network may be exposed
to attacks like: jamming, interference, collision, exhaustion and network isol-
ation. Using the Time Slotted Channel Hopping (TSCH), and its frequency
hopping method, a WirelessHART network may prevent attacks like jamming,
interference and collision, by blacklisting the channels where the attacks occurs.
However, an attacker with sufficient resources may launch the attack in all the
16 channels. An attacker may also send data in these channels to generate col-
lisions. The collisions can be detected by the Cyclic Redundancy Check (CRC)
field available in the DLL frame. These attacks can also be a DoS attack [Raza
et al., 2009]. The authors of [Raza et al., 2009] also defend that any device that
supports WirelessHART and has knowledge of network parameters like network
id, device id, and the well-known key can send a “valid” JK requests to neigh-
bouring devices authenticated with the WK. The idea of faking a message like
this is to force the neighbour nodes to consume resources in the transport of the
packet and its analysis. At the end, the message will be discarded by the net-
work manager because it contains an invalid JK. On the other hand, attackers
that want access to network parameters like the network id, and the ASN used
at the attack moment, need only to sniff the advertisement messages sent by the
network manager and perform traffic analysis. As mentioned before, only the
NLPDU payload is encrypted. Moreover, the authors of [Alcaraz and Lopez,
2010] also present a form of isolating a network by overloading the gateway
with multiple TCP/Modbus commands and alarms. In the current chapter, a
different type of isolation attack will be described in section 5.4.2.

In what concerns integrity attacks, the authors of [Alcaraz and Lopez, 2010]
argue that WirelessHART prevents information manipulation network attacks
by supporting the use of different SK to generate the MIC between the NM and
the network devices, the network key to encrypt the message, and by its nonce
that can be used to validate the age of a packet. However, there is a situation
explored in section 5.4.2 (the new attack explored in this chapter), where a
sensor node may be the target of an information replay attack.

Lastly, as previously mentioned, confidentiality attacks can also be performed.
An attacker with an IEEE802.15.4 radio can sniff a WirelessHART frame and
have access to the contents of DLL packets and to the NLPDU header. This
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attack may help attackers to sniff packets like advertisement messages, period-
ically sent by the network manager, and obtain important data like the ASN,
the link join slot, channel map size, etc.

5.3 Attack Tools

KillerBee [Charles, 2018] is an open-framework initially developed by Joshua
Wright for attacking ZigBee and IEEE 802.15.4 networks. The script offers
a set of tools written in Python that interact with the GoodFET interfaces,
allowing the manipulation of IEEE802.15.4 radios like the CC2420. The frame-
work offers tools like the zbwireshark, zbdump, and zbreplay. Zbwireshark is
an application with sniffing capabilities that communicates with the Wireshark
application, dumping the IEEE802.15.4 frames in Wireshark. Similarly, zbdump
also performs sniffing, its output being dumped to a Pcap file. On the other
hand, zbreplay allows to launch replay attacks in IEEE802.15.4 radios.

For analysing the WirelessHART network, we choose the TelosB sensor nodes, a
well-known IEEE802.15.4 radio (CC2420), supported by the GoodFET firmware
and the KillerBee framework. To sniff the WirelessHART network, an array with
several TelosB capable of capturing the packets in all the 2.4GHz channels was
used. After installing the GoodFET firmware in the TelosB radios and using
the zbdump in each channel, we were able to collect the WirelessHART frames.
Additionally, in order to analyse the contents of the IEEE802.15.4 frames, a
WirelessHART dissector developed by [Wightman, 2018] was used. The output
can be seen in Figure 5.2 (b). Lastly, the Contiki rssi-scanner was used to analyse
RSSI changes.

Figure 5.2: Attack tools
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5.4 Attacking an WirelessHART Network

As presented in section 2.2.2, the WirelessHART standard provides several se-
curity mechanisms that make the network more robust to attacks. Firstly, sensor
nodes use a pseudo-random sequence that allows the nodes to communicate in
different channels in the same timeslot. Thus, it’s difficult to follow the commu-
nication of one sensor node and, consequently, several sniffers need to be used
in order to collect the traffic generated in all the channels. Additionally, to
authenticate the packets at the different layers (DLL and NWK), the standard
authenticates each layer with a MIC generated by a nonce, that changes with
time and it is based on the ASN and use distinct keys. To forge a packet, the
attacker needs to be synchronized with the network and know the exact timeslot,
channel, and key that the node will use for transmission in order to generate a
valid MIC accepted by the receiver (use the NK to send to neighbours or one of
the SKs if the message is sent to the NM).

Lastly, as presented in Figure 5.1 (a), to receive such a packet, the attacker needs
to transmit the packet in the guard time period (need to be synchronize). How-
ever, despite these aspects that turn hard the reception of a malicious packet,
there are a set of attacks that can be made to the network without need to syn-
chronize the attackers with the network. In this section two types of attacks will
be used: firstly, we perform the most basic attack, a jamming attack; secondly,
we explore an information manipulation attack that, at the same time, performs
exhaustion of the sensor node resources (e.g., battery), and the isolation of the
new joining devices. As far as we know, this attack has not been described in
the literature.

To perform the attacks against the network, we start by putting a TelosB node
in promiscuous mode to capture network packets with the zbwireshark tool (e.g.,
data, ack, keep-alive, advertise and disconnect DLPDUs). To perform the two
attacks, two types of packets were captured: an advertisement packet and a data
packet sent between two nodes.

5.4.1 Jamming

Because of sharing the physical medium like the other wireless technologies,
jamming attacks are the simplest that can be performed over a WirelessHART
network (see section 3.4.2). The attack consists in the disruption of the ori-
ginal radio signal, using another signal with the same modulation technique and
frequency. As a result, jamming attacks can be performed by WirelessHART
compatible nodes and by any other device that is able to reproduce a signal with
these characteristics. In order to evade jamming attacks, the WirelessHART net-
work can use the channel blacklisting feature. However, this functionality is not
well defined and described in the standard. For instance, when the current test-
bed was installed, we notice that the NM only supports the manual insertion of
the noise channels in the blacklist. Thus, we did not find evidence that the NM
has support to automatic detection of the noisiest channels.
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To perform a jamming attack, there are two types of attacks that can be made.
In the first, the attacker performs it by emitting a continuous signal. The ra-
dio needs to be continuously in the TX mode. However, this attack cannot be
performed with current release of the KilllerBee tool, because this feature has
not already been implemented in the TelosB interface. The second approach to
interrupt the WirelessHART network is by transmitting IEEE802.15.4 packets
in a fast-enough rate that is capable to collide with existing network communica-
tions. The collision will make the packet to be dropped and the victim node will
postpone the transmission of the packet for the next timeslot. Additionally, the
WirelessHART also support in each timeslot, the use of Clear Channel Assess-
ment (CCA), that can mitigate this attack. However, we note that this feature
is disable by default. To replicate this attack using the KillerBee tool in com-
bination with the TelosB nodes, some changes in the dev_telosb.py code were
done. Here, the code as a limitation that waits 10 milliseconds for a transmis-
sion to complete, not allowing the sensor nodes to continuous transmit packets
to a higher rate. In our jamming attack we change this value to 2 milliseconds,
improving the capacity of the collisions.

