
 International Journal of 

Molecular Sciences

Review

Impact of Carcinogenic Chromium on the Cellular
Response to Proteotoxic Stress

Leonardo M. R. Ferreira 1 , Teresa Cunha-Oliveira 2 , Margarida C. Sobral 3, Patrícia L. Abreu 4,
Maria Carmen Alpoim 5 and Ana M. Urbano 6,*

1 Department of Surgery and Diabetes Center and Sean N. Parker Autoimmune Research Laboratory,
University of California, San Francisco, San Francisco, CA 94143, USA; leonardo.ferreira@ucsf.edu

2 CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park,
3060-197 Cantanhede, Portugal; teresa.oliveira@uc-biotech.pt

3 Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal;
margaridasobral2014@hotmail.com

4 Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon,
1649-028 Lisbon, Portugal; patricia.abreu@medicina.ulisboa.pt

5 Department of Life Sciences, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO)
and CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-456 Coimbra, Portugal;
mcalpoim@gmail.com

6 Department of Life Sciences, Molecular Physical Chemistry Research Unit and Center of Investigation in
Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-456 Coimbra, Portugal

* Correspondence: amurbano@ci.uc.pt

Received: 12 August 2019; Accepted: 30 September 2019; Published: 3 October 2019
����������
�������

Abstract: Worldwide, several million workers are employed in the various chromium (Cr) industries.
These workers may suffer from a variety of adverse health effects produced by dusts, mists and
fumes containing Cr in the hexavalent oxidation state, Cr(VI). Of major importance, occupational
exposure to Cr(VI) compounds has been firmly associated with the development of lung cancer.
Counterintuitively, Cr(VI) is mostly unreactive towards most biomolecules, including nucleic acids.
However, its intracellular reduction produces several species that react extensively with biomolecules.
The diversity and chemical versatility of these species add great complexity to the study of the
molecular mechanisms underlying Cr(VI) toxicity and carcinogenicity. As a consequence, these
mechanisms are still poorly understood, in spite of intensive research efforts. Here, we discuss
the impact of Cr(VI) on the stress response—an intricate cellular system against proteotoxic stress
which is increasingly viewed as playing a critical role in carcinogenesis. This discussion is preceded
by information regarding applications, chemical properties and adverse health effects of Cr(VI).
A summary of our current understanding of cancer initiation, promotion and progression is also
provided, followed by a brief description of the stress response and its links to cancer and by an
overview of potential molecular mechanisms of Cr(VI) carcinogenicity.

Keywords: carcinogenesis; hexavalent chromium; heat shock proteins; HSP70; HSP90; HSP inhibitor;
occupational lung carcinogen; proteotoxic stress; stress response; unfolded protein response

1. Hexavalent Chromium: Applications, Chemical Properties and Biological Implications

Chromium (Cr), a transition metal, is the 21st most abundant chemical element in Earth’s crust.
It can exist in a variety of oxidation states, from −2 to +6, but most of these states are too unstable to
exist in any significant amount [1]. In nature, Cr exists mostly in the trivalent oxidation state, Cr(III),
but it can also be found in the hexavalent oxidation state, Cr(VI). Cr(VI) compounds have a wide
range of applications and are extensively used as pigments for textile dyes, paints, inks and plastics,
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corrosion inhibitors, leather tanning agents and wood preservatives, amongst other uses [2,3]. Due
to the low natural abundance of Cr(VI) compounds, all Cr(VI) used in industrial and commercial
applications must be produced from Cr(III) found in chromite ores.

Cr(III) compounds are essentially innocuous and are widely used as nutritional supplements [4,5],
although their beneficial health effects have been questioned by the European Food Safety Authority [6].
On the contrary, exposure to Cr(VI) compounds is associated with numerous adverse health effects,
mostly to the skin and respiratory system. Importantly, the International Agency for Research on
Cancer (IARC), the National Toxicology Program (NTP) and other highly respected regulatory agencies
have classified Cr(VI) compounds as lung carcinogens [7–9].

The highest human exposures to Cr(VI) occur in the chemical, metallurgical and refractive chrome
industries, through dermal contact and inhalation of dusts, mists and/or fumes. In addition, significant
exposure can occur during welding, casting and cutting of stainless steel and other chromium-containing
metals and alloys, as Cr(VI) can be given off as a by-product [8]. The general population and the
wildlife, particularly those living in the vicinity of chromate industries, may also be exposed through
inhalation of ambient air or ingestion of contaminated drinking water. Leaching of wastewater from
industrial waste disposal sites and landfills may also contaminate drinking water. In addition, Cr(VI)
compounds are continuously released to ambient air as exhaust emission products in fuel combustion
and cigarette smoke. Milling and demolition are additional sources of environmental contamination,
as Cr(VI) compounds are present, as impurities, in Portland cement [3].

