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Abstract

Among the classical solutions to the problem of non-cartesian closedness of the category Top of

topological spaces and continuous maps, in this thesis we are interested in compactly generated spaces,

equilogical spaces, and quasi-topological spaces; working with generalised enriched categories, which

allow for a unified treatment of a range of categories from Topology and Analysis (e.g., ordered,

metric, topological, and approach spaces), we generalise these three concepts from Top to (T,V)-Cat.

In order to do so, we start by studying the relation between injective and exponentiable (T,V)-

spaces, and by proving that (T,V)-Cat is a weakly locally cartesian closed category. Then we

introduce the category (T,V)-Equ of equilogical (T,V)-spaces and its morphisms, which we prove

to be a cartesian closed category. Moreover, we study a generalised relation between equilogical

(T,V)-spaces and the regular and exact completions of (T,V)-Cat, culminating in the fact that

(T,V)-Equ is a quasitopos.

We finish by carrying the concepts of C -generated spaces and quasi-topological spaces into

(T,V)-Cat. We prove that C -generated (T,V)-spaces form a fully coreflective cartesian closed

subcategory of (T,V)-Cat; examples of such spaces include compactly generated (T,V)-spaces and

Alexandroff (T,V)-spaces. For the latter, we make some discussions towards a generalisation of

the equivalence between Alexandroff topological spaces and ordered sets. Concerning quasi-(T,V)-

spaces, they form the category Qs(T,V)-Cat which we prove to be cartesian closed and topological

over the category Set of sets and maps. We also generalise to (T,V)-Cat an interesting relation

between quasi-topological spaces and compactly generated spaces.

Keywords: generalised enriched category, exponentiation, injectivity, (weak) cartesian closedness,

exact completion, equilogical space, C-generated space, quasi-topological space.





Resumo

Dentre as soluções clássicas para o problema da categoria Top dos espaços topológicos e aplicações

contínuas não ser cartesiana fechada, nesta tese estamos interessados em espaços compactamente

gerados, espaços equilógicos, e espaços quasi-topológicos; trabalhando com categorias enriquecidas

generalizadas, que permitem um tratamento unificado de uma gama de categorias da Topologia e da

Análise (e.g., espaços ordenados, métricos, topológicos e de aproximação), generalizamos estes três

conceitos de Top para (T,V)-Cat.

Para tal finalidade, começamos por estudar a relação entre os (T,V)-espaços injectivos e expo-

nenciáveis, e por provar que (T,V)-Cat é uma categoria fracamente localmente cartesiana fechada.

Em seguida, introduzimos a categoria (T,V)-Equ dos (T,V)-espaços equilógicos e seus morfismos,

que provamos ser uma categoria cartesiana fechada. Ademais, estudamos uma relação generalizada

entre os (T,V)-espaços equilógicos e os completamentos regular e exato de (T,V)-Cat, culminando

no fato de que (T,V)-Equ é um quasitopos.

Por fim, transportamos os conceitos de espaços C -gerados e espaços quasi-topológicos para

(T,V)-Cat. Provamos que os (T,V)-espaços C -gerados formam uma subcategoria plena coreflectiva

cartesiana fechada de (T,V)-Cat; exemplos de tais espaços incluem (T,V)-espaços compactamente

gerados e (T,V)-espaços de Alexandroff. Para os últimos, fazemos algumas considerações que

direcionam a uma generalização da equivalência entre os espaços topológicos de Alexandroff e os

conjuntos ordenados. Quanto aos quasi-(T,V)-espaços, eles formam a categoria Qs(T,V)-Cat, a

qual provamos ser cartesiana fechada e topológica sobre a categoria Set dos conjuntos e aplicações.

Generalizamos também para (T,V)-Cat uma relação interessante entre espaços quasi-topológicos e

espaços compactamente gerados.

Palavras-chave: categoria enriquecida generalizada, exponenciação, injectividade, fechamento carte-

siano (fraco), completamento exato, espaço equilógico, espaço C-gerado, espaço quasi-topológico.
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Introduction

The problem of exponentiability of topological spaces can be traced back to Fox in [Fox45], who

discusses that certain solution for this problem has been known for years before his publication.

Namely, it was known that every locally compact space is exponentiable. In fact, under the assumption

of Hausdorff separation, these concepts are equivalent [Mic68]. According to Fox, the question was

motivated by homotopy theory: for the unit interval, exponentiability implies that homotopies are

equivalent to paths in the set of continuous maps. Fox mentions that was Hurewicz who proposed him

the problem. Years later, Day and Kelly gave a characterization of exponentiable topological spaces

by means of preservation of quotient maps [DK70]. It is well-known that this is the case because the

problem of exponentiability is about the existence of an adjoint to a functor, which, in the particular

case of topological spaces, always preserves disjoint sums. Another characterization is the following:

a topological space is exponentiable if, and only if, its lattice of open sets is continuous; this fact and

much more detailed history on exponentiability in Top can be found in [Isb86].

Since not every topological space is exponentiable, that is, the category Top is not cartesian closed,

it is an interesting problem to find such a category of topological spaces. A classical approach is

to work on compactly generated spaces, which are proposed in [Ste67] as convenient for algebraic

topology. The earliest references of compactly generated spaces are [Kel55] and [Gal50], and in the

latter the author attributes the definition of the notion to Hurewicz. Compactly generated spaces are

fully coreflective in Top, what is also shown in [Mac71], and, in fact, they form the coreflective hull of

compact Hausdorff spaces in Top. Hence the question of cartesian closedness of this subcategory fits

the general approach of [Nel78]; we also refer to [Day72]. In the present thesis, we are particularly

interested in the approach of [ELS04], which is centered in the idea of generating classes of topological

spaces.

An alternative approach to the problem is to enlarge Top to a cartesian closed category. In [Sco96],

and later in [BBS04], the category Equ of equilogical spaces and equivalence classes of equivariant

maps is introduced as such an enlargement, consisting essentially of joining topological spaces with

xi
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equivalence relations. Equ is directly seen to be cartesian closed by its equivalence with a similar

category based on injective separated topological spaces, which can be seen as algebraic lattices.

Moreover, the category of equilogical spaces relates to the exact completion Top
ex

of Top, as studied

in [Ros99]. The fact that Top is weakly (locally) cartesian closed, which is further studied in [CR00],

implies that Top
ex

is a (locally) cartesian closed category. It is proved in [Ros98] that Equ is equivalent

to the regular completion Top
reg

of Top, which proves to be a quasitopos by the results of [Men00].

Yet another enlargement of Top are Spanier’s quasi-topological spaces that can be found in

[Spa63]. The author mentions that the main motivation behind quasi-topologies is to endow the set of

the so-called quasi-continuous maps between quasi-spaces with a natural suitable quasi-topology, so

that the category QsTop of quasi-topological spaces and quasi-continuous maps is cartesian closed.

QsTop is convenient for homotopy theory, and although its size has an illegitimacy proved in [HR83],

this category has been explored in recent works, for instance, [DM12, Pet15]. The archetype of

quasi-topological spaces appears in [XE13] and [Dub79, DE06], and in the last two references a

general approach for such spaces using the notion of Grothendieck topologies is presented.

The main goal of the present thesis is to carry the concepts discussed in the previous three

paragraphs from Top to (T,V)-Cat. For details on the history of the (T,V)-setting we refer to the

book [HST14]. We limit ourselves to comment on the principal well known facts. Manes proved

that compact Hausdorff topological spaces are Eilenberg-Moore algebras for the ultrafilter monad

U [Man69]. Later on, by relaxing the axioms of an algebra, Barr presented topological spaces as

relational algebras forU [Bar70]; this monad is called there the triple of compact Hausdorff spaces.

Joining this approach with Lawvere’s description of generalised metric spaces [Law73], Clementino

and Tholen combined a monad T and a monoidal-closed category V creating the (T,V)-setting

[CT03]. We are interested in this thesis in the particular case when V is a quantale, so that the setting

provides a unified treatment of a range of categories as the ones of ordered, (probabilistic) metric,

ultrametric, (bi)topological, approach, and multi-ordered spaces. A lax extension of the monad T to

the order-enriched category V-Rel is always assumed to exist, and in order to develop our results, we

restrict ourselves to the lax extensions given by means of a T-algebra structure on V, as introduced

by Hofmann [Hof07], so we work on the setting of strict topological theories. Those extensions are

characterized in [CT14] as the algebraic lax extensions. We observe that our conditions are stronger

than the ones used in [HST14].

We organize this thesis as follows. The first chapter is devoted to the background. We recall

some facts about topological functors, and present the (T,V)-setting, exposing the main classes of
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spaces that we are dealing with in the remaining chapters, namely, separated, injective, exponentiable

(including a criterion for exponentiability in (T,V)-Cat), and compact and Hausdorff (T,V)-spaces.

We also highlight some topological aspects of (T,V)-Cat that are going to be needed. In the

second chapter we prove that, under suitable conditions, injective (T,V)-spaces are exponentiable

in (T,V)-Cat, and that (T,V)-Cat is weakly (locally) cartesian closed. These results are part of

[CHR20]. The third chapter is concerned with equilogical (T,V)-spaces and their relation with the

regular and exact completions (T,V)-Catreg and (T,V)-Catex of (T,V)-Cat, respectively. The results

of Chapter II play an important role in this chapter, whose final achievement is to prove, using results of

[Men00], that the category (T,V)-Equ of equilogical (T,V)-spaces and its morphisms is a quasitopos.

We follow directly the work in [BBS04], and the results of this chapter are part of [Rib19a]. Finally,

in the fourth chapter we present the categories (T,V)-CatC of C -generated (T,V)-spaces and (T,V)-

continuous maps, and Qs(T,V)-Cat of quasi-(T,V)-spaces and quasi-(T,V)-continuous maps. The

main examples of C -generated spaces are the compactly generated spaces, when C is the class of

compact and Hausdorff (T,V)-spaces, and the Alexandroff (T,V)-spaces, when C is the singleton

containing the Sierpiński (T,V)-space; the second class leads to investigating a generalisation of

the well-known fact that the category of Alexandroff topological spaces is equivalent to the category

of ordered sets. Among other properties, we prove that (T,V)-CatC is coreflective in (T,V)-Cat,

(T,V)-CatC and Qs(T,V)-Cat are cartesian closed categories, and Qs(T,V)-Cat is topological over

Set. We establish, in our level of generality, the relationship between quasi-topological spaces and

compactly generated spaces studied by Day in [Day68], whose work we follow closely.





Chapter I

Categories of lax algebras and some of

their topological aspects

The following chapter is thought mainly as a source for references and to fix notation for the thesis. All

concepts and facts presented in this chapter can be found in the literature, and we provide references

for such.

We start by commenting on two needed facts about topological functors, and then we move on to

the background on the category (T,V)-Cat, which is the central object of study of the thesis. Despite

its rich theory, we focus on the framework needed to present our results, namely, the concepts of

injectivity, (weak) exponentiability, compactness, and (Hausdorff) separation.

1 A comment on topological functors

For a category A, a family (gi : Bi → A)i∈I of morphisms of A is called an A-sink, or simply a sink.

Let X be a category and |-| : A→ X be a functor. The A-sink (gi)i∈I is said to be |-|-final if, for every

A-sink (hi : Bi →C)i∈I , and every morphism s : |A| → |C| of X such that s · |gi |= |hi |, for each i ∈ I,

there exists a unique morphism t : A →C of A such that |t|= s, and t ·gi = hi , for each i ∈ I.

|Bi |
|gi | //

|hi |   

|A|

s
��

A

∃ ! t
��

|C| C

The dual concept is that of a |-|-initial source.

1



2 Categories of lax algebras and some of their topological aspects

Definition 1.0.1 The functor |-| : A → X is topological if every X-sink ( fi : |Bi | → X)i∈I admits a

|-|-final lifting, that is, there exists a |-|-final A-sink (gi : Bi → A)i∈I such that |gi |= fi , for each i ∈ I.

Equivalently, the functor |-| : A→ X is topological if every X-source ( fi : X → |Bi |)i∈I admits an

|-|-initial lifting [AHS90, Theorem 21.9]. Recall that for X ∈ X, |-|−1(X) = {A ∈ A | |A| = X} is

called the fibre of X .

Definition 1.0.2 The functor |-| : A→ X is fibre-small if the fibre of every object of X is a set (rather

than a proper class).

Throughout |-| : A→ X will be a fibre-small forgetful functor, whence, by [AHS90, Proposition

21.34], one only needs to consider small sinks in Definition 1.0.1, that is, when I is a set. In this

case, each |-|-final lifting of an X-sink (g j : |B j | → X) j∈J , for any J, is the |-|-final lifting of a small

(sub)sink (gi : |Bi | → X)i∈I , I ⊆ J.

2 The (T,V) setting

2.1 The variables T and V

The first of our variables is a non-trivial monad T = (T,m,e) : Set → Set satisfying a suitable

condition that we present next. As usual, for maps f : X → Z and g : Y → Z, we say that the square

(✯) below is a weak pullback, or a Beck-Chevalley square, (BC)-square for short, if for each maps

f : W → X and g : W →Y such that f · f = g ·g, there exists a (not necessarily unique) map t : W →W

such that h1 · t = f and h2 · t = g.

W g

��

f

##

t   
W

h2 //

h1
��

(✯)

Y

g
��

X
f
// Z

(I.1)

Assuming the Axiom of Choice, so that every epimorphism splits in Set, one can see that (✯) is

a weak pullback precisely when the canonical map c : W → X ×Z Y is surjective, where the inner
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rectangle in the diagram below is a pullback.

W h2

$$

h1

%%

c
##

X ×Z Y
πY //

πX
��

Y

g
��

X
f

// Z.

Definition 2.1.1 A monad T= (T,m,e) : Set→ Set satisfies the Beck-Chevalley condition, (BC) for

short, if the functor T preserves (BC)-squares, and the naturality diagrams of m are (BC)-squares.

From [Man02] we have the following notion:

Definition 2.1.2 A functor T is taut if it preserves inverse images, that is, if it preserves pullbacks

along monomorphisms.

A morphism m is monic if, and only if, the diagram

1 //

1
��

m
��

m
//

is a (BC)-square. Hence if T satisfies (BC), then the functor T preserves monomorphisms. Moreover,

a (BC)-square (I.1) with g monic is a pullback, whence if T satisfies (BC), then T is taut. For details

on the latter facts see [CHJ14].

Examples 2.1.3 The following monads are going to be used in the thesis:

(1) the identity monad I= (Id,1,1), where Id : Set→ Set is the identity functor, and the components

of the natural transformation 1 are identity maps;

(2) the ultrafilter monad U = (U,m,e), where U : Set → Set is the ultrafilter functor that assigns

to each set X its set of ultrafilters UX , and to each map f : X → Y the map U f : UX → UY , x 7→

U f (x), where B ∈ U f (x) if, and only if, f−1(B) ∈ x. The X-component of the multiplication is

mX : U2X →UX , where, for each X ∈U2X , A ∈ mX (X) if, and only if, {x ∈UX | A ∈ x} ∈X; and the

X-component of the unit is eX : X →UX , x 7→ ẋ, where ẋ is the principal ultrafilter generated by x,

that is, A ∈ ẋ if, and only if, x ∈ A;

(3)M= (–×M,m,e), where M = (M,∗,αM) is a monoid. For each set X , (–×M)X =X ×M, and, for

each map f : X →Y , (–×M) f = f ×1M : X ×M →Y ×M, (x,a) 7→ ( f (x),a). The multiplication and
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unit are given by mX : X ×M×M → X ×M, (x,a,b) 7→ (x,a∗b), and eX : X → X ×M, x 7→ (x,αM),

respectively;

(4) the list monad, also called the free-monoid monad or word monad, L= (L,m,e), where, for each

set X ,

LX = {(x1 ,x2 , . . . ,xp) | p ∈ N, p ≥ 1, xi ∈ X , 1 ≤ i ≤ p}∪{()},

with () the empty list. For a map f : X → Y ,

L f : LX → LY, () 7→ (), (x1 ,x2 , . . . ,xp) 7→ ( f (x1), f (x2), . . . , f (xp)).

The X-component of the multiplication is given by mX : L2X → LX ,

((x1
1
,x1

2
, . . . ,x1

p1
), . . . ,(xq

1
,xq

2
, . . . ,xq

pq
)) 7→ (x1

1
,x1

2
, . . . ,x1

p1
, . . . ,xq

1
,xq

2
, . . . ,xq

pq
),

and the X-component of the unit is given by eX : X → LX , x 7→ (x).

We present the second variable of the (T,V)-setting:

Definition 2.1.4 A unital commutative quantale V = (V,⊗,k) is a complete lattice that is a monoid

for the tensor operation ⊗, which is commutative with unit k, so that, for each u,v,w ∈ V,

(u⊗ v)⊗w = u⊗ (v⊗w), k⊗u = u⊗ k = u, u⊗ v = v⊗u.

Furthermore, for all v ∈ V, the function v⊗ – = –⊗ v : V → V is a sup-map, that is, it preserves

arbitrary suprema.

Consequently, for each v ∈ V, there exists a right adjoint hom(v,–) : V → V, so that, for each

u,w ∈ V,

u⊗ v ≤ w ⇐⇒ u ≤ hom(v,w). (I.2)

For each v,w ∈ V,

hom(v,w) =
∨
{u ∈ V | u⊗ v ≤ w}. (I.3)
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Let us denote the bottom and the top elements of the complete lattice V by ⊥ and ⊤, respectively.

Using the formula (I.3), one calculates, for each v ∈ V,

hom(v,⊤) =
∨
{u ∈ V | u⊗ v ≤⊤}=⊤,

hom(k,v) =
∨
{u ∈ V | u⊗ k = u ≤ v}= v,

hom(⊥,v) =
∨
{u ∈ V | u⊗⊥=⊥≤ v}=⊤.

(I.4)

Notice that the first equality follows directly from the fact that hom(v,–) is a right adjoint, hence it

preserves the terminal object ⊤ of V.

Throughout all quantales considered are going to be Heyting algebras, so that, for each u ∈ V, the

map u∧–: V→ V has a right adjoint. Some additional conditions on the quantales are going to be

often needed.

Definition 2.1.5 A quantale V = (V,⊗,k) is said to be

(1) integral when k =⊤;

(2) lean when for each u,v ∈ V, (u∨ v =⊤ & u⊗ v =⊥) =⇒ (u =⊤ or v =⊤).

Another fundamental condition on the quantale V used in [CT03] is complete distributivity. Let

Dn(V) = {A ⊆ V | A is a down-set}, that is, A ∈ Dn(V) if, and only if, for each v ∈ V, if there exists

a ∈ A such that v ≤ a, then v ∈ A. We have a map ↓ : V→ Dn(V), v 7→↓v = {u ∈ V | u ≤ v}, which

is monotone when Dn(V) is ordered by inclusion, and since V is a complete lattice, we have an

adjunction
∨
⊣ ↓ : V → Dn(V). One says that V is completely distributive if the map

∨
has a left

adjoint: ⇓⊣
∨

: Dn(V) → V. The existence of the map ⇓ implies the existence of a totally below

relation ≪ on V:

u ≪ v ⇐⇒ ∀A ⊆ V
(

v ≤
∨

A =⇒ ∃ z ∈ V (u ≤ z)
)
,

so that, for each u,v,z ∈ V, if u ≪ v ≤ z, then u ≪ z, and v ≤
∨
{w ∈ V | w ≪ v}. Moreover, each

element v of V is ≪-atomic, that is, for each down-set A ⊆ V, v ≪
∨

A implies v ∈ A. Complete

distributivity can be characterized by the existence of such a relation [HST14, II-Proposition 1.11.1],

and can be defined for any complete lattice. For details on these definitions we refer to [HST14,

II-1.10, II-1.11, III-1.2].

Examples 2.1.6 The following quantales are going to be used in the thesis:
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(1) the two-chain 2= {⊥,⊤}, with ⊥<⊤, ⊗= ∧, and k =⊤. The operation hom has the same value

as “implication”, where ⊥= false and ⊤= true, so that

hom(⊥,⊥) = hom(⊥,⊤) = hom(⊤,⊤) =⊤ & hom(⊤,⊥) =⊥;

(2) the extended real half line [0,∞], with the order ≥, ⊗ = + the usual addition, and k = 0. This

quantale is denoted by P+ = ([0,∞]op,+,0). The right adjoint of the tensor is given by truncated

subtraction: for each u,v ∈ [0,∞],

hom(u,v) = v⊖u =

 v−u, if v ≥ u

0, otherwise;

(3) the extended real half line with the order ≥, ⊗ = max the maximum, and k = 0. This one is

denoted by Pmax = ([0,∞]op,max,0); some authors denote it by P∨ . In this case, the operation hom is

given by: for each u,v ∈ [0,∞],

hom(u,v) = u> v =

 v, if u < v,

0, otherwise;

(4) for the complete lattice [0,1] with the order ≤, and the tensor being the ordinary multiplica-

tion ∗, then k = 1, and the quantale ([0,1],∗,1) is isomorphic to P+ via the map [0,1] → [0,∞],

u 7→ −ln(u), with −ln(0) = ∞. Moreover, for the tensor being the infimum ∧, ([0,1],∧,1) is iso-

morphic to Pmax . Another operation that we can consider on [0,1] is the Łukasiewicz tensor ⊙ given

by, for each u,v ∈ [0,1], u⊙ v = max(0,u+ v− 1). For this tensor product, for each u,v ∈ [0,1],

hom(u,v) = u~ v = min(1,1−u+ v). Let us denote this quantale by P1 = ([0,1],⊙,1);

(5) the diamond lattice 22 = {⊥,u,v,⊤} [HST14, II-Exercise 1.H], with the order as in the diagram

⊤
u v

⊥,

where u and v are incomparable elements. The tensor product is the infimum ∧, hence k =⊤. Using

the formula (I.3) we calculate: hom(u,⊥) = hom(u,v) = v, hom(v,⊥) = hom(v,u) = u, and

∀ α ∈ 22, hom(⊥,α) = hom(α,⊤) = hom(α,α) =⊤, hom(⊤,α) = α;
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(6) the quantale of distribution functions [HR13, CH17]:

∆ = { f : [0,∞]→ [0,1] | f is monotone and f (x) =
∨
y<x

f (y)},

with pointwise order, tensor product given by ( f ⊗g)(x)=
∨

y+z≤x

f (y) ·g(z), and k= f0,1 : [0,∞]→ [0,1],

where

f0,1(x) =

 0, if x = 0,

1, otherwise.

For each f ,g ∈ ∆, hom( f ,g) =
∨
{h ∈ ∆ | ∀r,s, t ∈ [0,∞], (r+ s ≤ t =⇒ f (r) ·h(s)≤ g(t))}.

Definition 2.1.7 A frame V is a complete lattice satisfying the infinite distributive law: for each

a,bi ∈ V, i ∈ I, a∧ (
∨
i∈I

bi) =
∨
i∈I

(a∧bi).

Setting ⊗= ∧, every frame V is an integral quantale, which is a Heyting algebra; this is the case

of our examples (1), (3), and (5). The quantales of examples (2), (4), and (6) are also integral and

Heyting algebras. All examples are completely distributive, and the quantales in (1), (2), (3), and (4)

are lean.

For an example of a quantale which is not integral, consider the powerset PM of a commutative

monoid M = (M,∗,αM). The order is given by inclusion and the tensor product is defined by the

multiplication: A⊗B = {a∗b | a ∈ A, b ∈ B}, for each A,B ∈ PM. Hence the unit is k = {αM} and

the top element of PM is ⊤= M.

2.2 (T,V)-spaces and (T,V)-continuous maps

Let V be a quantale. A V-relation, or V-matrix, is a map r : X ×Y → V, hereinafter denoted by

r : X−→7 Y . Any function f : X → Y can be seen as a V-relation f : X−→7 Y with

f (x,y) =

 k, if f (x) = y,

⊥, otherwise.
(I.5)

For r : X−→7 Y and s : Y−→7 Z, the relational composition s · r : X−→7 Z is given by: for each (x,z) in

X ×Z,

s · r(x,z) =
∨
y∈Y

r(x,y)⊗ s(y,z). (I.6)
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Observe that for V = 2, this composition has its usual meaning:

s · r(x,z) =⊤ ⇐⇒ ∃ y ∈ Y ; r(x,y) = s(y,z) =⊤.

For each set X , the identity V-relation is given by the identity map 1X : X → X , and the order of V

induces an order between V-relations: for r, t : X−→7 Y ,

r ≤ t ⇐⇒ ∀(x,y) ∈ X ×Y, r(x,y)≤ t(x,y). (I.7)

These data define the 2-category V-Rel whose objects are sets, morphisms are V-relations, and 2-cells

are given by the order (I.7). There exists an involution given by transposition: for each r : X−→7 Y ,

r◦ : Y−→7 X is defined by: for each (y,x) ∈ Y ×X , r◦(y,x) = r(x,y); moreover, for s : Y−→7 Z and

t : X−→7 Y , we have (s · r)◦ = r◦ · s◦ and r ≤ t if, and only if, r◦ ≤ t◦.

It is useful to observe that each map f : X → Y satisfies

1X ≤ f ◦ · f & f · f ◦ ≤ 1Y , (I.8)

and the first inequality is an equality provided that f is an injective map, while the second inequality

is an equality provided that f is a surjective map.

Next letT= (T,m,e) : Set→ Set be a monad. Throughout we assume that T : Set→ Set admits

a lax extension to the category V-Rel, also denoted by T : V-Rel→ V-Rel, so that

(E1) for each r,s : X−→7 Y , and t : Y−→7 Z, r ≤ s implies Tr ≤ T s, and T (t · r)≤ Tt ·Tr;

(E2) T commutes with involution: for each r : X−→7 Y , T (r◦) = (Tr)◦ = Tr◦;

(E3) m and e become oplax transformations: for each V-relation r : X−→7 Y ,

X
eX //

❴r

��
≤

T X
❴Tr

��

T 2X
mXoo

❴T 2r
��

≥

Y eY
// TY T 2Y ;mY

oo

(E4) T is flat, that is, for each set X , T 1X = 1T X .

Hence we have a lax extension of T in the sense of [CT03], and a lax monad on V-Rel in the sense of

[CH04].

(T,V)-Cat is then defined as the category of Eilenberg-Moore lax algebras of that lax monad.

The objects, which are called (T,V)-categories, or (T,V)-spaces, are pairs (X ,a), where X is a set,
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and a : T X−→7 X is a V-relation satisfying lax diagrams of reflexivity and transitivity:

X
eX //

1X --

T X
❴a

��

T 2X✤Taoo

mX
��

≤≤

X T X .✤
a

oo

(I.9)

Componentwise this translates as:

(R) for all x ∈ X , k ≤ a(eX (x),x);

(T) for all X ∈ T 2X , x ∈ T X , x ∈ X , Ta(X,x)⊗a(x,x)≤ a(mX (X),x).

When referring to the V-relation a : T X−→7 X itself, one calls it a (T,V)-structure on X . A morphism

from (X ,a) to (Y,b) is a map f : X → Y such that

T X
❴a
��

T f //

≤

TY
❴b
��

X
f
// Y ;

(I.10)

f is called a (T,V)-functor, or a (T,V)-continuous map. Componentwise, f : (X ,a)→ (Y,b) is a

(T,V)-continuous map if, and only if, for all x ∈ T X , x ∈ X , a(x,x) ≤ b(T f (x), f (x)). When the

diagram (I.10) is strictly commutative, that is, when ≤ is actually =, f is said to be fully faithful. For

a (T,V)-space (X ,a), each subset S ⊆ X can be endowed with a subspace (T,V)-structure:

aS = i◦
S
·a ·TiS : T S−→7 S, (I.11)

where iS : S ↪→ X is the inclusion map; iS : (S,aS)→ (X ,a) is fully faithful:

T S
TiS //

❴aS
��

T X
❴a
��

S
iS
// X .

A pair (X ,a), X a set and a : T X−→7 X a V-relation satisfying condition (R), and not necessarily

satisfying condition (T), is called a (T,V)-graph. Denoting by (T,V)-Gph the category of (T,V)-

graphs and (T,V)-continuous maps, we have the following [CT03, CHT03]:

Proposition 2.2.1 (T,V)-Gph is a quasitopos, and (T,V)-Cat is fully epireflective in (T,V)-Gph.
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Examples 2.2.2 Let us consider the following lax extensions:

(1) the identity monad I= (Id,1,1) identically extended to V-Rel; then (I,V)-Cat is the category of

V-spaces and V-continuous maps, denoted by V-Cat. For the quantales of Examples 2.1.6 we have:

• 2-Cat∼= Ord is the category of (pre-)ordered spaces and monotone maps;

• P+-Cat ∼= Met is the category of Lawvere’s generalised metric spaces and non-expansive maps

[Law73];

• Pmax-Cat∼= UltMet is the full subcategory of Met of ultrametric spaces [HST14, III-Exercise 2.B];

• P1-Cat∼= BMet is the full subcategory of Met of the bounded-by-1 metric spaces [HN18, Examples

2.3(3c)];

• 22-Cat∼= BiRel is the category of sets and birelations [HST14, III-Examples 1.1.1(3)];

• ∆-Cat∼= ProbMet is the category of probabilistic metric spaces and ∆-functors [HR13];

(2) for the quantales (1) to (5) in Examples 2.1.6, the ultrafilter monadU= (U,m,e) with the Barr

extension to V-Rel given by, for each r : X−→7 Y , x ∈ UX , y ∈ UY , Ur(x,y) =
∧
A∈x
B∈y

∨
x∈A
y∈B

r(x,y). In

particular, we have:

• (U,2)-Cat∼= Top is the category of topological spaces and continuous functions [Bar70];

• (U,P+)-Cat∼= App is the category of Lowen’s approach spaces and contractions [Low97, CT03,

CH03];

• Pmax-Cat∼= NA-App is the full subcategory of App of non-Archimedean approach spaces [CVO17,

Hof14];

• (U,22)-Cat∼= BiTop is the category of bitopological spaces and bicontinuous maps [HST14, III-

Exercise 2.D];

• (U,∆)-Cat ∼= ProbApp is the category of probabilistic approach spaces and contractive maps

[LT17, Jäg15];

(3) forM= (–×M,m,e) and each quantale V, the extension of (–×M) to V-Rel given by, for each

r : X−→7 Y , (x,a) ∈ X ×M, (y,b) ∈ Y ×M,

(r×M)((x,a),(y,b)) =

 r(x,y), if a = b,

⊥, otherwise

[CHR20]. For the quantale 2, the category (M,2)-Cat is thought as M-labelled ordered sets and

equivariant maps [HST14, V-Section 1.4];

(4) for the list monad L = (L,m,e) and each quantale V, L : V-Rel → V-Rel is given by, for each
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r : X−→7 Y , (x1 , . . . ,xn) ∈ LX , (y1 , . . . ,ym) ∈ LY ,

Lr((x1 , . . . ,xn),(y1 , . . . ,ym)) =

 r(x1 ,y1)⊗·· ·⊗ r(xn ,yn), if m = n,

⊥, otherwise.