Lastly, to simulate the difference between broadband and narrowband interfer-
ences, the jamming attack was performed in two distinct ways. By putting the
array of attackers in one channel (narrowband), or by splitting it by the available
WirelessHART channels (broadband). Additionally, to understand the impact
of distinct packet types with distinct packet sizes, we also performed the attack
by using unicast packets and broadcast packets.

5.4.2 Advertisement Based Attack

In section 5.2, after presented the several keys defined by the standard, an im-
portant statement was made. The security of the WirelessHART hardly depends
on the secrecy of the JK. If an attacker obtains access to it, the other remaining
keys can be retrieved in the security handshake. As a result, a list of insider’s
attacks can be performed, if the JK is collected. However, there is an interesting
attack that can happen before the handshake procedure, and resides in the fact
that, the WK is defined and documented in the standard specification. Thus,
in this section we present an attack that performs the resources exhaustion of
joining nodes, and at the same time its isolation, without the access to the JK
and the remaining keys obtained in the security handshake. Additionally, this
attack can also be seen as an information manipulation attack. To understand
it, we will start by presenting the distinct phases of the joined procedure defined
in the standard, and then presenting some of the characteristics that allow the
advertisement packet to be forged.

The joining of a new device in the network starts by the configuration of the
network ID and the JK. After that, the device enters in the join procedure,
changing it state to the “listen mode”. In this state, the device will try to listen
for DLPDUs for a defined amount of time, changing between channels if needed,
in order to synchronize with the network. When the device is in a synchronize
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mode, the device is already in a state that is able to receive the advertisement
messages. Lastly, before proceeding to the join request, the device configure
itself with some of the data contained in the advertisement message.

Until now, the new device only knows two security keys, the JK (that will
be used in the join procedure) and the WK (that is used to authenticate the
advertisement message). When an advertisement is received, the new device
compares the network ID of the advertisement message with the network ID
configured previously. Additionally, the advertisement message is validated by
its MIC using the WK. When the packet arrives, the new device collects some of
the valuable information needed to join the network. Advertisement messages
transport in its payload network information like: the ASN, the size of channel
map array, the graph structure, the number of the superframes and the join
links that the new device should be used to start the join procedure. Faking
such message with inaccurate data will force the joining device to send a join
request that will neither be listening or accepted as valid by the NM. The node
will wait until the timeout of the join request expires and will need to start all
the process again, expending sensor nodes resources.

Faking an advertisement message in this context is not difficult, perhaps it is
relatively easy, and there are two ways: 1) the attacker performs traffic analysis
and collects the network ID, builds an advertisement message and computes its
MIC with the WK; and 2) the attacker collects an old advertisement message,
with outdated ASN and join links. This last message is valid to the joining
device, because in this phase the device is not able to understand the age of the
packet (does not know the ASN of the network). Furthermore, if this attack was
performed together with a de-authentication attack, it is possible to put all the
network down without the opportunity to recover and re-join the nodes again to
the network. In order to perform this attack over the WirelessHART testbed,
we choose to replay an old advertisement packet, previous captured in an older
network configuration phase.

5.5 Detecting the Threats

To monitor the network against security threats, the monitoring architecture
collects two distinct sets of data: sensor node metrics and network-related met-
rics. As presented in section 4.6.2, the sensor node monitoring agent collects the
number of MCU cycles, functions execution time, energy consumption, and call
traces. On the other hand, the collected network metrics are the ones already
defined by the WirelessHART standard, and are used by the network manager
to perform its tasks. Specifically, the metrics comprise device health reports,
neighbour health reports, and the neighbour signal levels. Device health reports
sum up all the communication statistics of a network node. These include: pack-
ets generated by the device, packets terminated by the device, MIC failures at
DLL or NWK layers, CRC errors, and nonce errors. Additionally, neighbour
health reports include all the statistics of a network node concerning its con-
nected neighbours. The report contains: number of linked neighbours, Received
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Signal Level (RSL), packets received from the neighbour, failed transmissions,
and packets transmitted. Lastly, the neighbour signal levels include the RSL
of all linked and non-linked neighbours. This report was not used in the work
presented in this thesis.

In order to model the normal behaviour of our network, a normal dataset was
acquired for two months. On the other hand, two anomaly datasets were also
collected: the jamming attack dataset, and the exhaustion attack dataset. The
jamming attack dataset is divided into two attacks, performed in two distinct

Figure 5.3: WirelessHART attacks overview
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modes: a replay attack in continuous mode of a broadcast packet (DLL ad-
vertisement with 60 bytes, generating 28.800Kbps per attacker node), and a
replay attack of a unicast packet (DLL data packet with 16 bytes, generating
7.680Kbps per attacker node). The attacks were performed in the one-channel
and multi-channel modes, each one with 6 hours duration (1 day for the full
attack combination). Lastly, the exhaustion dataset was also collected by send-
ing fake advertisement packets, captured at an earlier period, to the network.
The packets were sent in multi-channel mode to maximize the probability of
listening by the new devices. A reset was performed to the sensor nodes to
force a new network join. Figure 5.3 presents an overview of the two attacks
in the different modes. Figure 5.3 (a), (b) and (c) represent the impact of the
exhaustion attack made in the joining phase on sensor node resources in terms
of CPU, execution time, and spent energy. Additionally, Figure 5.3 (d) and (e)
represent the jamming attack and its impact, in terms of network health and
neighbour health.

The impact of the replay attacks (jamming) is notorious in all the attack com-
binations, but with some particularities. The CRC metric increases in all the
variations of the attack but is less expressive in the one-channel mode case due
to the lower probability of packet collisions. Additionally, other important met-
ric is the DLL MIC failures. The metric represents all the fake MIC detected
by the DLL. Detection of DLL MIC failures requires to perform the verifica-
tion of the field with the AES-128 (counter with CBC-MAC). As presented in
5.3(d), the metric increases when data packets (unicast) are replayed, but not
with advertisement (broadcast) packets. The packets terminated metrics (pack-
ets terminated by the DLL) also increments when data packets are replayed.
Lastly, by using the metrics available in neighbour health reports, it’s also pos-
sible to compute the Packet Loss (PL) and the packet delivery ratio (PDR) of
each node. As presented in Figure 5.3, the heaviest attack is the replay attack,
which generates more traffic (28.800Kbps in each channel).

