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The first holistic approaches for batch data analysis were proposed around two decades 

ago, with an emphasis on statistical process control and quality prediction. In the 

subsequent years, more methods were proposed, with varying degrees of success and 

acceptance by practitioners. A detailed and comprehensive analysis of these contributions 

reveals different complexity levels, both in terms of the degrees of freedom used for 

setting up the techniques (modeling complexity) and the expertise/training required by 

practitioners to autonomously apply them in concrete real world applications 

(implementation complexity). Both dimensions decisively contribute to the impact of a 

given proposal in industry but, analyzing carefully the technical literature, it is possible to 

notice a rather clear trend towards increasingly complex batch data analysis methods. 

These methods are named fine-grained approaches since the time dimension is explicitly 

transposed and incorporated in the data-driven model. To this end, they require intricate 

pre-processing techniques (high implementation complexity) and a high number of model 

parameters (high modeling complexity). On the other hand, alternative approaches that 

are simpler, but also more robust and potentially effective have been largely overlooked. 

These methods often summarize the batch evolution in fewer quantities called features 

and compress or remove the time dimension from data-driven model building. Therefore, 

they are named coarse-grained approaches. Coarse-grained methods, and feature-oriented 

methods in particular, constitute the main focus of this thesis and an effort is made to 

develop and unify all the available methodologies belonging to this category. More 

specifically, a novel feature-oriented method, named profile-driven features (PdF), is 

developed, tested, and compared to benchmark alternatives. The comparison considers 

many of the important tasks that are routinely conducted in batch data analysis, such as 

exploratory data analysis, process monitoring, and quality prediction. It is shown that PdF 

extracts specific features from the trajectories of the process variables and can provide 

results that are either on par or better when compared to those obtained with more 

complex methods. Afterwards, feature-oriented methods are integrated and unified into a 

batch analytics framework called FOBA, demonstrating how these methods can be 

utilized in assisting practitioners with their daily activities. Furthermore, an extension of 

FOBA is also developed to increase the flexibility of feature-oriented methods and 

identify important periods of the batch evolution. 

Another topic discussed in this thesis refers to the need to employ efficient feature 

selection procedures when analyzing batch datasets. This stems from the fact that there 

can be many features available for data-driven model building; however, many of them 
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are highly noisy or may be even irrelevant to the predictive task at hand. In this context, a 

new two-stage approach, called wide spectrum feature selection (WiSe), is proposed to 

remove noisy and irrelevant features. In the first stage of WiSe, various metrics of feature 

importance are employed in order to detect relevant predictors and select them. In the 

second stage, predictive methods that have built-in mechanisms for feature selection are 

utilized to further reduce the number of features. Consequently, the developed models 

tend to be more parsimonious, with the consequent advantages on increased robustness 

and improved prediction performance. This was confirmed by a series of case studies that 

-dimensional scenarios.  

The last topic discussed in this thesis covers the development of a predictive analytics 

comparison framework (PAC) for assessing the performance of predictive methods. The 

features computed from batch trajectories can be utilized for predicting important quality 

parameters; however, during data-driven model building, practitioners face the 

challenging task of selecting the best method for their application. This selection process 

is frequently constrained by limited a priori knowledge about the characteristics and 

mechanisms generating the data and, therefore, prone to be sub-optimal. In such 

scenarios, practitioners often choose their preferred method(s) without a proper 

assessment of other methods (and other classes of methods) that may bring predictive 

advantages. PAC is a platform for these scenarios since it considers a wide variety of 

methods and assesses their performance using robust comparison metrics based on 

statistical hypothesis testing. Furthermore, PAC provides output results in a user-friendly 

fashion, allowing the identification of the best method(s) and the most important features 

influencing quality. PAC was applied to a variety of case studies, covering simulated and 

real world datasets, and the results demonstrate its benefits in providing insights into the 

prediction problem at hand as well as speeding up the process of model screening and 

development.     
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As primeiras abordagens holísticas para análise de dados de processos descontínuos 

foram propostas há cerca de duas décadas e focavam-se essencialmente no controlo 

estatístico de processos e na previsão da qualidade. Desde então, novos métodos foram 

propostos, com diferentes níveis de sucesso e aceitação prática. Uma análise detalhada 

destas contribuições revela que elas possuem diferentes níveis de complexidade, tanto em 

termos dos graus de liberdade utilizados no desenvolvimento dos modelos (complexidade 

do modelo) como em termos do conhecimento necessário para aplicá-los autonomamente 

(complexidade de implementação). Estas dimensões contribuem decisivamente para o 

impacto de uma dada metodologia na indústria, no entanto, a literatura recente da análise 

de dados de processos descontínuos tende a favorecer métodos cada vez mais complexos. 

Esses métodos denominam-se por abordagens de baixa granularidade uma vez que a 

dimensão do tempo é explicitamente incorporada no modelo e requerem técnicas de pré-

processamento complexas (alta complexidade de implementação) e conduzem a modelos 

com um elevado número de parâmetros (modelos complexos). Por outro lado, abordagens 

alternativas mais simples, mas que também são robustas e eficazes, têm sido em grande 

parte negligenciadas. Estes métodos sumariam a evolução do lote em algumas 

quantidades denominadas por features, compactando ou mesmo removendo a dimensão 

temporal. Assim sendo, eles denominam-se por abordagens de elevada granularidade e 

constituem o tema principal desta tese. Mais especificamente, um novo método, 

denominado por profile-driven features (PdF) foi desenvolvido, testado e comparado com 

abordagens alternativas. A comparação aborda muitas das tarefas típicas da análise de 

dados, nomeadamente a análise exploratória de dados, a monitorização de processos e a 

previsão da qualidade. É demonstrado que o método PdF extrai características específicas 

das trajetórias das variáveis e conduz a resultados similares ou superiores aos obtidos 

com métodos mais complexos. Os métodos baseados em features são também integrados 

e unificados numa plataforma analítica (designada FOBA, feature-oriented batch 

analytics framework) que demonstra como esses métodos podem ser utilizados para 

auxiliar profissionais em suas atividades diárias. 

Outro tópico discutido nesta tese refere-se à necessidade de aplicar métodos eficientes 

para a seleção de features. Esta necessidade advém do facto de muitas features conterem 

elevados níveis de ruído ou serem até irrelevantes num dado contexto de previsão. Assim 

sendo, uma nova abordagem para a seleção de features é proposta. Esta abordagem 

denomina-se por wide spectrum feature selection (WiSe). Na primeira etapa, várias 

métricas de importância são utilizadas para detetar e selecionar preditores relevantes. Na 
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segunda etapa, métodos preditivos que também possuem mecanismos automáticos para a 

seleção de features são utilizados. Consequentemente, os modelos desenvolvidos tendem 

a ser mais parcimoniosos, robustos e com melhor desempenho na previsão. Estas 

vantagens são verificadas num conjunto de casos de estudos que demonstram a eficácia 

do método em diferentes cenários de aplicação. 

O último tópico discutido nesta tese aborda o desenvolvimento de uma plataforma de 

seleção métodos de previsão denominada predictive analytics comparison framework 

(PAC). As features calculadas a partir das trajetórias das variáveis de processo são 

frequentemente utilizadas na previsão de parâmetros de qualidade. No entanto, o 

desenvolvimento de modelos é frequentemente condicionado pela difícil tarefa de 

selecionar o melhor método para uma dada aplicação. Este processo de seleção é 

frequentemente dificultado por um escasso conhecimento prévio sobre as características e 

os mecanismos que geram os dados e, portanto, a escolha tende a ser subótima. Em tais 

cenários, o utilizador muitas vezes seleciona o seu método preferido sem uma análise 

prévia de outros métodos (e outras classes de métodos), potencialmente melhores. PAC é 

uma plataforma concebida para lidar com esses cenários, pois inclui uma ampla variedade 

de métodos e avalia os seus desempenhos utilizando métricas de comparação robustas 

baseadas em testes estatísticos de hipóteses. Além disso, a PAC produz resultados 

intuitivos, permitindo a identificação do melhor método e quais as features mais 

importantes que influenciam a resposta. Esta metodologia foi aplicada a uma variedade 

de casos de estudo, contemplando dados simulados e reais, e os resultados demonstraram 

que o processo de desenvolvimento do modelo é mais expedito e eficaz, e que em 

paralelo, permite obter mais informação relevante sobre o problema.  
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Abbreviations  

AR Auto-regressive 

ARPCA Auto-regressive principal component analysis 

BaRT Bagging of regression trees 

BoRT Boosting of regression trees 

BDA Batch data analysis 

BDPCA Batch dynamic principal component analysis 

BS Best subset 

BWU Batch-wise unfolding 

COW Correlation optimized warping 

CPI Chemical Processing Industry 

DTW Dynamic time warping 

DDTW Derivative dynamic time warping 

DPCA Dynamic principal component analysis 

DPCA-DR Dynamic principal component analysis with decorrelated residuals 

EN Elastic net 

ESI Equally spaced intervals 

ESID Equally spaced intervals for consistent dynamic variables 

FOBA Feature-oriented batch analytics framework 

FN False negatives 

FP False positives 

FSM Feature selection methods 

FSR Forward stepwise regression 

GA Genetic algorithms 

HPLC High-performance liquid chromatography 

IV Indicator variable 

KPI Key performance indicator 

Lasso Least absolute shrinkage and selector operator 

LSD Least significant differences 

MICA Multi-way independent component analysis 

MPCA Multi-way principal component analysis 

MPLS Multi-way partial least squares 

MRQP Multiresolution quality prediction 
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OLS Ordinary least squares

NOC Normal operating conditions 

PAC Predictive analytics comparison framework 

PCA Principal component analysis 

PCR Principal component regression 

PdF Profile-driven features 

PLS Partial least squares 

rPLS Recursive weighted partial least squares 

RF Random forests 

SFFS Sequential forward float selection 

SPA Statistical pattern analysis 

SNV Standard normal variate 

SVR Support vector regression 

TIME-F Translation-invariant multiscale energy-based features 

TN True negatives 

TP True positives 

USID Unequally spaced intervals for consistent dynamic variables 

VIP Variable importance in projection 

VWU Variable-wise unfolding 

WiSe Wide spectrum feature selection 
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This introductory chapter is divided into four sections that altogether provide the context 

for the work presented in this thesis. The first section introduces the topics of batch 

processes and batch data analysis, highlighting their prevalence in modern industry. 

These topics constitute the backbone of this thesis and the underlying application 

environments. In the second section, the pursued goals are presented, whereas in the third 

section, the contributions made in order to achieve such goals are enumerated. The last 

etailing the topics addressed in each chapter. 

 

Batch processes play a central role in modern industry, being ubiquitous in a wide variety 

of sectors such as chemicals, oil & refining, biofuels, pharmaceutical, food & beverages, 

semiconductors, etc. They are characterized by the cyclic repetition of pre-defined 

batch stages (e.g., load reactants, set reaction conditions, control reaction time to achieve 

the desired conversion, set reactor discharge conditions, clean the vessel) and may 

involve different process times (from seconds to several years, as in vintage wines 

production), unit operations (e.g., in chemical and pharmaceutical processes) and even 

different companies (as in semiconductors). The batch operation mode offers great 

flexibility to change process conditions, production volumes, and allows for a better 

control of the batch evolution. Therefore, batch systems are the preferred solution for 

plants with lower and varying production rates and/or producing multiple products. 

However, this added flexibility comes with a cost. The operational flexibility offers more 

opportunities for natural variability to enter the process, as well as diverse special causes, 

leading to increased variability or problems in batch evolution, if not properly monitored 

and controlled. Furthermore, batch processes are intrinsically dynamic and non-

stationary, requiring proper data-driven techniques that can correctly take into account 

these features in a multivariate (often high-dimensional) context. Thus, methods with 

greater flexibility are required to process batch data, when compared to those employed 

for treating data arising from continuous processes. 



Introduction 4 

Typical tasks conducted in the scope of batch data analysis (BDA) include process 

monitoring and control (Nomikos and MacGregor 1994, Gallagher, Wise et al. 1996, 

Undey and Cinar 2002, Cinar, Parulekar et al. 2003, Kourti 2003, Camacho and Picó 

2006, Marjanovic, Lennox et al. 2006, Camacho, Picó et al. 2009, Das, Maiti et al. 2012), 

fault detection and diagnosis (Kourti and MacGregor 1995, Dunia and Joe Qin 1998, 

García-Muñoz, Kourti et al. 2003, Ündey, Ertunç et al. 2003, Miletic, Quinn et al. 2004), 

batch-end quality prediction (Boqué and Smilde 1999, Gurden, Westerhuis et al. 2001, 

Ündey, Tatara et al. 2004, Lu and Gao 2005), optimization (MacGregor and Cinar 2012), 

among others. These data-driven activities will benefit from the recent trends of big data 

analytics and Industry 4.0 initiatives (García-Muñoz and MacGregor 2016, Reis, Braatz 

et al. 2016, Chiang, Lu et al. 2017), which are expected to have a significant impact on 

plant performance, bringing data analytics to the forefront of process management. Given 

the pervasiveness and complexity of batch processes, it is not surprising that a variety of 

data-driven methods have been proposed and applied for BDA. These methods have 

different a priori assumptions and their suitability is dependent on the goals, the data 

available and whether the methods find good adherence to the characteristics of collected 

data, which are often unknown beforehand (Reis and Kenett 2018). The current trend in 

BDA has favored more complex methodologies (Ge, Song et al. 2013, Wang, Wang et al. 

2016) that aim to model intricate relationships found in batch data. These methodologies 

occupy the top spectrum of complexity because they employ complex and cumbersome 

data pre-processing techniques, combined with very flexible models. Moreover, the 

insights obtained are often limited due to challenges in interpreting such intricate models 

and robust assessment metrics are required to avoid overfitting. On the other hand, the 

development of effective and simpler approaches (i.e. methods with low complexity) for 

BDA has been largely overlooked. This is one of the main motivations for the research 

efforts undertaken in this thesis. Simple methods for BDA can be adopted in a more 

straightforward fashion by a larger number of users, often produce a good baseline 

performance to be used as benchmark, and produce easily interpretable outcomes. The 

suitability of such methods is even more pronounced for offline applications (e.g., root-

cause analysis, troubleshooting) since these are rare events, where employing all the 

machinery necessary for complex methods may not be the most cost-effective solution, as 

similar conclusions can often be achieved in a more time-efficient manner with simpler 

methods. 

Batch datasets are also high-dimensional, with many variables being collected and used 

for data-driven modeling (either the original measured variables or features derived from 

them). In this context, selecting, in an efficient way, the key factors affecting batch 
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quality is of paramount importance because they constitute the critical-to-quality drivers

to scrutinize and optimize. This constitutes a second motivation for the work developed in 

this thesis, which relates to the need for selecting the right features/variables for BDA 

tasks -known 

terminology. 

Finally, after employing simple and effective methods for BDA and identifying the 

important batch quality factors, one is often interested in building a model that relates the 

predictors with the quality parameters. To this end, a vast literature on predictive methods 

exist (Hastie, Tibshirani et al. 2001, Chatterjee and Hadi 2015) that, tacitly or explicitly, 

assume a variety of data-generating mechanisms that may be dictating the characteristics 

of the collected datasets. These mechanisms may consider the distribution of the 

predictors (process variables or features), the distribution of the quality variable(s), and 

the relationship between predictors and quality variables. In scenarios where a priori 

knowledge cannot be utilized for selecting a suitable predictive method, comparison 

studies and comparison frameworks are needed to guide the selection process. These 

frameworks should assess the potential of different predictive methods in a robust fashion 

and produce results that are easy to interpret. As an additional benefit, these frameworks 

avoid the background bias introduced by practitioners that often choose to use their 

preferred method in most applications. The development of a robust framework for 

assessing and comparing the predictive ability of a carefully selected pool of methods 

covering the analytics domain in a non-redundant way, is the third and last motivation for 

the work developed in this thesis.    

 

The present research focuses on developing new data-driven methodologies that can be 

utilized for extracting information from datasets collected during the operation of batch 

processes. Therefore, the following goals were specified to overcome some of the current 

limitations of the methodologies employed for BDA: 

i) Develop methodologies for BDA that occupy the low complexity spectrum. 

These methodologies should be effective, simple to apply, and robust. 

Practitioners would greatly benefit from the availability of simpler methods that 

can provide insights into the process operation and the main factors driving 
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quality, without the need to apply cumbersome and complex pre-processing 

techniques; 

ii) Develop a feature-oriented framework for batch data analysis that supports a 

structured approach for addressing a variety of goals, namely quality prediction 

and process monitoring. This framework should contain capabilities of feature 

generation, selection and model building. 

These general goals can be achieved through the development of novel methodologies 

and frameworks that take into account the challenges of batch datasets. These 

methodologies are envisioned to be applied in real world scenarios and, therefore, should 

comply with the requirements of being simple, robust, interpretable, and scalable.       

 

The main contributions of this thesis are the following: 

i) A thorough and systematic literature review focused on methods for batch data 

analysis, with a special emphasis on process monitoring and quality prediction. 

We adopt a taxonomy that allows grouping different methodologies into classes 

that share similar elements in terms of their complexity levels. In this context, we 

consider two dimensions of complexity: modeling complexity, which is related to 

the ability of a given method to fit a dataset, and implementation complexity, 

which ascertain the difficulty that practitioners face when testing and 

implementing a particular method. This taxonomy helps practitioners locate where 

their current preferred method resides in the complexity spectrum and consider 

alternatives by weighting their associated potential added value and complexity; 

ii) The development of a methodology and a framework for batch data analysis that 

occupies the low spectrum of complexity. This methodology does not require 

intricate pre-processing techniques compared to traditional approaches but is able 

to extract relevant information from s and summarize 

their dynamic content by a few quantities, called features. The methodology is 

named profile-driven features (PdF) and can be employed to transform the dataset 

collected from a batch process into a matrix of features. The framework is called 

feature-oriented batch analytics framework (FOBA) and encompasses several 

feature-oriented methods in an integrated and unifying fashion; 
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iii) An extension of FOBA, called FOBA 2.0, was also developed that enhances the 

time-resolution characteristics of feature-oriented methods and allows extracting 

localized information from the batch evolution. In particular, FOBA 2.0 has built-

in mechanisms to divide the complete batch trajectory into smaller sub-intervals, 

which are later analyzed to identify batch periods that are critical to quality;    

iv) The proposal of a new variable/feature selection scheme suitable for the high-

dimensional datasets found in batch processes. The method is named wide 

spectrum feature selection (WiSe) and it is efficient and scalable to large datasets. 

The scalability is a consequence of a two-stage approach: the first stage removes 

irrelevant variables, whereas in the second stage model building is conducted in a 

more efficient manner and a final selection round is performed; 

v) The development and application of a predictive analytics comparison framework 

(PAC) for assessing and comparing the prediction performance of different 

classes of predictive methods. Selected methods from each class were considered 

in order to enlarge the framewo

between features and quality parameters. The outputs of PAC provide critical 

information in scenarios characterized by limited a priori knowledge, where 

selecting a suitable predictive method is not a straightforward task.  

The contributions ii-v) can be summarized in a workflow that converts a batch dataset 

into a set of features (using FOBA or FOBA 2.0), whose dimensionality can be reduced 

by feature selection (using WiSe) and that can be finally utilized for predictive modeling 

(with PAC). This workflow is presented in Figure 1.1 and each of the depicted stages will 

be detailed in the specific chapters of this thesis. The scientific papers associated with 

each contribution are presented in Table 1.1.    

 

 
Figure 1.1. The topics discussed in this thesis and their logical sequence. 
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Table 1.1. Published papers associated with each of the contributions made in this thesis.

Contribution Reference 

i) R. Rendall, L.H. Chiang, M.S. Reis, Data-driven Methods for Batch 

Data Analysis  A Critical Overview and Mapping on a Complexity 

Scale, Computers and Chemical Engineering (2019). 

ii) R. Rendall, B. Lu, I. Castillo, S.-T. Chin, L.H. Chiang, M.S. Reis, A 

Unifying and Integrated Framework for Feature-Oriented Analysis of 

Batch Processes, Industrial & Engineering Chemistry Research (2017). 

iv) R. Rendall, I. Castillo, A. Schmidt, S.-T. Chin, L.H. Chiang, M. Reis, 

Wide Spectrum Feature Selection (WiSe) for Regression Model 

Building, Computers & Chemical Engineering (2018). 

v) R. Rendall, M.S. Reis, Which regression method to use? Making 

- arios  The 

Predictive Analytics Comparison framework (PAC), Chemometrics and 

Intelligent Laboratory Systems (2018). 

 

This thesis is divided into seven chapters that are presented in Figure 1.2. 

Chapter I provides an introduction to the thesis, presenting the scope and motivations for 

this work, as well as the goals that were established. Additionally, the main contributions 

achieved in pursuing such goals are listed. 

Chapter II presents a structured state-of-the-art review of methodologies utilized for batch 

data analysis and maps available methods according to their modeling and 

implementation complexities. This mapping provides a topological organization that 

highlights different classes of methods and helps to identify gaps that may be pursued in 

future research projects. 

Chapter III addresses feature-oriented approaches for batch data analysis and provides a 

detailed description of available methods. The chapter describes single-granularity 

methods whose time-resolution is limited by the batch duration or stage duration. In 

particular, a new feature-oriented method named profile-driven features is proposed and 
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compared to other alternative approaches in a series of simulated and real-world case 

studies.  

Chapter IV extends feature-oriented methods in order to extract localized information 

from the batch evolution. A set of alternatives are tested to enhance the time-resolution 

characteristics of feature-oriented methods, allowing the identification of critical periods 

of the batch. The performance of these alternatives are assessed and compared in a 

simulated case study that validates their advantage over the standard approaches. 

Chapter V focuses on feature selection methodologies that identify and select important 

features, whereas irrelevant features are discarded. These methodologies are important 

tools that are used to reduce the dimensionality of the collected datasets, leading to more 

parsimonious and robust models. 

Chapter VI describes a comparison framework for predictive analytics that can provide 

insights into datasets arising in prediction problems and may lead to improved prediction 

performance. This framework contemplates methods from different classes in order to 

model various relationships between predictors and response variable, as well as a robust 

 

Finally, Chapter VII summarizes the main conclusions of this thesis and enumerates 

directions for future research. 
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Figure 1.2. Overview of the organization of this thesis. 
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This chapter presents the state-of-the-art review regarding methods employed for batch 

data analysis (BDA), with a particular emphasis on process monitoring and quality 

prediction applications. These two tasks constitute a major portion of the research on 

BDA and their importance has been widely recognized in the literature, given the large 

number of publications dedicated to them. In this context, the following sections provide 

a critical overview of methods utilized in BDA, where four main topics are discussed: 

i) A complexity scale for BDA methods is presented, which allows practitioners to 

easily identify where their current preferred methods are located and to compare 

them to other available alternatives. Three classes of BDA methods are identified: 

feature-oriented methods, linear time-resolved methods, and non-linear time-

resolved methods; 

ii) Feature-oriented methods are presented and the main proposals available in the 

literature are described. These methods occupy the lower positions on the 

complexity spectrum; 

iii) Linear time-resolved methods are a class of methods that transpose the time 

dimension to the modeling stage and, therefore, have increased flexibility. 

However, the risk of overfitting is higher, and their implementation requires 

synchronization of batch profiles, which represents a significant increase in terms 

of implementation complexity; 

iv) Finally, non-linear time-resolved methods are presented. These approaches extend 

linear methods by being able to model non-linear relationships. They lie on the 

top of the complexity spectrum and have the highest flexibility and also the 

largest potential for overfitting. 

The last section of this chapter presents a methodologic workflow to aid practitioners in 

the task of selecting a suitable method for their particular applications. This workflow is 

reased as long 

as increments in performance are observed that justify their adoption.    
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The performance of data-driven methods for BDA is governed by the well-known bias 

and variance trade-off (Hastie, Tibshirani et al. 2001) and its consequences. Unless there 

is a perfect match between the data generating mechanism and the model structure, fewer 

degrees of freedom imply more biased estimates, given the limitations for modeling the 

existing relationships between process variables (either input variables only, or input-

output/quality relationships). On the other hand, a model with too many degrees of 

freedom leads to high variance estimates, as it is prone to fit spurious correlations in the 

training dataset, i.e., overfitting data. In statistical theory (Hastie, Tibshirani et al. 2001), 

this reasoning can be expressed as the partition of the mean squared error (MSE) of an 

estimator  into a bias and a variance component: 

   (1) 

The first term in the right-hand side of eq. (1) corresponds to the squared bias and 

accounts for the deviation between the expected value of the estimator  and the actual 

value for the parameter . The second term in the right-hand side of eq. (1) is the 

variance of the estimator and measures the dispersion of the estimator around the 

expected value. To achieve a small MSE , the right complexity level of 

BDA methods has to be found, by balancing bias and variance. Within the scope of a 

given BDA method, this balance is often established recurring to cross-validation or 

similar techniques (Vitale, Westerhuis et al. 2017) 

performance under testing conditions. However, before this tuning stage, it is important 

to select the right BDA method to employ, which must also take into consideration the 

complexity inherent to the method. Therefore, it is important to define more rigorously 

what is meant by the term complexity. 

In this work, we consider the complexity of BDA methods as a multidimensional entity 

with two major contributors: modeling complexity and implementation complexity. The 

former type of complexity regards the flexibility of a BDA method to fit data and can be 

inferred from the number of model parameters that need to be estimated to set up the 

technique. Modeling complexity is closely related to the bias-variance trade-off (more 

complex methods tend to fit better the training data, leading to estimates with low bias 

and higher variance). More specifically, the number of degrees of freedom associated 

with a given method specifies its modeling complexity, and more complex methods 

contain a higher number of degrees of freedom. This fact suggests that BDA methods can 



State-of-the-Art Review 15 

be ordered in accordance with their modeling complexity. However, the number of 

degrees of freedom can seldom be computed from theoretical considerations only, and 

alternatives such as the pseudo-degrees of freedom (van der Voet 1999) can be utilized as 

edom. This alternative provides a 

quantifiable measure of complexity and can be used to compare different BDA methods. 

The second type of complexity, implementation complexity, considers the amount of 

resources required to operationalize the method (mainly know-how, but also 

software/hardware resources). In scientific publications, the analysis focus is usually 

entirely restricted to modeling complexity, but implementation complexity is decisive for 

transferring a method to the shop floor and strongly affects its acceptance by companies. 

Very complex methods, requiring highly specialized personnel and very specific software 

solutions, often meet strong difficulties when migrating to the shop floor, and are 

frequently discarded in favor of simpler, wide spectrum approaches, unless they prove to 

bring a large amount of added value. We would like to point out that, while assessing 

different aspects, these two dimensions of complexity usually present strong 

dependencies: more complex modeling frameworks tend to present higher 

implementation complexity, and the inverse is true for simpler methods, which have less 

modeling complexity and require less technical and computational resources to 

implement. 

Figure 2.1 illustrates the complexity scale. It contains classes of methods used in BDA 

aligned according to an increasing ordering of complexity (from left to right), as well as 

some representative methods from each class. One should note that Figure 2.1 is not 

exhaustive in terms of the available methods for BDA, but it portraits a taxonomy that 

can help practitioners navigating through the space of solutions at their disposal, in a 

systematic way. We classify BDA methods into three main classes: feature-oriented 

methods, linear time-resolved methods, and non-linear time-resolved methods. This 

grouping provides a useful topological organization for practitioners to identify where 

their currently preferred methods stand in terms of both modeling and implementation 

complexities. It also highlights other promising approaches worthwhile considering in the 

same class. Moreover, it may also motivate them to explore other classes of methods, in 

accordance with the parsimony principle.  

Feature-oriented methods present lower complexity levels. Representative methods from 

this class include landmark features, profile-driven features (PdF) (Rendall, Lu et al. 

