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Abstract

Object classification is a problem with great relevance in computer vision since it

can integrate a wide range of target applications, such as agriculture and security. At

present, there are a set of solutions that solve this problem, the most successful relying

on neural networks. Among the best known are GoogleNet, AlexNet and YOLO. How-

ever, the underlying processing requires high performing computational platforms such

as GPUs, CPU clusters, or custom ASICs. Apart from ASICs, that have a high cost but

are less generic, they are typically high power and not well suited for embedded systems.

However, there has been some progress in low power approaches, driven in part by the

smartphone and tablet market, and heterogeneous platforms are now available that ex-

plore a mix of architectures (CPUs and GPUs) with reconfigurable logic (FPGAs). In this

work, we propose implementations of lightweight convolutional neural networks in hybrid

platforms, thoroughly exploring the design space, the classification performance and the

power efficiency. The underlying algorithm is analysed, and key components for concur-

rent and parallel computation identified. Mappings of this to the heterogeneous platform

will be explored, ranging from a baseline CPU implementation to a full custom implemen-

tation maximising the use of the available resources. A set of metrics is considered for the

evaluation of the different configurations. In the end, we achieved object classifiers with

different characteristics running in two low-power devices. Analyses performed on the

implementations supported the reliability of compression a convolutional neural network

to fit on the target device, through the reduction of the precision of its calculations.
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Resumo

A classificação de objetos é um problema com grande relevância em visão por com-

putador, uma vez que pode ser integrada em um enorme conjunto de aplicações alvo, tais

como agricultura e segurança. No presente, existe um conjunto de soluções que resolvem

este problema, sendo que, as que possuem maior sucesso, dependem de redes neuronais.

As mais conhecidas são o GoogleNet, a AlexNet e o YOLO. No entanto, o seu proces-

samento subjacente requer plataformas de alta performance tais como GPUs, clusters de

CPUs ou ASICs customizados. Excluindo os ASICs, que tem um elevado custo, mas

são menos genéricos, elas tipicamente têm um elevado consumo energético e não são

adequadas a sistemas embebidos. No entanto, tem havido progresso em abordagens de

baixo consumo devido em parte aomercado dos smartphones e tablets, estando disponíveis

mixes de arquiteturas (CPUs eGPUs) com lógica reconfigurável (FPGAs). Neste trabalho,

propomos uma série de implementações de redes neuronais quantizadas em plataformas

híbridas, explorando completamente o espaço de design, a performance de classificação

e a eficiência energética. O algoritmo subjacente é analisado, e os componentes chave

para computação concorrente e paralela identificados. O mapeamento na plataforma foi

explorado, desde a implementação CPU base até uma completamente customizada que

maximiza o uso dos recursos disponíveis. Um conjunto de métricas é considerado para a

avaliação das diferentes configurações. No final, conseguimos classificadores de objetos

com diferentes características a correr em dois dispositivos de baixo consumo. As análises

realizadas às implementações suportaram a fiabilidade da compressão de redes neuronais

de convolução para caber nos dispostivos alvo, através da redução da precisão dos seus

parâmetros.
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1
Introduction

1.1 Motivation

In recent years, a wide range of solutions has proved to be suitable for applications

that depend on object classification due to the development of faster processing units and

reliability in the precision levels. Currently, the branch of deep learning, has generated

agreement between researchers as being the most effective, being possible to obtain pre-

cisions in the order of 85% [16] in some validation datasets. In fact, several aspects, as

for example, the availability of labelled data sets and powerful GPUs capable of process

trainings with those batches of images in practical times, are contributing to the highlight

of this branch. Methods such as the unsupervised clustering have not had so much focus

due to the dependence of other models to perform the classification of the objects [2].

The domain of Deep Learning, Convolutional Neural Networks (CNNs), makes use

of sets of filters, commonly referred as layers, in order to extract the features of the input

before proceeding with the classification. Increasing the number of layers to store more

object features, and thus get more precision, has problems associated. Among them, the

amount of space occupied in the storage unit by the network, the latency in accessing data

and the number of devices capable of processing them in real time. Therefore, to overcome

these restrictions, sophisticated devices like high-end GPUs or CPUs clusters are needed.

To sum up, the current state of the art in image processing algorithms has impressive

results but relies on substantial computation resources. Thus, embedded computer vision

applications have been limited due to low power and performance constraints.
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Object Classification on Low Power Heterogeneous Devices

One of the solutions to put this type of algorithms in embedded platforms is to per-

form a compression of the neural network parameters. A wide range of techniques such

as prunning [15], quantization [27], binarization [21] or a combination of a few of them

are presenting good results in reducing the size, while maintaining acceptable losses of

accuracy. Yet, in the particular case of final user critical applications, it becomes neces-

sary to analyse the trade-off between size and precision before launching, to avoid risky

situations.

In terms of hardware, new platforms that can accommodate these complex networks

are arising. Pushed by mobile consumer market devices, there is now a wider spectrum

of low power mixed solutions. These devices combine traditional architectures with Field

Programmables Gate Arrays (FPGAs) enabling high-performance embedded heteroge-

neous platforms. A design space exploration can be done to optimise the efficiency of the

algorithms targeting the best performance or the best low power performance.

1.2 Objectives

The objective of this work is to have low-power implementations of convolutional

neural networks (CNNs) suitable for image classification on embedded systems. To pursue

this wewill focus on heterogeneous platforms that combine low-power CPU+GPUs+FPGA.

Thiswill allow the exploration of a diverse solutions space and define trade-offs, to achieve

low-power embedded solutions for image classification.

1.3 Related Work

The constant growth of CNNs complexity increased the level of accuracy in object

classification. Consequently, there has been a limitation in the range of devices capable of

storing the networks. For that reason, the scientific community has been trying to reduce

the size occupied by CNNs. Of all possible methods, the related works that converge with

2



1. Introduction

this are the ones that address parameter binarisation and quantisation.

In [6], it was demonstrated that high precision parameters are redundant in achieving

acceptable values of confidence in object recognition. With only the quantisation of the

fully-connected layers, they lost 1% of accuracy rating when reducing the network size

in around 20%. These results were also supported by [22] when they explored CNNs for

mobile devices.

An even greater compression can be obtained through the binarisation of the network

weights and activations. In [19] they manage to reduce size while improving the speed

of computing the convolution layers. In the final, they achieved a network compression

in the order of 30%. Two state-of-the-art object classifiers were used as a test-bed of

the binarisation. The accuracy losses verified were about 20% higher than the quantised

versions. However, the space occupied by binarised networks makes them more suitable

for use in embedded devices.

Researchers had to use compression techniques to place well-known object detectors

in embedded devices, for example, a lightweight version of YOLOv2 [18] was imple-

mented on a similar target platform used in our work. They used a binarised Convo-

lutional Neural Network(CNN) [21] to extract features and Support Vector Regression

Machines(SVR) [5] for location and classification. The overall system was feasible, but

limited due to compromises. The resulting accuracy might not suit some critical applica-

tions. Above all, we could observe the versatility of one of the target devices our work in

the processing of complex networks.

Another attempt to apply the YOLO in embedded systems was done by [10] using

a NVIDIA Jetson-Tx2. They also needed to perform optimisation techniques, namely

Tucker decomposition [26] and 16-bit quantization. However, the version implemented is

already outdated due to the launch of new ones with more classes and precision.

CNNs network size is not the only factor that restricts the range of target platforms.

The high workload that this type of algorithms imposes on the processing units leads to

a large energy consumption. This can be a limiting factor not only on battery power em-

bedded systems, but also on big data centres where the total energy requirements become

3
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prohibitive. Therefore power efficiency of CNNs computations has been a hot topic of

research.