Differently from the replay attack, the exhaustion attack cannot be detected
by network reports. At this phase the radio is not connected to the network

Table 5.1: Network diagnostic using the health packets

Step Description Broadcast
Replay

Unicast
Replay (each

test)
Train 50% normal events(n) 4460(n) 4482(n)

Validation 25% normal events(n) 50%
abnormal events(a) 2230(n) 10(a) 2241(n) 8(a)

Test 25% normal events (n) 50%
abnormal events (a) 2230(n) 10(n) 2241(n) 8 (a)

Table 5.2: OCSVM classifier results

Attack Mode Precision Recall F1-score
Broadcast replay
(*health reports) Multi-channel 0.70 0.538 0.609

Unicast replay (*health
reports)

One-channel 1.0 0.615 0.762
Multi-channel 1.0 1.0 1.0

Exhaustion (Join)
(firmware log) Multi-channel 1.0 0.722 0.839
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and does not generate any report. However, as presented in Figure 5.3 (a),
(b) and (c), the attack can be identified through sensor node log metrics. In
this attack, the node receives a fake advertisement and, as already explained, it
cannot detect if it is fake or not. Thus, by sending a join request assigned with
a wrong ASN to a non-existing join link, the radio will wait until the request
times out. As presented in (b) and (c), the extra time spent in this function
clearly points to an abnormal behaviour. Furthermore, the node wastes more
energy in this period. On the other hand, the CPU cycles spent by the function
are less, because the node needs to compute different actions in each of the two
scenarios.

Lastly, the OCSVM was used to detect the anomalies in each attack scenario.
The OCSVM classifier is one of the most appropriate algorithms to classify an-
omalies in WSNs due to its semi-supervised capabilities (the algorithm only
needs training with normal data) [Chandola et al., 2012]. To start, a selection
of the most representative features was made for the health reports and the
firmware log datasets. After that, the data was standardized and divided ran-
domly as follows: train (50% of the normal datasets); validation (25% of normal
dataset and 50% of anomaly datasets); and lastly, testing (25% of the normal
datasets and the remaining 50% of the anomaly datasets), see table 5.1. All the
data was chosen randomly. To train the OCSVM classifier a radial basis kernel
was selected. Additionally, at validation phase a grid-search was used to tune
the hyper-parameters. The results of the classifier are presented in table 5.2.
The classifier obtained good results in the detection of the exhaustion attack
(f1=0.839), and in the unicast replay attack (one-channel: f1=0.762 and multi-
channel: f1=1.0). In the broadcast replay, despite the increase of the mean in
metrics like the CRC errors, the PL, and the PDR, the classifier performed badly
and was not able to discriminate the anomalies.

5.6 Summary of the Chapter

In the last years, new security threats to industrial control systems appeared
and, consequently, new solutions also emerged. However, some of these new
solutions do not address IWSN standards like WirelessHART. In this chapter,
the effectiveness of the proposed architecture was evaluated, as well as, to the
best of our knowledge, a new security threat that has never been described.
By using the monitoring architecture proposed in this thesis, we proved that
it is possible to detect jamming and exhaustion attacks, using standard Wire-
lessHART network metrics and firmware based-node metrics. Additionally, this
chapter also demonstrated how easy and cheap it is to attack networks using
this standard.

The effectiveness of the proposed architecture, in terms of anomaly detec-
tion on in-node components (hardware and firmware) is presented in the next
chapter.
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Security and Fault Detection in
In-node components of IIoT
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”I can predict things. I can
improve the uptime and the
reliability. I can intervene and
cause a better outcome
before there’s a problem.”

(Michael Dell)
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I n order to keep up with the requirements of new Industry 4.0 applications,
sensor nodes software and hardware are becoming more complex and, thus,
more prone to faults. In this chapter, using the monitoring architecture

proposed in this thesis, we injected and subsequently proceeded to detect repres-
entative firmware and hardware anomalies (namely, buffer overflow attacks, SPI
faults, under-voltage, and high temperature faults) that can be used by attackers
to cause major losses or even damage industrial control systems. We evaluated
the performance of several machine learning techniques commonly used to de-
tect anomalies (i.e. OCSVM, kNN, AutoEnconder), in order to determine if
they could be useful to detect such faults. The obtained results demonstrate
that simple and broad scope classifiers, using features that consume little re-
sources, can be developed to detect such faults.

6.1 Introduction

Until the last decade, ICS largely remained disconnected from the Internet, rely-
ing on proprietary technologies and using the airgap principle to ensure security
[Foglietta et al., 2018]. With the adoption of common technologies like the
TCP/IP and Ethernet (e.g., Modbus TCP/IP), new threats emerged for such
systems. At the same time, new wireless standards were developed, designed for
fulfilling the requirements of industrial applications. IEEE 802.15.4 [Wang and
Jiang, 2016] based standards like ZigBee, WirelessHART, ISA100.11a, WIA-PA,
and 6TiSCH can offer low-cost and low-latency solutions for some types of in-
dustrial applications and, at the same time, coexist with the legacy technologies,
as presented previously (see section 2.2.2).

Until recently, known attacks only targeted wired-based industrial technologies
or the SCADA software that controls industrial systems. However, as can be
seen in the literature [Granjal et al., 2015; Giannetsos et al., 2010], wireless-
based technologies are also subject to such attacks, in different perspectives.
Differently from wired technologies already in the field, wireless-based products
are less mature in terms of development (e.g., different types of hardware archi-
tectures, fragmented operating systems, bare metal development), and typically
use resource constrained components. As pointed in section 1.1, all of these facts
contributed to the lack of monitoring systems in IWSN. Moreover, despite the
efforts to secure industrial systems, current proposals only address technologies
such as ModBus, CanBus and Profibus[Maglaras et al., 2018], neglecting the fact
that the Compound Annual Growth Rate (CAGR) of the wireless technologies
amounts to 30% [Kim et al., 2019], and are being operated with well-known
security vulnerabilities.