2017), statistical pattern analysis (SPA) (He and Wang 2011), and translation-invariant 

multiscale energy-based features (TIME-F) (Rato, Blue et al. 2017). The premise of 

feature-oriented methods is to transform a batch profile into a set of features that capture 
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relevant aspects of the batch evolution. These features are often few in number, creating 

conditions for developing models with a small number of parameters (i.e. low modeling 

complexity). Furthermore, their implementation complexity is also low, because they do 

not require batch synchronization. In fact, many classical methods for treating two-way 

tables can be readily applied to analyze the tables of features generated by these methods.  

As more complex methods are considered, linear time-resolved methods are the next 

class in the complexity scale. Common examples include 2-way variable-wise unfolding 

(2-way VWU) (Wold, Kettaneh et al. 1998), dynamic methods such as auto-regressive 

principal component analysis (ARPCA), batch dynamic PCA (BDPCA) (Chen and Liu 

2002), 3-way methods (PARAFAC and Tucker3) (Louwerse and Smilde 2000), and 2-

way batch-wise unfolding (2-way BWU) (Nomikos and MacGregor 1994, Nomikos and 

MacGregor 1995, Nomikos and MacGregor 1995). Time-resolved methods preserve time 

resolution for BDA and often result in models that contain a high number of parameters 

and, consequently, higher modeling complexity. Furthermore, they require batch 

synchronization, which represents an increase in implementation complexity (see Figure 

2.1). In some particular batch processes, the batch-to-batch variability is very small and 

alignment can be ignored by resorting to ad-hoc techniques (e.g., cutting longer batches 

or extending smaller batches by repeating the last measurement). However, in the more 

general setting, these ad-hoc techniques are not applicable and will have negative 

consequences on model development, since unsynchronized datasets exhibit excessive 

variability. The objectives of synchronization are two-fold: to ensure that the key events 

of the batch occur at similar time points and to make all batches have the same duration. 

This is a critical step in order to apply time-resolved methods and impacts their 

performance (Gonzalez-Martinez, Vitale et al. 2014). 

In the top of the complexity scale lie the non-linear time-resolved methods. These 

methods extend the linear-time resolved approaches in order to accommodate non-linear 

relationships. These are the most flexible methods, which are often based on kernels that 

map samples into high dimensional non-linear spaces where the modeling implicitly takes 

place. However, the risk of overfitting is significant and a high number of samples are 

usually required to obtain robust estimates of model parameters. 

Data-driven methods for BDA can also be assessed from other points of view. For 

instance, they can be grouped based on whether they can be applied online and offline, or 

offline only. Most methods reviewed in this paper fall in the former category or can be 

straightforwardly adapted to online applications with little or no adjustments. However, 

the simpler feature-oriented methods have been only applied in an offline manner, since 

computing features requires knowing the full extent of the batch. Nevertheless, one 
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should also note that offline BDA is of great utility in a variety of tasks. In fact, many 

batch processes (e.g., in the semiconductor industry) occur at very small time scales, 

where online BDA is not possible or relevant since no corrective actions could be taken 

in useful time. Furthermore, many times the batch-end properties take too long to obtain 

and require lengthy, complex and expensive laboratorial methods. To have a method at 

our disposal that immediately provides a reliable estimate at the end of the batch, with no 

extra cost, is a valuable strategic asset. For instance, it allows anticipating corrective 

actions for the next batch and speeds up the release of the current one, increasing 

operational efficiency, while reducing batch-to-batch variability and therefore improving 

product quality. 

 

 
Figure 2.1. Modeling and implementation complexity of BDA methods. The gradients in 

coloring indicate that modeling complexity steadily increases, whereas the increase in 

implementation complexity shows a sudden jump when moving to time-resolved 

methods, requiring synchronization operations.  

 

A class of methods not discussed in the scope of Figure 2.1 is the class of multi-block 

methods. It has been shown that a more meaningful analysis of batch data can be obtained 

when the data is divided into its natural blocks (Kourti, Nomikos et al. 1995). In 

particular, three blocks are often available: batch initial conditions, the trajectories of 

process variables during the batch, and quality parameters measured at the end of the 

batch. Multi-block methods can exploit this structure, giving results that are easier to 

interpret, both in terms of inner-relations within each block and outer-relations between 

blocks. Throughout this thesis, the focus is on single-block methods capable of handling 

the information extracted from the trajectories of process variables during the batch. 

Another topic that is also not covered concerns stage identification methods. Batch 

differ from stage to stage. Stage-wise models can be combined, for instance, using multi-

block methods, leading to alternative methods for BDA. The reader is referred to an 
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overview by Yao and Gao (2009) and the references therein (Camacho and Picó 2006, 

Camacho, Picó et al. 2008) for a discussion on multi-stage methods. 

 

As in the scope of pattern recognition (Pal and Mitra 2004), feature-oriented methods for 

BDA can also be viewed as a transformation from a measurement space M to the feature 

space F and finally to the decision space D: 

 
The measurement space M contains the trajectory of process variables measured during 

process operation (measurements are arranged in a 3-way array , containing J 

process variables measured at  time intervals for N batches. Note that the trajectories 

in  may not be synchronized and may have different durations, since each ith batch 

has a length of Ki. The space M is mapped into the feature space F, following a feature 

extraction procedure,  (also known as a mapping function or feature 

dictionary; a dictionary is a finite set of features computed according to a well-defined 

procedure  see below for some examples). The set D is discrete and finite in a 

classification problem and contains the response variable for each sample in M. In a 

regression setting, D is a continuous set containing the values of the response variable. 

An important advantage of feature- need 

to be aligned. Instead, features are computed directly from . Variability in non-

aligned batches is translated into features variability, and treated through conventional 

methods developed for handling two-way tables. This advantage makes their application 

more straightforward because synchronization can be a rather cumbersome task and 

greatly increases the implementation complexity of some methods (see Figure 2.1). 

Research on feature-oriented methods focuses on devising a suitable dictionary  in 

order to extract relevant features from measured data. In batch processes, the feature 

space tends to have small dimensionality and when correctly constructed, it should 

capture the main sources of structured variation in the batch. Once suitable features are 

computed, a modeling formalism is adopted to model their relationships with the 

response. A latent variable modeling framework is often applied for this purpose, as 

presented in eq. (2) and eq. (3): 
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   (2) 

   (3) 

where X is a  feature matrix,  is the number features extracted for each batch, 

T is a  score matrix, a is the number of latent variables and P is a  matrix of 

loadings. The response variable for each batch is arranged in a vector y with dimension 

. c is a vector of coefficients relating scores (T) and the response variable, and E 

and f are residuals arrays. The model can be estimated using Partial Least Squares (PLS) 

or Principal Component Regression (PCR). When no quality parameters are available, 

principal component analysis (PCA) is often utilized to describe the correlations in the 

feature space (eq. (2) only). The PCA model will extract principal components that 

explain the maximum amount of variability in X, modeling the correlation structure 

between features. In the context of feature-oriented methods, PCA models are mainly 

applied for offline process monitoring in order to detect process upsets and identify their 

root causes. When quality parameters are available, a partial least squares (PLS) 

modeling formalism is adopted so that the scores (T in eq. (2) and eq. (3)) contain 

information regarding both the feature space and the output variables y. PLS modeling 

can be used for both process monitoring and quality prediction. For batch process 

monitoring, two complementary statistics are commonly used, namely the T2 statistic and 

the Q statistic. The T2 statistic measures deviations from normal operating conditions 

(NOC) in the PCA subspace. The T2 statistic can be computed for the ith batch according 

to eq. (4). 

   (4) 

Where  is the ith row of the matrix T, and  is an  diagonal covariance matrix 

containing the largest eigenvalues in descendant order as the entries of its main diagonal. 

The Q statistic monitors the variability around the PCA subspace, by computing the 

orthogonal distance from a given observation to the subspace defined by the first a latent 

variables: 

   (5) 

where  is the model residual for the ith batch . It is usually considered 

that a batch presenting a Q statistic above its control limit undergone a change that broke 

some aspect of the NOC correlation structure.    

In the literature of BDA, four feature-oriented methods can be identified: landmark 

features, profile-driven features (PdF) (Rendall, Lu et al. 2017), statistics pattern analysis 

(SPA) (He and Wang 2011), and translation-invariant multiscale energy-based features 
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(TIME-F) (Rato, Blue et al. 2017). These methods can be employed batch-wise, when the 

complete batch trajectory is considered, or stage-wise, when features are extracted for 

each batch stage. Stage-wise feature extraction tends to be preferred, since it is more 

flexible, allowing one to better describe the batch evolution.  

Landmark features are based on major batch milestones and capture the behavior of 

process variable(s) at specific time intervals. Typical examples of landmark features are 

the total amount of reactant fed to a reactor unit, the amount of heat transferred during a 

reaction stage or the amount of water used in a washing stage. These features are very 

specific and one of their main advantages is that the dimensionality of X is likely to be 

small when compared to other methods. On the other hand, the features obtained are 

highly problem-specific and require a significant amount of process knowledge. This 

limitation hinders broader and scalable applications of landmark features, but the 

flexibility of feature-oriented methods allows combining landmark features with other 

feature dictionaries that are more systematic and scalable (e.g., PdF, SPA). 

As we move forward in the complexity scale (Figure 2.1), PdF occupies the next position. 

PdF was recently proposed by Rendall, Lu et al. (2017) and consists of a finite set of 

object-profiles, representing typically trajectories found in batch operations. These 

object-profiles are archetype profiles that, combined with data, produce an estimated 

trajectory for the process variable. Once the estimated trajectory is available, features 

specifically designed for that object-profile can be computed, constituting the X matrix. 

The distinguishing characteristics of this dictionary are that the set of object-profiles 

capture the backbone of non-stationary behavior in data in a parsimonious way, and the 

extracted features are specifically tailored for each object-profile, resulting in a small set 

of specific features (X will have dimensionality of ). Additional object-profiles can 

be concatenated to the original set, extending the dictionary as more shapes are found in 

new applications. This dictionary will be described in detail in the next chapter (Section 

3.1) as it is one of the contributions of this thesis. 

SPA was proposed by He and Wang (2011) and is based on the statistical moments of 

process variables. Typical moments include the mean, variance, skewness, kurtosis, and 

other higher-order statistics that may be used to better characterize the process variables

profiles. Furthermore, the covariance between variables also constitutes a typical SPA 

feature, whereas the auto- and lagged-correlations are included in cases where they are 

expected to be relevant (Wang and He 2010). Therefore, applying SPA will result in a 

feature matrix X that has dimensionality , which contains the mean, 

variance, skewness, kurtosis, and the covariance between all pairs of variables. By 

default, SPA extracts the same types of features for every variable in order to characterize 
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their statistical distribution. However, some features (e.g., variance, kurtosis, and 

skewness) are invariant to data shuffling of batch samples and therefore completely 

ignore their time sequence, limiting the amount of dynamic information that is captured. 

Nevertheless, SPA is a simple and effective method and was successfully applied to 

monitor a continuous simulated system through the use of a window-based scheme 

(Wang and He 2010) and to the monitoring of an industrial semiconductor batch process 

(He and Wang 2011). 

TIME-F was proposed by Rato, Blue et al. (2017) and characterizes the multiscale 

dynamics of each batch by applying the wavelet transform in order to decompose each 

process variable profile into its contributions at different scales, i.e., the measured 

variables are decomposed in Jdec scales. The wavelet coefficients at each scale represent 

the time-frequency content of a variable, and their energy is defined as the median of the 

squared sum of wavelet coefficients. The final set of features for a given batch 

corresponds to the energies for all scales of all variables, and the dimensionality of X is 

, where Jdec is typically 5. As a drawback of this method, one can note that the 

same decomposition scale is used for all variables, which might not be the most adequate 

solution. Thus, a further reduction in the dimensionality of X can be achieved if variables 

were decomposed to an optimum scale, instead of using the same decomposition depth 

for all variables.  

All the aforementioned feature-oriented methods offer great flexibility since they can be 

easily combined by concatenating feature matrices obtained from other dictionaries. In 

particular, combining landmark features with other dictionaries is a promising alternative 

since one takes advantage of both process knowledge and data-driven induction. Feature-

oriented methods are also able to model the correlation between process variables. 

Although feature extraction is applied variable-wise, the resulting features characterize, in 

more or less detail, the behavior of the variable over a batch. It is therefore expected that 

highly correlated variables will also present highly correlated features; thus, multivariate 

methods can be applied in order to model multivariate relationships in the feature space. 

Nevertheless, localized time information is inevitably lost when process data is converted 

into features. For instance, important correlations at a certain localized period in time 

may not be well captured. In those scenarios, time-resolved methods may be more 

suitable, although they often entail higher implementation and modeling complexities.  

As previously referred, feature-oriented methods have only been applied offline and, 

therefore, a first gap can be immediately identified in Figure 2.1, which concerns 

adapting them for online applications without requiring batch synchronization. Such 
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progress would enable these methods to be extended to a more general class of problems, 

still enjoying the low modeling and implementation complexities.  

Analyzing again the complexity scale (Figure 2.1), one can also note that complexity 

increases as one moves from feature-oriented methods to linear time-resolved methods, 

and then to non-linear time-resolved methods. This transition helps to identify a second 

gap in the complexity scale: the lack of feature-oriented methods combined with non-

linear modeling methods. The aforementioned dictionaries (PdF, SPA, and TIME-F) were 

combined with linear methods such as PCA and PLS. However, it would be worth 

assessing whether non-linear relationships exist and if they can be effectively exploited 

using non-linear methods applied to the feature matrix X.  

 

Time-resolved methods are a class of BDA approaches that preserve the time information 

and incorporate it in the modeling step. In contrast to feature-oriented methods, where the 

analysis conducted is either stage-wise or batch-wise (i.e. a feature describes the overall 

evolution of a variable over a stage or an entire batch, and its values are relative to the 

complete duration of these periods), time-resolved methods are based on a fine time grid. 

In other words, they use a time grid with fine granularity (high resolution), in contrast to 

feature-oriented methods, whose features present high granularity or very low time 

resolution. Therefore, time-resolved methods have higher modeling complexity and 

present the flexibility to capture more subtle patterns localized in specific periods of the 

batch. When applied to process monitoring, they also provide more accurate information 

about the onset of disturbances. This higher complexity and flexibility is achieved by a 

considerably higher number of modeling degrees of freedom that need to be estimated 

from data. Two classes of linear time-resolved approaches are discussed in this section: 

multi-resolution and full-resolution methods. Full-resolution methods utilize the native 

time resolution at which process measurements are collected (Figure 2.2.a), whereas 

multiresolution methods (or multi-granularity methods, Figure 2.2.b) may flexibly adopt 

coarser time grids, if advantageous for the purpose of the analysis  the new coarser 

values result from the time aggregation of the high resolution raw data, over the new grid 

with higher granularity. The granularity can be quantified by the aggregating time-

support, i.e., the period during which raw data is accumulated before giving rise to a low 
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resolution value. As an example, variable xJ in Figure 2.2.b has a time support of 4 and 

each sample may contain the mean from measurements within its time support. Multi-

resolution methods have the advantage of implicitly handling multiresolution/multi-

granularity datasets. Moreover, they can also be used to find out the optimal resolution 

for analyzing full-resolution datasets. Before presenting these methods in more detail, 

synchronization of batch trajectories is first considered since it is an integral part of the 

modeling effort and a requirement of all time-resolved methods. 

 

  

(a) (b) 

Figure 2.2. Time grid of full-resolution methods (a) where all variables are analyzed at 

the finest granularity. Multiresolution or multi-granularity methods (b) may use the 

default resolution or aggregate multiple measurements of a variable into coarser versions 

of it. Each dot represents the time at which a value is saved, which is then used for 

modeling. At lower resolutions, the values are only saved after the aggregation periods 

end. 

 

Synchronizing batch trajectories is a preliminary step employed in BDA time-resolved 

methods, which ensures that different batches have the same duration and the key events 

happening throughout the batch are properly aligned. The effect of synchronization is 

depicted in Figure 2.3. Since different batches typically have different durations, the 

length of the measurements obtained from a process variable measured over two batches 
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(Figure 2.3.a) is not constant. By applying synchronization, all batches will present the 

same number of samples and the major batch events become synchronized (Figure 2.3.b). 

When considering raw measurements obtained for a set of batches , the length of 

the time grid (k) is dependent on the batch duration (Figure 2.3.c). Thus, synchronization 

outputs a 3-way array  where all batches have the same duration K (Figure 2.3.d). 

Two commonly used approaches for synchronizing batch trajectories are the indicator 

variable method (IV) (Nomikos and MacGregor 1995, Kourti, Lee et al. 1996) and 

dynamic time warping (DTW) (Kassidas, MacGregor et al. 1998). However, other 

methods and variants are available, such as correlation optimized warping (COW) 

(Fransson and Folestad 2006), multisynchro (González-Martínez, De Noord et al. 2014), 

and hybrid derivative dynamic time warping (Gins, Van den Kerkhof et al. 2012). IV was 

first proposed by Nomikos and Macgregor (Nomikos and MacGregor 1995) and relies on 

the availability of a monotonically increasing or decreasing variable that correlates with 

batch maturity. The IV indexing variable must also present the same starting and end 

values for all batches and show low levels of noise. In order to synchronize a new batch, 

process variables are plotted against the IV and interpolated at fixed regular or irregular 

increments of the IV. Special care must be taken in order to avoid destroying the 

correlation structure in the data, which can occur by an excessive number of 

interpolations or by averaging too many data points that may occur between increments 

of the IV (Kourti 2003). Good results have been reported using the IV approach (García-

Muñoz, Polizzi et al. 2011), both in terms of their ability to synchronize variables, as well 

as improved process understanding resulting from a more detailed analysis of 

synchronized data. When an IV is not available, DTW is an alternative common solution. 

DTW is a more general synchronization technique, originally developed in the speech 

recognition community. It was adapted to BDA by Kassidas, MacGregor et al. (1998), 

who proposed an iterative approach to synchronize batches. In brief terms, DTW builds a 

time grid between a reference batch and the new batch to be aligned and optimizes the 

warping of the time domain while considering several constraints that stabilize and guide 

the synchronization process (endpoint, local, and global constraints). DTW searches for a 

path that minimizes the distance between the reference batch and the batch to be aligned, 

which is achieved by translating, expanding, and contracting segments of the batch to be 

aligned. Further improvements to DTW have been proposed to speed up its online 

implementation (González-Martínez, Ferrer et al. 2011) and to apply the warping 

information for monitoring purposes (González-Martínez, Westerhuis et al. 2013). Other 

improvements include derivative DTW (DDTW) (Keogh and Pazzani 2001) and a robust 

version of DDTW (Zhang, Lu et al. 2013) in order to overcome the singularity problem, 
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which occurs when a point in a reference trajectory is mapped to multiple points in the 

trajectory to be aligned or vice-versa.  

Synchronization of batch processes constitutes an integral modeling step that significantly 

affects performance in time-resolved BDA methods (Gonzalez-Martinez, Vitale et al. 

2014). For instance, it has been observed that batch synchronization influences the 

detection strength (Rato, Rendall et al. 2016) and detection speed (Rato, Rendall et al. 

2018) of monitoring methods. In other words, performance in signaling a given fault is 

dependent on the synchronization method utilized. Therefore, synchronization adds 

another layer of complexity to BDA, which can affect the modeling task in a positive or 

negative way. Nevertheless, the complexity associated with synchronization is mainly 

due to the implementation dimension, requiring trained personnel and process-knowledge 

to effectively align process data. 

 

  

(a) (b) 

 
 

(c) (d) 

Figure 2.3. The effect of synchronizing a batch dataset: (a) the trajectory of process 

variables over two batches may have different durations. After synchronization, all the 

batches have the same duration (b). The general effect of synchronization converts 

batches with different durations (c) to a 3-way array where the batch duration is the same 

(d). 
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Full-resolution methods conduct BDA using the finest-grained time-grid, i.e., data is 

analyzed at the native resolution of the measurements. Methods in this category are 

commonly used in practice but require synchronization of batch trajectories. The simplest 

approach employs variable-wise unfolding, which reshapes  to a matrix XVW with 

dimensions , as exemplified in Figure 2.4.a. The procedure proposed by Wold 

and co-authors (Wold, Kettaneh et al. 1998, Wold, Kettaneh-Wold et al. 2009) then 

builds a PLS model between XVW and the local batch time (or a batch maturity index). 

Typically, auto-scaling is employed so that the scaled variables have zero mean and unit 

variance. Thus, the model parameters correspond to the J means and J standard 

deviations needed to auto-scale the data, and the additional degrees of freedom consumed 

by the bilinear model. The first latent variable of the PLS model contains variables that 

vary monotonically with time and the subsequent latent variables will capture more 

intricate relationships. In a second analysis stage, the scores are reshaped batch-wise and 

analysis can be conducted at the batch level. A third level of analysis may include initial 

conditions and batch quality variables (y).  

The variable-wise unfolding (VWU) solution does not favor the extraction of dynamic 

information, as the time mode is overlapped with the batch mode. In order to extract 

dynamic information, more complex methods are required that explicitly incorporate the 

auto-correlation and lagged cross-correlation in BDA. This can be achieved with batch 

dynamic PCA (BDPCA) or batch dynamic PLS (Chen and Liu 2002) methods proposed 

by Chen and Liu, which use lagged variables to model the auto- and lagged cross-

correlations. For each batch i, an extended matrix  with L lags is constructed as 

follows: 

   (6) 

where  is an  matrix containing shifted variables with l lags. For each 

batch, the sample covariance matrix is estimated for the BDPCA model according to eq. 

(7). 

   (7) 

All covariance matrices for all batches are then combined in a pooled sample covariance, 

from which a PCA model can be obtained. By including lagged variables, the residual 

statistics tend to be less correlated, improving the ability to detect process upsets. The 

number of lags can be estimated by the method proposed by Ku, Storer et al. (1995). 
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Another method suitable for modeling dynamic behavior is auto-regressive PCA 

(ARPCA) (Choi, Morris et al. 2008). ARPCA uses lagged measurements to predict the 

current sample based on an auto-regressive model. PCA is then applied to the residuals 

between predicted and observed values for monitoring purposes, and the scores from the 

dynamic model are monitored as well. Similarly, DPCA with decorrelated residuals 

(DPCA-DR) (Rato and Reis 2013) was also applied to monitor the residuals obtained 

from an implicit one-step-ahead prediction operation. However, in DPCA-DR the 

prediction is made with resort to the existing DPCA model through a missing data 

technique, instead of using an additional AR time series model. In developing dynamic 

models, degrees of freedom are consumed by the model itself and additional model 

parameters are estimated for scaling the data (e.g.,  means and  standard 

deviations for auto-scaling). 

When the number of lags to be considered in the model increases, one eventually gets to 

the point where all the possible lags  are incorporated. In this limiting case, each 

line of the extended matrix, eq. (6), is composed by all observations of all variables (i.e., 

a  row vector). This corresponds to nothing more than the batch-wise unfolding 

(BWU) procedure proposed by Nomikos and MacGregor (Nomikos and MacGregor 

1994, Nomikos and MacGregor 1995, Nomikos and MacGregor 1995), where  is 

reshaped into a matrix  with dimensions  (see Figure 2.4.b). Afterwards, PCA 

or PLS are applied to . These methods are usually known as multi-way PCA 

(MPCA) and multi-way PLS (MPLS), respectively. As more lags are included, the 

modeling complexity of these approaches is higher than that for batch dynamic methods. 

This allows covering situations where the dynamics and correlation structure change 

along the batch, which were beyond the reach of the dynamic methods presented above. 

MPCA and MPLS have been the de-facto standards for BDA and were extensively 

explored in the literature (Martin, Morris et al. 1996, Lennox, Montague et al. 2001, 

Kourti 2002, García-Muñoz, Kourti et al. 2003, Kourti 2003, Ündey, Ertunç et al. 2003, 

Kourti 2005). By suitably scaling  (e.g., auto-scaling), one can model deviations 

from the batch mean trajectory and allow all crossed and lagged-correlations to be 

estimated, greatly increasing the modeling flexibility. On the other hand, a large number 

of model parameters need to be estimated. These parameters include the means and 

standard deviations of all variables at every time point that are needed to auto-scale the 

data (JK means and JK standard deviations), as well as the degrees of freedom consumed 

in deriving the bilinear model (e.g., in the case of PLS models, the number of pseudo-

degrees of freedom can be significantly larger than the number of latent variables selected 
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(van der Voet 1999)). Another disadvantage is that, for online monitoring, future samples 

need to be estimated in order to compute MPCA scores for the entire batch. Common 

future measurements 

(consider that future measurements present similar deviations to the mean trajectory as 

data imputation techniques to estimate future values). In this context, the projection 

method (missing data technique) (García-Muñoz, Kourti et al. 2004) tend to exhibit better 

performance, as it is more accurate at predicting future unknown measurements and 

provides better estimates of the model scores, since this method benefits from the 

structural information contained in the MPCA model. In BDA, batch-wise unfolding is 

often preferred since models incorporate the non-stationary behavior of batches, namely 

through the subtraction of mean trajectory during pre-processing and the consideration of 

crossed-correlations between all variables at all times of the batch (a flexibility that may 

require special attention during the estimation stage). The latent variable model defined 

for the batch-wise unfolded matrix is similar to the one presented in eq. (2) and eq. (3), 

but instead of a feature matrix X, the model accounts for the variability in . This 

carries very detailed time information since  contains all variables at all sampling 

points. In other words, the analysis is conducted at the finest resolution possible.  

BWU potentiates the generation of easily interpretable results, allowing the identification 

of important batch stages and process variables that are critical for quality. Results can 

also be examined at different levels. At a higher level, batches not conforming to normal 

operating conditions can be identified, whereas an intra-batch analysis can detect the 

precise time of occurrence of process faults by looking at appropriate monitoring 

statistics (the T2 and instantaneous Q-statistic for each time point). Upon detecting 

process upsets, contribution plots can be applied to assist practitioners pinpointing 

variables deviating from NOC (Conlin, Martin et al. 2000, Westerhuis, Gurden et al. 

2000) and to quantitatively assess how much each variable contribute to the observed 

statistics, signaling those with the highest contributions. A method named progressive 

PCA has also been proposed (Hong, Zhang et al. 2011) for fault identification. It works 

by repeatedly identifying variables with a high contribution, discarding them, and then 

building new PCA models. This process is repeated until no faulty observations are 

observed. The idea of this procedure is to track down the fault propagation path.  

Another alternative for fault identification relies on using training datasets with known 

faulty conditions. In this case, fault identification is viewed as a classification problem, 

where a classifier is developed using process data and the corresponding fault labels. 
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Once the process is found to be operating outside NOC, the classifier is called to provide 

the type of fault causing such deviation. Good results have been reported with this 

approach (Wuyts, Gins et al. 2015) since it overcomes the smearing out problem 

associated with PCA; see also Van den Kerkhof, Vanlaer et al. (2013). However, it 

critically depends on the availability of a rich dataset with known fault types, whose 

signatures are consistent and well documented. This resource is very difficult to find in 

chemical processing industries, where even the same type of fault may impact the process 

differently depending on the time of fault occurrence, due to the existence of complex 

interactions between all the different sources of variability affecting the process (in this 

case, the same label corresponds to different processes signatures). 

On the other hand, a model developed to correlate  with quality variables  can be 

applied to obtain online predictions of end-of-batch quality (Nomikos and MacGregor 

1995) as well as investigating process upsets that are related to quality attributes. 

Confidence intervals were proposed to assess the uncertainty associated with the online 

predictions (Reiss, Wojsznis et al. 2010) and the model accuracy was further improved by 

finding sub-intervals that are more predictive, namely through multiway interval-PLS 

(MiPLS) (Stubbs, Zhang et al. 2013).    