We observe that L : V-Rel→ V-Rel given by, for each r : X−→7 Y , (x1 , . . . ,xn) ∈ LX , (y1 , . . . ,ym) ∈ LY ,

Lr((x1 , . . . ,xn),(y1 , . . . ,ym)) =

 r(x1 ,y1)∧·· ·∧ r(xn ,yn), if m = n,

⊥, otherwise,

also gives a lax extension of L [Bas17, CH04]. For the particular case of V= 2, (L,2)-Cat∼=MultiOrd

is the category of multi-ordered sets and their morphisms [HST14, V-Section 1.4], while (L,V)-Cat

can be thought, more generally, as multi-V-ordered spaces and their morphisms.

We gather those examples in the following table.

❅
❅
❅
❅❅

V

T
I U M L

2 Ord Top (M,2)-Cat MultiOrd

P+ Met App (M,P+)-Cat (L,P+)-Cat

Pmax UltMet NA-App (M,Pmax)-Cat (L,Pmax)-Cat

P1 BMet (U,P1)-Cat (M,P1)-Cat (L,P1)-Cat

22 BiRel BiTop (M,22)-Cat (L,22)-Cat

∆ ProbMet ProbApp (M,∆)-Cat (L,∆)-Cat

(I.12)

In order to highlight its topological character, we choose to use the terms (T,V)-spaces and (T,V)-

continuous maps to refer to the objects and to the morphisms of (T,V)-Cat, respectively. Furthermore,

in order to keep the text simpler, when there is no ambiguity, we will drop the prefix (T,V) and refer

to them simply as spaces and continuous maps.

2.3 A fundamental adjunction

The following adjunction is to be used in Subsection 2.7 and in Chapters III and IV; for details we

refer to [CT03, CCH15] and [HST14, III-3.4, 3.5, 3.6].

For each (T,V)-space (X ,a), define Ae(X ,a) = (X ,a · eX ), with eX : X → T X the X-component

of the natural transformation e : Id
Set

→ T . For each V-space (X ,a0), define A◦(X ,a0) = (X ,a#
0
), with
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a#
0
= e◦

X
·Ta0 . On morphisms, both Ae and A◦ are the identity. These are well-defined functors, and we

have an adjunction:

V-Cat ⊥

A◦
((

Ae

hh (T,V)-Cat. (I.13)

Furthermore, Ae is an instance of algebraic functors [HST14, III-3.4], which is induced by the

natural transformation e : I → T . Concerning the quantale part of (T,V)-Cat, we have the change-of-

base functors [HST14, III-3.5]. In summary, consider a lax homomorphism of quantales µ : V→W,

which is an order preserving map such that µ(u)⊗
W

µ(v) ≤ µ(u⊗
V

v) and k
W
≤ µ(k

V
), for each

u,v ∈ V. Then µ induces a lax functor µ : V-Rel → W-Rel assigning to each r : X ×Y → V the

composite µ · r : X ×Y →W. Now, assuming that the monad T has lax extensions T
V

and T
W

to

V-Rel and to W-Rel, respectively, and that µ is compatible with such extensions, that is, the diagram

V-Rel
T
V //

µ

��
≤

V-Rel

µ

��
W-Rel

T
W

//W-Rel

is lax commutative, then µ induces the change-of-base functor B
µ

: (T,V)-Cat→ (T,W)-Cat. More-

over, we have the following result.

Proposition 2.3.1 [HST14, III-Proposition 3.5.1] If µ : V →W and ρ : W → V are lax homomor-

phisms of quantales which are compatible with the lax extensions of T to V-Rel and W-Rel, then

µ ⊣ ρ =⇒ B
µ
⊣ B

ρ
.

For the particular cases of the monads I and U, and the quantales 2 and P+ , adjunction (I.13)

and adjunctions between change-of-base functors are depicted in the vertical and horizontal arrows,

respectively, of the following diagram:

Top � � //

��

App⊣oo

⊣

��
Ord
� ?

⊣

OO

� �

⊣

// Met,
oo � ?

OO (I.14)
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where the hook-arrows are full embeddings, the solid and dotted diagrams are commutative, and the

two full embeddings from Ord to App coincide. Next we describe these adjunctions.

• Ord to Met. To each ordered set (X ,≤) one assigns the metric space (X ,d≤), where, for each

x,x′ ∈ X ,

d≤(x,x
′) =

 0, if x ≤ x′

∞, otherwise.

The left adjoint assigns to each (X ,d) the ordered set (X ,≤d ), where, for each x,x′ ∈ X , x ≤d x′ if,

and only if, d(x,x′)< ∞. The change-of-base functors are induced by the quantale homomorphisms

ι : 2 → P+ , ⊤ 7→ 0, ⊥ 7→ ∞, and o : P+ → 2 given by o(v) = ⊤ if, and only if, v < ∞, for each

v ∈ [0,∞].

• Ord to Top. To each ordered set (X ,≤) one assigns the topological space (X ,τ≤), with τ≤ generated

by the basis {↓ x | x ∈ X}, that is, τ≤ is the Alexandroff topology. Its left adjoint assigns to each

topological space (X ,τ) the space (X ,≤
τ
), where ≤

τ
is the dual of the specialization order [GHK+80,

II-Definition 3.6], that is, x ≤ y if, and only if, ẋ → y, where → denotes the ultrafilter convergence

determined by τ .

Remark 2.3.2 Let us recall that a topological space is called Alexandroff if arbitrary intersections

of open sets are open. It is well known that Alexandroff topological spaces are precisely the spaces

in the image of Ord by A0 [HST14, II-5.10.5, III-3.4.3(1)]. This paradigm is going to be explored in

Subsection 8.4.

• Met to App. A metric space (X ,d) induces the approach space (X ,δd ), where, for each x′ ∈ X ,

A ∈ PX , δd (x
′,A) = inf{d(x,x′) | x ∈ A}. The right adjoint of this embedding assigns (X ,d

δ
) to each

(X ,δ ) in App, where, for each x,x′ ∈ X , d
δ
(x,x′) = sup{δ (x′,A) | x ∈ A ∈ PX}.

• Top to App. A topological space (X ,τ) induces the approach space (X ,δ
τ
), where, for each x′ ∈ X ,

A ∈ PX ,

δ
τ
(x′,A) =

 0, if A ∈ x, for some x ∈UX with x→ x′

∞, otherwise.

To describe the left adjoint consider an approach space (X ,δ ), then form the pseudo-topological space

(X ,→) [Cho48], where the convergence relation → between ultrafilters in UX and points of X is
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given by

x→ x ⇐⇒ sup{δ (x,A) | A ∈ x}< ∞;

to this pseudo-topological space apply the reflector to Top [HLCS91] (see also [HST14, III-Exercise

3.D]) obtaining (X ,τ
δ
), where A ⊆ X is open if, and only if, for each x ∈UX , x ∈ X , whenever x→ x

and x ∈ A, then A ∈ x. The left adjoint assigns to (X ,δ ) the topological space (X ,τ
δ
). In this case, the

quantale homomorphism ι : 2→ P+ is compatible with the lax extesions of U, but the same is not

true for o : P+ → 2. Nonetheless, B
ι
: Top→ App has the left adjoint just described.

2.4 Some topological aspects of (T,V)-Cat

The forgetful functor |-| : (T,V)-Cat→ Set is topological [CH03, CT03] and fibre-small: for each

set X , a (T,V)-structure a on X is an element of V-Rel(T X ,X) = Set(T X ×X ,V). In particular,

this implies the following (see [AHS90, Proposition 21.12, Proposition 21.13, Proposition 21.14,

Corollary 21.17] and [HST14, III- Section 3.1]):

(TA1) (T,V)-Cat is complete, cocomplete, well-powered, and co-well-powered;

(TA2) (T,V)-Cat has (Epi,RegMono)-factorizations, which form a stable factorization system: a

(T,V)-continuous map is an epimorphism if, and only if, it is a surjective map; in Set surjective maps

are stable under pullback, and the forgetful functor from (T,V)-Cat to Set preserves pullbacks. We

observe that (RegEpi,Mono) is also a factorization system for (T,V)-Cat, which is not stable; for

instance, in Top regular epimorphisms are not stable under pullback.

(TA3) (T,V)-Cat is closed under regular monomorphisms, or embeddings, in (T,V)-Gph, that is,

whenever f : (X ,a)→ (Y,b) is a regular monomorphism of (T,V)-graphs, and (Y,b) is a (T,V)-space,

(X ,a) is also a (T,V)-space. This follows from (TA2), Proposition 2.2.1, and [HST14, II-Proposition

5.1.3].

(TA4) The forgetful functor |-| : (T,V)-Cat→ Set has a fully faithful left adjoint and a fully faithful

right adjoint, which are embeddings. The left adjoint assigns to each set X the discrete (T,V)-space

(X ,e◦
X
), while the right adjoint, which for future purposes we denote by ∇, assigns to each set X the

indiscrete (T,V)-space ∇X = (X ,⊤); both functors leave morphisms unchanged [HST14, III-Section

3.2].

(TA5) For each epimorphism f : (X ,a)→ (Y,b), f ×1Z : (X ,a)× (Z,c)→ (Y,b)× (Z,c) is an epi-

morphism in (T,V)-Cat. This follows from (TA2) and the fact that f ×1Z is the pullback of f along

the product projection πY : (Y,b)× (Z,c)→ (Y,b).
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(TA6) If T is taut, then (T,V)-Cat is infinitely extensive. This is proved in [MST06]; we include the

proof here for completeness. In order to do so, we need an auxiliary definition and lemma [CH12].

Definition 2.4.1 A (T,V)-continuous map f : (X ,a)→ (Y,b) is open if f ◦ ·b ≤ a · (T f )◦.

The map f : (X ,a)→ (Y,b) is (T,V)-continuous if, and only if, a · (T f )◦ ≤ f ◦ ·b, whence f is

open if, and only if, a · (T f )◦ = f ◦ ·b.

Lemma 2.4.2 For a family ((Xi ,ai))i∈I of (T,V)-spaces the following assertions are equivalent:

(i) (X ,a) is the coproduct of ((Xi ,ai))i∈I in (T,V)-Cat;

(ii) X is the coproduct of (Xi)i∈I in Set and, for each i ∈ I, the coproduct inclusion ιi : (Xi ,ai) ↪→ (X ,a)

is open.

Proof of (TA6). By [CLW93, Proposition 2.14], it suffices to show that coproducts in (T,V)-Cat are

disjoint and universal, that is, stable under pullback. Since the forgetful functor |-| : (T,V)-Cat→ Set

preserves colimits, the first condition is satisfied. In order to check universality of coproducts, let

(X ,a) be the coproduct of the family ((Xi ,ai))i∈I of (T,V)-spaces, and let f : (Y,b)→ (X ,a) be a

(T,V)-continuous map; by Lemma 2.4.2, we must prove that, for each i ∈ I, the pullback of ιi along

f :

Pi

fi //

hi ��

Y
f
��

Xi ιi

// X

(I.15)

is an open map fi : (Pi , pi)→ (Y,b), that is, pi · (T fi)
◦ = f ◦

i
·b. Firstly, since the diagram (I.15) is a

pullback, it is a (BC)-square, hence, because T satisfies (BC), the diagram

T Pi

T fi //

T hi
��

TY
T f
��

T Xi T ιi

// T X

is a (BC)-square, what is equivalent to T hi ·(T fi)
◦ =(T ιi)

◦ ·T f [HST14, III-Lemma 1.11.1]. Secondly,

we recall that pi is the |-|-initial (T,V)-structure with respect to hi and fi , and calculate:

pi · (T fi)
◦ =

(
(h◦

i
·ai ·T hi)∧ ( f ◦

i
·b ·T fi)

)
· (T fi)

◦ (by [CH03, Theorem 4.5])
∗
= ( f ◦

i
·b)∧ (h◦

i
·ai ·T hi · (T fi)

◦) = ( f ◦
i
·b)∧ (h◦

i
·ai · (T ιi)

◦ ·T f )

= ( f ◦
i
·b)∧ (h◦

i
· ι◦

i
·a ·T f ) (because ιi is |-|-initial)

= ( f ◦
i
·b)∧ ( f ◦

i
· f ◦ ·a ·T f ) ∗∗

= f ◦
i
·b,
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where in ∗
= we use a weak version of Freyd’s Modular Law proven to be satisfied in (T,V)-Cat

in [MST06, Remark 6], and ∗∗
= follows from (T,V)-continuity of f , since b ≤ f ◦ · a ·T f implies

f ◦
i
·b ≤ f ◦

i
· f ◦ ·a ·T f .

Furthermore, as a requirement for Chapter IV, we need to provide conditions under which every

constant map between (T,V)-spaces is continuous. These conditions are fairly restrictive, as shown

by the following characterization.

Lemma 2.4.3 In (T,V)-Cat the following conditions are equivalent.

(i) Every constant map f : (X ,a)→ (Y,b) between (T,V)-spaces is continuous.

(ii) For 1= {∗} a singleton, if (1,c) is a (T,V)-space, then, for each z ∈ T1, c(z,∗) =⊤.

(iii) k =⊤ and T1= 1.

Proof. (i)⇔(ii) Let (1,c) be a (T,V)-space. The identity map 11 : (1,⊤)→ (1,c) is constant, so it is

continuous by hypothesis, whence ⊤≤ c. Conversely, each constant map f : (X ,a)→ (Y,b), x 7→ y0 ,

admits the factorization (X ,a)
f // (1,b1)

i
1 // (Y,b) , where 1= {y0} ⊆ Y is endowed with the

subspace (T,V)-structure b1 . By hypothesis, b1 =⊤, hence f : (X ,a)→ (1,b1) is continuous, and so

is the composite f : (X ,a)→ (Y,b).

(ii)⇔(iii) Consider the discrete (T,V)-space (1,e◦
1
). By hypothesis, for each z ∈ T1, e◦

1
(z,∗) = ⊤.

Then, for z = e1(∗), k = e◦
1
(e1(∗),∗) = ⊤. Moreover, e◦

1
(z,∗) = ⊤ = k if, and only if, z = e1(∗),

whence T1= {e1(∗)} is a singleton. For V integral and T1= 1, one readily checks condition (ii).

Therefore, under these conditions – V integral and T1= 1 – (T,V)-Cat is a topological category

in the sense of [Her74]: there exist initial structures with respect to the forgetful functor, which is

fibre-small, and there exists precisely one structure on a singleton set.

2.5 Strict topological theories or algebraic lax extensions

In the forthcoming Chapter III, when studying weak exponentiability in (T,V)-Cat, we will use the

Yoneda embedding for (T,V)-spaces, whose fundamental ingredient is provided by the setting of

strict topological theories, as defined in [Hof07]. The main idea is that the extension T to V-Rel is

determined by aT-algebra structure map ξ : TV→V, and in [CT14] such extensions are characterized

as the algebraic lax extensions.

More precisely, we will assume that for a monad T and a quantale V satisfying the conditions

of Subsection 2.1 (usually V does not need to be a Heyting Algebra, although we assume this here),
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there exists a map ξ : TV→ V such that the following diagrams are commutative:

V
e
V //

1
V   

TV
ξ

��

T 2V
T ξoo

m
V��

V TV
ξ

oo

T (V×V)
T (⊗) //

⟨ξ ·T π1 ,ξ ·T π2⟩ ��

TV

ξ

��

T1
T (k)oo

!
��

V×V ⊗
// V 1,

k
oo

(I.16)

where π1 and π2 are the product projections V×V→ V, and ⟨ξ ·T π1 ,ξ ·T π2⟩ is the unique map such

that the diagram below is commutative.

T (V×V)

ξ ·T π1

||

⟨ξ ·T π1 ,ξ ·T π2⟩

��

ξ ·T π2

""
V V×V

π1

oo
π2

// V

The lax extension of T : Set→ Set to V-Rel is given by, for each r : X−→7 Y , x ∈ T X , y ∈ TY ,

Tr(x,y) =
∨
{ξ ·T r⃗(w) | w ∈ T (X ×Y ), T πX (w) = x, T πY (w) = y}, (I.17)

where πX and πY are the product projections from X ×Y into X and Y , respectively [Hof07, Definition

3.4]. We adopt the notation r⃗ used in [CT14] to distinguish between the map from X ×Y to V and the

V-relation X−→7 Y , so that T r⃗ : T (X ×Y )→ TV. This extension satisfies conditions (E1) to (E4) of

Subsection 2.2 [Hof07, Theorem 3.5].

In this context, V has a (T,V)-structure given by the composite

TV
ξ //

✤
hom

ξ

44V ✤hom // V (I.18)

[Hof07, Corollary 5.2(b)]. For the particular case of T = U and V = 2, the space (V,hom
ξ
) is

the Sierpiński space S = (2,{ /0,2,{⊥}}) in Top, and due to this we call (V,hom
ξ
) the Sierpiński

(T,V)-space. This space will be employed in Subsections 2.7 and 8.4.

Next we identify the maps which generate extensions from items (1) to (4) of Examples 2.2.2;

more details can be found in [Hof07, Theorem 3.3], [Hof14, Examples 1.4], [CHR20, Examples 7.7],

and in the comment after [CHR20, Theorem 7.10].
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Examples 2.5.1 (1) For the identity monad I= (Id,1,1) and any quantale V, ξ is the identity map

1
V

: V→ V. The Sierpiński V-space is (V,hom), described for our quantales in Examples 2.1.6.

(2) Considering the ultrafilter monadU= (U,m,e) and a completely distributive complete lattice V

with ⊗= ∧, we have ξ : UV→ V, v 7→
∧
A∈v

∨
A. In particular, we have:

• for V finite, every ultrafilter is principal, hence the map e
V

: V→UV is surjective, and the equality

ξ · e
V
= 1

V
of (I.16) is equivalent to ξ = e◦

V
by (I.8); this is the case for V = 2 and V = 22;

• for V = Pmax , we have ξ : U [0,∞]→ [0,∞], v 7→ inf{u ∈ [0,∞] | [0,u] ∈ v}.

For V = P+ the same ξ defined above fulfills the conditions needed. Analogously, for V = P1 , we

have ξ : U [0,1]→ [0,1], v 7→ sup{u ∈ [0,1] | [u,1] ∈ v}. For the quantale ∆, the map ξ defined for a

completely distributive complete lattice provides a topological theory [Hof07, Theorem 3.3], however,

it is an open question whether this topological theory is strict.

(3) For the monad M = (–×M,m,e) and each quantale V, define ξ = π
V

: V×M → V as the first

product projection, so that, for each (v,a) ∈ V×M, ξ (v,a) = v.

(4) For the list monad L= (L,m,e) and any quantale V, ξ : LV→ V is such that ξ (()) = k, and, for

each n ∈ N, (v1 , . . . ,vn) ∈ LV, ξ (v1 , . . . ,vn) = v1 ⊗ . . .⊗ vn .

Our Table (I.12) of examples is replaced by the following one.

❅
❅
❅
❅❅

V

T
I U M L

2 Ord Top (M,2)-Cat MultiOrd

P+ Met App (M,P+)-Cat (L,P+)-Cat

Pmax UltMet NA-App (M,Pmax)-Cat (L,Pmax)-Cat

P1 BMet (U,P1)-Cat (M,P1)-Cat (L,P1)-Cat

22 BiRel BiTop (M,22)-Cat (L,22)-Cat

∆ ProbMet (M,∆)-Cat (L,∆)-Cat

(I.19)

2.6 A sufficient condition for exponentiability in (T,V)-Cat

A space (X ,a) is exponentiable if the functor (X ,a)× –: (T,V)-Cat → (T,V)-Cat has a right

adjoint (–)(X ,a) : (T,V)-Cat→ (T,V)-Cat. For each space (Y,b), the image (Y,b)(X ,a) is called an

exponential. In terms of the counit ev, standing for evaluation, of the adjunction ((X ,a)×–) ⊣ (–)(X ,a),

for each space (Y,b), every continuous map f : (Z,c)× (X ,a) → (Y,b), with (Z,c) ∈ (T,V)-Cat,

factors uniquely though the universal map evX ,Y : (Y,b)(X ,a)× (X ,a)→ (Y,b) as f = evX ,Y · ( f ×1X ),
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where f : (Z,c)→ (Y,b)(X ,a) is called the transpose of f .

(Y,b)(X ,a) (Y,b)(X ,a)× (X ,a)
evX ,Y // (Y,b)

(Z,c)

∃ ! f

OO

(Z,c)× (X ,a)

f×1X

OO

f

55

By Proposition 2.2.1, each (T,V)-space is exponentiable as a (T,V)-graph, since every quasitopos

is cartesian closed, that is, all objects are exponentiable. In fact, a quasitopos is always locally

cartesian closed [Pen77, Definition 2.5], i.e., the slice categories are cartesian closed, implying that

the category itself is cartesian closed.

In (T,V)-Gph, the exponential (Y,b)(X ,a) of (T,V)-spaces (Y,b) and (X ,a) is given by the set

Y X = {h : (X ,a)× (1,e◦
1
)→ (Y,b) | h is a (T,V)-continuous map}

endowed with the largest V-relation ba : T (Y X)−→7 Y X making the evaluation map evX ,Y : Y X ×X →Y ,

(h,x) 7→ h(x), (T,V)-continuous, where h(x) stands for h(x,∗), with 1= {∗}. Then ba is reflexive,

and it is given by

ba(p,h) =
∨
{v ∈ V | ∀q ∈ (T π

Y X )
−1(p), ∀x ∈ X , a(T πX (q),x)∧ v ≤ b(TevX ,Y (q),h(x))}, (I.20)

for each p ∈ T (Y X), h ∈ Y X , where π
Y X and πX are the product projections from Y X ×X into Y X

and X , respectively [CHT03]. Since our quantales are Heyting algebras, the supremum above is a

maximum. If, for each (T,V)-space (Y,b), the (T,V)-graph (Y X ,ba) is transitive, and consequently a

(T,V)-space, then (X ,a) is exponentiable in (T,V)-Cat. In order to state the sufficient condition for

such fact, we fix some notation and present an auxiliary result. This sufficient condition generalises

[Hof06, Theorem 4.3] and [Hof07, Theorem 6.5].

For sets X and Y , let canX ,Y = ⟨T πX ,T πY ⟩ : T (X ×Y )→ T X ×TY be the unique map such that

the following diagram is commutative, where πX ,πY ,πT X , and πTY are product projections.

T (X ×Y )
T πX

zz

canX ,Y

��

T πY

$$
T X T X ×TY

πT X

oo
πTY

// TY

(I.21)
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For V-relations r : X−→7 X ′ and s : Y−→7 Y ′, let us set the V-relation:

r ? s : X ×Y−→7 X ′×Y ′, (r ? s)((x,y),(x′,y′)) = r(x,x′)∧ s(y,y′);

observe that r ? s = (π◦
X ′ · r ·πX )∧ (π◦

Y ′
· s ·πY ). For (T,V)-spaces (X ,a) and (Y,b), their product is

(X ×Y,a×b), where a×b : T (X ×Y )−→7 X ×Y is given by: for each w ∈ T (X ×Y ), (x,y) ∈ X ×Y ,

a×b(w,(x,y)) = a(T πX (w),x)∧b(T πY (w),y) = (a?b) · canX ,Y (w,(x,y)). Therefore,

a×b = (a?b) · canX ,Y . (I.22)

Lemma 2.6.1 [CHR20, Proposition 7.4] If the diagram below is lax commutative,

T (V×V)
T (∧) //

⟨ξ ·T π1 ,ξ ·T π2⟩
��

≤

TV

ξ

��
V×V ∧

// V

(I.23)

then, for each V-relations r : X−→7 X ′ and s : Y−→7 Y ′, the following diagram is commutative.

T (X ×Y )

❴T (r?s)

��

canX ,Y // T X ×TY

❴(Tr)?(T s)

��
T (X ′×Y ′) can

X ′,Y ′
// T X ′×TY ′

Proof. We first notice that the inequality can
X ′,Y ′ · T (r ? s) ≤ ((Tr)? (T s)) · canX ,Y is always true,

since this is equivalent to T (r ? s)≤ can◦
X ′,Y ′

· ((Tr)? (T s)) · canX ,Y , and

T (r ? s) = T ((π◦
X ′ · r ·πX )∧ (π◦

Y ′
· s ·πY ))

≤ T (π◦
X ′ · r ·πX )∧T (π◦

Y ′
· s ·πY )

= (T π◦
X ′ ·Tr ·T πX )∧ (T π◦

Y ′
·T s ·T πY )

= (can◦
X ′,Y ′

·π◦
T X ′ ·Tr ·πT X · canX ,Y )∧ (can◦

X ′,Y ′
·π◦

TY ′
·T s ·πTY · canX ,Y )

= can◦
X ′,Y ′

· ((π◦
T X ′ ·Tr ·πT X )∧ (π◦

TY ′
·T s ·πTY )) · canX ,Y

= can◦
X ′,Y ′

· (Tr ?T s) · canX ,Y .
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For the converse inequality, we start by observing that since T preserves weak pullbacks, for maps

f : A → X and g : B → Y , the diagram

T (A×B)
T ( f×g) //

canA,B
��

T (X ×Y )
canX ,Y
��

TA×T B
T f×T g

// T X ×TY

is a weak pullback. We wish to prove that, for each w ∈ T (X ×Y ), x′ ∈ T X ′, y′ ∈ TY ′,

Tr(T πX (w),x′)∧T s(T πY (w),y′)≤
∨
{T (r ? s)(w,w′) | w′ ∈ T (X ′×Y ′), can

X ′,Y ′ (w
′) = (x′,y′)}.

By (I.17),

Tr(x,x′) =
∨
{ξ ·T r⃗(w1) | w1 ∈ T (X ×X ′), T πX (w1) = x, T π

X ′ (w1) = x′}

and

T s(y,y′) =
∨
{ξ ·T s⃗(w2) | w2 ∈ T (Y ×Y ′), T πY (w2) = y, T π

Y ′ (w2) = y′},

where (x,y) = canX ,Y (w), and, because V is a Heyting algebra, one concludes that

Tr(x,x′)∧T s(y,y′) =
∨

can
X ,X ′ (w1 )=(x,x′)

can
Y,Y ′

(w2 )=(y,y′)

(ξ ·T r⃗(w1)∧ξ ·T s⃗(w2)) .

By our first observation, the following diagram is a weak pullback:

T (X ×X ′×Y ×Y ′)
T (πX ×πY ) //

can
X×X ′,Y×Y ′

��

T (X ×Y )

canX ,Y

��
T (X ×X ′)×T (Y ×Y ′)

T πX ×T πY

// T X ×TY.

Hence, for each (w1 ,w2)∈ T (X ×X ′)×T (Y ×Y ′) such that T πX ×T πY (w1 ,w2) = (x,y) = canX ,Y (w),

there exists v ∈ T (X ×X ′×Y ×Y ′) such that

can
X×X ′,Y×Y ′ (v) = (w1 ,w2) & T (πX ×πY )(v) =w. (I.24)
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Furthermore, can
V,V

·T (⃗r × s⃗) = (T r⃗ × T s⃗) · can
X×X ′,Y×Y ′ , whence, by hypothesis, for such a

v ∈ T (X ×X ′×Y ×Y ′) we have

ξ ·T (∧) ·T (⃗r× s⃗)(v) ≥ ∧· ⟨ξ ·T π1 ,ξ ·T π2⟩ ·T (⃗r× s⃗)(v) = ∧· (ξ ×ξ ) · can
V,V

·T (⃗r× s⃗)(v)

= ∧· (ξ ×ξ ) · (T r⃗×T s⃗) · can
X×X ′,Y×Y ′ (v) = ∧· (ξ ×ξ )(T r⃗(w1),T s⃗(w2))

= ξ ·T r⃗(w1)∧ξ ·T s⃗(w2).

Finally, using that X ×Y ×X ′×Y ′ ∼= X ×X ′×Y ×Y ′, one can see that ∧· (⃗r× s⃗) =−−→r ? s. Moreover,

each v ∈ T (X ×X ′×Y ×Y ′) satisfying (I.24) determines a w′ = T (π
X ′ ×π

Y ′ )(v) ∈ T (X ′×Y ′) such

that can
X ′,Y ′ (w

′) = (x′,y′), hence, by (I.17) we can conclude:

Tr(x,x′)∧T s(y,y′) ≤
∨

can
X×X ′,Y×Y ′

(v)=(w1 ,w2 )

T (πX ×πY )(v)=w

ξ ·T (∧) ·T (⃗r× s⃗)(v)

≤
∨

can
X ′,Y ′

(w′)=(x′,y′)

T (r ? s)(w,w′).

Remark 2.6.2 By [CHR20, Remark 7.5], the inequality

T (V×V)
T (∧) //

⟨ξ ·T π1 ,ξ ·T π2⟩
��

≥

TV

ξ

��
V×V ∧

// V

is always true. Let us verify that, for some of our Examples 2.5.1, (I.23) is (strictly) commutative.

This is trivial for T= I and ξ = 1
V
. For any T, when V is a frame, so that ⊗= ∧, this follows from

(I.16). For U and P+ , since the map ξ is the same as for Pmax , we can conclude the commutativity.

ForU and P1 , to verify the commutativity of

U([0,1]× [0,1])
U(∧) //

⟨ξ ·Uπ1 ,ξ ·Uπ2⟩
��

≤

U [0,1]

ξ

��
[0,1]× [0,1] ∧

// [0,1],

let w ∈ U([0,1]× [0,1]) and fix vi = Uπi(w), i = 1,2. Suppose that ξ ·U(∧)(w) < ξ (v1)∧ ξ (v2).

Hence there exists t ∈ [0,1] with ξ ·U(∧)(w)< t < ξ (v1)∧ξ (v2). This means that [t,1]× [t,1] /∈w
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and, by definition of ξ , [t,1] ∈ vi , i = 1,2. Then [t,1]× [t,1] ∈ w, a contradiction. For M and any

quantale V, we have:

V×V×M
∧×1M //

⟨π
V
·(π1×1M ),π

V
·(π2×1M )⟩

��

V×M

π
V

��
V×V ∧

// V

☞

(u,v,a) ✤ //
❴

��

(u∧ v,a)
❴

��
(u,v) ✤ // u∧ v.

Therefore, our table of categories satisfying the hypothesis of Lemma 2.6.1 is the following one.