In [25], the authors explored FPGA implementations of CNNs to achieve better en-

ergy efficiency. Two CNN based object detectors were used to explore the design space

of a cluster of FPGAs. While they show significant gains in energy efficiency, the power

level of the more efficient solution is well suited for datacenters and not to embedded

solutions. Nevertheless, it has been shown that it is possible to minimise the energy con-

sumption of complex CNNs using custom circuits.

Recent heterogeneous platforms provide low power consumption and parallelisation

of critical parts. In [23], they exploit CNN implementations for the mobile phone mar-

ket, where there is a demand for applications that make little drainage on the batteries. A

simple object detector was implemented as a use case, obtaining a considerably low con-

sumption. The computational performance obtained was very limited, restricting its use

by complex CNNs. Yet, an object detector was implemented successfully, thus supporting

the development of this type of algorithms on low-power devices.

The series of works presented shows that there are trade-offs in the development of

CNNs between computational performance, size, power consumption and precision. For

each application, it is necessary to find a balance between these metrics.

Despite the growing demand for CNNs to use on embedded applications, there are

still tremendous difficulties in developing the algorithms for this type of devices. To over-

come this problem, in [21], they have created a framework that streamlines the devel-

opment of CNNs for embedded heterogeneous systems. The tool receives binary Caffe

models [8] as an input and then automatically generates bitstreams for the FPGA. Thus, it

is possible for people without hardware knowledge to be able to develop CNNs on low-

power solutions. Since Caffe can be a difficult tool for beginners to handle, a new branch

of the framework was created, the BNN-Pynq [21]. This new framework allows to explore

some examples of neural networks, perform trainings with quantised weights and synthe-

sise prefabricated overlays for target devices like the Xilinx Pynq or Xilinx ultra96 family

boards. However, it is not clear how to create new overlays for networks with different

configurations from the examples. This need to understand hardware in order to create

4
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new implementations distances software engineers from this tool, something that was not

its purpose. Another limitation is that it only allows the generation of solutions for two

specific target devices, a small range compared to the number of heterogeneous platforms

with reconfigurable logic on the market.

While there are limitations to the BNN-Pynq Framework, it is a good starting point

and we will use in our work, and build upon it to expand to more target platforms, in

our pursuit to explore the solution space for low power solutions for CNNs on embedded

systems.

1.4 Key Contributions

In summary, the key contributions are:

• Creation of a test bed Convolutional Neural Network;

• CNN training with 4 different types of weight and activation quantisations to clas-

sify among 10 object classes;

• Mappings of the networks on the Sundance VCS-1, a device that contains the zu4EV

as processing unit, and on the Pynq-Z2, a platform composed by the Zynq-7020.

• Comparison of the test bed CNN with different bit quantisations through metrics of

performance, power consumption, resources usage and accuracy;

• Benchmark the performance of the CPUs of the different target devices;

1.5 Overview of the Dissertation

Chapter 1 presented the motivation of this work, the main objectives, the related

works and key contributions to the scientific community from this dissertation. Then,

in chapter 2, it is explained the theoretical knowledge behind the work developed, more

specifically the operations involved with CNNs and the heterogeneous devices used. In

chapter 3, it is explored the work carried out and its details. In 4, the obtained results are
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evidenced. The analysis and discussion of the results is done in chapter 5. At the end, we

present the conclusions and possible future works that can come out from this one.

6



2
Background on Convolutional Neural

Networks and Heterogeneous Devices

Given the depth and extensiveness of this work, it is necessary to introduce some

concepts. Thus, the following sections explain the operations involved in convolutional

neural networks, the tools used to develop low-power solutions and the devices used in

this work.

2.1 Convolutional Neural Networks Operations

Convolutional Neural Networks(CNNs) were proprosed in late ’80s by [13], for an

application that performed character recognition in zip codes. More recently, classifica-

tions of images with more complex objects were obtained at low computing times in [12].

These networks are composed by several types of layers, each one of them having specific

functions such as feature extraction, scaling or classification. In this work, we will only

put in the hardware accelerators the convolutional layers, max-pool layers and the fully

connected layers, so for that reason, we will only make a brief explanation of those. Fur-

ther details of their operations can be found in [7]. Figure 2.1 shows as an example of a

CNN that classifies among 3 objects classes, composed of 3 convolutional layers, two of

max-pool and two fully-connected.

7
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Figure 2.1: Example of a convolution neural network.

2.1.1 Convolutional Layers

All convolution layers are composed by a determined number of filters, with the

same width and height. In other words, a layer can be observed in three dimensions, first

dimension for the width, second dimension for the height and the third for the number of

filters. The set of values that compose each point of this volume are obtained by training

the network. The filters that make up the layers slide along the input to extract the features

needed for the object classification. Each output pixel is obtained by the formula:

On(x,y) = fact

( C−1∑
c=0

H−1
2∑

h=−H−1
2

W−1
2∑

w=−W−1
2

I(x+ w,y + h,c)Kn(w,h)

)
, (2.1)

On(x,y) is the output pixel obtained by the convolution of the nth filter of the layer, Kn,

with the input image I. The number of channels in the input is represented by C, WxH are

the filter dimensions and fact corresponds to the activation function. More details of this

operation are shown in figure 2.2.

The convolution with stride occurs like the one previously seen, except for the dis-

placement of the filter. In this case, the filter does not slide contiguously, as show in

2.3.

In the first iteration, represented by the red colour, the first pixel is processed. In

the following iteration, represented by the green colour, the next pixel to the first one pro-

cessed is ignored and the next to it is computed. Thus, in the case depicted the convolution

window is moved two by two pixels, reducing the size of the output frame because of the

ignored pixels.
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2. Background on Convolutional Neural Networks and Heterogeneous Devices

Figure 2.2: Convolution operation between an input with C channels and a layer with
Kn filters. Represented the output of one of the filters.

Figure 2.3: Convolution operation with stride. The filter slides according to the
corresponding stride passed as input. In this example, from two by two pixels.

Convolution operations are an efficient method for the extraction of features in an

input. However, [3] evidence that convolution operations occupy over 90% of total system

computation. This leads us to focus attention on accelerating convolution layer operations

in hardware.

2.1.2 Max-pool Layer

Awindow slides over an input, with a specific stride, selecting the largest value of the

samples for output. Output size depends on factors such as stride and border ignorance.

Figure 2.4 shows the max-pooling of an 8x8 input frame by a 2x2 filter with a stride of 2.
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Figure 2.4: Maxpool operation with stride of 2 for an 8x8 input. It outputs a 4x4 frame.

2.1.3 Fully Connected Layer

Features of the objects are obtained after an input image passes through pooling and

convolution layers. It remains to make a comparison with the features of the classes that

the network was trained to classify. This operation is performed by the fully connected

layer.

2.2 Training Convolution Neural Networks

Important tomention that this research does not seek to improve the networks training

process. But, there is a need for correct weights to test the implementations, so the training

in [4] was followed. In this section, we will discuss the parameters that shaped the training

performed.

An epoch is the number of times that a set of samples propagate forward and back-

wards through the network.

The batch size specifies the number of samples that propagate through the network in

each forward and backward iteration during the training phase. The amount of images that

compose the data set needs to be divisible by the batch number, in order to avoid problems.

This parameter also has a dependence on the training device since larger batches require

more memory to accommodate the samples.

The loss function evaluates the current solution results against the true values.

10
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Learning rate restricts how much the network weights change according to the loss

function. For example, small values in this parameter cause fewer changes in weights over

the epochs. This variable is represented by alpha and in our model of training is not static

throughout the epochs. Therefore, it will suffer a decay according with a rule.

2.3 Hardware Development

2.3.1 Vivado High-Level Synthesis

The inability to depend on the clock frequency to decrease the computation time

of the programs triggered the manufacturers’ interest in launching products with parallel

processing. Thus, to take advantage of the devices, it is necessary to structure the programs

by the existing resources. Vivado HLS allows the creation of custom functions through

languages such as C and C++, to facilitate access to the heterogeneous components and

interfaces of Xilinx devices. In addition, it also contains several libraries with widely used

functions.