 

 

(a) 
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(b) 

Figure 2.4. Unfolding the 3-way batch data matrix : (a) variable-wise, leads to , 

with dimensions ; (b) batch-wise, leads to , with dimensions, . 

 

Although the previous discussion addressed the relationships between dynamic methods 

and BWU modeling, there are methods in between, with varying degrees of complexity 

that are not depicted in Figure 2.1 for simplicity. An important group of methods that are 

not shown is the class of 3-way approaches, which explicitly address the tensorial nature 

of batch data by employing trilinear modeling. These methods do not require data 

unfolding before modeling, but still rely on synchronization. Two well-known 

representatives from this class are PARAFAC (Carroll and Chang 1970, Harshman 1970, 

Matero, Poutiainen et al. 2009) and Tucker3 (Tucker 1966). PARAFAC (Wise, Gallagher 

et al. 1999, Louwerse and Smilde 2000) decomposes the 3-way array  into three modes 

(batch, variable, and time):  

   (8) 

where R is the number of retained components, , , and  are the elements of 

loading matrices pertaining to each mode, and  are the model residuals. The elements 

 can be combined into a matrix A with dimensions , and similarly , , and 

 can give rise to matrices B, C, and a 3-way array . In PARAFAC,  is 

conditioned to have small norm and A, B, and C are the elements of the trilinear model. 

(Bro 1997), 

meaning that the model cannot be rotated without decreasing its fitness ability, whereas 

other methods exhibit rotational ambiguity. 

Tucker3 (Tucker 1966, Louwerse and Smilde 2000) is a 3-way method that offers more 

flexibility than PARAFAC. It decomposes  into three orthogonal loading matrices (A, 

B, and C) and a core array G , allowing each mode to have a different number of 

components: 
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   (9) 

where P, Q, and R are the number of components of the first, second, and third mode, 

respectively.  

It has been shown that, for a similar number of components, an MPCA model can better 

fit a 3-way dataset than Tucker3, which in turn is more flexible than PARAFAC (Kiers 

1991). This helps to position these methods in Figure 2.1. However, selecting the best one 

is highly dependent on the dataset and the goals pursued. PARAFAC and Tucker3 models 

present an additional complexity concerned with the need to select an appropriate scaling 

for the 3-way array. Whereas MPCA models typically employ auto-scaling as the default 

option to remove the non-stationary trend and ensure that every variable has comparable 

importance for model building, scaling the 3-way datasets for PARAFAC and Tucker3 is 

a significantly more complex task (Bro 1997). For instance, some authors (Westerhuis, 

Kourti et al. 1999, Wise, Gallagher et al. 1999) use auto-scaling to remove batch 

dynamics as in MPCA, whereas others have tested more intricate scaling options and 

showed that auto-scaling is not always appropriate (Gurden, Westerhuis et al. 2001). The 

consequence of not employing proper scaling is that some variables may be given too 

much importance or some relevant sources of structured variation can be missed (they are 

relegated to the error term), negatively impacting the performance of the method.  

A taxonomy was proposed (Camacho, Pico et al. 2008) that classifies the aforementioned 

full- -driven 

model for the whole batch. The other class of approaches contains methods consisting of 

the application of multiple models across the batch duration  multi-model approaches. 

Time-evolving and adaptive methods (Ramaker, van Sprang et al. 2005) are examples of 

multi-model approaches. The former encompasses methods that consider all data 

available from the start of the batch until the current time point k, therefore, avoiding the 

need to predict future values. The less parsimonious case occurs when a model is 

developed for each time index k and one has effectively K models for BDA. Other 

variations are sometimes considered (Louwerse and Smilde 2000) where the batch 

duration is divided in, for instance, 10 time periods and one model is developed for each 

time period. This introduces delays for detecting process upsets or predicting quality 

parameters. On the other hand, adaptive methods consist of weighting differently the 

information arising from current measurements and that from the past. For instance, 

hierarchical PCA was adapted by Rännar, MacGregor et al. (1998) to online BDA and 

each  time slice corresponds to a block. The parameter controlling the rate at which 

the model adapts has to be tuned to the nature of the batch process, accounting for its 
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dynamic behavior. If the weight given to new information is very high, this approach will 

be equivalent to computing a separate model for each  time slice (this is called a 

local model (Ramaker, van Sprang et al. 2005)). 

Besides PCA and PLS, other linear methods have been used for BDA after applying 

batch-wise unfolding. As an example, dynamic neighborhood preserving embedding (Hu 

and Yuan 2008) is a linear method that aims to preserve the local structure of the dataset, 

contrasting with PCA that preserves its global Euclidean structure. A major advantage of 

neighborhood preserving embedding is that it is more robust to outliers and may be more 

suitable to reveal the manifold structure of the data generating mechanism, provided that 

it exists. In a similar manner, multiway locality preserving projections (Hu and Yuan 

2008) were applied for online process monitoring. Multiway independent component 

analysis (MICA) (Yoo, Lee et al. 2004) has been also used for monitoring batch 

processes and it is particularly advantageous when process variables exhibit non-

Gaussian distributions. Combining both MICA and MPCA (Ge and Song 2007) was 

shown to be effective for extracting non-Gaussian and Gaussian components from batch 

data. 

 

Multiresolution methods accommodate the existence of data available with different 

granularities or explore the introduction of granularity as an additional dimension to 

improve the performance of BDA methods. The second aspect is particularly interesting 

and has been largely overlooked in the literature. In fact, current full-resolution methods 

use data at their native resolution, tacitly assuming that such granularity is the most 

appropriate for analysis. However, the original resolution was established during the 

a acquisition systems by third 

parties, long before the development of data-driven models take place, and with different 

goals in mind. Therefore, there is no solid basis to assume the native resolution to be the 

best for a given BDA task; on the contrary, it is very likely that the optimal configuration 

disadvantages of time-resolved methods is the large number of model parameters 

obtained as a result of preserving the native resolution of process variables. To mitigate 

this drawback, multiresolution methods consider the possibility of selecting lower 
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resolution representations of the variables to derive BDA models, consequently lowering 

the number of parameters. In this context, Gins, Van Impe et al. (2018) proposed a 

framework for multiresolution quality prediction (MRQP) that considers the optimal 

selection of coarser approximations of the original signals, in order to maximize 

predictive performance. More specifically, approximation matrices  are constructed 

for each variable j and approximation level d: 

   (10) 

The approximations of the signal  at different resolutions are obtained using the 

Haar wavelet transform. The Haar wavelet decomposes a signal into a set of 

approximation and detail coefficients. Whereas multiscale methods analyze both the 

detail and approximation coefficients, multiresolution approaches strictly make use of the 

approximation coefficients (Rato and Reis 2017). MRQP aims at predicting end-of-batch 

quality properties; therefore, all approximation matrices for all variables are concatenated 

and analyzed according to their relevance with respect to the target quality variable. In 

order to specify a suitable prediction resolution, sequential forward floating selection 

(SFFS) is applied to select variables at the proper resolution for model development. The 

selection procedure avoids different resolutions of the same variable to be selected. In 

other words, each variable only appears in the model at a given resolution or granularity, 

which can be different from other variables. Some variables may also not be selected at 

all, if they are found not to carry additional predictive power, at any resolution. In the 

original paper, 2-way PLS models were used and applied to simulated case studies and to 

from a theoretical perspective). Nevertheless, the MRQP framework can be easily 

extended to other regression models, including 3-way methods, dynamic models, and 

others. A more recent proposal extends MRQP to multistage processes, offering more 

flexibility in how variables/resolution are selected (Rato and Reis 2018); in particular, the 

optimal selection may now depend upon the stage of the process, which is likely to be the 

case in many batch processes.  

Considering that MRQP and its evolution are among the very few approaches available 

for multiresolution BDA, it is not surprising that they have not been extended to non-

linear modeling. Multiresolution methods have the ability to tune the time granularity of 

analysis to the dynamic characteristics of a batch process, with a possible reduction in the 

number of parameters and an increase in model stability and accuracy. As an example, if 
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a multiresolution analysis shows that it is sufficient to use minute data for a given task 

instead of data collected every second, this would imply that the number of columns in 

 decreases by a factor of 60. When one considers non-linear modeling, the effect of 

decreasing the number of parameters is even more important, in order to avoid overfitting 

-linear multiresolution methods 

constitutes a third gap in BDA methods that future research should address in order to 

broaden their scope to a wider variety of situations. 

 

Non-linear time-resolved methods are the most complex methods for BDA. Besides 

having a large number of parameters and hyper-parameters, they contemplate non-linear 

transformations in order to model complex relationships. Non-linearity is often an 

inherent property of systems and phenomena taking place (e.g., the non-linear 

dependence of reaction rate from temperature, according to the well-known Arrhenius 

equation; inhibition kinetics in biological systems, etc.). However, in practice, most 

processes do not span an operation region large enough for the non-linearity to manifest 

itself in a clear way and sufficiently above the unstructured variability or noise level. 

Operation regimes are instead confined to smaller regions of operation due to quality and 

safety standards, where linear models often offer accurate and stable solutions to many 

BDA applications. However, in some instances, non-linear methods may be 

advantageous. 

A class of non-linear methods commonly applied to BDA is composed of kernel methods 

(Cao, Liang et al. 2011). These methods project data into a higher dimensional space 

where the relationships between variables become linear. Instead of defining this non-

linear relationship explicitly, kernel methods implicitly perform the projection by 

applying the kernel function to pairs of raw data points, which amounts to compute their 

inner products after non-linear transformation. This is the well-

Typical kernel functions include the Gaussian kernel and the polynomial kernel. Kernel 

PCA was adopted by Lee, Yoo et al. (2004) for monitoring a continuous process and later 

on adapted to batch processes using batch-wise unfolding  a methodology called 

multiway kernel principal component analysis (Lee, Yoo et al. 2004). Similarly, dynamic 

kernel PCA (Choi and Lee 2004) has been modified to batch dynamic kernel PCA by Jia, 
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Chu et al. (2010). More recently, new methods were proposed for improving the ability to 

identify the variables directly related to the process upset (Cho, Lee et al. 2005, Vitale, 

Noord et al. 2014, Vitale, de Noord et al. 2015). MICA was also combined with kernel 

methods (Zhang and Qin 2007, Tian, Zhang et al. 2009) for batch process monitoring of 

non-linear and non-Gaussian processes. Kernel PLS (Zhang, Teng et al. 2010, Wang, 

Wang et al. 2016), dynamic hierarchical kernel PLS (Zhang and Hu 2011, Zhang, Li et al. 

2012), and kernel support vector regression (Desai, Badhe et al. 2006) have also been 

used for quality prediction and process monitoring in BDA.  

Neural networks form another class of flexible non-linear approaches for BDA, which 

has been applied to both process monitoring and quality prediction. In (Dong and 

McAvoy 1996), the authors combine the principal curve algorithm to extract non-linear 

principal component scores, followed by a neural network to compress the dataset for 

monitoring purposes. Neural networks have been applied by Zhang, Morris et al. (1998) 

for quality prediction using bootstrap to generate an ensemble of neural networks whose 

combination finally conduct to an improvement of prediction performance.   

Other linear and non-linear modeling frameworks have also been applied to BDA. For 

instance: support vector machines were used to model the non-linear relationship between 

process variables (Ge, Gao et al. 2011); bagging of support vector machines models (Ge 

and Song 2013) were adopted to build more robust and accurate models; support vector 

machines have also been combined with kernel independent component analysis (Zhang 

2008) for process monitoring; hidden Markov models were used for process monitoring 

(Yu 2010) and compared with PCA-based approaches, as well as more complex 

approaches based on multi-hidden Markov model trees (Chen and Chen 2006); the 

combination of Markov models and dynamic MPCA was also contemplated (Chen and 

Jiang 2011).  

As can be inferred from the previous discussion, a wide spectrum of non-linear methods 

is available for BDA. These methods require advanced training and are more challenging 

to implement by practitioners. They also have additional degrees of freedom on top of 

those existing for time-resolved linear methods. Therefore, they rank higher in the 

complexity scale and their use should be carefully considered taking into consideration 

this positioning and the added value they may bring to the analysis. This is not an easy 

task and researchers are challenged to provide guidelines on which ones to adopt. 

However, in spite of the difficulties associated with non-linear modeling, their potential 

utility has to be recognized with the recent advances leading to Industry 4.0. Non-linear 

methods tend to have very low bias and the challenge often comes from their inflated 

variance. The variance problem can be effectively tackled by collecting more data, which 
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is precisely one of the pillars of Big Data. Even a process that only operates in a linear 

range can be successfully modeled by a non-linear model since the latter often has linear 

models as a particular case, and would eventually converge given that enough data are 

accumulated. Successful examples of the benefits of using large amounts of data for non-

linear modeling can be found in the rapidly increasing literature of deep learning methods 

(LeCun, Bengio et al. 2015). In fact, it has been observed that whereas the performance 

of some linear and non-linear methods reaches a plateau after a certain amount of training 

data, deep learning has the capability of improving as larger datasets are gathered, 

surpassing other non-linear approaches in many applications. 

 

The availability of the numerous approaches presented in the previous sections suggests 

the need for a methodological workflow in order to navigate through the complexity 

scale. Such a workflow for BDA is presented in this last section; see also Figure 2.5. It is 

based on and consists in starting from simple 

methodologies and moving to more complex approaches as long as the performance 

increments justifies the additional complexity.  

The workflow starts with the problem definition step, where clear objectives are defined 

and the retrieval of datasets from historical databases is conducted. In terms of objectives, 

one should distinguish those that can be re-casted as a regression problem and those that 

involve a classification problem, in order to select suitable performance metrics or KPI 

(Key Performance Indicators). Classification metrics include the Area Under the receiver-

operating Curve (Rato, Rendall et al. 2016) (AUC), True Positive Rate (TRP) and False 

Positive Rate (FPR), F-score among others. The performance in regression problems is 

typically assessed by the Root Mean Squared Error of Prediction (RMSEP). These 

measures of performance should be chosen according to the objectives of the problem at 

hand and in industrial processes, one often wants to constraint the number of false 

detection in order to avoid unnecessary control actions, whereas a missed detection may 

be not so critical because the fault usually persist long enough to be discovered by the 

monitoring system. 

The next steps in the methodological framework are rather straightforward: if the 

available knowledge is enough to select an appropriate complexity level (see Figure 2.1), 
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then the corresponding method is adopted and tested. If process knowledge is not enough 

or unavailable, the starting point should be the use of the PdF dictionary. The PdF 

dictionary is a suitable first choice since it contains a small number of features and it is 

easiest to implement. Thus, the models tend to be more parsimonious and may lead to 

similar or better results when compared to more complex approaches. After choosing the 

initial method complexity, one evolves one step in the complexity scale presented in 

Figure 2.1 and evaluates the improvement (or not) of the performance metric. This 

sequential procedure should stop once an acceptable performance is obtained or when the 

higher levels of complexity lead to no improvements in the results. In this scenario, one 

has adopted the least complex model that still achieves the desired accuracy or the one 

that maximizes it. In either way, one only makes use of as much complexity as needed to 

cope with the problem at hand, potentially avoiding time-consuming and highly technical 

solutions that sometimes do not offer proportional benefits.        

 

 
Figure 2.5. Methodologic workflow for selecting a suitable approach for offline batch 

data analysis.  

 



  

  



Feature-Oriented Methods 39 
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In this chapter, a framework for extracting features from batch datasets is presented. The 

framework provides a unified setting for implementing several variants of feature-

oriented methods proposed in the literature, including the new methodology based on 

, named profile-driven features (PdF). It also integrates feature 

generation and feature analysis, in order to speed up the data exploration cycle, which is 

especially relevant for complex batch processes. FOBA 1.0 (feature-oriented batch 

analytics platform) is described in detail and applied to several case studies regarding 

different analysis goals: visualization, quality prediction, and end-of-batch process 

monitoring.  

 

In the scope of FOBA, each set of features (Landmark, PdF, SPA, etc.) correspond to a 

computation of features for the variables profiles. The unifying and integrated platform 

for feature-oriented analysis of batch processes (FOBA) is depicted in Figure 3.1. As 

shown in this figure, the first stage corresponds to the generation of features from process 

data. For such, a dictionary must be selected. In the case portrayed, the selected 

dictionary is PdF (this is the default option; a combination of dictionaries is also possible, 

resulting in an inflated size of the features space). Following the application of the PdF 

dictionary, a set of features is obtained. 

Feature generation can be implemented for the entire batch, or for each stage of the batch 

in a stage-wise analysis, as defined by the user. A stage-wise analysis is preferred since it 

provides features that better describe the localized patterns found in the batch evolution. 

Therefore, when a priori information related to batch stages is available, it should be 

employed to generate a collection of features per stage, which are concatenated 

afterwards to represent the behavior in all stages. Moreover, in this feature-generation 

stage, knowledge-based or other features that are expected to be important (e.g. the 

duration of a batch step) can also be specified and included in order to capture relevant 

process information that potentially increases data analysis performance in the next stage 
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of FOBA. One should note that this ability to extend the feature space is not exclusive to 

PdF but can also be implemented with other feature-oriented methods (e.g. SPA, TIME). 

 

 
Figure 3.1. Schematic representation of the FOBA superstructure. 

 

The entire set of features arising from all process variables (at all stages) will be analyzed 

in a second stage (Feature-Oriented Analysis). It is recommended to start with the 

visualization module, where a pre-selection and preliminary analysis of features is made, 

with resort to robust measures of association (Spearman correlation, mutual information) 

in order to remove noisy and irrelevant features, which in turn will improve the model 

interpretability and mitigate the risk of overfitting. A variety of graphical and descriptive 

analytical tools are applied in this module, in order to extract basic insights about the 

nature of variation along the batches and variables (e.g., stratified box-plots, analysis of 

scores from a PCA analysis; more information will be provided in Section 3.3, where 

FOBA is applied to several case studies).  

Then, depending on the specific goal of the analysis, the workflow can proceed to one of 

the following modules: troubleshooting (root cause analysis), quality prediction and 

offline (or stage-wise) process monitoring, where specific tools are applied to conduct the 

required analysis. 
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In this section, the newly developed profile-drive features (PdF) dictionary is described in 

detail. PdF explicitly considers the specific non-stationary nature of the variables profiles 

in the computation of the features. Variable profiles that are widely different will be 

characterized by different sets of features: each set being more adequate to represent the 

variability exhibited by the respective type of profile. This is one of the differentiating 

aspects of this dictionary relatively to the other existing ones, namely SPA and TIME, 

where more general features are often computed for all variables, that may not fully 

account for their specific profile pattern. The PdF components are described in the 

following paragraphs (see also Figure 3.2). 

Object-profiles. The dictionary is composed by a finite set of objects, . 

Each object corresponds to a given type of profile or pattern. A profile is a parameterized 

representation of a pattern that, upon training with process data, will lead to a realization 

of a curve. We call  the parametrized model structure associated with the object-profile 

. Variables are assigned to the object-profile  if they exhibit a similar pattern (of 

course, the case of non-correspondence is also possible and actually rather common, as 

the dictionary has a wide coverage of possible profile patterns, not all of them necessarily 

appearing in every batch process); the assignment process will be addressed further ahead 

obtaining, in the end, an estimated profile , , with good fit. In other words, 

-stationary behavior 

of the variable in question. Object-profiles considered in the dictionary tend to have very 

parsimonious model structures, with only a few parameters to be estimated from process 

data.   

Estimation Engine. Each object-profile has an estimation engine. This estimation engine 

is a method (using object-oriented programming nomenclature) that takes data regarding 

a given variable under consideration and computes the estimated parameters of the profile 

assigned to such variable by maximizing model fitting (in the sense of minimizing the 

residual sums of squares).  Thus, the estimation engine provides an estimated trajectory 

 for that variable, which will be used later on by the computation engine.  

List of Profile Specific Features. Associated to each object-profile is a set of features that 

are pertinent to compute. These features are specific of the profile under consideration. 
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Features Computation Engine. This engine computes the values of the features for the 

object-profiles associated to all variables, using process data and the estimated profile 

provided by the estimation engine.   

 

 
Figure 3.2. Schematic representation of the PdF dictionary and its main structural 

components. 

 

Some examples of profile-objects are represented in Table 3.1. 

The process of assigning variables to the characteristic profile (object) can be made in 

 

 User supervised (AM-US). The user provides the mapping between variables and 

the corresponding characteristic profile. This is the method adopted in all case 

studies since it can be done alongside a first exploratory stage for acquiring 

familiarity with the main variability patterns found in the dataset. However, this 

approach may be cumbersome or impractical in industrial processes containing a 

large number of variables. In those scenarios, the automated or semi-automated 

methods are preferred to facilitate the assignment task;  

 Automated (AM-AU). Profiles are automatically assigned using an algorithm 

For instance, measures such as R2 or the sum of squared errors can be used to 

measure the similarity/dissimilarity between raw and estimated trajectories. 

However, one must take also into account the complexity of the object-profiles 

during automatic assignment. For instance, a linear object-profile will always fit 

equally well or better than a constant object-profile. Thus, the adjusted R2 and 

other alternatives that penalize complexity might be more suitable (such as the 

AIC and BIC criteria). In other words, the mechanism for achieving an automatic 

assignment mode consists in using a measure of model fitting to guide the 



Feature-Oriented Methods 45 

mapping between process variables and object-profiles. However, the AM-AU is 

still not fully developed and should be included in future work since further 

studies are required to identify and compare different measures of model fitting in 

the context of PdF. Thus, this assignment mode was not used in any of the case 

studies presented here because, as stated above, we value a first stage of data 

visualization, which can be easily combined with the AM-US option. BDA 

usually starts with data visualization and it is rather convenient to assign each 

process variable to one of the available object-profile, instead of utilizing the 

automated assignment mode;  

 Semi-automated (AM-SA). In this case, AM-AU is first conducted and the best 

candidates for each variable are preliminarily registered. The user then selects one 

among the suggested profiles for each variable. This alternative speeds up the 

assignment process relatively to AM-US, still allowing the user to have control 

over the process, which may also be opportune for some cases where variables 

profiles do not show a clear pattern. 

The proposed dictionary of profile-driven features presents the following positive 

characteristics: 

 Avoids the need for preprocessing, namely trajectory mean shifting and scaling 

(which can be seen as an over-parametrized way of modeling the non-stationary 

behavior of individual variables); 

 Does not require unfolding and complex batch alignment/synchronization  a task 

that is usually difficult or requires advanced training; 

 Significantly reduces the dimension of the predictor space when compared to 

time-resolved alternatives; 

 Retain variables profiles specificity in the computation of the features; 

 Can be applied in batches with unequal lengths; 

 Fast to implement; 

 Easily expandable to include more features for each object-profile.  

As disadvantages, we may refer the lack of time resolution in the analysis (it is the whole 

batch or stage that is being analyzed, and not its behavior at a given instant), which may 

lead to some information loss. In particular, fine changes in the local process correlation 

structure may be difficult to detect if they do not affect significantly the profile-driven 

features. Another disadvantage is the fact that the dictionary has always a finite set of 

features, which could limit its application to more specific processes. However, the 

dictionary is easily expandable with more object-profiles and features or combined with 
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other dictionaries, as described in the next section, which mitigate the impact of this 

limitation.  

We would like to point out that, when PCA, PLS and other multivariate methods are 

applied to the feature space generated by PdF, it is also assumed that the distribution of 

features across different batches is i.i.d.. This assumption is common to most multivariate 

methods used in the analysis of batch process data. 

 

Table 3.1. Examples of object-profiles available in the PdF dictionary. 

Object-Profile Features 

Constant 

 Mean 

Variance 

[Residual statistics] 

Area 

Linear 

 Slope 

Intercept 

SSR* 

Residual variance 

[Residual statistics] 

Area 

Step 

 Step occurrence 

Mean before and after step 

Variance before and after step 

SSR* 

[Residual statistics] 

Area 

*SSR is the sum of squared residuals between the estimated and measured profiles. 
[Residual statistics] correspond to additional statistics that are not in the default set of features in the 
dictionary, but that could be included to improve performance in particular applications (e.g., high-order 
statistics to address non-Gaussian residuals).  
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Table 3.1 (cont.). Examples of object-profiles available in the PdF dictionary. 

Object-Profile Features 

Pulse 

 Pulse Beginning 

Mean before, after and in the pulse 

Variance before, after and in the pulse 

SSR* 

[Residual statistics] 

Area 

Impulse 

 

Impulse beginning 

Maximum value of impulse 

Time of occurrence of maximum value 

Area 

*SSR is the sum of squared residuals between the estimated and measured profiles. 
[Residual statistics] correspond to additional statistics that are not in the default set of features in the 
dictionary, but that could be included to improve performance in particular applications (e.g., high-order 
statistics to address non-Gaussian residuals).  

 

The workflow for the PdF dictionary consists of: (i) allocating variables to object-profiles 

; (ii) run the estimation engine and estimate the parameters of the model 

structure associated with the profiles ; and finally (iii) run the feature 

computation engine, from which the set of variables-specific features are obtained 

. Consider, for instance, Figure 3.3.a which presents the totalized feed 

during 12 batches of a drying operation. The totalized feed corresponds to the total 

amount of material fed to the dryer at each time point during the batch (more details 

regarding this dataset are provided in the case study from Section 3.3.1). By visual 

inspection and adopting the user supervised assignment mode (AM-US), among the 

available object-profiles one may classify this variable as a linear object-profile. In this 

simple case, the estimated profile is obtained by computing the slope and the intercept 
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which minimize the squared residuals (Figure 3.3.b presents an example of the estimated 

profile for one batch). The specific features characterizing the linear object-profile are the 

slope, intercept, area, SSR and the variance of the residuals, as defined in Table 3.1. 

These features are computed from the estimated profile and capture the essential 

characteristics of its evolution.  

 

  

(a) (b) 

Figure 3.3. Example of the application of PdF. (a) The totalized feed is classified as a 

linear object-profile because it is the most similar object-profile among all those 

belonging to the current version of the PdF dictionary. (b) As an example, the estimated 

profile for the first batch is presented.  

 

In this section, the FOBA framework coupled with the PdF dictionary will be used to 

conduct a variety of tasks concerning offline batch process data analysis, with the purpose 

of demonstrating the potential advantages of adopting the proposed methodology and to 

illustrate their application in practice. In particular, the first task concerns data 

visualization of a real industrial crystallization process, where the operation of two dryers 

is compared. The second task concerns quality prediction for a widely used fed-batch 

simulated process for penicillin production, PENSIM (Birol, Ündey et al. 2002). Lastly, 

end-of-batch process monitoring is also conducted for the PENSIM simulator, allowing 

the identification of normal and abnormal batches. The proposed dictionary of features 

will be compared to benchmark approaches such as SPA and the more complex time-
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resolved two-way approaches (BWU with data alignment with resort to Dynamic Time 

Warping, DTW). The SPA features considered here are similar to those used for 

monitoring a semiconductor batch process (mean, variance, covariance, skewness, and 

kurtosis) in Ref. (He and Wang 2011); other features such as auto-correlation and lagged 

cross-correlation were not used. The use of lagged variables could potentially improve 

performance but only ad-hoc rules are available (Wang and He 2010) for selecting the 

proper lag. Thus, we tested SPA without these features.   