The different toxicities of Cr(III) and Cr(VI) compounds can be rationalized in terms of their
physico-chemical properties. Namely, their ability to cross biological membranes and, ultimately,
induce intracellular damage is determined by their sizes, structures and charges. At physiological pH,
Cr(VI) exists mostly as chromate anions (CrO4

2−). Being isostructural with the sulfate and phosphate
anions, the chromate anions released from Cr(VI) compounds move easily across cellular membranes
using the anion transport system [10,11]. By contrast, the larger size and octahedral structure of the
Cr(III) ions prevent them from using this transport system. Still, a very small fraction of insoluble
Cr(III) salts are taken up by the cells, mostly by phagocytosis [12]. Poorly water-soluble chromates
with a particle size of less than 5 µm can also be phagocytosed and will gradually dissolve in the
intracellular milieu [8].

Postmortem microscopic analysis of lung tissue and biopsy samples from chromate industry
workers revealed that particulate Cr(VI) compounds tend to deposit at the bronchial bifurcations [13–15].
Postmortem studies further showed that tumors tend to develop centrally in the lung, with the most
frequent histological type of Cr(VI)-induced lung cancer being squamous cell carcinoma [16]. Thus,
it has been argued that Cr(VI) compounds are particularly dangerous when inhaled in the form of
particulates, as their slow and constant dissolution ensures a long lasting exposure of lung epithelial
cells to chromates. However, as an excess risk of lung cancer was observed among workers exposed to
Cr(VI) compounds of diverse solubilities, it is likely that all Cr(VI) compounds are endowed with a
similar carcinogenic potential [8].

Suspicions of a link between Cr exposure and lung cancer were first raised in the late nineteenth
century, when an increased incidence of this type of cancer was observed among Scottish chrome
pigment workers [17]. Since then, evidence in favor of this link has steadily accumulated. Yet, it was
only in the 1980s that Cr, more specifically Cr(VI), was firmly established as a human lung carcinogen.
This classification triggered an intense search for the cellular and molecular mechanisms underlying
Cr(VI)-induced lung cancer. Naturally, the lines of research followed over time have been influenced by
contemporary theories of carcinogenesis. For contextualization, our current understanding of cancer
initiation, promotion and progression will be briefly discussed in the next section, with an emphasis
on the roles played by different stresses.
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2. Cancer Initiation, Promotion and Progression: The Critical Importance of Oxidative,
Proteotoxic and Genotoxic Stresses

According to the current paradigm, carcinogenesis is driven by stepwise genetic mutations and
concomitantly enhanced and uncontrolled cell proliferation. DNA damage is believed to be in the
genesis of this process by creating a transformed cell, which over the course of additional genomic
and cellular insults becomes a fully malignant and metastatic cancer cell [18]. In spite of the creation
of elaborate genetic mouse cancer models [19] and large-scale sequencing efforts for many cancer
types [20], the process of carcinogenesis remains, for the most part, poorly understood.

Traditionally, carcinogenesis has been divided into three phases: initiation, promotion and
progression [21] (Figure 1). Initiation entails the acquisition of mutations in proto-oncogenes and
tumor suppressor genes. Significantly, incipient cancer cells feature a deranged metabolism, leading to
high levels of reactive oxygen species (ROS) and, consequently, oxidative stress [22–25] (Figure 1). ROS
damage not only DNA, but also proteins and membrane lipids. Yet, ROS also play a role in cellular
signaling, promoting cell proliferation and adaptation to the hypoxic conditions often found in the
tumor microenvironment [26]. In particular, mitochondrial ROS inactivate inhibitory phosphatases
(e.g., PTEN), unleashing the PI3K/AKT cell survival and growth pathway, and prolyl hydroxylases (e.g.,
PHD2). In turn, this inactivation stabilizes hypoxia inducible factors (HIF), concomitantly triggering
angiogenesis. Next, cancer cells enter a promotion phase, when mutations in oncoproteins such
as growth factor receptors and kinases gradually lead to independence from extracellular growth
factors [27]. As mutations often disrupt a protein’s ability to fold [28], accumulation of increasingly
larger amounts of mutated proteins represents yet another type of cell intrinsic stress—proteotoxic
stress [29] (Figure 1). This type of stress can be created by any structural alteration that may lead
to protein misfolding and aggregation. Ultimately, incipient cancer cells form a solid tumor mass,
creating with it a tumor microenvironment. Here, cancer cells reprogram stromal cells to produce
tumorigenic cytokines, chemokines and tissue-remodeling metalloproteinases [30], inhibit anticancer
immune responses [31] and recruit blood vessels via angiogenesis to sustain their continued growth [32].
The tumor microenvironment also creates a host of cell extrinsic stressors, including hypoxia, acidosis
and nutrient deprivation [33–36]. Malignant tumors are also characterized by rampant chromosomal
instability and aneuploidy, caused by chromosome segregation errors during mitosis. Such extensive
damage leads to genotoxic stress. While genotoxic stress leads to p53-induced apoptosis in normal
cells, in malignant cells it is tolerated and subverted, giving rise to a mosaic of genomic mutations and
karyotypic abnormalities in solid tumors [37–39].
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Figure 1. The different types of stress associated with the three stages of carcinogenesis. Carcinogenesis
has been traditionally divided in three stages: initiation, promotion and progression. Different types of
cellular stress have been implicated in these stages. Oxidative stress and reactive oxygen species (ROS)
damage proteins and membranes, and induce DNA mutations. Incipient cancer cells at the promotion
stage harbor an increasing number of DNA mutations, resulting in dramatically higher levels of mutant
proteins that induce proteotoxic stress. Transition to a fully malignant phenotype, i.e., progression, is
thought to require chromosomal instability and resulting karyotypic abnormalities, inducing genotoxic
stress. Of note, all types of stress indicated (oxidative, proteotoxic and genotoxic) play roles in all three
stages of carcinogenesis described above; their relative importance likely differs amongst different
types of cancer.