In this context, a monitoring architecture was proposed in chapter 4, that is
able to monitor the condition of hardware, firmware, and the network of the four
main industrial wireless standards (WirelessHART, ISA100.11a, WIA-PA, and
ZigBee), with small impact on the network and on the sensor nodes resources,
without the addition of new hardware (as proved in chapter 4). In chapter 5, the
architecture was used to effectively monitor and detect a novel network attack
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to the WirelessHART standard. Being an architecture that also focuses on the
condition of hardware and firmware, in this chapter the referred architecture
is used for detecting representative firmware and hardware faults injected in
the WirelessHART testbed. The injected faults include: 1) a buffer overflow
vulnerability used for smashing the call trace of devices with the Von Neuman
architecture [Giannetsos et al., 2010], and for running arbitrary code; 2) two
SPI faults, that simulate sensor stuck-faults, 3) an undervolting fault, using six
different voltage levels, and 4) a high temperature fault [Hutter and Schmidt,
2014], commonly used by attackers to manipulate the MCU behaviour, and
extract information. After the injection of the mentioned faults, three different
types of semi-supervised machine learning algorithms for outlier detection were
used: a linear-model based, namely One-Class SVM (OCSVM); a proximity-
based algorithm, namely k-Nearest Neighbours (kNN); and a neural-network-
based algorithm, namely AutoEncoder.

In view of the stated objectives, the remainder of this chapter is organized as
follows. Section 6.2 details the various injected anomalies and discusses the
impact of the faults on the used monitoring metrics. Section 6.3 presents the
performance results for each classifier, in what concerns their ability for detecting
the injected anomalies. Lastly, section 6.4 provides the conclusions and sums up
this chapter.

6.2 Injecting Anomalies

The assessment of the proposed, from the in-node components perspective, was
made by injecting several abnormal events/behaviours in the testbed. This
section provides details on the injected anomalies, explaining how they were
injected, what are they used for, and what are their consequences on the various
metrics under consideration. From the firmware perspective, a stack-based buffer
overflow fault was injected that enabled us to run malicious code. On the other
hand, from the hardware perspective, low-voltage faults were used, as well as
SPI communication faults and high temperature faults.

6.2.1 Firmware: Stack-Based Buffer Overflow

Memory-related vulnerabilities, like buffer overflows, are one of the most studied
vulnerabilities in the WSN domain (see section 3.4.4). Over the years, different
studies have shown that, similarly to traditional networks, it is also possible to
create worms and viruses that self-propagate, infecting all the network nodes
[Giannetsos et al., 2010]. One of the reasons for this lies in the intrinsic charac-
teristics of these systems (e.g., shared RAM and ROM memory, shared access
buses). Another one, lies in the use of the same program in all the nodes, which
allows attackers to create worms that easily infect all the network. However, the
most important reason lies in the low resources available in the nodes, and con-
sequently on the use of weakly typed programming languages like C and C++.
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Differently from the strongly typed languages, weakly typed languages do not
check array bounds, for instance, allowing the program to access position n+1.
Infecting the WSN firmware may have serious consequences when operating in-
side an ICS. In such scenario, the acquisition of data from sensor nodes cannot
be trusted, and ICS and operators can act based on misleading data, resulting
in potentially catastrophic events and high financial losses.

The anomaly described in this section addresses such a scenario. Here, a buffer
overflow vulnerability in the code will be used to inject malicious code that
will manipulate the temperature sensor with fake data. Using the monitoring
architecture, an analysis of the impact of the anomaly on the monitoring metrics
will be made in section 6.3. However, firstly, the injection procedure will be
explained in this section.

From an architecture point of view, in the WSN domain, there are two main
microcontroller architectures: the Harvard and the Von Neumann families. In
Harvard microcontrollers, program and data memories are physically separated.
The CPU can only write in data memory and read instructions from the pro-
gram memory. Thus, data memory cannot be executed by the CPU, and, as
such, code injection in the stack is almost impossible [Francillon and Castel-
luccia, 2009]. On the other hand, the MSP430 microcontroller family uses the
Von Neumann architecture, in which the memory is physically shared between
data and program, using the same address space. Consequently, in this type
of architecture, the CPU can load instructions from the data memory address
space, and stack-based attacks can be conducted.

As presented in Figure 6.1, the MSP430F5 family used in the experiment shares
its memory with RAM, FLASH, and interrupt vectors. The RAM consists of
two different zones – the USB RAM (0x1C00-0x2400) and the RAM used by the
CPU (0x4400-0x2400) – that implement two important data structures: stack
and heap. The stack structure starts on the top of the RAM (0x4400) and grows
downwards. Local variables, activation function records, parameters, interrupts
and the return addresses are allocated on the stack. Here, the stack pointer
(SP/R1) points to the last value pushed on the stack. Contrarily to the stack,
the heap starts on the bottom of the RAM (0x2400) and grows upwards, and
is used mainly for dynamic allocation. Lastly, the main FLASH can be used to
store code or data. In our scenario, the main application is stored in the main
FLASH and the functions used in the attack started at addresses 0x013604 and
0x017DD6.

A stack-based buffer overflow occurs when an input data runs over and overflows
the stack, writing the information in a memory zone that is not intended to be
used with that structure (e.g., past the buffer’s upbound/writing in address
n+1). If carefully selected, the location to which the SP points can be rewritten
to another memory address, resuming to a different program call. Here, as
shown in [Giannetsos et al., 2010], worms sent in network packets, can easily gain
control over the main program, and cause significant damages to the ICS.

In the scenario of Figure 6.1, the main program is collecting the temperat-
ure from the ADT7301 sensor (over SPI), and sending it to the network. The
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sendTemperature() is the function that handles this process, by calling the get-
SensorData() function (1). This function uses a global variable called tempData.
By exploiting a vulnerability added to the code (2), a buffer overflow will happen
in the getSensorData() and, at the same time, the address of the malicious code
will overwrite the stack space to which the SP is pointing with the 0x017DD6
address. Thus, when the function returns, the new function maliciousFunction()
will be called (3). Here, a fake value will be assigned to the tempData variable,
after which the code will be redirected to the old return value (0x012F42), the
next instruction in the sendTemperature() function (4). From the ICS perspect-
ive, the sensor node is running normally and the temperature data is correctly
acquired, but in fact the collected temperature is not the real temperature.

Analysing the metrics collected by the monitoring tool (execution time, energy
counter, MCU cycles), Figure 6.2 shows that all the metrics diverge from the
normal behaviour. When compared with the normal behaviour, the number
of cycles executed by the CPU increases by 52% (µnormal=61160, µanom-
aly=92933), the time spent to execute the function increases by 50% (µnor-
mal=7.18, µanomaly=10.75), and lastly, the energy spent increases by 57%
(µnormal=61160, µanomaly=92933). The increase in the execution time and
CPU load shows that a larger code routine was executed by the CPU, when

Figure 6.1: Buffer Overflow stack-based attack on MSP430F5 family
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Figure 6.2: Firmware anomaly: stack-based buffer overflow attack

compared to the normal behaviour.