 

Data exploration or visualization is the recommended first task in any offline batch data 

analysis, where the main goal is to quickly extract useful insights of the nature of process 

variability. This task extensively explores graphical methods given their strong synergy 

with human visual and pattern recognition capabilities. Exploratory data analysis can be 

cumbersome and time consuming for batch data, given their intrinsic three-dimensional 

structure, which may get even more complex, due to the presence of multiple stages, 

misaligned process variables, batches with different lengths, etc. The FOBA framework 

avoids the alignment step because features are computed directly from the estimated 

object-profiles , providing a representation whose distribution can be used for 

assessing the batch-to-batch variability (some features also address the intra-batch 

variability, such as those involving the residuals of the estimated profiles). In this context, 

a case study is considered here with the aim of identifying differences in the operation of 

two industrial dryers working in parallel, in an industrial crystallization process 

(examples of the trajectory of the 20 process variables measured during the batch are 

provided in Figure 3.4 for one of the dryers).  Existing process knowledge points to the 

existence of possible differences in the dryers given their production outcomes. This 

happens even though they share the same batch stages and recipe, which motivate a more 

detailed analysis of their operation, looking for possible sources for the different 

behavior. The proposed PdF dictionary, described in Section 2.1, was applied in a stage-

wise fashion (i.e., the PdF features were computed for each stage in the crystallization 

process) and the trajectories of process variables were assigned manually (AM-US) to 

one of the object-profiles in the dictionary, as specified in Table 3.2.  
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Figure 3.4. Example of the trajectory of 20 process variables measured during the drying 

operation. 
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Figure 3.4(cont.). Example of the trajectory of 20 process variables measured during the 
drying operation.  
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Table 3.2. User specified object-profiles for process variables at different batch stages of 

an industrial crystallization unit. 

Variable 

Index 

Batch Stage 

 Product 

feed 
Spin Wash 1 wash 2 

Spin 

Dry 

1 Constant - - - - 

2 Constant - - - - 

3 Constant - - - - 

4 Linear - - - - 

5 Constant - - - - 

6 Constant - - - - 

7 Linear - - - - 

8 Constant - - - - 

9 Constant - - - - 

10 Linear - - - - 

11 Constant - - - - 

12 Constant - - - - 

13 - - Linear Linear - 

14 - Linear Constant - - 

15 - - Linear Linear Constant 

16 - Linear Linear Constant Constant 

17 Linear Constant - - - 

18 - - Constant Constant - 

19 - - - - - 

20 Pulse Constant Constant Linear Linear 

 

Table 3.2 shows that most variables analyzed were classified as simple object-profiles 

from the PdF dictionary. This stems from the fact that the majority of process variables 

had simple dynamic profiles, suggesting that the use of features can effectively capture 

most of the information regarding their evolution, although time-resolution is lost. Thus, 

despite the fact that the whole batch behavior for some variables shown in Figure 3.4 

present rather intricate profiles which are not similar to the profiles available in the PdF 

dictionary, the patterns in a given batch stage are much simpler and can be easily 

classified into one the available object-profile. As stated above, the assignment into one 

of the object-profiles followed the manual assignment mode (AM-US), which was 

implemented by plotting each variable at each batch stage and then selecting the object-
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profile that is more similar to the observed trajectory. Analyzing Table 3.2, one can also 

note that not all variables were analyzed at all batch stages because prior knowledge 

variables are not relevant at some 

stages. Moreover, it is worth clarifying that the last batch stages were discarded and are 

not shown in Table 3.2 because they correspond to discharging operations that are not 

expected to impact the production quality. Thus, although Figure 3.4 presents the full 

batch evolution, the later part of the batches were not considered. The flexibility for 

discarding irrelevant variables at some batch stages (or even entire batch stages) is shared 

by all FOBA approaches  it can be performed in a supervised way (as in the present 

case) or in an unsupervised way (using feature selection approaches, e.g., based on 

parametric or non-parametric measures of association). The specification defined in Table 

3.2 might seem cumbersome to conduct manually since one can potentially analyze 20 

variables at 5 batch stages for a total of 100 profiles. However, the assignment task can be 

carried out rather quickly alongside a first step of data visualization by inspection of the 

process variables trajectories. After the assignment task, the estimation engine estimates 

the profile parameters of the selected object-profile using a least squares approach and the 

computation engine generates the features associated with the object-profile, thus 

completing the PdF workflow. As a practical example, variable #20 from the product feed 

step was assigned to the pulse object-profile (see Table 1 for the pulse object-profile), due 

to their intrinsic similarity. In order to obtain the estimated trajectory, the product feed 

step was split into three contiguous and non-overlapping regions with minimum sum of 

variances. Once the regions were identified, the estimated trajectory consists of the mean 

value for each region, which are then used to compute the features associated to the pulse 

object-profile. 

Returning to the problem of identifying differences betwee

dataset composed of 12 batches was available for each dryer and the assignment shown in 

Table 3.2 resulted in a total of 115 features for each batch. Thus, one has now available 2 

matrices, X1 for dryer 1 and X2 for dryer 2, with dimensions 12×115 for each dryer. In 

features from both dryers was conducted: each column of X1 was compared to the 

corresponding column in X2 and a t-test (at a 5% significance level) was used to identify 

features whose distribution was statistically different across dryers. From the 115 

features, 21 were found to be statistically different across dryers. Some of the identified 

features and process variables are presented in Figure 3.5.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3.5. Examples of identified differences between dryer 1 and dryer 2 obtained with 

the PdF dictionary of features: (a) the variance of variable 11 at the product feed stage 

and (b) the plot of its evolution; (c) the average value of variable 14 at water wash stage 

and (d) the plot of its evolution; (e) the regression coefficient or slope for variable 20 at 

the spin dry stage and (f) the plot of its evolution.     
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Figure 3.5 shows that the identified variables have rather distinct trajectories and the PdF 

dictionary is able to effectively identify features with different distributions across dryers. 

Moreover, more than one feature can be identified for the same variable, highlighting 

multiple differences regarding their evolution. For instance, Figure 3.5.a shows that the 

variance of variable 11 at the product feed stage is higher for dryer 2 but another 

identified feature (not shown in Figure 3.5) was the average value, which is also higher 

for dryer 2. The average value and the variance cover independent aspects of the 

evolution of variable 11 and the interpretation of these features is straightforward since 

they are directly related to the object-profile assigned to variable 11. Variable 11 is the 

opening percentage of the feed valve and the fact that these differences were spotted, 

correlated to differences in the quality of the batch. Figure 3.5.c also shows that the 

average value of variable 14 is higher at the water wash stage, which is confirmed by 

Figure 3.5.d). Variable 14 is the opening percentage 

of the control valve for the recycling water flow and suggest that, on average, dryer 1 is 

using more recycled water than dryer 2. Lastly, Figure 3.5.e suggest that the slope of 

variable 20 at the spin dry stage is statistically different across dryers, a fact that is again 

confirmed by observing the trajectory (Figure 3.5.f). Variable 20 is the rotational speed of 

 

The differen ehaviors quickly identified during the data visualization stage 

based on PdF features and FOBA, constitute useful information about process variation 

that can be used by process experts to interpret and raise conjectures about the operation 

and production quality of the two driers.    

 

Quality prediction is another important task in batch data analysis where the aim is 

predicting quality parameters based on the variables process trajectories. For this task, the 

PENSIM (Birol, Ündey et al. 2002, Van Impe and Gins 2015) simulator was adopted in 

order to test the potential of using the proposed PdF dictionary of features in this 

application context. The PENSIM simulator has been widely used in the literature as a 

testing environment for assessing and comparing methodologies for batch analysis. It 

consists of a detailed model of a fed-batch reactor for penicillin production. The simulator 

includes typical characteristics found in practice, namely noise and other sources of 
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natural process variability, non-stationarity and PID controllers to regulate pH and the 

reactor temperature. The natural parameter for characterizing batch quality is the 

penicillin concentration at the end of the batch and in order to predict it, three sets of 

predictors were considered: features obtained from the PdF dictionary with manual 

assignment of object-profiles (AM-US), SPA features (namely, the mean, variance, 

covariance, skewness, and kurtosis) and time-resolved BWU process data, properly 

aligned with DTW. The relationship between predictors and penicillin concentration is 

modeled by PLS and a total of 70 batches were simulated for analysis. From the 70 

batches, 50 were randomly selected for model training while the remaining 20 batches 

were used as a test set. Monte Carlo iterations of 5-fold cross-validation were used to 

determine the optimal number of latent variables (LV) and the median coefficient of 

determination of cross-validation ( ) is presented in Table 3.3 for the training set. 

Table 3.3 also presents the coefficient of determination for predictions on the test set (

). 

 

Table 3.3. Prediction performances obtained with the PdF dictionary and benchmark 

methods using PLS as the regression method. 

Dictionary   

PdF 0.82 (2 LV) 0.90 

SPA 0.75 (2 LV) 0.82 

BWU 0.85 (1 LV) 0.89 

 

The prediction performances presented in Table 3.3 point to rather interesting results. 

They show that the PdF and BWU dictionaries were the top performing approaches under 

testing conditions, followed by SPA. The best performance obtained with PdF dictionary 

can be explained in terms of its ability to parsimoniously matching model and system 

complexity since, in this case study, PdF was able to compress the entire batch trajectory 

in a small number of features that preserved information regarding the penicillin 

concentration. Although the PLS model with PdF features uses 2 latent variables 

compared to 1 latent variable with BWU data, the reduction in the dimension of the 

predictor matrix is considerable: when PdF is adopted, the predictor matrix contains 67 

columns/features describing each batch, whereas BWU data has a very wide predictor 

matrix with 19216 columns (16 variables and 1201 time points). Thus, in terms of the 
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complexity scale, there is no clear advantage in this case to move to a higher complexity 

method (BWU), since no clear improvement in prediction performance will be obtained. 

 

In this section, we illustrate the use of the proposed PdF dictionary for end-of-batch 

process monitoring. Typical industrial databases contain hundreds or thousands of 

measurements made during batch operations and this information can in turn be used for 

quality assessment and improvement. The exploitation of such datasets provides 

knowledge regarding normal operating conditions, characterizing the typical 

measurement levels and correlation structures. Furthermore, the identification of 

abnormal batches can be conducted and the possible source of faults pinpointed. For this 

task, the PENSIM (Birol, Ündey et al. 2002, Van Impe and Gins 2015) simulator is again 

considered with the aim of identifying and characterizing abnormal batches. The set of 70 

NOC batches described in section 3.2 were used to build a PCA model and additional 80 

faulty batches were simulated and monitored. In the simulation of the faulty batches, 20 

batches are affected by a drop in the aeration rate, 20 are affected by a change in the feed 

temperature, 20 contain a drift in the reactor temperature sensor while the remaining 20 

batches are contaminated.  The number of principal components was chosen by analyzing 

the explained variability and 3 principal components were selected according to the 

- eria

similarly to the quality prediction case study (Section 3.2), the user specified assignment 

mode was used (AM-US) to map each variable to one of the object-profiles in Table 3.1. 

Furthermore, batch-wise features were computed since a good agreement between the 

batch profiles and the object-profiles was observed. The NOC and faulty batches were 

monitored using T2 and Q statistics and the results are presented in Figure 3.6.a and 

Figure 3.6.b, where it can be seen that the PdF dictionary is able to effectively identify 

abnormal batches since the T2 and/or Q statistics are clearly above their theoretical 95% 

upper control limits for the faulty batches. As benchmarks, Figure 3.6.c and Figure 3.6.d 

present the monitoring results obtained with the SPA dictionary (using as features the 

mean, variance, covariance, skewness, and kurtosis) while Figure 3.6.e and Figure 3.6.f 

presents results obtained with BWU data aligned with DTW. Although both benchmark 

methods are also able to detect most faults, a few of the monitoring statistics for fault 4 
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(batch indexes 131-150) are more or less at the level of the NOC data, which means that 

in a real monitoring scenario, these faults will be difficult to detect by these benchmark 

methods. BWU uses a very wide matrix with a high potential for overfitting due to the 

high number of model parameters and this fact is probably deteriorating its ability to 

detect fault 4. When comparing the ability of PdF and SPA to detect fault 4, one can 

observe a small advantage obtained by adopting the PdF dictionary, which results from 

the use of specific and targeted information about the time-varying profiles that captures 

the relevant dynamic patterns in the evolution of process variables in a more effective 

way. This example shows that methods belonging to the low spectrum of the complexity 

scale (PdF and SPA) are suitable for conducting off-line process monitoring and can have 

superior performance when compared to more complex approaches. The methodological 

differences between PdF and SPA suggest that their optimality is dependent on the case 

study under analysis, which is a typical situation for data-driven approaches. For instance, 

when monitoring a semiconductor batch process (He and Wang 2011), SPA conducted to 

better results compared to a k-nearest neighbor classifier and BWU, because the 

variability around the constant profiles of these process variables can be very well 

described by the features of this method. A similar result is expected for PdF using a 

constant profile. The theoretical justification for this is the following: apart from the 

mean, SPA uses mean-corrected statistics, such as the variance, covariance, skewness, 

and kurtosis. Therefore, the results of SPA should match those of PdF with 

profile assignment, as long as the same statistics are used for characterizing the residuals 

around the level of this constant profile (which is also estimated by the mean). However, 

by default PdF proposes the use of a reduced set of statistics for characterizing the 

residuals, in order to avoid the generation of large amounts of features, whereas SPA 

makes also use of higher-order moments (e.g., skewness and kurtosis), which can be 

advantageous in certain applications, such as in the semiconductor industry.      

Besides fault detection, another critical aspect of end-of-batch process monitoring is the 

ability to identify the source of the fault so that process engineers may obtain insights into 

its root causes. In order to illustrate the abili

root causes, Figure 3.7 presents the average contributions of each feature to the Q statistic 

for the first 2 faults. The average is taken over all faulty batches affected by the same 

fault. As can be seen in Figure 3.7, the Q statistic is very specific since only 2 features are 

highlighted for each fault. In fault 1 (Figure 3.7.a), the process was disturbed by a drop in 

the aeration rate and upon inspection, features 50 and 51 correspond, respectively, to the 

mean and variance of the aeration rate. In fault 2 (Figure 3.7.b), the process was 

perturbed by a change in the feed temperature and features 47 and 48 correspond, 
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respectively, to the mean and variance of the temperature of the feed flow. Similar results 

were obtained for faults 3 and 4 but are not presented here. The specificity obtained with 

the PdF dictionary is a useful characteristic since it clearly pinpoints the source of the 

fault, avoiding ambiguity in fault identification. 

The results obtained with FOBA and, in particular, with the PdF and SPA dictionaries 

show that even a model with a small number of parameters can be suitable for fault 

detection and identification: the matrix obtained with the PdF dictionary contains 67 

features for each batch while SPA had 153 features. These low number of features can be 

contrasted with the much larger number obtained with a BWU procedure (19216 

columns, see Section 3.2), where the potential for overfitting is very high because all 

auto- and cross-correlations are described. The development of PdF- and SPA-based 

models required low user input, effort, and technical specialization since the features are 

easily computed from raw data and the complex synchronization step can be avoided, 

which in practice means a smaller barrier for model development. Thus, as long as the 

results obtained fit the purpose of analysis, one does not necessarily need to move to 

higher complexity methods, as the gains in doing so are not guaranteed a priori. 

Therefore, it is our opinion that more complex methods should not be considered as 

default approaches but their use should be justified by the improvements obtained over 

the simpler ones. In practice, process knowledge may be used to identify a suitable 

approach and a high complexity method may be the correct starting point if the process is 

known to contain many and complex auto- and cross-correlation features. However, for 

offline quality improvement activities, a more complex model may be difficult to 

estimate and interpret and although simpler models may found limits in capturing all 

relevant process characteristics, their simplicity can be an advantage for extracting the 

fundamental trends and regularities in the dataset. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 3.6. Monitoring statistics for NOC and abnormal simulated batches: (a) T2 and (b) 

Q statistics for PCA model with the PdF dictionary; (c) T2 and (d) Q statistics for PCA 

model with the SPA dictionary of features; (e) T2 and (f) Q statistics for PCA model with 

the BWU data aligned with DTW. Batch indexes 1-70 correspond to NOC data, 71-90 

correspond to fault 1, 91-110 correspond to fault 2, 111-130 correspond to fault 3 and 

131-150 represent fault 4. The value of the Q statistic for some batches is very high and 

are not presented for ease of visualization. The dashed line is the 95% upper control limit.  
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(a) (b) 

Figure 3.7. The average contribution of each feature to the Q statistic for (a) fault 1 and 

(b) fault 2. 

 

 

 



 



63 
 



  



FOBA 2.0 65 

 
 

The discussion in the previous chapter focused mainly on applying FOBA in a batch-wise 

fashion, i.e., features were extracted for the whole batch and analyzed by suitable 

chemometric and statistical methods. The outcomes of such analyses revealed features 

and variables that are important from the perspective of the entire batch; however, they 

could not pinpoint batch periods that are more critical. Following the taxonomy adopted 

in this thesis (see Section 2.1), FOBA methods are said to have limited time-resolution 

because they use a time grid with low granularity. The time-resolution of feature-oriented 

methods can be improved when process knowledge regarding different batch stages is 

available, which allows extracting features in a stage-wise fashion. However, in the more 

general case, this knowledge may not exist or even when available, the batch stages can 

still be subdivided to provide even more detailed information regarding process 

operation. Therefore, in this chapter, a proposal is put forward to improve the time-

resolution of FOBA methods, that is capable of providing localized information regarding 

critical periods of a batch operation. The first section of this chapter describes an 

improved version of FOBA, named FOBA 2.0 (from now on, the previous version of 

FOBA will be also referred as FOBA 1.0). This novel approach contemplates three 

alternatives for improving the time-resolution capabilities of feature-oriented methods. 

Two of these alternatives make use of an algorithm for finding change-points in time-

series data. This algorithm is described in the second section of this chapter. The third 

section describes a case study where these alternatives were applied and assessed, 

whereas the last section presents the results and their respective discussion.     

 

The defining characteristic of time-resolved methods is that they transpose the time 

dimension to the modeling phase and, therefore, the model can be interpreted in order to 

identify important stages. The BDA literature already contains some approaches that can 

be utilized to identify batch stages where the pr

correlation structure are stable (Lu, Gao et al. 2004, Camacho, Picó et al. 2008, Yao and 

Gao 2009). However, these approaches implicitly require batch synchronization in order 

to transpose all time-points to the modeling phase, ensuring that all batches have equal 
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duration. Since one of the major advantages of feature-oriented methods is that they do 

not require batch synchronization, it would not be suitable to adopt the aforementioned 

approaches to identify batch stages.  

In FOBA 2.0, the batch is divided into sub-intervals followed by the extraction of features 

for each sub-interval. All features arising from all sub-intervals are concatenated and 

subsequently analyzed. The majority of feature-oriented methods are characterized by a 

variable-wise analysis first (where each variable is characterized by certain features), 

followed by a multivariate analysis of the features (where the multivariate relationship 

between variables is modeled). Following this principle, the identification of batch sub-

intervals is also conducted variable-wise in FOBA 2.0. In other words, the procedure is 

flexible so that each variable may have a different number of sub-intervals that best 

match the variables dynamic patterns (this is depicted in Figure 4.1). Therefore, the novel 

component in FOBA 2.0 compared to the first version is that a splitting procedure is 

implemented to specify batch sub-intervals. One should note that these batch sub-

intervals could be similar to what is typically associated with a batch operational stage 

(e.g., load reactants, set reaction conditions, etc.). This can indeed be an output of FOBA 

2.0, however, the main goal is to improve the insights that can be obtained from the data-

driven model (by increasing its time-resolution) and not specifically the identification of 

operational stages. FOBA 2.0 is able to pinpoint batch periods (e.g. the beginning, the 

mid-period, or the end of the batch) that are more relevant even when they do not match 

traditional operational stages. 

 

  
(a) (b) 

Figure 4.1. Illustrating the flexibility of FOBA 2.0 to identify different sub-intervals for 

two process variables. 

 

In the context of FOBA 2.0, the profile of each variable over a batch is considered as a 

time series and the goal is to detect when the characteristics of this signal changes. In the 
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literature of time series analysis, this task is referred to as change-point detection (Scott 

and Knott 1974, Fu 2011, Truong, Oudre et al. 2018) and is concerned with the 

identification of points where the statistical properties of a signal change abruptly. The 

point where these properties change is known as a change-point and an algorithm that has 

been successfully applied for detecting change-points is the pruned exact linear time 

(PELT) method (Killick, Fearnhead et al. 2012). The main advantages of PELT are its 

efficiency and accuracy. It was therefore integrated in FOBA 2.0 for the task of 

identifying sub-intervals for each variable. PELT is described in more detail in the next 

section, but for the remaining of this section, it suffices to acknowledge that the algorithm 

takes, as inputs, the profile of each variable over a batch and outputs the number of 

change- used to 

infer whether a process variable has a consistent dynamic profile or not. In this context, a 

consistent dynamic pattern means that a process variable presents dynamic characteristics 

that are stable across batches and, therefore, it is meaningful to consistently extract 

localized features for it. An example of such a variable is presented in Figure 4.2.a, where 

one can see that the same pattern is observed across all the batches. In contrast, some 

variables are noisier and do not have a stable dynamic pattern. In this case, batch-wise 

features are more appropriate (Figure 4.2.b). With PELT, one can distinguish between 

these two types of variables (variables with consistent profiles and those lacking dynamic 

consistency) by analyzing the distribution of the number of change-points detected for all 

the batches. Variables presenting a consistent dynamic pattern will typically have a small 

number of change-points and the variability of the number of change-points across 

batches is small. Variables that are noisier will often present a large number of change-

points and the variability of this number across batches is large. This assessment step will 

be demonstrated in more detail in Section 4.3 when applying FOBA 2.0 to a simulated 

case study. 
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(a) (b) 

Figure 4.2. Examples of the trajectories of variables presenting: (a) a consistent dynamic 

pattern where it is meaningful to extract localized features and (b) a noisier behavior 

where batch-wise features are more adequate.  

   

In FOBA 2.0, a new approach is proposed for establishing the batch sub-intervals in a 

way that does not require synchronization. This capability increases the modeling 

complexity of FOBA 2.0 methods because the number of features generated is higher 

(they are required to characterize the identified sub-intervals). Furthermore, the 

implementation complexity is also higher because one needs to specify the batch sub-

intervals to be considered (either using PELT or another procedure). Multiple 

alternatives, with varying degrees of complexity, were envisioned for implementing 

FOBA 2.0. They were developed and tested, and will be described next: 

i) Equally spaced sub-intervals (ESI). In this approach, each batch is split into a pre-

specified number of sub-intervals (e.g., 4 sub-intervals). Thus, all variables will 

share the same number of sub-intervals and for a given batch, the length of the 

sub-intervals is constant. On the other hand, the length of each sub-interval (e.g., 

the first sub-interval) will vary across batches because batches are not 

synchronized. The number of sub-intervals is a hyper-parameter that can be tuned 

by cross-validation or imposed by the user. A large number of sub-intervals would 

lead to noisy features whose computation only considers a few data points. 

Conversely, a small number of sub-intervals decreases the time-resolution 

information that can be obtained. In our experiments, changes in this parameter 

within reasonable values did not have a large effect on the results. The equally 

spaced approach is the simpler alternative that can be adopted to extract time-

resolved features;  

ii) Equally spaced sub-intervals for variables with a consistent dynamic pattern 

(ESID). This approach adds a layer of complexity compared to the first alternative 
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because it requires the preliminary identification of variables with a consistent 

dynamic pattern. As previously discussed, PELT is utilized for discriminating 

between consistent and noisy variables. Batch-wise features are computed for 

variables that are noisier whereas, for variables presenting a consistent dynamic 

pattern, the mode (computed over all batches) for the number of change-points 

detected by PELT is considered for establishing the splitting points to use. In 

particular, each consistent variable is split into equally spaced sub-intervals 

according to the number of change-points detected (#sub-intervals = 

mode(#change-points) + 1). One can note two major differences between 

approaches ESI and ESID. The first is that only consistent variables will be split 

in ESID, whereas in ESI, all variables are split. The second difference is that with 

ESID, the number of sub-intervals (and, as a consequence, their length) differs 

depending on the variable under analysis. Variables with more intricate dynamics 

will be split into more sub-intervals whereas fewer sub-intervals will be 

considered for variables with simpler dynamics;       

iii) Unequally spaced sub-intervals for variables with a consistent dynamic pattern 

(USID). This approach is an extension of ii) and the difference is that the sub-

intervals for each consistent dynamic variable may be unequally spaced. Instead 

of only considering the number of change-points as being outputted by PELT (as 

the approach described in ESID), their location is also used to identify when the 

-interval. From 

the three approaches studies, this is the more flexible for defining the sub-

intervals ; see Figure 4.1.  

The improved flexibility of approach iii) compared to alternatives i) and ii) can have, as a 

side effect, some robustness problems. These issues arise especially when the number of 

change-points for a given batch is different from the mode number of change-points, 

implying 

identify a possibly faulty batch but it does not help locating the period where the fault 

occurs, failing to improve the time-resolution of the method. In order to increase the 

robustness of the USID approach, an additional step is employed that consists in fitting a 

probability function to the distribution of change-points observed in the model 

development stage. The modes of this distribution function are adopted to specify fixed 

change-points for all batches. In other words, the change-points for subsequent batches 

are assumed to occur at the same time instants as the modes obtained from the probability 

distribution function. This additional step is exemplified in Figure 4.3.a where the 

distribution of change-points for a process variable is shown. The mode(s) of the 
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probability density function can be utilized to compute fixed change-points that will be 

later on employed to define unequally spaced sub-intervals, as depicted in Figure 4.3.b. 

One should note that the splitting point used in Figure 4.3.b is not optimal since the 

inflection point for some batches will not match the mode of the probability density 

function. This mismatch will carry over to the computation of the features and increase 

their variability; however, it greatly improves the robustness of the USID approach.    

 

  

(a) (b) 

Figure 4.3. Specifying the length of the sub-intervals in approach iii: (a) the distribution 

of change-points over all batches is approximated by a probability density function, and 

(b) the mode of this distribution is a used as the change-point for all batches.      

     

The aforementioned alternatives achieve the goal of increasing the time-resolution of 

feature-oriented methods by splitting the batch into sub-intervals that may or may not be 

equally spaced. However, the fact that the major batch milestones are not synchronized 

implies that the variability of the features computed in each sub-interval will be inflated. 

In applications where the profiles tend to be less synchronized, a high percentage of the 

characteristics of the batch. Therefore, the sensitivity of these methods may deteriorate 

when the batch-to-batch variability is large. Nevertheless, their simplicity implies that 

they may be easily tested without much fine-tuning. Even when applying FOBA 2.0 to 

scenarios where it is less suitable, the time and expertise requirements are quite low, and 

the outcomes extracted may already improve the knowledge regarding process operation. 

Figure 4.4 presents a general workflow for feature-oriented methods that starts with the 

definition of the resolution level for the information to be extracted from the dataset 

collected during process operation. If a low-level resolution is enough, FOBA 1.0 can be 

employed to extract batch-wise features (or stage-wise features if stages are known a 

priori). When finer resolution is aimed, time-resolved features should be adopted and 
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FOBA 2.0 selected, as it is able to extract features with such characteristics in a robust 

way. 

 

 
Figure 4.4. A general workflow for employing feature-oriented methods (FOBA and 

FOBA 2.0). 