2.3.2 Xilinx Modules

Xilinx provides their users with functions that optimise access to the resources of its

FPGAs. They are called IPs and allow to substantially reduce the development time of

solutions. There are several types of it, each with different purposes. In any case, we will

only address those that were used in the final implementation.

Processor System Reset Module IP provides specific reset signals for each system

module. Therefore, it is very useful to control modules with different activity times.

The Processing System 7 component makes a logical connection between the on-chip

and off-chip parts of the device. Thus, allowing to map solutions between devices with

traditional architectures and reconfigurable logic.

Axi Interconnect performs the exchange of information between master and slave
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memory-mapped devices.

2.4 QuantizedNeural Networks (QNNs) onReconfigurable

Logic

As said in 1.1, the state of the art in image classification uses CNNs with millions of

floating point parameters. However, in [6] it has been demonstrated that high precision in

these elements is redundant and its elimination does not affect significantly the classifica-

tion. So, the quantisation of these parameters can be achieved through trade-offs between

precision and size of the weights/activations, opening the spectrum of target platforms for

these solutions, ranging from traditional architectures to full custom designs.

In the scope of hardware designs, despite the advantages described above, there is

still a huge difficulty to implement CNNs on this type of devices by developers. Thus,

because of this lack of solutions to assist the developers in this branch of deep learning

that targets embedded solutions, the BNN-Pynq framework [21] was created. This engine

supports the mapping of quantised convolution layers, pooling layers and dense layers in

hardware specific solutions. It was built on top of the Vivado HLS, thus making use of its

functions. Fig. 2.1 shows the possibles quantisations of the layers weights and activations

in the Framework. The abbreviations next to the quantisations are used throughout the

work to refer to those bit specifications.

Nomenclature Weight Activation
w1a1 1-bit 1-bit
w1a2 1-bit 2-bit
w2a1 2-bit 1-bit
w2a2 2-bit 2-bit

Table 2.1: Possible combinations of quantisations between the layer weights and
activations in the BNN-Pynq Framework [21].
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2.4.1 Data Flow

The configured logic circuit uses a tailored engine for each layer to meet its require-

ments, instead of an entire network processing structure with control mechanisms. These

two CNN implementation philosophies contain quite a few differences. First of all, the

pipelined system allows the entry of a new image as soon as the first engine finishes pro-

cessing the previous image. On the other hand, a fixed system only allows one image to

be processed at a time, obtaining lower throughput than the previous mentioned architec-

ture. Another difference, resides in the number of processing units of the layers, being

a suited number for each layer in the pipelined architecture and a generic number in the

fixed architecture.

In the adopted approach, different layer processing units communicate through data

streams. The convolution parameters have its parameters stored on the on-chip side of

the device to reduce the latency in memory accesses. Figure 2.5 shows the interactions

between the different parts of the device and intra-engine operations.

Figure 2.5: Heterogeneous streaming [21].
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2.4.2 Layer-Specific Processing Engine

The previously spoken layer processing units are referred to as the Matrix-Vector-

Threshold Unit(MVTU). Each one of them contains an input and output buffer, an array

of processing elements(PEs) and its respective number of Simple Instruction Multiple

Data(SIMDs). The developer defines the number of PE and SIMDs in function of the

desired throughput. The PEs are made up of a datapath, all of which receive the same

amount of data and flow control signals. The figure 2.6 exemplifies the operation of the

MVTUs.

Figure 2.6: An array of PEs that constitute an engine doing the processing of SIMDs
[21].

2.4.3 Methodology for Developing a Classifier

A set of actions need to be followed in order to generate a model of a classifier for

the device that contains an FPGA, using the BNN-Pynq Framework. Figure 2.7 contains

the work flow and the parts involved in this process. First, the convolution network is

trained with the target bit quantisation in Theano [20]. Then, the ”finnthesizer” partitions

the parameters according to the number of PEs and SIMDs defined. The architecture

is then meticulously detailed through the HLS pragmas and thus producing the input to

the synthesizer. In the end, the Xilinx Vivado tool uses the FINN hardware library and

generates the bitfile for the heterogeneous device.
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Figure 2.7: Generating a FPGA accelerator from a trained BNN [21].

2.5 Target Devices

Image processing has a strong dependence with the resources available in the target

device. Therefore, in order to exploit the space of possible solutions in object classifi-

cation, heterogeneous platforms are required. They combine different architectures with

reconfigurable logic through fast communication lines, allowing to avoid bottlenecks in

memory accesses. The great flexibility of heterogeneous devices in the mapping of ap-

plications is the key reason they are gaining great relevance in the market. For instance,

Intel expects until 2020 to have 30% of FPGAs in its data centres [1].

Xilinx has products like the Zynq UltraScale + MPSoC and Zynq-7000 SoC families

that have enough resources to overcome the restrictions imposed by CNNs algorithms. So,

in this work, we are going to target the Pynq-Z2 and the Sundance VCS-1 boards as these

devices are low power and heterogeneous. Although these boards have FPGAs that come

from very close families, there is some divergence between its resources. A set of metrics

served to compare the results obtained in each of the devices and to recognise which is the

most versatile for embedded applications.

2.5.1 Pynq-Z2 Board

This device contains the heterogeneous ZYNQ XC7Z020-1CLG400C which is part

of the Zynq-7020 SoC family. It has a dual-core Cortex-A9 processor with maximum

2Ghz of clock speed, 512MB of DDR3 memory and around 85K of logic cells. The com-

munication between the on-chip and the off-chip modules is performed by 4 high perfor-
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mance AXI3 Slave ports. Figures 2.8 and 2.9 shows more details of the main components

of the processing device and the device, respectively.

Figure 2.8: Main Components of the ZYNQ XC7Z020-1CLG400C Heterogeneous
Device [24].

Figure 2.9: Pynq-Z2 Board.

2.5.2 Sundace VCS-1

The Sundance VCS-1 contains a Zynq UltraScale 4EV FPGA (zu4EV) with 192K

logic cells, a quad-core Arm Cortex-A53 with a clock frequency up to 1,5Ghz, a dual-core

ArmCortex-R5with a clock frequency up to 600Mhz and aGPUMali-400with two cores.

This range of different computational units allows applications to benefit from different

performances and power consumptions depending on the resources in use. The power

consumption ranges between 2-24W, which enables to fine tune optimal implementations
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for embedded applications.

Figure 2.10: Main components of the Zynq heterogeneous device [24].

An external power consumption meter is connected between the heterogeneous pro-

cessing device and the power supply for collecting consumption profiles. This tool pro-

vides useful data for the development of applications with low power requirements. In the

figure 2.11, is shown the connections between the different devices and their interfaces

with the development tools.

Figure 2.11: Physical connections and interfaces between devices[17].

In brief, the Zynq MPSoC is a deeply versatile device capable of achieve high-

performance using specialised, customised and optimised combination of traditionalmeth-
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ods. Figure 2.12 shows an image of the device.

Figure 2.12: Sundance VCS-1 board.

2.6 Power Profiles

Previously it was seen that the SundanceVCS-1 allows to collect the power consumed

by the processing units, but it remains unclear how the developer will access the profile

logs. The Tulipp tool chain [9] will be used as the interface of the external consumer meter.

Thus, this analysis tool facilitates to perceive each resource of the target device being used

and to proceed with different mappings of an application in order to meet the low power

requirements. Figure 2.13 shows the example of a consumption profile extracted in a

computer vision application with multiple filters.

Figure 2.13: Consumption profile of an computer vision application.
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3
Our Implementation of CNNs

on Low Power Devices

In this chapter, we will cover the work developed starting on the definition of the

testbed CNN, followed by the training of its multiple quantisations and, in the end, the

synthesis of the designs to place on the target devices.

