Determinants of passenger loyalty in multi-airport regions: Implications for tourism destination

George C. L. Bezerra

University of Coimbra - Centre for Business and Economics Research (CeBER); National Civil Aviation Agency of Brazil

Email: george.bezerra@anac.gov.br

Carlos F. Gomes

Associate Professor, University of Coimbra - Centre for Business and Economics Research (CeBER); Faculty of Economic

Email: cfgomes@fe.uc.pt

This is a pre-copyedited version of an article published in Journal of Tourism Management Perspectives. The final version of this article is available online at https://www.sciencedirect.com/science/article/pii/S2211973619300522

This manuscript version is made available under the under the Creative Commons Attribution Non-commercial International Licence 4.0 (CC BY-NC 4.0). Reuse is allowed in accordance with the terms outlined by this licence.

Citation: Bezerra, G.C.L. and Gomes, C.F. (2019), "Determinants of passenger loyalty in multiairport regions: Implications for tourism destination", *Tourism Management Perspectives*, Vol. 31 No. April, pp. 145–158. Determinants of passenger loyalty in multi-airport regions: Implications for tourism destination

George C. L. Bezerra

University of Coimbra - Centre for Business and Economics Research (CeBER); National Civil

Aviation Agency of Brazil

Carlos F. Gomes

University of Coimbra - Centre for Business and Economics Research (CeBER); Faculty of

Economics

Abstract

This study examines the drivers of passenger loyalty to the airport in a multi-airport region.

For this purpose, partial least squares-structural equation modelling (PLS-SEM) was used to

analyse survey data. The findings highlight the role of customer segmentation to define

marketing and operational strategies, which should be used to strengthen the loyalty to the

airport as well as to contribute to the improvement of the tourism destination image. In

addition, this research offers an integrative approach to analyse passenger perceptions and

attitudes regarding the airport experience. This integrative approach can also help airport

managers to design and implement more effective performance measurement systems, which

could be used to transform the airport environment in a tourism experience.

Keywords: air travel; airport; loyalty; multi-airport region, tourism experience.

1. Introduction

In today's global marketplace, the tourist experience with transportations is a key element for

their overall experience (Volo, 2009). As such, airports became central elements of the

tourism services chain, as they can represent the first and last impression of the tourism

destination (Voltes-Dorta, Rodríguez-Déniz, & Suau-Sanchez, 2017; Wattanacharoensil,

Schuckert, & Graham, 2016). They are also environmental variables in the hotel location

decision, planning, and management (Hu et al., 2010; Song and Ko, 2017).

1

In this perspective, airport performance can have a decisive impact on regional development and tourist attractiveness (Dimitriou, 2018). As such, tourism flows should be considered in the planning and management of airports, as well as airports should be taken into account when designing tourism promotion and regional development strategies (Fernández et al., 2018).

The airport services and facilities can not only influence their own operations but can also be considered as near-destination links that contribute to the development of tourism in the region where they are located (Tang et al., 2017). As since airports act as an interpretive location of the tourism/destination image and slogan, passengers tend to see the airport according to their mental perception of the characteristics of a destination and vice-versa (Wattanacharoensil et al., 2017). In this context, tourism literature is calling for more research on the passenger experience at the airport (Spasojevic et al., 2017).

The literature has emphasized that a pleasant experience in the airport could lead to positive attitudes, including airport reuse intention, increasing non-aeronautical revenues, and competitive advantages (Ali et al., 2016; Han, Yu, et al., 2018; Wattanacharoensil et al., 2016). Furthermore, the positive effect of a pleasant experience can also be extrapolated to the passengers' opinions concerning their tourism destination.

Loyalty is recognized as a critical factor of service effectiveness in the tourism industry (Han, Nguyen, et al., 2018; Han and Hyun, 2018; Hwang et al., 2019; Pimpão et al., 2018), as well as in the airline business (Akamavi et al., 2015; Forgas et al., 2010; Hapsari et al., 2017; Rajaguru, 2016). However, the nature and determinants of passengers loyalty towards the airport are still under-researched (Cui et al., 2013; Nesset and Helgesen, 2014). Moreover, customer segmentation, which is a useful instrument to strengthen customer loyalty in tourism

(Almeida-Santana and Moreno-Gil, 2018; Chen et al., 2017) and airline business (Hapsari et al., 2017; Pantouvakis and Renzi, 2016), has not been fully researched in the airport context (Leung et al., 2017).

Literature has explored passenger characteristics and how they affect different aspects of their experience at the airport (Ali *et al.*, 2016; Bezerra & Gomes, 2015; Freathy & O'Connel, 2012; Pantouvakis & Renzi, 2016; Leung *et al.*, 2017). Nevertheless, the results obtained are not conclusive, especially regarding which of those characteristics are more relevant for tourism and airport management. Moreover, the characteristics of different groups of passengers have not been used as a latent base for segmentation. In effect, understanding the latent passenger segmentation could help to identify differences between groups of passengers and support strategies of services customization (Bock et al., 2016; Freathy and O'Connel, 2012). As such, airport managers could be able to strengthen passenger loyalty, particularly in multi-airport regions, as well as to contribute to the improvement of the tourism destination image.

In order to fill these research gaps, this paper aimed to examine the drivers of passenger loyalty to the airport in a multi-airport region, and the moderating effects of different segments of passengers. For this purpose, a conceptual model, including the relationships between the passenger perceptions and attitudes towards the airport, was developed based on the literature and used to test several research hypotheses. In addition, an emphasis is also given to the comprehensive framework used, which has important theoretical and practical implications through the lens of tourism research.

In the following section, the theoretical background, the conceptual model, and research hypotheses are presented. In the third section, the measurement items, the sample, and the

data analysis methods are described. The fourth section present and discusses the results. The last section stresses the main findings, as well as implications and suggestions for future research.

2. Background

2.1 Passenger loyalty

Customer loyalty has been a major subject in the marketing literature, as a strategic objective for organizations in competitive environments. Understanding the determinants of loyalty are imperative for retaining customers, achieving positive word-of-mouth, and increasing revenues (Andreassen and Lindestad, 1998; Baumann et al., 2017; Bock et al., 2016; Bodet, 2008; Bowen and Chen, 2001; Oliver, 2014).

Although there is an emergent debate on passenger loyalty within the airport industry, including loyalty programs (Halpern and Pagliari, 2008; Nesset and Helgesen, 2014; Paliska et al., 2016; Wattanacharoensil et al., 2016), there is a lack of empirical evidence on the nature and drivers of passenger loyalty towards the airport. Even though the service experience and the level of satisfaction can have important roles, passenger behaviour regarding the airport may depend on several other aspects, including passenger characteristics and particularities of the marketplace (Nesset and Helgesen, 2014; Wiltshire, 2017).

Bearing these considerations in mind, in this study, satisfaction, complaints, airport image, and switching costs were considered as direct antecedents of passenger loyalty. Looking for a more comprehensive approach, the indirect effects of expectations, airport service quality, and service value were included (Anderson and Fornell, 2000; Fornell et al., 1996; Grönroos and Voima, 2013; Morgeson, 2012). Additionally, accounting for the competitive dynamics of the airport sector, the switching costs associated with changing airports were included. The

hypothesized relationships are discussed in view of the airport business environment in the next sections.

2.2. Direct antecedents

2.2.1. Passenger satisfaction

The association between satisfaction and loyalty has long been investigated in several service contexts, including the tourism industry (Chen et al., 2017; Deng et al., 2013; Han and Hyun, 2018). Concerning airports, over recent decades the interest in passenger satisfaction has substantially increased (Ali et al., 2016; Bezerra and Gomes, 2015; Bogicevic et al., 2013, 2017; Moon et al., 2016).

Some comprehensive approaches can be found in the airport-related literature. For instance, Chang, Liu, Wen, & Lin (2008) explored relationships between social justice, service quality, satisfaction, and complaints. They found social justice and service quality positively affects passenger satisfaction, while satisfaction has a negative effect on passenger complaint intention.

Park & Jung (2011) examined passenger's perceptions of service quality and their influence on service value, satisfaction, image, and post-consumption behaviour. The findings suggested positive effects of service quality on satisfaction, service value, and image, while service value, image, and satisfaction positively affect passengers' reuse intentions and their intention to recommend the airport to other passengers.

Nesset & Helgesen (2014) analysed the effects of different aspects related to passenger satisfaction, comprising the effects of switching costs. Based on their results, service quality was the most important driver of passenger loyalty towards the airport. However, low

switching costs passengers also have flight offer as an important factor for loyalty, while high switching costs passengers see airport facilities as relevant.

Chen *et al.* (2015) examined the determinants of passenger satisfaction, the nature of the relationship between satisfaction and service value, and the moderating effect of service innovation. Their findings show that perceived value was influenced by passenger satisfaction and service innovation. Among the innovative services considered in the study, the security check was the most important for passengers.

Moon *et al.* (2016) investigated the relationships between the airport physical environments, emotions, and satisfaction, including the mediating role of emotion in the relationship between physical environment and satisfaction. According to their findings, three components of airport physical environments had direct effects on passenger pleasure (layout accessibility, facility aesthetics, and cleanliness), while most of those components are insignificant on passenger arousal. The authors concluded that arousal was an invalid dimension on passenger satisfaction with the airport, not mediating the effects of attributes of the airport environment on their level of satisfaction.

More recently, Moon, Yoon, & Han (2017) examined the relationships between the airport physical environment, the perception of airport safety, passenger satisfaction, and passenger behavioural intentions. In this work, facility aesthetics appeared as the strongest component of the physical surroundings in eliciting satisfaction. Moreover, satisfaction had a strong impact on passenger intentions to spend more money in the airport and reusing the airport. However, the moderated effect of perceived safety was not significant.

In light of this recent literature and aiming to contribute to fulfil the current gap on the relationships between different aspects of the customer experience at the airport, as well as their effects on customer attitudes towards the airport and the tourist destination, in this paper, satisfaction mediates passenger expectations and perceptions about the experience and their post-purchase behaviour. As such, it is expected to have a direct positive influence on loyalty and a negative influence on complaints (Anderson and Fornell, 2000; Bodet, 2008; Fornell et al., 1996; Han and Hyun, 2018; Johnson et al., 2001). Concerning the airport context, the effects of passenger satisfaction on loyalty have been examined by Nesset & Hegelson (2014) and Park & Jung (2011). In both studies, the hypothesis of a direct positive effect was supported. As for the negative effect of satisfaction in passenger complaining attitude, Chang

H1a: Passenger satisfaction positively affects passenger loyalty.

with the airport experience, they are less likely to have any intention to complain.