 

Algorithms for change-point detection have been used to segment time series data in a 

wide range of applications ranging from electroencephalography recordings (Lavielle 

2005), genetics (Chen and Gupta 2011), financial data (Chen and Gupta 1997), 

manufacturing (Keogh, Chu et al. 2001), among others. A review on change-point 

detection algorithms was recently published (Truong, Oudre et al. 2018), describing 

different classes of available methodologies as well as the most relevant approaches 

within each class. In general, these approaches assume that the measured signal is 

piecewise stationary and the aim of change-point detection methods is to identify the 

points where (abrupt) changes do occur. In more detail, the profile of a variable is 

assumed to change at unknown instants , where C corresponds to the 

number of change-points in the profile. The goal of change-point detection is to provide 

estimates of these change-points, , which split the  into homogenous 

regions. The output of change-point detection methods is a set of estimated change-points 
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, where  is the number of estimated change-points. Some algorithms 

assume that C is known a priori whereas others can also provide an estimate for C, i.e., 

. The latter option is best suited in the context of BDA since the number of change-

points in the batch is unknown. In order to identify the location and the number of 

change-points, the following optimization problem is solved: 

   (11) 

where  is the cost incurred for the interval  and  is a penalty 

term for large number of splits. It is assumed that , i.e., the last change-point 

correspond to the length of the signal and, therefore, the input signal is split into  

intervals. In order to minimize eq. (11), a tradeoff is achieved between the cost due to the 

lack of fitting (which decreases as more change-points are added) and the penalty 

associated with the number of change-points (which increases with the number of 

change-points). Various cost functions and penalties can be considered, whereas several 

search methods can be employed to minimize eq. (11) and provide either an exact or 

approximate solutions. Exact search methods are computationally more expensive, 

whereas approximate methods are faster but may provide a sub-optimal minimum. In this 

context, the pruned exact linear time (PELT) method is an effective alternative that is 

both accurate (the solution is optimal for many cost functions) and efficient (the 

computational cost is, under mild conditions, linear in the number of observations). The 

penalty term utilized in PELT corresponds to a penalty level  multiplied by the number 

of change-points , where small values of  lead to partitions with 

many change-points and large values imply that only very significant changes are 

signaled. PELT improves on a method named optimal partition (Auger and Lawrence 

1989) that expresses eq. (11) in a recursive fashion. Let  be the minimization of eq. 

(11) for the data , then it can be shown that  can be written as a function of the 

minimal cost for the data , denoted , for : 

   (12) 

Eq. (12) provides a recursive function to compute the minimum cost and can be solved 

for . The overall computational cost of finding  is quadratic in K but 

PELT improves on this cost by using a pruning rule that can efficiently exclude candidate 
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change-

original paper (Killick, Fearnhead et al. 2012), and the output of the algorithm is the 

number and location of change-points, which in context of FOBA 2.0, can be utilized to 

identify consistent variables and also specify the number of sub-intervals to consider per 

variable.       

 

The case study considered here for testing the variants in FOBA 2.0 consists of a semi-

batch reactor equipped with a cooling jacket, where an exothermic second order reaction 

takes place . The reactor is initially charged with reactant A and is 

continuously fed with a constant flow of reactant B. The temperature inside the reactor is 

controlled with resort to a PID controller, manipulating the flow of cooling fluid 

circulating in the jacket in order to maintain the reactor temperature at approximately 

25°C. In order to mimic real process variability, a variety of noise patterns were 

simulated: Gaussian noise affects all reaction kinetics and heat transfer parameters, while 

most temperatures and flow rates are subject to auto-regressive drifting patterns. This 

case study will be referred to as the SEMIEX process. During process operation, 6 

variables are measured, and 200 batches are available for model building. This system is 

rather simple but allows for a better understanding of the FOBA 2.0 alternatives and for 

illustrating the steps employed to uncover important batch stages. Figure 4.5 presents the 

trajectories of the 6 process variables for all the batches (variables are auto-scaled). 

 

  

(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 4.5. The trajectory of the 6 process variables in the SEMIEX case study after 

auto-scaling. The variables correspond to (a) volume of the reaction mixture, (b) the 

concentration of reactant A, (c) the concentration of reactant B, (d) the temperature of the 

reactor, (e) the temperature of the cooling fluid, and (f) the flow of reactant B. 

 

As previously discussed, alternatives ESID and USID within FOBA 2.0 require the 

identification of variables presenting a consistent pattern. This is achieved by analyzing 

the distribution of change-points detected over all the batches for each variable. Figure 

4.6 presents the number of change-points detected for all process variables and all batches 

and one can note a clear difference between variables #1-4 and variables #5 and #6. 

These differences can be explained when considering the profile of the variables (Figure 

4.5). For instance, variable #1 has no change-points, which is in accordance with its 

profile (Figure 4.5.a) since it is a linear trend without significant changes. Variable #2 

(Figure 4.5.b) also has a consistent dynamic pattern and two change-points are detected 

corresponding to changes in the profile slope (the first around time 200 and the other 

around time 400). On the other hand, variable #6 has a noisy pattern consisting of random 

noise around a mean level (Figure 4.5.f) and, therefore, many change-points are detected 

and their variability across batches is significant. Following the analysis of Figure 4.6, 
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one can conclude that variables #1-4 can be split in order to implement alternatives ESID

and USID of FOBA 2.0, whereas batch-wise features should be computed for variables 

#5 and variable #6. A particular case occurs in the SEMIEX simulator because variable 

#1 is a simple linear trend with no change-points. Therefore, this variable is not split and 

batch-wise features are also computed.   

  

 
(a) 

Figure 4.6. Distribution of change-points detected by PERL for each variable over all 

batches. 

 

To test the proposed FOBA 2.0 alternatives, partial least squares (PLS) models were 

built. These models use, as predictors, features obtained from the process variables and 

the response is the concentration of product C. The models are trained using 150 

randomly selected batches and their performance is assessed in an independent test set 

with 50 batches. The coefficient of correlation for the test set  is presented in 

Figure 4.7 for various numbers of latent variables utilized for training the model. This 

solution for representing the performance of the three alternatives is utilized because, 

during the model training stage, the RMSE obtained by cross-validation always decreased 

as the number of latent variables increases. This representation demonstrates the 

performance of the methods and avoids the ambiguity that may arise from the selection of 

the number of latent variables. Figure 4.7 shows that there are small differences between 

the SPA alternatives (within FOBA 2.0) and the standard SPA approach, with a slight 
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advantage to ESI. This may arise from the fact that this is a simple system and the 

prediction of the that all the 

process variables are measured. Nevertheless, it shows that FOBA 2.0 alternatives can be 

as effective or even more, as the standard version. The main advantage of these 

alternatives is that they can easily identify periods of the batch that are more critical for 

the quality parameter. The variable importance in projection (VIP) is a typical feature 

importance metric utilized to assess and compare the relevancy of the different features 

(Chong and Jun 2005). Figure 4.8 presents the feature importance for SPA and FOBA 2.0 

with the ESI alternative. For SPA (Figure 4.8.a), only overall importance can be assessed 

and one can note that there are two highly important features. When analyzing Figure 

4.8.b, one can have a deeper understanding of the critical periods. Although the profile of 

variable importance within each stage is similar, one can see that the first stage is more 

important. The variable that has the highest importance in every stage is variable #2 

(concentration of reactant A). Since this reactant is loaded at the beginning of the batch, it 

would be expected that the initial amount of A would largely determine the concentration 

of product C. Thus, one can conclude that the ESI alternative was quite effective for 

improving the time-resolution of SPA and avoids some of the complexity associated with 

approaches ESID and USID. Therefore, it is the recommended method to be applied in 

FOBA 2.0. Nevertheless, as each case study presents different data characteristics and 

challenges, it is expected that alternatives ESID and USID may prove to be effective for 

more complex systems. Furthermore, although only SPA was considered for this case 

study, FOBA 2.0 can be extended to other feature-oriented methods, such as TIME-F: 

one of the three FOBA 2.0 alternatives can be utilized to identify sub-intervals for each 

process variable and TIME-F features can be computed for each sub-interval. 

 

 

 
Figure 4.7. The performance in the test set for SPA and FOBA 2.0 alternatives. 
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(a) 

 
(b) 

Figure 4.8. Variable importance in projection for (a) SPA with batch-wise features and 

(b) FOBA 2.0 with the ESI alternative. 
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The previous two chapters presented frameworks for batch data that were able to extract 

features from batch trajectories. Once features become available, they can be utilized in a 

variety of tasks (e.g., visualization, troubleshooting, quality prediction, offline 

monitoring, etc.), as previously discussed. One important task in BDA is quality 

prediction, which requires developing a predictive model that relates features and a 

quality parameter of interest. However, the volume of industrial datasets often impairs the 

inclusion of all features (also known as predictor variables) in the model development 

stage. Furthermore, using all available features for data-driven modeling is not 

recommended, as most of them are expected to be irrelevant and their inclusion in the 

model may compromise robustness and accuracy. Therefore, screening and selecting the 

most promising features is a recommended step that must be addressed in modern 

predictive analytics and will be topic of this chapter. This chapter is divided into five 

sections. The first section provides an introduction to feature selection and enumerates 

many of the classes and methods available in the literature. The analysis of the literature 

motivates the development of a new methodology named wide spectrum feature selection 

for regression (WiSe) that is especially suitable for the context of BDA. WiSe is 

described in detail in the second section of this chapter. The last three sections of this 

chapter are dedicated to demonstrating the effectiveness of the WiSe methodology: the 

third section describes the datasets used to test WiSe, the fourth section describes how the 

methodology was compared against other benchmark alternatives, and the last section 

presents the comparison results and their discussion. 

 

A pervasive characteristic of data collected from modern chemical processing industries 

(CPI) is the high number of measured variables/features (features and variables will be 

used interchangeably in this chapter since methods for feature selection can also be 

employed for variable selection), often ranging between hundreds to thousands or even 

tens of thousands. This corresponds to the Volume component of the big dat (Qin 

2014), the other components being Velocity, Variety, and Veracity. In this context, 

applying feature selection methods (FSM) is almost mandatory in order to remove noisy 
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and irrelevant features that are not informative for the data-driven task considered and 

may compromise their predictive performance and robustness (Seasholtz and Kowalski 

1993, Höskuldsson 1996, Broadhurst, Goodacre et al. 1997, Höskuldsson 2001, Brás, 

Lopes et al. 2008). A variety of FSM have been proposed in the literature and their main 

advantages include the lower dimensionality of the resulting dataset, easier identification 

of important variables and lower risk of overfitting. These FSM methods are often 

grouped into three classes (Guyon and Elisseeff 2003, Saeys, Inza et al. 2007, Bolón-

Canedo, Sánchez-Maroño et al. 2013, Chandrashekar and Sahin 2014): 

 Filter methods. Use an association metric between features and response variables 

in order to detect important and irrelevant features; 

 Wrapping methods. Rank predictors by their importance in the context of a 

developed classification or regression model, possibly assessing the prediction 

improvements obtained by including/excluding different (groups of) features;  

 Embedded methods. Follow a scheme for automatically removing predictor 

variables during model training by, for instance, introducing a penalty for the 

magnitude of regression coefficients. 

The literature on feature selection is vast (Ruiz, Pérez et al. 2009, Liu and Motoda 2012), 

containing general review papers (Guyon and Elisseeff 2003, Bolón-Canedo, Sánchez-

Maroño et al. 2013, Chandrashekar and Sahin 2014, Vergara and Estévez 2014, Li, 

Cheng et al. 2016), and reviews on specific areas such as bioinformatics (Saeys, Inza et 

al. 2007), microarray datasets (Lazar, Taminau et al. 2012, Bolón-Canedo, Sánchez-

Marono et al. 2014), chemometrics and industrial applications (Anzanello and Fogliatto 

2014). Among these contributions, some regard filter methods (mostly for classification 

purposes). For example, Relief (Kira and Rendell 1992, Robnik-

2003) is a well-known representative algorithm belonging to this class. Relief is utilized 

in classification tasks and works by randomly selecting a sample and its two nearest 

neighbors, one from the same class and another from a different class. A weight is 

attributed to each feature according to its ability to separate the classes, and these weights 

are iteratively updated when a different sample is selected. Relief was later modified to 

be more robust to noise and missing data (Kononenko 1994) (ReliefF) and was extended 

to regression problems (Robnik- ) (RReliefF). Other types of 

filters are based on information theory (Estévez, Tesmer et al. 2009, Vergara and Estévez 

2014, Muhammad Aliyu 2015) (e.g. mutual information and symmetrical uncertainty) 

such as the fast correlation-based filter (Yu and Liu 2003, Yu and Liu 2004) (FCBF) and 

the max-relevance and min-redundancy filter (Peng, Long et al. 2005) (mRMR). These 

filters search the feature space for a set of relevant but non-redundant features and have 
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appeared in many comparison studies with classification datasets (Hall and Smith 1999, 

Estévez, Tesmer et al. 2009, Bolón-Canedo, Sánchez-Maroño et al. 2013). More recently, 

another set of efficient filters have been proposed (Ferreira and Figueiredo 2012) for both 

supervised and unsupervised problems.  

Wrapping methods (or simply wrappers) form a class of very successful FSM for CPI 

datasets. Due to the collinearity between features, partial least squares (Geladi and 

Kowalski 1986, Burnham, MacGregor et al. 1999, Wold, Sjöström et al. 2001) (PLS) is 

the de facto standard method in CPI together with its extensions with feature selection 

capabilities. Variable importance in projection PLS (Wold, Sjöström et al. 2001) (VIP-

PLS), beta-coefficient PLS (Chong and Jun 2005) (beta-PLS), recursive PLS (Rinnan, 

Andersson et al. 2014) (rPLS), and PLS with genetic algorithms (Leardi and Gonzalez 

1998) (PLS-GA) are examples of wrappers that select features in the context of a PLS 

model. Another popular type of wrapper methods is the one composed by methods 

derived from ordinary least squares (OLS) (Draper and Smith 1998) followed by the 

elimination of features that do not bring a statistically significant additional explanation 

power to the model. OLS can be combined with forward, backward or stepwise strategies, 

or even exhaustive enumeration strategies (Andersen and Bro 2010, Montgomery, Peck et 

al. 2012) for including and removing features from an OLS model.    

In the class of embedded methods, least absolute shrinkage and selection operator 

(Tibshirani 1996) (LASSO) has been used to shrink model coefficients to zero, 

effectively removing features. Elastic net (Zou and Hastie 2005) (EN), which combines 

both ridge regression (Hoerl and Kennard 1970) and LASSO penalties, also has the 

desirable property of automatically eliminating features during model estimation. 

Each of the aforementioned classes of FSM has advantages and drawbacks. However, in 

scenarios where a large number of variables are measured, filters tend to be the preferred 

approach (Yu and Liu 2003, Liu and Yu 2005, Ferreira and Figueiredo 2012, Lazar, 

Taminau et al. 2012, Bolón-Canedo, Sánchez-Maroño et al. 2013) as the other classes of 

methods depend on the incorporation of all features in the models under analysis, which 

is a cumbersome and computationally intensive task in high-dimensional settings. Filters 

are faster, easy to apply and automate, require less computational resources, and are more 

general since they are not biased by the modeling framework selected. Therefore, they are 

suitable to be applied on CPI datasets that are characterized by having a large number of 

predictor variables to be initially considered.  

The analysis of the aforementioned literature shows that many filters for classification 

problems have been proposed and tested in the past, whereas filters for regression 

problems remain mostly unexplored, with only a few examples available (Robnik-
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and Kononenko 1997, Muhammad Aliyu 2015). Adopting filters in regression settings is 

expected to bring similar benefits to those already obtained for classification problems. 

Therefore, in this chapter, we propose, test and compare an approach that contains 

algorithmic and methodological elements suitable for regression problems found in CPI: 

the wide spectrum feature selection for regression (WiSe). WiSe is a two-stage feature 

selection approach that combines a filter stage and a model development stage. In the first 

stage, a filter or a set of filters are adopted to identify and select important features, while 

noisy and irrelevant predictors are removed. These filters are based on measures of 

associatio (Gibbons and Chakraborti 2011, 

Hauke and Kossowski 2011) (Gautheir 2001, Gibbons and 

Chakraborti 2011), and mutual information (Jaynes 1957, Shannon 2001). Each metric 

assesses a type of association between features and response variable such as linear 

-linear (mutual 

information). Features selected in the first stage proceed to the second stage where a 

regression model is developed and, by employing a wrapping or embedded method, a 

smaller set of features is finally obtained. This two-stage approach leads to the 

development of more parsimonious models, which is a critical attribute for modeling CPI 

datasets. Another benefit closely linked to parsimony is prediction accuracy, which 

improves when irrelevant/noisy variables are removed. Two-stage approaches have 

already been proposed for classification problems (Peng, Wu et al. 2010, El Akadi, 

Amine et al. 2011) ime this 

strategy is used in a regression setting with a comprehensive coverage of filter methods. 

 

The wide spectrum feature selection for regression (WiSe) methodology was devised 

with the purpose to secure the derivation of robust regression models when analyzing 

high-dimensional datasets, by employing a judicious combination of FSM. WiSe is a 

two-stage procedure, as depicted in Figure 5.1. In the first stage, a filter layer is applied 

for an efficient feature screening, where noisy/irrelevant predictors are removed from the 

initial feature matrix, X with dimensions , where N stands for the number of 

observations (or batches in the context of FOBA) and  for the number of 
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variables/features. The resulting matrix from this first stage,  with dimensions , 

, is then utilized for model building. The regression method considered can be of a 

wrapper or embedded type and further feature selection can take place, leading to a final 

matrix,  with dimensions , . Details of the approaches considered in each 

stage of WiSe are given in the following subsections.   

 

 
Figure 5.1. The proposed FSM: the first step uses a filter layer to reduce the number of 

features, followed by a second stage where, in the context of a regression method, 

additional features can be removed by application of a wrapper/embedded methodology.  

 

Filters are screening methods based on measures of feature importance that are 

independent of a particular regression model. They simply relate features and response 

variables and measure the strength of the corresponding linear or non-linear associations. 

The metric of importance can be univariate or multivariate. As the name suggests, 

univariate filters assess the relevance of each feature individually, whereas multivariate 

filters account for the possible collinearity between predictors when obtaining a final set 

of features. In WiSe, we employ univariate filters. The reason is that they tend to be more 

efficient and scalable with data dimensionality, since they do not assess feature subsets. 

Furthermore, a common goal of multivariate filters (e.g. mRMR (Peng, Long et al. 2005)) 

is to obtain a final set of relevant but non-redundant features, penalizing and excluding 

features that are highly correlated with the response. This would be inappropriate in CPI 

contexts, where datasets closely follow a latent variable model with many collinear 

features. A better estimate of this latent model is obtained when all correlated features are 
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considered for model building, during the second stage of the process. Therefore, 

excluding correlated features in the first stage may have a negative impact on the second 

stage of regression model building. Another reason for not excluding correlated features 

is that correlation between features does not necessarily imply the absence of 

complementary predictive information (Guyon and Elisseeff 2003). All these aspects 

concern the second stage of model building and should be handled in that phase; the main 

purpose of the first stage is to remove noisy and irrelevant features, for which we have 

found out that univariate filters do present an efficient, robust and scalable solution. 

In order to measure the correlation between features and response variable, a set of 

metrics have been carefully selected to be contemplated in the first WiSe stage. After 

exploring the spectrum of bivariate association measures for continuous variables, three 

(Gibbons and 

Chakraborti 2011, Hauke and Kossowski 2011) (Gautheir 

2001, Gibbons and Chakraborti 2011), and symmetrical uncertainty (SU) (Jaynes 1957, 

Shannon 2001).  

(Gibbons and Chakraborti 2011, Hauke and Kossowski 

2011) measures the linear association between variables and its value ranges between 

. A value close to 1 indicates two positively correlated variables, values close to -1 

indicate negative correlation, and values close to 0 suggest the absence of a linear 

correlation. Eq. (13)  

   (13) 

Where  is the Pearson correlation coefficient for the jth feature,  is the response 

value for the ith sample,  is the average response over all samples,  is the value of 

the ith sample for the jth feature, and  is the average value of the jth feature. 

In many situations, the relationship between features and the response variable is non-

linear and the Pearson correlation is no longer suitable for a reliable measure of the 

corresponding strength of the association. Alternatively, Spearman rank coefficient 

(Gautheir 2001, Gibbons and Chakraborti 2011) can adequately describe the association 

for monotonic non-linear relationships and its values also fall in the range . The 

Spearman rank coefficient is presented in eq. (14):  
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   (14) 

Where  is the Spearman rank correlation for the jth feature,  is the rank of the 

response for the ith sample,  is the average rank, and  is the rank of the jth feature in 

the ith sample. One can note that the Spearman rank correlation (eq. (14)) is similar to the 

Pearson correlation coefficient (eq. (13)), however, the former is computed based on the 

ranks while the latter is based on the observed values for features and response. 

The last metric of correlation between features and the response variable is based on 

(Shannon 2001). More specifically, mutual 

information assesses the decrease in uncertainty in the response variable due to the 

availability of a feature to explain its variation. More formally, entropy is a measure of a 

opy of the response is  given by eq. (15): 

   (15) 

where  is the marginal density function of the response. The mutual information 

between the response and a given feature measures the decrease in uncertainty in the 

response provided by the knowledge of feature j: 

   (16) 

where  is the mutual information between the response (y) and feature xj, and 

 is their joint probability density function. Mutual information is maximum when 

knowledge of a feature completely specifies the behavior of the response variable, i.e., 

when there is no remaining uncertainty on the value of the response . On 

the other hand, it will be zero when the response and the feature are statistically 

independent . Mutual information is able to measure any type of 

dependency between variables and is a suitable metric to be used in the first filtering 

stage of WiSe in order to be able to detect general non-linear relationships. However, a 

drawback of mutual information is that it is biased towards features with larger number of 
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values. Symmetrical uncertainty (SU) (Press, Teukolsky et al. 1996), is a normalized 

metric with values between , that avoids such bias:  

   (17) 

All the aforementioned metrics rank features according to their degree of association with 

the response. However, in order to implement a filter approach, one must also specify a 

threshold for deciding which features to retain and which can be safely discarded. A 

commonly used approach selects the top T features, and optimizes T by cross-validation 

(the filter needs to be combined with a regression method for this optimization step). 

However, in this work we follow a different approach. It consists in first obtaining a 

measure of the statistical significance associated with the association for each feature, 

after which they are ranked according to an appropriate relevancy metric (p-value). 

Finally, the rank ordered features are selected by controlling the False Discovery Rate 

(FDR) of the process. More details are provided in the following paragraphs. 

The relevance of each feature is first assessed by parallel analysis, as described in Table 

5.1

corre

variable (lines 1 and 2), and the definition of the number of trials for the parallel analysis 

loop. Then, a loop is performed within which the response variable is randomly permuted 

in each run, followed by the computation of the relevance metric (line 6). The metric 

computed after each random permutation constitutes a random realization of the reference 

distribution where no relationship exists under the same circumstances (same number of 

observations, scale, etc.). At the end of the loop, a reference distribution is obtained for 

the null hypothesis of no association, from which one can estimate an empirical p-value 

as the percentage of iterations where random permutations resulted in a correlation 

coefficient larger than the one observed for the originally ordering of the response 

variable. It is expected that relevant features will present very low p-values (p-value << 

0.05), whereas irrelevant features would be well within the noise distribution (high p-

values, i.e., p-value > 0.05).  

Selecting a threshold for the p-value corresponds to specifying the probability of 

incurring in false alarms, i.e., it limits the probability of mistakenly selecting an irrelevant 

feature. Setting the same threshold for all features may, therefore, lead to an excessive 

number of false alarms, due to the multiple comparisons that are conducted in parallel 

(Colquhoun 2014, Glickman, Rao et al. 2014) given the very high number of features. A 

common alternative to control the false alarm rate is to use the Bonferroni correction, 
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where the probability of false alarms is divided by the number of comparisons, decreasing 

the number of features that are declared to be relevant. However, the Bonferroni 

correction is often criticized for having very lower power, failing to detect real 

differences (i.e., relevant features). Therefore, in this work, we adopt the false discovery 

rate (FDR) (Benjamini and Hochberg 1995, Glickman, Rao et al. 2014) as a base 

procedure for feature selection. The FDR is defined as the proportion (d) of all 

discoveries that are false, i.e., it corresponds to the percentage of features that are deemed 

significant by the application of the feature selection method, but are in fact irrelevant to 

the prediction problem. We set d to be 0.2, which is a conservative number compared to 

the more standard values of 0.05 or 0.01. Nevertheless, this larger threshold has the effect 

of minimizing the number of relevant variables that are removed, by allowing more of the 

irrelevant features to be retained. The justification is the following: since further variable 

selection will be conducted in the second stage of WiSe, it is critical that during the first 

stage only really noisy variables are removed, while those that can be potentially relevant  

are left for a subsequent screening stage (where some may be discarded using a 

computationally more expensive selection methodology, such as a wrapper or an 

embedded approach). In other words, the first stage is focused on minimizing the false 

negative rate (missed detections), whereas the second stage maximizes the true positive 

rate (true detections). 

p-values in increasing order 

(p1, p2 pm). Then, one determines the largest index k for which ; 

features with p-values  p1, p2 pk are deemed relevant and are retained for the second 

WiSe stage; the remaining ones are discarded. 

The use of combined univariate filters is also a good alternative to the procedure 

described above, since it allows detecting both linear and non-linear relationships 

between features and the response variable. Two filters can be combined by simply 

considering the union of the individually selected features. However, an alternative is to 

use the minimum p-value among those obtained by the use of the two association metrics, 

to characterize the importance of a feature. In this way, it is possible to assess the strength 

of any type of relationship between features and the response variable, be them linear, 

monotonic non-linear or non-linear. The threshold applied to the set of minimum p-values 

is also based on the FDR methodology, with a target rate set to 0.2.  
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Table 5.1. Parallel analysis algorithm for computing the relevance of each feature 

(exemplified for the case of Pearson correlation). 

1. metric = @Pearson  

2. coefficient = metric(x, y)  

3. n_iterations = 100 

4. for i=1:n_iterations 

5.     random_coefficient(i) = metric(x, randomPermute(y)) 

6. p_value = sum(random_coefficient >= coefficient)/n_iterations 

7. return p_value 

 

In the second stage of WiSe, features selected during the filtering stage are used to 

develop a regression model. By adopting a wrapper or embedded method, further 

reduction in the number of features can be achieved and a smaller final set of predictors is 

obtained. In the regression stage, we have tested the following regression methods: 

forward stepwise regression (FSR) (Andersen and Bro 2010, Montgomery and Runger 

2010), least absolute shrinkage and selection operator (LASSO) (Tibshirani 1996), and 

partial least squares (PLS) (Wold, Ruhe et al. 1984, Geladi and Kowalski 1986, Wold, 

Sjöström et al. 2001). It is important to note that other regression methods could be 

adopted in this second stage, but these three methods provide a good coverage of 

available approaches for high-dimensional empirical modeling. FSR belongs to the class 

of variable selection methods and assumes effects sparsity, i.e. that only some features 

contain relevant information regarding the response. LASSO is representative of 

penalized regression methods, a class of approaches that introduce some bias in the 

estimation in exchange of a reduction in estimation variance, by constraining the 

magnitude of regression coefficients. PLS is a method that assumes the relationship 

between features and response variable to be governed by a few unmeasured sources of 

variation, also known as latent variables. PLS uses the available dataset to estimate the 

data latent structure. Details of these regression methods are presented below.  
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FSR (Andersen and Bro 2010, Montgomery and Runger 2010) builds a regression model 

by sequentially including or excluding features based on the p-value of the partial F-test. 

The model coefficients are obtained by minimizing the least squares error between the 

response and the predictions obtained with selected features: 

   (18) 

where  is the estimated regression coefficients, iy  is the ith observed response value 

and  is the corresponding model prediction ( ).   

LASSO (Tibshirani 1996) also minimizes the least squares error, but adds a L1-norm 

penalty in order to decrease the magnitudes of the regression coefficients:  

   (19) 

where  is the vector of regression coefficients estimated by the lasso model, and  

is an hyper-parameter that controls model complexity. Model complexity increase for low 

values of , as coefficients tend to be larger or different from zero under these 

circumstances. Therefore, the amount of penalty is optimized by cross-validation and 

depending on its value, some regression coefficients can be set to zero, meaning that the 

corresponding features are actually removed from the model. 