6.2.2 Hardware: Low-voltage Faults Analysis

When considering hardware fault injection on embedded devices, one of the
most used non-invasive hardware injections is the power-glitch or VCC-glitch
(see section 3.4.11 to see energy supply faults). As presented in several studies,
abrupt changes in the voltage signal can be used to skip certain instructions
and manipulate the execution flow, due to CMOS gates that are vulnerable
to negative spikes [Gomina et al., 2014]. If the CPU has a power glitch, the
signals will not reach the registers or paths properly. Low-voltage vulnerabilities
can be explored both in the Harvard and in the Von Neumann architectures
(e.g., ATMega, PIC and MSP microcontrollers). From skipping authentication
routines, to accessing protected registers, this type of attack can be used to
collect important information inside the nodes’ memory or to manipulate the
program flow.

Additionally, also related with low-voltage faults, sensor nodes consist of sev-
eral hardware components with different characteristics, and different operation
requirements, like the VCC range levels in which the hardware component oper-
ates. When a component operates below the minimum VCC, its operation can
be faulty and unreliable. An example of this behaviour can be found in Figure
6.3, where the temperature sensor ADT7301 when operating a 2.2V measures
15ºC instead of 22ºC. In the used testbed, all of the components operate in
the different VCC ranges. The WirelessHART radio operates between 2.1V and
3.76V, the ADT7301 operates between 2.7V and 5.25V, and the MSP430F5229
operates between 1.8V to 3.6V. Thus, in the case of the testbed, the node will
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Figure 6.3: Hardware based anomaly: undervolting anomaly

only lose connection with the network if the WirelessHART radio operates below
2.1V. Until then, wrong temperature readings will be sent to the ICS.

In this scenario, several VCC levels were configured in the TPS62740EVM-186
boost converter using the appropriate jumper scheme, in order to understand
the impact of a low-voltage scenario on the temperature sensor readings and on
the collected metrics, as shown in the Figure 6.3.

From the normal 3.3V VCC level, to the lowest 2.2V, the energy counter in-
creases by 43% (µnormal=710; µanomaly(2.2V)=1019). The increase in this
metric is associated with the increase in the current consumed by the MSP430.
Specifically, this microprocessor has a dedicated low-dropout voltage regulator,
LDO, to power the core. By reducing the input VCC, the efficiency of the
internal LDO will be lower, consuming more energy to guarantee the same
VCORE.

6.2.3 Hardware: SPI Faults

Serial Peripheral Interface (SPI) uses a master-slave paradigm, and can be found
in embedded systems to communicate between chips like RAM memory, or other
components like sensors. The main advantages of this type of communication
are its simplicity and high bandwidth, when compared to other technologies,
such as UART. An SPI data bus has Clock (CLK), Master Input Slave Output
(MISO), Master Output Slave Input (MOSI) and Slave Select (SS) data lines.
Communication starts when the master device pulls the SS line down, waking
up the slave device. Then, the master issues a train of clock pulses, and will
continue to do so until the end of the communication. The master starts the

— 97 —



CHAPTER 6. SECURITY AND FAULT DETECTION IN IN-NODE
COMPONENTS OF IIOT CONSTRAINED DEVICES

communication by sending a command to the slave, using the MOSI line. In
turn, the slave answers to the master through the MISO line.

In the conversation between a master device and slaves connected to the bus
there are some faults that may occur (see section 3.4.11 to see communication
faults). In terms of clock speed, if one part talks too fast, and the other cannot
keep, some communication faults will occur. Additionally, if for some reason a
stuck-at-0 or stuck-at-1 fault occurs in one of the SS or clock lines, communic-
ation between the two devices will not be possible. Specifically, if a stuck-at-0
fault occurs in the SS line, the slave device will never sleep. Otherwise, it will
never wake-up. On the other hand, if the stuck-at-0 occurs in the clock line, the
communication between two nodes will also not occur, because the master needs
to continuously toggle the clock until the slave finishes the communication.

In terms of security, the SPI data buses usually suffer from sniffing attacks. At-
tackers can use, for instance, logic analysers to sniff the communication between
the CPU and external memories, and gain access important data.

In our injection scenario, two types of anomalies were injected in the testbed: a
stuck-at-0 fault related with the clock line, and a VCC fault. The results of the
experiment are presented in Figure 6.4. Here, we use the same function than
before, that collects the sensor data and sends it to the WirelessHART radio.
As presented in the graph, there are major variations in all the collected metrics:
execution time, energy counter, and CPU load. All the metrics present a sort
of variation in relation to the normal behaviour, due to the processing of the
different events related with the SPI communication (e.g., hardware interrup-
tions, etc). Under normal operation, the CPU load has a mean value of µnor-
mal=61149 with σnormal=3776, the energy counter has µnormal=710.28 with
σnormal=65.9, and the execution time has µnormal=7.17 with σnormal=0.56.

Figure 6.4: Hardware based anomaly: SPI VCC and Clock anomaly
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On the other hand, in the case of the VCC anomaly, the CPU is not able to
communicate with the sensor and it executes less instructions, spending less
time on the function. Moreover, as the sensor is disconnected, less energy is
spent. In the case of the clock anomaly, the sensor spends more energy, but
it is not able to communicate with the CPU (VCC anomaly: µnormal=503.57;
Clock anomaly: µnormal=511.8).

6.2.4 Hardware: High Temperature Faults

When deployed in industrial environments, both monitored and monitoring sys-
tems may be subject to harsh environmental conditions, such as high temperat-
ure (see section 3.4.3, to see phenomenological faults). As presented in [Hutter
and Schmidt, 2014; Stanislowski et al., 2014], abrupt variations in ambient tem-
perature can lead to serious effects in radio synchronization, and can also be
used to perform security attacks to embedded devices. In [Stanislowski et al.,
2014] the authors study the effects of clock drifts under high temperatures, in
synchronized networks that use the IEEE 802.15.4e standard, similar to Wire-
lessHART. Such faults can result in communication losses or extra energy wasted
in synchronization. Additionally, the use of abrupt temperature variations has
been also a subject of study from the beginning of embedded systems [Hutter and
Schmidt, 2014]. Attack strategies range from the use of active temperature at-
tacks that freeze SRAM memories to recover their content, to high-temperature
attacks that lead to memory errors and allow intruders to inject faults on the
systems.