H1b: Passenger satisfaction negatively affects their complaining attitude.

et al. (2008) supported that hypothesis. Consequently, as long as the passengers are satisfied

2.2.2. Passenger complaints

The complaining attitude is usually associated with service failure or with a poor performance (Wilson et al., 2012). Accordingly, passengers willing to complain would be less likely to reuse the airport if they have an alternative, which suggests a negative effect of complaints on loyalty (Deng et al., 2013; Knox and Van Oest, 2014). The following hypothesis is considered.

H2: Passenger complaining attitude negatively affects passenger loyalty.

2.2.3. Airport image

The corporate image reflects perceptions of the organization held by different publics. These perceptions form a representation of an organization's past actions and their future behaviour (Andreassen and Lindestad, 1998; Balmer, 2012; Gray and Balmer, 1998). As such, corporate image is very important in the overall evaluation of the service and the organization (Abratt and Mingione, 2017). In the airport context, there is scarce evidence of the effects of airport image on passengers' perceptions and attitudes (Ali et al., 2016; Nesset and Helgesen, 2014; Pantouvakis and Renzi, 2016). These effects can also have short and long-term implications for the tourism destination (Pizam, 2017; Voltes-Dorta et al., 2017).

Based on the literature, a favourable image is positively related to the passenger expectations regarding the service experience, their satisfaction, and their loyalty (Andreassen and Lindestad, 1998; Johnson et al., 2001; Lee et al., 2017).

H3a: Airport image positively affects passenger expectations.

H3b: Airport image positively affects passenger satisfaction.

H3c: Airport image positively affects passenger loyalty.

2.2.4. Switching costs

The problem of airport choice has usually been associated with the offer of flights, access, and convenience in using the airport, travel purpose, and travel group size (Carlsson and Löfgren, 2006; Cho et al., 2015; Kim and Ryerson, 2018; Pels et al., 2003; Yang et al., 2014). In this context, analysis of airport substitutability should account for the available alternatives, and for the viability of switching to those alternatives (Polk and Bilotkach, 2013).

Although the scope for airport competition has widened, airport market power is still a relevant issue (Adler et al., 2015; Merkert and Mangia, 2014; Wiltshire, 2017). Regarding

competition for catchment area, passenger perceptions of the switching costs for changing airports seem to be an important driver of loyalty, specifically reuse intention (Jen et al., 2011; Nesset and Helgesen, 2014).

In this study, switching costs reflect the perceived economic and psychological costs associated with changing from one airport to another in the multi-airport region (Jones et al., 2007). Hence, they are assumed to direct influence passenger loyalty. Moreover, the perception of switching costs is expected to moderate the effects of satisfaction, airport image, and complaints on loyalty (Jones et al., 2000; Lam et al., 2004). According to Lam et al. (2004) differences in loyalty attitude between satisfied and dissatisfied customers is widened in the situation of high switching costs. For Nesset & Helgesen (2014), an increase in switching costs will reinforce the significance of satisfaction and image on loyalty. As regards the complaints-loyalty relationship, complaining passengers may not see changing airport as a convenient alternative due to the perception of high switching costs. Thus, no matter how dissatisfied they could be, they would still maintain a relationship with the service provider to avoid switching costs (Jen et al., 2011; Jones et al., 2007). Accordingly, as switching costs increase, passengers may remain loyal to the airport despite their low level of satisfaction, their perception of bad airport image and their complaining attitude (Jones et al., 2000, 2007; Nesset and Helgesen, 2014; Yang and Peterson, 2004).

H4a: Switching costs positively affects passenger loyalty.

H4b: Switching costs moderate the image-loyalty relationship.

H4c: Switching costs moderate the satisfaction-loyalty relationship.

H4d: Switching costs moderate the complaints-loyalty relationship.

2.3. Indirect antecedents

2.3.1. Perceived value

The perception of value reflects the customer comparison between the service performance and the price paid for that service (Anderson & Fornell, 2000; Johnson. et al., 2001; Zauner et al., 2015). The usual approach to perceived value is based on a trade-off between the benefits and the sacrifices in a market exchange (Prebensen et al., 2013; Sweeney and Soutar, 2001; Zauner et al., 2015; Zeithaml, 1988). Perceived value has been considered an indirect antecedent of customer satisfaction since the early 1990s (Fornell, 1992). The reason for using this construct in cause-and-effect models is to provide relevant diagnosis information concerning the relative impact of quality and value on customer satisfaction and their attitudes (Johnson et al., 2001). For instance, as the impact of value increases relative to the perceived quality, the price is a more important determinant of satisfaction than quality (Fornell et al., 1996). Therefore, it is expected that a higher perception of value will positively influence passenger satisfaction with the airport.

H5: Perceived value positively affects passenger satisfaction.

2.3.2. Airport service quality (ASQ)

The airport service environment presents a high complexity. Thus, some aspects of the passenger-airport interaction may not be adequately covered by generic service quality scales (Fodness and Murray, 2007; George et al., 2013; Pantouvakis, 2010). Recent literature has contributed to align service quality measurement and the effective passenger experience with the several airport services, facilities, and servicescape (Bezerra & Gomes 2016a; Fodness & Murray 2007; George *et al.* 2013).

Satisfaction is dependent on the customer experience with the service performance

(Anderson and Fornell, 2000; Falk et al., 2010; Oliver, 2014; Sureshchander et al., 2002).

Therefore, the customer perceptions on service quality is a critical driver of their level of

satisfaction, being expected that high perceived quality is likely to improve a customer level

of satisfaction with the product/service (Falk et al., 2010; Oliver, 2015; Bezerra & Gomes,

2015). Moreover, service quality is also important for a customer evaluative judgment about

the value obtained from a service, as perception of value reflects a comparison between the

service performance and the price paid for that service (Anderson & Fornell, 2000; Johnson.

et al., 2001; Zauner et al., 2015). As such, it is expected that service quality positively affects

the perceived value (Fornell et al., 1996; Johnson et al., 2001).

H6a: ASQ positively affects the perceived value

H6b: ASQ positively affects passenger satisfaction

2.3.3 Passenger expectations

Services literature stresses the importance of customer expectations as a determinant of

customer perceptions about the service and their level of satisfaction (Morgeson, 2012;

Oliver, 2014; Parasuraman et al., 1994). However, the nature of passenger expectation

regarding the airport experience is still under-researched (Bezerra and Gomes, 2015;

Bogicevic et al., 2013; Hussain et al., 2015).

Expectations reflect the attributes and characteristics associated with the service experience

that is anticipated/predicted by the customer. These expectations can be related to prior

consumption experience, as well as advertising and word-of-mouth information (Morgeson,

2012; Oliver, 2014; Parasuraman et al., 1994). Regardless of the sources that will form

expectations, it is assumed that passengers will evaluate their experience (including service

11

quality and value) based on these attributes/characteristics, and then they form their opinion about the whole experience (Oliver, 2014). Based on previous research, including the rationale of the national customer satisfaction models, the hypothesized relationships regarding passenger expectation comprise direct and positive effects on ASQ, perceived value, and satisfaction (Johnson et al., 2001; Zauner et al., 2015).

H7a: Passenger expectation positively affects ASQ

H7b: Passenger expectation positively affects the perceived value

H7c: Passenger expectation positively affects passenger satisfaction

Following the above discussion, this study proposes a comprehensive model to analyze the drivers of passenger loyalty towards the airport (Figure 1). This model was based on several previous research, as referred in this section, as well as on the rationale of the national customer satisfaction models (Johnson et al., 2001).

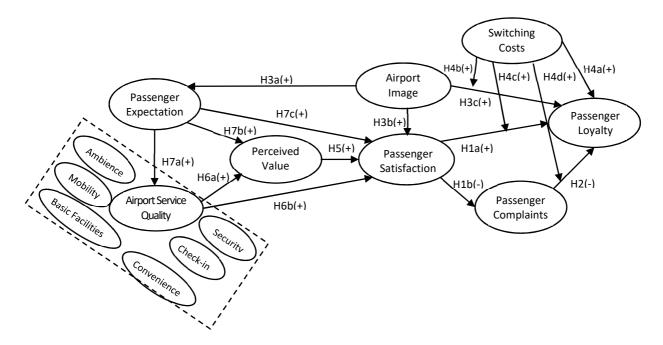


Figure 1. The conceptual model

3. Research methodology

3.1. Measurement items and questionnaire development

As a result of the construct operationalization process, the empirical analysis comprised 59 measurement items reflecting eight latent variables, which were selected based on the literature reviewed. According to this specification, the measurement items are assumed to represent reflections of the construct they are intended to measure (Coltman et al., 2008; Edwards and Bagozzi, 2000). As such, the measurement model consists of reflective measures. All the constructs included in the outer model, along with their measurement items and descriptive statistics are presented in Appendix A.

For the ASQ construct, a performance rating scale was used, which ranges from 1 - Very poor to 7 - Very good. For the remaining constructs a Likert seven-point scale was used, which ranges from 1 - strongly disagree to 7 - strongly agree.

Passenger loyalty included repurchase intention and tolerance to increase in prices (Bobâlca et al., 2012; Bodet, 2008; Hill and Alexander, 2006; Johnson et al., 2001). This construct also comprised positive word-of-mouth (Mason, 2008; Nesset and Helgesen, 2014; Oliver, 2014; Sweeney et al., 2012) and preference in a long-term perspective (Akamavi et al., 2015).

Regarding complaints, in the national customer satisfaction models, this construct is usually measured simply with a question asking whether a customer has formally complained (Fornell et al., 2008). However, since complaints are not always materialized to the organization (Chang et al., 2008; Wilson et al., 2012), four more items were added. Three items are intended to reflect passenger attitude to complain, which is consistent with previous studies and assumes that customers may very often do not formalize their dissatisfaction (Homburg and Fürst, 2005; Knox and Van Oest, 2014). Another item related to the passenger perception

about how the complaints are solved by the organization is included (Johnson et al., 2001). Therefore, the construct comprised passenger's declared intentions and their perception about how complaints are solved by the airport.

The switching costs are reflected on monetary and non-monetary costs (Jones et al., 2000, 2007; Nesset and Helgesen, 2014; Yang and Peterson, 2004). Additionally, the feeling of being obliged to use the same airport due to convenience was included, which is related to a captive nature of loyalty (Patterson and Smith, 2003).

Concerning passenger satisfaction, three measurement items from the customer satisfaction index models were used (Anderson and Fornell, 2000; CFI Group, 2013; Fornell et al., 1996). Looking for a more comprehensive approach, other two items were included: the overall experience (Bogicevic et al., 2013; Moon et al., 2016); and the feeling of making a good choice in electing the airport (Bodet, 2008; Parasuraman et al., 1988), which reflects the cost of opportunity in the multi-airport region.