PLS (Wold, Ruhe et al. 1984, Geladi and Kowalski 1986, Wold, Sjöström et al. 2001) 

estimates a latent variable subspace that explains the variability in both the predictors and 

response space. Although the model was previously presented in Section 2.1, it is 

repeated here for easier readability: 

   (20) 

   (21) 

where T is an  orthogonal matrix of scores that represent unmeasured and 

independent directions of variability, a is the number of latent variables, P is a  

loading matrix for the feature space, c is a  vector relating the scores and the response 

variable. E and f are residual matrices containing unstructured variability. The number of 

latent variables controls the complexity of the model and must be tuned and it is selected 

following a 10-fold cross-validation procedure. 

The regression stage, as described above, is commonly applied in many practical 

scenarios. However, in the context of big data and Industry 4.0, building a model that 

contains all the available features is computationally very expensive (including the 
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successive refinement stages) and prone to overfitting. WiSe circumvents this drawback 

by employing a filter to remove clearly noisy and irrelevant features. Therefore, the 

benefits are two-fold: regression models can be developed more efficiently, and the initial 

filtering stage is not influenced a priori by the regression method, broadening the range 

of methods that can be tested in this second stage.   

 

This section provides details regarding the simulated and industrial datasets used to test 

the proposed approach. Three datasets were simulated, mimicking different types of 

processes: a sparse process, a latent variable process, and a scenario where the 

relationship between features and the response is non-linear. The conditions tested are 

summarized in Table 5.2. The level of sparsity is defined as the ratio between relevant 

and total number of features (i.e., relevant plus irrelevant features). In all the simulated 

cases tested, there are 20 relevant features; therefore, there are 2000 features with a 

sparsity level of 1%, 400 features for a sparsity level of 5%, and 200 features for a 

sparsity level of 10%. The additional irrelevant variables are drawn from a multivariate 

normal distribution with a low degree of mutual correlations  and 

concatenated to the set of relevant ones. Signal-to-noise ratio (SNR) is defined for the 

response variable as the quotient between the variance of the noiseless values and the 

variance of the noise, and three SNR levels are tested as shown in Table 5.2. In all 

simulation scenarios, 10000 samples were generated to test the performance of the 

different alternatives considered. The next subsections provide further details regarding 

the simulated processes as well as the real industrial dataset.    

 

Table 5.2. Simulated scenarios: all combinations of datasets, sparsity, and Signal-to-

Noise (SNR) levels were tested. 

Simulated Dataset Sparsity Level (%) SNR 

sparse process, latent variable process, 

non-linear 
2, 5, 10 10, 15, 25 
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The first simulated dataset is obtained from a sparse process where only a few features 

are directly related to the response, while the majority are irrelevant and do not contain 

any predictive information. This dataset simulates a scenario found in big data and 

Industry 4.0 where the number of measured variables is increasing and becomes very 

large, but the set of variables most related to the response, i.e. the variability drivers, 

remains the same as before, and is rather small. One often observes that the ratio between 

relevant and irrelevant features tends to zero as the number of measurements increase, 

which in turn requires the use of FSM to effectively build regression models. The sparse 

model simulated in this study is presented in eq. (22): 

   (22) 

where  is an  extended matrix of features containing an additional column 

  is a  column vector of regression 

coefficients and  is a  column vector of residuals, which follows an i.i.d. 

 distribution. Samples are drawn from a multivariate normal distribution with 

a low correlation coefficient between features  and the regression 

coefficients were divided into three levels of importance. The regression coefficients 

from the most important features were drawn from an uniform distribution, corresponding 

to one-third of the relevant features, ; the second level of importance also 

contains one-third of the features and was drawn from another uniform distribution with 

lower magnitudes, ; the remaining regression coefficients present even 

lower magnitudes, .    

 

Latent variable datasets are commonly found in industrial contexts where many 

correlated process variables are measured. Mass and energy conservation laws, control 

loops and operation practices prevent variables to change independently; therefore, 

although the number of measurable variables is large, their variability is dictated by only 
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a few latent variables, which are furthermore unobservable. The latent variable model 

was presented in eq. (20) and (21), and one can note that the variability of the features 

and the response variable is a consequence of variation in a low dimensional vector of 

scores (T) that correspond to the unobservable sources of variation. Nevertheless, many 

other features are measured that are neither related to the predictors nor to the response, 

and the first filtering stage of WiSe (see Section 2.1) is expected to remove them. The 

simulated latent variable model contains 4 latent variables , and the scores (T) are 

obtained from a multivariate normal distribution with zero mean and no correlation 

between features. The model loadings are obtained from a singular value decomposition 

of a random matrix with dimensions .  

 

The third simulated dataset represents the scenario where the relationship between 

features and response variables is non-linear. In CPI, one can note that sometimes outputs 

of interest are non-linearly related to the inputs (e.g. product concentration and 

temperature). The non-linear model considered here is a piece-wise model where the 

relationship between a feature and the response is dependent on the level of the feature. 

For each feature, three regions are considered, corresponding to a linear trend, a non-

linear quadratic function and a region where the response is independent of the feature. 

An example is presented in Figure 5.2, showing a typical relationship between a feature 

and the response variable. This relationship mimics a scenario where a feature is only 

important after a threshold is attained and can simulate, for instance, what happens when 

a controller is no longer able to maintain a controlled variable within its normal operating 

range, which in turn, starts influencing quality.  

    



Wide Spectrum Feature Selection 95 

 
Figure 5.2. Example of the non-linear relationship between one feature and response 

variable in the simulated dataset. 

 

The industrial dataset was obtained from a refinery distillation system at Dow Chemical. 

This dataset contains 12,000 samples that are measured hourly for 61 features, spanning 

the period from the year 2011 to 2013. The process has four operating modes, which 

depend on the production priority. Figure 5.3 presents the first two principal components 

obtained from PCA, and the different operating regimes are identified. The original 

analysis (Lu, Castillo et al. 2014) concerned the development of a soft sensor that would 

be able to provide hourly estimates of the response variable. However, in this work, the 

dataset is analyzed in the context of identifying relevant features, followed by regression 

model building. This analysis is a first assessment of the potential of the features to 

predict the response and serve as a baseline benchmark, that could be later improved (Lu, 

Castillo et al. 2014).    
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Figure 5.3. The first two principal components for the industrial dataset, highlighting the 

different operating regimes. 

 

For the purpose of comparing the performance of the different approaches tested in this 

work, a comparison framework was developed that take into consideration the problem 

specificities. The benchmarks correspond to the use of the second stage 

the fairest way of assessing the advantage of WiSe, as the use of the classical methods 

without any feature selection at all (i.e., without any of the two stages) would put them in 

a clearly unfavorable position. The comparison framework was designed so that it is able 

to generate results that can be analyzed at different levels of aggregation. At a finer scale, 

the performance of the FSM methods is assessed in the scope of each specific testing 

scenario (a scenario constitutes a case study where the data generating mechanisms are 

fixed and only sampling variability is present). If one focuses on one scenario only, the 

performance results are easy to analyze and the identification of the most suitable method 

is rather straightforward. However, as the number of scenarios increases, it becomes 

cumbersome to extract tendencies. On the other hand, considering only the mean 

performance would highly bias the conclusions. Therefore, in order to aggregate results in 

a meaningful fashion, a key performance indicator (KPI) was developed that allows the 

scenarios. The KPI is based on the pairwise statistical differences between methods tested 
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under the same circumstances. More specifically, all methods are pairwisely compared in 

each scenario with resort to a paired t-test. The paired t-test is used since performance is 

assessed in the same testing conditions and the number of comparisons made is limited, 

mitigating the risk of excessive false alarms. In each pairwise comparison, a method is 

under comparison, receiving a score of 2 points; when the performances of two methods 

are not statistically different, both receive 1 point; and a method whose performance is 

worse in a pairwise comparison does not receive any points. The KPI for each FSM is 

obtained by summing all points collected from all pairwise comparisons where it 

participates. A high value of KPI indicates a method presenting a superior performance 

compared to others, whereas a small KPI indicates a method whose performance is 

comparatively poor in most scenarios. One should note that the definition of the KPI 

requires a measure of performance and for feature selection application, two metrics are 

often considered: a first metric based on the ability of a FSM to identify relevant features 

correctly, and a second metric based on the ability to predict a response variable 

accurately. Both of these performance metrics are described next.  

 

The key performance indicator based on relevant features selected (KPIrf) measures the 

ability of a FSM to detect relevant features from a set of available predictors, i.e., to 

quantify the agreement between a priori knowledge regarding which features are 

important and those selected by a given FSM. In practice, and particularly in big data 

applications with many features, priori knowledge regarding the full set of relevant 

features is limited or incomplete. Therefore, KPIrf is most suitable for simulated datasets 

where the data generating mechanisms are completely known from the simulation 

settings. To compute KPIrf, one must first define the performance metric and the family 

of F  scores is commonly utilized:  

   (23) 



Wide Spectrum Feature Selection 98 

where TP is the number of true positives (relevant features that are selected), FN is the 

number of false negatives (relevant features that are not selected), FP is the number of 

false positives (irrelevant features that are selected), and  is a parameter that controls 

the relative penalization of FP and FN. As described in Section 4.2, the aim of the WiSe 

approach is to first remove noisy features while keeping all the important variables. 

Therefore, the penalization for incurring in FN should be higher than for FP. In this 

context, the  score achieves a good balance between FP and FN and it is the metric 

used for computing KPIrf. Note that KPIrf is utilized for the simulated datasets only since 

the  score requires access to knowledge about the relevant predictors, which are 

completely known in a simulation case study.     

 

 

In industrial datasets, relevant predictors are unknown a priori and it is the goal of a FSM 

to identify them. However, validating the features selected by a FSM becomes a complex 

task due to unavailability of the data generating mechanisms that could be used as ground 

truth. An alternative is to consider prediction performance as the metric to compare 

different methods, and assume that models with better prediction performance (i.e. low 

prediction errors) also contain features that are more relevant. Therefore, the key 

performance indicator based on prediction performance (KPIpp) is computed based on the 

root mean squared error in double cross-validation  metric: 

   (24) 

 Thus, besides the application of a FSM to remove noisy predictors, one must also use a 

regression model to predict the response variable based on available features. This 

constitutes the aforementioned two-stage approach defined in WiSe (see Section 4.2), 

where regression methods are utilized in the second stage of variable selection.  

assess the prediction error in double cross-validation, a procedure that is more robust than 

single cross-validation. Double cross-validation contains an inner cycle where models are 

built and an outer cycle where their performance is assessed. The dataset is split into a 
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training and validation sets. The training set is used for model building and to optimize 

hyper-parameters with 10-fold cross-validation. Once models are optimized, they are 

tested in the validation set, completing one iteration of double cross-validation. Since the 

results are dependent on the initial split into training and validation sets, the outer loop of 

double cross-validation consists in repeating this splitting step many times, resulting in a 

distribution of performance in the validation data and serve as the base metric for KPIpp. 

Further details of double cross-validation can be consulted in the literature (Rendall, 

Pereira et al. 2016) and will be better detailed in the next chapter (Section 6.2.3). For 

comparing the methods, 50 iterations of double cross-validation were conducted.   

In summary, the  is utilized as the metric to compute KPIpp following the 

scheme based on pairwise comparisons using the t-test. In order to explore a broader 

range of interactions between filters and regression methods, FSR, LASSO, and PLS are 

utilized as representative methods.   

 

This section presents the results obtained by applying the proposed filters to the simulated 

and industrial datasets. In the simulated datasets, the relevant features are known a priori 

and the KPIrf is adopted to measure the effectiveness of FSM. Afterwards, KPIpp is used 

to assess the benefits of selecting a good initial set of features for the regression task. In 

the industrial dataset, no a priori information is available regarding relevant features and 

only KPIpp is adopted to compare the prediction performance of the different filters.  

 

The performance of the filters, regarding their ability to correctly detect relevant features, 

is presented in Figure 5.4. Since KPIrf is stratified by dataset and sparsity level, its mean 

value  over all noise levels is presented in Figure 5.4. The variability for 

different noise levels is small enough that the mean value is a good representative of the 
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The analysis of Figure 5.4 suggests that the results are dependent on the simulated 

conditions. More specifically, filters such as Pearson and Spearman have very 

comparable performances and obtain the highest amount of points in most scenarios. This 

stems from the fact that the majority of the simulations correspond to scenarios where the 

relationship between features and response variable follow a linear pattern; therefore, 

linear filters are expected to perform better overall. On the other hand, SU presented the 

best performance in the non-linear dataset and is only surpassed by other filters in very 

low sparsity levels.  

Another interesting point that can be observed in Figure 5.4 is that combining filters is 

not the best alternative, even though this approach has the potential to detect both linear 

and non-linear relationships. The filter resulting from combining Pearson and Spearman 

filters obtains the best performance for the scenario with a non-linear dataset and very 

small sparsity level (1%). For other sparsity levels, filter combinations present 

performances similar to the remaining filters, although SU is the clear winner. 

Nevertheless, combining filters is a promising alternative that should be considered in 

practical scenarios because, in CPI, the type of relationship between features and 

response variable may not be known in full detail.  

 

 
Figure 5.4. Performance of the filters for all scenarios tested. 

 

The performance, as specified by KPIrf, is computed with the F2 score. This score 

improves when a filter outputs the correct class for each feature (true positives and true 

negatives) and is penalized by incorrect classification of the features (false positives and 

false negatives). The main objective of applying the filter prior to developing a regression 
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model is to reduce the number of features, facilitating the iterative process of model 

development. Nevertheless, the filtering stage should minimize the number of relevant 

variables that are removed (i.e. false negatives). In order to assess how well the tested 

filters are able to identify relevant features, Figure 5.5 presents the number of true 

positives in each tested scenario. Analyzing Figure 5.5, one can verify that most filters 

are able to pick relevant variables and that, in each scenario, there is at least one of the 

filters is able to select 18 of the 20 relevant features. For instance, the combination of 

linear and non-linear filters is able to pick relevant variables in most scenarios in a very 

stable fashion, suggesting synergies are obtained with such combinations. Nevertheless, 

from the perspective of selecting important features, Figure 5.5 shows that most filters 

have a rather good general performance and implies that the differences observed in 

Figure 5.4 are largely dictated by the ability of the filters to eliminate irrelevant variables. 

In other words, most filters are detecting the truly relevant features and the observed 

differences in performance are due to the number of false positives. As the minimizing 

false positives is a secondary goal of the filters (see Section 2), these results (Figure 5.4 

and Figure 5.5) demonstrate the validity of the WiSe approach in utilizing filters in order 

to remove irrelevant predictors in a regression setting. Any regression method developed 

over the resulting smaller set of features would be able to provide better predictions of the 

response variable, and better estimates of the model parameters. This is particularly 

useful for the latent variable dataset, where collinear features are not necessarily 

eliminated and can be used to estimate the underlying latent model. Since the 

performance of the filters is largely dependent on the number of false positives, Figure 

5.6 presents the number of false positive of each filter in all simulated scenarios. 

Analyzing Figure 5.6, one can note that the general trend is that combining filters result 

in higher false positives compared to single filters. Using the minimum p-value to assess 

feature relevance will generate more false positives, but as previously observed, selects 

the most important features in a consistent manner. Another important point worth 

highlighting is the benefit of using FDR, which result in a smaller number of false 

positives. For instance, using the traditional approach of specifying a constant threshold 

p-value of 0.05 would result in approximately 100 irrelevant features being selected for 

the low sparsity level (2000 total features).  The FDR decreases the false positives to 

about 45 features.  
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Figure 5.5. The number of relevant variables selected for all scenarios tested. 

 

 
Figure 5.6. The number of irrelevant features selected by each filter in each scenario. 

 

ility to detect important features, and their 

performance was a compromise between true positives and false positives. The second 

dimension of analysis concerns assessing whether the first stage of WiSe can improve 

prediction performance or not. Therefore, Figure 5.7 

terms of KPIpp, merging both stages of WiSe. Additionally, the case where no filters are 

utilized is presented for comparison. Figure 5.7 shows that the prior selection of 

potentially good features increases the prediction performance of all regression methods 

tested. Although the results are averaged over all dataset types and noise levels, there is a 
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clear tendency for obtaining improved prediction performance when utilizing filters a 

priori. It is worth noting that FSR and LASSO conduct feature selection automatically, 

however, they benefit from building models with a smaller (filtered) initial set of features. 

The advantage of using WiSe is that model building step is facilitated, especially in the 

low sparsity level where 2000 features are available. The results in Figure 5.7 show that 

the Pearson and the Spearman filters tend to be the ones leading to better performance in 

most of the simulated scenarios. Nevertheless, other filters present acceptable 

performances and are better alternatives than using no filters. For instance, the 

combination of SU and Pearson seem to be suitable for the 10% sparsity level and is the 

third best method in that scenario. Overall, the results of this simulated study show that 

there is no filter that is superior in all case studies. Instead, the best filter is case 

dependent and one should test at least some filters in order to be confident in the set of 

selected features. Pearson, Spearman and SU filters by themselves presented generally 

superior performance. Combining SU and Pearson is also recommended in order to have 

a broader coverage of FSM.   

 

 
Figure 5.7. Prediction performance of filters combined with regression methods. 
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The industrial dataset illustrates the advantages of WiSe in a real-world application. As 

the relevant features are not known a priori, we resort to prediction performance in order 

to assess the effectiveness of the filters. The implicit assumption is that filters leading to 

lower prediction errors are also selecting the correct features for model building. The 

KPIpp is presented in Figure 5.8 for all filters and, additionally, the benchmark situation 

where no feature selection is applied. Figure 5.8 shows that selecting the appropriate filter 

is critical in terms of obtaining good performance. For the industrial dataset, it is 

observed that SU provides the best solution for predicting the test set. The combinations 

of SU and Spearman, and SU and Pearson are also interesting and provide good results 

when a PLS model is employed. Interestingly, utilizing no filters is better than some 

filters when considering FSR and LASSO models. This can be justified by the small 

number of variables available, mitigating the importance of removing irrelevant features 

in the first stage. Another reason is that FSR and LASSO are able to remove variables 

automatically during model building, whereas the standard PLS model does not apply any 

scheme for feature selection. Therefore, by not applying any feature selection methods in 

the PLS model, a worse performance is obtained. Nevertheless, SU shows the best results 

and is the recommended approach for this dataset. Besides prediction performance, the 

percentage of removed features is also an interesting metric to assess the decrease in the 

dimension of the feature space. Thus, Figure 5.9 shows the percentage of features 

removed at the first WiSe stage. One should note that when no filters are applied, all 

features proceed to the regression stage. The main point is that the application of filters 

reduces the number of features: single filters are less conservative and remove around 

11% of the original features while combining filters remove only 3% of the features. 

Although these are small percentages compared to those obtained in the simulated study, 

it shows that even for smaller datasets, combining filters and wrapper methods is 

beneficial.  
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Figure 5.8. Test performance of different filters in an industrial dataset. Various 

interactions between filter and regression models are also considered.    

 

 
Figure 5.9. The percentage of features that each filter eliminates at the first filtering 

stage. 

 

The simulated datasets and the industrial case study represent datasets typically found in 

CPI. Filters are efficient screening methods, allowing the removal of noisy and irrelevant 

features, whereas the relevant ones are retained for further analysis. This constitutes the 

first step in the WiSe approach and aims to reduce the dimensionality of the feature 

space. In the second stage, WiSe focuses on building regression models where further 

feature selection may occur. The results obtained in this work show the advantage of 

using WiSe for variable selection in regression problems and suggest its potential to be 
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employed in big data scenarios where the number of features is large, but the relevant 

ones tend to be scarce. In these very sparse datasets, the application of WiSe should be 

even more advantageous, facilitating model development by identifying a set of features 

that tend to be adequate for model building. The results obtained showed that single 

filters (Pearson, Spearman, and SU), as well as the combination of SU and Pearson, 

constitute an initial good set of filters that should be tested in regression problems.    
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In the modern era of big data and Manufacturing 4.0, there is a growing interest in using 

advanced analytical platforms to implement predictive modeling methodologies that can 

take advantage of the wealthy of data available. Typically, practitioners have their own 

favorite methods to address the modeling task, as a result of their technical background, 

past experience or software available, among other possible reasons. However, the 

importance of this task in the future justifies and requires more informed decisions about 

the predictive solution to adopt. Therefore, a wider variety of methods should be 

considered and assessed before opting for one of them. In this context, this chapter 

presents the predictive analytics comparison framework (PAC). PAC contains the 

ingredients necessary to be employed for assessing and comparing the predictive 

performance of regression methods in a robust and efficient manner, and can provide 

insights into the characteristics of the collected dataset and the data-generating 

mechanisms. As Chapter III and IV were concerned with feature generation and Chapter 

V dealt with selecting informative features, this chapter emphasizes the predictive 

modeling stage where the selected features are employed for predicting quality 

parameters of interest. This chapter is divided into five sections that describe PAC in 

detail. The first section provides a general overview of PAC and its importance in modern 

industrial settings, where practitioners face the challenging task of selecting a suitable 

regression methodology for their application

data-driven model building and details its main components. The third section presents 

four case studies where PAC was applied, demonstrating its effectiveness and suitability. 

These results are further discussed in the fourth section, while the fifth section provides 

some final remarks regarding the PAC  in real-world applications. 

 

With the emergence of Manufacturing 4.0, advanced predictive analytics, and regression 

methods in particular (Draper and Smith 1998, Hastie, Tibshirani et al. 2001, Chatterjee 

and Hadi 2015), have been attracting considerable interest in many areas of science and 

in different application contexts, such as market analysis (Bollen, Mao et al. 2011, Chen, 

Chiang et al. 2012, Erevelles, Fukawa et al. 2016), manufacturing (Lee, Lapira et al. 
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2013, Li, Tao et al. 2015), food and beverage (Nørgaard, Saudland et al. 2000, Cozzolino, 

Kwiatkowski et al. 2008, Rendall, Pereira et al. 2016), pharmaceutical (Hoffman, Cho et 

al. 1999, , Shams, Ajorlou et al. 2015), petrochemical and 

chemical (Braga, dos Santos Junior et al. 2014, Pinheiro, Rendall et al. 2016), etc. This 

interest is largely motivated by the growing availability of data collected from fast and 

informative process sensors as well as large databases that facilitate their storage, 

integration and retrieval. In this context, research on predictive methods has been driven 

by the need to develop suitable techniques equipped with the necessary methodological, 

algorithmic and computational components that allow them to cope with the prevalent 

characteristics observed in the collected datasets, such as high-dimensionality (Johnstone 

and Titterington 2009, Martens 2015), collinearity (Naes and Mevik 2001, Chong and Jun 

2005), sparsity (Rasmussen and Bro 2012), non-linearity (Marini, Bucci et al. 2008), non-

stationarity (Aguado, Ferrer et al. 2006), missing data (Walczak and Massart 2001, 

Arteaga and Ferrer 2002), among others. This effort led to the proliferation of a large 

number of methods and variants, spread through the vast technical literature, making it 

very difficult for practitioners to decide which methods best suit their particular 

application scenarios. Prior knowledge could be useful for selecting a suitable set of 

regression methods to adopt, but most often the particularities of each case study and the 

lack of more detailed information make it impossible to rule out other methods from the 

pool of candidates. Therefore, the prevalent and most realistic, honest, and unbiased 

perspective one often is forced to accept is the lack of absolute certainty about the best 

class of predictive methodologies to use (not to speak, the best method to use). We call 

-

simultaneously, the lack of consistent information on how to derive the best predictive 

models from them. 

In this context, comparison studies are unavoidable and represent a reliable way to test 

and select regression approaches that are eligible for predicting the response variable of 

interest. However, these studies take considerable time to carry out and require resources 

of knowledge, software and time that many users do not have at their disposal or simply 

cannot afford. Even for the few cases where they were conducted, they still present 

limitations in the number of methods tested, usually less than 5 (Kim 2008), leaving some 

classes absent from analysis (Mahesh, Jayas et al. 2015, Sharif, Makowski et al. 2017), as 

well as in the way the comparison is done (namely in the accuracy and robustness of the 

approach and metrics used). Therefore, the predictive analytics comparison framework 

(PAC) is here developed for problem-specific methods screening. PAC is able to speed 

up the selection process, while securing a rigorous and robust assessment of the methods 
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under analysis and a proper use of the data available. This framework was developed and 

tested in different contexts (chemical industry, biofuels, drink and food, shipping 

industry, etc.), leading to consistent results that improved the base predictive solution 

adopted, with a very short implementation cycle. PAC was designed to help practitioners 

identifying the approaches with higher performance potential for their particular 

applications, using a structured, rigorous and informative methodology: the methodology 

is structured, because it is composed of four integrated components (see below); it is 

rigorous, because the comparison is conducted with a state of the art double cross-

validation method that generates information for conducting formal statistical hypothesis 

finally, it is informative, because PAC will not only provide a report with results about 

the hierarchy of methods that best suit the application under analysis, but also present 

which predictors are more relevant in each class of methods, contributing to enrich the 

knowledge about the problem under analysis, among other interpretational information on 

the structure of data. 

More specifically, PAC is composed by four components (Figure 6.1): i) analytics 

domain; ii) data domain; iii) comparison engine; iv) results report. The analytics block 

encompasses a rich variety of predictive approaches to be scanned in each application 

context under analysis. It establishes the analytics domain of assessment or comparison. 

The variety of methods considered was carefully considered, and are segmented in four 

classes: variable selection, penalized regression, latent variable, and tree-based ensemble 

methods. Each class of methods has different a priori assumptions regarding the data 

generating mechanism and their suitability depends on data characteristics such as the 

level of sparsity (in a sparse problem, only a few variables have predictive value), 

collinearity (existence of associations among regressors), modularity (presence of block-

wise structure in the regressors) and the underlying relationship between predictors and 

response variable (if it is linear or some non-linearity is present). 

The data domain regards the dataset that will be used to conduct the comparison study 

and that determines the inference-basis of the study. It should be carefully considered 

because the results will be critically dependent on what is inserted into this component. In 

predictive problems, attention should be paid to the existence of clustered data, multiple 

processes/ phenomena superimposed, transcription errors, outliers, signal to noise ratio in 

the response, etc.  this module is subject to the well-known GIGO principle of computer 

 

The comparison engine performs a robust assessment of the predictive capabilities of 

each representative in the analytics domain, using the data domain as the inference basis. 
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The computations are conducted in such a way as to potentiate an optimized generation of 

performance metrics in the results block. The performance of each regression method is 

assessed by the root mean squared error of double cross-validation . Pairwise 

comparisons are conducted with resort to formal statistical hypothesis testing, in order to 

incorporate the variability of results in the analysis. 

The last block of the PAC framework is the results report, where the final Key 

Performance Indicators (KPI) for the methods under analysis are provided, as well as 

additional information for interpreting the model, according to the nature of each class of 

make inferences regarding the structure of the dataset, namely its sparsity and collinearity 

levels based on the profile of important predictor variables and the relative performance 

of the different methods.  

 

 
Figure 6.1. The PAC framework and its modules. 

 

The major components of PAC and the sequence of their application as programmed in 

the computational code are summarized in Figure 6.1. Each one of these modules will be 

described in the following four subsections, where details are provided on the methods 
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used and how they operate. However, the rest of this subsection is dedicated to better 

frame the scope of PAC and its role in the analysis workflow for model screening and 

development.  

PAC was developed in the computation platform Matlab, with the purpose to establish a 

systematic and robust framework for model screening and development. It aims at 

increasing the efficiency of the general workflow for model development, as depicted in 

Figure 6.2. In this workflow, the user first defines the relevant dataset for analysis and 

initiates the process. Then, an exploratory data analysis stage should be conducted where 

practitioners become familiar with the main variability patterns in data, assess the 

distribution of the samples and identify issues to be clarified or handled case by case. 