3. Links between the Cellular Response to Stress and Carcinogenesis

Carcinogenesis entails the acquisition of a growing ability to survive in the face of cellular stress
levels that normal cells are unable to withstand. There is now a growing perception that this ability
results, at least in part, from a subversion of the cellular systems that evolved to protect normal cells
against stress. This section will briefly describe one of these systems, the so-called stress response, a
homeostatic system to combat proteotoxic stress that is found across all three domains of life [40]. It
also includes a discussion of the links between the stress response and cancer.

3.1. Note on Nomenclature

Several of the studies discussed in this review were carried out at a time when very little was
known regarding heat shock proteins (HSP) and their role in the cellular response to stress. Back
then, HSP were named based on their approximate subunit molecular weights, as determined by
polyacrylamide gel electrophoresis. For instance, the designations Hsp90 and HSP90 were used
interchangeably to describe any protein with an approximate subunit molecular weight of 90 kDa
whose expression was rapidly and strongly induced by stress. Since then, the number of known
stress-responsive proteins, some of which constitutively expressed, has expanded enormously. Many
of the now known isoforms share identical subunit molecular weights and it is often not possible to
retrospectively identify the specific isoform(s) being described in the earlier studies. In this review,
we use the abbreviation Hsp when referring to a clearly identified isoform (e.g., Hsp72), whilst HSP
abbreviates either one or more unspecified isoforms of a given family or the family as a whole (e.g.,
HSP90 will be used to describe an unidentified isoform of an approximate subunit molecular weight of
90 kDa or the HSP90 family as a whole).

To complicate matters further, as some stress-responsive proteins were not initially classified
as HSP; they were given unrelated names. Currently, up to ten different names can be found in the
literature for the same gene product [41]. Aiming at reducing inconsistencies and increase clarity,
Kampinga and collaborators put forward, already in 2009, new guidelines for the nomenclature of
the human HSP [41]. Unfortunately, this nomenclature has not yet been widely adopted, remaining
unfamiliar to most readers. In Table 1, which summarizes all studies covered in this review on the
impact of Cr(VI) on components of the stress response, genes and gene products are presented as found
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in the corresponding papers. Nonetheless, whenever an unambiguous identification was possible, the
new nomenclature was added, between brackets, following the name used in the original paper.

Table 1. Cr(VI)-induced effects on the expression and activity of components of the stress response.

Protein Family System 1

Exposure Regime

Effect 3 StudyCr(VI)
Dose/Concentration 2 Duration

Small HSP

Rat lung
epithelial cells 10 µM 24 h Increased HSP10 protein

levels [42]

HaCaT cells 7.4 µM 24 h

Increased HSP27 (HSPB1)
mRNA and protein levels;
Reduced HSP27 (HSPB1)

phosphorylation

[43]

Human
primary skin

fibroblasts
1 µM 16 h Increased protein levels of

phosphorylated HSP27 [44]

BNL CL.2 cells 15 µM 3 h

Increased liver HSP27
protein levels [45]

ICR mice
10 mg/kg body weight

(intraperitoneal
injection)

8 weeks

BEAS-2B cells 10 µM 4 h Unchanged HSP27
(HSPB1) mRNA levels [46]

Hsp40 BEAS-2B cells

10 µM

4 h Decreased HSP40 mRNA
levels

[46]

HSP60

BEAS-2B cells 4 h Decreased HSP60 (HSPD1)
mRNA levels

Rat lung
epithelial cells 24 h Increased HSP60 protein

levels [42]

HSP70

BEAS-2B cells

1 µM 48 h

Unchanged Hsp72
(HSPA1A) protein levels;

Decreased Hsp72
(HSPA1A) mRNA levels

[47]