Regarding perceived value, the usual trade-off perspective (Prebensen et al., 2013; Sweeney and Soutar, 2001; Zauner et al., 2015; Zeithaml, 1988) was adapted to the airport context, comprising core airport facilities and convenience services (Fodness & Murray, 2007; George et al., 2013; Bezerra & Gomes, 2015). In operationalizing this construct, was considered that, in Brazil, due to Federal Regulation, the airport fees are presented to the customer separate from the effective air ticket price. Accordingly, the measurement items used considered both the airport fee and the prices practiced in the commercial areas of the airport.

Airport service quality (ASQ) was operationalized using a second-order construct reflecting in six dimensions, as proposed by Bezerra & Gomes (2016a). Essentially, these six dimensions

are related to the main aspects of passenger-airport interaction. The first aspect relates to the core activities associated with passenger processing, comprising the check-in and security screening. The second aspect is named Convenience, comprising discretionary activities that a passenger is able or willing to do in the airport. The third aspect is associated with the passenger perception of how ease is to move within the airport terminal. Finally, the dimensions basic facilities and airport ambience are representative of the passenger needs for being comfortable at the airport. The measurement items are similar to previous research (Bezerra and Gomes, 2015; Correia et al., 2008; Park and Jung, 2011; Rocha et al., 2016), and they are aligned with current industry practices (ACI, 2017; Kramer et al., 2013). Based on a comprehensive approach to the passenger experience, other aspects of the commercial facilities and services were added. Since commercial revenues are increasingly important, this modification follows the ongoing debate on airport management (Fasone et al., 2016; Halpern and Graham, 2013; Kalakou and Macário, 2013; Wattanacharoensil et al., 2016).

Finally, passenger expectation comprised overall expectation, level of customization, and service reliability (CFI Group, 2013; Fornell et al., 1996; Johnson et al., 2001). Moreover, since the passenger's basic expectations typically comprise processing speed and an acceptable level of comfort (Caves and Pickard, 2001; Bogicevic et al., 2013), these aspects were included.

The questionnaire development process comprised consultation with experts for content validation (researchers, airport executives, and experts from the Brazilian Government) and an online trial survey applied to passengers that had used any Brazilian airport for a departing flight in the last three months. Participants in the trial survey also commented on item readability and provided suggestions. The main contributions were related to item wording.

3.2. Sample and data collection procedures

The survey was conducted at Congonhas Airport, located at the São Paulo metropolitan area (Brazil). This metropolitan area is a multi-airport region also served by Guarulhos Airport and Viracopos/Campinas Airport. While Guarulhos Airport and Viracopos/Campinas Airport operate domestic and international flights, Congonhas Airport processes only domestic flights.

Departing passengers in domestic flights were approached at the departure lounges to assure they have had the opportunity to experience the full range of the airport services, processes, and facilities (Correia et al., 2008). Sampling criteria were probability systematic, with every fifth passenger in a given departure gate invited to participate in the study by fulfilling the questionnaire. The survey team covered all the gates during two consecutive days. The useful sample represents 0.8% of the population of departing passengers in these days, which provides a confidence level of 95% and a margin of error of 5% (Cochran, 1977). Table 1 shows the demographic profile of the respondents.

Table 1. Sample characteristics

Characteristic		Distribution		
Living in the city of São Paulo		Freq.		
Yes		109	32.5	
No		225	67.2	
Non response		1	0.3	
	Total	335	100.0	
Gender		Freq.	%	
Male		241	71.9	
Female		93	27.8	
Non response		1	0.3	
	Total	335	100.0	
Trip purpose		Freq.	%	
Business		219	65.4	
Non-Business		114	34.0	
Non response		2	0.6	
	Total	335	100.0	
Antecedence of arrival at the airport		Freq.	%	
Less than 1 hour		130	38.8	
Equal or more than 1 hour to 2 hours		169	50.4	
More than 2 hours		34	10.2	
Non response		2	0.6	
	Total	335	100.0	

Number of departures from the airport in the last 12 months	Freq.	%
First time	37	11.0
2 to 3 times	93	27.8
3 to 5 times	58	17.3
More than 5 times	146	43.6
Non response	1	0.3
То	tal 335	100.0

According to data analysis instruments used in this research, the sample size was also found to be adequate (Hair et al., 2011). The variables used to analyse the conceptual model do not contain missing values. Only the respondent's characteristics contained eight missing values. Therefore, the records with missing values were not used in the multi-group analysis.

Appendix A presents the descriptive statistics of the observed variables. The values of skewness range from -1.278 to 0.844, and the values of kurtosis range from -1.197 to 1.231, supporting the univariate normality for the data (Hair et al., 2014). Concerning multivariate normality, based on the Mahalanobis' distance, no significant outliers were found.

3.3. Data analysis

Consistent with the research objectives, the partial least squares - structural equation modelling (PLS-SEM) was applied to test the research hypotheses. This statistical method was used due to the complexity of the research model (Hair et al., 2017; Usakli and Kucukergin, 2018).

The finite mixture PLS (FIMIX-PLS) was employed to capture and identify unobserved heterogeneity of the sample (Hair et al., 2016a, 2016b). The PLS-MGA method (Henseler et al., 2009) was used to examine whether a single or several of the latent passenger characteristics moderate the structural relationships of the research model. All the analyses were performed using the IBM-SPSS Statistics version 25 and SmartPLS 3.2.6 (Ringle et al., 2015).

4. Results and discussion

4.1. Measurement model

The measurement model was firstly assessed regarding construct reliability. Almost all the measurement items presented outer loadings above 0.7 (see Table 2), which is the recommended threshold (Hair et al., 2011). A few measurement items were slightly lower than 0.7, and only one item presented a value below 0.4 (COP1). Following the outer loading test suggested by Joseph F. Hair, Hult, Ringle, & Sarstedt (2013), COP1 was deleted from the model. Additionally, the Cronbach's alpha values and the Composite Reliability (CR) values obtained for each construct exceeding 0.7 indicated sufficient construct reliability (Table 2).

Table 2. Validity and reliability of constructs

Measurement items	Loading	CR	AVE	Alpha
Expectation	<u>_</u>	0.857	0.546	0.802
EXP1- I had high expectation about the airport quality	0.729			
EXP2- I expected the airport to fully meet my needs as a passenger	0.795			
EXP3- I expected no failure in the service provision	0.706			
EXP4- I expected the services to be speedy and efficient	0.743			
EXP5- I expected to feel comfortable and safe at the airport	0.721			
Perceived value		0.872	0.580	0.816
VAL1- Considering the overall airport quality, the airport fee is fair	0.791			
VAL2- Considering the airport fee, the airport services are very good	0.875			
VAL3- Considering the airport fee, the comfort is very good	0.837			
VAL4- Considering the quality of products/services, the prices in commercial facilities are fair	0.620			
VAL5- Considering the prices in commercial facilities, the quality of products/services is very	0.652			
good	0.652			
Passenger satisfaction		0.913	0.677	0.881
SAT1- Overall, I am very satisfied with the airport	0.845			
SAT2- The airport exceeds my expectations	0.844			
SAT3- The airport represents what I understand for an ideal airport	0.836			
SAT4- I feel I have made the right decision in choosing this airport	0.777			
SAT5- Overall, my experience with the airport is very pleasant	0.811			
Image		0.925	0.711	0.898
IMG1- The airport management can be trusted	0.830			
IMG2- The airport management is concerned with their customers	0.865			
IMG3- The airport management has a social contribution to the society	0.836			
IMG4- The airport has a good image among their customers	0.852			
IMG5- The airport is modern and well prepared for the future	0.831			
Complaints		0.875	0.637	0.810
COP2- I have (or have had) intention to formally complain to the airport	0.789			
COP3- I have complained (or I am likely to complain) about the airport to family or friends	0.828			
COP4- Passengers that have complained to the airport are likely fair	0.811			
COP5- I do not believe that complaints are properly solved by the airport	0.762			
Switching costs		0.910	0.672	0.876
SWC1- For me, it would be more expensive using another airport in this city	0.759			
SWC2- It would demand more personal efforts using another airport in this city	0.869			
SWC3- It would take much time if I have decided for using another airport in this city	0.884			
SWC4- For me, it would be very inconvenient to use another airport in this city	0.878			
SWC5- For convenience, I feel practically obliged to use this airport for domestic flights from	0.689			
São Paulo	0.005			
Loyalty		0.867	0.568	0.813
LOY1- I will use this airport for my next flight departing from São Paulo	0.775			
LOY2- Even if another airport in the city offers a much cheaper fee, I prefer using this airport	0.757			
LOY3- Even if another airport in the city has an equivalent flight much cheaper, I prefer to use this airport	0.642			
LOY4- I will recommend this airport to my family and friends departing from São Paulo	0.726			
LOY5- I always prefer using this airport for domestic flights departing from São Paulo	0.854			
Check-in	0.00	0.908	0.768	0.848
CHK1- Wait-time at check-in	0.824	0.500	0.700	0.0-10
CHK2- Check-in process efficiency	0.926			
CHK3- Courtesy and helpfulness of check-in staff	0.875			
Security	0.075	0.898	0 687	0.848
SEC1- Wait-time at security checkpoints	0.822	5.550	0.007	5.5-0
SEC2- Thoroughness of security screening	0.848			
SEC3- Courtesy and helpfulness of security staff	0.854			
SEC4- Feeling of being safe and secure	0.789			
and a seem of seems are and seems	3.703			

Table 2 (continued)

Measurement items	Loading	CR	AVE	Alfa
Convenience		0.906	0.548	0.880
CON1- Availability and quality of Food facilities	0.786			
CON2- Courtesy and helpfulness of food facilities staff	0.778			
CON3- Availability and quality of Stores	0.811			
CON4- Courtesy and helpfulness of stores staff	0.819			
CON5- Banks/ATM/Exchange	0.705			
CON6- Internet/Wi-Fi	0.584			
CON7- Leisure/entertainment activities	0.729			
CON8- Courtesy and helpfulness of airport staff (excluding check-in, security inspection,	0.678			
and commercial area)				
Ambience		0.909	0.770	0.851
AMB1- Cleanliness of airport facilities	0.879			
AMB2- Thermal comfort	0.871			
AMB3- Acoustic comfort	0.882			
Basic facilities		0.901	0.751	0.834
BAS1- Availability of washroom/toilets	0.869			
BAS2- Cleanliness of washroom/toilets	0.887			
BAS3- Departure lounge comfort	0.844			
Mobility		0.872	0.696	0.780
MOB1- Wayfinding	0.852			
MOB2- Flight information	0.867			
MOB3- Walking distance inside terminal	0.780			

All the average variance extracted (AVE) values were higher than the recommended threshold of 0.5. Based on these results, the items with outer loadings slightly below 0.7 were maintained, as their exclusion did not improve the AVE and CR values (Hair et al., 2013).