❅
❅
❅
❅❅

V

T
I U M L

2 Ord Top (M,2)-Cat MultiOrd

P+ Met App (M,P+)-Cat

Pmax UltMet NA-App (M,Pmax)-Cat (L,Pmax)-Cat

P1 BMet (U,P1)-Cat (M,P1)-Cat

22 BiRel BiTop (M,22)-Cat (L,22)-Cat

∆ ProbMet (M,∆)-Cat

(I.25)

Theorem 2.6.3 [CHR20, Theorem 3.1] If for all V-relations r : X−→7 X ′ and s : Y−→7 Y ′ the diagram

T (X ×Y )

❴T (r?s)
��

canX ,Y // T X ×TY

❴(Tr)?(T s)
��

T (X ′×Y ′) can
X ′,Y ′

// T X ′×TY ′

is commutative, then the (T,V)-space (X ,a) is exponentiable whenever, for each X ∈ T T X, x ∈ X,

u,v ∈ V,

∨
x∈T X

(Ta(X,x)∧u)⊗ (a(x,x)∧ v)≥ a(mX (X),x)∧ (u⊗ v). (I.26)

Proof. Let (X ,a) be a (T,V)-space satisfying (I.26). For each (T,V)-space (Y,b), we show that the

(T,V)-graph (Y X ,ba) is transitive, with ba as in (I.20), that is, for each P ∈ T T (Y X), p ∈ T (Y X),

h ∈ Y X ,

T (ba)(P,p)⊗ba(p,h)≤ ba(m
Y X (P),h).
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By the definition of ba it suffices to show that, for each q ∈ T (Y X ×X) such that T π
Y X (q) = m

Y X (P),

and each x ∈ X ,

(T (ba)(P,p)⊗ba(p,h))∧a(T πX (q),x)≤ b(T evX ,Y (q),h(x)),

with evX ,Y : Y X ×X → Y the evaluation map. Since m satisfies (BC), there exists Q ∈ T T (Y X ×X)

such that T T π
Y X (Q) =P and m

Y X×X
(Q) = q, hence mX (T T πX (Q)) = T πX ·mY X×X

(Q) = T πX (q) and

we have:

(T (ba)(P,p)⊗ba(p,h))∧a(T πX (q),x)

≤
∨

x∈T X

(
T (ba)(T T π

Y X (Q),p)∧Ta(T T πX (Q),x)
)
⊗ (ba(p,h)∧a(x,x)) (by (I.26))

≤
∨

x∈T X

∨
q∈can−1

Y X ,X
(p,x)

T (ba ?a)(T can
Y X ,X

(Q),q)⊗ (ba ?a)(can
Y X ,X

(q),(h,x)) (by hypothesis)

=
∨

q∈(T π
Y X )−1(p)

T (ba ×a)(Q,q)⊗ (ba ×a)(q,(h,x))

≤
∨

q∈(T π−1
Y X

)(p)

T b(T T evX ,Y (Q),T evX ,Y (q))⊗b(T evX ,Y (q),h(x))

≤ b(mY ·T T evX ,Y (Q),h(x)) = b(T evX ,Y (q),h(x)).

When ⊗ = ∧, (I.26) gives for all X ∈ T T X , x ∈ X ,
∨

x∈T X (Ta(X,x)∧a(x,x)) ≥ a(mX (X),x),

what is equivalent to a ·Ta = a ·mX . This is the case, for instance, of (U,2)-Cat∼= Top, where this

condition is equivalent to exponentiability as proved in [Pis99]. Moreover, in Top exponentiable

spaces are characterized as the core-compact spaces (see [EH02] for a thorough discussion). In [Hof14,

Definition 1.8], core-compact (T,V)-spaces are naturally those spaces (X ,a) such that a ·Ta = a ·mX .

2.7 Injective and representable (T,V)-spaces, and the Yoneda embedding

For (T,V)-spaces (X ,a) and (Y,b), let us consider the following (pre)order on the set of continuous

maps from (X ,a) to (Y,b): for each f ,g : (X ,a)→ (Y,b),

f ≤ g ⇐⇒ ∀x ∈ X , k ≤ b(eY ( f (x)),g(x)). (I.27)

This order was first defined in [CT03], and it is compatible with composition, that is, with this order

(T,V)-Cat becomes a 2-category.
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Definition 2.7.1 A space (Y,b) is called separated if, for all (X ,a) in (T,V)-Cat, the order (I.27) is

separated, i.e., it is anti-symmetric.

Under the notation f ≃ g if, and only if, f ≤ g and g ≤ f , (Y,b) is separated whenever, for each

f ,g : (X ,a)→ (Y,b), (X ,a) ∈ (T,V)-Cat, f ≃ g implies f = g. In fact, (Y,b) is separated if, and

only if, the order on (T,V)-Cat((1,e◦
1
),(Y,b)) is separated, and this is equivalent to the following

order on the set Y to be separated: for each y,y′ ∈ Y ,

y ≤ y′ ⇐⇒ k ≤ b(eY (y),y
′). (I.28)

[HST14, III-Proposition 3.3.1].

We observe that for the Sierpiński (T,V)-space (V,hom
ξ
), the order (I.28) is the order of V,

hence (V,hom
ξ
) is a separated space. Moreover, for the particular case of (U,2)-Cat ∼= Top, the

order (I.28) is the dual of the specialization order that was discussed in Subsection 2.3.

Remark 2.7.2 For a separated (T,V)-space (X ,a), a map f : (X ,a)→ (Y,b) is fully faithful if, and

only if, it is an embedding: if f is an embedding, then it is |-|-initial, where |-| : (T,V)-Cat→ Set is

the forgetful functor, hence it is fully faithful. Conversely, if f is fully faithful, then it is |-|-initial. Let

x,x′ ∈ X such that f (x) = f (x′). Then f (x)≤ f (x′) and f (x′)≤ f (x), whence

k ≤ b(eY ( f (x)), f (x′))≤ b(T f · eX (x), f (x′)) = a(eX (x),x
′),

that is, x ≤ x′, and, analogously, x′ ≤ x. Since (X ,a) is separated, we have x = x′, hence f is an

injective map.

Denoting by (T,V)-Catsep the full subcategory of (T,V)-Cat of separated spaces, (T,V)-Catsep

is closed under mono-sources in (T,V)-Cat. Moreover, by [HST14, V-Theorem 2.1.2], we have:

Proposition 2.7.3 (T,V)-Catsep is regular epireflective in (T,V)-Cat. For each (T,V)-space (X ,a),

the projection map ηX : X → X/∼, where, for each x,x′ ∈ X, x ∼ x′ if, and only if, x ≤ x′ and x′ ≤ x,

gives a reflection, with X/∼ endowed with the (T,V)-structure ã = ηX ·a · (T ηX )
◦, which makes ηX

both a |-|-final and a |-|-initial morphism.

Let us recall that a continuous map f : (X ,a)→ (Y,b) is said to be left adjoint to a continuous

map g : (Y,b)→ (X ,a), and g is right adjoint to f , denoted as usual by f ⊣ g, if, and only if,

1X ≤ g · f & f ·g ≤ 1Y .
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Considering the associated V-spaces Ae(X ,a)= (X ,a ·eX )= (X ,a0) and Ae(Y,b)= (Y,b ·eY )= (X ,b0),

and using [HST14, III-Remark 3.3.4], one can check that

f ⊣ g ⇐⇒ ∀x ∈ X , ∀y ∈ Y, b0( f (x),y) = a0(x,g(y)). (I.29)

Definition 2.7.4 A space (Z,c) is said to be injective if for each fully faithful map y : (X ,a)→ (Y,b),

and each continuous map f : (X ,a) → (Z,c), there exists f̂ : (Y,b) → (Z,c) continuous such that

f̂ · y ≃ f :

X
y //

f ��

≃
Y

f̂��
Z;

(I.30)

f̂ is called an extension of f along y.

Observe that considering only separated spaces, injectivity assumes its usual meaning [AHS90,

Definition 9.1]. For details on injective spaces we refer to [Hof11].

Let us proceed recalling the class of representable (T,V)-spaces. We refer the reader to

[CCH15, HST14] for more detailed information. Starting with the Set-monad T = (T,m,e) and

its extension to V-Rel, for each V-space (X ,a0), (T X ,Ta0) is a V-space. Each V-continuous map

f : (X ,a0) → (Y,b0) induces a V-continuous map T f : (T X ,Ta0) → (TY,T b0), and, moreover,

e
(X ,a0 )

: (X ,a0)→ (T X ,Ta0) and m
(X ,a0 )

: (T 2X ,T 2a0)→ (T X ,Ta0) are V-continuous maps, because

e and m are oplax transformations [Tho09]. Hence T extends to a monad on V-Cat, that we denote

again by T.

Consider the category (V-Cat)T of Eilenberg-Moore T-algebras on V-Cat, that is, the objects of

(V-Cat)T are pairs ((X ,a0),α), also denoted by (X ,a0 ,α), where (X ,a0) a V-space, and (X ,α) is a

T-algebra with α : (T X ,Ta0)→ (X ,a0) a V-continuous map. A morphism f : (X ,a0 ,α)→ (Y,b0 ,β )

is both a V-continuous map f : (X ,a0)→ (Y,b0) and a T-homomorphism f : (X ,α)→ (Y,β ).

For each (X ,a0 ,α) ∈ (V-Cat)T, set K(X ,a0 ,α) = (X ,a0 ·α), which is a (T,V)-space; each mor-

phism f : (X ,a0 ,α)→ (Y,b0 ,β ) is a (T,V)-continuous map f : (X ,a0 ·α)→ (Y,b0 ·β ). Furthermore,

for each (T,V)-space (X ,a), the triple M(X ,a) = (T X ,Ta ·m◦
X
,mX ) belongs to (V-Cat)T, and, for

each (T,V)-continuous map f : (X ,a)→ (Y,b), T f : (T X ,Ta ·m◦
X
,mX )→ (TY,T b ·m◦

Y
,mY ) is a mor-

phism in (V-Cat)T. The assignments K and M defined above determine well-defined functors which
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form a 2-adjunction

(V-Cat)T ⊤

K
((

M

hh (T,V)-Cat. (I.31)

Then we have a lifting ofT to a 2-monad on (T,V)-Cat, again denoted byT, which is lax-idempotent,

or of Kock-Zöberlein type. Lax-idempotent monads are defined in the setting of 2-categories. However,

since we are dealing only with order-enriched categories, we recall the definition in this context:

Definition 2.7.5 For an order-enriched category C, a 2-monadT= (T,m,e) : C→C is lax-idempotent

if, for each A ∈ C, mA ⊣ eTA .

This, in particular, implies that a T-algebra structure α : T X → X is left adjoint to eX : X → T X ,

that is, 1T X ≤ eX ·α and α · eX ≤ 1X .

Definition 2.7.6 A (T,V)-space (X ,a) is called representable whenever the unit eX : X → T X has a

left adjoint.

Such a left adjoint to eX is in general only a pseudo-algebra structure on X , thus

α · eX ≃ 1X & α ·T α ≃ α ·mX , (I.32)

and we have equalities when (X ,a) is separated [Hof14, Remark 2.6]. A useful characterization

of representability is given in [Hof14, Proposition 2.7]: a (T,V)-space (X ,a) is representable if,

and only if, it is core-compact and there exists a map α : T X → X such that a = a0 ·α , where

(X ,a0) = Ae(X ,a) = (X ,a · eX ):

T X α //
✤
a

44X ✤a0 // X ; (I.33)

this map α is precisely the left adjoint to eX .

This setting provides the definition of duals in (T,V)-Cat. For a V-space (X ,a0), its dual

V-space is simply (X ,a◦
0
). For a (T,V)-space (X ,a), consider its image by the functor M in (V-Cat)T,

(T X ,Ta ·m◦
X
,mX ), and take the dual of its underlying V-space, (T X ,mX · (Ta)◦,mX ), which belongs to

(V-Cat)T, since the extension T commutes with involution. Then apply the functor K obtaining

Xop = (T X ,mX · (Ta)◦ ·mX ). (I.34)
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The space Xop is fundamental to the definition of the Yoneda embedding, which we recall next.

Firstly, the tensor product ⊗ of V induces a (T,V)-structure c on X ×Y defined by

c(w,(x,y)) = a(T πX (w),x)⊗b(T πY (w),y),

for each w ∈ T (X ×Y ), (x,y) ∈ X ×Y . Setting

(X ,a)⊗ (Y,b) = (X ×Y,c), (I.35)

since we are in the setting of a strict topological theory, a functor (X ,a)⊗– : (T,V)-Cat→ (T,V)-Cat

is defined [Hof07, Lemma 6.1]; on morphisms ((X ,a)⊗–) f = 1X × f . Clearly this functor does not

have a right adjoint for every space (X ,a), since this would imply in particular that Top is cartesian

closed. However, this functor does have a right adjoint whenever the (T,V)-structure a : T X−→7 X

satisfies a ·Ta = a ·mX [Hof07, Theorem 6.5]. In particular, every T-algebra is ⊗-exponentiable.

The proof of this result on ⊗-exponentiability is similar to what is done in the usual exponentiabil-

ity case described in Subsection 2.6; of course, when ⊗= ∧, they are the same. The set

Y X = {h : (X ,a)⊗ (1,e◦
1
)→ (Y,b) | h is a (T,V)-continuous map}

is endowed with the largest V-relation [a,b] : T (Y X)−→7 Y X that makes the evaluation map

evX ,Y : Y X ×X → Y , (h,x) 7→ h(x), (T,V)-continuous, with h(x) standing for h(x,∗), and 1 = {∗}.

Then [a,b] is reflexive and it is given by

[a,b](p,h) =
∨
{v ∈ V | ∀q ∈ (T π

Y X )
−1(p), ∀x ∈ X , a(T πX (q),x)⊗ v ≤ b(TevX ,Y (q),h(x))},

for each p∈ T (Y X), h ∈Y X [CHT03]. Since ⊗ distributes over
∨

, the supremum above is a maximum.

Moreover, from the relation (I.2) between ⊗ and hom, one obtains

[a,b](p,h) =
∧

q∈(T π
Y X )−1(p)

x∈X

hom
(
a(T πX (q),x),b(TevX ,Y (q),h(x))

)
, (I.36)

for each p ∈ T (Y X), h ∈ Y X . Hence this construction defines a right adjoint (–)(X ,a) to the functor

(X ,a)⊗– in (T,V)-Gph. When the (T,V)-graph structure [a,b] is transitive, for each (T,V)-space
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(Y,b), then this defines a right adjoint for (X ,a)⊗– in (T,V)-Cat. As discussed above, this happens

when a ·Ta = a ·mX [Hof07, Theorem 6.5].

Now let (X ,a0 ,α) be an element of (V-Cat)T. Considering its image by the functor K, (X ,a0 ·α),

and its underlying T-algebra (X ,α), we have

1X ≤ a0 =⇒ α ≤ a0 ·α, (I.37)

whence Y (X ,a0 ·α) = {h : (X ,a0 ·α)⊗ (1,e◦
1
)→ (Y,b) | h is a (T,V)-continuous map} is a subset of

Y (X ,α) = {h : (X ,α)⊗(1,e◦
1
)→ (Y,b) | h is a (T,V)-continuous map}. Motivated by [Hof13, Lemma

5.2], we prove the following:

Lemma 2.7.7 For each (X ,a0 ,α) ∈ (V-Cat)T and each (T,V)-space (Y,b), the inclusion map

Y (X ,a0 ·α) ↪→ Y (X ,α) is an embedding. Consequently, (X ,a0 ·α) is ⊗-exponentiable.

Proof. Since T preserves monomorphisms, we can consider that T (Y (X ,a0 ·α)) ⊆ T (Y (X ,α)). Fur-

thermore, the inclusion map Y (X ,a0 ·α) ↪→ Y (X ,α) is (T,V)-continuous, since it is the exponential of

the identity map (X ,α) → (X ,a0 ·α), which is (T,V)-continuous by (I.37). By (I.36), for each

p ∈ T (Y (X ,a0 ·α)), h ∈ Y (X ,a0 ·α),

[α,b](p,h) =
∧

q∈(T π
Y X )−1(p)

x∈X

hom(α(T πX (q),x),b(TevX ,Y (q),h(x)))

=
∧

q∈(T π
Y X )−1(p)

b(TevX ,Y (q),h ·α ·T πX (q)) (α is a map, (I.5), (I.4)),

and

[a0 ·α,b](p,h) =
∧

q∈(T π
Y X )−1(p)

x∈X

hom(a0 ·α(T πX (q),x),b(TevX ,Y (q),h(x))).

Considering the V-space (Y,b0) = (Y,b · eY ), we have

h◦ ·b0 ·h = h◦ ·b · eY ·h

= h◦ ·b ·T h · eX (e is natural)

≥ (a0 ·α ⊗ e◦
1
) · eX (h belongs to Y (X ,a0 ·α))

= a0 · (α · eX )

= a0 (α is a T-algebra structure).
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Hence a0 ·α(T πX (q),x) = a0(α ·T πX (q),x)≤ b0(h ·α ·T πX (q),h(x)), and consequently

b(TevX ,Y (q),h ·α ·T πX (q))⊗a0 ·α(T πX (q),x)

≤ b0(eY ·TevX ,Y (q),h ·α ·T πX (q))⊗b0(h ·α ·T πX (q),h(x))

≤ b(TevX ,Y (q),h(x)) (b0 is transitive),

what is equivalent to b(TevX ,Y (q),h ·α ·T πX (q))≤ hom(a0 ·α(T πX (q),x),b(TevX ,Y (q),h(x))), whence

[α,b](p,h)≤ [a0 ·α,b](p,h).

Since every T-algebra is ⊗-exponentiable, Y (X ,α) is a (T,V)-space. Hence, by (TA3) of Subsec-

tion 2.4, Y (X ,a0 ·α) is a (T,V)-space.

In particular, for every (T,V)-space (X ,a), its dual (T,V)-space Xop in (I.34) is ⊗-exponentiable.

Lemma 2.7.8 Each (T,V)-space (X ,a) induces a (T,V)-continuous map a : Xop ⊗X → V, where

(x,x) 7→ a(x,x).

Proof. We wish to prove that, for each w ∈ T (T X ×X), (x,x) ∈ T X ×X ,

aop(T πT X (w),x)⊗a(T πX (w),x)≤ hom
ξ
(T a⃗(w), a⃗(x,x)) = hom(ξ ·T a⃗(w), a⃗(x,x)),

where aop = mX · (Ta)◦ ·mX and T a⃗ : T (T X ×X)→ T (V). This inequality is equivalent to

aop(T πT X (w),x)⊗a(T πX (w),x)⊗ξ ·T a⃗(w)≤ a⃗(x,x).

We calculate:

aop(T πT X (w),x)⊗ξ ·T a⃗(w)⊗ a⃗(T πX (w),x)

≤ m◦
X
·Ta ·m◦

X
(x,T πT X (w))⊗Ta(T πT X (w),T πX (w))⊗ a⃗(T πX (w),x) (by (I.17))

≤ a ·Ta ·m◦
X
·Ta ·m◦

X
(x,x) (by (I.6))

≤ a ·mX ·m◦
X
·Ta ·m◦

X
(x,x) (by (T) of 2.2)

≤ a ·Ta ·m◦
X
(x,x) (by (I.8))

≤ a(x,x) (by (T) and (I.8)).
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Definition 2.7.9 For a (T,V)-space (X ,a), its Yoneda embedding is the ⊗-exponential mate of the

(T,V)-continuous map a : Xop ⊗X → V, which we denote by yX : X → PX , with PX = VXop
, so that,

for each x ∈ X , x ∈ T X , yX (x)(x) = a(x,x).

We observe that this definition generalizes the Yoneda embedding for V-valued categories from

[Law73].

We finish this subsection recalling important results that are going to be used in the next chapter.

Proofs can be found in [CH09] and [Hof11], where the concept of (T,V)-modules, or (T,V)-

distributors, is employed. We do not explore this concept here. The first result is properly contained

and proved in [Hof11, Theorem 2.7].

Proposition 2.7.10 The following are equivalent for a (T,V)-space (X ,a).

(i) (X ,a) is injective.

(ii) The Yoneda embedding yX : X → PX has a left inverse, that is, there exists a continuous map

Sup
X

: PX → X such that Sup
X
· yX = 1X .

(iii) The Yoneda embedding yX : X → PX has a left adjoint Sup
X

: PX → X.

Corollary 2.7.11 [Hof14, Proposition 3.8] Every injective (T,V)-category is representable.

Proposition 2.7.12 [CH09, Corollary 5.2][Hof11, Theorem 2.9] For every (T,V)-space (X ,a),

PX = VXop
is an injective separated (T,V)-space, and the Yoneda embedding yX : X → PX is fully

faithful.

Therefore, when (X ,a) is separated, by Remark 2.7.2, yX : X → PX is an embedding, and we

conclude:

Theorem 2.7.13 Every separated (T,V)-space embeds into an injective separated (T,V)-space.

Corollary 2.7.14 [HT10, Lemma 4.18] Under the assumption that T1 = 1, the Sierpiński (T,V)-

space (V,hom
ξ
) is an injective (T,V)-space.

2.8 Compact and Hausdorff (T,V)-spaces

Let us begin with the particular case of (U,2)-Cat ∼= Top. In terms of convergence, a topological

space (X ,a) is compact if, and only if, every ultrafilter on X converges to at least one point of X , and

it is Hausdorff if, and only if, every ultrafilter on X converges to at most one point of X . Combining

both properties, (X ,a) is compact and Hausdorff if, and only if, for all x ∈UX , there exists a unique
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x ∈ X such that a(x,x) =⊤. As shown in [HST14, III-Propositions 2.3.1 and 2.3.2], this is equivalent

to

1UX ≤ a◦ ·a︸ ︷︷ ︸
compact

& a ·a◦ ≤ 1X︸ ︷︷ ︸
Hausdorff

.

The notions of compactness and Hausdorff separation are then generalised to (T,V)-spaces in

[HST14, V-Definition 1.1.1], and as commented by the authors, the work of Manes [Man74] can be

considered as a predecessor of this generalisation. Among others, Kamnitzer [Kam74] and Möbus

[Möb81] have also studied the concepts.

Definition 2.8.1 A (T,V)-space (X ,a) is said to be

(1) compact if 1T X ≤ a◦ ·a, or componentwise, if, for all x ∈ T X , k ≤
∨
x∈X

a(x,x)⊗a(x,x);

(2) Hausdorff if a ·a◦ ≤ 1X , i.e., for all x,y ∈ X and x ∈ T X , if ⊥< a(x,x)⊗a(x,y), then x = y, and

a(x,x)⊗a(x,x)≤ k.

Under the assumption that V is integral, the second condition in item (2) holds trivially. Further-

more, adding the condition that V is lean, by [HST14, V-Proposition 1.2.1], a (T,V)-space (X ,a) is

compact and Hausdorff if, and only if, it is a T-algebra. It follows that:

• compact Hausdorff (T,V)-spaces are exponentiable: for V integral, condition (I.26) is satisfied by

any T-algebra;

• limits of compact Hausdorff (T,V)-spaces are compact and Hausdorff [HST14, V-Theorem 1.2.3];

• under the assumption that T preserves finite coproducts (for examples, the identity monad I, the

ultrafilter monadU [Bör87], and the monadM), finite coproducts of compact Haudorff (T,V)-spaces

are compact and Hausdorff [HST14, V-Corollary 1.1.6(2)].

Denoting by (T,V)-CatCompHaus the class of compact Hausdorff (T,V)-spaces, for future references,

we summarize these three facts in the following:

Proposition 2.8.2 For V an integral and lean quantale, we have an isomorphism

(T,V)-CatCompHaus
∼= SetT, (I.38)

which implies that compact Hausdorff (T,V)-spaces are exponentiable. (T,V)-CatCompHaus is closed

under limits, and if T preserves finite coproducts, then it is closed under finite coproducts.
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We can form a sub-table of (I.12) of examples satisfying these hypotheses.

❅
❅
❅
❅❅

V

T
I U M

2 Ord Top (M,2)-Cat

P+ Met App (M,P+)-Cat

Pmax UltMet NA-App (M,Pmax)-Cat

P1 BMet (U,P1)-Cat (M,P1)-Cat

(I.39)

Examples 2.8.3 (1) For the first column of this table, V-CatCompHaus
∼= SetI = Set, whence compact

Hausdorff V-spaces are discrete objects: (X ,1X ), X ∈ Set.

(2) For the second column, (U,V)-CatCompHaus
∼= SetU. For Top ∼= (U,2)-Cat, as observed in the

begining of the subsection, compact and Hausdorff spaces are those such that every ultrafilter converges

to a unique point. Analogously, for NA-App ∼= (U,Pmax)-Cat and App ∼= (U,P+)-Cat, compact

Hausdorff (non-Archimedean) approach spaces are topological approach spaces [Low97, Chapter 2]

induced by a compact Hausdorff topology.

(3) For a space (X ,a) ∈ (M,2)-Cat, for (x,b) ∈ X ×M, x′ ∈ X , writing x′ = b · x for a((x,b),x′) =⊤,

then (X ,a) is compact and Haudorff if, and only if,

∀x ∈ X , ∀b ∈ M, ∃ ! x′ ∈ X ; x′ = b · x,

and this implies that a : X ×M → X defines an action of M on X [HST14, V-Section 1.4]. Hence

(M,2)-CatCompHaus is equivalent to the topos M-Set which consists of sets with actions of M and

equivariant maps. For V = P+ ,Pmax ,P1 , we have

(M,V)-CatCompHaus
∼= SetM ∼= (M,2)-CatCompHaus

∼=M-Set.





Chapter II

On injectivity and weak exponentiability

in (T,V)-Cat

We investigate in this chapter the relation between injectivity and exponentiability of (T,V)-spaces,

generalising some results of [HR13, Hof13]. Moreover, following the lines of [Ros99], and applying

results of [CR00], we prove that (T,V)-Cat is weakly (locally) cartesian closed. Most of the results

of this chapter can be found in [CHR20].

3 Injectivity and exponentiability

Following the techniques of [Hof13], we present conditions under which every injective space is

exponentiable in (T,V)-Cat.

Firstly, V-Cat is a monoidal closed category for the tensor defined in (I.35) [Law73]. Thus, when

⊗= ∧, V-Cat is a cartesian closed category. This is the case of Ord, UltMet, and BiRel. Secondly,

from [HR13, Theorem 5.3], the following condition on the quantale V:

∀u,v,w ∈ V, w∧ (u⊗ v) =
∨
{u′⊗ v′ | u′ ≤ u, v′ ≤ v, u′⊗ v′ ≤ w}, (II.1)

is equivalent to exponentiability in V-Cat of every injective V-space. The quantales P+ , P1 , and ∆

satisfy condition (II.1), whence injective spaces are exponentiable in the categories Met, BMet, and

ProbMet.

Since we are looking for a general result for (T,V)-spaces of injectivity implying exponentiability,

condition (II.1) must be one of our hypothesis. Let us provide more background and fix some notation.

35
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Each (T,V)-space (X ,a) induces a continuous map a : Xop⊗X →V, so we consider the composite

Xop ⊗X ⊗V
a⊗1

V // V⊗V
⊗ // V, (II.2)

which is a continuous map, since ⊗ : V×V→ V is continuous [Hof11, Proposition 1.4(1)]. From

⊗-exponentiability of Xop, (II.2) induces a continuous map ã : X ⊗V→ PX . For each (x,u) ∈ X ×V,

x ∈ T X ,

ã(x,u)(x) = a(x,x)⊗u. (II.3)

Now let us consider that (X ,a) is an injective (T,V)-space. Then the Yoneda embedding

yX : X → PX has a left adjoint Sup
X

: PX → X . Define the continuous map � : X ⊗V → X as

the composite

X ⊗V
ã //

�

33PX
Sup

X // X , (II.4)

and, for each (x,u) ∈ X ×V, we use the notation x�u = �(x,u). For a fixed element u of V, consider

the composite

X
(–,u) //

–�u

22X ⊗V
ã // PX

Sup
X // X , (II.5)

which we denote by –�u : X → X , where (–,u) : x 7→ (x,u).

Lemma 3.0.1 Let u ∈ V be such that the diagram

T1 Tu //

!
��

≥

TV

ξ

��
1 u

// V

is lax commutative, where 1= {∗} and u : 1→ V, ∗ 7→ u. Then, for every (T,V)-space (X ,a), the

map (–,u) : X 7→ X ⊗V is (T,V)-continuous.

Proof. Consider the maps !X : X → 1 and T !X : T X → T1. By hypothesis, for each x ∈ T X ,

ξ ·T (u·!X )(x) = ξ ·Tu(T !X (x))≤ u·!(T !X (x)) = u.
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We have the equivalences:

ξ ·T (u·!X )(x)≤ u ⇐⇒ k⊗ξ ·T (u·!X )(x)≤ u ⇐⇒ k ≤ hom
ξ
(T (u·!X )(x),u)

Then, for each x ∈ T X , x ∈ X ,

a⊗hom
ξ
(T (–,u)(x),(x,u)) = a(T πX ·T (–,u)(x),x)⊗hom

ξ
(T π

V
·T (–,u)(x),u)

= a(x,x)⊗hom
ξ
(T (u·!X )(x),u)

≥ a(x,x)⊗ k = a(x,x),

where πX and π
V

are the product projections from X ×V into X and V, respectively.

Therefore, under the conditions of this lemma, the map –�u is continuous. For each x ∈ T X , let

us denote T (–�u)(x) = x�u. Then continuity of –�u : (X ,a)→ (X ,a) is expressed as:

∀x ∈ T X , ∀x ∈ X , a(x,x)≤ a(x�u,x�u). (II.6)

Let us set for each r : X−→7 Y and each element u ∈V , the V-relation r⊗u : X−→7 Y given by, for

each (x,y) ∈ X ×Y , r⊗u(x,y) = r(x,y)⊗u. The following condition is to be used:

∀r : X−→7 Y, ∀u ∈ V, T (r⊗u) = Tr⊗u. (II.7)

Lemma 3.0.2 Let u ∈ V be such that the diagram

T1 Tu //

!
��

TV

ξ

��
1 u

// V

(II.8)

is commutative. Then, for every V-relation r : X−→7 Y , T (r⊗u) = Tr⊗u.

Proof. By (I.17), T (r ⊗ u)(x,y) =
∨
{ξ · T−−→r⊗u(w) | w ∈ T (X ×Y ), T πX (w) = x, T πY (w) = y}.

Moreover, the map −−→r⊗u is equal to the following composite, where !
V

: V→ 1,

X ×Y r⃗ // V
⟨1

V
,u·!

V⟩ // V×V
⊗ // V.
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Hence

ξ ·T−−→r⊗u = ξ ·T (⊗) ·T (⟨1
V
,u·!

V
⟩) ·T r⃗

= ⊗· ⟨ξ ·T π1 ,ξ ·T π2⟩ ·T (⟨1V
,u·!

V
⟩) ·T r⃗ (by (I.16))

∗
= ⊗· ⟨ξ ,u·!

V
·ξ ⟩ ·T r⃗

= ⊗· ⟨1
V
,u·!

V
⟩ ·ξ ·T r⃗,

so that, for each w ∈ T (X ×Y ), ξ ·T−−→r⊗u(w) = ξ ·T r⃗(w)⊗u; equality ∗
= follows from

π1 · ⟨ξ ·T π1 ,ξ ·T π2⟩ ·T (⟨1V
,u·!

V
⟩) = ξ ·T π1 ·T (⟨1V

,u·!
V
⟩) = ξ ·T 1

V
= ξ ,

and

π2 · ⟨ξ ·T π1 ,ξ ·T π2⟩ ·T (⟨1V
,u·!

V
⟩) = ξ ·T π2 ·T (⟨1V

,u·!
V
⟩)

= ξ ·Tu ·T !
V

= u·! ·T !
V

(by hypothesis)

= u·! ·ξ ,

where π1 ,π2 are the first and second product projections V×V→ V, respectively. Since ⊗ distributes

over arbitrary suprema, by (I.17), we conclude the result.