3.1 CNN Configuration

As a starting point, the layers that composed the test bed network used to benchmark

the devices were defined. Table 3.1 shows the details of each layer of the network.

Type of Layer Input size Output Size Number of Filters Filter Size Pad Stride Ignore Border
Convolution 1 32x32 30x30 32 3x3 0 1 True
Convolution 2 30x30 28x28 64 3x3 0 1 True
Maxpool 3 28x28 14x14 ————– 2x2 0 1 False

Convolution 5 14x14 12x12 128 3x3 0 1 True
Convolution 6 12x12 10x10 128 3x3 0 1 True
Maxpool 7 10x10 5x5 ————– 2x2 0 1 False

Convolution 8 5x5 3x3 256 3x3 0 1 True
Dense Layer 9 256 channels 512 channels ————– ——- – — ———–
Dense Layer 10 512 channels 512 channels ————– ——- – — ———–
Dense Layer 11 512 channels 10 channels ————– ——- – — ———–

Table 3.1: Compositions of the CNN selected as test bed.

The extraction of features is performed by the convolution layers on three different

scales. The transition of scales is done through pooling layers. In the last scale, only

one convolution layer is used due to the small resolution of the image at that time of the

computation. The final three layers deal with the classification.
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Figure 3.1 illustrates the operation of the system. The data flow between the fea-

tures extraction and classification blocks remains unchanged in the full CPU and custom

versions.

Figure 3.1: System high level architecture.

3.2 CNN Offline Training

In the past, it was proven the inefficacy on performing a normal training, and the

subsequent quantisation of the weights and activations to reduce the size of the network.

For that reason, a tailored training was performed with the specified bits for each case of

the network quantisation. Thus, a more objective approach to achieve the final parameters

was developed rather than randomly cut bits.

The created network was trained to detect between 10 classes using the CIFAR-10

dataset [11]. The training parameters were placed equal to those of the example in the

framework [4], because this research is not focused on neural network training optimi-

sations. In the table 3.2 is shown the details of the training developed for the different

quantisations.

The trainings were executed during 500 epochs and each class used 5000 images. More

specifically, 4500 images were used for training and the remaining 500 for precision mea-
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on Low Power Devices

Number of Epochs 500
Batch Size 50
Alpha 0.1
Epsilon 1e-4

LR Decay
(

1∗10−7

1∗10−3

) 1
N_Epochs

Train Set Size 45000
Validation Set Size 5000
Loss Function Squared Hinge Loss

Table 3.2: Target convolution neural network training parameters.

surement. Thus, all available images in the data set were used during the training. Figure

3.2 shows sample images of each class of the data set. The learning rate(LR)was decreased

linearly at each epoch causing less updating on weights over time. The loss function used

was the squared hinge loss, its details are available in [14].

Figure 3.2: Example images of the Cifar-10 classes.

3.3 Customising the Layer Processing Engines

The designated end system, represented in figure 3.3, is composed by the tailored

layer processing engines integrated with several Xilinx IPs. The modules in blue repre-

sent the IPs of Xilinx, orange represents the processing unit of the layers and green the

flow of data between the components. These IPs were created by the manufacturer to al-

low the custom made logic circuits to have access to the resources available in the target

device. BlackBoxJam_0 was created using the HLS hardware description language. In

this block, the weights and activations of the CNN layers are initialised. Then, its respec-
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tive calculation structures are created and connected by the previously defined order of

layers in the network.

Figure 3.3: System high level architecture.

3.4 Port Mapping to zu4EV

The target processing devices have different resources, so for that reason, the I/O

and memory mappings have divergences. In order to be able to synthesise the design, the

platforms ports were switched with the information collected in its respective data sheets.

Table 3.3 shows the pin changes made to pass the design from the Pynq-z2 to Sundance

VCS-1.

Pin on Zynq-7020 Pin on zu4EV
G5 A15
F6 A14
A6 L13
C7 E15
A7 H13
B6 K14
G6 B15
C5 F13
B7 L14
B5 J14

Table 3.3: Pin mapping between the designs of the Zynq-7020 and the zu4EV.
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4
Results

In this chapter, the results are presented. First, the errors in the object classification of

the different networkweight quantisations are exposed. Then the resources occupied in the

target devices by the networks are explored. In the end, is showed the computation times,

the throughput and power consumption of each network quantisation on the embedded

platforms.

4.1 Training Error

The values in table 4.1 were obtained on processing different batches of samples

from those used in the training operation. Therefore, it was intended not to influence the

error function with biased validations. Network trainings with different quantisations were

performed offline on a bench top computer with the graphical card NVIDIA geforce 750

TI.

w1a1 w1a2 w2a1 w2a2
Test Error Rate 19.54 % 15.96 % 16.96 % 13.90 %

Table 4.1: Test error rate of the chosen CNN with Different weigth/activation
quantisations. More information about the nomenclature used can be found in table 2.1.
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4.2 Pynq-Z2 Resource Mappings

In this section, the resources occupied by each quantisation version in the Pynq-Z2

are evidenced. This low-cost platform features the Zynq-7020 heterogeneous device. The

resources that composed this target device are programmable matrices, memory and com-

munication buffers.

4.2.1 Network with 1-bit Weight and 1-bit Activation

Table 4.2 shows the convolution neural network synthesis report with quantisation

of 1-bit weight and 1-bit activation in the Zynq-7020. The available design space was

enough to accommodate the digital circuit. Block Ram Tiles and LUTS are the resources

with the highest occupancy rate.

Site Type Used Available Utilisation %
Slice LUTs 27267 53200 51.25
LUT as Logic 22706 53200 42.68
LUT as Memory 4561 17400 26.21
Slice Registers 40118 106400 37.70
Registers as Flip Flop 40118 106400 37.70
Registers as Latch 0 106400 0.0
F7 Muxes 868 26600 3.26
F8 Muxes 69 13300 0.52
Block RAM Tile 105.5 140 75.36
RAMB36/FIFO 76 140 54.29
RAMB18 59 280 21.05
DSPs 24 220 10.91

Table 4.2: Resources used by the quantised neural network with 1-bits weight and 1-bits
activation in the Pynq-Z2 device.

4.2.2 Network with 1-bit Weight and 2-bit Activation

Table 4.3 shows the convolution neural network synthesis report with quantisation

of 1-bit weight and 2-bit activation in the Zynq-7020. The available design space was
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enough to accommodate the digital circuit. Again, Block Ram Tiles and LUTS are the

resources with the highest occupancy rate.

Site Type Used Available Utilisation %
Slice LUTs 39565 53200 74.37
LUT as Logic 32514 53200 61.12
LUT as Memory 7051 17400 40.52
Slice Registers 56990 106400 53.56
Registers as Flip Flop 56990 106400 53.56
Registers as Latch 0 106400 0.0
F7 Muxes 1709 26600 6.42
F8 Muxes 138 13300 1.04
Block RAM Tile 110.5 140 78.93
RAMB36/FIFO 86 140 61.43
RAMB18 49 280 17.50
DSPs 26 220 11.82

Table 4.3: Resources used by the quantised neural network with 1-bits weight and 2-bits
activation in the Pynq-Z2 device.

4.2.3 Network with 2-bit Weight and 1-bit Activation

Table 4.4 shows the convolution neural network synthesis report with quantisation

of 2-bit weight and 1-bit activation in the Zynq-7020. The available design space was

enough to accommodate the digital circuit. Block Ram Tiles and LUTS are the resources

with the highest occupancy rate, as expected.