Concerning discriminant validity, the heterotrait-monotrait (HTMT) ratio of correlations was used (Hair et al., 2017; Usakli and Kucukergin, 2018). All HTMT values are below 0.90, establishing the discriminant validity of the constructs (Henseler et al., 2015).

Table 3. Discriminant validity

	Amb	Bas	Chk	Com	Con	Ехр	Img	Loy	Mob	Sat	Sec	Swc	Val
Ambience													
Basic Facilities	0,814												
Check-in	0,865	0,874											
Complaints	0,789	0,378	0,418										
Convenience	0,350	0,289	0,274	0,401									
Expectation	0,860	0,619	0,677	0,579	0,293								
Image	0,198	0,305	0,195	0,067	0,195	0,129							
Loyalty	0,747	0,660	0,635	0,538	0,402	0,680	0,211						
Mobility	0,370	0,352	0,270	0,329	0,152	0,264	0,210	0,348					
Satisfaction	0,768	0,424	0,571	0,557	0,118	0,547	0,132	0,421	0,266				
Security	0,769	0,697	0,656	0,517	0,394	0,694	0,229	0,819	0,367	0,469			
Switching Cost	0,886	0,554	0,541	0,767	0,300	0,664	0,170	0,594	0,350	0,538	0,613		
Value	0,152	0,099	0,101	0,069	0,360	0,205	0,128	0,139	0,536	0,062	0,233	0,099	

Note: None of the correspondent bootstrap confidence intervals includes the value 1.

As for the ASQ construct, the loadings of the first-order constructs on the second-order construct are all significative (p<0.001) and sufficiently strong. As such, they indicate that passenger perceptions of ASQ can be measured as a second-order construct (Hair et al., 2011), reflecting the six service quality dimensions representative of the services, facilities, and environmental aspects of the airport, as proposed by Bezerra & Gomes (2016a).

Regarding common method variance, based on the results of Harman's single-factor test, and of the common latent factor approach (Podsakoff et al., 2003), no significant concerns about common method bias were found.

4.2. Identification of passenger segments

Following the methodology explained in section 3.3, the FIMIX-PLS procedure was used to uncover latent segments of passengers. For this purpose, the systematic approach suggested by Joe F. Hair et al. (2016) was followed. First, according to the results of this procedure, two segments of passengers were found to be the most suitable solution (Table 4), confirming the heterogeneity of the sample.

Table 4. Segment retention criteria for alternative FIMIX-PLS solutions

	Number of segments					
Quality Criteria	S=1	S=2	S=3	S=4		
AIC (Akaike's Information Criterion)	8874.716	8733.453	8661.331	8622.647		
AIC3 (Modified AIC with Factor 3)	8905.716	8796.453	8756.331	8749.647		
AIC4 (Modified AIC with Factor 4)	8936.716	8859.453	8851.331	8876.647		
BIC (Bayesian Information Criteria)	8992.954	8973.743	9023.673	9107.042		
CAIC (Consistent AIC)	9023.954	9036.743	9118.673	9234.042		
MDL5 (Minimum Description Length with Factor 5)	9713.906	10438.9	11233.04	12060.62		
LnL (LogLikelihood)	-4406.358	-4303.73	-4235.67	-4184.32		
EN (Entropy Statistic (Normed))		0.631	0.697	0.672		
		Relati	ve segment si	zes		
Number of the segments		2	3	4		
S_1		61.2%	46.3%	35.9%		
S_2		38.8%	37.7%	28.1%		
S ₃			16.0%	27.1%		
S ₄				9.0%		

Second, to explain the latent segment structure, all the variables relating to passenger characteristics were used to identify one or more of them which match the two segment FIMIX-PLS partition. Therefore, cross-table analysis regarding these variables was used to assign segment descriptors (Ringle et al., 2010). Of all the passenger characteristics, the frequency of departures from the airport (i.e., repeat customers) and the trip purpose were found to show a suitable fit with FIMIX-PLS segmentation results.

Consequently, sample data was split into two groups relating to the frequency of departures from the airport. A first group represents the frequent passengers, including respondents that claimed using the airport more than five times in the last year, and a second group which represents non-frequent passengers that claimed a lower frequency. Data was also split into two groups relating to the trip purpose. A group represents passengers with a business purpose, and the other represents passengers traveling for other purposes, including leisure, visiting family, studying.

Before the multi-group analysis, the MICOM procedure was used to analyze the measurement invariance. Based on the results, the partial measurement invariance was verified, which is the requirement for comparing and interpreting the group-specific differences of MGA results (Henseler et al., 2016).

4.3. The influence of passengers' travel frequency

To assess the moderating effect of passengers' travel frequency on the relationships between loyalty and its antecedents, a multi-group analysis was performed. Based on previous research carried out in a Brazilian Airport (Bezerra & Gomes, 2015) and aligned with regular industry practices adopted by passenger survey programs in the airport sector (ACI, 2016; SAC, 2016), in this study two groups of passengers were considered (passengers with less than 5 flights in the last 12 months and passengers with more than 5 flights in the same period). The results of the structural models for frequent and non-frequent passengers, using a bootstrapping procedure with resampling of 5000, are presented in Table 5.

Table 5. PLS results of multi-group analysis based on travel frequency

Frequen passenge		Non-frequ		
P 410 0 1 1 0 1	ers passengers			
146			188	
Coefficients	f ²	Coefficients	f ²	Δ
				0,127
				0,080
			-	0,141
			-	0,129
			-	0,043
				0,192
				0,116
			-	0,360**
			-	0,370**
				0,007
				0,060
				0,101
				0,283
0.216***				0,028
R ²		R ²	_	·
0.022	-	0.077	-	
0.175				
0.032	0.011	0.102		
0.405	0.179	0.570		
0.693	0.411	0.771		
0.296	0.146	0.468	0,242	
CR	AVE	CR	AVE	
0.885	0.658	0.730	0,484	
0.873	0.580	0.819		
0.906	0.657	0.938		
0.867	0.568	0.870	0,575	
0.899	0.642	0.919	0,694	
0.900	0.647	0.912	0,678	
0.854	0.551	0.870		
Coefficients		Coefficients	-	Δ
0.060**		0.220***		0,159**
-0.189**		-0.048		0,141
0.015		0.114**		0,099**
0.270***		0.218***		0,052
0.247**		0.541***		0,294*
0.532***		0.539***		0,007
0.053*		0.132**		0,078
	0.129** 0.534*** -0.189** 0.148 0.012 0.053 0.178* 0.124 0.578*** -0.418*** 0.168 0.532*** -0.002 -0.057 0.082 0.216*** R² 0.022 0.175 0.032 0.405 0.693 0.296 CR 0.885 0.873 0.906 0.867 0.899 0.900 0.854 Coefficients 0.060** -0.189** 0.015 0.270*** 0.247** 0.532***	0.129** 0.027 0.534*** 0.397 -0.189** 0.044 0.148 0.022 0.012 0.000 0.053 0.004 0.178* 0.033 0.124 0.008 0.578*** 0.458 -0.418*** 0.211 0.168 0.016 0.532*** 0.375 -0.002 0.000 -0.057 0.005 0.082 0.011 0.216*** 0.099 R² Q² 0.022 0.007 0.175 0.105 0.032 0.011 0.405 0.179 0.693 0.411 0.296 0.658 0.873 0.580 0.906 0.657 0.867 0.568 0.899 0.642 0.900 0.647 0.854 0.551 Coefficients 0.060** -0.189** 0.015 0.270**** 0.247** 0.532***	0.129** 0.027 0.256*** 0.534*** 0.397 0.614** -0.189** 0.044 -0.048 0.148 0.022 0.277*** 0.012 0.000 0.055 0.053 0.004 0.176** 0.178* 0.033 0.319*** 0.124 0.008 -0.068 0.578*** 0.458 0.462*** -0.418*** 0.211 -0.058 0.168 0.016 0.538*** 0.532*** 0.375 0.539*** -0.002 0.000 -0.062 -0.057 0.005 0.045 0.082 0.011 -0.201 0.216*** 0.099 0.244 R² Q² R² 0.022 0.007 0.077 0.175 0.105 0.003 0.032 0.011 0.102 0.405 0.179 0.570 0.693 0.411 0.771 0.296 0.458 0.730 0.873 0.580 0.819 0.906	0.129** 0.027 0.256*** 0,147 0.534*** 0.397 0.614** 0,655 -0.189** 0.044 -0.048 0,004 0.148 0.022 0.277*** 0,083 0.012 0.000 0.055 0,011 0.053 0.004 0.176** 0,054 0.178* 0.033 0.319*** 0,113 0.124 0.008 -0.068 0,003 0.578**** 0.458 0.462**** 0,394 -0.418*** 0.211 -0.058 0,003 0.168 0.016 0.538**** 0,210 0.532*** 0.375 0.539**** 0,528 -0.002 0.000 -0.062 0,008 -0.057 0.005 0.045 0,004 0.082 0.011 -0.201 0,068 0.216*** 0.099 0.244 0,101 R² Q² R² Q² 0.022 0.007 0.077 0,027 0.175 0.105 0.003 0,001 0.693

^{***}p<0.01, **p<0.05, *p<0.10 (reported for path coefficients only); $|\Delta|$ - absolute differences between path coefficients of the two groups; CR- Composite reliability; AVE- Average variance extracted.

According to the Q^2 results, which are all positive, both models have predictive relevance. The values of f^2 are also positive and follow a similar rank order of the path coefficients, which means that to large significant paths values correspond large effect sizes (Hair et al., 2013).

The results of the multi-group analysis show several differences between frequent and non-frequent passengers. The main differences relate to the effects of expectation, perceived value, satisfaction, complaints, and airport image. For non-frequent passengers, we found positive effects of their expectation on both perceived value and service quality. We also found a positive effect of the airport image on passenger expectation and their satisfaction on loyalty to the airport. On the other hand, frequent passengers seem to be sensitive to complaints arising from low levels of satisfaction, which manifests significantly in loyalty to the airport. The perceived value also manifest a positive effect of their satisfaction with the airport.

Regarding the total effects on loyalty, we found significant differences in the magnitude between the two segments of passengers for ASQ and passenger expectation. These drivers are much more important for the loyalty of non-frequent passengers than for frequent passengers.

Finally, to be noted that airport service quality has a positive effect on perceived value and passenger satisfaction for both segments of passengers, which corroborate the importance of airport service quality for passenger experience.

4.4. The influence of passengers' trip purpose

Following the same procedures, a multi-group analysis was performed considering the two groups of passengers based on the trip purpose, as identified through the FIMIX method. The results of the structural models are presented in Table 6. According to the Q^2 and f^2 results, both models have predictive relevance (Hair et al., 2013).