In this experiment, a high temperature fault was injected directly in the micro-
controller core, using a heat gun, in order to simulate the condition of a system

Figure 6.5: Hardware based anomaly: Temperature anomaly
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under high temperature. The MSP430F5229 microcontroller can operate in a
free-air range between -40ºC to 85ºC, and a storage memory between -55ºC to
150ºC. In the experiment, the surface temperature of the core die was main-
tained during 1 hour to its maximum (85ºC). As in the previous experiments,
the execution time, the energy counter, and the CPU load metrics were collected
for the same function. Here, the temperature sensor was put far away from the
heating point, in order not to affect the ambient temperature collected by the
ADT7301 sensor.

As can be seen in Figure 6.5, there are some major variations in the en-
ergy counter when the microcontroller operates under high temperature (µnor-
mal=710.54; µanomaly(3.3V)=933.58), as expected. In [Borgeson et al., 2012],
the authors claim that temperature is one of the most overlooked features in
systems design, and in some cases the current can increase 10 to 15 times under
extreme temperatures. This is similar to what happens during a low-voltage
state (2.3V) (see Figure 4 6.3). On the other hand, the CPU load and execution
time metrics do not show any evidence of errors when compared the normal
case. As mentioned in [Hutter and Schmidt, 2014], memory errors and faults
are only expected to occur when the storage temperature exceeds 150ºC.

6.3 Detecting Anomalies And Security Threats

As seen in the previous sections, industrial wireless sensor networks are not
immune to security threats and faults, which points to the need of Intrusion De-
tection Systems (IDS), anomaly detection, and monitoring tools. In this section,
experimental results from three anomaly detection approaches will be presented,
with the aim of demonstrating that the proposed monitoring approach is suit-
able for building tools capable of detecting firmware and hardware faults. The
selected anomaly detection approaches were the following: a linear-based model
(the One-Class Support Vector Machine, OCSVM); a proximity-based model
(the k-Nearest Neighbours, kNN); and a neural-network based model (AutoEn-
conder). These approaches are presented in subsection 6.3.1. Subsection 6.3.2
discusses the obtained results.

6.3.1 Data Splitting Strategy and Classifiers

In machine learning, the selection of the algorithm and the splitting strategy of
the data depend on the type of available data and on the approach to follow in
order to solve the specific problem. There are two main approaches: supervised
learning, used when the available data is labelled (the classifier is trained for
all the classes); and unsupervised learning, used when the data is not labelled
(similar to the approach followed in chapter 5). In the latter approach, grouping
techniques like clustering are used for classifying data in a specific group or class,
using distance measures.
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Anomaly detection or outlier detection is a specific field of machine learning that
refers to the problem of finding data that is not conformant with an expected be-
haviour (e.g., anomalies, outliers, exceptions, etc). In this classification problem,
typically only the normal class is available. The approaches used for this classi-
fication are unsupervised learning, when no label is known; and semi-supervised
learning, when only the normal data is labelled. Using a semi-supervised ap-
proach, it is possible to train a binary classifier that infers the normal system
behaviour and defines the boundaries of the normal region. All the events that
lie inside this region will be considered normal events. Otherwise, they will be
classified as anomaly. Despite the fact that in the experiment all the labels were
known, when building a solution for monitoring the network in real-time such
thing is not possible. Thus, a semi-supervised approach was used.

Table I presents of overview of the splitting strategy of the data collected from
the experiment, and Figure 6.6 the procedure to transform the data and to
create the machine learning models for each classifier (OCSVM, kNN, AutoEn-
coder).

The training process (Figure 6.6) starts by the pre-processing step. In this step,
all the data labels are transformed into a binary problem (0,1). Next, all the
used features (CPU load, execution time, energy counter and the function ID)
are standardized (µ=0 and σ=1), before starting the training of the classifiers.
Each distribution is stored, in order to be used in the prediction phase, when
new data arrives. The next phase is the generation of the machine learning
model, and it is divided into three steps: the training step (1), the validation
step (2), and the test step (3). In the training step (1), the training dataset will
be used to train the model of each classifier. Then, in the validation step (2),

Figure 6.6: Machine Learning strategy and process

Table 6.1: Splitting strategy in training, validation, and test phases
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the model will be evaluated used the validation dataset. To ensure less bias, and
to test how the model handles new data, the k-fold cross validation technique
was used (k=5), to tune the model hyperparameters. The best hyperparameters
will be selected based on the best f1 score mean (k=5). Finally, in the test step
(3), the classifier will be tested using the performance metrics presented in table
6.2.

Table 6.1 shows how the data was divided in each phase. In the training step,
80% of normal events were randomly selected for training and validation (17274
events). 50% of anomalies were used in the validation phase, in order to evaluate
the classifier (SPI:675, Undervolting:2297, Temperature:620). The test used the
remaining 20% of normal events (4318 events) and 50% of anomalies (SPI:675,
Undervolting:2296, Temperature:620) were used for the test phase. The firm-
ware data (625 events) was intentionally not used in the training and validation
phases, in order to show how the classifiers handle different anomalies not used
in the validation step. The model was then saved and ready to use in the pre-
diction phase. The process was developed using Python, with the scikit-learn
framework.

Lastly, using a point anomaly approach, three distinct classification approaches
were selected: the OCSVM, the kNN, and the AutoEncoder. OCSVM is one of
the most used classifiers in anomaly detection. When used in a semi-supervised
approach, like the one followed in this article, the classifier creates a model for
the normal data, using the normal data training dataset only. To create the
model, several hyperparameters need to be configured. To select the most ap-
propriate parameters, a grid-search was conducted, in the k-fold cross validation
step with the parameters ν and γ. The ν parameter controls the percentage of
anomalies in the normal dataset. Additionally, the γ parameter defines how far
the influence of a single training example reaches (low means far, and high means
close). All the remaining parameters were used in the default mode. Differently
from OCSVM, the kNN classifier is a nearest-neighbour-based technique, which
uses distance metrics to compute the distance of a specific data point to the kth
nearest neighbour as the anomaly score (the classifier uses one of the simplest
approaches in the anomaly detection field). A grid-search was performed in or-
der to select the best k. Lastly, a neural network classifier was used, namely
AutoEncoder, which is a specific type of multi-layer neural network that per-
forms hierarchical and nonlinear dimensionality reduction of the data, using the
same number of nodes at the input and output networks. The idea behind the
use of this approach in anomaly detection is to train the output to reconstruct
the input, using the normal data, as closely as possible. Thus, if the network is
able to reproduce the normal data, when an anomaly occurs in the system the
network will be not able to reproduce it, and the resulting error will be large.
To train the classifier, a grid-search was also conducted, with different hidden
layers and epochs.
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6.3.2 Results