Remark 3.0.3 Let us verify that, for the categories of Table (I.25), diagram (II.8) is commutative, for

every u ∈ V. If T1= 1, then T1= {e1(∗)}, hence ξ ·Tu(e1(∗)) = ξ · e
V
(u(∗)) = u = u·!(e1(∗)), and

ξ ·Tu = u·!. For the monad L and any frame V seen as quantale, commutativity follows directly from

the diagram:

L1 Lu //

! ��

LV
ξ��

1 u
// V

☞
(∗, . . . ,∗) ✤ //

❴

��

(u, . . . ,u)
❴

��
∗ ✤ // u = u∧ . . .∧u,

as well as for the monadM and any quantale V:

1×M
u×1M //

! ��

V×M
π
V��

1 u
// V

☞
(∗,b) ✤ //
❴

��

(u,b)
❴

��
∗ ✤ // u.

We are in conditions of proving our main result, and in order to make the proof more direct we

demonstrate the following auxiliary result:
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Lemma 3.0.4 Let (X ,a) be an injective (T,V)-space, with a = a0 ·α as in (I.33), where (X ,a0) is a

V-space, and α : T X → X is a map. The following assertions hold, for every x,x′ ∈ X, x ∈ T X, and

u ∈ V:

(1) a0(x�u,x′) = hom(u,a0(x,x
′));

(2) a0(x,x
′ �u)≥ a0(x,x

′)⊗u;

(3) a(x�u,x)≥ hom(u,a(x,x));

(4) a(x,x�u)≥ a(x,x)⊗u.

Moreover, if (II.7) is satisfied, then, for every X ∈ T 2X,

(5) Ta(X,x�u)≥ Ta(X,x)⊗u.

Proof. (1) For each x,x′ ∈ X , and each u ∈ V,

a0(x�u,x′) = a0(Sup
X
· ã(x,u),x′) (by definition of � (II.4))

= [ã(x,u),yX (x
′)] (because Sup

X
⊣ yX (I.29))

=
∧
y∈T X

hom(ã(x,u)(y),yX (x
′)(y)) (by definition of the V-structure [ , ] [Law73])

=
∧
y∈T X

hom(a(y,x)⊗u,a(y,x′)) (by (II.3) and Definition 2.7.9)

∗
= hom(u,a0(x,x

′));

∗
= follows from:

a(y,x)⊗u⊗hom(u,a0(x,x
′)) ≤ a(y,x)⊗a0(x,x

′) = a0(α(y),x)⊗a0(x,x
′)

≤ a0(α(y),x′) = a(y,x′),

hence, for all y ∈ T X , hom(u,a0(x,x
′))≤ hom(a(y,x)⊗u,a(y,x′)), so that

hom(u,a0(x,x
′))≤

∧
y∈T X

hom(a(y,x)⊗u,a(y,x′));

and we just observe that, for y = eX (x), by reflexivity of a, a(eX (x),x)⊗ u ≥ k ⊗ u = u, whence,

because α · eX ≃ 1X (I.32),

hom(a(y,x)⊗u,a(y,x′)) = hom(a(eX (x),x)⊗u,a(eX (x),x
′)) ≤ hom(u,a0(α · eX (x),x

′))

= hom(u,a0(x,x
′)).
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(2) Since the map – � u : (X ,a) → (X ,a) is (T,V)-continuous, it is a V-continuous map

–�u : (X ,a0)→ (X ,a0), whence, by item (1), for each x,x′ ∈ X , u ∈ V,

a0(x,x
′)⊗u = u⊗a0(x,x

′)≤ u⊗a0(x�u,x′ �u) = u⊗hom(u,a0(x,x
′ �u))≤ a0(x,x

′ �u).

(3) For each x ∈ T X , x ∈ X , u ∈ V,

a(x�u,x) = a0(α(x�u),x)

≥ a0(α(x�u),α(x)�u)⊗a0(α(x)�u,x) (by transitivity of a0)

= a(x�u,α(x)�u)⊗a0(α(x)�u,x)

≥ a(x,α(x))⊗a0(α(x)�u,x) (by continuity of –�u)

= a0(α(x),α(x))⊗a0(α(x)�u,x)

≥ k⊗a0(α(x)�u,x) = a0(α(x)�u,x) (by reflexivity of a0)

= hom(u,a0(α(x),x)) = hom(u,a(x,x)) (by item (1)).

(4) By item (2), for each x ∈ T X , x ∈ X , u ∈ V,

a(x,x�u) = a0(α(x),x�u)≥ a0(α(x),x)⊗u = a(x,x)⊗u.

(5) Item (4) can be expressed as a⊗u ≤ (–�u)◦ ·a, hence applying T , by (II.7), we obtain

Ta⊗u = T (a⊗u)≤ T ((–�u)◦ ·a) = T (–�u)◦ ·Ta,

that is, for all X ∈ T 2X , x ∈ T X , Ta(X,x)⊗u ≤ Ta(X,x�u).

Theorem 3.0.5 Assume that, for each u ∈ V, the diagrams

T (V×V)
T (∧) //

⟨ξ ·T π1 ,ξ ·T π2⟩ ��
≤

TV

ξ

��
V×V ∧

// V

T1 Tu //

!
��

TV
ξ
��

1 u
// V

are (lax) commutative and that V satisfies condition (II.1):

∀u,v,w ∈ V, w∧ (u⊗ v) =
∨
{u′⊗ v′ | u′ ≤ u, v′ ≤ v, u′⊗ v′ ≤ w}.

Then every injective (T,V)-space is exponentiable in (T,V)-Cat.
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Proof. Let (X ,a) be an injective (T,V)-space with a = a0 ·α as in (I.33). By Lemma 2.6.1 and

Theorem 2.6.3, it suffices to verify that, for each X ∈ T 2X , x ∈ X , u,v ∈ V,

∨
x∈T X

(Ta(X,x)∧u)⊗ (a(x,x)∧ v)≥ a(mX (X),x)∧ (u⊗ v).

By condition (II.1),

a(mX (X),x)∧ (u⊗ v) =
∨
{u′⊗ v′ | u′ ≤ u, v′ ≤ v, u′⊗ v′ ≤ a(mX (X),x)};

let us consider u′,v′ ∈V such that u′ ≤ u, v′ ≤ v, and u′⊗v′ ≤ a(mX (X),x). Fix y= T α(X)�u′ ∈ T X ;

then

Ta(X,y)∧u = Ta(X,T α(X)�u′)∧u

≥ (Ta(X,T α(X))⊗u′)∧u (by Lemma 3.0.4 (5))

= (Ta0(T α(X),T α(X))⊗u′)∧u

≥ (k⊗u′)∧u = u′ (because Ta0 is reflexive)

and

a(y,x)∧ v = a(T α(X)�u′,x)∧ v

≥ hom(u′,a(T α(X),x))∧ v (by Lemma 3.0.4 (3))

= hom(u′,a0(α ·T α(X),x))∧ v

= hom(u′,a0(α ·mX (X),x))∧ v (because α ·T α ∼= α ·mX (I.32))

= hom(u′,a(mX (X),x))∧ v.

Thus

(Ta(X,y)∧u)⊗ (a(y,x)∧ v)≥ u′⊗ (hom(u′,a(mX (X),x))∧ v).

From v′ ≤ v and u′ ⊗ v′ ≤ a(mX (X),x) if, and only if, v′ ≤ hom(u′,a(mX (X),x)), we get

v′ ≤ hom(u′,a(mX (X),x))∧ v, whence (Ta(X,y)∧u)⊗ (a(y,x)∧ v)≥ u′⊗ v′.

Remark 3.0.6 By Remark 2.6.2 and Remark 3.0.3, and since the quantales of Examples 2.1.6 satisfy

condition (II.1), we conclude that in the categories of Table (I.25) injective spaces are exponentiable.

4 (T,V)-Cat is weakly (locally) cartesian closed

We start by investigating the weak cartesian closedness of (T,V)-Cat, generalising the results of

[Ros99] for Top. Let C be a category with finite products.
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Definition 4.0.1 For objects X ,Y of C, a weak exponential with base Y and exponent X consists of

an object ≪ X ,Y ≫ and a morphism evX ,Y : ≪ X ,Y ≫×X → Y , the evaluation morphism, such that

every morphism f : Z ×X → Y of C factors, not necessarily in a unique way, as evX ,Y · ( f ×1X ) = f ,

for some f : Z →≪ X ,Y ≫, a transpose of f .

≪ X ,Y ≫ ≪ X ,Y ≫×X
evX ,Y // Y

Z

∃ f

OO

Z ×X

f×1X

OO

f

55

C is weakly cartesian closed if, for all objects X ,Y of C, there exists a weak exponential with base Y

and exponent X .

Recall from Proposition 2.7.3 that the subcategory (T,V)-Catsep of separated (T,V)-spaces

is fully reflective in (T,V)-Cat, and each reflection ηX : (X ,a) → (X/∼, ã) is |-|-initial, where

ã = ηX ·a · (T ηX )
◦ and |-| : (T,V)-Cat→ Set is the forgetful functor. As outlined in [Ros99], we first

prove the following:

Proposition 4.0.2 The reflector R : (T,V)-Cat→ (T,V)-Catsep preserves finite products.

Proof. The terminal object (1,⊤) of (T,V)-Cat is separated. Let (X ,a), (Y,b) be (T,V)-spaces,

and for simplicity let us denote R(X ,a) = (RX , ã) and R(Y,b) = (RY, b̃). Since (T,V)-Catsep is

closed under limits, the product (RX ×RY,d) is separated, with d = ã× b̃. Then the morphism

ηX ×ηY : (X ×Y,c)→ (RX ×RY,d), c = a×b, factors uniquely through the reflection ηX ,Y , that is,

there exists a unique morphism t : R(X ×Y )→ RX ×RY such that t ·ηX×Y = ηX ×ηY .

(X ×Y,c)

ηX ×ηY ))

ηX×Y // (R(X ×Y ), c̃)

t
��

(RX ×RY,d)

(II.9)

Then t is a bijection: for each ([x], [y]) ∈ RX ×RY , t[(x,y)] = t ·ηX×Y (x,y) = ηX ×ηY (x,y) = ([x], [y]),

with [(x,y)] ∈ R(X ×Y ), so t is surjective; if t[(x,y)] = t[(x′,y′)], for [(x,y)], [(x′,y′)] ∈ R(X ×Y ), then

([x], [y]) = ([x′], [y′]) is equivalent to x ∼ x′ and y ∼ y′, hence

c(eX×Y (x,y),(x
′,y′)) = a(T πX · eX×Y (x,y),x

′)∧b(T πY · eX×Y (x,y),y
′) = a(eX (x),x

′)∧b(eY (y),y
′)≥ k,

that is, (x,y) ≤ (x′,y′), and, by the same argument, (x′,y′) ≤ (x,y), i.e., (x,y) ∼ (x′,y′), so t is

injective. Next we prove that t is |-|-initial. Firstly, since ηX and ηY are |-|-initial, so is the morphism
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ηX ×ηY : X ×Y → RX ×RY . Secondly, assuming the Axiom of Choice, so that the functor T preserves

surjections, we have for each z ∈ T (R(X ×Y )), (x,y) ∈ X ×Y ,

c̃(z, [(x,y)]) = ηX×Y · c · (T ηX×Y )
◦(z, [(x,y)]) (by definition of c̃)

=
∨

T ηX×Y (w)=z

ηX×Y (z,w)=[(x,y)]

c(w,(z,w))

=
∨

T ηX×Y (w)=z

ηX×Y (z,w)=[(x,y)]

d(T (ηX ×ηY )(w),ηX ×ηY (z,w)) (because ηX ×ηY is |-|-initial)

=
∨

T ηX×Y (w)=z

ηX×Y (z,w)=[(x,y)]

d(Tt ·T ηX×Y (w), t ·ηX×Y (z,w)) (by (II.9))

= d(Tt(z), t[(x,y)]).

Since t is |-|-initial and a bijection, it is an isomorphism.

Therefore, by [Sch84, Theorem 1.2], we conclude that the existing exponentials of separated

(T,V)-spaces are separated. This fact is to be used in the next result.

Theorem 4.0.3 If every injective (T,V)-space is exponentiable, then (T,V)-Catsep is weakly cartesian

closed.

Proof. Let (X ,a),(Y,b) be separated (T,V)-spaces, and consider the Yoneda embeddings

yX : X → PX and yY : Y → PY . Since PX and PY are injective and separated, by hypothesis, they are

exponentiable, and we can form the exponential PY PX = ⟨PX ,PY ⟩ which is again separated. The

underlying set of ⟨PX ,PY ⟩ consists of all (T,V)-continuous maps from PX × (1,e◦
1
) to PY , and the

evaluation map is given by ev: ⟨PX ,PY ⟩×PX → PY , (ϕ,w) 7→ ϕ(w), where the set PX × (1,e◦
1
) is

identified with PX . Let us define

≪ X ,Y ≫= {ϕ : PX × (1,e◦
1
)→ PY | ϕ(yX (X))⊆ yY (Y )},

and endow this set with the initial (T,V)-structure with respect to the inclusion map

iX ,Y : ≪ X ,Y ≫↪→ ⟨PX ,PY ⟩. Since yY : Y → PY is an injective map, there exists a unique map

ẽv : ≪ X ,Y ≫×X → Y such that the composite

≪ X ,Y ≫×X
iX ,Y ×yX // ⟨PX ,PY ⟩×PX ev // PY
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factors through the Yoneda embedding yY : Y → PY , that is, such that the diagram

≪ X ,Y ≫×X ẽv //

iX ,Y ×yX
��

Y

yY

��
⟨PX ,PY ⟩×PX ev

// PY

is commutative. Let us verify that this defines a weak exponential in (T,V)-Catsep . For each

separated (T,V)-space (Z,c), and each (T,V)-continuous map f : Z ×X → Y , since PY is injective

and separated, there exists an extension f ′ : Z×PX → PY of yY · f : Z×X → PY along the embedding

1Z × yX : Z ×X → Z ×PX , so that the diagram

Z ×X
1Z×yX //

yY · f ##

Z ×PX

f ′zz
PY

is commutative. Factorize f ′ : Z ×PX → PY through the universal map ev: ⟨PX ,PY ⟩×PX → PY :

⟨PX ,PY ⟩×PX ev // PY.

Z ×PX
f ′

55

f×1PX

OO

For each z ∈ Z, f (z) : PX → PY is such that, for each x ∈ X ,

f (z)(yX (x)) = ev( f (z),yX (x)) = f ′(z,yX (x)) = yY ( f (z,x)),

that is, f (z)(yX (X)) ⊆ yY (Y ), whence f (z) ∈≪ X ,Y ≫. Hence the map f corestricts to a map

f̃ : Z →≪ X ,Y ≫, which is continuous, since ≪ X ,Y ≫ has the initial structure with respect to the

inclusion map iX ,Y . Then the following diagram is commutative.

≪ X ,Y ≫×X ẽv // Y

Z ×X
f

55

f̃×1X

OO

Theorem 4.0.4 If (T,V)-Catsep is weakly cartesian closed, then so is (T,V)-Cat.
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Proof. Let (X ,a),(Y,b),(Z,c) be spaces, and, for each continuous map f : (Z,c)× (X ,a)→ (Y,b),

consider its image R f : RZ ×RX ∼= R(Z ×X)→ RY by the reflector R : (T,V)-Cat→ (T,V)-Catsep .

By hypothesis, R f factorizes through the weak evaluation as R f = ẽv · (R f ×1RX ) in (T,V)-Catsep :

≪ RX ,RY ≫×RX ẽv // RY.

RZ ×RXR f×1RX

ll
R f

55

Define Z f = Z/∼, where, for each z,z′ ∈ Z,

z ∼ z′ ⇐⇒ ∀x ∈ X , f (z,x) = f (z′,x) & R f (ηZ (z)) = R f (ηZ (z
′)),

and ηZ : Z → RZ denotes the reflection. Endow the set Z f with the final (T,V)-structure with respect

to the projection map q f : Z → Z f ; we have induced maps

h f : Z f −→ ≪ RX ,RY ≫ & f̂ : Z f ×X −→ Y

[z] 7−→ R f (ηZ (z)) ([z],x) 7−→ f (z,x),

which are well-defined by definition of ∼. Composing h f and f̂ with q f and ηY , respectively, we

obtain h f ·q f = R f ·ηZ and ηY · f̂ = ẽv · (h f ×ηX ), and since q f is a final morphism and ηY is an initial

one, we conclude that h f and f̂ are continuous maps.

The cardinality of Z f is bounded by the cardinality of the set | ≪ RX ,RY ≫ |× |Y ||X |, since

one can define an injective map Z f → | ≪ RX ,RY ≫ |× |Y ||X |, [z] 7→ (R f (ηZ (z)), f (z,–)), and

therefore there is only a set of possible (T,V)-spaces Z f . We form the coproduct
∐

g
Zg, and,

by extensivity of (T,V)-Cat, the morphisms ĝ : Zg ×X → Y induce the (T,V)-continuous map

ev: (
∐

g
Zg)×X ∼=

∐
g
(Zg ×X)→Y . The weak exponential is given by ≪ X ,Y ≫=

∐
g

Zg and by

the evaluation map ev just defined.

Z ×X
f //

ηZ×1X

��

q f ×1X

&&

Y

ηY

��

RZ ×X

R f×1X

��

Z f ×X

f̂

22

//

h f ×1Xxx

(
∐

g
Zg ×X)∼= (

∐
g

Zg)×X

ev

66

≪ RX ,RY ≫×X
1×ηX

//≪ RX ,RY ≫×RX
ẽv

// RY
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Let us proceed with weak local cartesian closedness of (T,V)-Cat. For each space (X ,a), the slice

category (T,V)-Cat/(X ,a) has as objects continuous maps f : (Y,b)→ (X ,a), (Y,b) ∈ (T,V)-Cat,

and a morphism h : f → g in (T,V)-Cat/(X ,a), with g : (Z,c) → (X ,a) a continuous map, is a

continuous map h : (Y,b)→ (Z,c) such that the following triangle is commutative:

(Y,b)

f ##

h // (Z,c)

g
{{

(X ,a).

Naturally, (T,V)-Cat is weakly locally cartesian closed if, for every space (X ,a), the slice category

(T,V)-Cat/(X ,a) is weakly cartesian closed. In order to prove that (T,V)-Cat satisfies this property,

we use an auxiliary category that is described in [CR00]. Let us denote the full subcategory of

(T,V)-Cat of separated and injective spaces by (T,V)-Catsep,inj .

Definition 4.0.5 The category F ((T,V)-Catsep,inj) has as objects triples ((X ,a),A,σ : A → X), where

(X ,a) is a separated injective (T,V)-space, A is a set, and σ is a function; a morphism

f : ((X ,a),A,σ : A → X)→ ((Y,b),B,σ ′ : B → Y )

is a map f : A → B such that there exists a (T,V)-continuous map g : (X ,a) → (Y,b) making the

square below commutative.

A

σ

��

f // B

σ ′

��
X g

// Y

Following the techniques of [CR00, BCRS98], we prove:

Proposition 4.0.6 If injective (T,V)-spaces are exponentiable in (T,V)-Cat, then F ((T,V)-Catsep,inj)

is weakly locally cartesian closed.

Proof. For an object ((X ,a),A,σ : A → X), we prove that F ((T,V)-Catsep,inj)/((X ,a),A,σ) is a

weakly cartesian closed category. Consider the objects f : ((Y,b),B,β : B → Y )→ ((X ,a),A,σ) and

g : ((Z,c),C,γ : C → Z) → ((X ,a),A,σ) of the slice category. Since Set/A is a cartesian closed

category, we can form the exponential with base g : C → A and exponent f : B → A. This consists of

a map g f : E → A and a map ev f ,g : E ×A B →C, which makes the triangle below commutative and it
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is universal in Set/A, where E ×A B denotes the Set-pullback of g f along f .

E ×A B //

��
g f × f

""

B

f
��

E ×A B

g f × f ""

ev f ,g // C

g
��

E
g f

// A A

Then E =
⋃
a∈A

(
{a}×{h : f−1(a)→ g−1(a)}

)
⊆ A×CB, where CB denotes the set of maps from B to

C, for each (a,h) ∈ E, g f (a,h) = a, and, for each ((a,h),b) ∈ E ×A B, ev f ,g((a,h),b) = h(b). Now

consider the following pullback diagram

D

δ

��

δ // E� _
iE
��

A×CB

σ×γB

��
X ×ZY

1X ×(-)β

// X ×ZB,

where iE is the inclusion map, ZY denotes the exponential in (T,V)-Cat, for each t ∈ ZY , (-)β (t) = t ·β ,

and, for each s ∈CB, γB(s) = γ · s. We claim that the weak exponential with base g and exponent f in

F ((T,V)-Catsep,inj)/((X ,a),A,σ) is given by

≪ f ,g ≫= πA ·δ : (X ×ZY ,D,δ )→ (X ,A,σ),

where X ×ZY is endowed with the obvious (T,V)-structure, and the (weak) evaluation

ev: (X ×ZY ×Y,D×A B,δ ×A β )→ (Z,C,γ)

is given by the composition

D×A B �
� //

ev

22D×B
δ×1B // E ×B �

� // A×CB ×B
1A×evB,C // A×C

πC // C,

where δ ×A β is the restriction of δ ×β to D×A B, which denotes the Set-pullback of ≪ f ,g ≫ along

f . Notice that ≪ f ,g ≫× f : (X ×ZY ×Y,D×A B,δ ×A β )→ (X ,A,σ) in the slice category is given
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by the diagonal map in the following pullback rectangle

D×A B //

��
≪ f ,g≫× f

))

B
f
��

D
≪ f ,g≫

// A.

To prove our claim, we first observe that ≪ f ,g≫ and ev are indeed morphisms of F ((T,V)-Catsep,inj),

for the following diagrams are commutative:

D
δ ��

≪ f ,g≫ // A
σ
��

X ×ZY
πX

// X

D×A B
δ×A β

��

ev // C
γ

��
X ×ZY ×Y

πZ ·(1X ×evY,Z )
// Z.

Moreover, ev is a morphism from ≪ f ,g ≫× f to g in F ((T,V)-Catsep,inj)/((X ,a),A,σ), since the

triangle below is commutative.

D×A B ev //

≪ f ,g≫× f %%

C

g}}
A

Finally, let h : ((W,s),S,µ)→ (X ,A,σ) be an object and t : h× f → g be a morphism in the slice

category. Then there exists a continuous map h′ : W → X such that σ · h = h′ · µ , and, moreover,

t : (W ×Y,S×A B,µ ×A β )→ (Z,C,γ) is a morphism of F ((T,V)-Catsep,inj) such that g · t = h× f ;

there exists also a continuous map t ′ : W ×Y → Z such that γ · t = t ′ · (µ ×A β ), so the following

S h //

µ
��

A
σ
��

W
h′
// X

S×A B t //

h× f %%

C

g}}
A

S×A B t //

µ×A β
��

C
γ
��

W ×Y
t ′
// Z

are commutative diagrams. We wish to define t : h →≪ f ,g ≫ such that ev ·(t×1 f ) = t. Let t : S → D

be the unique map such that the diagram

S

⟨σ ·h,t ′′·µ⟩
((

t̂

  
t

%%
D δ //

δ ��

E

��
X ×ZY // X ×ZB
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is commutative, where t̂ : S → E is the unique morphism from h to g f in Set/A satisfying

ev f ,g · (t̂ ×1 f ) = t, that is, the triangles

S t̂ //

h   

E

g f}}
A

g f × f
ev f ,g // g

h× f

t̂×1 f

OO

t

77

are commutative, and t ′′ : W → ZY is the exponential mate of t ′ : W × Y → Z. Now

δ · t = ⟨σ ·h, t ′′ ·µ⟩= ⟨h′ ·µ, t ′′ ·µ⟩= ⟨h′, t ′′⟩ ·µ , with ⟨h′, t ′′⟩ : W → X ×ZY a continuous map, proves

that t : (W,S,µ) → (X ×ZY ,D,δ ) is a morphism of F ((T,V)-Catsep,inj). Moreover, the following

triangles are commutative.

S t //

h   

D

≪ f ,g≫}}
A

≪ f ,g ≫× f ev // g

h× f

t×1 f

OO

t

55

Theorem 4.0.7 The categories (T,V)-Cat and F ((T,V)-Catsep,inj) are equivalent.

Proof. Define the functor G : (T,V)-Cat → F ((T,V)-Catsep,inj) by, for each (T,V)-space (X ,a),

G(X ,a) = ((PX , â),X ,yX : X → PX), where yX : X → PX is the Yoneda embedding and

â = [aop,hom
ξ
] is the (T,V)-structure on PX . For each continuous map f : X → Y , since PY is

injective and separated and yX is fully faithful, there exists a continuous map g : PX → PY extending

yY · f along yX , so the square below is commutative.

X
yX
��

f // Y
yY
��

PX g
// PY

(II.10)

Whence set G f = f . Then G is trivially faithful, and to demonstrate that it is full, let f : X → Y be a

map such that diagram (II.10) is commutative, for some continuous map g : PX → PY . We calculate:

a = y◦
X
· â ·TyX ≤ y◦

X
·g◦ · b̂ ·T g ·TyX (yX is fully faithful and g is continuous)

= (g · yX )
◦ · b̂ ·T (g · yX ) = (yY · f )◦ · b̂ ·T (yY · f ) ( f satisfies (II.10))

= f ◦ · y◦
Y
· b̂ ·TyY ·T f = f ◦ ·b ·T f (yY is fully faithful),
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that is, the map f : (X ,a) → (Y,b) is (T,V)-continuous. To establish essential surjectivity for

G, let ((X ,a),A,σ : A → X) in F ((T,V)-Catsep,inj). Endow the set A with the |-|-initial (T,V)-

structure a
σ

with respect to σ : A → (X ,a), so that σ : (A,a
σ
) → (X ,a) becomes fully faithful,

and G(A,a
σ
) = ((PA, â

σ
),A,yA : A → PA). Now the identity map 1A : A → A is a morphism from

((X ,a),A,σ : A → X) to G(A,a
σ
) and vice versa. Indeed, since PA is injective and separated and σ is

fully faithful, there exists a continuous map g1 : X → PA such that the diagram

A

σ

��

1A // S
yA
��

X g1

// PA

is commutative, and since X is an injective and separated space and yA is fully faithful, there exists a

continuous map g2 : PA → X such that the diagram below is commutative.

A
yA
��

1A // A

σ

��
PA g2

// X

Corollary 4.0.8 If injective (T,V)-spaces are exponentiable in (T,V)-Cat, then (T,V)-Cat is weakly

locally cartesian closed.

Remark 4.0.9 By Remark 3.0.6, the categories of Table (I.25) are weakly locally cartesian closed.

Weak (local) cartesian closure is studied in terms of weak (dependent) simple products; for details

on that we also refer to [Emm18] and [AR19].



Chapter III

Equilogical (T,V)-spaces

In this chapter we introduce the category of equilogical (T,V)-spaces, carrying from Top to (T,V)-Cat

the category Equ of equilogical spaces and (equivalence classes of) equivariant maps, which was first

presented in [Sco96, BBS04]. We study its main features, and, in particular, its relation with exact

and regular completions [CV98].

Throughout we assume that injective (T,V)-spaces are exponentiable in (T,V)-Cat, so that, as

proved in Chapter II, (T,V)-Cat is weakly (locally) cartesian closed. The results of this chapter can

be found in [Rib19a].

5 The category of equilogical (T,V)-spaces

Definition 5.0.1 The category (T,V)-Equ of equilogical (T,V)-spaces is defined as follows:

• objects are pairs X = ⟨(X ,a),≡X ⟩, where (X ,a) is a (T,V)-space and ≡X is an equivalence relation

on the set X ;

• a morphism from X = ⟨(X ,a),≡X ⟩ to Y = ⟨(Y,b),≡Y ⟩ is an equivalence class [ f ] of a (T,V)-

continuous map f : (X ,a)→ (Y,b) which is equivariant, i.e., that preserves the equivalence relation:

for each x,x′ ∈ X , x ≡X x′ implies f (x)≡Y f (x′), with the equivalence relation on maps defined by:

for each equivariant (T,V)-continuous maps f ,g : (X ,a)→ (Y,b),

f ≡X→Y g ⇐⇒ ∀x,x′ ∈ X (x ≡X x′ =⇒ f (x)≡Y g(x′)). (III.1)

Indeed, ≡X→Y is an equivalence relation: for equivariant continuous maps f ,g,h : (X ,a)→ (Y,b),

for each x,x′ ∈ X , if x ≡X x′, then f (x)≡Y f (x′), hence f ≡X→Y f , so ≡X→Y is reflexive; if f ≡X→Y g,

51
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then, for x ≡X x′, g(x)≡Y g(x′)≡Y f (x)≡Y f (x′), so g ≡X→Y f , and ≡X→Y is symmetric; if f ≡X→Y g

and g ≡X→Y h, then, for x ≡X x′, f (x)≡Y g(x′)≡Y g(x)≡Y h(x′), thus f ≡X→Y h, and ≡X→Y is transitive.

Composition of classes [ f ] : X →Y and [g] : Y →Z is given by [g] · [ f ] = [g · f ], which is well-

defined: the composite of equivariant continuous maps is equivariant and continuous, and if f ≡X→Y f ′

and g ≡Y→Z g′, then, for x ≡X x′, f (x)≡Y f ′(x′) implies g( f (x))≡Z g′( f ′(x′)), that is, g · f ≡X→Z g′ · f ′.

Theorem 5.0.2 (T,V)-Equ is complete, cocomplete, regular well-powered, and regular co-well-

powered.

Proof. Given a family
(
Xi =

〈
(Xi ,ai),≡Xi

〉)
i∈I

of equilogical (T,V)-spaces, its product is given by

X = ⟨(X ,a),≡X ⟩, where (X ,a) = ∏
i∈I

(Xi ,ai) is a product in (T,V)-Cat, so X = ∏
i∈I

Xi in Set and a

is the |-|-initial (T,V)-structure with respect to the product projections p j : ∏Xi → X j , j ∈ I , and

x ≡X x′ if, and only if, for all i ∈ I, pi(x)≡Xi
pi(x

′).

The product projections are equivariant continuous maps, and for a family ([ fi ] : Y → Xi)i∈I
of

morphisms in (T,V)-Equ, with Y = ⟨(Y,b),≡Y ⟩, by the universal property in (T,V)-Cat there exists

a unique continuous map t : (Y,b)→ (X ,a) such that pi · t = fi , for all i ∈ I. Now t is equivariant, for

if y ≡Y y′, then fi(y)≡Xi
fi(y

′) implies pi · t(y)≡Xi
pi · t(y′), for all i ∈ I, whence t(y)≡X t(y′).

By the composition law, [pi ] · [t] = [ fi ], for all i ∈ I, and if [t ′] : Y → X is a morphism with

the same property, then, for y ≡Y y′, we get pi(t
′(y)) ≡Xi

fi(y
′) = pi(t(y

′)), for all i ∈ I, whence

t ′(y)≡X t(y′), that is, t ′ ≡X→Y t.