Table 6. PLS results of multi-group analysis based on trip purpose

	Business		Non -Busi	iness	
Number of observations	219				
Path relationship:	Coefficients	f ²	114 Coefficients	f ²	Δ
Airport Service Quality ->Satisfaction	0.171**	0.054	0.243***		0,072
Airport Service Quality ->Perceived value	0.551***	0.450	0.664***		0,114
Complaints ->Loyalty	-0.138*	0.022	-0.067	0,009	0,071
Expectation ->Airport Service Quality	0.097	0.009	0.318***	0,112	0,221*
Expectation ->Satisfaction	0.014	0.001	0.043	0,008	0,028
Expectation ->Perceived value	0.127	0.240	0.014	0,000	0,113
Image ->Expectation	0.185**	0.035	0.248**	0,065	0,063
Image ->Loyalty	0.123	0.008	0.019	0,000	0,103
Image ->Satisfaction	0.531***	0.440	0.504***	0,409	0,028
Satisfaction ->Complaints	-0.366***	0.155	-0.239**	0,060	0,127
Satisfaction ->Loyalty	0.247**	0.035	0.330**	0,068	0,084
Switching Cost ->Loyalty	0.544***	0.379	0.547***	0,603	0,002
Switching Cost*Complaints ->Loyalty	-0.016	0.000	0.069	0,010	0,085
Switching Cost*Image ->Loyalty	0.043	0.000	0.109	0,023	0,066
Switching Cost*Satisfaction ->Loyalty	-0.106	0.002	0.229	0,112	0,336
Perceived value ->Satisfaction	0.244***	0.112	0.209**	0,084	0,035
R Square	R ²	Q ²	R ²	Q ²	
Airport Service Quality	0.009	0.003	0.101	0,034	
Complaints	0.134	0.078	0.057	0,014	
Expectation	0.034	0.014	0.061	0,018	
Loyalty	0.401	0.173	0.582	0,297	
Satisfaction	0.710	0.444	0.783	0,473	
Perceived value	0.333	0.172	0.448	0,226	
	CR	AVE	CR	AVE	
Complaints	0.879	0.646	0.858	0,605	
Expectation	0.875	0.583	0.801	0,449	
Image	0.919	0.696	0.925	0,711	
Loyalty	0.852	0.539	0.893	0,629	
Satisfaction	0.912	0.674	0.908	0,663	
Switching Cost	0.909	0.668	0.903	0,655	
Perceived value	0.866	0.570	0.870	0,576	
Total Effects on Loyalty:	Coefficients		Coefficient		Δ
Airport Service Quality ->Loyalty	0.091**		0.132**		0,041
Complaints ->Loyalty	-0.138*		-0.067		0,071
Expectation ->Loyalty	0.022		0.058		0,036
Image ->Loyalty	0.285***		0.208**		0,077
Satisfaction ->Loyalty	0.297**		0.347**		0,049
Switching Cost ->Loyalty	0.544***		0.547***		0,002
Perceived value ->Loyalty	0.073**		0.073**		0,000

^{***}p<0.01, **p<0.05, *p<0.10 (reported for path coefficients only); $|\Delta|$ - absolute differences between path coefficients of the two groups; CR- Composite reliability; AVE- Average variance extracted.

The results related to the trip purpose show only one difference between the groups of passengers. The effects of expectation on ASQ was only significant for passengers with non-business purposes.

Regarding the total effects on loyalty, no significant differences in magnitude were found between the two segments of passengers.

4.5. Discussion

The results of this study seem to confirm the existence of groups of passengers with different characteristics and attitudes relating to their interaction with the airport. They also provided evidence for the existence of differentiating drivers of loyalty between these groups, in a multi-airport region (MAR) context.

Three important drivers of loyalty, with significant effects for all passenger segments, were found: airport service quality (ASQ), switching costs, and airport image.

The service quality, which is measured using a multidimensional scale specifically designed for airports (Bezerra and Gomes, 2016a), influences the loyalty of passengers to the airport through their satisfaction. This means that ASQ can contribute to maintaining the preference for the airport from a long-term perspective (Akamavi et al., 2015).

The perception of switching costs by the passengers directly influence their loyalty to the airport. The influence of the airport image on the loyalty of passengers is mediated by their satisfaction. It should be noted that the image of the airport also influences the expectations for all but frequent passengers. This finding may have implications for the tourist destinations (Pizam, 2017; Voltes-Dorta et al., 2017).

These three drivers of loyalty, although recognized as very important for business organizations wishing to be competitive globally, have not been valued in the literature related to airport management. These results may suggest that airports are no longer seen only as transport modal infrastructures. Accordingly, they should be seen as partners in the tourist services chain, through the lens of tourism management.

The results of this study also highlight three drivers that act differently on loyalty, according to the passenger segments: perceived value, passenger satisfaction, and passenger complaining attitude. The influence of perceived value on satisfaction is significant for all but non-frequent passengers. On the other hand, the direct relationship between satisfaction and loyalty is significant for all but frequent passengers.

Concerning the complaints arising from low levels of satisfaction, all but non-frequent passengers show a significant effect from satisfaction to complaints. However, it seems that only frequent passengers are willing to value complaints when they choose to use the same airport again. These results are interesting because, in the literature related to airlines, only business passengers are more concerned with service failures (Carlsson and Löfgren, 2006; Cho et al., 2015).

Finally, passenger expectation shows significant effects on perceived value only for non-frequent passengers (Table 5). It also shows significant effects on ASQ for non-frequent and non-business passengers. Despite having these direct effects on ASQ and perceived value, passenger expectation does not present significant total effects on their loyalty to the airport, except for non-frequent passengers, that usually are people traveling for leisure. Therefore, very active in the e-word-of-mouth, which can influence the passengers of the remaining segments.

Overall, the findings of this study may suggest that the airport is changing from the strictest sense of a physical site where people and goods exchange between the air mode and land transport modes to a significant element of the tourism experience. Hence, the characteristics and concerns of different groups of passengers regarding the airport, evidenced by the results,

became relevant issues when considering the tourism experience as a whole, which confirms the most recent literature (Huang et al., 2018; Wattanacharoensil et al., 2017).

5. Conclusions

In today's competitive environment, business organizations need to find innovative strategies to differentiate them from their competitors. In this context, it is essential to know the characteristics and behaviour patterns of their customers. As such, they will be able to design differentiated marketing and operational strategies aiming at strengthening the loyalty of the different customer segments.

Although this approach is not new to competitive business organizations, it has only recently started to be followed by organizations that typically did not have business activities focused on individual customers, such as airports. Whereas the overall airport attractiveness is dependent on several factors (including location, routes, scheduling, air ticket prices, etc.), airport managers are ever more concerned with a customer-oriented approach for achieving competitive advantage. In addition, airports are no longer seen merely as transport infrastructures and are now regarded as instruments of regional development not only for the transportation industry but also for the tourism industry. In this context, this study brings several theoretical and practical contributions to airport management along with tourism management.

According to the results, the following more relevant theoretical contributions are emphasized. First, the design of the conceptual model, which allowed the integration of several variables that characterize the airport service environment and the passenger-airport interaction. There is scarce empirical research on airport experience based on a customer-

oriented perspective, and this study is among the few efforts with a comprehensive approach to passenger loyalty. Additionally, the inclusion of the switching costs effects on loyalty provides relevant empirical evidence to the debate on competition in MAR context, based on the passenger perspective.

Second, the findings confirm the importance of switching costs to passenger loyalty in MAR context. It also allows verifying the lack of interaction of this variable with the airport image, passenger satisfaction and with passengers' complaints. As such, these particular findings shed light on the nature of passenger experience in the airport, which is an ever more important element of the tourism industry (Spasojevic et al., 2017; Wattanacharoensil et al., 2017).

Third, the findings support the suitability of a multidimensional context-specific scale for measuring service quality in the airport environment. This approach will allow testing of new hypotheses in the context of airport research and helps respond to current literature concerns (Ali *et al.*, 2016; Bezerra & Gomes, 2016b; Wattanacharoensil *et al.*, 2017, 2016).

Fourth, the importance of identifying passenger latent segments along with the predictive relevance of the research model analysed. This study contributes to this debate in testing for differences in perceptions and attitudes between specific groups of passengers based on their trip purpose and repeated experience in the airport. This segmentation revealed important differences concerning the airport service experience. The passenger segments identified may also explain some of the contradictory results in the literature that may not be considering sample heterogeneity. In effect, since passenger's perceptions and attitudes towards their experience in the airport can be significantly different based on their characteristics as a customer segment, general models of passenger perceptions and experience may potentially

hide relevant information for airport managers and policymakers. As such, this study may contribute to the debate on different consumptions rituals and patterns in the airport, and their importance of making the airport environment to be seen as a familiar and comfortable place, instead of be associated with emotional stress and anxiety (Huang et al, 2018).

This study also provides important managerial implications. The findings of this research could help airport managers in the design and implementation of a multidimensional performance measurement system (PMS) to monitor airport resources and services effectively, through the lens of tourism management. Such a tourism-oriented approach to the airport business can increase the potential of improving non-aeronautical revenues comparing to airports that are only managed as transport infrastructures (Fernández et al., 2018)

When looking at airports as tourism-oriented organizations, airport managers should avoid assuming efficiency as the only component of airport performance and take into account other performance dimensions, in particular, the quality of services provided to passengers, and the airport image. This multidimensional PMS should help managers to define marketing and operational strategies to strengthen passenger loyalty to the airport, as well as to contribute to the improvement of the tourist destination's image. In addition, this PMS may improve the information flow with other partners of the tourism services chain and with institutional tourism stakeholders. As a result, airports could be more and more explored as a key element in the tourism experience.

In this perspective, airport managers should be able to identify differentiated areas of resources improvement that would meet the characteristics of the passenger segments in order to increase the value of the service and differentiate the airport from their competitors.

As an example, the inclusion of business and cultural branding elements that represent the

characteristics of the local and regional environment can attract the attention of the passengers and promote tourism destination. Since airports usually represent the last impression of the tourist destination, a pleasant airport experience can actively contribute to the image of the destination, by promoting not only the return of visitors but also their willingness to recommend the airport region as a tourism destination.

Despite the important theoretical and practical contributions to the knowledge in the context of transport and tourism industries, the specific results of this study should be interpreted in the context of Brazilian culture, and the characteristics of the particular MAR studied. Given the importance of the subject, similar research should be undertaken in other cultural and business contexts. Future research should also explore the expectations, needs, and specific behaviour patterns of these segments of passengers in their interaction with other stakeholders along the tourism service chain.