Table 6.2 presents the results of the performance metrics for the used classifiers,
divided by type of anomaly (firmware or hardware). The classifier that yielded
the best results is OCSVM, with a f1=0.95 for hardware anomalies and f1=0.857
for firmware, also showing that it is capable of detecting anomalies that were not
used in the validation phase. Two important metrics are the false positive ratio
(FPR) and the recall (or true positive ratio (TPR)). On one hand, the FPR tells
us how many normal events were considered as anomalies. On the other hand,
the recall metric tell us how well we identify all the anomalies. In the case of
OCSVM, this was only 5%. Only in the undervolting case, the classifier missed

Table 6.2: Classifier results for hardware and firmware anomalies

Figure 6.7: OCSVM TPR/FPR with different parameters
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some anomalies, that were wrongly classify as normal events. With also good
results, the kNN classifier was the second classifier with the best results. The
classifier performed similarly to OCSVM, however with higher FPR (8%). In
terms of recall, kNN performed even better than OCSVM, in the classification
of undervolting faults. Lastly, the performance of AutoEnconder was weak, in
part due to the low dimensionality of the data, limiting the hidden layers that
can be used. Here, another approach clearly needs to be followed in the future,
e.g., using a sliding window to increase the dimensionality of the data. The
OCSVM TPR/FPR results for different values of ν and γ are presented in figure
6.7.

6.4 Summary of the Chapter

As part of an ongoing work that proves the effectiveness of the proposed archi-
tecture, the work presented in this chapter demonstrated that it is possible to
detect representative hardware and firmware faults, and also security threats,
in industrial scenarios, using the defined monitoring strategy. In the scenario
explored in this chapter, we have shown that the OCSVM and kNN classifiers
are capable of detecting significant injected faults, with very low false positive
ratios and good recall.
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”A conclusion is the place
where you got tired thinking.”

(Martin H. Fischer)
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T he industrial field is experiencing a great transformation, in terms
of technologies, applications and threats. Current technologies keep
increasing their processing and memory capabilities, improving the

low power consumption, but with an important drawback, its complexity and
fault prone nature. At the same time, with the demand of CPS applications,
new hardware starts to incorporate specific AI components that confer micro-
intelligence to IoT devices, instead of relying on centralized models. As presen-
ted, hardware manufacturers like ARM, operating systems like FreeRTOS, and
other key-manufacturers start to understand the need to incorporate monitoring
tools in their platforms. Thus, it is expected in the following years new types
of monitoring tools for these systems, like the one proposed in this thesis. This
chapter summarizes and resumes all the contributions of the work performed.
Additionally, at the end, a forward-looking perspective will be conducted, by
presenting some future work related with the proposed architecture.

7.1 Synthesis of the Thesis

Industrial wireless technologies like ZigBee, ISA100.11a, WIA-PA, and Wire-
lessHART were designed to fulfil the low latency requirements needed by in-
dustrial systems. Despite the growing use of these technologies in such envir-
onments, there is a lack of monitoring tools capable to identify and prevent
faults, lowering the availability of these systems. Such shortage happens due
to an important fact: current operating systems and hardware architectures are
fragmented, making it difficult to build a general monitoring model to the four
main standards. In order to propose such monitor architecture, chapter 1 star-
ted by identifying these issues, addressing the research challenges that need to
be fulfilled by a new proposal.

The state of the art was presented in chapter 2, as general background. Industrial
applications requirements were revised, in detail, along with legacy wired tech-
nologies, IWSN standards, IoT management standards, current diagnostic tools
and techniques, finishing with the efforts made by the industrial and academic
community to propose similar solutions. The chapter presented the technology
journey of industrial systems and monitoring tools, culminating in today’s efforts
and proposals. By detailing the technologies, techniques and some of available
solutions, chapter 2 sustains the proposed model. Not less important, chapter
2 presents other small contributions. For instance, the network metrics shared
by these standards for routing purpose are presented and described. This is one
of the contributions of this thesis, that cannot be found, as far as known, in the
most relevant literature.

Monitoring tools are used in order to increase the MTTF of industrial systems,
and to prevent security threats, combined with IDS. So, it was important to
provide an appropriate characterization of fault nature in WSNs, that until now
was missed in the literature. Chapter 3 presented a WSN fault taxonomy, that
not only characterize, WSN faults, but also the impact of such faults on sensor
nodes components and systems. Examples of faults were given in each taxonomy
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viewpoint, to make it clear. In addition, this chapter specified the definition used
for the concepts of fault, error, failure and anomaly, used in the next chapters.
Such contribution was important to chapter 5 and 6, in the selection of faults,
when fault injection was used to test the effectiveness of the architecture.

The main contribution of this thesis was presented in chapter 4, when the mon-
itoring model was proposed. The architectural model consists of several agents
that collect in-node metrics and network metrics, sharing these metrics to a
central point, the industrial gateway. During this chapter, all these agents were
described, and some monitoring techniques recommended for each one. The
network monitoring relies on the available routing metrics described in chapter
2. The firmware monitoring is performed by using instrumentation techniques.
Lastly, the hardware state metrics are collected using techniques that can be
implemented in most commonly used hardware architectures (also described in
chapter 2). At the end, all the monitoring information is shared at the industrial
gateway using existing management protocols (e.g., LWM2M, COMI or REST-
CONF). To prove the low impact of the monitoring model, a testbed using the
WirelessHART standard was built and the impact of the architecture assessed,
by measuring: the overhead of each metric in terms of energy consumption; the
memory, processing, and latency overhead added to the main program; the net-
work overhead; and lastly, the latency introduced by the instrumentation code
in the main program. The results showed that the proposed model can be used
in industrial scenarios, without compromising the sensor node lifetime and the
main application execution.

After evaluating the proposed model, chapter 5 presented the first use case, by
using the model in the detection of faults and security attacks to the network.
To test the effectiveness of the monitoring model, several faults were injected in
the WirelessHART testbed using a security research toolkit for IEEE802.15.4.
Thus, chapter 5 started by making an in depth analysis of the WirelessHART
standard from a security perspective. Several experiments were conducted using
the Killerbee research toolkit to test the security of the WirelessHART stand-
ard. Through the analysis of the standard and experimentation, an important
attack vector was identified, and tested using this testbed. A new, and not
known attack to the standard was identified, allowing an attacker to conduct an
exhaustion attack, by manipulating the information of the advertisement mes-
sages. Such discovery, represents an additionally contribution of this chapter,
and was used to show the importance of the in-node metrics in the detection.
Finally, a detection mechanism using the OCSVM classifier was built. The eval-
uation of this classifier showed that it is possible to detect specific attacks and
faults like interferences or jamming with good results, using the sensor in-node
and the network metrics shared by the standard.