10 µM 4 h

Unchanged HSP70
(HSPA6), HSP70.1 (HSPA1)

and HSP71 (HSPA8)
mRNA levels

[46]

Sprague-Dawley
rats

0.25 mg/kg body
weight (intratracheal

instillation)
3 days

HSP70 mRNA levels
increased in the lungs and

unchanged in the liver;
Unchanged HSP60, Grp75
and Grp94 mRNA levels
in both lungs and liver

[48]

HT29 10 or 50 µM
6 h

Increased Hsp72
(HSPA1A) mRNA levels

[49]

HepG2 cells

0.5 or 1 µM

0.625–10 µM 48 h
Induction of HSP70 and

Grp78 (HSPA5) promoters
for [Cr(VI)] ≥ 5 µM

[50]

100 µM 3 h Unchanged HSP70 mRNA
levels [51]
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Table 1. Cont.

Protein Family System 1

Exposure Regime

Effect 3 StudyCr(VI)
Dose/Concentration 2 Duration

Primary culture
of rat granulosa

cells
10 µM 12 or 24 h Decreased HSP70 protein

levels [52]

L-02 cells
16 or 32 µM 24 h Decreased HSP70 proteins

levels [53]

8 or 16 µM 24 h Increased Grp78 (HSPA5)
mRNA levels [54]

BNL CL.2 cells 15 µM 3 h

Increased liver HSP70
protein levels

[45]

ICR mice
10 mg/kg body weight

(intraperitoneal
injection)

8 weeks

A549 0.5 µM 2–24 h Increased Grp78 (HSPA5)
protein levels [55]

HSP90

BEAS-2B cells

1 µM 48 h

Decreased Hsp90α
(HSPC1) protein levels.

Unchanged Hsp90α
(HSPC1) mRNA levels

[47]

10 µM

4 h Decreased HSP90A
(HSPC1) mRNA levels [46]

Primary culture
of rat granulosa

cells
12 or 24 h Decreased HSP90 protein

levels [52]

L-02 cells 16 or 32 µM 24 h Decreased HSP90 protein
levels [53]

A549 600 µM 2 h Increased TRAP1 (HSPC5)
mRNA levels [56]

HSP100 Rat lung
epithelial cells 10 µM 24 h Increased HSP105 protein

levels [42]

1 A549, cell line established from a human lung adenocarcinoma; BEAS-2B, cell line established from human
bronchial epithelium; BNL CL.2, cell line established from embryonic murine liver tissue; HaCaT, keratinocytes
cell line established from human skin; HepG2, cell line established from a human hepatocellular carcinoma; HT29,
cell line established from a human colorectal adenocarcinoma; L-02, cell line established from human embryonic
liver tissue. 2 Cr(VI) was added as a K2Cr2O7 or Na2CrO4 aqueous solution. Of note, for several studies, Cr(VI)
concentration values are ambiguous, as the expressions “x µM Cr(VI)” and “x µM potassium dichromate” were used
indistinguishably, even though a given potassium dichromate concentrations corresponds to a Cr(VI) concentration
twice that value. 3 For designations, see Section 3.1.

3.2. The Stress Response: Basic Concepts

The cytoprotective effects of the stress response are mediated by the heat shock proteins (HSP).
These molecular chaperones promote proper protein folding, translocation and degradation, as well as
the assembly and disassembly of protein complexes [57,58]. In mammals, heat shock factor 1 (HSF1) is
the main transcriptional regulator of the stress response [59,60].

In eukaryotic cells, the stress response comprises different sub-systems, which fulfil
organelle-specific functions, such as the unfolded protein response (UPR), which operates in the
endoplasmic reticulum (ER) [61], and the mitochondrial unfolded protein response (UPRmt). The ER
is a major site for the synthesis, folding, modification and transport of secretory and transmembrane
proteins, as well as for the assembly of protein complexes [62,63]. Incorrect protein maturation can occur
even under physiological conditions, due to, among other causes, the very high protein concentrations
normally found in the ER (~100 mg/mL [64,65]). ER stress, i.e., the incapacity of this organelle to manage
its load of client proteins, is further aggravated under conditions of nutrient deprivation, hypoxia,
augmented ROS levels and acidic extracellular milieu, amongst others [66]. Of note in the context of
the present review, these conditions are often found in the tumor microenvironment. Furthermore,
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certain cancers, such as the B cell-derived malignancy multiple myeloma, produce extremely high
levels of immunoglobulins, which translates into protein overload and consequent ER stress [67].