References

- Abratt, R. and Mingione, M. (2017), "Corporate identity, strategy and change", *Journal of Brand Management*, Palgrave Macmillan UK, Vol. 24 No. 2, pp. 129–139.
- ACI. (2016), ACI Passenger Personas: A new approach to passenger profiling. Airport Council International ACI.
- ACI. (2017), "Airport Service Quality (ASQ) Survey Methodology", Airports Council International ACI.
- Adler, N., Forsyth, P., Mueller, J. and Niemeier, H.-M. (2015), "An economic assessment of airport incentive regulation", *Transport Policy*, Elsevier, Vol. 41, pp. 5–15.
- Akamavi, R.K., Mohamed, E., Pellmann, K. and Xu, Y. (2015), "Key determinants of passenger loyalty in the low-cost airline business", *Tourism Management*, Vol. 46, pp. 528-545.
- Ali, F., Kim, W.G. and Ryu, K. (2016), "The effect of physical environment on passenger delight and satisfaction: Moderating effect of national identity", *Tourism Management*, Elsevier Ltd, Vol. 57, pp. 213–224.
- Almeida-Santana, A. and Moreno-Gil, S. (2018), "Understanding tourism loyalty: Horizontal vs. destination loyalty", *Tourism Management*, Elsevier Ltd, Vol. 65, pp. 245–255.
- Anderson, E.. and Fornell, C. (2000), "Foundations of the American Customer Satisfaction Index", *Total Quality Management*, Vol. 11 No. 7, pp. 869–882.
- Andreassen, T.W. and Lindestad, B. (1998), "The effects of corporate image in the formation of customer loyalty", *Journal of Service Research*, Vol. 1 No. 1, pp. 82–92.
- Balmer, J.M.T. (2012), "Strategic corporate brand alignment corporate brands", *European Journal of Marketing*, Vol. 46 No. 7/8, pp. 1064–1092.
- Baumann, C., Hoadley, S., Hamin, H. and Nugraha, A. (2017), "Competitiveness vis-à-vis service quality as drivers of customer loyalty mediated by perceptions of regulation and stability in steady and volatile markets", *Journal of Retailing and Consumer Services*, Elsevier Ltd, Vol. 36, pp. 62–74.

- Bezerra, G.C.L. and Gomes, C.F. (2015), "The effects of service quality dimensions and passenger characteristics on passenger's overall satisfaction with an airport", *Journal of Air Transport Management*, Elsevier Ltd, Vol. 44–45, pp. 77–81.
- Bezerra, G.C.L. and Gomes, C.F. (2016a), "Measuring airport service quality: A multidimensional approach", *Journal of Air Transport Management*, Vol. 53, pp. 85–93.
- Bezerra, G.C.L. and Gomes, C.F. (2016b), "Performance measurement in airport settings: a systematic literature review", *Benchmarking: An International Journal*, Vol. 23 No. 4, pp. 1027–1050.
- Bobâlca, C., Gatej, C. and Ciobanu, O. (2012), "Developing a scale to measure customer loyalty", *Procedia Economics and Finance*, Vol. 3 No. 12, pp. 623–628.
- Bock, D.E., Mangus, S.M. and Folse, J.A.G. (2016), "The road to customer loyalty paved with service customization", *Journal of Business Research*, Elsevier Inc., Vol. 69 No. 10, pp. 3923–3932.
- Bodet, G. (2008), "Customer satisfaction and loyalty in service: Two concepts, four constructs, several relationships", *Journal of Retailing and Consumer Services*, Vol. 15 No. 3, pp. 156–162.
- Bogicevic, V., Bujisic, M., Bilgihan, A., Yang, W. and Cobanoglu, C. (2017), "The impact of traveler-focused airport technology on traveler satisfaction", *Technological Forecasting and Social Change*, Elsevier, Vol. 123, pp. 351–361.
- Bogicevic, V., Yang, W., Bilgihan, A. and Bujisic, M. (2013), "Airport service quality drivers of passenger satisfaction", *Tourism Review*, Vol. 68 No. 4, pp. 3–18.
- Bowen, J.T. and Chen, S. (2001), "The relationship between customer loyalty and customer satisfaction", *International Journal of Contemporary Hospitality Management*, Vol. 13 No. 5, pp. 213–217.
- Carlsson, F. and Löfgren, Å. (2006), "Airline choice, switching costs and frequent flyer programmes", *Applied Economics*, Vol. 38 No. 13, pp. 1469–1475.
- Caves, R.E. and Pickard, C.D. (2000), "The satisfaction of human needs in airport passenger

- terminals", Transport, Vol. 147 No. 1, pp. 9-15.
- CFI Group, C.F.I.G. (2013), The American Customer Satisfaction Index (ACSI) Technology: A Methodological Primer.
- Chang, W., Liu, H., Wen, Y. and Lin, T. (2008), "Building an integrated model of future complaint intentions: The case of Taoyuan International Airport", *Journal of Air Transport Management*, Vol. 14, pp. 70–74.
- Chen, S.C., Raab, C. and Tanford, S. (2017), "Segmenting customers by participation: An innovative path to service excellence", *International Journal of Contemporary Hospitality Management*, Vol. 29 No. 5, pp. 1468–1485.
- Cho, W., Windle, R.J. and Dresner, M.E. (2015), "The impact of low-cost carriers on airport choice in the US: A case study of the Washington Baltimore region", *Transportation Research Part E*, Elsevier Ltd, Vol. 81, pp. 141–157.
- Cochran, W.G. (1977), Sampling Techniques, (John Wiley, Ed.), New York, 3rded.
- Coltman, T., Devinney, T.M., Midgley, D.F. and Venaikd, S. (2008), "Formative versus reflective measurement models: Two applications of erroneous measurement", *Journal of Business Research*, Vol. 61 No. 12, pp. 1250–1262.
- Correia, A.R., Wirasinghe, S.C. and Barros, A.G. de. (2008), "A global index for level of service evaluation at airport passenger terminals", *Transportation Research Part E: Logistics and Transportation Review*, Vol. 44, pp. 607–620.
- Cui, Q., Kuang, H., Wu, C. and Li, Y. (2013), "Dynamic formation mechanism of airport competitiveness: The case of China", *Transportation Research Part A: Policy and Practice*, Vol. 47, pp. 10–18.
- Deng, W.J., Yeh, M.L. and Sung, M.L. (2013), "A customer satisfaction index model for international tourist hotels: Integrating consumption emotions into the American Customer Satisfaction Index", International Journal of Hospitality Management, Elsevier Ltd, Vol. 35, pp. 133–140.
- Dimitriou, D.J. (2018), "Comparative evaluation of airports productivity towards tourism

- development", Cogent Business and Management, Cogent, Vol. 5 No. 1, pp. 1–15.
- Edwards, J.R. and Bagozzi, R.P. (2000), "On the Nature and Direction of Relationships Between Constructs and Measures", *Psychological Methods*, Vol. 5 No. 2, pp. 155–174.
- Falk, T., Hammerschmidt, M. and Schepers, J.J.L. (2010), "The service quality-satisfaction link revisited: exploring asymmetries and dynamics", *Journal of the Academy of Marketing Science*, Vol. 38 No. 3, pp. 288–302.
- Fasone, V., Kofler, L. and Scuderi, R. (2016), "Business performance of airports: Non-aviation revenues and their determinants", *Journal of Air Transport Management*, Vol. 53, pp. 35–45.
- Fernández, X.L., Coto-Millán, P. and Díaz-Medina, B. (2018), "The impact of tourism on airport efficiency: The Spanish case", *Utilities Policy*, Elsevier, Vol. 55, pp. 52–58.
- Fodness, D. and Murray, B. (2007), "Passengers' expectations of airport service quality", Journal of Services Marketing, Vol. 21 No. 7, pp. 492–506.
- Forgas, S., Moliner, M.A., Sanchez, J. and Palau, R. (2010), "Antecedents of airline passenger loyalty: Low-cost versus traditional airlines", *Journal of Air Transport Management*, Vol. 16, pp. 229–233.
- Fornell, C. (1992), "A national customer satisfaction barometer: The Swedish experience", Journal of Marketing, Vol. 56 No. 1, pp. 6–21.
- Fornell, C., Johnson, M.D., Anderson, E.W., Cha, J. and Bryant, B.E. (1996), "The American Customer Satisfaction Index: Nature, Purpose, and Findings", *Journal of Marketing*, Vol. 60 No. 4, pp. 7–18.
- Fornell, C., Morgeson, F. and Bryant, B.E. (2008), *American Customer Satisfaction Index:*Methodology Report, Ann Arbor, Michigan.
- Freathy, P. and O'Connel, F. (2012), "Spending time, spending money: passenger segmentation in an international airport", *The International Review of Retail, Distribution and Consumer Research*, Vol. 22 No. 4, pp. 397–416.
- George, B.P., Henthorne, T.L. and Panko, T.R. (2013), "ASQual: measuring tourist perceived

- service quality in an airport setting", *International Journal of Business Excellence*, Vol. 6 No. 5, pp. 526–536.
- Gray, E.R. and Balmer, J.M.T. (1998), "Managing Corporate Image and Corporate Reputation", Long Range Planning, Vol. 31 No. 5, pp. 695–702.
- Grönroos, C. and Voima, P.J. (2013), "Critical service logic: making sense of value creation and co-creation", *Journal of the Academy of Marketing Science*, Vol. 41 No. 2, pp. 133–150.
- Hair, J., Hollingsworth, C.L., Randolph, A.B. and Chong, A.Y.L. (2017), "An updated and expanded assessment of PLS-SEM in information systems research", *Industrial Management & Data Systems*, Vol. 117 No. 3, pp. 442–458.
- Hair, J.F., Black, W.C., Babin, B.J. and Anderson, R.E. (2014), *Multivariate data analysis*, Pearson Education Ltd., Harlow, 7th Editio.
- Hair, J.F., Hult, G.T.M., Ringle, C.M. and Sarstedt, M. (2013), *A primer on partial least squares structural equation modeling (PLS-SEM)*, SAGE Publications, Thousand Oaks, First edit.
- Hair, J.F., Ringle, C.M. and Sarstedt, M. (2011), "PLS-SEM: Indeed a silver bullet", *Journal of Marketing Theory and Practice*, Vol. 19 No. 2, pp. 139–151.
- Hair, J.F., Sarstedt, M., Matthews, L.M. and Ringle, C.M. (2016a), "Identifying and treating unobserved heterogeneity with FIMIX-PLS: part I method", *European Business Review*, Vol. 28 No. 1, pp. 63–76.
- Hair, J.F., Sarstedt, M., Matthews, L.M. and Ringle, C.M. (2016b), "Identifying and treating unobserved heterogeneity with FIMIX-PLS: part II A case study", *European Business Review*, Vol. 28 No. 1, pp. 63–76.
- Halpern, N. and Graham, A. (2013), Airport Marketing, Routledge, New York.
- Halpern, N. and Pagliari, R. (2008), "Direct, Moderating and Mediating Effects of Market Orientation on the Performance of Airports in Europe's Peripheral Areas.", *Journal of Travel & Tourism Marketing*, Vol. 24 No. 1, pp. 47–61.
- Han, H. and Hyun, S.S. (2018), "Role of motivations for luxury cruise traveling, satisfaction, and involvement in building traveler loyalty", *International Journal of Hospitality*