4.2.4 Network with 2-bit Weight and 2-bit Activation

Table 4.5 shows the convolution neural network synthesis report with quantisation

of 2-bit weight and 2-bit activation in the Zynq-7020. The available design space was

enough to accommodate the digital circuit. Block Ram Tiles, RAMB36/FIFO and LUTS

are the resources with the highest occupancy rate. In particular, the RAMB36/FIFO was

fully utilised by this network quantisation.
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Site Type Used Available Utilisation %
Slice LUTs 35681 53200 67.07
LUT as Logic 30743 53200 57.79
LUT as Memory 4938 17400 28.38
Slice Registers 47805 106400 44.93
Registers as Flip Flop 47805 106400 44.93
Registers as Latch 0 106400 0.0
F7 Muxes 1709 26600 6.42
F8 Muxes 138 13300 1.04
Block RAM Tile 107.5 140 76.79
RAMB36/FIFO 86 140 61.43
RAMB18 43 280 15.36
DSPs 26 220 11.82

Table 4.4: Resources used by the quantised neural network with 2-bits weight and 1-bits
activation in the Pynq-Z2 device.

Site Type Used Available Utilisation %
Slice LUTs 37890 53200 71.22
LUT as Logic 27442 53200 51.58
LUT as Memory 10448 17400 60.05
Slice Registers 48958 106400 46.01
Registers as Flip Flop 48958 106400 46.01
Registers as Latch 0 106400 0.0
F7 Muxes 4474 26600 16.82
F8 Muxes 1676 13300 12.60
Block RAM Tile 140 140 100.00
RAMB36/FIFO 140 140 100.00
RAMB18 0 280 0.0
DSPs 32 220 14.55

Table 4.5: Resources used by the quantised neural network with 2-bits weight and 2-bits
activation in the Pynq-Z2 device.

4.3 Sundance VCS-1 Resource Mappings

This platform is composed by the heterogeneous processing device ZynqUltraScale+ZU4EV-

1E. It is important to notice that its resources are different from those presented in 4.2.

26



4. Results

4.3.1 Network with 1-bit Weight and 1-bit Activation

Table 4.6 shows the convolution neural network synthesis report with quantisation of

1-bit weight and 1-bit activation in the ZU4EV-1E. The available design space was enough

to accommodate the digital circuit. In terms of designmappings, the reprogrammable logic

units were occupied in less than half, and the most used resources were the Block RAM

tiles and the RAMB36/FIFO.

Site Type Used Available Utilisation %
CLB LUTs 25975 87840 29.57
LUT as Logic 23347 87840 26.58
LUT as Memory 2628 57600 4.56
CLB Registers 39257 175680 22.40
Registers as Flip Flop 39357 175680 22.40
Registers as Latch 0 175680 0.0
CARRY8 1331 14640 9.09
F7 Muxes 822 58560 1.40
F8 Muxes 240 29280 0.82
F9 Muxes 0 14640 0.0
Block RAM TILE 105.5 128 82.42
RAMB36/FIFO 76 128 59.38
RAMB18 59 256 23.05
DSPs 24 728 3.30

Table 4.6: Resources used by the quantised neural network with 1-bits weight and 1-bits
activation in the zu4EV device.

4.3.2 Network with 1-bit Weight and 2-bit Activation

Table 4.7 shows the convolution neural network synthesis report with quantisation

of 1-bit weight and 2-bit activation in the ZU4EV-1E. The available design space was

enough to accommodate the digital circuit, and the resources were filled at a similar rate

as the previous one.
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Site Type Used Available Utilisation %
CLB LUTs 38321 87840 43.63
LUT as Logic 34797 87840 39.61
LUT as Memory 3524 57600 6.12
CLB Registers 55138 175680 31.39
Registers as Flip Flop 55138 175680 31.39
Registers as Latch 0 175680 0.0
CARRY8 1381 14640 9.43
F7 Muxes 1611 58560 2.75
F8 Muxes 480 29280 1.64
F9 Muxes 0 14640 0.0
Block RAM TILE 110.5 128 86.33
RAMB36/FIFO 86 128 67.19
RAMB18 49 256 19.14
DSPs 26 728 3.57

Table 4.7: Resources used by the quantised neural network with 1-bits weight and 2-bits
activation in the zu4EV device.

4.3.3 Network with 2-bit Weight and 1-bit Activation

Table 4.8 shows the convolution neural network synthesis report with quantisation of

1-bit weight and 1-bit activation in the zu4EV-1E. The available design space was enough

to accommodate the digital circuit.

Site Type Used Available Utilisation %
CLB LUTs 35263 87840 40.14
LUT as Logic 32183 87840 36.64
LUT as Memory 3080 57600 5.35
CLB Registers 44655 175680 25.42
Registers as Flip Flop 44655 175680 25.42
Registers as Latch 0 175680 0.0
CARRY8 1313 14640 8.97
F7 Muxes 1614 58560 2.76
F8 Muxes 480 29280 1.64
F9 Muxes 0 14640 0.0
Block RAM TILE 107.5 128 83.98
RAMB36/FIFO 86 128 67.19
RAMB18 43 256 16.80
DSPs 26 728 3.57

Table 4.8: Resources used by the quantised neural network with 1-bits weight and 2-bits
activation in the zu4EV device.
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4.3.4 Network with 2-bit Weight and 2-bit Activation

This version presented errors during the synthesis of the digital circuit. More specif-

ically, the project requires more RAMB36/FIFO than the existing ones. In other words,

there is not enough UltraRam memory in the target device to place the project. We came

across by a very common design constraint in the development of embedded systems, that

is the device does not has enough memory to accommodate the project.

4.4 Processing Benchmarks

In the scope of the performance, the metrics used for comparison were the number of

frames per second(FPS) computed. Tables 4.9 and 4.10 evidence the computation times

of the different network quantisations, in the CPU and recofigurable logic of the device

Zynq-7020, respectively. Table 4.11 shows the processing times of the quantised networks

in the CPU of the zu4EV.

w1a1 w1a2 w2a1 w2a2
Inference per Image 1172985 us 4257559 us 4266916 us 7221958 us
Classification Rate 0.85 FPS 0.23 FPS 0.23 FPS 0.13 FPS

Table 4.9: Computation Times of the CPU in the Zynq-7020.

w1a1 w1a2 w2a1 w2a2
Inference per Image 3934 us 3981 us 3980 us 5837 us
Classification Rate 254.19 FPS 251.19 FPS 251.26 FPS 171.32 FPS

Table 4.10: Computation times of the customised circuit in the Zynq-7020.

w1a1 w1a2 w2a1 w2a2
Inference per Image 298278 us 2004327 us 1981726 us —
Classification Rate 3.35 FPS 0.50 FPS 0.50 FPS —

Table 4.11: Computation times of the CPU in the zu4EV.

An attempt was made to place the generated bitstreams of the network quantisations

on the reconfigurable logic of the zu4EV , but there were problems with a driver. The
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mismatch was generated due to incompatibilities in the image kernels. A custom boot

image for the device would be necessary to allow run the implementations.

4.5 System Latency

Table 4.12 shows the number of operations of the different layers and its latency in

each quantisation on the Pynq-Z2.

Latency
W=1 and A=1

Latency
W=1 and A=2

Latency
W=2 and A=1

Latency
W=2 and A=2 Nº Operations

Convolution 1 16200 us 16200 us 16200 us 32400 us 1555200
Convolution 2 14112 us 14112 us 14112 us 56448 us 28901376
Convolution 3 20736 us 20736 us 20736 us 82944 us 21233664
Convolution 4 28800 us 28800 us 28800 us 115200 us 29491200
Convolution 5 20736 us 20736 us 20736 us 82944 us 5308416
Dense Layer 1 294912 us 294912 us 294192 us 294912 us 2359296
Dense Layer 2 32769 us 32758 us 32768 us 32769 us 524288
Dense Layer 3 8192 us 8192 us 8192 us 8192 us 65536

Table 4.12: Throughput and number of Operations of the different weight/activation
configurations of the CNN in the target devices.