Accumulation of unfolded or misfolded proteins triggers the UPR, which signals transient
attenuation of protein translation, while increasing the ER capacity of protein folding and degradation
of misfolded proteins [64,65,68]. Amongst the molecular chaperones involved in the re-establishment
of protein homeostasis (i.e., proteostasis) are numerous glucose-regulated proteins (induced by
glucose starvation), including Grp78, which is the most abundant ER-resident chaperone, and
Grp94 [64,65,68–70]. Grp78 and Grp94 are the ER homologues of, respectively, HSP70 and HSP90
proteins. After a certain time, proteins that remain aggregated, misfolded and/or unassembled are
targeted for ER-associated degradation (ERAD), leading to their translocation from the ER to the
cytosol to be degraded by the ubiquitin-proteasome machinery [71]. If ER stress becomes chronic,
abnormal calcium signaling from ER to mitochondria and apoptotic pathways can be activated [72].

In eukaryotes, the metabolic energy required to sustain cellular processes, including stress-induced
adaptations, is generated mostly in the mitochondria. Interestingly, mitochondria are closely connected
to the ER through mitochondria-associated membranes (MAMs), which allow the exchange between
these two organelles of lipids, calcium ions (Ca2+) and, possibly, ROS. It has also been suggested
that MAMs are involved in glucose homeostasis [73]. ER and mitochondrial stress pathways seem
to be interconnected, as a mitochondria resident HSP90, tumor necrosis factor receptor-associated
protein 1 (TRAP1), has been associated with UPR in the ER [74,75]. Also, p53-upregulated PUMA and
NOXA [76] and Lon protease [77], which is also a chaperone [78], seem to be part of a signaling pathway
that transmits ER dysfunction to the mitochondria. ER stress, amino acid depletion, excessive ROS
levels, oxidative phosphorylation (OXPHOS) perturbation, impaired complex assembly (mitonuclear
protein imbalance) and the accumulation of misfolded proteins impair mitochondrial protein import
efficiency and lead to nuclear translocation of the activating transcription factor associated with stress
(ATF) and subsequent activation of the UPRmt [79–81]. In the nucleus, ATF mediates the transcription
of genes involved in the re-establishment of mitochondrial function, mitochondrial proteostasis and
protein import efficiency [82,83]. Resistance to ER and mitochondrial stresses can contribute to
carcinogenesis [84,85].

3.3. Cancer and the Stress Response

It has been known for some time that most types of tumors display augmented HSP levels [86].
Increased HSF1 activity likely contributes to the augmented HSP levels, yet it has been reported that
HSP gene promoters can also be activated by the oncogenic transcription factor c-MYC, as well as by
loss of the tumor suppressor protein p53 [87]. Strikingly, deletion of HSF1 in mice bearing mutations
in the Ras oncogene and Tp53 tumor suppressor gene protected them from tumor formation [88].

Specific HSP have been directly implicated in p53 inactivation and malignant transformation [89], as
well as in cancer invasiveness and resistance to chemotherapy [90]. For instance, HSP90 overexpression,
which was observed in a broad spectrum of cancers, correlated with tumor growth, metastatic
potential and resistance to chemotherapy [86,91,92]. This observation led to the proposal that tumors
develop an “addiction” to HSP90 [93,94]. It is noteworthy that, unlike other HSP, HSP90 proteins
are not necessary for the correct folding of newly synthesized proteins. Instead, their main role is to
stabilize meta-stable proteins, ultimately suppressing the formation of protein aggregates. Importantly,
numerous oncoproteins are HSP90 clients [95]. Chief among these are several receptor tyrosine kinases
and steroid hormone receptors, such as the human epidermal growth factor 2 (HER2), associated with
uncontrolled cellular proliferation [92,96], telomerase, an enzyme required for immortalization [97],
AKT, involved in the deregulation of the apoptosis [98], hypoxia-inducible factor 1-alpha (HIF-1α),
essential for angiogenesis [99] and the metabolic shift observed in tumors [22,92,100], and matrix
metalloproteinases (MMPs), crucial for successful tissue invasion and metastasis [101]. According
to the "HSP90 addiction hypothesis", cancer cells need an increased pool of HSP90. This increased
pool is critical to retrieve essential proteins that became misfolded due to extensive proteotoxic stress
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and to allow increasingly more mutated oncoproteins and tumor suppressor proteins to function, by
preventing their misfolding and degradation.

Remarkably, HSP90 proteins have also been found in the extracellular milieu, where they act as
potent stimulators of immune responses [102]. Unsurprisingly, HSP90 is currently being explored as a
target for cancer therapy. There are currently 73 clinical trials employing HSP90 inhibitors registered in
ClinicalTrials.gov. Nevertheless, no HSP90 inhibitor has been approved for cancer treatment yet [103].

Altogether, the stress response emerges as a double-edged sword: evolved to protect cells from
menaces to homeostasis, it might constitute, in its extreme, one of the main mechanisms behind cancer
cells’ formidable resilience. Several questions remain open. How much cellular stress is required for it
to have an impact on carcinogenesis? Do qualitatively different levels of stress play distinct roles in
cancer? HSP activation is exquisitely sensitive to cellular stress-inducing agents. Studying the links
between the stress response and carcinogenesis will answer these and other questions and contribute
to a more detailed understanding of cancer.