- Management, Elsevier, Vol. 70, pp. 75-84.
- Han, H., Nguyen, H.N., Song, H., Chua, B.L., Lee, S. and Kim, W. (2018), "Drivers of brand loyalty in the chain coffee shop industry", *International Journal of Hospitality Management*, Elsevier, Vol. 72, pp. 86–97.
- Han, H., Yu, J. and Kim, W. (2018), "Airport shopping an emerging non-aviation business: triggers of traveler loyalty", *Journal of Travel & Tourism Marketing*, Routledge, Vol. 35 No. 7, pp. 835–845.
- Hapsari, R., Clemes, M.D. and Dean, D. (2017), "The impact of service quality, customer engagement and selected marketing constructs on airline passenger loyalty", *International Journal of Quality and Service Sciences*, Vol. 9 No. 1, pp. 21–40.
- Henseler, J., Ringle, C.M. and Sarstedt, M. (2015), "A new criterion for assessing discriminant validity in variance-based structural equation modeling", *Journal of the Academy of Marketing Science*, Vol. 43 No. 1, pp. 115–135.
- Henseler, J., Ringle, C.M. and Sarstedt, M. (2016), "Testing measurement invariance of composites using partial least squares", *International Marketing Review*, Vol. 33 No. 3, pp. 405–431.
- Henseler, J., Ringle, C.M. and Sinkovics, R.R. (2009), "The use of partial least squares path modeling in international marketing", *Advances in International Marketing*, Vol. 20, pp. 277–319.
- Hill, N. and Alexander, J. (2006), *Handbook of Customer Satisfaction and Loyalty Measurement*, Gower Publishing Limited, Hampshire England, Third Edit.
- Homburg, C. and Fürst, A. (2005), "How organizational complaint handling drives customer loyalty: an analysis of the mechanistic and the organic approach", *Journal of Marketing*, Vol. 69 No. 3, pp. 95–114.
- Hu, J.L., Chiu, C.N., Shieh, H.S. and Huang, C.H. (2010), "A stochastic cost efficiency analysis of international tourist hotels in Taiwan", *International Journal of Hospitality Management*, Vol. 29 No. 1, pp. 99–107.

- Huang, W.J., Xiao, H. and Wang, S. (2018), "Airports as liminal space", *Annals of Tourism Research*, Elsevier, Vol. 70, pp. 1–13.
- Hussain, R., Nasser, A. Al and Hussain, Y.K. (2015), "Service quality and customer satisfaction of a UAE-based airline: An empirical investigation", *Journal of Air Transport Management*, Vol. 42, pp. 167–175.
- Hwang, E., Baloglu, S. and Tanford, S. (2019), "Building loyalty through reward programs: The influence of perceptions of fairness and brand attachment", *International Journal of Hospitality Management*, Vol. 76, pp. 19–28.
- Jen, W., Tu, R. and Lu, T. (2011), "Managing passenger behavioral intention: An integrated framework for service quality, satisfaction, perceived value, and switching barriers", *Transportation*, Vol. 38 No. 2, pp. 321–342.
- Johnson, M.D., Gustafsson, A., Andreassen, T.W., Lervik, L. and Cha, J. (2001), "The evolution and future of national customer satisfaction index models", *Journal of Economic Psychology*, Vol. 22 No. 2, pp. 217–245.
- Jones, M.A., Mothersbaugh, D.L. and Beatty, S.E. (2000), "Switching Barriers and Repurchase Intentions in Services", *Journal of Regulatory Economics*, Vol. 76 No. 2, pp. 259–274.
- Jones, M.A., Reynolds, K.E., Mothersbaugh, D.L. and Beatty, S.E. (2007), "The Positive and Negative Effects of Switching Costs on Relational Outcomes", *Journal of Service Research*, Vol. 9 No. 4, pp. 335–355.
- Kalakou, S. and Macário, R. (2013), "An innovative framework for the study and structure of airport business models", *Case Studies on Transport Policy*, Vol. 1 No. 1–2, pp. 2–17.
- Kim, A.M. and Ryerson, M.S. (2018), "A long drive: Interregional airport passenger 'leakage' in the U.S", *Tourism Management*, Elsevier Ltd, Vol. 65, pp. 237–244.
- Knox, G. and Van Oest, R. (2014), "Customer complaints and recovery effectiveness: a customer base approach", *Journal of Marketing*, Vol. 78 No. 5, pp. 42–57.
- Kramer, L.S., Bothner, A. and Spiro, M. (2013), How Airports Measure Customer Service Performance: A synthesis of airport practice. ACRP Synthesis 48, Washington, D.C.

- Lam, S.Y., Shankar, V., Erramilli, M.K. and Murthy, B. (2004), "Customer value, satisfaction, loyalty, and switching costs: An illustration from a business-to-business service context", *Journal of the Academy of Marketing Science*, Vol. 32 No. 3, pp. 293–311.
- Lee, S., Chua, B.-L., Kim, H.-C. and Han, H. (2017), "Shaping and enhancing airport lounge experiences: the application of brand personality and image congruity theories", *International Journal of Contemporary Hospitality Management*, Vol. 29 No. 11, pp. 2901–2920.
- Leung, A., Yen, B.T.H. and Lohmann, G. (2017), "Why passengers' geo-demographic characteristics matter to airport marketing", *Journal of Travel & Tourism Marketing*, Routledge, Vol. 34 No. 6, pp. 833–850.
- Mason, R.B. (2008), "Word of mouth as a promotional tool for turbulent markets", *Journal of Marketing Communications*, Vol. 14 No. 3, pp. 207–224.
- Merkert, R. and Mangia, L. (2014), "Efficiency of Italian and Norwegian airports: A matter of management or of the level of competition in remote regions?", *Transportation Research Part A: Policy and Practice*, Vol. 62, pp. 30–38.
- Moon, H., Yoon, H.J. and Han, H. (2016), "Role of Airport Physical Environments in the Satisfaction Generation Process: Mediating the Impact of Traveller Emotion", *Asia Pacific Journal of Tourism Research*, Vol. 21 No. 2, pp. 193–211.
- Moon, H., Yoon, H.J. and Han, H. (2017), "The effect of airport atmospherics on satisfaction and behavioral intentions: testing the moderating role of perceived safety", *Journal of Travel & Tourism Marketing*, Vol. 34 No. 6, pp. 749–763.
- Morgeson, F. V. (2012), "Expectations, Disconfirmation, and Citizen Satisfaction with the US Federal Government: Testing and Expanding the Model", *Journal of Public Administration Research and Theory*, Vol. 23 No. 2, pp. 289–305.
- Nesset, E. and Helgesen, Ø. (2014), "Effects of switching costs on customer attitude loyalty to an airport in a multi-airport region", *Transportation Research Part A: Policy and Practice*, Elsevier Ltd, Vol. 67, pp. 240–253.
- Oliver, R. (2014), Satisfaction: A behavioral perspective on the consumer, Routledge, Taylor &

- Francis Group, New York, 2nded.
- Paliska, D., Drobne, S., Borruso, G. and Gardina, M. (2016), "Passengers' airport choice and airports' catchment area analysis in cross-border Upper Adriatic multi-airport region", *Journal of Air Transport Management*, Vol. 57, pp. 143–154.
- Pantouvakis, A. (2010), "The relative importance of service features in explaining customer satisfaction", *Managing Service Quality*, Vol. 20 No. 4, pp. 366–387.
- Pantouvakis, A. and Renzi, M.F. (2016), "Exploring different nationality perceptions of airport service quality", *Journal of Air Transport Management*, Elsevier Ltd, Vol. 52, pp. 90–98.
- Parasuraman, A., Zeithaml, V.A. and Berry, L.L. (1988), "SERVQUAL: A Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality", *Journal of Retailing*, Vol. 64 No. 1, pp. 12–40.
- Parasuraman, A., Zeithaml, V.A. and Berry, L.L. (1994), "Reassessment of expectations as a comparison standard in measuring service quality: implications for further research", *Journal of Marketing*, Vol. 58 No. 1, pp. 111–124.
- Park, J.W. and Jung, S.Y. (2011), "Transfer Passengers' Perceptions of Airport Service Quality:

 A Case Study of Incheon International Airport", *International Business Research*, Vol. 4

 No. 3, pp. 75–82.
- Patterson, P.G. and Smith, T. (2003), "A cross-cultural study of switching barriers and propensity to stay with service providers", *Journal of Retailing*, Vol. 79 No. 2, pp. 107–120.
- Pels, E., Nijkamp, P. and Rietveld, P. (2003), "Access to and competition between airports: a case study for the San Francisco Bay Area", *Transportation Research Part A: Policy and Practice*, Vol. 37 No. 1, pp. 71–83.
- Pimpão, P., Correia, A., Duque, J. and Zorrinho, J.C. (2018), "Social diffusion and loyalty programs: a path to succeed", *International Journal of Contemporary Hospitality Management*, Vol. 30 No. 1, pp. 475–494.
- Pizam, A. (2017), "The practice of overbooking: Lessons learned from United Airlines flight

- 3411", International Journal of Hospitality Management, Elsevier Ltd, Vol. 64, pp. 94–95.
- Podsakoff, P.M., MacKenzie, S.B., Lee, J.-Y. and Podsakoff, N.P. (2003), "Common method biases in behavioral research: a critical review of the literature and recommended remedies", *Journal of Applied Psychology*, Vol. 88 No. 5, pp. 879–903.
- Polk, A. and Bilotkach, V. (2013), "The assessment of market power of hub airports", *Transport Policy*, Vol. 29, pp. 29–37.
- Prebensen, N.K., Woo, E., Chen, J.S. and Uysal, M. (2013), "Motivation and involvement as antecedents of the perceived Value of the destination experience", *Journal of Travel Research*, Vol. 52 No. 2, pp. 253–264.
- Quan, S. and Wang, N. (2004), "Towards a structural model of the tourist experience: an illustration from food experiences in tourism", *Tourism Management*, Vol. 25, pp. 297–305.
- Rajaguru, R. (2016), "Role of value for money and service quality on behavioural intention: A study of full service and low cost airlines", *Journal of Air Transport Management*, Elsevier Ltd, Vol. 53, pp. 114–122.
- Ringle, C.M., Sarstedt, M. and Mooi, E.A. (2010), "Response-Based Segmentation Using Finite Mixture Partial Least Squares", in Stahlbock, R., Crone, S.F. and Lessmann, S. (Eds.), Data Mining: Special Issue in Annals of Information Systems, Springer US, Boston, MA, pp. 19–49.
- Ringle, C.M., Wende, S. and Becker, J.-M. (2015), "SmartPLS 3", Bönningstedt: SmartPLS, available at: http://www.smartpls.com.
- Rocha, P.M. da, Barros, A.P. de, Barbosa, G. and Costa, H.G. (2016), "Analysis of the operational performance of brazilian airport terminals: A multicriteria approach with De Borda-AHP integration", *Journal of Air Transport Management*, Elsevier Ltd, Vol. 51, pp. 19–26.
- SAC. (2016), Relatório de Desempenho Operacional dos Aeroportos. Secretaria de Aviação Civil
 SAC.