4.6 Power Consumption

While the VCS-1 board has an external consumption meter, it only worked in sync

with custom hardware targeting the specific systems. Sincewe tested and ported the design

across platforms, we had to use an estimator to get power profile logs of the two target

devices for comparison. Otherwise, we would not have intel about the power consumption

of the Pynq-Z2 and the VCS-1. We used an official tool, the Xilinx Power Estimator

(XPE), to get approximated values about the power consumption. Figure 4.1 shows the

consumption obtained for each network quantisation in the diferent boards.
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4. Results

Figure 4.1: Estimated power consumption of the System-on-Chip(SoC) in the target
devices.
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5
Analysis and Discussion

In this chapter, we explore the results presented in several ways, since metric calcu-

lations to trade-off graphs.

Observing the errors of the different quantisations in table 4.1, we verified that there

is a dependence between the number of bits and the errors in the classification. The w1a2

configuration presents less error than the w2a1, but we can’t infer that the precision in

the activations influences more the classification than the layers since the validation test

is limited.

Table 5.1 presents the speedup between the performances recorded in tables 4.9 and

4.10. The speedup is a quite significant being of greater magnitude in the configurations

w1a2, w2a1 and w2a2.

w1a1 w2a1 w1a2 w2a2
SpeedUp 299 1092.13 1092.23 1317.85

Table 5.1: Speedup between hardware and software computation of the Zynq-7020.

Regarding the CPUs of the different devices, we can observe better computation per-

formance on the Arm Cortex-A5 of the zu4EV. The processor with better results was re-

leased a few years after the beginning of the tablets and smartphones era, while the other

has come out at the beginning. Thus, on that processor, a higher clock frequency and

lower L2 cache access latency can be achieved, influencing the final performance on our

test bed CNN.

Table 4.12 contains the number of operations and latency of each layer at the differ-

ent quantisations. The number of operations of all quantised networks does not diverge,

33



Object Classification on Low Power Heterogeneous Devices

something expected since the layers are the same. Regarding latency, it is the same in all

dense layers. In the convolution layers, latency is the same for w1a1, w2a1 and w1a2

configurations. However, for the heavyweight version, the latency is higher than in the

others due to the existence of bottlenecks in accessing that amount of data. It is also pos-

sible to decrease latency by optimising the number of processing engines of each layer.

Thus, a higher throughput can be achieved.

Data about the power consumption of the SoC was obtained using a Xilinx official

estimator, and its values are showed in figure 4.1. Estimators can work to get fast insight

during prototyping, but they are limited in terms of precision. In this case, the tool used

was developed by the manufacturer, which gives more confidence in the inferred data.

About the Pynq-Z2, the heavyweight version had the highest power consumption. Further

conclusions about the other quantisations were not possible since the values of its logs are

very similar. The results of the quantisations in VCS-1 are inconclusive due to the same

fact. However, we could observe higher power consumption in the Pynq-Z2 compared to

the last mentioned device. The tool only estimated the power consumed for the SoC of

the device, so it is expected that the complete system has higher values.

In the analysis of the resources tables, we were able to draw some conclusions. First

of all, that themost used resourses by the networks were the LUTs and the RAMB36/FIFO.

Particularly, in the w2a2 configuration the RAMB36/FIFO was pushed to the limit with a

full occupation. It is also important to note that the w1a2 version occupies more memory

LUTs than the others. Secondly, there are no significant variations between the remaining

resources in different quantisations.

In figure 5.1, we observe that the increase in the number of bits of the weights and ac-

tivations is associated with better classification accuracy. Consequently, the digital circuit

uses more LUTs. This behaviour in the project synthesis was expected a priori. However,

version w1a2 uses more device resources than w2a2. We believe this happened due to

the ineffective partitioning of the instructions into the layers processing engines(PEs). In

this case, we created some redundant processing units, causing the computation of a fewer

number of instructions for each one of them.
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5. Analysis and Discussion

Figure 5.1: Test error rate of the different quantisations with its respective LUT
ocupation on the Zynq-7020.

Table 5.2 shows the performance of the quantised networks as a function of FPGA

LUTs occupancy running on the CPU. There was a performance degradation of around

60% between version w1a1 and the others. However, the best version does not even

achieve 1 FPS. Therefore, the obtained processing time in this board is not suitable for

real-time applications.

Figure 5.2: LUT occupation with its respective performance Off-Chip on the
Zynq-7020.
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Table 5.3 shows similar performances between the networks with the quantisations

w1a1, w2a1 and w1a2. Regarding w2a2, there were performance losses of nearly 100

FPS. The occupation of LUTs had already been seen previously, but the table was designed

to show the trade-off.

Figure 5.3: LUT occupation with its respective performance On-Chip on the Zynq-7020.

In 5.4, we find that the quantisation w1a1 has less processing time, but consequently

more classification error. The w2a2 configuration has less error, although worse perfor-

mance. The quantisated networks w1a2 and w2a1 have similar performances and similar

classification errors. It is corroborated that the CPU version has very low computation

performances.
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Figure 5.4: Test error rate of the different quantisations with its performance respective
Off-Chip on the Zynq-7020.

Observing 5.5, it is possible to verify that the networks w2a1 and w1a2 have similar

validation errors and computation times. The quantisation w1a1 presents a computation

performance similar to w2a1 and w1a2, but the error is more substantial. Finally, w2a2

presents the lowest validation error, yet it has the lowest processing time of all quantisa-

tions.

Figure 5.5: Test error rate of the different quantisations with its respective performance
On-Chip on the Zynq-7020.

37



Object Classification on Low Power Heterogeneous Devices

The target devices present a quite number of differences, despite being from very

close families. First, the basic logical units are different, in the Pynq-Z2 are the Lookup

tables(LUTs) and in the Zu4EV are the Configurable Logic Blocks (CLBs). The last

mentioned basic unit is composed of LUTs, Flip-Flops and Cascadable adders. Its num-

ber is also different, with zu4EV having more design resources. Second, the number of

RAMB36/FIFO did not allow the synthesis of the quantisationw2a2 in the zu4EV. For the

Pynq-Z2 device, it was possible to perform the design synthesis. However, the resource

that the w2a2 network could not fit in the zu4EV was pushed to the limit in the Pynq-z2.

Also, the computation times of its respective CPUs were slightly different. Because of this

differences, the previous analysis made for the zynq-7020 was done too for the zu4EV.

Table 5.6 shows a lower percentage of resource utilisation compared to the previous

analysed device for the same values of precision. Thew1a1, the most lightweight version,

had a degradation in the error of 5 per cent compared to the best version in this device.

The quantisations inw2a1 andw1a2 present similar resource occupancy and classification

errors.

Figure 5.6: Test error rate of the different quantisations with its respective CLB LUT
ocupation on the zu4EV..

The relation between the error of the quantisations and its computational performance

in the zu4EV can be observed in table 5.7. Better processing times were obtained on this

device, and for instance, in the version w1a1, it has exceeded 3 FPS. The versions with
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5. Analysis and Discussion

the symmetric quantisations continued to show equal computation times, despite being on

a different CPU.

Figure 5.7: LUT occupation with its respective performance Off-Chip on the zu4EV.

As for table 5.8, we verified that there is dependence between the occupancy of the

target device and the computation time. Therefore, the quantisation in w1a1 shows the best

trade-off between size and performance. Although, it loses on classification accuracy.

Figure 5.8: CLB LUTs occupation with its respective performance Off-Chip on the
zu4EV.
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6
Conclusions and Future Work

In the early stages of our work, for different bit quantisations, it was performed the

training of the network. When analysing the values in the test error, we considered that

they were quite low for the number of bits used. In terms of error comparison among the

different quantisations, there is no abysmal distinction between the lightweight and heavier

versions. The versions w2a1 and w1a2 present similar errors, invalidating any possible

conclusion regarding the part of the layer that has more influence on the accuracy of the

network. We believe that these precision values were inflated by the easy identification of

the classes in the images used for validation test, and in a real situation, the errors would

be greater than the obtained ones. The false assumption about the veracity of the error

obtained in the evaluation is commonly made in machine learning.