Y

∃ ! [t]
��

[ fi ]

))
X

[pi ]
//Xi

For equalizers, let [ f ], [g] : X → Y be morphisms in (T,V)-Equ. Then consider the set

D = {x ∈ X | f (x) ≡Y g(x)} endowed with the subspace (T,V)-structure aD = i◦
D
· a · TiD , where

iD : D → X is the inclusion map. This defines the equilogical (T,V)-space D = ⟨(D,aD),≡D⟩, where

≡D is the restriction of ≡X to D.

The map iD is equivariant and continuous, and if d ≡D d′, then f (d) ≡Y g(d) ≡Y g(d′), hence

f · iD(d)≡Y g · iD(d
′), that is, f · iD ≡D→Y g · iD , and [ f ] · [iD ] = [g] · [iD ]. If [p] : Z →X is a morphism in

(T,V)-Equ such that [ f ] · [p] = [g] · [p], then, for each z ∈ Z, z ≡Z z implies f (p(z))≡Y g(p(z)), hence

p(z) ∈ D, and p corestricts to D as pD : Z → D, so that iD · pD = p. Therefore pD is an equivariant
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continuous map, and [pD ] : Z → D is the unique morphism such that [iD ] · [pD ] = [p].

Z

∃ ! [pD ]
��

[p]

''
D

[iD ]
//X

[ f ] //

[g]
// Y

For the coproduct of a family (Xi)i∈I in (T,V)-Equ, first form the coproduct of the underlying

(T,V)-spaces in (T,V)-Cat, which has as underlying set the disjoint union
⋃̇
i∈I

Xi =
⋃
i∈I

(Xi ×{i}). Now

define (x, j)≡⨿ (x′, l) if, and only if, j = l and x ≡Xj
x′. This determines an equilogical (T,V)-space∐

i
Xi , with the coproduct inclusions ι j : X j ↪→

⋃̇
i∈I

Xi being equivariant continuous maps.

For a family of morphisms [ fi ] : Xi → Y in (T,V)-Equ, i ∈ I, Y = ⟨(Y,b),≡Y ⟩, by the universal

property in (T,V)-Cat there exists a unique continuous map t : (
⋃̇

Xi ,a)→ (Y,b) such that t · ι j = f j ,

for all j ∈ I. The map t is equivariant, for if (x, j)≡⨿ (x′, l), then j = l and x ≡X j
x′, so f j(x)≡Y f j(x

′),

whence t(x, j) = t · ι j(x) ≡Y t · ι j(x
′) = t(x′, j). One can check that [t] :

∐
i
Xi → Y is the unique

morphism satisfying [t] · [ι j ] = [ f j ], for each j ∈ I.

X j

[ι j ] //

[ f j ] ))

∐
i
Xi

∃ ! [t]
��

Y

For coequalizers let us consider morphisms [ f ], [g] : X → Y in (T,V)-Equ. We form on Y the

least equivalence relation ≡Z that contains both ≡Y and the set of pairs {( f (x),g(x)) | x ∈ X}. Then

define the equilogical (T,V)-space Z = ⟨(Y,b),≡Z ⟩.

The identity map 1Y : Y → Z is equivariant and continuous. If [p] : Y → M = ⟨(M, l),≡M⟩

is a morphism in (T,V)-Equ such that [p] · [ f ] = [p] · [g], then p : (Y,b)→ (M, l) is an equivariant

continuous map, because, for all x ∈ X , p( f (x)) ≡M p(g(x)); then we obtain a unique morphism

[p] : Z → M such that [p] · [1Y ] = [p].

X
[ f ] //

[g]
// Y

[1
Y
]

//

[p] ''

Z

∃ ! [p]
��

M

From the previous descriptions of equalizers and coequalizers, it follows that (T,V)-Equ is regular

well-powered and regular co-well-powered.
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As observed in [BBS04], in the previous proof representatives for the classes of equivariant maps

are already chosen, making use of the Axiom of Choice.

In general (T,V)-Equ is neither well-powered nor co-well-powered, as observed in [BBS04] for

topological spaces. A morphism [m] : X → Y is a monomorphism in (T,V)-Equ if, and only if,

∀x,x′ ∈ X ,(x ≡X x′ ⇐⇒ m(x)≡Y m(x′)); (III.2)

hence any continuous map from (X ,a) to (Y,b), with Y = ⟨(Y,b),≡Y ⟩ ∈ (T,V)-Equ, becomes

a monomorphism if we endow X with the equivalence relation defined by (III.2). Analogously,

[e] : X → Y is an epimorphism in (T,V)-Equ if, and only if,

y ≡Y y′ ⇐⇒ ∃ x,x′ ∈ X ;(x ≡X x′ & y ≡Y e(x)≡Y e(x′)≡Y y′); (III.3)

whence each surjective continuous map from (X ,a) to (Y,b), with X = ⟨(X ,a),≡X ⟩ ∈ (T,V)-Equ,

becomes an epimorphism if we endow Y with the equivalence relation defined by (III.3).

6 The category of partial equilogical (T,V)-spaces

In order to directly prove the cartesian closedness of (T,V)-Equ, as in [BBS04] we define an auxiliary

category that is based on injective (T,V)-spaces.

Definition 6.0.1 The category (T,V)-PEqu of partial equilogical (T,V)-spaces consists of:

• objects are pairs X = ⟨(X ,a),≡X ⟩, where (X ,a) is an injective (T,V)-space and ≡X is a partial

equivalence relation on X , that is, ≡X is symmetric, transitive, and not necessarily reflexive;

• morphisms are equivalence classes of equivariant (T,V)-continuous maps between the underlying

(T,V)-spaces, with the equivalence relation on maps defined by (III.1).

Let us recall that, for a separated (T,V)-space (X ,a), the Yoneda embedding yX : X → PX is fully

faithful and an injective map, with PX an injective separated (T,V)-space. This fact is necessary to

establish an equivalence between the categories of equilogical and partial equilogical (T,V)-spaces.

We then restrict ourselves to separated (T,V)-spaces, considering that the underlying (T,V)-spaces

of the (partial) equilogical (T,V)-spaces of Definitions 5.0.1 and 6.0.1 are separated, and denote the

resulting categories by (T,V)-Equ
sep

and (T,V)-PEqu
sep

, respectively.

Theorem 6.0.2 (T,V)-Equ
sep

and (T,V)-PEqu
sep

are equivalent.
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Proof. Define a “restriction” functor R : (T,V)-PEqu
sep

→ (T,V)-Equ
sep

which assigns to each

partial equilogical (T,V)-space X = ⟨(X ,a),≡X ⟩ the (sub)space RX = ⟨(RX ,aR),≡RX ⟩, where

RX = {x ∈ X | x ≡X x}, so the relation ≡RX , which is the restriction of ≡X to RX , is reflexive, and aR

is the |-|-initial (T,V)-structure with respect to the inclusion map iRX : RX ↪→ X .

For a morphism [ f ] : X →Y , with Y = ⟨(Y,b),≡Y ⟩, since f : X →Y is equivariant, f (RX)⊆RY ,

so R assigns to [ f ] the class [R f ] : RX → RY , where R f : RX → RY is the (co)restriction of f . If

[ f ] = [g], then clearly [R f ] = [Rg], so R is well-defined, and compositions and identities are preserved.

Let [ f ], [g] : X → Y be morphisms of (T,V)-PEqu
sep

such that [R f ] = [Rg]. Whenever x ≡X x′,

then x′ ≡X x ≡X x′ implies x′ ≡X x′, that is, x′ ∈ RX , and, by the same argument, x ∈ RX , hence

x ≡RX x′, what implies that f (x) = R f (x)≡RY Rg(x′) = g(x′), and this is equivalent to f (x)≡Y g(x′),

since f (x),g(x′) ∈ RY , thus [ f ] = [g], and R is faithful. Now let [ f ] : RX → RY be a morphism in

(T,V)-Equ
sep

; since (Y,b) is injective and separated, there exists an extension f̂ : (X ,a)→ (Y,b) of

iRY · f along the embedding iRX , which is equivariant and satisfies [R f̂ ] = [ f ], thus R is full.

(RX ,aR)
iRX //

f ((

(X ,a)

f̂

��

(RY,bR)

iRY
''
(Y,b)

Finally, for essential surjectivity let X = ⟨(X ,a),≡X ⟩ ∈ (T,V)-Equ
sep

and consider the Yoneda

embedding yX : (X ,a)→ (PX , â). Then (PX , â) ∈ (T,V)-Catsep,inj and we define the following partial

equivalence relation on PX :

ϕ ≡PX ψ ⇐⇒ ∃ x,x′ ∈ X ;(ϕ = yX (x),ψ = yX (x
′) & x ≡X x′),

that is, two elements of PX are equivalent precisely when they are the images by yX of equivalent

elements of X . Since yX is injective and ≡X is reflexive, ϕ ∈ R(PX) precisely when ϕ ≡PX ϕ , what

is equivalent to the existence of a unique x ∈ X such that ϕ = yX (x), that is, ϕ ∈ yX (X); whence we

have a bijection t : (R(PX), âR)→ (X ,a), which is continuous, since yX is initial and the composite

yX · t = iR(PX)
: (R(PX), âR) ↪→ (PX , â) is continuous; and, moreover, t is equivariant by definition of

≡PX . The corestriction of yX to its image gives an inverse morphism, so t defines an isomorphism

R⟨(PX , â),≡PX ⟩=
〈
(R(PX), âR),≡R(PX)

〉
∼= X .

Under the assumption that injective spaces are exponentiable in (T,V)-Cat, we prove:
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Theorem 6.0.3 (T,V)-PEqu
sep

is a cartesian closed category.

Proof. Let X = ⟨(X ,a),≡X ⟩ and Y = ⟨(Y,b),≡Y ⟩ be partial equilogical separated (T,V)-spaces.

Consider the exponential (Y,b)(X ,a) which is separated and injective, and whose underlying set is

Y X = {h : (X ,a)× (1,e◦
1
)→ (Y,b) | h is a (T,V)-continuous map}. Identifying the elements of Y X

with maps from X to Y , we endow this set with the partial equivalence relation ≡X→Y of (III.1), that

we denote here by ≡
Y X , so that, for each h,h′ ∈ Y X ,

h ≡
Y X h′ ⇐⇒ ∀x,x′ ∈ X (x ≡X x′ =⇒ h(x)≡Y h′(x′)).

Hence the partial equilogical separated (T,V)-space Y X =
〈
(Y,b)(X ,a),≡

Y X

〉
is defined, and the

evaluation map ev: (Y,b)(X ,a)× (X ,a)→ (Y,b) is continuous and equivariant:

( f ,x)≡
Y X×X

( f ′,x′) ⇐⇒ ( f ≡
Y X f ′ & x ≡X x′) =⇒ f (x)≡Y f ′(x′).

Furthermore, for each morphism [ f ] : Z ×X → Y , with Z = ⟨(Z,c),≡Z ⟩ ∈ (T,V)-PEqu
sep

, by

the universal property in (T,V)-Cat, there exists a unique f : (Z,c)→ (Y,b)(X ,a), the transpose of

f : (Z,c)× (X ,a)→ (Y,b), such that ev · ( f ×1X ) = f . Whenever z ≡Z z′ and x ≡X x′, we have

(z,x)≡Z×X (z′,x′) =⇒ f (z,x)≡Y f (z′,x′) =⇒ f (z)(x)≡Y f (z′)(x′) =⇒ f (z)≡
Y X f (z′),

whence f is equivariant, and the morphism [ f ] : Z → Y X is such that [ev] · ([ f ]×1X ) = [ f ].

Y X ×X
[ev] // Y

Z ×X
[ f ]

44

[ f ]×1
X

OO

Moreover, [ f ] is unique, for if [ f ′] : Z → Y X is a morphism with [ev · ( f ′× 1X )] = [ f ], then, for

z ≡Z z′ and x ≡X x′,

f (z)(x) = f (z,x)≡Y f (z′,x′)≡Y f ′(z′)(x′),

hence f (z)≡
Y X f ′(z′), and [ f ] = [ f ′].

By Theorem 6.0.2, under the assumption that injective spaces are exponentiable in (T,V)-Cat,

(T,V)-Equ
sep

is a cartesian closed category. Observe that the proof of Theorem 6.0.3 can be applied
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to the category (T,V)-PEqu without requiring separation. Next we discuss the presentation of

equilogical (T,V)-spaces as modest sets of assemblies, what corresponds to [BBS04, Section 4].

Definition 6.0.4 The category Assm((T,V)-Catinj) of assemblies over injective spaces is defined as

follows:

• objects are triples (A,(X ,a),EA), where A is a set, (X ,a) is an injective space, and EA : A → PX ,

with PX the powerset of X , is a function such that, for each a ∈ A, EA(a) ̸= /0. The elements of EA(a)

are called realizers for a;

• a morphism f : (A,(X ,a),EA)→ (B,(Y,b),EB) is a map f : A → B for which there exists a continu-

ous map g : (X ,a)→ (Y,b) such that, for all a ∈ A, g(EA(a))⊆ EB( f (a)); g is called a realizer for f ,

or one says that g tracks f .

Definition 6.0.5 An assembly over an injective space (A,(X ,a),EA) is called a modest set if, for

every a,a′ ∈ A, if a ̸= a′, then EA(a)∩EA(a
′) = /0. The full subcategory of Assm((T,V)-Catinj) of the

modest sets is denoted by Mdst((T,V)-Catinj).

As in the particular case of Top, we derive some properties of the categories just defined, which

we state next as propositions.

Proposition 6.0.6 The categories Mdst((T,V)-Catinj) and Assm((T,V)-Catinj) have finite limits

which are preserved by the inclusion Mdst((T,V)-Catinj) ↪→ Assm((T,V)-Catinj).

Proof. The terminal object is (1,(1,⊤),E1), where 1= {∗} is a singleton, (1,⊤) is the terminal object

in (T,V)-Cat, and E1(∗) = 1. Indeed, for each assembly (A,(X ,a),EA) there exists a unique map

!A : A → 1, a 7→ ∗, which is a morphism, since the unique (T,V)-continuous map !X : X → 1 satisfies,

for each a ∈ A, !X (EA(a)) = 1= E1(∗) = E1(!A(a)); (1,(1,⊤),E1) is a modest set.

For assemblies (A,(X ,a),EA) and (B,(Y,b),EB), the binary product is (A×B,(X ×Y,a×b),EA×B),

where, for each (a,b) ∈ A×B, EA×B(a,b) = EA(a)×EB(b). Indeed, the product projections πA and πB

from A×B into A and B, respectively, satisfy

πX (EA×B(a,b)) = EA(a) = EA(πA(a,b)) & πY (EA×B(a,b)) = EB(b) = EB(πB(a,b)),

where πX and πY are the product projections from X ×Y into X and Y , respectively; the universal

property of the product follows from the respective universal property in (T,V)-Cat. Moreover, if
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(A,(X ,a),EA) and (B,(Y,b),EB) are modest sets, then so is their product, since

EA×B(a,b)∩EA×B(a
′,b′) = (EA(a)×EB(b))∩ (EA(a

′)×EB(b
′))

= (EA(a)∩EA(a
′))× (EB(b)∩EB(b

′)).

For equalizers take f ,g : (A,(X ,a),EA)→ (B,(Y,b),EB) in Assm((T,V)-Catinj). Define the as-

sembly (A′,(X ,a),E
A′ ), where A′ = {a ∈ A | f (a) = g(a)} and E

A′ is the restriction of EA to A′. Then

the inclusion map i
A′ : A′ ↪→ A is tracked by the identity 1X , and satisfies f · i

A′ = g · i
A′ . One can readily

check the universal property and that if (A,(X ,a),EA) is modest, then so is (A′,(X ,a),E
A′ ).

From the description of equalizers given in this proposition, we conclude:

Corollary 6.0.7 The regular subobjects of an assembly (A,(X ,a),EA) are in bijective correspondence

with the powerset PA of A.

Once more using the hypothesis that injective spaces are exponentiable, we prove the following:

Proposition 6.0.8 Mdst((T,V)-Catinj) and Assm((T,V)-Catinj) are cartesian closed categories, and

the inclusion Mdst((T,V)-Catinj) ↪→ Assm((T,V)-Catinj) preserves exponentials.

Proof. For assemblies over injective spaces (A,(X ,a),EA) and (B,(Y,b),EB), define the assembly

(C,(Y,b)(X ,a),EC), where (Y,b)(X ,a) is the exponential in (T,V)-Cat,

C = { f : A → B | ∃ g : (X ,a)→ (Y,b) (T,V)-continuous; g tracks f},

and, for each f ∈C, EC( f ) = {g ∈ (Y,b)(X ,a) | g tracks f}. Then the evaluation map evA,B : C×A → B

is tracked by the evaluation map evX ,Y : Y X ×X → Y in (T,V)-Cat: for each ( f ,a) ∈C×A,

y ∈ evX ,Y (EC×A( f ,a)) ⇐⇒ y ∈ evX ,Y (EC( f )×EA(a)) (by definition of EC×A)

⇐⇒ ∃ h ∈ EC( f ),∃ x ∈ EA(a); y = evX ,Y (h,x)

=⇒ y = h(x) ∈ EB( f (a)) = EB(evA,B( f ,a)) (because h tracks f ).

If (B,(Y,b),EB) is a modest set, then so is (C,(Y,b)(X ,a),EC). Indeed, if f , f ′ : A→B are tracked by the

same g : (X ,a)→ (Y,b), then, for each a ∈ A, take x ∈ EA(a) ̸= /0. Thus g(x) ∈ EB( f (a))∩EB( f ′(a)),

whence f (a) = f ′(a), and f = f ′.

Proposition 6.0.9 Mdst((T,V)-Catinj) is reflective in Assm((T,V)-Catinj).
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Proof. Define the reflector R : Assm((T,V)-Catinj) → Mdst((T,V)-Catinj) assigning to each

(A,(X ,a),EA) the triple (A/∼,(X ,a),EA/∼), where a ∼ a′ if, and only if, EA(a)∩EA(a
′) ̸= /0, and

EA/∼([a]) =
⋃

a′∈[a]

EA(a
′). On morphisms, R assigns to each f : (A,(X ,a),EA)→ (B,(Y,b),EB) the map

R f : A/∼→ B/∼, [a] 7→ [ f (a)]. If a ∼ a′, then for x ∈ EA(a)∩EA(a
′) and any g tracking f we have

g(x) ∈ EB( f (a))∩EB( f (a′)) ̸= /0, whence f (a)∼ f (a′), and R f is well-defined; moreover, for such g,

g(EA/∼([a])) = g(
⋃

a′∈[a]

EA(a
′))⊆

⋃
a′∈[a]

g(EA(a
′))⊆

⋃
a′∈[a]

EB( f (a′))⊆
⋃

b′∈[ f (a)]

EB(b
′) = EB/∼(R f [a]),

that is, g tracks R f . Let us assume that there exists x ∈ EA/∼([a])∩EA/∼([a
′]). Then there exists

a1 ,a2 ∈ A such that a1 ∼ a, a2 ∼ a′, and x ∈ EA(a1)∩EA(a2) ̸= /0, what implies that a1 ∼ a2 , whence

a ∼ a′, i.e., [a] = [a′], and (A/∼,(X ,a),EA/∼) is a modest set. Hence R is a well-defined functor.

Each reflection is given by the projection map pA : A → A/∼, which is tracked by the identity

map 1X ; each morphism f : (A,(X ,a),EA)→ (B,(Y,b),EB), with (B,(Y,b),EB) a modest set, factors

uniquely through pA as f̃ : (A/∼,(X ,a),EA/∼)→ (B,(Y,b),EB), [a] 7→ f (a), which is tracked by any

realizer of f .

(A,(X ,a),EA)
pA //

f ++

(A/∼,(X ,a),EA/∼)

∃ ! f̃
��

(B,(Y,b),EB)

Proposition 6.0.10 Mdst((T,V)-Catinj) and Assm((T,V)-Catinj) are regular categories.

Proof. Given morphisms f : (A,(X ,a),EA)→ (C,(Z,c),EC) and g : (B,(Y,b),EB)→ (C,(Z,c),EC)

in any of the categories, the pullback of f along g is given by

(P,(X ,a)× (Y,b),EP)
πB //

πA
��

(B,(Y,b),EY )

g
��

(A,(X ,a),EA) f
// (C,(Z,c),EC),

where P = {(a,b) ∈ A×B | f (a) = g(b)} is the pullback of f along g in Set, and, for each (a,b) ∈ P,

EP(a,b) = EA(a)×EB(b).

Monomorphisms and epimorphisms of assemblies coincide with injective and surjective functions,

respectively. Hence it follows that, together with monomorphisms, epimorphisms are stable under
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pullback. Each morphism f : (A,(X ,a),EA)→ (B,(Y,b),EB) admits an image factorization as

(A,(X ,a),EA)
f //

fe
++

(B,(Y,b),EB),

(A/∼,(X ,a),EA/∼)
fm

33

with a ∼ a′ if, and only if, f (a) = f (a′), and, for each a ∈ A, EA/∼([a]) =
⋃

a′∈[a]

EA(a
′), fe(a) = [a],

fm([a]) = f (a); the map fe is tracked by the identity 1X , while fm is tracked by any realizer of f .

Next we establish, in our level of generality, the relation between partial equilogical spaces and

modest sets.

Theorem 6.0.11 (T,V)-PEqu and Mdst((T,V)-Catinj) are equivalent.

Proof. Define F : Mdst((T,V)-Catinj)→ (T,V)-PEqu by F(A,(X ,a),EA) = ⟨(X ,a),≡X ⟩, where

x ≡X x′ ⇐⇒ ∃ a ∈ A; (x,x′ ∈ EA(a)), (III.4)

and on morphisms F assigns to each f : (A,(X ,a),EA)→ (B,(Y,b),EB) the equivalence class of a

realizer g : (X ,a) → (Y,b) for f , with the equivalence relation defined in (III.1); ≡X is a partial

equivalence relation, and if g is a realizer for f , then

x ≡X x′ =⇒ (x,x′ ∈ EA(a)) =⇒ (g(x),g(x′) ∈ EB( f (a))),

for some a ∈ A, that is, g(x)≡Y g(x′), and g is an equivariant (T,V)-continuous map. If g′ is another

realizer for f , then the same argument leads us to g(x) ≡Y g′(x′) whenever x ≡X x′, whence the

definition is independent from the choice of realizer; compositions and identities are preserved, so

that F is a well-defined functor.

To see that F is full, let g : (X ,a) → (Y,b) be a (T,V)-continuous map which is equivariant

with respect to ≡X and ≡Y given by (III.4). For each a ∈ A, let x ∈ EA(a) ̸= /0. Then x ≡X x

implies g(x)≡Y g(x), that is, there exists b ∈ B such that g(x) ∈ EB(b). Now set f (a) = b, which is

uniquely determined, since (B,(Y,b),EB) is a modest set. Hence we have a map f : A → B, which,

by definition, is tracked by g. For faithfulness, as observed in the proof of Proposition 6.0.8, two

maps tracked by the same realizer must be equal. Finally, let ⟨(X ,a),≡X ⟩ be a partial equilogical

(T,V)-space. Define (A,(X ,a),EA) by A = {x ∈ X | x ≡X x}/≡X , and EA([x]) = [x] ⊆ PX . Hence
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F(A,(X ,a),EA) = ⟨(X ,a),≡X ⟩, since for each x1 ,x2 ∈ X , x1 ≡X x2 if, and only if, there exists [x] ∈ A

such that x1 ,x2 ∈ [x].

This proof remains valid if we replace (T,V)-Catinj with (T,V)-Catsep,inj , hence

Mdst((T,V)-Catsep,inj)
∼= (T,V)-PEqu

sep
∼= (T,V)-Equ

sep
.

Moreover, Propositions 6.0.6, 6.0.8 and 6.0.10 remain valid under the extra assumption on separation,

so we can conclude that (T,V)-Equ
sep

is finitely complete and cartesian closed, as we have already

established, and, furthermore, that it is a regular category.

7 Equilogical (T,V)-spaces and exact completion

Motivated by [Sco96], among other results, Rosický proved in [Ros99] that the category of equilogical

spaces can be obtained as a full reflective subcategory of the exact completion of Top, which is a

cartesian closed category, what follows also from his result that Top is weakly cartesian closed. In

this section we investigate these facts for equilogical (T,V)-spaces.

Let us recall that a category is said to be exact in the sense of Barr [Bar71] if it is finitely complete,

regular epimorphisms are stable under pullback, every kernel pair admits a coequalizer, and every

internal equivalence relation is a kernel pair. The first three conditions define a regular category.

For a category C with finite limits, its (free) exact completion Cex is defined in [CM82] as an exact

category, in the sense of Barr, with an embedding yex : C→ Cex which is a lex functor, that is, preserves

finite limits, and, moreover, it is universal among lex functors into exact categories in the folllowing

sense: for each lex functor F : C→ E, with E an exact category, there exists a unique exact functor

F̃ : Cex → E such that the triangle:

C
yex //

F
))

Cex

F̃
��
E

(III.5)

is commutative.

As explained by the authors, denoting the 2-category of exact categories and exact functors by

Ex and the 2-category of left exact categories and left exact functors by Lex, the construction of Cex

defines a left biadjoint to the inclusion Ex ↪→ Lex. The word “free” for the exact completion is then
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justified, since the latter inclusion of categories “forgets” all the exactness properties except for finite

completeness. We refer to [Car95, CV98] for details.

Following [CM82], we can describe the exact completion (T,V)-Catex by:

• objects are pseudo equivalence relations on (T,V)-Cat, that is, parallel pairs of (T,V)-continuous

maps X1

r1 //
r2

// X0 satisfying

(1) reflexivity: there exists a continuous map r : X0 → X1 such that r1 · r = 1X0
= r2 · r;

X1
r1

��

r2

��
X0 X01X0

oo
1X0

//

r

OO

X0

(2) symmetry: there exists a continuous map s : X1 → X1 such that r1 · s = r2 and r2 · s = r1 ;

X1
r1

��

r2

��
X0 X1r2

oo
r1

//

s

OO

X0

(3) transitivity: for r3 ,r4 : X2 → X1 a pullback of r1 ,r2 , there exists a continuous map t : X2 → X1 that

makes the diagram

X1

r1

��

r2

��

X2r3

||

r4

""

t
OO

X1

r1|| r2 ""

X1

r1|| r2 ""
X0 X0 X0

commutative.

• A morphism from X1

r1 //
r2

// X0 to Y1

s1 //
s2

// Y0 is an equivalence class [ f ] of a continuous map

f : X0 → Y0 such that there exists g : X1 → Y1 continuous satisfying f · ri = si ·g, i = 1,2.

X1

r2

��
r1

��

g // Y1

s2

��
s1

��
X0 f

// Y0 .
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Here two maps f1 , f2 : X0 → Y0 are related if, and only if, there exists h : X0 → Y1 continuous such that

fi = si ·h, i = 1,2.

X1

r2

��

r1

��

Y1

s2

��

s1

��
X0

f1 //
f2

//

h

??

Y0

A pseudo equivalence relation X1

r1 //
r2

// X0 is an (internal) equivalence relation if the pairing

morphism ⟨r1 ,r2⟩ : X1 → X0 ×X0 is a monomorphism, that is, a subobject of X0 ×X0 .

As already observed, (T,V)-Cat has a stable factorization system (Epi,RegMono), and following

the lines of [BCRS98] we consider the full subcategory of (T,V)-Catex of those pseudo equivalence

relations X1

r1 //
r2

// X0 such that the morphism ⟨r1 ,r2⟩ : X1 → X0 ×X0 is a regular monomorphism.

Denoting this subcategory by PER((T,V)-Cat,RegMono), we have:

Lemma 7.0.1 (T,V)-Equ and PER((T,V)-Cat,RegMono) are equivalent.

Proof. Each equilogical (T,V)-space X = ⟨(X ,a),≡X ⟩ induces the pseudo equivalence relation

RX

π1
X //

π2
X

// X , where RX = {(x,x′) ∈ X ×X | x ≡X x′}, and π1
X
,π2

X
are the restrictions to RX of the

respective product projections X ×X → X . Then ⟨π1 ,π2⟩= iRX
: RX ↪→ X ×X is a regular monomor-

phism when RX is endowed with the |-|-initial (T,V)-structure with respect to iRX
.

For an equilogical (T,V)-space Y = ⟨(Y,b),≡Y ⟩, a (T,V)-continuous map f : (X ,a)→ (Y,b) is

equivariant if, and only if, (x,x′) ∈ RX implies ( f (x), f (x′)) ∈ RY , and this defines a continuous map

f : RX → RY , which is the (co)restriction of f × f to RX and RY , that makes the diagram

RX

π2
X
��

π1
X
��

f // RY

π2
Y
��

π1
Y
��

X
f
// Y

commutative, so that π i
Y
· f = f ·π i

X
, i = 1,2. Moreover, two equivariant maps f ,g : (X ,a)→ (Y,b) are

related in (T,V)-Equ if, and only if, (x,x′) ∈ RX implies ( f (x),g(x′)) ∈ RY . This defines a continuous
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map h : X → RY , which is the corestriction of ⟨ f ,g⟩ to RY , that makes the diagram

RX

π2
X

��

π1
X

��

RY

π2
Y

��

π1
Y

��
X

f //
g

//

h

99

Y

commutative, so that π1
Y
·h = f , π2

Y
·h = g. Hence the class [ f ] is the same in both categories, and [ f ]

is a morphism in PER((T,V)-Cat,RegMono).

This defines a fully faithful functor F : (T,V)-Equ→ PER((T,V)-Cat,RegMono), assigning to

each equilogical (T,V)-space X the pseudo equivalence relation RX

π1
X //

π2
X

// X , and leaving mor-

phisms unchanged. To see that F is essentially surjective, let X1

r1 //
r2

// X0 be a pseudo equivalence

relation with ⟨r1 ,r2⟩ : X1 → X0 ×X0 a regular monomorphism. Then
〈
(X0 ,a0),≡X0

〉
, where

x0 ≡X0
x′

0
⇐⇒ ∃ x1 ∈ X1 ; (r1(x1) = x0 & r2(x1) = x′

0
),

is an equilogical (T,V)-space, and, furthermore, since ⟨r1 ,r2⟩ is a regular monomorphism, the identity

morphism [1X0
] is an isomorphism between RX0

π1
X0 //

π2
X0

// X0 and X1

r1 //
r2

// X0 .

Furthermore, as a particular instance of [BCRS98, Theorem 4.3] we prove the following:

Proposition 7.0.2 PER((T,V)-Cat,RegMono) is a reflective subcategory of (T,V)-Catex , and the

reflector preserves finite products and change of base in the codomain.