- Song, B.D. and Ko, Y.D. (2017), "Quantitative Approaches for Location Decision Strategies of a Hotel Chain Network", *International Journal of Hospitality Management*, Elsevier, Vol. 67, pp. 75–86.
- Spasojevic, B., Lohmann, G. and Scott, N. (2017), "Air transport and tourism a systematic literature review (2000–2014)", *Current Issues in Tourism*, Vol. 21 No. 9, pp. 975–997.
- Sureshchander, G.S., Chandrasekharan, R. and Anantharaman, R.N. (2002), "The relationship between service quality and customer satisfaction: a factor-specific approach", *Journal of Service Marketing*, Vol. 16 No. 4, pp. 363–379.
- Sweeney, J.C. and Soutar, G.N. (2001), "Consumer perceived value: The development of a multiple item scale", *Journal of Retailing*, Vol. 77 No. 2, pp. 203–220.
- Sweeney, J.C., Soutar, G.N. and Mazzarol, T. (2012), "Word of mouth: measuring the power of individual messages", *European Journal of Marketing*, Vol. 46 No. 1/2, pp. 237–257.
- Tang, C., Weaver, D. and Lawton, L. (2017), "Can stopovers be induced to revisit transit hubs as stayovers? A new perspective on the relationship between air transportation and tourism", *Journal of Air Transport Management*, Elsevier Ltd, Vol. 62, pp. 54–64.
- Usakli, A. and Kucukergin, K.G. (2018), "Using partial least squares structural equation modeling in hospitality and tourism: Do researchers follow practical guidelines?", International Journal of Contemporary Hospitality Management, Vol. 30 No. 11, pp. 3462–3512.
- Volo, S. (2009), "Conceptualizing Experience: A Tourist Based Approach", *Journal of Hospitality Marketing & Management*, Vol. 18 No. 2–3, pp. 111–126.
- Voltes-Dorta, A., Rodríguez-Déniz, H. and Suau-Sanchez, P. (2017), "Passenger recovery after an airport closure at tourist destinations: A case study of Palma de Mallorca airport", *Tourism Management*, Vol. 59, pp. 449–466.
- Wattanacharoensil, W., Schuckert, M. and Graham, A. (2016), "An Airport Experience Framework from a Tourism Perspective", *Transport Reviews*, Vol. 36 No. 3, pp. 318–340.
- Wattanacharoensil, W., Schuckert, M., Graham, A. and Dean, A. (2017), "An analysis of the

- airport experience from an air traveler perspective", *Journal of Hospitality and Tourism Management*, Vol. 32, pp. 124–135.
- Wilson, A., Zeithaml, V.A., Bitner, M.J. and Gremler, D.D. (2012), *Services marketing:* integrating customer focus across the firm, McGraw-Hill, Berkshire, 2nded.
- Wiltshire, J. (2017), "Airport competition: Reality or myth?", *Journal of Air Transport Management*, Elsevier Ltd, Vol. 67, pp. 1–8.
- Yang, C., Lu, J. and Hsu, C. (2014), "Modeling joint airport and route choice behavior for international and metropolitan airports", *Journal of Air Transport Management*, Elsevier Ltd, Vol. 39, pp. 89–95.
- Yang, Z. and Peterson, R.T. (2004), "Customer perceived value, satisfaction, and loyalty: The role of switching costs", *Psychology & Marketing*, Vol. 21 No. 10, pp. 799–822.
- Zauner, A., Koller, M. and Hatak, I. (2015), "Customer perceived value: Conceptualization and avenues for future research", *Congent Psychology*, Vol. 2 No. 1, pp. 1–17.
- Zeithaml, V.A. (1988), "Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence", *Journal of Marketing*, Vol. 52 No. 3, pp. 2–22.

APPENDIX A. Descriptive statistics of the measurement items

Measurement items	Mean	SD	Skew.	Kurt.
Expectation				
EXP1 - I had high expectation about the airport quality	4.61	1.34	-0.077	-0.053
EXP2 - I expected the airport to fully meet my needs as a passenger	5.20	1.43	0.032	-0.640
EXP3 - I expected no failure in the service provision	5.23	1.67	0.097	-0.876
EXP4 - I expected the services to be speedy and efficient	5.39	1.56	0.136	-0.882
EXP5 - I expected to feel comfortable and safe at the airport	5.70	1.52	0.844	-1.197
Perceived value				
VAL1 - Considering the overall airport quality, the airport fee is fair	3.74	1.79	-0.875	0.052
VAL2 - Considering the airport fee, the airport services are very good	3.62	1.67	-0.793	0.144
VAL3 - Considering the airport fee, the comfort is very good	3.69	1.64	-0.845	-0.041
VAL4 - Considering the quality of products/services, the prices in commercial facilities are fair	2.39	1.54	-0.205	0.883
VAL5 - Considering the prices in commercial facilities, the quality of products/services is very good	3.04	1.56	-0.840	0.288
Passenger satisfaction				
SAT1 - Overall, I am very satisfied with the airport	3.81	1.64	-0.799	0.011
SAT2 - The airport exceeds my expectations	3.21	1.69	-0.928	0.267
SAT3 - The airport represents what I understand for an ideal airport	2.94	1.61	-0.543	0.502
SAT4 - I feel I have made the right decision in choosing this airport	4.10	1.47	-0.080	-0.273
SAT5 - Overall, my experience with the airport is very pleasant	4.13	1.52	-0.462	-0.116
Image				
IMG1 - The airport administration can be trusted	4.06	1.38	0.277	-0.229
IMG2 - The airport administration is concerned with their customers	3.96	1.42	-0.057	-0.081
IMG3 - The airport administration has a social contribution for the society	3.85	1.34	0.502	-0.125
IMG4 - The airport has a good image among their customers	3.98	1.60	-0.762	-0.001
IMG5 - The airport is modern and well prepared for the future	3.31	1.69	-0.876	0.210
Complaints				
COP1 - I have formally complained to the airport	2.22	1.78	0.294	1.231
COP2 - I have (or have had) intention to formally complain to the airport	3.15	2.05	-1.084	0.460
COP3 - I have complained (or I am likely to complain) about the airport to family or friends	3.43	2.11	-1.278	0.285
COP4 - Passengers that have complained to the airport are likely fair	4.38	1.71		-0.296
COP5 - I do not believe that complaints are properly solved by the airport	4.50	1.75	-0.580	-0.377
Switching costs				
SWC1 - For me, it would be more expensive using another airport in this city	4.74	1.86	-0.676	-0.469
SWC2 - It would demand more personal efforts using another airport in this city	5.22	1.83	-0.192	-0.847
SWC3 - It would take much time if I have decided for using another airport in this city	5.33	1.85	-0.010	-0.988
SWC4 - For me, it would be very inconvenient to use another airport in this city	5.00	1.91	-0.565	-0.667
SWC5 - For convenience, I feel practically obliged to use this airport for domestic flights from São Paulo	4.89	2.06	-0.794	-0.679
Loyalty	г 20	1 5 4	0.207	0.564
LOY1 - I will use this airport for my next flight departing from São Paulo		_	-0.387	-0.564
LOY2 - Even if another airport in the city offers a much cheaper fee, I prefer using this airport LOY3 - Even if another airport in the city has an equivalent flight much cheaper, I prefer to use this	4.19	1.95	-0.959	-0.179
airport	3.56	1.98	-1.073	0.195
LOY4 - I will recommend this airport to my family and friends departing from São Paulo	4.26	1.53	-0.062	-0.208
LOY5 - I always prefer using this airport for domestic flights departing from São Paulo	4.82	1.75	-0.381	-0.522
Check-in				
CHK1 - Wait time at check-in	4.59	1.55	-0.303	-0.290
CHK2 - Check-in process efficiency	4.93	1.47	-0.482	-0.297
CHK3 - Courtesy and helpfulness of check-in staff	5.02	1.41	-0.146	-0.473
Security				
SEC1 - Wait-time at security checkpoints	4.97		-0.321	-0.540
SEC2 - Thoroughness of security screening	4.83	1.59	-0.272	-0.552
SEC3 - Courtesy and helpfulness of security staff	4.85	1.46		-0.609
SEC4 - Feeling of being safe and secure	4.71	1.55	-0.310	-0.500
Convenience				
CON1 - Food facilities	3.61		-0.846	-0.111
CON2 - Courtesy and helpfulness of food facilities staff	4.03	1.54	-0.581	-0.253
CON3 - Stores	3.99		-0.423	-0.210
CON4 - Courtesy and helpfulness of stores staff	4.38		-0.065	-0.323
CON5 - Banks/ATM/Exchange	4.09	1.54		-0.161
CON6 - Internet/Wi-Fi	3.29	1.92	-1.132	0.280

CON8 - Courtesy and helpfulness of airport staff (excluding check-in, security inspection, and 4.41 1.41	-0.230	-0.305
commercial area)		
Ambience		
AMB1 - Cleanliness of airport facilities 4.86 1.40	-0.245	-0.516
AMB2 - Thermal comfort 4.49 1.65	-0.570	-0.428
AMB3 - Acoustic comfort 4.39 1.69	-0.741	-0.410
Basic facilities		
BAS1 - Availability of washroom/toilets 4.55 1.47	-0.241	-0.408
BAS2 - Cleanliness of washroom/toilets 4.31 1.68	-0.659	-0.357
BAS3 - Departure lounge comfort 4.12 1.51	-0.542	-0.157
Mobility		
MOB1 - Wayfinding 4.84 1.65	-0.508	-0.579
MOB2 - Flight information 4.97 1.64	-0.406	-0.678
MOB3 - Walking distance inside terminal 4.30 1.65	-0.525	-0.409

Notes: SD – Standard deviation; Skew – Skewness; Kurt – Kurtosis.