4. The Molecular Mechanisms of Hexavalent Chromium Carcinogenicity: A Brief State of the Art

Genetic and epigenetic mechanisms likely play a critical role Cr(VI) carcinogenesis. This view
is supported by the observation of genetic lesions in both the lung cells of chromate workers and
in cultured cells exposed to different Cr(VI) concentrations [11,13,15,16,104–109]. Thus, the initial
observation, in test tube experiments, that Cr(VI) is mostly unreactive towards DNA (and most
other biomolecules) puzzled researchers. However, it is now known that, following its rapid
cellular uptake, Cr(VI) undergoes a multi-step reduction that generates a variety of species that react
extensively with biomolecules, namely Cr(III), which is the final reduction species, and the unstable
intermediates Cr(IV) and Cr(V) [110,111]. Under physiological conditions, ascorbate accounts for
about 90% of Cr(VI) reduction, but non-protein thiols, such as glutathione and cysteine, also contribute
significantly to its reduction [112]. Thus, Cr(VI) reduction generates additional reactive species, such as
carbon-based radicals from ascorbate, and thiyl radicals from glutathione and cysteine. The generation
of ROS [113,114] is still a matter of debate, as it has been argued that the methods employed for
detection of Cr(VI)-induced ROS were not adequate and that the Cr(VI) concentrations employed in
those studies were too high to be of biological relevance [115]. Among the Cr(III)-DNA complexes
formed are Cr(III)-DNA adducts, DNA-protein crosslinks and DNA interstrand crosslinks [11,115].

Cr(VI) exposure can result in DNA damage by both direct and indirect mechanisms. For instance,
Cr(VI) exposure may lead to loss of thiol redox control through interference with antioxidant
defense systems [116]. This and additional lines of evidence, namely the observation of
8-hydroxy-2’-deoxyguanosine formation in rat lungs following intratracheal administration of
Cr(VI) [108], suggest that Cr(VI) exposure can damage DNA through the generation of oxidative
stress [50,117,118]. Additionally, altered ROS levels affect gene expression [119].

DNA damage can also result from a direct interaction of these biomolecules with Cr(III), generating
different types of Cr(III)-DNA adducts. By restraining the normal DNA replication and transcription
processes, these adducts activate the various cellular DNA repair systems in a lesion-dependent
manner. Cr-DNA monoadducts are preferentially repaired by the base excision repair (BER) system in
coordination with the apurinic/apyrimidinic (AP) site repair system [120]. The transient single-strand
breaks (SSB) that are formed are then promptly repaired by the cooperative action of DNA polymerase
β (Polβ) and the X-ray cross-complementing group 1 (XRCC1) complex [121]. Cr(III)-DNA-protein
crosslinks and DNA inter/intrastrand crosslinks (ICLs) require recruitment of other DNA repair systems,
namely the nucleotide excision repair (NER) system [122]. Mutations in key proteins involved in these
DNA repair systems have been described both in Cr(VI)-induced lung cancer patients and in cultured
cells exposed to Cr(VI) compounds, impairing their ability to remove chromium-DNA adducts [122].
In addition to SSB formation, double-strand break (DSB) induction by the mismatch repair (MMR)
system may drive genomic instability, either as a direct result of the repair systems or due to delayed
repair and concomitant cell cycle arrest which, in the case of Cr (VI), often uncouples karyokinesis
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from cytokinesis [3,123]. Hirose and co-workers reported a high incidence of microsatellite instability
(MSI), a particular type of genomic instability that specifically affects the microsatellites, in lung cancers
from chromate-exposed workers [3,124,125]. However, a similar finding could not be observed upon
in vitro exposure of human lung epithelial cells to Cr (VI) [126].

Unsurprisingly, the impact of Cr (VI) on the signaling pathways that underlay cell proliferation,
differentiation and death has been the focus of multiple research studies, but a clear picture is yet
to emerge. While an in-depth discussion of these studies is beyond the scope of this review, it is
noteworthy that the sequences targeted in Cr(III)-DNA and Cr(III)-histidine-DNA lesions in the TP53
gene are identical, with both types of adducts formed at –NGG- sequences at mutational hotspots
in lung cancer. These findings suggest that Cr(III)-DNA adduct formation contributes to the TP53
mutations observed in lung carcinogenesis [127].