The second and last use case evaluated the effectiveness of the model to detect
faults and security attacks in the firmware and hardware of the sensor nodes.
Chapter 6 presented a series of faults and security attacks that can be conducted
to the existing IoT technologies. A stack-based overflow attack was conducted
against the main program, and the impact of this attack was evaluated using the
metrics collected by the monitoring testbed. Additionally, from the hardware
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perspective, several faults were injected: a low-voltage fault, an SPI fault, and
a high temperature fault. The impact of each fault was also described and com-
pared with the normal behaviour of the sensor node. At the end, similarly to
chapter 5, a detection mechanism was also proposed, by comparing several an-
omaly detection classifiers: OCSVM, kNN, and the AutoEncoder. The classifier
was built using a semi-supervised approach, allowing the detection mechanism to
identify new attacks that were not used in the training phase. The results show
that the mechanism is able to detect with high recall and false positive ratio
the injected anomalies when using the OCSVM and the K-NN classifiers, prov-
ing that the proposed model can be used to detect network/hardware/firmware
faults and attacks in industrial deployments.

7.2 Future Work

Throughout this thesis, several contributions were made, a new architecture was
proposed and evaluated, and several fault detection mechanisms developed, im-
proving the current state of the art in the domain of industrial IoT management
and anomaly detection. Nevertheless, the work performed in this thesis opens
more research questions that need to be answered in a near future, as well as
new insights to some other contributions, that could not be answered during
the entire process of producing this thesis. Complementary to the various con-
tributions of this thesis, several research questions arise. Thus, this section is
organized in two topics. The first topic presents some new insights and minor
contributions that can be added to this thesis in the future. On the other hand,
the second topic presents a more futuristic perspective, where the impact of new
technologies in the current architecture will be discussed.

As future work, the monitoring architecture should be further explored by ex-
tending and refining the existing implementation. Although Chapter 4 provides
a detailed explanation of the experiments conducted using WirelessHART and
explains how each agent can be adapted to the other relevant technologies, it
was not possible to develop a testbed that incorporated the four standards at
once, in the available time frame, in order to show that the proposed architec-
ture can seamlessly monitor equipment complying with each and all of the four
standards. Additionally, the proposed architecture and agents were designed to
be compatible with several firmware architectures (see chapter 4). Apart from
the existing operating system fragmentation, another contribution to the follow-
ing proposal would be the implementation of these agents in operating systems
like FreeRTOS, Contiki and RiOT. Such contribution would allow showing that
the proposed model is general and can be deployed in a large variety of IoT
devices, with increased potential for its adoption by developers. For instance, in
FreeRTOS, such agents could be used and incorporated in the TraceAlyzer tool,
by using the new public Software Development Kit (SDK). The synchronization
between in-node metrics is another feature that is missing in the presented test-
bed. Chapter 4 presents the industrial standards that can support this feature.
Using this additional metric, faults associated with all the network or clusters
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could be more easily identified. More advance instrumentation techniques, like
those proposed in [Schuster et al., 2014; Dong et al., 2013; Shea et al., 2009], can
also be tested, reducing the code instrumentation time. Better log compression
techniques can also be explored, in order to reduce the overhead created over
the network. The current approach does not explore any type of log compres-
sion. In what concerns hardware architectures, the developed testbed can also
be extended to incorporate ARM microprocessors with the CoreSight techno-
logy. As presented in chapters 2 and 4, this technology provides a rich set of
monitoring metrics related with hardware and firmware condition, that could
help in the identification of more advanced anomalies. Lastly, in chapters 5 and
6 a dataset was collected, containing the normal state of the system, along with
the time period of network and in-node anomalies injection. The anomaly de-
tection mechanisms were built using a semi-supervised approach with classifiers
like OCSVM, kNN and AutoEnconder. By using the same dataset, other ma-
chine learning techniques and approaches can be used and compared with the
ones used in this thesis. For instance, Hidden-Markov chains can be tested to
model the states of the code during normal behaviour, and detecting anomalies
when an uncommon jump occurs. Lastly, deep learning techniques can also be
explored.

Cybersecurity is nowadays one of the most important topics in the industrial
field. The use of ICT technology, such as TCP/IP protocols, exposes these sys-
tems to new security threats. In the near future, security will certainly be the
feature that will contribute the most to the adoption of monitoring tools, IDS,
and machine learning in industrial systems. At the same time, the introduc-
tion of more complex and capable hardware, with specific AI components, are
contributing to the CPS concept on which Industry 4.0 is based. Moreover, the
introduction of such components in small microprocessors will also create an op-
portunity to have monitoring systems capable of detecting anomalies in sensor
nodes, or even more advanced methods (e.g., sensor node neighbours comput-
ing metrics for regions or sets of nodes). An example of such platforms is the
Apollo 3 board [Allan, 2019], developed by Google and Ambiq, that is capable
to provide edge computing by running TensoFlow lite. By giving such capab-
ilities to sensor nodes, it will be possible to create more distributed processing
algorithms, and at the same time reduce the overhead of sharing this information
over the network. The enhancement of these new capabilities will be followed by
an even greater reduction of energy consumption in the sensor nodes, by using
Bulk Acoustic Wave(BAW) resonators technology, for instance, instead of quartz
crystals technology [Yoshida, 2019]. All of these advances in technologies will
allow to have more state metrics inside the sensor nodes, of which the CoreSight
technology is an example. Future operating systems will incorporate these tech-
nologies as interfaces, helping in the development of monitoring architectures
that can be easily integrated in industrial applications. Other important innov-
ation is the appearance of new wireless standards, that rely on open technologies
like 6TiSCH. The standard is based in more common technologies from the IoT
domain, maintaining at the same time the deterministic nature and reliability.
Last but not least, there is a remaining issue in the state of the art of this
topic, that should be addressed as future work. In chapter 5, when attacks to
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the WirelessHART were conducted, the Killerbee toolkit was used, but without
synchronization capabilities. In order to prevent more sophisticate attacks to
these networks, tools that stay synchronized with the network are needed, in
order to better assess the security of industrial wireless standards.
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