Proof. Let us define R : (T,V)-Catex → PER((T,V)-Cat,RegMono) in the following way: for each

X1

r1 //
r2

// X0 in (T,V)-Catex , factorize the pairing morphism ⟨r1 ,r2⟩ in (T,V)-Cat as an epimorphism

followed by a regular monomorphism

X1

⟨r1 ,r2 ⟩ //

er
1,2 &&

X0 ×X0 ,

X̃1

mr
1,2

77

and set R

(
X1

r1 //
r2

// X0

)
=

(
X̃1

r̃1 //
r̃2

// X0

)
, where r̃1 = π1

X0
·mr

1,2
, r̃2 = π2

X0
·mr

1,2
; this factorization

is unique up to isomorphism, and ⟨r̃1 , r̃2⟩= mr
1,2

is a regular monomorphism.
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Let [ f ] : (X1 ,X0 ,r1 ,r0)→ (Y1 ,Y0 ,s1 ,s2) be a morphism in (T,V)-Catex , so there exists a continuous

g : X1 → Y1 such that si · g = f · ri , i = 1,2. Since er
1,2

: X1 → X̃1 is an epimorphism, there exists a

unique map g̃ : X̃1 → Ỹ1 such that the diagram

X1

g //

er
1,2
��

Y1

es
1,2
��

X̃1 g̃
// Ỹ1

is commutative; for i = 1,2, s̃i · g̃ · er
1,2

= π i
Y0
·ms

1,2
· es

1,2
·g = π i

Y0
· ⟨s1 ,s2⟩ ·g = si ·g = f · ri = f · r̃i · er

1,2
,

that is, s̃i · g̃ = f · r̃i , so that the diagram

X̃1

r̃2

��
r̃1

��

g̃ // Ỹ1

s̃2

��
s̃1

��
X0 f

// Y0

is commutative, and this implies that g̃ is continuous, because Ỹ1 has the |-|-initial (T,V)-structure

with respect to ⟨s̃1 , s̃2⟩. Hence we have a morphism [ f ] : (X̃1 ,X0 , r̃1 , r̃0)→ (Ỹ1 ,Y0 , s̃1 , s̃2), and the functor

R leaves the morphisms unchanged. The restriction of R to PER((T,V)-Cat,RegMono) is the identity

functor. Since the diagram

X1

r2

��
r1

��

er
1,2 // X̃1

r̃2

��
r̃1

��
X0 1X0

// X0

is commutative, the identity map 1X0
induces a morphism [1X0

] : (X1 ,X0 ,r1 ,r2)→ (X̃1 ,X0 , r̃1 , r̃2) which

serves as the coreflection: for each morphism [ f ] with (Y1 ,Y0 ,s1 ,s2) ∈ PER((T,V)-Cat,RegMono),

the following diagram is commutative.

(X1 ,X0 ,r1 ,r2)
[1X0

]
//

[ f ] **

(X̃1 ,X0 , r̃1 , r̃2)

∃ ! [ f ]
��

(Y1 ,Y0 ,s1 ,s2)

Let us proceed proving that R preserves finite products and change of base in the codomain.

Finite Products The terminal object of (T,V)-Catex is given by ({(∗,∗)},⊤) // // ({∗},⊤) ,
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which belongs to PER((T,V)-Cat,RegMono). For pseudo equivalence relations X1

r1 //
r2

// X0 and

Y1

s1 //
s2

// Y0 , we form the binary product X1 ×Y1

r1×s1 //
r2×s2

// X0 ×Y0 . Applying the functor R we

obtain

R

(
X1 ×Y1

r1×s1 //
r2×s2

// X0 ×Y0

)
= (X̃1 ×Y1 ,X0 ×Y0 , r̃1 × s1 , r̃2 × s2),

and

R

(
X1

r1 //
r2

// X0

)
×R

(
Y1

s1 //
s2

// Y0

)
= (X̃1 × Ỹ1 ,X0 ×Y0 , r̃1 × s̃1 , r̃2 × s̃2).

Now we just observe that the identity map 1X0×Y0
induces the intended isomorphism. This follows

from commutativity of the diagram

X̃1 ×Y1

r̃2×s2

��

r̃1×s1

��

h // X̃1 × Ỹ1

r̃2×s̃2

��

r̃1×s̃1

��

h // X̃1 ×Y1

r̃2×s2

��

r̃1×s1

��
X0 ×Y0 1X0×Y0

// X0 ×Y0 1X0×Y0

// X0 ×Y0 ,

where h and h are defined so that the dashed squares (and consequently the diagram) below

X1 ×Y1 (X0 ×Y0)× (X0 ×Y0)

X̃1 ×Y1

X1 ×Y1 (X0 ×X0)× (Y0 ×Y0)

X̃1 × Ỹ1

e′

1 ∼=

e′′

h h

are commutative, where e′,e′′ are epimorphisms.

Change of base in the codomain Let us consider morphisms [ f ] : (X1 ,X0 ,r1 ,r0)→ (Z1 ,Z0 , t1 , t2) and

[g] : (Y1 ,Y0 ,s1 ,s2)→ (Z1 ,Z0 , t1 , t2) in (T,V)-Catex , with (Z1 ,Z0 , t1 , t2) in PER((T,V)-Cat,RegMono).

For each z0 ,z
′
0
∈ Z0 , let us set

z0 ∼Z0
z′

0
⇐⇒ ∃ z1 ∈ Z1 ; (t1(z1) = z0 & t2(z1) = z′

0
).
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Then the pullback of [ f ] along [g] is given by

(X1 ∗Z1
Y1 ,X0 ∗Z0

Y0 ,r1 × s1 ,r2 × s2)
[πY0

]
//

[πX0
]

��

(Y1 ,Y0 ,s1 ,s2)

[g]

��
(X1 ,X0 ,r1 ,r0) [ f ]

// (Z1 ,Z0 , t1 , t2),

(III.6)

where X0 ∗Z0
Y0 = {(x0 ,y0) ∈ X0 ×Y0 | f (x0)∼Z0

g(y0)}, and

X1 ∗Z1
Y1 = {(x1 ,y1) ∈ X1 ×Y1 | f · r1(x1)∼Z0

g · s2(y1) & f · r2(x1)∼Z0
g · s1(y1)},

with πX0
,πY0

restrictions to X0 ∗Z0
Y0 of the product projections from X0 ×Y0 into X0 and Y0 , respectively.

Observe that X1 ∗Z1
Y1

r1×s1 //
r2×s2

// X0 ∗Z0
Y0 are well-defined continuous maps, for they are the

(co)restrictions of the continuous maps X1 ×Y1

r1×s1 //
r2×s2

// X0 ×Y0 to X1 ∗Z1
Y1 and X0 ∗Z0

Y0 , which

are endowed with |-|-initial (T,V)-structures with respect to inclusion maps. Applying the reflector R

to (III.6) we obtain

(X̃1 ∗Z1
Y1 ,X0 ∗Z0

Y0 , r̃1 × s1 , r̃2 × s2)
[πY0

]
//

[πX0
]

��

(Ỹ1 ,Y0 , s̃1 , s̃2)

[g]

��
(X̃1 ,X0 , r̃1 , r̃0) [ f ]

// (Z1 ,Z0 , t1 , t2),

and pulling back [ f ] : (X̃1 ,X0 , r̃1 , r̃0)→ (Z1 ,Z0 , t1 , t2) along [g] : (Ỹ1 ,Y0 , s̃1 , s̃2)→ (Z1 ,Z0 , t1 , t2) we get

(X̃1 ∗Z1
Ỹ1 ,X0 ∗Z0

Y0 , r̃1 × s̃1 , r̃2 × s̃2)
[πY0

]
//

[πX0
]

��

(Ỹ1 ,Y0 , s̃1 , s̃2)

[g]

��
(X̃1 ,X0 , r̃1 , r̃0) [ f ]

// (Z1 ,Z0 , t1 , t2).

One can see then that the identity map 1X0 ∗Z0
Y0

induces an isomorphism

 X̃1 ∗Z1
Y1

r̃1×s1 //

r̃2×s2

// X0 ∗Z0
Y0

∼=

(
X̃1 ∗Z1

Ỹ1

r̃1×s̃1 //
r̃2×s̃2

// X0 ∗Z0
Y0

)
,
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what follows from the commutativity of the diagram

X̃1 ∗Z1
Y1

r̃2×s2

��

r̃1×s1

��

l // X̃1 ∗Z1
Ỹ1

r̃2×s̃2

��

r̃1×s̃1

��

l // X̃1 ∗Z1
Y1

r̃2×s2

��

r̃1×s1

��
X0 ∗Z0

Y0 1X0 ∗Z0
Y0

// X0 ∗Z0
Y0 1X0 ∗Z0

Y0

// X0 ∗Z0
Y0 ,

where l and l are defined so that the dashed triangles below

X1 ∗Z1
Y1 (X0 ∗Z0

Y0)× (X0 ∗Z0
Y0)

X̃1 ∗Z1
Y1

X̃1 ∗Z1
Ỹ1 (X0 ∗Z0

Y0)× (X0 ∗Z0
Y0)

e

e 1
l

l

are commutative, where e,e are epimorphisms.

Conditions under which the exact completion of a category is cartesian closed were studied by

Rosický:

Theorem 7.0.3 [Ros99, Theorem 1, Lemma 4] Let C be a complete, infinitely extensive, well-powered,

and weakly cartesian closed category, in which every morphism factorizes as a regular epimorphism

followed by a monomorphism. Moreover, assume that for any regular epimorphism f : A → A′ of

C, f ×1B : A×B → A′×B is an epimorphism, for each B ∈ C. Then the exact completion Cex is a

cartesian closed category.

Corollary 7.0.4 The exact completion (T,V)-Catex is a cartesian closed category.

Proof. This follows from the properties (TA1), (TA2), (TA5), and (TA6) of Subsection 2.4, and by

Theorems 4.0.3 and 4.0.4, since we are assuming that injective (T,V)-spaces are exponentiable in

(T,V)-Cat.

Since PER((T,V)-Cat,RegMono) is fully reflective in (T,V)-Catex and the reflector preserves

finite products, by [Sch84, Theorem 1.2], PER((T,V)-Cat,RegMono) is a cartesian closed category.

Therefore, by Lemma 7.0.1, (T,V)-Equ is a cartesian closed category.

Let us recall that an object P of a category C is called (regular) projective if for each (regular)

epimorphism q : A → B and each morphism f : P → B in C, there exists a morphism f̂ : P → A in C
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such that q · f̂ = f .

A
q // B

P
f

<<

f̂

bb

For a finitely complete category C, the exact completion Cex gives a category with “honest” limits

which has C as a projective cover [CV98]. This means that C is the category of regular projectives of

Cex and each object of Cex is covered by a regular projective, that is, there exists a regular epimorphism

whose codomain is the object and the domain is a regular projective [CV98, Definition 2]. Locally

cartesian closedness of exact completions was studied by Carboni and Rosolini:

Theorem 7.0.5 [CR00, Theorem 3.3] Suppose P is the category of regular projectives of a category

C, and that every object of C is covered by an object of P. Then P is weakly locally cartesian closed if,

and only if, C is locally cartesian closed.

By Corollary 4.0.8, we conclude that (T,V)-Catex is a locally cartesian closed category. Since

PER((T,V)-Cat,RegMono) is fully reflective in (T,V)-Catex and the reflector preserves change of

base in the codomain, by [HST14, III-Corollary 4.6.2], and conclude that PER((T,V)-Cat,RegMono)

is a locally cartesian closed category. By Lemma 7.0.1, (T,V)-Equ is a locally cartesian closed

category.

As discussed in [Ros98], the free regular completion Creg of a category C can be obtained as the

full subcategory of Cex of those pseudo equivalence relations which are kernel pairs in C. We recall

from [CV98] that Creg is a regular category with an embedding yreg : C→ Creg which preserves finite

limits, and has a similar universal property as the one in (III.5), but with respect to regular categories

instead of exact ones.

Furthermore, following [Car95, Section 5], we can describe the regular completion (T,V)-Catreg

by: objects are (T,V)-continuous maps f : (X ,a)→ (Y,b), and a morphism from f : (X ,a)→ (Y,b)

to g : (Z,c)→ (W,d) is an equivalence class [l] of a (T,V)-continuous map l : (X ,a)→ (Z,c) such

that g · l · f0 = g · l · f1 , where f0 , f1 form the kernel pair of f ;

f1 //

f0

��

(X ,a)

f

��

l // (Z,c)

g

��

[l] //

(X ,a)
f

// (Y,b) (W,d)
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two such arrows l and m are equivalent if g · l = g ·m. It is immediate to prove the following:

Lemma 7.0.6 (T,V)-Catreg and PER((T,V)-Cat,RegMono) are equivalent.

Proof. Define F : (T,V)-Catreg → PER((T,V)-Cat,RegMono) by

( f : (X ,a)→ (Y,b)) ✤ //

[l]

��

(Ker( f ),X , f0 , f1)

[l]

��
(g : (Z,c)→ (W,d)) ✤ // (Ker(g),Z,g0 ,g1).

Indeed, for each continuous map f , the kernel pair (Ker( f ),X , f0 , f1) is a (pseudo) equivalence

relation, where ⟨ f0 , f1⟩ : Ker( f )→ X ×X is a regular monomorphism. Moreover, for a continuous

map l : X → Z, if g · l · f0 = g · l · f1 , then, by the universal property of the pullback, there exists a

unique continuous map t : Ker( f )→ Ker(g) such that gi · t = l · fi , i = 0,1, so that l is an equivariant

map in PER((T,V)-Cat,RegMono).

Ker( f ) l· f1

##

l· f0

))

t &&
☞

Ker( f )

f0

��

f1

��

t // Ker(g)

g0

��

g1

��

Ker(g)
g1 //

g0 ��

Z
g
��

Z g
//W X

l
// Z

Conversely, if there exists t : Ker( f )→ Ker(g) such that gi · t = l · fi , i = 0,1, then

g · l · f0 = g ·g0 · t = g ·g1 · t = g · l · f1 .

Hence F is well-defined and easily seen to be fully faithful. For essential surjectivity, we just observe

that each object X1

r1 //
r2

// X0 of PER((T,V)-Cat,RegMono) is the kernel pair of the projection map

pX0
: X0 → X0/∼, where

x0 ∼ x′
0
⇐⇒ ∃ x1 ∈ X1 ; (r1(x1) = x0 & r2(x1) = x′

0
),

and X0/∼ is endowed with the |-|-final (T,V)-structure with respect to pX0
.

By Lemma 7.0.1, (T,V)-Equ is (equivalent to) the regular completion of (T,V)-Cat. This is

discussed in [Ros98] (see also [Men00]) for the particular case of Top. Furthermore, conditions under

which regular completions are quasitoposes were studied in [Men00].
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By (TA1) and (TA7) of Subsection 2.4 and by Corollary 4.0.8, (T,V)-Cat is complete, infinitely

extensive, and weakly locally cartesian closed, since we are assuming that injective spaces are exponen-

tiable. Moreover, by (TA5), Set is a mono-localization of (T,V)-Cat, that is, there exists an adjunction

|-| ⊣ ∇ : Set→ (T,V)-Cat, where ∇ is an embedding and the forgetful functor |-| : (T,V)-Cat→ Set,

which is trivially faithful, preserves finite limits. Hence, by [Men00, Corollary 8.4.2], (T,V)-Catreg is

a quasitopos, hence we conclude:

Theorem 7.0.7 (T,V)-Equ is a quasitopos.

Remark 7.0.8 By Remark 4.0.9, the categories of Table (I.25) are such that their exact completions

are locally cartesian closed categories and their categories of equilogical spaces are quasitoposes.

For example, in the simplest case of Ord, an object of Ord-Equ, or an equilogical ordered space,

is an ordered set (X ,≤) with an equivalence relation ≡X on X ; (X ,≤) is separated if, and only if, it is

anti-symmetric; then the objects of Ord-Equ
sep

are partially ordered sets with equivalence relations

on the underlying sets. Furthermore, a partial equilogical separated ordered space, i.e., an object of

Ord-PEqu
sep

, is a complete lattice (an injective partially ordered set [AHS90, Examples 9.3]) with a

partial equivalence relation on its underlying set. By the same argument, the objects of Mdst(Ordsep,inj)

are triples (A,(X ,≤),EA), where A is a set, EA : A→PX is a map such that, for each a∈ A, EA(a) ̸= /0,

and (X ,≤) is a complete lattice.

Moreover, the adjunctions described in diagram (I.14) lift to adjunctions in the respective categories

of equilogical spaces:

Equ � � //

��

App-Equ⊣oo

⊣

��
Ord-Equ
� ?

⊣

OO

� �

⊣

// Met-Equ
oo � ?

OO

• Ord-Equ is fully embedded in Met-Equ as the equilogical metric spaces ⟨(X ,d),≡X ⟩ such that there

exists an order ≤ on X with d = d≤ ;

• Ord-Equ is fully embedded in Equ as the equilogical spaces ⟨(X ,τ),≡X ⟩ for which there exists an

order ≤ on X such that τ = τ≤ , hence they are the equilogical Alexandroff spaces;

• Met-Equ is fully embedded in App-Equ as equilogical metric approach spaces;

• Equ is fully embedded in App-Equ as equilogical topological approach spaces.





Chapter IV

Compactly generated (T,V)-spaces and

quasi-(T,V)-spaces

In this final chapter we introduce and study compactly generated spaces, and, more generally,

C -generated spaces, and quasi-spaces in (T,V)-Cat. We generalise both concepts from Top to

(T,V)-Cat, following closely the lines of [ELS04] and [Day68], respectively. The results of this

chapter can be found in [Rib19b], where some examples and results are further developed.

8 C -generated (T,V)-spaces

Let C denote a class of (T,V)-spaces which contains at least one non-empty element. For instance,

C is considered afterwards in this section as the class of compact Hausdorff (T,V)-spaces, as the

singleton set containing the Sierpiński (T,V)-space, as the class of injective (T,V)-spaces, and as the

one of exponentiable (T,V)-spaces, respectively. Throughout we will make use of the (topological)

forgetful functor |-| : (T,V)-Cat→ Set.

8.1 The category (T,V)-CatC

Definition 8.1.1 Each element of C is called a generating space. A (T,V)-continuous map from

a generating space to a (T,V)-space (X ,a) is called a probe over (X ,a), or simply a probe. For a

(T,V)-space (X ,a), the |-|-final (T,V)-structure ac on X with respect to all probes over (X ,a) is

called the C -generated structure on (X ,a). A (T,V)-space (X ,a) is called C -generated if a = ac.

The full subcategory of (T,V)-Cat of C -generated (T,V)-spaces is denoted by (T,V)-CatC .

73
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Therefore, (X ,ac) is such that a map t : (X ,ac) → (Y,b), with (Y,b) ∈ (T,V)-Cat, is (T,V)-

continuous if, and only if, for every probe p : C → (X ,a), the composite

C
p // (X ,a) t // (Y,b)

is (T,V)-continuous. It follows immediately that, for each (T,V)-space (X ,a), the identity map

1X : (X ,ac)→ (X ,a) is (T,V)-continuous, that is, ac ≤ a. Moreover, each element (D,d) of C is

C -generated: the identity map 1D : (D,d)→ (D,d) is a probe, hence d ≤ dc, and since dc ≤ d, then

dc = d. The next step is to verify coreflectiveness of (T,V)-CatC in (T,V)-Cat.

Lemma 8.1.2 For a C -generated space (X ,a), a space (Y,b), and a map f : X → Y , the following

are equivalent:

(i) f : (X ,a)→ (Y,bc) is (T,V)-continuous;

(ii) f : (X ,a)→ (Y,b) is (T,V)-continuous.

Proof. For (i)⇒(ii) observe that f : (X ,a)→ (Y,b) is given by the composite

(X ,a)
f // (X ,bc)

1Y // (Y,b).

Conversely, suppose that f : (X ,a) → (Y,b) is continuous. Then, for each probe p : C → (X ,a),

f · p : C → (Y,b) is continuous, hence a probe over (Y,b). By |-|-finality of bc, f · p : C → (Y,bc) is

continuous, and therefore f : (X ,a)→ (Y,bc) is continuous because (X ,a) is C -generated.

Lemma 8.1.3 For each space (X ,a), (X ,ac) is a C -generated space.

Proof. As observed above, each probe p : C → (X ,a) is a probe over (X ,ac), and, by the same

reasoning, it is a probe over (X ,(ac)c). Hence, for each probe p : C → (X ,a), the composite

1X · p = p : C → (X ,(ac)c) is a continuous map, whence 1X : (X ,ac) → (X ,(ac)c) is a continuous

map.

C
p //

p
''

(X ,a)

1X
��

(X ,ac)

1X
��

(X ,(ac)c) (X ,(ac)c)

Therefore, ac ≤ (ac)c. Since (ac)c ≤ ac, we conclude the result.

Proposition 8.1.4 (T,V)-CatC is coreflective in (T,V)-Cat.
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Proof. For each (T,V)-space (Y,b), (Y,bc) ∈ (T,V)-CatC and the identity map 1Y : (Y,bc)→ (Y,b)

is continuous. Furthermore, every continuous map f : (X ,a) → (Y,b), with (X ,a) a C -generated

space, factorizes through 1Y :

(Y,bc)
1Y // (Y,b).

(X ,a)

f

OO

f

66

The coreflector from (T,V)-Cat to (T,V)-CatC assigns to each space (X ,a) the space (X ,ac), and to

each continuous map f : (X ,a)→ (Y,b) the continuous map f : (X ,ac)→ (Y,bc); the coreflections

are given by identity maps.

(T,V)-CatC

Inc --
⊥ (T,V)-Cat
C

mm

This coreflection is shown for Top also in [Mac71]. As a corollary of this proposition, since

(T,V)-Cat is complete and cocomplete, so is (T,V)-CatC . At this point we recall a fact about

topological functors, and some conditions that will be needed throughout. Firstly, since the forgetful

functor |-| : (T,V)-Cat→ Set is fibre-small, the |-|-final lifting of a sink is the |-|-final lifting of a

small (sub)sink. Secondly, we must assure that constant maps are continuous, hence, by Lemma 2.4.3,

V must be integral and T1= 1. We restrict the available examples to a sub-table of (I.39).

❅
❅
❅
❅❅

V

T
I U

2 Ord Top

P+ Met App

Pmax UltMet NA-App

P1 BMet (U,P1)-Cat

(IV.1)

For those examples, V is lean and finite coproducts are preserved by T, so we guarantee that all

the properties from Subsection 2.8 needed afterwards for compact Hausdorff (T,V)-spaces are valid.

We can now characterize C -generated spaces as colimits of elements of C .

Proposition 8.1.5 (1) Coproducts and coequalizers of C -generated spaces are C -generated.
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(2) A space is C -generated if, and only if, it is a colimit of elements of C .

Proof. (1) The inclusion functor (T,V)-CatC ↪→ (T,V)-Cat is a left adjoint, hence it preserves

colimits.

(2) By item (1), colimits of generating spaces, which are C -generated, are C -generated. Let (X ,a)

be a C -generated space. Then a = ac is the |-|-final (T,V)-structure with respect to the sink

(pi : (Xi ,ai)→ (X ,a))i∈I of probes over (X ,a) and I can be considered a set, rather than a proper class,

of indexes. Form the coproduct (
⋃̇
i∈I

Xi ,aI ) in (T,V)-Cat. By its universal property, the family of

continuous maps (pi)i∈I induces a continuous map t : (
⋃̇
i∈I

Xi ,aI )→ (X ,a), with t · ιi = pi , for all i ∈ I,

where ιi is the coproduct inclusion of Xi into
⋃̇
i∈I

Xi .

(Xi ,ai)
� � ιi //

pi ((

(
⋃̇

Xi ,aI )

t
��

(X ,a)

We verify that t is a regular epimorphism, or, equivalently, that it is a |-|-final surjection. Let s : X →Y

be a map such that s · t is continuous. By the universal property of the coproduct, this is equivalent to

s · t · ιi being continuous, for all i ∈ I. Hence s · pi is continuous, for all i ∈ I, and it follows that s is

continuous, since (X ,a) is C -generated; therefore t is a |-|-final morphism. For surjectivity of t, for

each x0 ∈ X , consider a constant map x0 : C0 → (X ,a), c0 7→ x0 , for some non-empty C0 ∈ C , that we

are assuming to exist. If we add these constant maps to the sink of probes, then ac continues to be

|-|-final and the sink is still indexed by a set. Hence, without loss of generality, one can consider that

these constant maps are already indexed by I. Therefore, for each x ∈ X , x = pi(xi) = t(ιi(xi)), for

some i ∈ I, xi ∈ Xi .

A thorough study of regular epimorphisms in (T,V)-Cat is done in [Hof05].

8.2 (T,V)-CatC is cartesian closed

Since a space is C -generated if, and only if, it is a colimit of generating spaces, then every coreflective

subcategory of (T,V)-Cat containing C must contain (T,V)-CatC . Moreover, since (T,V)-CatC is

coreflective in (T,V)-Cat and contains C , we conclude that (T,V)-CatC is the coreflective hull of C

in (T,V)-Cat.
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Hence the question of cartesian closedness of (T,V)-CatC fits into the goals of [Nel78]. In this

reference, the condition (CEP) used below was established. However, we follow the arguments of

[ELS04], providing a direct approach to this subject.

Definition 8.2.1 A map f : (X ,a) → (Y,b) is C -continuous if, for each probe p : C → (X ,a), the

composite f · p : C → (Y,b) is continuous.

Remark 8.2.2 We can readily see that the following are equivalent:

(i) f : (X ,a)→ (Y,b) is a C -continuous map;

(ii) f : (X ,ac)→ (Y,b) is a continuous map;

(iii) f : (X ,ac)→ (Y,bc) is a continuous map.

Furthermore, continuity implies C -continuity, and the converse is true for maps defined on C -

generated spaces.

Proposition 8.2.3 (1) (T,V)-spaces and C -continuous maps form a category C -Map.

(2) For each space (X ,a), the identity map 1X : (X ,ac)→ (X ,a) is an isomorphism in C -Map.

(3) C -Map and (T,V)-CatC are equivalent categories.

Proof. (1) Each identity map is continuous, hence C -continuous. Let f : (X ,a) → (Y,b) and

g : (Y,b)→ (Z,c) be C -continuous maps, and consider a probe p : C → (X ,a). By C -continuity of f ,

f · p : C → (Y,b) is continuous, hence it is a probe. Thus, by C -continuity of g, (g · f ) · p = g · ( f · p)

is a continuous map, whence g · f is a C -continuous map.

(2) C -continuity of 1X : (X ,ac)→ (X ,a) follows from its continuity. Conversely, 1X : (X ,ac)→ (X ,ac)

is a continuous map, whence 1X : (X ,a)→ (X ,ac) is a C -continuous map.

(3) The inclusion (T,V)-CatC ↪→ C -Map is fully faithful. For each space (X ,a), (X ,ac)∼= (X ,a) in

C -Map, hence this inclusion is essentially surjective.

As a corollary we have that C -Map is a complete and cocomplete category.

Lemma 8.2.4 Let (X ,a),(Y,b),(Z,c) be (T,V)-spaces and f : (X ×Y,a × b) → (Z,c) be a C -

continuous map. Then, for each x ∈ X, the map fx : (Y,b)→ (Z,c), y 7→ f (x,y), is C -continuous.

Proof. The map fx is the composition of the two C -continuous maps:

(Y,b)
⟨x,1Y ⟩ // (X ×Y,a×b)

f // (Z,c),

where x : Y → X is the constant map assigning x to every y ∈ Y .
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This result establishes, for each C -continuous map f : X ×Y → Z, a transpose for f , denoted, as

usual, by f : X → C -Map(Y,Z), x 7→ fx . We wish to endow C -Map(Y,Z) with a (T,V)-structure in

such a way that C -continuity of f is equivalent to C -continuity of f . Let us assume that the following

condition holds:

(CEP) the elements of C are exponentiable spaces in (T,V)-Cat, and if C1 ,C2 ∈ C , then the binary

product C1 ×C2 in (T,V)-Cat is a C -generated space.

In [ELS04, Definition 3.5] the class C satisfying (CEP) is said to be productive (see also [Nel78]).

We define, for (T,V)-spaces (Y,b),(Z,c), the required (T,V)-structure on C -Map(Y,Z). For

each probe q j : (Yj ,b j)→ (Y,b), form the exponential (ZYj ,d j) in (T,V)-Cat, which exists by (CEP).

Since V is an integral quantale, this exponential is given by

ZY j = {h : (Yj ,b j)→ (Z,c) | h is a (T,V)-continuous map},

where the (T,V)-structure d j is the largest one that makes the evaluation map evZ,Yj
: ZY j ×Yj → Z

(T,V)-continuous; then we have a map

tq j
: C -Map(Y,Z)→ (ZY j ,d j), g 7→ g ·q j ,

which is well-defined, for if g is C -continuous, then, by definition, g ·q j is continuous. Consider the

source (tq j
: C -Map(Y,Z)→ (ZY j ,d j)) j∈J and its |-|-initial lifting in (T,V)-Cat

(tq j
: (C -Map(Y,Z),d)→ (ZYj ,d j)) j∈J ,

hence d =
∧
j∈J

t◦
q j
· d j ·Ttq j

. By definition, a map h : (W, l)→ (C -Map(Y,Z),d), for (W, l) a (T,V)-

space, is (T,V)-continuous if, and only if, for all probes q j : (Yj ,b j) → (Y,b), the composite

tq j
·h : (W, l)→ (ZYj ,d j) is continuous.

Lemma 8.2.5 Let (X ,a),(Y,b),(Z,c) be (T,V)-spaces. A map f : (X ×Y,a× b) → (Z,c) is C -

continuous if, and only if, f : (X ,a)→ (C -Map(Y,Z),d) is C -continuous.

Proof. Assume that f : X ×Y → Z is C -continuous and let p : C → (X ,a) be a probe. We must prove

that f · p : C → C -Map(Y,Z) is a continuous map, hence consider a probe q j : (Yj ,b j)→ (Y,b). There

exists a natural bijection (T,V)-Cat(C,ZYj )∼= (T,V)-Cat(C×Yj ,Z), and, for each c ∈C, y j ∈ Yj ,

(tq j
· f · p(c))(y j) = f · p(c)(q j(y j)) = f (p(c),q j(y j)) = f · (p×q j)(c,y j).
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Whence tq j
· f · p corresponds to f · (p×q j) : C×Yj → Z, which is a continuous map, since f · (p×q j)

is C -continuous by hypothesis, and C×Yj is C -generated by (CEP). Therefore tq j
· f · p : C → ZYj is

a continuous map.

Conversely, assume that f : (X ,a) → (C -Map(Y,Z),d) is a C -continuous map and let

p : C → (X ×Y,a×b) be a probe. We wish to prove that f · p : C → Z is a continuous map. Com-

position with the product projections πX and πY from X ×Y into X and Y , respectively, give us

probes pX = πX · p : C → X and pY = πY · p : C → Y . Then, by C -continuity of f , the compos-

ite f · pX : C → C -Map(Y,Z) is continuous, whence, by definition of d, tpY · f · pX : C → ZC is a

continuous map. For each c ∈C,

f · p(c) = f ·
〈

pX , pY〉(c) = f (pX(c))(pY (c)) =
(
tpY · f · pX(c)

)
(c),

from where we conclude that f · p is continuous.