Cancer has been traditionally viewed as a genetic disease, but it is now increasingly clear that
non-genetic events can also be critical players in carcinogenesis. For instance, Cr(VI)-induced lesions
may contribute to the onset of inflammatory lung disease, which in turn predisposes to lung cancer,
as illustrated by the strong correlation between lung cancer and both bronchitis and interstitial lung
diseases [128,129]. In line with this hypothesis, it was reported that zinc chromate nanoparticles
induce bronchiolar cell apoptosis and mucosal injury, later progressing to alveolar and interstitial
pneumonitis. It was also found that inflammatory cytokines, such as IL-6 and TNF-α, and activation of
the survival pathway AKT were involved [120,122–125,127,128,130,131]. Another study revealed that,
in vitro, progression to higher malignant states in Cr(VI)-induced carcinogenesis is mediated by the
inflammatory cytokines IL-6 and G-CSF and Activin A released by stromal cells, with the concomitant
activation of STAT3 and WNT signaling pathways [132].

5. The Impact of Hexavalent Chromium on the Stress Response

As mentioned previously, there is a growing perception that the stress response may be a critical
player in carcinogenesis. Cr(VI) may promote proteotoxic stress and, ultimately, activate the stress
response through various mechanisms. For instance, changes in protein conformation may result from
their direct interaction with Cr(III). Conformational changes may also be a consequence of oxidative
stress, as it may originate incorrect disulfide bonds and other forms of protein modification [116].
The induction of mutations, as found in in vivo and in vitro systems [133], can also compromise the
correct folding of the affected proteins [28].

The number of published studies on the impact of Cr(VI) on the stress response is still small.
In addition, most of these studies did not specifically address the role of the stress response on
carcinogenesis. Namely, some of the earlier studies were exploiting the then relatively recent array
cDNA technology to simultaneously investigate multiple gene pathways that might be affected by
Cr(VI) exposure [48,56]. Table 1 summarizes all the studies covered in this review.

The first observation of an effect of Cr(VI) on the stress response was made in 1998, on a molecular
toxicology study aimed at developing a sensitive biological system for the rapid detection of low levels
of environmental pollutants [49]. Using a radiolabeled antisense RNA probe, the authors found that,
at mildly cytotoxic concentrations, a 6 h exposure to Cr(VI) increased Hsp72 mRNA levels, in HepG2
and HT29 cells. These results confirmed that HSP activation is exquisitely sensitive to Cr(VI) exposure,
as changes in Hsp72 transcript levels could be detected for Cr(VI) concentrations as low as 0.5 µM. Of
note, mRNA levels were determined 3 h after the stressing exposure, as it was observed that, after heat
shock, transcript levels strongly increased in the first 3 h, then decreasing to nearly basal levels 6 h after
shock. In an independent study, protein levels peaked instead at 6 h after exposure [134], stressing the
importance of conducting adequate time courses.

The second report of Cr(VI) impacting the stress response came from a study aimed at identifying
metal-responsive promoters and, ultimately, new signal transduction pathways that might be modulated
by exposure to this and other environmental pollutants [50]. To this end, 13 recombinant HepG2
cell lines, each of which stably transfected with a specific stress-responsive promoter regulating the
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expression of the chloramphenicol acetyl transferase (CAT) reporter gene, was exposed, for 48 h, to
different Cr(VI) concentrations. Intracellular levels of CAT protein were determined immediately after
exposure. In the case of the two cell lines that had been transfected with HSP promoters, specifically
the HSP70 and Grp78 gene promoters, a subcytotoxic Cr(VI) concentration induced CAT upregulation,
even though statistical significance was only reached in the cell line transfected with the HSP70
promoter. At a higher Cr(VI) concentration, CAT protein levels were further augmented, yet this was
accompanied by a dramatic decrease in cell viability. The results of this study highlighted the different
susceptibilities of these two HSP to Cr(VI).

Cr(VI) is a lung carcinogen and, as such, studies conducted on human epithelial lung cells should
be particularly informative. In the A549 cell line, established from a human lung adenocarcinoma,
a 2 h Cr(VI) exposure upregulated the transcript levels of TRAP1, the mitochondrial homologue of
Hsp90 [56]. However, the Cr(VI) concentration used in this study was extremely high and would likely
cause massive cell death for longer exposures. Therefore, the results of this study must be interpreted
with caution. Nonetheless, it was recently reported, also in the A549 cell line, that a much lower
Cr(VI) concentration upregulated Grp78 protein levels, again peaking at 6 h of Cr(VI) exposure [55].
The exquisite sensitivity of Grp78 to Cr(VI) is noteworthy. In L-02 hepatocytes, Grp78 mRNA levels
were increased after a 24 h exposure to Cr(VI) in the low micromolar range [54]. In the same cell line, a
similar exposure regimen, which was found to induce significant cytotoxicity, decreased the protein
levels of both HSP70 and HSP90 [53].