The resources analysis of the different devices proved the existence of divergences in

the families of products. The disparity in resources ranges from the basic logical unit to the

types of CPUs. Zu4EV has around 30000 more programmable arrays than the Zynq-7020.

However, it has fewer RAMB36/FIFOs, a critical resource in the design of the test bed

network that was fulfilled on Zynq-7020 and on zu4EVwas not satisfied in the heavier ver-

sion of the quantisations. Project planning may be essential in order to choose the device

with the resources that best suit each application. In particular, for designs where a lot of

processing engines are needed, the zu4EV is more suitable. Thus, more reprogrammable

matrices are available. In contrast, for applications where there is a lot of dependence

on the input data, Pynq-Z2 is better suited because it has more UltraRam, manifesting in

less latency in memory accesses. Regarding embedded solutions, Sundance VCS-1 is a

complete development tool due to the ability to collect consumption profiles that allows
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to fine tune each resource. In the Pynq-Z2 it can only be estimated with underlying errors.

Above all, device prices are considerably different, about a few hundred for Pynq-Z2 and

a few thousand for Sundance VCS-1. Thus, prototyping planning can save a few thousand

euros, depending on the final user application.

Despite the successful synthesis of some bitstreams for the zu4EV, driver incompat-

ibilities have been encountered. Cause of that, the processing of the test bed CNN on the

System-on-Chip of the board was disabled. The Xilinx IPs continue to have hidden fea-

tures that make it difficult to readjust designs between different devices. Therefore, we

came across a barrier between prototyping and the final solution. This particular problem

causes delays and adds costs to projects.

The processing times of the custom circuit were colossally different from those of the

CPU, in the Pynq-Z2. Nevertheless, there is no implication that all solutions have to be

made in hardware due to the greater time-to-market and the limitation of persons able to

develop this type of projects. The relationship between the performances of the different

quantisationswas very similar in the different applicationmappings. Analysing the several

metrics used, the quantised version in w2a1 was the one that found the greatest balance

between performance, error and resource utilisation in the Pynq-Z2. In the particular case

of the Sundance VCS-1,w1a1 achieved a better equilibrium between the metrics in scope.

In the end, it has been shown, that with simple quantised convolution neural networks,

levels of accuracy suitable for applications that rely on object classification can be ob-

tained. As for heterogeneous devices, great flexibility in the mappings of applications al-

lowed us to target embedded systems. Although energy consumption was not thoroughly

explored, we have successfully addressed the trade-offs between accuracy, resources and

processing performance.

The work carried out gave origin to conference submissions. In particular, one short

paper on the proposed work and one live demo were accepted. Further details about the

articles can be consulted in the attachments of this work.

Embedded solutions can be deeper explored starting with the results from this work.

The first logical step to take is to change the necessary driver to run the generated bit-
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streams in the zu4EV SoC. Once this is complete, it is possible to collect the real con-

sumption profiles of the test bed convolution neural networks. Thus, allowing to study

new compromises, for example between the number of operations of the layers and the

energy consumption, among others.

Lower latency, higher throughput, or less target device occupancy, can be obtained

through the optimisation of the number of customised layer processing engines. The cus-

tomisation of the engines is a mean to reach new values in the metrics used.

It also would be important to place the classifier in a real application, for example,

in a camera on top of a mobile robot, to test it with different images of those used on the

test set. Thus, the reliability of the classifier would be verified for its integration in real

applications.

In our work, we only trained the different network quantisations to classify between

10 classes. Nevertheless, it would be interesting to train the network to detect other objects,

so the applications of the classifier are not so limited.
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1 YOLOv3 object detector: exploring energy
efficient implementations on Reconfigurable Logic

Bruno Oliveira, ISR-UC and Jorge Lobo, ISR-UC

1.1 Abstract

Object detection and classification is a problem with great rel-
evance in computer vision, since it enables a wide range of target
applications, such as robot navigation and security. At present, there
are a set of solutions that solve this problem, the most successful
relying on neural networks. Among the best known are GoogleNet,
AlexNet and YOLO. However, the underlying processing requires
high performing computational platforms such as GPUs, CPU clus-
ters, or custom ASICs. Apart from ASICs, that can be lower power
but need to be custom made with a high cost, they are typically high
power and not well suited for embedded systems. However there has
been some progress in low power approaches, driven in part by the
smart phone and tablet market, and heterogeneous platforms are now
available that explore a mix of architectures (CPUs and GPUs) and
reconfigurable logic. In this work we propose an implementation of
a state-of-the-art object detector, Yolov3, on a hybrid platform for
use in a wide range of applications, thoroughly exploring the design
space targeting power efficiency and detection performance. The un-
derlying algorithm is analysed, and key components for concurrent
and parallel computation identified. Mappings of this to the het-
erogeneous platform will be explored, ranging from a baseline CPU
implementation to a full custom implementation maximising the use
of the available resources. A set of metrics is considered for the eval-
uation of the different configurations.

1.2 Introduction

Embedded computer vision applications have been somewhat limited due
to low power and performance constraints. The current state-of-the art in im-
age processing algorithms, namely in object detection and classification, has
impressive results, but rely on substantial computation resources.

Pushed by the mobile device consumer market, there is now a wider
spectrum of low power solutions of CPU+GPUs, that combined with FPGAs
enable low power heterogeneous platforms. On these platforms, design space
exploration can be done to optimise the algorithms efficiency.

In this work, we will pursue an implementation of YOLOv3 [6] on a
Multi-Processor System on Chip (MPSoC)+Zynq UltraScale, shown in figure 1.

YOLO (You Only Look Once) is a open source state-of-the-art object
detector and it has been used in numerous applications, ranging from academic
to commercial. Its core is composed by a Convolutional Neural Network (CNN),
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which simultaneously predicts boxes with possible locations of objects and per-
forms the attribution of class probabilities for those boxes in a single image
passage. However, to obtain a good precision with a small computation time,
the network needs to have an enormous amount of layers, requiring a lot of mem-
ory to store the weights and logic for the calculations. A network compression
needs to be made to fit it in the target platform. Fortunately, techniques like
prunning[7], quantization[8], binarization [4] or a combination of a few of them
are presenting good results in reducing its size, while maintaining acceptable
losses of accuracy.

In the past, a lightweight version of YOLOv2 [5] was implemented on
a similar target platform. They proved it was feasible, but limited, since due
to compromises, the reduced resulting accuracy might not suit some critical
applications.

Another attempt to apply the YOLO in embedded systems was done by
[3] using a NVIDIA Jetson-Tx2. However, the version implemented is already
outdated, because of the limited number of classes compared to the latest version
of YOLO.

1.3 Proposed System

Figure 1 shows an overview of the proposed system.

Figure 1: Overview of the proposed system.

An input frame is processed in the neural network, in order to produce a
tensor with the coordinates of multiple boxes and the respective probability
of containing an object. Labels are assigned to predictions with the highest
degree of confidence. The CPU will be responsible for delivering the image
data through shared memory, so that it can be processed by the custom circuit
developed.

1.4 YOLOv3 Algorithm

The YOLOv3 [6] consists of a total of 106 layers, such as convolution layers,
shortcuts, upsamples, route layers and yolo layer. However, [1] has evidence that
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convolution operations occupy over 90% of total system computation. This lead
us to focus attention on accelerating convolution layer operations. The value of
each output pixel is obtained by the following formula:

On(x, y) =

C−1∑
c=0

H−1
2∑

h=−H−1
2

W−1
2∑

w=−W−1
2

I(x + w, y + h, c)Kn(w, h) (1)

Where On(x,y) is the output pixel obtained by the convolution of the nth
filter of the layer, Kn, with the input image I. The number of channels in the
input is represented by C and WxH are the filter dimensions.