Theorem 8.2.6 C -Map is a cartesian closed category.

Proof. For each spaces (Y,b),(Z,c), considering the evaluation map

evY,Z : (C -Map(Y,Z)×Y,d ×b)→ (Z,c),

then its transpose

evY,Z = 1
C -Map(Y,Z) : (C -Map(Y,Z),d)→ (C -Map(Y,Z),d)

is a (C -)continuous map, whence evY,Z is a C -continuous map. Moreover, for each C -continuous map

f : (X ×Y,a× b)→ (Z,c), there exists a unique C -continuous map f : (X ,a)→ (C -Map(Y,Z),d)

such that

C -Map(Y,Z) C -Map(Y,Z)×Y
evY,Z // Z

X

∃ ! f

OO

X ×Y

f×1Y

OO

f

55

is a commutative diagram.

Since C -Map ∼= (T,V)-CatC , we conclude:

Corollary 8.2.7 (T,V)-CatC is a cartesian closed category.

The exponential of C -generated spaces (X ,a),(Y,b) is given by (C -Map((X ,a),(Y,b)),dc).
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8.3 Compactly generated (T,V)-spaces

For the first example of C -generated spaces, let us consider the class C of compact Hausdorff (T,V)-

spaces. As usual, in this case the C -generated spaces are called compactly generated. Under the

conditions assumed for this chapter – V integral and lean, T1 = 1 – C satisfies condition (CEP).

Every compactly generated space is a coequalizer of a coproduct of compact Hausdorff spaces, and

the full subcategory of (T,V)-Cat of compactly generated spaces is cartesian closed.

Let us go through our examples in Table (IV.1). For V-Cat with V integral, compact Hausdorff

V-spaces are precisely the discrete spaces, and coequalizers and coproducts of discrete spaces are

discrete, so that V-CatC
∼= Set.

For Top∼= (U,2)-Cat, in Subsection 2.8 we have seen that compactness and Hausdorff separation

coincide with the classical notions. A space (X ,a) is compactly generated if, and only if, it is the

quotient of a disjoint sum of compact Haudorff topological spaces, which is equivalent to being

a quotient of a locally compact Hausdorff space. Sequential spaces, topological manifolds, and

CW -complexes are examples of compactly generated topological spaces.

In the categories NA-App and App, compactly generated (non-Archimedean) approach spaces are

the topological approach spaces induced by a compactly generated topology. This follows from the

equivalences

(U,Pmax)-CatCompHaus
∼= (U,P+)-CatCompHaus

∼= SetU

given by (I.38), and from the fact that the embedding of Top into App corestricts to NA-App, and,

furthermore, Top is coreflective in both categories [Low97, CVO17].

Concerning (U,P1)-Cat, the quantale homomorphism ι : 2 → P1 , given by ι(⊥) = 0 and

ι(⊤) = 1, which is compatible with the lax extensions ofU to 2-Rel and P1-Rel, induces an embedding

Top ↪→ (U,P1)-Cat. The homomorphism ι has a right adjoint p : P1 → 2, defined by p(1) =⊤ and

p(u) =⊥, for u ̸= 1, which is also compatible with the lax extensions ofU. Hence, by Proposition

2.3.1, we have

Top � � ⊤ //
vv

(U,P1)-Cat.

Therefore, Top is coreflective in (U,P1)-Cat, so that (U,P1)-compactly generated spaces are (U,P1)-

spaces induced by compactly generated topological spaces, since (U,P1)-CatCompHaus
∼= SetU.
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8.4 Alexandroff (T,V)-spaces

It is discussed in [ELS04] that when C is the singleton set containing the Sierpiński space S ∈ Top,

then the C -generated spaces are precisely the Alexandroff spaces. Analogously, let C be the singleton

set containing the Sierpiński (T,V)-space (V,hom
ξ
); we call the C -generated (T,V)-spaces, or

(V,hom
ξ
)-generated spaces, by Alexandroff (T,V)-spaces.

A (T,V)-space is Alexandroff if, and only if, it is a coequalizer of a coproduct of copies of

(V,hom
ξ
). Moreover, by Corollary 2.7.14, the Sierpiński (T,V)-space is an injective space. Hence,

under the hypotheses of Theorem 3.0.5, which are satisfied by the categories of Table (IV.1), (V,hom
ξ
)

is exponentiable in (T,V)-Cat. Therefore, in order to assure condition (CEP) and establish that

Alexandroff spaces form a cartesian closed subcategory of (T,V)-Cat, we only need to verify whether

the binary product (V×V,hom
ξ
×hom

ξ
) is (V,hom

ξ
)-generated.

Proposition 8.4.1 For T= I and V integral and totally ordered, the product (V×V,hom×hom) is

a (V,hom)-generated space.

Proof. For simplicity, let us fix d = hom×hom. We know that dc ≤ d, where dc denotes the

Alexandroff V-structure on V×V. Hence, it suffices to show that, for each (u,v),(u′,v′) ∈ V×V,

dc((u,v),(u′,v′))≥ d((u,v),(u′,v′)). Let us consider the cases:

u ≤ u′ V is integral, hence ⊤⊗u = u ≤ u′, and this is equivalent to ⊤≤ hom(u,u′), whence

d((u,v),(u′,v′)) = hom(u,u′)∧hom(v,v′) =⊤∧hom(v,v′) = hom(v,v′).

Define the maps fu : V→ V×V, for each z ∈ V, fu(z) = (u,z), and f
v′ : V→ V×V, for each z ∈ V,

f
v′ (z) = (z,v′), which are continuous, since constant maps are continuous. Thus

dc((u,v),(u,v′)) = dc( fu(v), fu(v
′))≥ hom(v,v′),

and dc((u,v′),(u′,v′))≥ hom(u,u′) =⊤. Transitivity of dc implies that

dc((u,v),(u′,v′))≥ dc((u,v),(u,v′))⊗dc((u,v′),(u′,v′))≥ hom(v,v′)⊗⊤= d((u,v),(u′,v′)).

We can treat the case v ≤ v′ in an analogous way.

u > u′ & v > v′ We fix γ = d((u,v),(u′,v′)) = hom(u,u′)∧hom(v,v′). Similar to what is done in

the first case, we have hom(u′,u)∧hom(v′,v) =⊤. Injectivity of (V,hom) implies injectivity of the
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product (V×V,d). Furthermore, the equivalence ≃ in diagram (I.30) implies equality when we

consider extensions with codomain V×V, because the order of V, and consequently the order of

V×V, is separated. Consider the subset {γ,⊤} ⊆ V with the |-|-initial V-structure with respect to the

inclusion map. Define

f : {γ,⊤}→ V×V, γ 7→ (u′,v′), ⊤ 7→ (u,v).

Since γ ≤ ⊤, then hom(γ,⊤) = ⊤, and hom(γ,⊤) = hom(u′,u)∧ hom(v′,v) = d( f (γ), f (⊤)); by

formula (I.3), hom(⊤,γ) =
∨
{w ∈ V | w⊗⊤= w ≤ γ}= γ , hence

hom(⊤,γ) = hom(u,u′)∧hom(v,v′) = d( f (⊤), f (γ)).

Thus f is fully faithful (hence continuous), and there exists a continuous map f̂ : V→V×V extending

f along the embedding of {γ,⊤} into V:

{γ,⊤} �
� //

f $$

V

f̂||
V×V.

Therefore dc((u,v),(u′,v′)) = dc( f̂ (⊤), f̂ (γ))≥ hom(⊤,γ) = γ = d((u,v),(u′,v′)).

Therefore, for T= I and V integral and totally ordered, in particular for our examples in Table

(IV.1), C satisfies condition (CEP), whence, by Corollary 8.2.7, Alexandroff spaces form a cartesian

closed subcategory of V-Cat. In Ord every space is Alexandroff. For UltMet, Met, and BMet Alexan-

droff spaces are the coequalizers of coproducts of copies of ([0,∞],>), ([0,∞],⊖), and ([0,1],~),

respectively (Examples 2.1.6 (2), (3), and (4)).

Let us turn our attention to the ultrafilter monad U. For (U,2)-Cat ∼= Top, the binary product

S×S of Sierpiński spaces is Alexandroff, since its topology is finite, so that arbitrary intersections of

open sets are open. Then we recover the fact that the full subcategory of Top of Alexandroff spaces is

cartesian closed.

We can derive an interesting relation from the adjunction discussed in Subsection 2.3. As observed

in Remark 2.3.2, for the particular case of Ord and Top, Alexandroff topological spaces are precisely

the spaces in the image of A◦, what culminates in the well known fact that the category of Alexandroff

spaces is equivalent to Ord. We wish to study whether the same relation between Alexandroff (T,V)-
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spaces and Alexandroff V-spaces can be established. Then consider the pair of adjoint functors

(I.13):

V-Cat ⊥

A◦
((

Ae

hh (T,V)-Cat;

let us recall that, for each (T,V)-space (X ,a), Ae(X ,a) = (X ,a · eX ), and for each V-space (Y,b0),

A◦(Y,b0) = (Y,b#
0
), with b#

0
= e◦

Y
·T b0 ; both functors leave the morphisms unchanged.

Firstly, we must have that (V,hom
ξ
) itself is the image by A◦ of some Alexandroff V-space;

naturally, we wish to provide conditions so that

(V,hom
ξ
) = A◦(V,hom) = (V,hom#) = (V,e◦

V
·T hom).

By (I.17), for each v ∈ TV, v ∈ V,

e◦
V
·T hom(v,v) = T hom(v,e

V
(v))

=
∨
{ξ ·T (hom)(w) | w ∈ T (V×V), T π1(w) = v, T π2(w) = e

V
(v)},

with π1 ,π2 the first and second product projections from V×V onto V, respectively. Moreover, by

[Hof07, Lemma 3.2], the following diagram

T (V×V)
T (hom) //

⟨ξ ·T π1 ,ξ ·T π2⟩
��

≥

TV

ξ

��
V×V

hom
// V

is lax commutative. Then, whenever w ∈ T (V×V) is such that T π1(w) = v and T π2(w) = e
V
(v),

ξ ·T (hom)(w)≤ hom
ξ
(v,v), whence e◦

V
·T hom(v,v)≤ hom

ξ
(v,v).

Theorem 8.4.2 If the diagram

T (V×V)
T (hom) //

⟨ξ ·T π1 ,ξ ·T π2⟩
��

TV

ξ

��
V×V

hom
// V

(IV.2)

is commutative, then A◦ preserves Alexandroff spaces.
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Proof. Commutativity of (IV.2) implies that A◦(V,hom) = (V,hom
ξ
). Let (X ,a0) be an Alexandroff

V-space, and put (X ,a) = A◦(X ,a0). Let h : (X ,a) → (Y,b) be a map such that, for every (T,V)-

continuous map f : (V,hom
ξ
)→ (X ,a), the composite h · f is (T,V)-continuous.

Then, for each V-continuous map f : (V,hom)→ (X ,a0), applying A◦ we get a (T,V)-continuous

map f : (V,hom
ξ
)→ (X ,a). Therefore h · f : (V,hom

ξ
)→ (Y,b) is a (T,V)-continuous map, and,

by the adjunction A◦ ⊣ Ae , h · f : (V,hom) → (Y,b · eY ) is a V-continuous map. Since (X ,a0) is

Alexandroff, h : (X ,a0)→ Ae(Y,b) = (Y,b · eY ) is a V-continuous map, whence h : A◦(X ,a0)→ (Y,b)

is a (T,V)-continuous map.

Next we make use of the map canX ,X : T (X ×X)→ T X ×T X defined in (I.21).

Proposition 8.4.3 (1) For each Alexandroff (T,V)-space (X ,a), (X ,a) = A◦ ·Ae(X ,a).

(2) If, for each set X, (eX ×eX )
◦ ·canX ,X ≤ e◦

X×X
, then, for each V-space (X ,a0), (X ,a0) = Ae ·A◦(X ,a0).

Proof. (1) Let (X ,a) be an Alexandroff (T,V)-space. The equality mX · TeX = 1T X implies the

inequality TeX ≤ m◦
X
, and 1X ≤ a · eX is equivalent to e◦

X
≤ a. By transitivity of a and because mX is a

map, we have e◦
X
·Ta ·TeX ≤ a ·Ta ·m◦

X
≤ a ·mX ·m◦

X
≤ a.

Conversely, by the adjunction A◦ ⊣ Ae , every continuous map f : (V,hom
ξ
) → (X ,a) is con-

tinuous from (V,hom) to (X ,a · eX ), and applying A◦ we get a continuous map from (V,hom
ξ
) to

(X ,e◦
X
·Ta ·TeX ). Hence, since (X ,a) is Alexandroff, the identity map 1X is continuous:

(V,hom
ξ
)

f //

f ))

(X ,a)

1X
��

(X ,e◦
X
·Ta ·TeX ).

(2) For each set X , w ∈ T (X ×X), (x,x′) ∈ X ×X ,

e◦
X×X

(w,(x,x′)) = k ⇐⇒ eX×X (x,x
′) =w =⇒

(
T πX

1
(w) = eX (x) & T πX

2
(w) = eX (x

′)
)

⇐⇒ canX ,X (w) = eX × eX (x,x
′) ⇐⇒ (eX × eX )

◦ · canX ,X (w,(x,x′)) = k,

that is, e◦
X×X

≤ (eX × eX )
◦ · canX ,X . Hence, by hypothesis, this is an equality. Let (x,x′) ∈ X ×X , and

w ∈ T (X ×X) such that T πX
1
(w) = eX (x) and T πX

2
(w) = eX (x

′). Then eX×X (x,x
′) =w, and for each

V-space (X ,a0), since ξ : TV→ V is a T-algebra, we have:

Ta0(eX (x),eX (x
′)) =

∨
{ξ ·T a⃗0(w) | w ∈ T (X ×X), T πX

1
(w) = eX (x), T πX

2
(w) = eX (x

′)}

= ξ ·T a⃗0 · eX×X (x,x
′) = ξ · e

V
· a⃗0(x,x

′) = a⃗0(x,x
′).
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Therefore (X ,a0) = (X ,e◦
X
·Ta0 · eX ) = Ae ·A◦(X ,a0).

Remark 8.4.4 We have proved that every Alexandroff V-space induces, by A◦, an Alexandroff

(T,V)-space, and that every Alexandroff (T,V)-space is induced by a V-space, namely, by Ae(X ,a).

It is still an open question under which conditions the image of an Alexandroff (T,V)-space by Ae

is an Alexandroff V-space. By the characterization of C -generated spaces as colimits, it suffices to

determine conditions under which the functor Ae is a left adjoint.

Proposition 8.4.5 If (e
V
× e

V
)◦ · can

V,V
≤ e◦

V×V
and the following diagrams are (lax) commutative,

T (V×V)
T (∧) //

⟨ξ ·T π1 ,ξ ·T π2⟩ �� ≤

TV
ξ
��

V×V ∧
// V

T (V×V)
T (hom) //

⟨ξ ·T π1 ,ξ ·T π2⟩ ��

TV
ξ
��

V×V
hom

// V

then, for V integral and totally ordered, (V×V,hom
ξ
×hom

ξ
) is an Alexandroff (T,V)-space.

Proof. It suffices to show that (V×V,hom
ξ
×hom

ξ
) = A◦(V×V,hom×hom). For each (u,v),(z,w)

in V×V,

(hom
ξ
×hom

ξ
) · e

V×V
((u,v),(z,w)) = hom

ξ
×hom

ξ
(e

V×V
(u,v),(z,w))

= hom
ξ
(T π1 · eV×V

(u,v),z)∧hom
ξ
(T π2 · eV×V

(u,v),w)

= hom
ξ
(e

V
(u),z)∧hom

ξ
(e

V
(v),w) = hom(u,z)∧hom(v,w)

= hom×hom((u,v),(z,w)),

hence (V×V,(hom×hom)#) = A◦(V×V,hom×hom) = A◦ ·Ae(V×V,hom
ξ
×hom

ξ
); the counit of

the adjunction A◦ ⊣ Ae is given by an identity map, so we conclude that (hom×hom)# ≤ hom
ξ
×hom

ξ
.

For the converse inequality, since (V,hom
ξ
) = A◦(V,hom) = (V,e◦

V
·T hom), for each w ∈ T (V×V),

(u,v) ∈ V×V, we have:

hom
ξ
×hom

ξ
(w,(u,v)) = hom

ξ
(T π1(w),u)∧hom

ξ
(T π2(w),v)

= e◦
V
·T hom(T π1(w),u)∧ e◦

V
·T hom(T π2(w),v)

= T hom(T π1(w),e
V
(u))∧T hom(T π2(w),e

V
(v))

= T hom×T hom(w,eV × e
V
(u,v))

= (e
V
× e

V
)◦ · (T hom×T hom)(w,(u,v)).
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Moreover,

(e
V
× e

V
)◦ · (T hom×T hom) = (e

V
× e

V
)◦ · (T hom?T hom) · can

V,V
(by (I.22))

= (e
V
× e

V
)◦ · can

V,V
·T (hom?hom) (by Lemma 2.6.1)

≤ e◦
V×V

·T (hom×hom) = (hom×hom)# (by hypothesis).

Therefore, under the conditions of this proposition, C = {(V,hom
ξ
)} satisfies (CEP), hence

Alexandroff (T,V)-spaces form a cartesian closed subcategory of (T,V)-Cat.

Example 8.4.6 Let us verify that in the category App∼= (U,P+)-Cat the conditions of Proposition

8.4.5 are satisfied. We recall from Examples 2.5.1(2) that

ξ : U [0,∞]→ [0,∞], v 7→ inf{u ∈ [0,∞] | [0,u] ∈ v};

lax commutativity of

U([0,∞]× [0,∞])
U(max) //

⟨ξ ·Uπ1 ,ξ ·Uπ2⟩
��

≤

U [0,∞]

ξ

��
[0,∞]× [0,∞] max

// [0,∞]

is verified in Remark 2.6.2. Let us verify that the diagram

U([0,∞]× [0,∞])
U⊖⃗ //

⟨ξ ·Uπ1 ,ξ ·Uπ2⟩
��

U [0,∞]

ξ

��
[0,∞]× [0,∞]

⊖⃗
// [0,∞]

is commutative. By [Hof07, Lemma 3.2], we know that ⊖⃗ · ⟨ξ ·Uπ1 ,ξ ·Uπ2⟩ ≤ ξ ·U⊖⃗. Let w in

U([0,∞]× [0,∞]) and suppose that

ξ (v2)⊖ξ (v1)< ξ (U⊖⃗(w)) = inf{u ∈ [0,∞] | [0,u] ∈U⊖⃗(w)},

where v1 =Uπ1(w) and v2 =Uπ2(w). Here [0,u] ∈U⊖⃗(w) if, and only if, (⊖⃗)−1([0,u]) ∈w, so that

ξ (U⊖⃗(w)) = inf{u ∈ [0,∞] | Su ∈w}, where the set

Su = (⊖⃗)−1([0,u]) = {(p,q) ∈ [0,∞]× [0,∞] | q⊖ p ≤ u}
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can be depicted as the gray area in the following graphic:

Let t ∈ [0,∞] such that ξ (v2)⊖ξ (v1)< t < ξ (U⊖⃗(w)); then St /∈w. Since ξ (v2)< ξ (v1)+ t, there

exists n ∈ N such that ξ (v2)+
t
n < ξ (v1)+ t. Let us assume that ξ (v1) > 0 so that we can choose

t
n < ξ (v1). Hence

ξ (v1)− t
n < ξ (v1) ⇒ [0,ξ (v1)− t

n ] /∈ v1 ⇒ ]ξ (v1)− t
n ,∞] ∈ v1 =Uπ1(w)

⇒ ]ξ (v1)− t
n ,∞]× [0,∞] ∈w

and

ξ (v2)+
t
n > ξ (v2) ⇒ [0,ξ (v2)+

t
n ] ∈ v2 =Uπ2(w) ⇒ [0,∞]× [0,ξ (v2)+

t
n ] ∈w.

Thus ]ξ (v1)− t
n ,∞]× [0,ξ (v2)+

t
n ] ∈ w, but ]ξ (v1)− t

n ,∞]× [0,ξ (v2)+
t
n ] ⊆ St implies St ∈ w, a

contradiction.

In the case ξ (v1) = 0, we have that ξ (v2) +
t
n < t, whence [0,∞]× [0,ξ (v2) +

t
n ] ∈ w, and

[0,∞]× [0,ξ (v2)+
t
n ]⊆ St , so we obtain a contradiction.

Finally, if w ∈U(V×V) is such that Uπ1(w) = e
V
(u) and Uπ2(w) = e

V
(v), for (u,v) ∈ V×V,

then {u} ∈ Uπ1(w) is equivalent to π−1
1

({u}) = {u}×V ∈ w, and {v} ∈ Uπ2(w) is equivalent to

π−1
2

({v}) =V×{v} ∈w, whence ({u}×V)∩(V×{v}) = {(u,v)} ∈w, that is, w= e
V×V

(u,v). Thus

(e
V
× e

V
)◦ · can

V,V
≤ e

V×V
.

Therefore we conclude that Alexandroff approach spaces form a cartesian closed category of

App. Furthermore, if (X ,d) is an Alexandroff metric space, then the space A◦(X ,d) = (X ,d#) given
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by, for each x ∈UX , x ∈ X , d#(x,x) = sup
A∈x

(
inf{d(x′,x) | x′ ∈ A}

)
, is an Alexandroff approach space.

In terms of approach distances, for each x ∈ X , A ⊆ X , d#(x,A) = inf{d(x′,x) | x′ ∈ A}. For each

Alexandroff approach space (X ,a), we have a = d#, with d = a · eX , that is, for each x ∈UX , x ∈ X ,

a(x,x) = sup
A∈x

(
inf{a(eX (x

′),x) | x′ ∈ A}
)
, or in terms of approach distances: if (X ,δ ) is an Alexandroff

approach space, then, for each x ∈ X , A ⊆ X , δ (x,A) = inf
x′∈A

(
sup{δ (x,B) | B ∈ eX (x

′)}
)
.

For V = Pmax , we have the adjunction A◦ ⊣ Ae : NA-App→ UltMet between non-Archimedean

approach spaces and ultrametric spaces [CVO17, Section 4]. However, it remains an open question

whether the diagram below is commutative.

U([0,∞]× [0,∞])
U>⃗ //

⟨ξ ·Uπ1 ,ξ ·Uπ2⟩
��

U [0,∞]

ξ

��
[0,∞]× [0,∞]

>⃗
// [0,∞]

8.5 Injectively generated (T,V)-spaces

We can consider C as the class of injective spaces. The binary product of injective spaces is

injective and, under the conditions of Theorem 3.0.5, so in particular for the categories of Table (IV.1),

every element of C is exponentiable. Therefore, C satisfies condition (CEP) and the full subcategory

of (T,V)-Cat of C -generated spaces, or injectively generated spaces, is cartesian closed.

The class of injective spaces in the usual sense, so that we require equality instead of ≃ in (I.30),

also satisfies condition (CEP). Hence we conclude (see [AHS90, Examples 9.3(4)]):

Lemma 8.5.1 In Top, quotients of disjoint sums of retracts of powers DI , with I a set and

D = ({0,1,2},{ /0,{0,1,2},{0,1}}), form a cartesian closed subcategory.

8.6 Exponentiably generated (T,V)-spaces

Finally, the largest class C satisfying condition (CEP) is the one of exponentiable (T,V)-spaces.

Then coequalizers of coproducts of exponentiable spaces form a cartesian closed subcategory of

(T,V)-Cat.

In the case of Top, exponentiable spaces are the core-compact spaces. Exponentiably generated

spaces in Top, which are quotients of disjoint sums of core-compact spaces, are then called core-

compactly generated [ELS04].
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For the cartesian closed category Ord, C = OrdC = Ord. For an account on exponentiable metric

spaces and exponentiable approach spaces we refer to [CH06] and [HS15], respectively.

9 Quasi-(T,V)-spaces

In this section we generalise Spanier’s quasi-topological spaces [Spa63], following Day’s presentation

[Day68]. Throughout C will denote the full subcategory of (T,V)-Cat of compact Hausdorff spaces.

Let us recall from Subsection 2.8 that, under the conditions that V is integral and lean, T1= 1 and T

preserves finite coproducts (hence, in particular, for the categories of Table IV.1), every constant map

is continuous in (T,V)-Cat, and C is closed under the formation of finite coproducts, binary products

and equalizers.

9.1 The category Qs(T,V)-Cat

Definition 9.1.1 For C ∈ C and a finite family of maps (αi : Ci → X)i∈I , with Ci ∈ C , for each i ∈ I,

we say that a map α : C → X is covered by the family (αi)i∈I if there exists a surjective continuous

map η :
∐

i
Ci →C such that the diagram

∐
i
Ci ∐

i
αi

**

η

��
C

α
// X

(IV.3)

is commutative, where
∐

i
Ci denotes the coproduct of the family (Ci)i∈I in (T,V)-Cat, and

∐
i
αi is

the canonical induced map.

Observe that, by this definition, every map α : C → X , C ∈ C , is covered by itself.

Definition 9.1.2 A quasi-(T,V)-space consists of a set X and, for each element C of C , a set Q(C,X)

of maps from C to X , hereinafter called admissible maps, such that the following conditions are

satisfied:

(QS1) for each C ∈ C , constant maps belong to Q(C,X);

(QS2) for C1 ,C2 ∈ C , for each continuous map h : C1 →C2 and each admissible map α ∈ Q(C2 ,X),

α ·h ∈ Q(C1 ,X);

(QS3) if a map α : C → X , for C ∈ C , is covered by a family of admissible maps as in (IV.3), then α

is admissible.

A quasi-(T,V)-space is denoted by (X ,(Q(C,X))C∈C ), and when its quasi-(T,V)-structure (Q(C,X))C∈C



90 Compactly generated (T,V)-spaces and quasi-(T,V)-spaces

is clear by the context, we will denote it simply by X . A quasi-(T,V)-continuous map

f : (X ,(Q(C,X))C∈C )→ (Y,(Q(C,Y ))C∈C ),

between quasi-(T,V)-spaces is a map f : X → Y such that, for each C ∈ C and α ∈ Q(C,X), f ·α ∈

Q(C,Y ); we denote the set of quasi-(T,V)-continuous maps from X to Y by Qs(X ,Y ).

In (QS3) we have an equivalence, since every admissible map is covered by itself. When there is

no ambiguity, we might drop the middle term (T,V) and refer to the concepts of Definition 9.1.2 by

quasi-spaces, quasi-structures, and quasi-continuous maps. Each identity map is quasi-continuous

and composition of quasi-continuous maps is quasi-continuous, so we have a category Qs(T,V)-Cat.

We are aware of the size illegitimacy of Qs(T,V)-Cat proved in [HR83] for the particular case of

Top, which comes from the fact that its collection of objects do not form a class. However, we still

call Qs(T,V)-Cat a category.

Let (X ,a) be a (T,V)-space, and define, for each C ∈ C ,

Qa(C,X) = {α : (C,c)→ (X ,a) | α is (T,V)-continuous}. (IV.4)

Lemma 9.1.3 For each (X ,a) ∈ (T,V)-Cat, (X ,(Qa(C,X))C∈C ) is a quasi-(T,V)-space.

Proof. Every constant map is continuous, so (QS1) is satisfied, and so is (QS2), since the composition

of continuous maps is continuous. For (QS3), let α : C → X , C ∈ C , be a map covered by a

family of admissible maps (αi)i∈I as in (IV.3). Each map αi is continuous, then so is the composite

α ·η =
∐

i
αi ∈ Qa(

∐
i
Ci ,X). Axiom of Choice granted, we can conclude the following:

c ≤ c ·T η · (T η)◦ (T η is a surjective map)

≤ c ·T η ·b◦ ·b · (T η)◦ ((⨿i Ci ,b) is compact)

≤ c · c◦ ·η ·b · (T η)◦ (η is (T,V)-continuous)

≤ η ·b · (T η)◦ ((C,c) is Hausdorff)

≤ η · (α ·η)◦ ·a ·T (α ·η) · (T η)◦ (α ·η is (T,V)-continuous)

= η ·η◦ ·α◦ ·a ·T α ·T η · (T η)◦

≤ α◦ ·a ·T α (η and T η are maps).

Hence α is continuous, that is, α ∈ Qa(C,X).
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We call (X ,(Qa(C,X))C∈C ) the quasi-space associated with (X ,a). If f : (X ,a) → (Y,b) is a

continuous map in (T,V)-Cat, then f : (X ,(Qa(C,X))C∈C )→ (Y,(Qb(C,Y ))C∈C ) is a quasi-continuous

map in Qs(T,V)-Cat, for if α : C → X is an admissible map, for C ∈ C , then α continuous implies

that f ·α : C → Y is continuous, hence admissible. This defines an inclusion of (T,V)-Cat into

Qs(T,V)-Cat that, in general, is not full. However, in particular cases, continuous maps and quasi-

continuous maps might coincide, as we verify next.

Let (C,c) be an element of C , and consider its associated quasi-structure: for each B ∈ C ,

Qc(B,C) = (T,V)-Cat(B,C). Let (X ,(Q(C,X))C∈C ) be a quasi-space, and α : C → X be a map. If α

is quasi-continuous, then, since 1C ∈ Qc(C,C), by definition of quasi-continuity, α ·1C = α ∈ Q(C,X).

Conversely, if α ∈ Q(C,X), then, for each D ∈ C and each β ∈ Qc(D,C), by (QS2), α ·β ∈ Q(D,X),

hence α is quasi-continuous. Therefore, when C is endowed with its associated quasi-structure,

Q(C,X) = Qs(C,X). Furthermore, for the particular case when X = (D,d) ∈ C , quasi-continuous

maps between the associated quasi-spaces of C and D coincide with the admissible maps Qd (C,D),

which are all continuous maps from C to D, that is,

Qd (C,D) = Qs(C,D) = (T,V)-Cat(C,D).

This fact extends from elements of C to C -generated spaces, as we will see in details in Subsection

9.4. Concerning C -generated spaces, we observe the following:

Lemma 9.1.4 For each (T,V)-space (X ,a), the C -generated space (X ,ac) induces the same quasi-

space associated with (X ,a). Moreover, ac is the least (T,V)-structure on X with this property.

Proof. The first statement follows from the fact that, for each C ∈ C , α : C → (X ,a) is a continuous

map if, and only if, α : C → (X ,ac) is a continuous map. Now, if a is such a structure, then every

probe α : C → (X ,a), with C ∈ C , is a continuous map α : C → (X ,a), whence, by the definition of

C -generated structure, the identity map 1X : (X ,ac)→ (X ,a) is continuous, that is, ac ≤ a.