Following the exploratory data analysis stage, pre-processing is an optional step that, for 

some applications, may have a significant impact on the quality of the results, such as in 

multivariate calibration or soft sensors using spectral data (Martens and Naes 1989). 

Therefore, this step should be carried out whenever it may bring added value to the 

specific application under consideration. The existence of missing observations can also 

be considered during the pre-processing stage, where one has to decide between using 

some missing data imputation method (Walczak and Massart 2001, Arteaga and Ferrer 

2002, Little and Rubin 2002) or simply discard samples containing missing observations. 

After pre-processing, PAC is applied to speed up model screening and development and 

to quickly extract insights about the class(es) of methods with better predictive 

capabilities, as well as further information on the relative importance of the predictors. 

New cycles of PAC can be iteratively conducted using the information collected from 

previous runs. For instance, the identification of irrelevant predictors and influential 

outliers may lead to a subsequent analysis in which these predictors and outliers are 

removed. When the user is satisfied with the results obtained, a fine tune post-

optimization of the selected method(s) can be conducted, if necessary. For example, one 

may consider in this stage a more exhaustive source of the hyper-parameters to use in the 

best model, or to develop combined or aggregated predictive models. Post-optimization 

of the best performing methods often improves prediction performance and this may be 

relevant for some applications, while for others the interpretation insights acquired with 

PAC are enough to conclude the model development process. 

In its current state, PAC is designed to handle problems where only one response variable 

is available. However, the proposed framework can also be applied to the case of multiple 

response variables by considering each response separately. This approach can be 

suboptimal w.r.t. to interpretation in the presence of correlated response variables, but not 

in terms of prediction accuracy; however, even in these contexts, PAC still provides 
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useful insights as shown in a case study for predicting physicochemical properties of oils 

from infrared spectra (Pinheiro, Rendall et al. 2016). The iterative cycle suggested in 

Figure 6.2 is guided by improvements in prediction accuracy, assessing, in a rigorous and 

unbiased fashion, the performance of each method. Therefore, model interpretability is 

not the primary criterion considered and is limited by the tools available for exploring 

might be more relevant than prediction performance and only methods that provide 

suitable tools for assessing predictors importance should be considered in this case. The 

interested reader is referred to the bibliography cited for each regression method in order 

to assess their potential in terms of model interpretability, as well as to the work of 

Kvalheim, Arneberg et al. (2014). 

 

 
Figure 6.2. The role of PAC in the scope of the general workflow for model screening 

and development. 
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This component comprises the set of regression approaches to be considered and 

compared w.r.t. the dataset inserted in the data domain component. The methods 

belonging to the analytics domain were carefully considered and result from a critical 

analysis of the technical literature. The literature on regression methods is extensive and 

has been steadily increasing with new methods being proposed to handle a wide range of 

dataset characteristics likely to be found in Manufacturing 4.0 applications. However, the 

number of methods selected to compose the Analytics Domain was enforced not to be 

very large, in order to keep the entire approach manageable by practitioners (this implies 

and justifies the absence of some regression approaches from this domain). Still, 13 

methods were selected a high number taking for reference other studies available in the 

literature  which are grouped into four classes according to their mutual methodological 

and algorithmic affinities: variable selection methods (Section 6.2.1.1), penalized 

regression methods (Section 6.2.1.2), latent variables methods (Section 6.2.1.3) and tree-

based ensembles (Section 6.2.1.4). Each class contains methods that share similar prior 

assumptions regarding the data generating mechanisms. Other methods (and perhaps 

classes) can always be added to PAC in the future if found to be particularly pertinent, 

but those considered at the present stage already provide a good coverage of the analytics 

space, allowing users to successfully address a wide variety of applications. 

Several of the regression methods considered provide different solutions to limitations 

presented by the ordinary least squares method (OLS) (Draper and Smith 1998, Martens 

and Mevik 2001, Naes and Mevik 2001, Reis and Saraiva 2004, Reis and Saraiva 2005, 

Montgomery, Peck et al. 2012). As they can also be traced back to OLS by changing one 

or more parts of its formulation, a very brief reference to this technique is warranted. Let 

us consider the base linear regression model in matrix format: 

   (25) 

where y is  column vector of response values,  is the  extended 

ommodate the intercept, 

b is the  column vector of regression coefficients and  is  column vector 

of residuals, which assumedly follow an i.i.d. homogeneous distribution, not necessarily 

Gaussian. The OLS regression coefficients are estimated by minimizing the sum of 

squared residuals, as described in eq. (26): 

   (26) 
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where  is the estimated vector of regression coefficients,  is the ith observed 

response value and  is the corresponding model prediction, given by  

For the OLS case, there is an analytical solution, and the estimation problem can be 

recasted into one of solving a linear algebraic system of equations: OLS
T TX X b = X Y . 

This classic methodology experiments strong limitations in high-dimensional collinear 

systems (where the inverse of  becomes highly unstable or impossible to obtain), 

and therefore will not be part of the analytics domain. Several of the methods presented in 

the following sections represent modifications of this base formulation to circumvent 

some of its limitations. 

 

Variable selection methods assume the existence of a sparse structure in the regressors 

and/or the presence of redundant information. In other words, some predictor variables 

contain irrelevant information regarding the response (sparse structure) or some level of 

mutual association (collinearity) that makes them dispensable when others are present. 

Therefore, in order to build a suitable regression model, only a subset of the original 

regressors should be considered, and all those variables that do not carry additional 

predictive value, discarded (either because they are irrelevant to predict the response, or 

they are associated to others already in the model, and therefore do not bring any 

additional predictive power to the model). The inclusion of irrelevant variables in the 

model would needlessly increase model complexity and the estimation variance of its 

parameters, without improving prediction ability.  

A wide variety of variable selection methods can be found in the literature. Each one of 

them proposes a different or modified scheme to select the relevant variables from the set 

of predictors. The PAC framework considers three different variable selection methods, 

as representatives of this class: forward stepwise regression (FSR) (Andersen and Bro 

2010, Montgomery and Runger 2010), OLS implemented with a genetic algorithm for 

variable selection (GA) (Leardi, Boggia et al. 1992, Leardi 2007) and best subsets (BS). 

FSR (Andersen and Bro 2010, Montgomery and Runger 2010) combines both forward 

and backward selection protocols. It starts with an empty set of variables in the model and 

sequentially includes or removes variables according to the p-value of a partial F-test, 

based on which either the statistical significance of variables to be included in the model, 
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or the non-significance of the variables to be excluded from the model is successively 

assessed. At each step of the algorithm, predictor variables are incrementally included in 

the model if their p-value for the partial F-test is smaller than a threshold (pin). For each 

inclusion, a backward step is performed: the predictor with the highest p-value is 

removed if its p-value is higher than a threshold (pout). The algorithm proceeds until no 

variables can be added in the inclusion step or removed in the backward step. The final 

model considers only the final set of selected predictors and their regression coefficients 

 are estimated by minimizing the sum of squared residuals, using OLS.  

Genetic algorithms (GA) (Leardi, Boggia et al. 1992, Leardi 2007) mimic evolution 

theory and were inspired by the principle of the survival of the fittest. The measure of 

fitness adopted in this work is the cross-validation error. Each individual in the 

population of potential solutions contains binary information indicating which predictors 

are being selected for the model. The algorithm starts with an initial population of nind 

individuals and in each generation, models with smaller cross-validation errors are 

retained while the worst models are discarded. The top individuals are combined in order 

to produce offsprings: genes from two individuals are randomly split and interchanged in 

order to generate two new individuals (this procedure is called single cross-over). 

Following the reproduction step, each gene may mutate with a very small probability. 

Thus, after the elimination of poorly performing individuals, offsprings generation and 

the mutation step, a new population is obtained. This population with individuals 

presenting higher fitting scores can again evolve, producing new individuals with even 

smaller cross-validation errors. The main motivation behind GA is to conduct a more 

uniform search over the space of predictors, since methods such as FSR and others based 

on gradient searches, are more prone to be trapped in local optima. The randomness 

associated with the cross-over and mutation steps enables GA to move beyond these local 

optima and potentially achieve better prediction performances. In this work, the top 

individual in the last generation is considered for model building and its coefficients 

 are obtained by minimizing the sum of squared residuals between the predictions 

(using the selected predictors) and the response (the OLS estimate). 

The last method considered in the class of variable selection methods is best subsets (BS). 

As the name implies, all subsets of predictor variables are explored and the one which 

minimizes a given criterion is selected. The criterion adopted is  P (Draper and 

Smith 1998). In practice, the number of all subsets (2p) is often too large to explore and a 

strategy must be devised in order to decrease the number of combinations to analyze. 

Thus, in this work we explore a modified version of BS: initially, FSR is applied and the 
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number of selected predictors  is saved. Then, all subsets with  variables and 

others close to it are explored (a 10% deviation from  was used so that the number of 

variables in the subsets varies between  to ).    

 

The class of penalized regression methods is characterized by the addition of a penalty 

term for the size of the estimated regression vector. This penalty introduces a bias in the 

estimated model but stabilizes the least squares estimates under collinearity conditions. 

Four methods from this class were included in PAC: ridge regression (RR) (Hoerl and 

Kennard 1970), least absolute shrinkage and selection operator (LASSO) (Tibshirani 

1996), elastic nets (EN) (Hastie, Tibshirani et al. 2001, Zou and Hastie 2005, Hesterberg, 

Choi et al. 2008), and support vector regression (SVR) (Smola and Schölkopf 2004, Canu 

2005, Ahmed, Atiya et al. 2010). EN is a general method and its coefficients are obtained 

by solving the optimization problem formulated in eq. (27):  

   (27) 

The hyper-parameter   weights the relative contributions of the different 

types of penalization to the magnitude of the coefficients, namely the L1-norm and the L2-

norm penalization, while controls the bias-variance tradeoff, by weighting the 

contribution of the classical least squares term with the penalization term for the 

regression coefficient size. A large  constraint the value of the regression coefficients to 

be small and the model will be more biased. On the other hand, when smaller values are 

used, the model is more flexible (less bias) but presents higher variance (for =0, the OLS 

solution is obtained). Suitable values of and  were chosen through 10-fold cross-

validation in order to control the bias-variance tradeoff and impose an adequate 

penalization, with the ultimate purpose of improving prediction accuracy. 

RR and LASSO are particular cases of the general EN methodology, when the hyper-

parameter is set to 0 or 1, respectively. RR  imposes a squared penalty (L2-

norm) on the magnitude of the regression coefficients, constraining all coefficients to be 

small. Thus, the solution obtained  is often characterized by having many small 

magnitude coefficients of different predictors, a situation that may be reasonable in 

collinear problems, but not in sparse scenarios. In contrast to RR, LASSO  
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imposes a L1-norm penalty on the regression coefficients, allowing some regression 

coefficients to be large, while others are small or effectively shrunk to zero. By 

combining both LASSO and RR penalties, EN can overcome some of the disadvantages 

of LASSO, namely its tendency to select only one variable from a group of highly 

collinear predictors. Thus, a grouping effect is often observed with EN regression 

coefficients: some groups of correlated predictors tend to be all actively contributing to 

predict the response, or they are removed altogether from the model. This may be suitable 

for problems with ordered predictors, such as in spectroscopic calibration problems 

(where it is known that only some spectral bands carry relevant information regarding the 

response and it may be desirable that all wavelengths in those bands are selected for 

predicting the response) or in multiblock data structures, where regressors can be 

organized in blocks according to some relevant criterion, such as belonging to the same 

unit or stage in the process or linked to the same function in the system.    

The last penalized regression method included in the comparison framework is SVR 

(Smola and Schölkopf 2004, Canu 2005, Ahmed, Atiya et al. 2010). SVR attempts to 

minimize the squared magnitudes of regression coefficients in order to decrease the 

variance of the model. If only this penalty term was considered, then the solution would 

be trivial and no predictors would be selected. Thus, additional constrains are imposed, 

namely that the prediction errors are below a given threshold ( ). The optimization 

formulation considered in SVR is given by eq. (28): 

   (28) 

The first term in eq. (28) corresponds to a L2-norm penalty on the magnitude of the 

coefficients and the second term corresponds to the -insensitive loss function 

. The support vectors correspond to samples that have errors 

above the threshold and their number is a measure of model complexity. The threshold ( ) 

controls the bias-variance tradeoff and was chosen by 10-fold cross-validation (setting 

 usually works quite well (Ahmed, Atiya et al. 2010)). 

 

The class of latent variable methods (Burnham, Viveros et al. 1996, Burnham, 

MacGregor et al. 1999) assume that the data generating mechanism follows a latent 

variable model (Burnham, MacGregor et al. 1999, Burnham, MacGregor et al. 2001), 

where only a few underlying and unmeasured variables are driving the observed 
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variability in both the predictors (X) and response (y) spaces. The latent variables are 

estimated using linear combinations of the original variables. This is often a suitable 

strategy to handle highly collinear problems since collinear predictors can be in this way 

simultaneously considered to estimate the response. The latent variable model consists of 

eq. (29) and eq. (30): 

   (29) 

   (30) 

where T is a  (often ) orthogonal matrix of scores that represents 

unmeasured and independent directions of variability, P is a p a  loading matrix that, 

combined with T, provides the structured variability in the predictor set (X). c is a  

vector relating the scores and the response variable. E and f are residual matrices with 

suitable dimensions. 

Two approaches were contemplated in PAC for this class of methods: principal 

component regression (PCR) (Wold, Esbensen et al. 1987, Jolliffe 2002, Jackson 2005) 

and partial least squares (PLS) (Wold, Ruhe et al. 1984, Geladi and Kowalski 1986, 

Wold, Sjöström et al. 2001). PCR (Wold, Esbensen et al. 1987, Jolliffe 2002, Jackson 

2005) is implemented by first applying principal component analysis (PCA) to the 

predictor space X (i.e., considering only eq. (29)). PCA extracts the eigenvectors of the 

magnitude of their associated 

eigenvalues. In particular, the eigenvector associated with the highest eigenvalue 

subsequent smaller eigenvalues correspond to directions explaining decreasing 

percentages of variability in the X-space. Thus, one can ignore eigenvectors whose 

eigenvalues are close to zero since they represent directions where no significant 

variability is observed. The principal components (T in eq. (29)) are orthogonal and their 

covariance matrix is easily inverted. PCR consist of applying OLS in order to relate the 

scores and the response variable. In PAC, the number of principal components is selected 

by 10-fold cross-validation. 

The other method from the latent variable class is PLS regression (Wold, Ruhe et al. 

1984, Geladi and Kowalski 1986, Wold, Sjöström et al. 2001). PLS was first developed 

by Herman Wold around 1975 and extracts latent variables that most explain the 

observed variability in the response, while providing good coverage of the input space. 

This is one of the main differences from PCR, where the latent variables are those that 

best explain the variance in the predictor set. The PLS model is presented in eq. (29) and 

eq. (30), and in PAC the number of latent variables is selected by 10-fold cross-

validation. An interesting property of PLS is that it subsumes OLS as a limiting case, 
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namely when all latent variables are included in the PLS model. This property also holds 

for PCR. 

 

The last class of methods included in the comparison framework regards ensembles of 

regression trees (Breiman, Friedman et al. 1984, Dietterich 2000, Hastie, Tibshirani et al. 

2001, Strobl, Malley et al. 2009). Regression trees approximate the relationship between 

predictors and response variable by a piece-wise constant function. The algorithm starts 

by identifying a split point (v) and split variables (j) that most decrease the sum of 

squared errors between the predicted and observed response, obtaining two regions: 

 and . The predicted response in each 

region is the mean value of the samples belonging to the region. Each region is further 

subdivided according to the decrease of the sum of squared residuals, until a stopping 

criterion is met (in this case until a minimum of 5 observations in each region are 

obtained). Trees tend to present high variance, and small changes in the training set often 

result in new trees with different split points and different split variables. Furthermore, 

since each region only contains a small number of samples, a rather poor estimation of 

the mean value is likely to be obtained. In order to improve prediction performance and 

decrease variance, trees are combined in ensembles. Three ensemble methods were 

incorporated in PAC: bagging of regression trees (BaRT), random forests (RF), and 

boosting of regression trees (BoRT). BaRT and RF are very similar, as both of them use 

bootstrap to generate new datasets, based on which different regression trees are built. 

The prediction for a given sample is obtained by averaging the predictions from all trees 

in the ensemble. The main difference between the two methods is that each tree in RF 

only considers a randomly selected subset of predictors, whereas in BaRT all predictors 

are used for all trees. The advantage obtained with RF is that the trees in the ensemble are 

less correlated, which in turn tends to increase prediction performance.  

The predictions of BaRT are computed using eq. (31). 

   (31) 

where TBaRT is the number of trees in the ensemble and  are the predictions from 

the tth regression tree. A similar equation describes the prediction made by RF with TRF 

trees in the ensemble. 
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The last method included in the comparison framework is boosting of regression trees

(BoRT) (Freund and Schapire 1996, Freund, Schapire et al. 1999, Elith, Leathwick et al. 

2008, Cao, Xu et al. 2010). Boosting is implemented by fitting a regression tree to a 

dataset, followed by the computation of prediction errors. Subsequent trees in the 

ensemble use the prediction errors from the previous tree as the response variable so that 

poorly modeled samples are given high weights. The reasoning for this is to increase 

model fitting, for which samples with high residuals should be better modeled. However, 

each model only captures a small fraction of the relationship between X and y, mitigating 

the risk of overfitting. In more detail, BoRT works by fitting a regression tree between 

the predictors (X) and prediction residuals, as described in eq. (32): 

   (32) 

where  is the residual vector for the tth regression tree ,  are the 

predictions from the tth regression tree which is constructed using the tth residuals and 

predictor variables, and u is a shrinkage parameter that prevents overfitting . 

The hyper-parameter u is related to the number of trees (lower u values will require more 

regression trees and vice-versa) (Elith, Leathwick et al. 2008), so a low value for the 

shrinkage parameter is specified (u=0.02) and the number of trees is chosen by 10-fold 

cross-validation. The final BoRT model is presented in eq. (33).  

   (33) 

 

This component of PAC regards the specification of the dataset that will be used to make 

the structured comparison among the methods belonging to the Analytics Domain. It will 

provide the source of factual evidence for the relative performance rankings, and the 

inference basis that supports the analysis. Therefore, the findings reported by PAC will be 

circumscribed to the situations reflected in this dataset, such as operational conditions 

covered, predictors used and how they were varied (or not), etc. It is this component that 

makes PAC a problem-specific framework  the other three components remain mostly 

unaltered across applications.  
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When dealing with some particular problems, pre-processing may be a component that 

impacts the quality of the results and therefore should be addressed properly (e.g. in 

spectroscopic multivariate calibration). In PAC, predictor variables are scaled to have 

zero mean and unit variance (also known as auto-scaling) by default. This setting may be 

easily changed for some classes of methods. Further pre-processing should be considered 

in the optional stage presented in Figure 6.2. 

The application of PAC also assumes that outlying observations have been removed in a 

first stage of exploratory data analysis, which is the typical starting point of every data-

driven analysis. Prediction outliers can also be identified after the application of PAC, 

since the results report would indicate that particular samples have high residuals. 

Moreover, PAC assumes that a solution to handle missing data has already been applied 

during the pre-processing stage, either by removing observations containing missing data 

or imputing their values by suitable methods (Walczak and Massart 2001, Arteaga and 

Ferrer 2002, Little and Rubin 2002).  

 

 

This component operates over the methods defined in the Analytics Domain, using the 

dataset inserted in the Data Domain. The comparison engine combines a double cross-

statistical hypothesis testing in order to assess their relative performance. The 

performance of each regression method is characterized by the root mean squared error of 

double cross-validation . All methods are trained and tuned using the same 

training sets and tested using the same unseen validation sets across the implementation 

of the cross-validation runs. Therefore, pairwise comparisons can be made through 

statistical hypothesis tests, for establishing their relative performance in a robust and 

accurate way. The complete procedure is described in detail in the following paragraphs. 

Multiple cross-validation runs are used to assess the prediction performance of each 

regression method, which is evaluated through , where d is the run index and m 

-validation starts by randomly partitioning 

the dataset into a training set and a validation set (usually, 20% of the samples are 

reserved for the validation set), followed by model training using the training set. During 
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model training, 10-fold cross-validation is used to select suitable hyper-parameters for 

each regression method (this is the inner cycle of the double cross-validation scheme) and 

a regression model is built with the training data and the selected hyper-parameter(s) (see 

Table 6.1 for the ranges and strategies considered in the optimization of the hyper-

parameters in the inner cycle). The estimated model is then used to predict the samples in 

the validation set and the prediction errors, which are finally used to compute  

for the current run. Then, in the next iteration of double cross-validation (in the outer 

cycle of double cross-validation), this procedure is repeated, i.e., the dataset is again 

randomly partitioned in a training set for model building/estimation and a validation set 

to assess the performance of the trained models. Typically, 50 iterations of the outer cycle 

of the double cross-validation scheme are conducted, leading to 50 values of  

for each method (m). 

The distribution of  characterizes the performance of each regression method. 

Thus, statistical hypothesis testing can be applied to assess, at a given significance level 

(5% in this work), whether the performance achieved with one regression method is 

smaller, equal or higher, when compared to another regression method. In particular, the 

paired t-test is used, since in each run of double cross-validation, all regression methods 

in the comparison framework make use of the same training and validation samples. 
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Table 6.1. The range of values for hyper-parameters and the strategies used to select 

them during model training. 

Method 
Hyper-

parameter (s) 
Possible value(s) Selection strategy 

MLR - - - 

FSR 
penter          

  prem 

0.05                                           

0.1 
- 

GA 
nind                   

ngen 

30                                       

100 
10-fold cross-validation 

BS pBS [0.9×pFSR, 1.1×pFSR] Mallow's Cp 

RR 
 

0                                             

0.02; 0.02; 0.2; 2; 20 
10-fold cross-validation 

LASSO 
 

1                                     

0.001; 0.01; 0.1; 1; 10         
10-fold cross-validation 

EN 
 

0.001; 0.01; 0.1; 1             

0.02; 0.02; 0.2; 2; 20 
10-fold cross-validation 

SVR  
0.001; 0.005; 0.01; 0.05; 

0.1 
10-fold cross-validation 

PCR aPCR [1:min(20, n, p)] 10-fold cross-validation 

PLS aPLS [1:min(20, n, p)] 10-fold cross-validation 

BRT TBRT 50; 100; 500; 1000; 5000 10-fold cross-validation 

RF TRF 50; 100; 500; 1000; 5000 10-fold cross-validation 

BT TBT 50; 100; 500; 1000; 5000 10-fold cross-validation 

 

 

The last component of the PAC framework is dedicated to report the outcomes of the 

structured comparison analysis to the user. The results report was designed taking into 

consideration what type of information users would be mostly looking for when using 

PAC. Based on this analysis, a hierarchy of priorities was established. A first concern is 

to have access to the ranking of relative performances of the methods contemplated in the 
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analytical domain, in the context of the dataset provided in the data domain. At a second 

level in the hierarchy of priorities, users become interested about some interpretational 

dimensions of the predictive models, namely which predictors are more important and 

which can be discarded, as well as the nature of the relationships found.  

The ranking of methods according to their relative performance (high priority 

information) was established as follows. As the goal is to have a global perspective of the 

methods that perform better when comparing to all others, a robust procedure was 

devised that delivers exactly that, while taking into account the natural variability of 

predictions arising from models built from different training datasets. The procedure 

starts by considering the outcomes of the paired t-tests for each pair of methods under 

analysis and attribute points according to the following scoring system: if the predictive 

statistically significant way (smaller 

as a statistically significant poorer performance than 

 

performances between the two methods is not statistically significant, each method 

receives 1 point. Summing up all scores obtained by each method in all pairwise 

comparisons, allow the user to access the relative capabilities of each method in the scope 

of all those considered in the analytics domain. Therefore, the total score for each 

regression approach will be the key performance indicator (KPI) used to establish the 

ranking of relative performance of all the methods under comparison. This KPI has the 

advantage of stemming from formal hypothesis tests that take into account the natural 

variability of results in order to access the relative performance of each pair of methods, 

bringing robustness and accuracy to the analysis, together with the ability to combine all 

pairwise outcomes in a global index that is directly linked to the priority goal of the user. 

A high value for the KPI indicates that the associated regression method consistently 

performed better than the other approaches, i.e., obtained statistically smaller . 

Furthermore, since the analytics domain encompass 13 regression methods, the KPI 

varies between zero (a method with statistically higher  compared to all other 

methods) and 24 (when a method presents statistically lower  compared to the 

other 12 regression methods). Analyzing the KPI for all methods is often the preferred 

choice since it allows for an easy identification of the best method(s). However, a more 

detailed analysis can be conducted by decomposing the KPI into its contributions, in 

terms of winning and tied scores. This analysis would point out, for instance, whether a 
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several wins or if ties dominated the KPI 

value, in which case other methods present also comparable performances.  

The proposed methodology was tested and found to be easily interpretable by users, 

leading to consistent results and pointing out the regression methods leading to improved 

prediction ability. Even though the pairwise analysis involve multiple simultaneous 

hypothesis tests, this will not bias the results due to the inflated Type I error, given the 

higher number of methods involved which make it unlikely that any potential false 

positives (i.e., the detection of a difference when in fact there is none) occur for the same 

method, always in the same favorable (our unfavorable) direction. Rather, the 

accumulated experience on using this approach (Reis and Saraiva 2004, Reis and Saraiva 

2005, Reis, Rendall et al. 2015) reveals that it is both sensitive (because it represents a 

blocked comparison test and is based on a sample of considerable size, both factors 

leading to higher levels of statistical power) and robust (the size of the sample guarantees 

distributional convergence and the number of methods involved eliminates any 

significant bias towards a given method). Nevertheless, one must be aware that false 

alarms can occur and influence the results, particularly when comparing methods with 

similar KPI values. However, the multiple splits considered in the double cross-validation 

scheme make this phenomenon dispersed across all regressors and models, which in turn 

leads to an unbiased methodology but that is affected with some additional variance. 

Therefore, the expected effect is a reduction in the sensitivity to detect the best methods 

(because of the increasing dispersion of results) when their performance is not so superior 

regarding other methods. In practical terms, this implies that more ties will tend to occur 

among methods with similar performances, and only those methods performing 

significantly better will be pointed out by PAC. This increases the confidence in the 

selected methods put forward by this framework. Alternative procedures were also 

considered, such as multiple testing approaches and 2-way ANOVA. However, after a 

proper consideration of the pros and cons of these approaches, the proposed methodology 

was adopted. The corrections of the individual significance levels for each hypothesis test 

required to maintain the overall Type I error rate constant in multiple testing approaches, 

are overly conservative, making the comparison methodology much less sensitive even 

for rather visible differences in performance of the methods. On the other hand, the 2-way 

cross-validation as main factors, discarding their mutual interactions. However, this 

alternative would still require pairwise comparisons to assess the relative performance of 

the methods, which could be done through the least significant differences (LSD) method. 

Nevertheless, the aforementioned KPI was the preferred choice since it is simple, 
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informative and its robustness was tested in a large number of case studies (namely the 

simulated scenarios where an oracle of the true model is known and consistent results 

were obtained). 

The results report also presents additional information for model interpretation and to 

analyze the nature of the relationships found. These outcomes depend on the methods 

from which information is to be retrieved, which are usually the ones presenting higher 

l examples of this type of interpretational information will be provided in 

the Discussion subsection.  

 

The application of PAC to different scenarios will be illustrated in this subsection. Two 

simulated and two real world situations are considered. The simulated scenarios allow for 

-controlled circumstances, where the results 

can be interpreted on the grounds of known data generating mechanisms. They serve the 

purpose of testing the framework in situations where there are founded expectations on 

which methods should perform well, and can be used to analyze the consistency of PAC 

outcomes with respect to the known ground truth. The real datasets, on the other hand, 

bring out an interesting aspect that further corroborates the relevancy of using PAC: even 

when addressing the same prediction problem, the best class of approaches in the 

analytics domain is dependent on the type of data used in the data domain. Situations like 

this can only be properly resolved using a problem-specific comparison approach, such as 

PAC. 