The convolution of the layer filters with the input image can be paral-
lelised given the absence of data dependence between the operations, as show
in equation 1. This parallelisation and further optimisations will be further
explored on the target hardware. As a baseline for comparison we already ran
tests using the code provided by the YOLOv3 authors [6] on our hardware with
CPU and CPU+GPU. Table 1 shows the computation time, but we also need
to collect energy consumption data.

YOLO v3 v3 Tiny
Intel Core I7-4770
CPU@ 3.40Ghz×8 7.3556s 0.7752s
Intel Core I7-4770
CPU@ 3.40Ghz×8
+ OpenMP 2.2579s 0.2757s
Intel Core I7-4770
CPU@ 3.40Ghz×8
+ GeForce GTX 750 TI 0.2270s 0.1204s

Table 1: Processing times of a 768×576 frame.

1.5 Hardware Overview

Image processing has a strong dependence with the resources available in
the target hardware. Therefore, in order to explore the space of possible solu-
tions for detecting objects, a platform is required that allows communication
between the different components to avoid bottlenecks in the memory accesses.

The selected platform is the Xilinx Multi-Processor System on Chip
(MPSoC)+Zynq UltraScale, because it allows applications to benefit from a col-
lection of computation units with different performances and power consumption
characteristics. The target device is composed by a quad-core Arm Cortex-A53
with a clock frequency up to 1,5Ghz, a dual-core Arm Cortex-R5 with a clock
frequency up to 600 Mhz, a GPU Mali-400 with two cores and a Xilinx ZU4EV
FPGA. The power consumption ranges between 2-24 W, which enables to fine
tune optimal implementations for each embedded application.
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In brief, the Zynq is a deeply versatile device capable of achieve high-
performance using specialised, customised and optimised combination of tradi-
tional methods.

1.6 Hardware Implementations

The number of layers that YOLOv3 possess, produces a huge amount of
data. Due to memory limitations, a series of techniques must be done to ac-
complish data compression. The possible methods intent to explore are:

• Binary neural networks: synthesise binary layers for FPGAs [4];

• Quantization: reduce the precision of weights[8];

• Prunning: eliminate redundancies [7];

Another method that optimises structural data, is the reuse of the same
logic structures to perform computation of all layers. A multiplexing system
controls the weights for the current layer being processed [2]. Since most of the
layers have equal size, this is a feasible technique, yet it is necessary to take into
account the overhead of the control system.

Mappings of YOLOv3 to the heterogeneous platform will explore the
above optimisation methods, ranging from a baseline CPU implementation to
a full custom implementation maximising the use of the available resources.
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2 Interactive Demonstration of an Energy Effi-
cient Object Detector Implementation on Re-
configurable Logic

Bruno Oliveira, ISR-UC and Jorge Lobo, ISR-UC

2.1 Abstract

In this interactive demonstration we present the usage of a state-
of-the-art object detector, YOLOv3, in a CPU+GPU+FPGA het-
erogeneous platform for embedded systems. Profiles of each function
were analysed in order to achieve the most energy efficient solution
in the design space. A camera is used to collect the frames, a board
runs the algorithm and a monitor shows the labels of the detected
objects attached to the image. The main purpose of this demo is to
demonstrate to the conference attendees a functional version of an
object detector in a low-power platform. In addition, we also intend
to encourage the development of applications in this type of devices.

2.2 Introduction

Although computer vision algorithms provide reliable results in the detec-
tion and classification of objects, high performance computational devices are
required to achieve real-time processing. These platforms usually have asso-
ciated a high cost and power consumption. This can be a limiting factor for
battery power embedded systems where the total energy and the computational
requirements became prohibitive. Therefore, power efficient implementations of
object detectors has been a hot topic of research because allow its employ in a
wide range of applications.

In our work we are implementing a energy efficient version of the YOLOv3
[4] object detector in a heterogeneous CPU+GPU+ FPGA platform. We are
using the Sundance VCS-1, a Multi-Processor System on Chip (MPSoC) that
includes a Zynq UltraScale FPGA. The combination of traditional components
with shared memory allows a wide design space. Mappings of the application
into the resources of the platform are being explored using a set of metrics.

The SDSoC framework, created by Xilinx, enables development and
hardware acceleration of embedded applications using standard programming
languages, such as C or C++. The SDS++ system compiler parses the direc-
tives of a program and makes the specific generation of a bit file for the FPGA
or a binary file for the CPU. Using the Tulipp tool-chain[2] we analyse the con-
sumption profiles collected by an external meter connected between the power
supply and the processing units. This allows us to have a detailed energy pro-
file of the tested hardware and software mapping of the implementation in the
design space, allowing for informed design options and fine tuning an energy
efficient implementation.
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A short paper on the proposed work [1] contains more details about
the target platform and the techniques that will be necessary to carry out to
overcome its complexity during the implementation phase.

2.3 Overview of the Demonstrated System

Figure 1: Overview of the demonstration system components and the data flow,
with the hardware CPU+GPU+FPGA heterogenous platform at the centre.

Fig. 1 shows the interaction between the main modules of the system.
Frames captured by the camera are sent to the device via a wired connection.
The board runs the algorithm of the object detector with the purpose of doing
the detection and classification. A host computer has access to the application’s
consumption profiles and shows the information in a very perceptible graph.
Labels are assigned to predictions with the highest degree of confidence and the
image is shown on a monitor. The frame rate of the images on the monitor will
be determined in function of a set of parameters.

Beyond the demo presented, we envision that remote access to the sys-
tem can not only obtain the curated image classification data, but also allow
remote reconfiguration and testing of different neural network overlays. This
can be used as a remote teaching lab, so that the hardware is actually deployed
in a real field test, or for operational updates of working systems.

3



Figure 2: Hardware setup used in the demonstration, a Multi-Processor System
on Chip (MPSoC) that includes a Zynq UltraScale 4EV FPGA and attached a
external consumption meter [3].

2.4 Hardware and Software Interfaces

2.4.1 Hardware Overview

The selected platform, the Sundance VCS-1, is shown in fig. 2. This het-
erogeneous platform is a highly flexible device that makes use of reconfigurable
logic combined with traditional architectures to achieve low power solutions. An
external consumption meter is connected between the processing units and the
power supply, in order to collect application power profiles during its run-time.
This type of data is useful for the development of applications with low power
requirements. A host computer connected to the meter and to the processing
platform collects the power profiles logs.

2.4.2 Profiling Interface

Visualisation of the profiles enables programmers to fine tune parallelisation
and optimise implementations where low power consumption is a critical factor.
To this purpose, we will use the Tulipp tool-chain[2] during the development of
the application. The demonstration will show the live power profiling of each
function that composes the object detector. A power profile of a computer
vision application made by the tool-chain is shown in fig. 3 to demonstrate its
potential in the development of low power applications.

2.5 Summary

In this demo an energy efficient implementation version of YOLOv3[4] is
proposed. We expect to have a working version of YOLOv3 suitable for embed-
ded applications were trade-offs in performance are being parameterized for the
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Figure 3: Screen shot of a power consumption profile of application.

targeted system. Mappings of the algorithm are being fine tuned, to achieve a
low power solution, using the profiling tool. A set of metrics such as energy con-
sumption and mean average precision(mAP) also serve to benchmark against
the state-of-the-art implementations on CPU+GPU. The end application is not
limited to smart cities where there is a high demand for the integration of IoT
devices. In fact, remote areas with poor access to power sources and connec-
tion bandwidth, such as agriculture, forest monitoring, etc, will be the key end
applications where our system can be integrated, providing a low power edge
computing solution.

Conference visitors can place a range of objects in front of the camera
and observe its labeling on the monitor. They can also observe the power profiles
of each function of the application on a computer. The live results achieved by
this implementation can be evaluated by comparing with the data collected
during the baseline benchmarks on standard architectures.
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