It is proved in [Spa63, Lemma 5.5] that there exist quasi-topological spaces which are not

associated with any topological space. We can verify the same for V-Cat with V integral: com-

pact and Hausdorff V-spaces are the discrete V-spaces (C,1C), C ∈ Set; hence, for (X ,a) a V-

space, every map α : (C,1C) → (X ,a) is V-continuous. Then the associated quasi-V-structure for

(X ,a) is given by: for each C ∈ Set, Qa(C,X) = Set(C,X). Therefore, setting, for each C ∈ Set,

Q′(C,X) = {α : C → X | α has finite image}, we see that, if X is not finite, then Q′ is not associated

with (X ,a).
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In the same way, we can define, for each set X , indiscrete and discrete quasi-structures given by, for

each C ∈ C , Qind(C,X) = Set(C,X) and Qdis(C,X) = {α : C → X | α has finite image}, respectively.

One can directly verify that (X ,(Qind(C,X))C∈C ) is a quasi-(T,V)-space, and that, for a quasi-(T,V)-

space (Y,(Q(C,Y ))C∈C ), each map f : Y → X in Set is a quasi-continuous map

f : (Y,(Q(C,Y ))C∈C )→ (X ,(Qind(C,X))C∈C ).

For the discrete quasi-structure, we prove:

Lemma 9.1.5 For each set X, (X ,(Qdis(C,X))C∈C ) is a quasi-(T,V)-space. Moreover, for a quasi-

space (Y,(Q(C,Y ))C∈C ), every map f : X → Y in Set is a quasi-continuous map

f : (X ,(Qdis(C,X))C∈C )→ (Y,(Q(C,Y ))C∈C ).

Proof. (QS1) and (QS2) follow immediately for Qdis . To verify (QS3), let α : C → X , for C ∈ C , be

covered by a (finite) family of admissible maps (αi)i∈I as in (IV.3). Since the αi’s have finite image,

say card(αi(Ci)) = ni , ni ∈ N, then

card(α(C)) = card(α ·η(
∐

i

Ci)) = card(
∐

i

αi(
∐

i

Ci))≤ ∑
i

card(αi(Ci)) = ∑
i

ni ,

hence α is admissible. Let f : X → Y be a map and α ∈ Qdis(C,X), for some C ∈ C . Then α has

finite image, say α(C) = {x1 , . . . ,xn}, n ∈ N. Define, for each i ∈ {1, . . . ,n}, Ci = α−1(xi)⊆C, and

endow this fibre with the |-|-initial (T,V)-structure with respect to the inclusion map into C. For each

i ∈ {1 . . . ,n}, Ci belongs to C , because C is closed under regular monomorphisms. The inclusion

maps Ci ↪→C, i ∈ {1 . . . ,n}, induce a surjective (T,V)-continuous map η :
∐

i
Ci →C. Define, for

each i, the constant map αi : Ci → X , ci 7→ α(ci) = xi , so that the composite f ·αi is a constant map,

hence f ·αi ∈ Q(Ci ,Y ). Finally, observe that f ·α : C → Y is covered by the family ( f ·αi)i∈{1,...,n} :

∐
i
Ci ∐

i
( f ·αi )

**

η

��
C

f ·α
// Y.

Therefore f : (X ,(Qdis(C,X))C∈C )→ (Y,(Q(C,Y ))C∈C ) is a quasi-continuous map.
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We remark that the indiscrete quasi-(T,V)-space (X ,(Qind(C,X))C∈C ) is associated with the

indiscrete (T,V)-space (X ,⊤), since every map f : C → (X ,⊤) is continuous, for C ∈ C . For discrete

quasi-spaces, this is not true in general, as we have seen above for V-Cat. However, for Top and

QsTop, it is true that the discrete quasi-topological space is associated with the discrete topological

space: if α : C → X is a continuous map, with C compact and Hausdorff and X discrete, then the

image α(C)⊆ X is compact and discrete, hence it is finite.

Proposition 9.1.6 The forgetful functor |-| : Qs(T,V)-Cat→ Set has left and right adjoints, and it is

represented by the singleton quasi-(T,V)-space.

Proof. The left adjoint to the forgetful functor assigns to each set X the discrete quasi-space

(X ,(Qdis(C,X))C∈C ), and leaves maps unchanged. Then, for each quasi-space (Y,(Q(C,Y ))C∈C ),

Qs((X ,(Qdis(C,X))C∈C ),(Y,(Q(C,Y ))C∈C )) = Set(X ,Y ) = Set(X , |(Y,(Q(C,Y ))C∈C )|).

The right adjoint assigns to each set Y the indiscrete quasi-space (Y,(Qind(C,Y ))C∈C ), and each map is

assigned to itself. Then, for each quasi-space (X ,(Q(C,X))C∈C ),

Set(|(X ,(Q(C,X))C∈C )|,Y ) = Set(X ,Y ) = Qs((X ,(Q(C,X))C∈C ),(Y,(Qind(C,Y ))C∈C )).

Since |-| has a left adjoint, it is represented by the singleton discrete quasi-space, which coincides with

the singleton indiscrete quasi-space, and it is given by: for each C ∈ C , Q(C,1) = {!C : C → 1}.

9.2 Qs(T,V)-Cat is topological over Set

Let (X ,(Q(C,X))C∈C ) be a quasi-space. For each subset A ⊆ X , define: for each C ∈C , α ∈ Qsub(C,A)

if, and only if, iA ·α ∈ Q(C,X), where iA : A ↪→ X is the inclusion map. Let us call it the sub-quasi-

structure.

Lemma 9.2.1 For each quasi-space (X ,(Q(C,X))C∈C ) and each A ⊆ X, (A,(Qsub(C,A))C∈C ) is

a quasi-space, and, moreover, the inclusion map iA from A into X becomes a quasi-continuous

map iA : (A,(Qsub(C,A))C∈C ) → (X ,(Q(C,X))C∈C ), which is, moreover, a |-|-initial morphism, with

|-| : Qs(T,V)-Cat→ Set the forgetful functor.

Proof. It is straightforward to verify that (A,(Qsub(C,A))C∈C ) is a quasi-space and that the inclusion

map iA is quasi-continuous. Let f : Y → A be a map such that, for a quasi-space (Y,(Q(C,Y ))C∈C ),
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iA · f ∈ Qs(Y,X). Then, for each α ∈ Q(C,Y ), with C ∈ C , iA · f ·α ∈ Q(C,X), and, by definition,

f ·α ∈ Qsub(C,A), that is, f ∈ Qs(Y,A).

Now let us consider, for a quasi-space (X ,(Q(C,X))C∈C ), a surjective map f : X → Y , and define:

for each C ∈ C , α ∈ Qquo(C,Y ) if, and only if, there exists a surjective continuous map f ′ : C′ →C,

with C′ ∈ C , and an admissible map α ′ ∈ Q(C′,X) such that the diagram

C′ f ′ //

α ′

��

C

α

��
X

f
// Y

(IV.5)

is commutative. Let us call it the quotient quasi-structure.

Lemma 9.2.2 If f : X → Y is a surjective map, for (X ,(Q(C,X))C∈C ) a quasi-space, then

(Y,(Qquo(C,Y ))C∈C ) is a quasi-space. Moreover, f : (X ,(Q(C,X))C∈C ) → (Y,(Qquo(C,Y ))C∈C ) is a

quasi-continuous map, which is a |-|-final morphism, with |-| : Qs(T,V)-Cat → Set the forgetful

functor.

Proof. One can readily check (QS1) and (QS3). For (QS2), let α ∈ Q(C,Y ), with C ∈ C , and let

h : B →C be a continuous map, with B ∈ C . By definition, there exists a surjective map f ′ : C′ →C

and α ′ ∈ Q(C′,X), with C′ ∈ C , such that the diagram (IV.5) is commutative. Form the pullback of f ′

along h:

B×C C′ πB //

π
C′ ��

B
h��

C′
f ′

//

α ′
��

C
α��

X
f

// Y.

Then πB is a surjective map, because f ′ is surjective in Set; B×C C′ ∈ C , since C is closed under

binary products and equalizers; and since α ′ ∈ Q(C′,X) and π
C′ is continuous, α ′ ·π

C′ ∈ Q(B×C C′,X).

Then α ·h ∈ Qquo(B,C).

For each α ∈ Q(C,X), the diagram

C
1C //

α ��

C
f ·α��

X
f
// Y
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is commutative, hence f ·α ∈ Qquo(C,Y ), and f ∈Qs(X ,Y ). Let g : Y → Z be a map, for a quasi-space

(Z,(Q(C,Z))C∈C ), such that g · f : X → Z ∈Qs(X ,Z). Then, for each C ∈ C and each α ∈ Qquo(C,Y ),

there exist a surjection f ′ : C′ → C and a map α ′ ∈ Q(C′,X), with C′ ∈ C , as in the commutative

diagram (IV.5). Hence g · f ·α ′ ∈ Q(C′,Z), and because g · f ·α ′ = g ·α · f ′, the map g ·α is covered

by an admissible map, whence g ·α ∈ Q(C,Z), and g ∈ Qs(Y,Z).

C′
g· f ·α ′

**
f ′ ��
C g·α

// Z

Proposition 9.2.3 The forgetful functor |-| : Qs(T,V)-Cat→ Set is topological.

Proof. For a source ( f j : X → |(X j ,(Q(C,X j))C∈C )|) j∈J in Set, for quasi-spaces (X j ,(Q(C,X j))C∈C ),

j ∈ J, define: for each C ∈ C , α ∈ Q(C,X) if, and only if, for all j ∈ J, f j ·α ∈ Q(C,X j).

Firstly, (Q(C,X))C∈C is a quasi-structure: it immediately satisfies (QS1) and (QS2). For (QS3), if

α : C → X , with C ∈ C , is a map covered by the family (αi : Ci → X)i∈I of admissible maps, then, for

each j ∈ J, f j ·α is covered by the family of maps (β ji = f j ·αi)i∈I , which are admissible by definition

of Q(Ci ,X).

∐
i
Ci ∐

i
αi

**

η

��

∐
i
β ji

''
C

α
// X

f j

// X j

Hence, for each j ∈ J, f j ·α ∈ Q(C,X j), so that α ∈ Q(C,X) by definition.

Secondly, let (Y,(Q(C,Y ))C∈C ) be a quasi-space, and t : Y → X be a map such that, for all

j ∈ J, f j · t ∈ Qs(Y,X j). Then, for each admissible map α ∈ Q(C,Y ), with C ∈ C , for all j ∈ J,

f j · t ·α ∈ Q(C,X j). Hence t ·α ∈ Q(C,X) by definition, and t ∈ Qs(Y,X).

Therefore, ( f j : (X ,(Q(C,X))C∈C ) → (X j ,(Q(C,X j))C∈C )) j∈J is a |-|-initial lifting for the given

source. Uniqueness follows from amnesticity of the forgetful functor |-| : Qs(T,V)-Cat → Set

[AHS90, Definition 5.4(4), Proposition 21.5].

In particular, Qs(T,V)-Cat is complete and cocomplete. We describe next its limits and colimits.

Limits Consider a small category A and a functor D : A→ Qs(T,V)-Cat. To construct the limit

of D , consider first the limit in Set of the composite functor |-| ·D : A→ Set, with |-| the forgetful
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functor from Qs(T,V)-Cat to Set, which we denote by (πA : X → |DA|)A∈ObjA . The limit of D is given

by the |-|-initial lifting of this mono-source.

As particular instances, the product of a family ((Xi ,(Q(C,Xi))C∈C ))i∈I of quasi-spaces is given by

the set ∏
i∈I

Xi endowed with the quasi-structure: for each C ∈ C ,

α ∈ Q(C,∏
i∈I

Xi) ⇐⇒ ∀i ∈ I,πi ·α ∈ Q(C,Xi),

where, for each i ∈ I, πi is the product projection from ∏
i∈I

Xi to Xi ; hence the terminal object in

Qs(T,V)-Cat is given by the singleton set 1 endowed with the quasi-structure:

Q(C,1) = {!C : C → 1}, for each C ∈ C ,

that was described in Proposition 9.1.6. For the equalizer of the quasi-continuous maps f ,g : X → Y ,

for quasi-spaces (X ,(Q(C,X))C∈C ) and (Y,(Q(C,Y ))C∈C ), endow the set E = {x ∈ X | f (x) = g(x)}

with the sub-quasi-structure with respect to the inclusion map iE : E ↪→ X .

Colimits Let D : A→Qs(T,V)-Cat be a diagram, and form the colimit (ιA : |DA| → X)A∈ObjA in Set

of the composite functor |-| ·D : A→ Set, |-| : Qs(T,V)-Cat→ Set the forgetful functor. The colimit

of D is given by the |-|-final lifting of this epi-sink.

Lemma 9.2.4 The |-|-final lifting of an epi-sink ( f j : |(X j ,(Q(C,X j))C∈C )| → X) j∈J in Set, for quasi-

spaces (X j ,(Q(C,X j))C∈C ), j ∈ J, is given by X endowed with the quasi-structure defined by: for each

C ∈ C , α ∈ Q(C,X) if, and only if, α is covered by a family of maps (αi : Ci → X)i∈I such that, for

each i ∈ I, there exists ji ∈ J and βi ∈ Q(Ci ,X ji
) with αi = f ji

·βi .

∐
i
Ci

∐
i
αi

##

η

��

Ci
? _oo

αi

��

βi

%%
X ji

f jixx
C

α
// X

(IV.6)

Proof. First we prove that (X ,(Q(C,X))C∈C ) is a quasi-space. For condition (QS1), consider, for

C ∈ C , a constant map α : C → X , c 7→ x0 . Since we are considering an epi-sink, there exist j ∈ J and

x j ∈ X j such that f j(x j) = x0 . Define α j : C → X j , c 7→ x j , which is admissible, since it is a constant
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map. Then commutativity of the following diagram implies that α ∈ Q(C,X).

C

α

''

1C

��

C
1Coo

α

��

α j

** X j

f jttC
α

// X

For (QS2) let α ∈ Q(C,X), for C ∈ C , and h : B → C a continuous map, with B ∈ C . Then α is

covered by a family (αi)i∈I as in (IV.6). For each i ∈ I, set ηi = η · ιi , where ιi : Ci ↪→
∐

i
Ci is the

coproduct inclusion, and consider the pullback of h along ηi :

B×C Ci

πCi //

π i
B
��

Ci

ηi
��

B
h

// C.

For each i ∈ I, B×C Ci belongs to C ; moreover, the family of continuous maps (π i
B

: B×C Ci → B)i∈I

induces the surjective continuous map η :
∐

i
(B×C Ci)→ B: if b ∈ B, then there exists i ∈ I such

that h(b) = η(ci , i), for some (ci , i) ∈
∐

i
Ci , because η is surjective, hence h(b) = ηi(ci) implies

(b,ci) ∈ B×C Ci , and b = π i
B
(b,ci) = η((b,ci), i). For each i ∈ I, define γi = αi ·πCi

: B×C Ci → X ,

whence, for each ((b,ci), i) ∈
∐

i
(B×C Ci),

α ·h ·η((b,ci), i) = α ·h(b) = α ·ηi(ci) = αi ·πCi
(b,ci) =

∐
i

γi((b,ci), i).

Furthermore, for each i ∈ I, γi = αi ·πCi
= f ji

·βi ·πCi
, for some ji ∈ J, with βi ∈ Q(Ci ,X ji

), whence

βi ·πCi
∈ Q(B×C Ci ,X ji

), and we can conclude with the commutative diagram

∐
i
(B×C Ci)

∐
i
γi

%%

η

��

B×C Ci
? _oo

γi

��

βi ·πCi

''
X ji

f jiww
B

α·h
// X .

For (QS3), let α : C → X , with C ∈ C , be a map covered by a family (αi)i∈I of admissible maps as in

(IV.3). Then, for each i ∈ I, αi is covered by a family (β i
k
: Di

k
→ X)k∈K , with Di

k
∈ C , of maps such
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that, for each k ∈ K, there exists ji
k
∈ J and γ i

k
∈ Q(Di

k
,X

jik
) with β i

k
= f

jik
· γ i

k
.

∐
i
Ci

∐
i
αi

$$

η

��

Ci
? _oo

αi

��

∐
k
Di

k

µioo

∐
k

β i
k

||
C

α
// X Di

k
β i

k

oo

γ i
k}}

� ?

OO

X
jik

f
jik

^^

Since µi is a surjective continuous map, so is the induced morphism
∐

i
µi :

∐
i

∐
k
Di

k
→
∐

i
Ci , and

so is the composite with η , η ′ = η ·
∐

i
µi :

∐
i,k

Di
k
→C. Furthermore,

α ·η ′ = α ·η ·
∐

i

µi =
∐

i

αi ·
∐

i

µi =
∐

i

αi ·µi =
∐

i,k

β
i
k
,

so we can conclude with the commutative diagram

∐
i,k

Di
k

∐
i,k

β i
k

##

η ′

��

Di
k

? _oo

β i
k

��

γ i
k

%%
X

jik

f
jikxx

C
α

// X .

With X endowed with this quasi-structure, for each j ∈ J, the map f j : X j → X is quasi-continuous,

for if α j ∈ Q(C,X j), for C ∈ C , then, by definition, f j ·α j ∈ Q(C,X), since

C

f j ·α j

""

1C

��

C
1Coo

f j ·α j

��

α j

&&
X j

f jxx
C

f j ·α j

// X

is a commutative diagram. Finally, let f : X → Y be a map, for (Y,(Q(C,Y ))C∈C ) a quasi-space, such

that, for all j ∈ J, f · f j : X j → Y is a quasi-continuous map. If α ∈ Q(C,X), for C ∈ C , then, by
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definition, α is covered by a family (αi)i∈I of maps as in (IV.6). Then the commutative diagram

∐
i
Ci

∐
i

f ·αi

""

η

��

Ci
? _oo

f ·αi

��

βi

%%
X ji

f · f jixx
C

f ·α
// Y,

shows that f ·α is covered by the family of maps f ·αi = f · f ji
·βi , i ∈ I, which are admissible because

f · f ji
is a quasi-continuous map and βi ∈ Q(Ci ,X ji

). Therefore, f ·α ∈ Q(C,Y ), and f : X → Y is a

quasi-continuous map.

In particular, the coproduct of a family ((Xi ,(Q(C,Xi))C∈C ))i∈I of quasi-spaces is given by the

disjoint union
⋃̇

i
Xi endowed with the quasi-structure defined in the previous lemma with respect to

the epi-sink (ιi : Xi ↪→
⋃̇

i
Xi)i∈I . The initial object is the empty set /0 endowed with the quasi-structure:

Q(C, /0) =

 /0, if C ̸= /0

{1 /0}, otherwise.

For coequalizers of quasi-continuous maps f ,g : X →Y , consider in the set Y the smallest equivalence

relation ∼ that contains the pairs ( f (x),g(x)), for x ∈ X . Endow the quotient set Ỹ = Y/∼ with

the quotient quasi-structure with respect to the projection map pY : Y → Ỹ . Let us verify that this

quasi-structure coincides with the one given by the previous lemma: α ∈ Q(C,Ỹ ), for C ∈ C , if, and

only if, α is covered by a family (αi)i∈I as in (IV.6):

∐
i
Ci ∐

i
αi

**
η

��

Ci
? _oo

αi��

βi

++ Y
pYssC

α
// Ỹ .

Since the maps βi are admissible from Ci to Y , we have
∐

i
βi ∈ Q(

∐
i
Ci ,Y ), whence

∐
i
Ci

η //

∐
i
βi

��

C

α

��
Y pY

// Ỹ
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is a commutative diagram, with η a surjective continuous map, so that α ∈ Qquo(C,Ỹ ). Conversely, if

α ∈ Qquo(C,Ỹ ), for C ∈ C , then, by definition, we have a commutative diagram

C′ η //

α ′

��

C

α

��
Y pY

// Ỹ ,

with η : C′ →C a surjective continuous map and α ′ ∈ Q(C′,Y ), for C′ ∈ C . Then α is covered by

pY ·α ′, hence, α belongs to the |-|-final quasi-structure with respect to the projection map pY .

9.3 Qs(T,V)-Cat is cartesian closed

For quasi-spaces X and Y , a natural candidate for an exponential is the set Qs(X ,Y ) of quasi-continuous

maps. Then we have the evalutation map ev: Qs(X ,Y )×X →Y , that we wish to be a quasi-continuous

map, for some quasi-structure on Qs(X ,Y ). For such a structure, for each γ ∈ Q(C,Qs(X ,Y )×X),

with C ∈C , ev ·γ ∈Q(C,Y ). Consequently, for admissible maps β ∈Q(C,Qs(X ,Y )) and α ∈Q(C,X),

⟨β ,α⟩ : C → Qs(X ,Y )×X is an admissible map, whence ev · ⟨β ,α⟩ belongs to Q(C,Y ). Under this

intuition and considering conditions (QS1) to (QS3), we prove:

Lemma 9.3.1 For quasi-spaces X and Y , the following defines a quasi-structure on the set Qs(X ,Y ):

for each C ∈ C , β ∈ Q(C,Qs(X ,Y )) if, and only if, for each (T,V)-continuous map h : B →C, for

B ∈ C , and each admissible map α ∈ Q(B,X), ev · ⟨β ·h,α⟩ : B → Y ∈ Q(B,Y ). Moreover, when

Qs(X ,Y ) is endowed with this quasi-structure, the evaluation map is quasi-continuous.

Proof. Conditions (QS1) and (QS2) are readily verifiable. For (QS3), let β : C → Qs(X ,Y ), for

C ∈ C , be a map covered by a family of admissible maps (βi)i∈I :

∐
i
Ci ∐

i
βi

++
η

��
C

β

// Qs(X ,Y ).

To verify that β is admissible, let h : B →C be a continuous map, for B ∈ C , and α ∈ Q(B,X). Let us

consider, for each i ∈ I, the map ηi = η · ιi , with ιi : Ci ↪→
∐

i
Ci the coproduct inclusion. Consider the
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pullbacks of η and ηi along h:

(
∐

i
Ci)×C B

πB //

π`

i
Ci
��

B

h
��∐

i
Ci η

// C

Ci ×C B
π i

B //

πCi
��

B

h
��

Ci ηi

// C.

Then we have a surjective continuous map

µ :
∐

i
(Ci ×C B) −→ (

∐
i
Ci)×C B

((ci ,b), i) 7−→ ((ci , i),b),

where
∐

i
(Ci ×C B) ∈ C . Since (T,V)-Cat is distributive, we have

∐
i
(Ci ×B)∼= (

∐
i
Ci)×B, and we

assemble the following commutative diagram.

∐
i
(Ci ×C B)

µ

��

� � //

∐
i
γi

  

∐
i
(Ci ×B)

∼=
��

∐
i
(βi×α)

��

(
∐

i
Ci)×C B

πB

��

� � // (
∐

i
Ci)×B

η×1B
��

(
∐

i
βi )×α

**
C×B

β×α

// Qs(X ,Y )×X ev
// Y

B
ev·⟨β ·h,α⟩

44

Where, for each i ∈ I, γi : Ci ×C B → Y is given by, for each (ci ,b) ∈Ci ×C B,

γi(ci ,b) = βi(ci)(α(b)) = βi(πCi
(ci ,b))(α ·π i

B
(ci ,b)),

that is, γi = ev ·
〈

βi ·πCi
,α ·π i

B

〉
, which is an admissible map, because βi is an admissible map,

πCi
: Ci ×C B →Ci is a continuous map, and α is an admissible map, so that α ·π i

B
is an admissible map.

Finally, ev · ⟨β ·h,α⟩ is covered by the family of admissible maps (γi)i∈I : for each (ci ,b) ∈Ci ×C B,

ev · ⟨β ·h,α⟩ ·πB ·µ(ci ,b) = β (h(b))(α(b)) = β (ηi ·πCi
(ci ,b))(α ·π i

B
(ci ,b))

= βi(πCi
(ci ,b))(α ·π i

B
(ci ,b)) = γi(ci ,b),

whence ev · ⟨β ·h,α⟩ ∈ Q(B,Y ). For each admissible map γ ∈ Q(C,Qs(X ,Y )×X), composing with

the product projections π
Qs(X ,Y ) and πX from Qs(X ,Y )×X into Qs(X ,Y ) and X , respectively, we get
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admissible maps γ1 : C → Qs(X ,Y ) and γ2 : C → X . By definition of the quasi-structure on Qs(X ,Y ),

ev · γ = ev · ⟨γ1 ·1C ,γ2⟩ ∈ Q(C,Y ), hence ev: Qs(X ,Y )×X → Y is a quasi-continuous map.

Theorem 9.3.2 Qs(T,V)-Cat is cartesian closed.

Proof. For quasi-spaces X and Y , endow the set Qs(X ,Y ) with the quasi-structure defined previously,

so that the evaluation map ev: Qs(X ,Y )×X → Y is quasi-continuous. For each quasi-continuous

map f : Z ×X → Y , with Z a quasi-space, there exists a unique map f : Z → Set(X ,Y ), the transpose

of f , such that ev · ( f ×1X ) = f . Let z ∈ Z and α ∈ Q(C,X), for C ∈ C . For each c ∈C,

f (z) ·α(c) = f (z)(α(c)) = ev · ( f ×1X )(z,α(c)) = f (z,α(c)) = f · ⟨z,α⟩(c),

where z denotes the contant (hence admissible) map z : C → Z, c 7→ z. Since ⟨z,α⟩ : C → Z ×X is an

admissible map and f is a quasi-continuous map, we conclude that f (z) ·α = f · ⟨z,α⟩ belongs to

Q(C,Y ). Hence f (z) : X →Y is a quasi-continuous map and we have a corestriction f : Z →Qs(X ,Y ).

Moreover, for each γ ∈ Q(C,Z), for C ∈ C , let us prove that f · γ ∈ Q(C,Qs(X ,Y )). Let h : B →C be

a continuous map, with B ∈ C , and α ∈ Q(B,X). By (QS2), γ ·h ∈ Q(B,Z), whence ⟨γ ·h,α⟩ belongs

to Q(B,Z ×X) and f · ⟨γ ·h,α⟩ ∈ Q(B,Y ). For each b ∈ B,

ev ·
〈

f · γ ·h,α
〉
(b) = f · γ ·h(b)(α(b)) = f (γ ·h(b))(α(b)) = f (γ ·h(b),α(b)) = f · ⟨γ ·h,α⟩(b),

hence f : Z → Qs(X ,Y ) is a quasi-continuous map.

Qs(X ,Y ) Qs(X ,Y )×X ev // Y

Z

∃ ! f
OO

Z ×X

f×1X

OO

f

55

9.4 Day’s relationship between (T,V)-CatC and Qs(T,V)-Cat

As we mentioned in Subsection 9.1, the inclusion of (T,V)-Cat into Qs(T,V)-Cat given by Lemma

9.1.3 is not full. However, it is full when restricted to C -generated spaces, and this relationship was

studied for the particular case of Top in [Day68].

By definition, if (X ,a) is a C -generated space, then a map f : (X ,a)→ (Y,b), for (Y,b) a (T,V)-

space, is (T,V)-continuous if, and only if, for each (T,V)-continuous map (probe) α : C → (X ,a),
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with C ∈ C , the composite f ·α : C → Y is (T,V)-continuous. Considering the associated quasi-

spaces (X ,Qa(C,X)C∈C ) and (Y,Qb(C,X)C∈C ), a map f : X → Y is (T,V)-continuous if, and only if,

f : X → Y is quasi-continuous, that is,

(T,V)-Cat(X ,Y ) = Qs(X ,Y ). (IV.7)

The converse implication is also true: for a (T,V)-space (X ,a), if (IV.7) is satisfied for every (T,V)-

space (Y,b), where the spaces are endowed with the associated quasi-structures, then, by definition,

(X ,a) is C -generated.

Let C -(T,V)-Cat be the full subcategory of Qs(T,V)-Cat of quasi-spaces associated with C -

generated spaces. By (IV.7), (T,V)-CatC
∼= C -(T,V)-Cat. Moreover, we can prove (see [Day68,

Theorem 4.2]):

Proposition 9.4.1 C -(T,V)-Cat is reflective in Qs(T,V)-Cat.

Proof. For a quasi-space (X ,(Q(C,X))C∈C ) consider the sink (α : (C,c) → X)C∈C ,α∈Q(C,X)
. Take its

|-|-final lifting (α : (C,c)→ (X ,aQ))C∈C ,α∈Q(C,X)
in (T,V)-Cat, with |-| : (T,V)-Cat→ Set the forgetful

functor. Consider the quasi-space (X ,(QaQ
(C,X))C∈C ) associated with (X ,aQ). For a map f : X → Y ,

with (Y,b) a (T,V)-space, if f : (X ,aQ)→ (Y,b) is (T,V)-continuous, then

f : (X ,(QaQ
(C,X))C∈C )→ (Y,(Qb(C,Y ))C∈C )

is quasi-continuous. Moreover, the converse implication holds, for if f is a quasi-continuous map when

considering the associated quasi-structures, then, for each C ∈ C and α ∈ Q(C,X), α : C → (X ,aQ)

is (T,V)-continuous, whence f ·α : C → (Y,b) is (T,V)-continuous, hence f : (X ,aQ)→ (Y,b) is

(T,V)-continuous by definition of aQ .

We have proved that (X ,aQ) satisfies (IV.7), for every (T,V)-space (Y,b), so that its associated

quasi-space (X ,(QaQ
(C,X))C∈C ) belongs to C -(T,V)-Cat. Each α ∈ Q(C,X), for C ∈ C , is a (T,V)-

continuous map α : C → (X ,aQ), hence it is an admissible map in the associated quasi-structure QaQ
,

that is, the identity map 1X : (X ,(Q(C,X))C∈C )→ (X ,(QaQ
(C,X))C∈C ) is quasi-continuous. Finally,

if f : (X ,(Q(C,X))C∈C ) → (Y,(Qb(C,Y ))C∈C ) is a quasi-continuous map, for (Y,(Qb(C,Y ))C∈C ) in

C -(T,V)-Cat, then, as we deduced before, f : (X ,aQ) → (Y,b) is a (T,V)-continuous map, and
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consequently f : (X ,(QaQ
(C,X))C∈C )→ (Y,(Qb(C,Y ))C∈C ) is a quasi-continuous map.

(X ,Q(C,X))
1X //

f
))

(X ,QaQ
(C,X))

f
��

(Y,Qb(C,Y ))

Recalling that we have fixed C as the class of compact Hausdorff (T,V)-spaces, we summarize

the above in the following diagram.

(T,V)-CatC

� � ⊤ //

∼=

��

(T,V)-Cat

non-full

��

tt

C -(T,V)-Cat �
� ⊥ // Qs(T,V)-Cat

tt

Examples 9.4.2 (1) For V-Cat with V integral, compact and Hausdorff V-spaces are discrete, hence a

quasi-V-space consists of a set X and, for each (C,1C)∈C , a set Q(C,X) of maps satisfying conditions

(QS1) to (QS3). In particular, for the quantales 2, P+ , Pmax , and P1 the respective categories of quasi-

spaces coincide: QsOrd= QsMet= QsUltMet= QsBMet.

(2) For (U,V)-Cat, with V = 2,P+ ,Pmax ,P1 , by the same reasoning of item (1), since

(U,V)-CatCompHaus
∼= SetU,

we can conclude that Qs(U,P1)-Cat = QsNA-App = QsApp = QsTop, where QsTop denotes the

category of quasi-topological spaces and quasi-continuous maps [Spa63].
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