Two studies have been conducted in the BEAS-2B cell line, established from normal human
bronchial epithelium, which is the main target of Cr(VI) carcinogenicity. Both studies used Cr(VI)
concentrations that did not cause overt cytotoxicity. The first study aimed at identifying specific and
sensitive biomarkers of toxic metal exposure [46]. One significant finding was the extreme specificity
of the Cr(VI) effects: of the 1200 gene transcripts analyzed, only 44 had their expression altered after
a 4 h Cr(VI) exposure. Of the 44 genes affected, 3 encoded HSP (HSP40, HSP60 and HSP90A) and
were all down-regulated. The transcript levels of all other HSP analyzed (HSP27, HSP-70, HSP70.1,
HSP-71) remained unchanged, giving further support to the perception that the impact of Cr(VI)
is isoform-specific.

The second study employing BEAS-2B cells investigated the impact of Cr(VI) on the expression of
the Hsp72 and Hsp90α isoforms at both the transcript and protein levels [47]. Importantly, this study
unveiled decoupling of mRNA and protein levels for both Hsp72 and Hsp90α. After a 48 h incubation
with Cr(VI), Hsp72 mRNA levels were decreased, whereas Hsp72 protein levels remained unchanged.
For Hsp90α, mRNA levels were unaltered, whereas protein levels were decreased. This decoupling is
likely multifactorial, potentially involving critical post-transcriptional regulators, such as RNA binding
proteins and microRNAs [135,136]. Protein stability and turnover may also have to be taken into
account [137,138]. Thus, in future studies, it will be important to conduct detailed time-courses of the
effects of Cr(VI) on gene expression at both levels.

There are another two cellular studies on the impact of Cr(VI) on HSP70 [51,52] and one on the
impact of this carcinogen on HSP90 [52]. Altogether, these studies clearly show that this impact is
dependent on both the cellular model employed and on the experimental design.

Another study, conducted in rat lung epithelial cells, showed the impact of Cr(VI) on additional
HSP isoforms, namely Hsp10 and Hsp105, whose protein levels were increased after a 24 h incubation,
which was shown to produce significant cytotoxicity [42]. Two other studies, one employing HaCaT [43]
cells and the other employing human primary skin fibroblasts [44], unveiled Cr(VI) ability to alter
the phosphorylation state of HSP27. Of note, aberrant phosphorylation of HSP27 has been associated
with cancer [139]. In HaCaT cells, HSP27 expression was upregulated by Cr(VI) at both transcript
and protein levels, but the phosphorylation of this HSP was decreased [43]. On the contrary, levels
of phosphorylated HSP27 were found to be increased in Cr(VI)-exposed in human primary skin
fibroblasts [44]. This apparent contradiction might be explained by differences in cell model, Cr(VI)
concentration and/or time of exposure.
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In the only two in vivo studies conducted to date, one employing ICR mice [45] and the other
Sprague-Dawley rats [48], Cr(VI) administration induced HSP expression. In ICR mice, Cr(VI)
intraperitoneal injection increased liver HSP27 and HSP70 protein levels. In Sprague-Dawley rats,
Cr(VI) intratracheal instillation increased HSP70 mRNA levels in the lungs, whereas these levels were
unaltered in the liver. HSP60, Grp75 and Grp94 mRNA levels, on the other hand, were unaffected
in both lungs and liver. In fact, none of the 216 genes assessed had their liver mRNA levels altered,
whereas changes in lung mRNA levels were observed for 52 genes. The observed lack of effects in the
liver was ascribed to the upstream reduction and consequent detoxification of Cr(VI), firstly in the
lung, then in the blood of the general circulation and finally in the liver itself.

6. Concluding Remarks

While the results obtained in the studies published thus far do not constitute a direct proof of a
link between the stress response and Cr(VI)-induced carcinogenesis, they do show the ability of this
carcinogen to modulate the expression of several components of this response under conditions of
biological relevance. It has also become clear that the observed effects are dependent on tissue, cell type,
Cr(VI) concentration, time of exposure and HSP isoform. Thus, future studies must address the issue
of biological relevance and should also include adequate time courses, as it has been shown that HSP
transcript and protein levels changed over time during the recovery period. Only through rational and
solid experimental designs will it be possible to make further advances in this field and unequivocally
determine whether the stress response does play a role in Cr(VI)-induced carcinogenesis.
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ATF Activating transcription factor associated with stress
CAT Chloramphenicol acetyl transferase
Cr Chromium
Cr(III) Chromium in the trivalent oxidation state
Cr(IV) Chromium in the tetravalent oxidation state
Cr(V) Chromium in the pentavalent oxidation state
Cr(VI) Chromium in the hexavalent oxidation state
DSB Double-strand break
ER Endoplasmic reticulum
HSF1 Heat shock factor 1
Hsp Heat shock protein (see Section 3.1)
HSP Heat shock proteins (see Section 3.1)
MAM Mitochondria-associated membrane
ROS Reactive oxygen species
SSB Single-strand break
TRAP1 Tumor necrosis factor receptor-associated protein 1
UPR Unfolded protein response
UPRmt Mitochondrial unfolded protein response
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