 

 

Simulated datasets are a convenient alternative to test the performance of regression 

methods under well-controlled scenarios where the true model structure, the regression 
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coefficients and the values of the response variable are known (with and without additive 

and homogeneous Gaussian noise). Thus, one can observe if the theoretical assumptions 

of different regression methods indeed work under such idealized scenarios and how their 

performance is affected by deviations from those scenarios. In order to cover two 

common situations found in practice, two types of processes were simulated: a sparse 

process and a latent variable process. The sparse process covers the case where only some 

regressors contain relevant predictive information regarding the response, while 

presenting low levels of mutual correlation (collinearity). Datasets with this type of 

structure are very common in big data applications in Manufacturing 4.0, where only 

some predictors among the large number of variables collected are really relevant for 

evant variables tends to decrease as the size of the dataset increases 

and the process variation sources remain the same. In other words, the additional 

measurements obtained in big data applications are often not related to the response 

variable and only increase the size of the predictive problem. Effect sparsity is also very 

effect hierarchy and heredity) (Box, Hunter et al. 2005, Montgomery 2009, Wu and 

Hamada 2009) (the goal of DOE is devise an efficient experimental plan to identify the 

relevant predictors, or effects, among a set of linear called main effects , interactions 

and quadratic terms, and to build the predictive model for the response under analysis). 

This model is similar to the one considered applications of WiSe (see also Section 5.5.1); 

however, a smaller dimensionality of the dataset is simulated here to represent the outputs 

from the filtering stages of WiSe. The sparse model was presented in eq. (25). The 

variance of the error term was chosen so that the signal to noise ratio (SNR) is 20. In this 

case study, 100 samples were simulated and a total of 20 predictors (  and 

) were considered, where only 10 randomly selected predictors effectively 

contribute to the response . The remaining predictors do not influence the 

response and their regression coefficients are effectively zero. The 10 predictors that 

contribute to the response follow a multivariate normal distribution with unit variance, 

and present a weak mutual correlation between themselves . The regression 

coefficients for these 10 coefficients were drawn from a uniform distribution in the 

interval: .  



Predictive Analytics Comparison Framework 130 

 

The second simulated scenario was obtained from a latent variable model and represents 

another typical situation found in practice, such as in spectroscopic applications or in 

large scale industrial processes operating under normal conditions (Burnham, Viveros et 

al. 1996, Burnham, MacGregor et al. 1999). In fact, data passively collected from 

industrial processes are typically high-dimensional and with a latent structure, as the 

variability of observable variables is driven by only a few underlying and unobservable 

sources of variation. Thus, this simulated dataset also presents a high degree of 

collinearity due to some underlying and unmeasured sources of variation. The latent 

variable model was presented in eq. (29) and eq. (30). In this case study, 500 samples and 

100 predictor variables (  and ) were simulated and the model contains 4 

independent sources of variability .  

 

 

This first real world dataset comes from the food & drink industry, containing chemical 

information collected during the aging process of one of the finest Portuguese fortified 

wines, the Madeira Wine. Samples with ages ranging from 1-20 years old were analyzed 

in a Waters Alliance liquid chromatograph (Milford, MA, USA) in order to quantify 23 

phenolic compounds and the major furanic compounds for 52 wine samples (  and 

). Further details regarding the experimental apparatus can be found in the 

literature (Rendall, Pereira et al. 2016). The aim of this analysis is not only regarding 

prediction performance (of the aging time), but also the identification of important 

compounds that are related to the aging process and can act as markers of age and quality 

for this wine, which in turn help producers understanding better the complex chemistry of 

wine ageing and its dynamics. 

 

 

This second real world dataset addresses the same prediction problem as the previous 

one, but instead of chemical information, one uses (untargeted) spectral information for 

predicting the aging time of Madeira wine. UV-Vis spectra were collected for this 
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purpose. As UV-Vis is a fast and affordable solution to collect data from wine samples, it 

would be interesting to evaluate if it is able to lead to models with a good predictive 

performance for the wine age. Samples were analyzed in a Perkin-Elmer Lambda 2 

spectrophotometer and their UV-Vis absorbance spectra were recorded (Pereira, Reis et 

al. 2010, Pereira, Reis et al. 2011). This dataset contains 52 samples and 109 wavelengths 

(  and ) from 245 to 785 nm, at 5 nm intervals. See Ref. (Rendall, Pereira 

et al. 2016) for further details. 

 

This section presents the KPIs obtained with the application of PAC to each scenario 

described in the previous subsection. Since some of the regression methods in the 

comparison study are sensitive to the variance of the different predictor variables, 

variable scaling was employed. Auto-scaling was applied to the simulated and HPLC 

datasets by first removing the sample mean of each predictor variable and then diving by 

the sample standard deviation. On the other hand, as auto-scaling is in general not a good 

solution for pre-processing spectral data, the UV-Vis dataset was scaled using the 

standard normal variate technique (SNV) followed by mean centering. Variable scaling 

was applied consistently so that the scaling parameters obtained during model training 

were used to scale the validation set, in each run of double cross-validation.   

 

The results for the dataset generated with a sparse model are presented in Figure 6.3, 

where the KPIs obtained by the different regression methods are shown. Analyzing 

Figure 6.3, one can note that regression methods whose structure and prior assumptions 

best match the data generating mechanism simulated, tend to perform better. Indeed, the 

best methods are from the class of variable selection and penalized regression, both of 

them having intrinsic capabilities for dealing with sparse and uncorrelated predictive 

scenarios. Nevertheless, latent variable methods still present rather good performances, 

whereas tree-based methods show the worse performance because their piece-wise 

constant approximation fails to describe well the linear and continuous behavior of the 

process. Further discussion of this dataset will be presented in Section 5.4, where the 
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most important variables will be identified and compared to those used to generate the 

data.  

 

 
Figure 6.3. KPI obtained by each regression method when applied to a sparse dataset. 

 

The dataset obtained from the latent variable model also leads to good results for 

regression methods matching their prior assumptions. Figure 6.4 presents the KPI for 

each regression method and it can be observed that methods from the latent variable class 

perform quite well, namely PCR and PLS. However, rather interestingly, other methods 

also perform very well. In particular, the class of penalized regression methods can also 

cope with the collinearity features present in this dataset. This may justify the use of this 

type of methods more frequently in chemometric applications, besides those from the 

latent variable class. Again, the tree-based ensemble class does not present good 

performances, which can be attributed to the poor matching to the data generating 

response by a piece-wise constant function. However, the response is linearly related to 

the predictors. Furthermore, some predictors may be also ignored in tree-based models, if 

they are highly correlated. Although RF minimizes this drawback by only using a random 

subset of predictors, the best approach would be to combine the correlated predictors in 

order to estimate their common source of variability. As can be noted in Figure 6.4, BS 

was not included in the analytics domain for this case study because the number of 

predictor variables is rather large, which prevents this method to be applicable given the 

combinatorial explosion of the number of variable subsets to consider in these conditions. 
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Figure 6.4. KPI obtained by each regression method when applied to a dataset generated 

using a latent variable model. 

 

In the first real world dataset, HPLC is used to quantify phenolic and furanic compounds 

in wine samples with different aging times. These measurements are then used by PAC, 

as predictors of wine age. Figure 6.5 presents the KPI obtained for each regression 

method. It can be seen that BoRT has a significant advantage over the other regression 

methods and all methods from the ensemble class show good performances. This fact 

suggests the presence of a non-linear relationship between regressors and wine age, 

which can be properly approximated by the piece-wise nature of regression trees. The 

non-linear association is plausible since the concentration of the different wine 

constituents is expected to vary in a complex way, presenting rather distinct patterns 

related to the dynamic of wine aging (e.g. appearance of new compounds). Thus, one 

would not expect their concentration to increase/decrease indefinitely as assumed by most 

linear models. The  obtained with BoRT is 0.54 years, which is a rather low 

(and therefore good) value when considering the range of variation of the response (1-20 

years). Regarding other classes of regression methods, both penalized regression methods 

and latent variable methods present interesting predictive performances.   
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Figure 6.5. KPI obtained by each regression method when predicting wine age based on 

HPLC data. 

 

This second case study consists of using UV-Vis spectra as regressors (instead of 

concentrations of phenolic and furanic components obtained from HPLC measurements) 

and again wine aging time as response variable. Figure 6.6 presents the KPIs obtained by 

each regression method. One can observe that penalized regression methods now achieve 

the best performances, with LASSO and EN as the top ranking methods. The  

obtained with LASSO is 2.1 years, which is four times higher than the error obtained in 

the HPLC dataset with BoRT, suggesting that the chemical information obtained with 

HPLC is more reliable for wine age prediction when compared to UV-Vis spectra. 

Methods from the tree-based ensemble class also presented good performances, 

particularly RF and BoRT, but not as good as in the previous dataset. In spite of the fact 

that non-linearity is still present, the highly collinear structure imposed by the UV-Vis 

spectra tends to dominate and methods able to cope with it, perform better. However, as 

these methods are intrinsically linear, the performance achieved is also lower, which can 

be further aggravated by the fact that some chemical information may not show up in the 

UV-Vis range of the spectrum. The latent variable class, often the preferred class for this 

type of datasets, did not obtain the best KPI.  
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Figure 6.6. KPI obtained by each regression method when predicting wine age based on 

UV-vis spectra. 

 

In summary, the analysis of these four case studies confirms that PAC leads to consistent 

results (see simulated case studies) and reveals non-obvious and unanticipated solutions 

(see real datasets). The inner workflow of PAC makes the analysis very efficient (the 

development time is short) and secures the quality of the outcomes (with the implemented 

comparison engine). The next section will show that PAC can also contribute to increase 

the knowledge of the data and processes under analysis.  

 

In this section, the results previously presented will be discussed in more detail. Further 

interpretational information will be provided for the regression models with higher KPIs, 

including the identification of the most important predictor variables. 
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The KPIs for the dataset generated with a sparse model showed that better performances 

are obtained when the assumptions of the regression methods find good adherence to the 

dataset analyzed. In particular, FSR, a method from the variable selection class, obtained 

the best results since it correctly assumes that some variables should be discarded because 

they do not carry any predicting information regarding the response. This can be 

confirmed by observing the magnitudes of the true underlying OLS model (b in eq. (25)) 

and the number of times each predictor variable was included in the final FSR model 

(each predictor can be included at most 50 times, the number of double cross-validation 

iterations). Figure 6.7.a shows the results obtained during the FSR model training, where 

one can note that the most important predictors were always selected in the 50 iterations 

of double cross-validation. In fact, only two relevant predictors were not selected in some 

iterations (variable index: 3 and 10) due to the low magnitude of their regression 

coefficients. Nevertheless, FSR successfully selected the important predictors and the 

number of false positives is negligible. When plotting the predicted and observed 

response values over the 50 iterations of double cross-validation (Figure 6.7.b), the 

predictions fall close to the identity line and the errors are rather small. The median 

coefficient of determination over all iterations of double cross-validation is 0.92, which 

reinforces the fact that the models obtained accurately predict the response. Furthermore, 

the analysis of the other top ranked methods (BS, LASSO, and EN) shows similar 

structure in terms of predictor importance and they can effectively distinguish important 

and irrelevant predictors, presenting similar values of  (these results are not 

shown here for simplicity). Thus, the analysis of important predictors across different 

regression methods suggests a sparse structure where only 10 predictors are important, 

which is in accordance with the data-generating mechanisms. These results demonstrate 

the consistency of PAC in identifying the correct class of techniques that are more 

adequate to develop the predictive models.  
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(a) (b) 

Figure 6.7. Results obtained when PAC was applied to data from the sparse process: (a) 

number of times each predictor variable was selected (bar) by FSR and the true values of 

the regression coefficients (connected dots); and (b) the predicted vs. observed response 

values in the validation sets from the 50 iterations of double cross-validation.  

 

The performance of the regression methods in the latent variable dataset also shows the 

prior assumptions: PLS and PCR were among the top methods. The class of penalized 

regression methods was also among the top methods and EN had the highest KPI value, 

showing that it is also a suitable method for this problem. In order to identify important 

predictor variables, Figure 6.8.a presents the regression coefficients for the PLS models 

obtained during all 50 iterations of double cross-validation and Figure 6.8.b shows the 

EN regression coefficients. Analyzing Figure 6.8, one can notice that the regression 

coefficients obtained from PLS had little variability over the 50 iterations of double 

cross-validation, i.e., the effects of different splits were negligible on the value of the 

regression coefficients. On the other hand, EN regression coefficients presented higher 

variability due to the strong correlation between predictor variables: in some iterations, a 

particular set of predictor variables has high importance while in other iterations, its 

importance decreases in favor of other variables that are correlated with them. Thus, for 

this dataset, PLS is actually the most suitable method due to the consistency of the 

estimated regression coefficients, although EN had the highest KPI. Further analysis of 

the KPI results showed that the difference in the distribution of  between the 
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PLS and EN is not statistically significant and the additional KPI point obtained by EN is 

due to its pairwise comparison with LASSO. More precisely, the difference between EN 

and LASSO is statistically significant (2 points are attributed to EN, see Section 2.4) 

whereas the difference between PLS and LASSO is not (only 1 point is attributed to 

PLS).   

 

  
(a) (b) 

Figure 6.8. Results obtained during model training for the Latent Variable simulated 

scenario: (a) PLS regression coefficients and (b) EN regression coefficients.  

 

When considering the first real world dataset, the results suggested a non-linear 

association between regressors (phenolic and furanic compounds) and wine age. As 

previously stated, the  obtained with BoRT is small and further inspection 

revealed that the median coefficient of determination over all iterations of double cross-

validation was 0.97, confirming the suitability of the combination of BoRT and HPLC to 

predict wine age. To assess the influence of the different predictors, Figure 6.9.a presents 

 which accounts for the decrease in mean 

squared error due to splits on every predictor and normalized by the number of branch 

nodes (h

Variable #6 (an unknown compound) presents higher values of importance while variable 

#10 (epigallocatechin) is the second most important variable. To illustrate the non-linear 

relationship between epigallocatechin and wine age, Figure 6.9.b presents the predicted 

wine age when the concentration of epigallocatechin varies from its smallest to its largest 
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value (observed in the dataset) and all other predictors are at their mean levels. The non-

linear relationship is clear from Figure 6.9.b and a scatter plot of wine age vs. 

epigallocatechin also reveals a similar pattern: epigallocatechin values in the range 0.25-

0.4 correspond to younger wines (typically 1-5 years old) and as the wine ages, there is a 

small increase in epigallocatechin concentration, obtaining values between 0.5-0.7 (these 

wines have aging times between 7 and 11). Finally, wines with 12 years old and older 

have zero or near zero concentration of epigallocatechin. Thus, since epigallocatechin is 

the second most important predictor and presents a non-linear relation with wine age, the 

ability to model this non-linear relationship is essential in order to build effective 

predictive models. The other classes of methods cannot account for this type of 

relationship and are therefore more limited in terms of prediction performance.   

  

  
(a) (b) 

Figure 6.9. Results obtained when PAC was applied to estimate wine age with data from 

HPLC: (a) BoRT predictor importance and (b) the non-linear relationship between 

epigallocatechin and wine age. 

 

The last dataset regards the prediction of wine age using UV-vis spectra. The results 

show that the class of penalized regression methods obtained higher KPI values and are 

the recommended class for this dataset. In fact, the consistency of penalized regression 

methods across all the studied datasets suggests that it is a versatile class, which contains 

regression methods that adapt to many scenarios of sparsity and collinearity. In particular, 
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from many predictors and EN suitably combines both strategies in order to improve 

prediction accuracy. Thus, in scenarios where a more complete comparison study is not 

possible, the penalized regression class has the potential of being a suitable first choice. 

Furthermore, other types of penalties are also available for a wide range of applications 

(Eilers 2017). The median coefficient of determination over all iterations of double cross-

validation was 0.86, which represents a rather good agreement between predicted and 

observed wine age values.  

PLS and PCR are often the preferred methods for spectral datasets but this case study 

shows that they may not always be the best approach. In particular, one can observe that 

LASSO, EN, RF, and BoRT showed superior performances, which might suggest that the 

initial assumption of a latent variable structure may not be entirely valid and that the 

elimination of some variables might be advantageous. In order to identify important 

spectral regions, Figure 6.10.a Figure 

6.10  importance for BoRT in the 50 iterations of double cross-

validation. In Figure 6.10, one can observe an agreement regarding the relevant regions, 

and the spectra can be roughly divided into two regions: a relevant region covering the 

245-540 nm (variable index: 1-60) and an irrelevant region containing larger 

wavelengths: 545-785 nm (variable index: 61-109). Thus, variable selection can 

effectively increase prediction accuracy and suggest that variants of PLS that also 

perform variable selection should be employed (such as interval PLS, VIP-PLS). 

Therefore, a potentially better approach may consist in selecting the relevant spectral 

region and then apply PLS over it. If only this region is considered (variable index 1-60), 

the median  of PLS decreases from 2.0 to 1.4 years, which is the minimum 

value observed when compared to all other regression methods. 
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(a) (b) 

Figure 6.10. -vis dataset over 50 iterations of 

double cross-validation: (a) the regression coefficients for LASSO and (b) the BoRT 

predictor importance.   

 

 analytics domain contains the main representatives of four important classes of 

methods and we believe this provides a good coverage of the relevant methods for the 

purposes of screening the classes with most potential for each application. The user can 

then decide to use the best methods in these classes (highest KPIs) or to explore other 

alternatives and variants not contemplated in the analytics domain. Also, sometimes there 

is the need to further tune the methods from the winning classes, in order to optimize 

prediction ability (Broadhurst, Goodacre et al. 1997, Alsberg, Kell et al. 1998, Brás, 

Lopes et al. 2008, Mehmood, Liland et al. 2012) or enhance interpretability (Reis 2013, 

Kvalheim, Arneberg et al. 2014). An example was provided for the UV-Vis dataset, 

where band selection could improve the performance of the latent variable models or 

even the use of a non-linear extension, such as Kernel-PLS (Rosipal and Trejo 2001). The 

inclusion of all the possible model variants in PAC is not a realistic endeavor not even 

since their adoption relies on the subsequent analysis of results from the base formulation. 

The proper way to use PAC is therefore as an efficient screening tool that points to the 

best directions from the predictive capability standpoint: the models developed may be 

sufficient to solve the problem, but in other occasions, more refinement is required (post-

optimization). Although post-optimization is not mandatory (see Section 6.2), it is very 
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common in practice and it is highly recommended in order to improve both prediction 

performance and obtain more interpretable models due to the exclusion of irrelevant 

predictors. Another valid alternative is to build ensemble estimators using the methods 

with largest KPI (Hastie, Tibshirani et al. 2001). Again, this approach should be 

considered in the post-optimization stage of the workflow.  

In terms of computational requirements, PAC was implemented on an eight-core CPU 

desktop and run in parallel since double cross-validation iterations can be computed 

independently. The case studies considered took 10-24h to complete, and have a high 

dependency on the number of variables. This is particularly noticeable for tree-based 

ensembles since they explore the predictors  space in order to build a considerable 

number of regression trees. Nevertheless, the range of results provided by PAC in a single 

run justifies its computational burden, allowing one to easily identify promising methods. 

If subsequent iterations of PAC are needed, one may exclude methods that presented poor 

results in previous runs, greatly decreasing the computational requirements. Furthermore, 

as computers with more cores are becoming commonly available, applying PAC will be 

much faster in those machines and may correspond to rather small and tolerable time 

requirements.  

One type of methods not included in the Analytics Domain is the family of Artificial 

Neural Networks. These methods do not scale well with the dimensionality of the dataset 

and require preliminary dimension reduction techniques before being applied to large 

datasets. Nevertheless, the need for non-linear modeling can be detected (and handled) 

through the class of tree-based ensemble models, as illustrated in the case of the wine 

dataset using HPLC measurements. Then, further refinements or alternative approaches 

can be tried out at a second stage, using kernel methods or composed mappings of 

dimension reduction/non-linear modeling. 
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This last chapter summarizes the main conclusions of this thesis and highlights the main 

outputs of each chapter, contextualizing these outcomes in a structured and logical 

sequence that starts with batch datasets and generates insights for improving process 

operation. Moreover, future research directions are enumerated that would enlarge the set 

of tools currently available to practitioners, providing tailored solutions to the challenge 

of analyzing batch datasets.  

 

In this thesis, we have addressed some of the challenges in the field of batch data analysis 

(BDA) and developed frameworks for analyzing datasets collected during batch 

operation. These frameworks were integrated following a logical workflow that starts 

with batch data, converts it to features (using the feature-oriented batch analytics 

framework  FOBA 1.0 and FOBA 2.0), select the relevant ones (using the wide 

spectrum feature selection - WiSe), and finally use the important selected features for 

building predictive models (using the predictive analytics comparison framework - PAC). 

This set of tools represent effective and efficient solutions that may provide insights into 

the process operation, ultimately helping plant and process engineers to better control, 

troubleshoot and improve their processes. This thesis contains six main chapters, which 

are summarized below.    

In Chapter I, the scope, motivations, and objectives of this thesis were described. In 

particular, the importance of batch processes and BDA was highlighted and some of the 

gaps in the BDA field were identified. These drawbacks motivated the specification of 

goals and the work conducted in this thesis aimed at achieving such objectives. The main 

contribution of this thesis are also summarized in Chapter I.     

In Chapter II, the main classes of methods in the field of BDA were identified and 

assessed in terms of their implementation and modeling complexity. This analysis 

provided a mapping of the different families of methods into a complexity scale, 

clarifying their relationships and providing practitioners with a structured workflow to 

guide decisions on the methods to adopt and the sequence by which different alternatives 

should be considered, in accordance to the parsimony principle. BDA methods were 
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grouped in three classes, namely, feature-oriented methods, linear time-resolved methods, 

and non-linear time-resolved methods. Feature-oriented methods are the more 

parsimonious and simple approaches. Alternatively, time-resolved methods provide 

effective solutions when more extensive descriptions of batch phenomena are required, 

such as modeling more intricate correlations and lagged-correlations between process 

variables. Although time-resolved methods require batch synchronization, they can 

pinpoint with great accuracy the time instants where process upsets occur and provide 

online estimates of quality parameters. Non-linear time-resolved methods occupy the top 

rank of the complexity scale. Their application should be carefully pondered due to the 

risk of overfitting and the added implementation complexity. 

In Chapter III, a framework for feature-oriented batch analytics platform (FOBA) was 

presented, unifying available approaches for feature generation. The proposed framework 

integrates feature generation and feature analysis for batch data in the context of 

continuous improvement activities. We also presented a new dictionary of features, 

known as Profile-driven Features (PdF). The proposed PdF dictionary lies in between the 

current feature-oriented approaches (e.g. SPA, TIME) and the time-resolved approaches 

(2-way BWU, Tucker 3, PARAFAC, etc.) in the sense that it lacks time resolution but 

retains the specificity of the profiles through the use of profile-specific features. Chapter 

IV extended FOBA 1.0 to FOBA 2.0, improving the time-resolution of available feature-

oriented methods. Three alternatives were envisioned and tested, and their performances 

were assessed in terms of providing local information that could pinpoint critical batch 

periods. They successfully identified periods that were more relevant for the quality of 

the batch and it is expected that their application on real world problems would generate 

similar benefits.  

Chapter V focused on feature selection methods and a novel proposal was put forward, 

specifically for regression problems: the wide spectrum feature selection (WiSe). WiSe is 

a two-stage approach that combines filters for efficient removal of irrelevant features, and 

a regression method for model building and further feature selection. Filters are efficient 

all paired combinations of these filters. Features selected in the first stage proceed to the 

second stage where forward stepwise regression (FSR), least absolute shrinkage and 

selector operator (LASSO), and partial least squares (PLS) are used for model building. 

FSR and LASSO have the ability to further decrease the number of features, resulting in 



Conclusions & Future Work 147 

stand out as a promising subset of filters that should be tested in regression problems.  

Finally, in Chapter VI, a structured comparison framework for comparing advanced 

predictive analytics methods was proposed, described, applied and discussed. The 

proposed approach, called PAC, was designed to help practitioners developing predictive 

models in complex Manufacturing 4.0 scenarios (and not only), in an efficient, rigorous 

and robust way. PAC screens for the classes with most potential for each application, 

leaving to the user the decision of using the best methods found, or to explore further 

variants of them not contemplated in the Analytics Domain, but that makes sense for the 

particular case under analysis. In any case, the development time is reduced and the 

quality of the outcomes and rankings is secured (even for for non-specialized users), 

through the incorporation of a rich set of methods (13 overall) and the implementation of 

a robust comparison engine and an effective results reporting scheme.  

 

Novel and innovative developments in the BDA field are expected to continue driving 

improvements in plant operation, namely in process optimization, control, 

troubleshooting, and root-cause analysis. The following bullet points describe research 

directions that would benefit the field of BDA and would also have a positive impact on 

data-driven modeling in general: 

 Feature-oriented methods. These methods compress batch evolution into a few 

features. However, they have not been adapted to online applications neither 

combined with non-linear methods. Developments in these directions would 

broaden the applicability of these methods to a wider range of problems. 

Furthermore, we intend to extend the application of FOBA 1.0 and FOBA 2.0 to 

more case studies, representing different analysis scopes: visualization, 

troubleshooting, quality prediction, and end-of-batch process monitoring; 

 Analysis of profiles. Besides batch data, datasets in other applications (e.g. 

spectra) present characteristics similar to the batch profiles. FOBA 1.0 and FOBA 

2.0 may be valuable alternatives for extracting relevant features from these 

profiles.  
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 Multiresolution non-linear methods. Non-linear methods can greatly benefit from 

using multiresolution frameworks to reduce the time-resolution of the data-driven 

analysis. The advantage is that the number of model parameters can be 

significantly reduced, mitigating the propensity of non-linear methods towards 

overfitting; 

 BDA software. The literature on BDA is vast and increases each year with new 

proposals that attempt to further advance the state-of-the-art. However, the 

majority of the currently proposed methods are not available for practitioners and 

researchers to test, nor are they easily programmed and implemented. Therefore, 

ementing methods that others have already developed, and 

the comparison of potential methods becomes a daunting task, usually beyond the 

time and technical resources available in the companies.  Initiatives in line with 

reproducible research should be promoted and, ideally, a software platform 

developed where existing methods and new entries could be implemented and 

tested, greatly benefiting the increasing community of researchers and 

practitioners interested in BDA; 

 Developing training programs. The complexity scale of BDA correlates well with 

the needs required at the different organization levels and the skills and expertise 

available at each level. Therefore, it provides a sound way to design and 

implement company-wide training programs, that maximize the impact of data 

analytics in the bottom line results; 

 Non-linear modeling. Selecting among different non-linear methods is a 

challenging task since it is more difficult to find an underlying reasoning to 

segment them. Nevertheless, it is expected that industry 4.0 initiatives will foster 

their application due to the larger amounts of data that will be available, which 

attenuate some of the overfitting concerns of implementing non-linear 

approaches; 

 Fine-tuning PAC. One area for future research is the use of 

post-optimization stage, where, for instance, ensembles of different regression 

methods can be developed;  

 Sparsity and collinearity metrics. Another research line consists in the 

exploitation of the accumulated information generated by PAC for establishing a 

metrics should be developed to characterize datasets and enable the generation of 

guidelines for the selection of suitable regression methods. Furthermore, an 

assessment of the computational complexity of the method should also be 
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conducted, especially for large datasets where some methods can take 

considerable time to run (especially the tree-based ensemble methods). 
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