
João António Rodrigues Ferreira

INTEGRATION OF AGENTS AND COMPONENTS ON A

DISTRIBUTED SECURITY ARCHITECTURE

Dissertation within the Integrated Master's Degree in Electrical and
Computer Engineering, Specialization in Computers, supervised by Ph.D’s

Nuno Gonçalves, Tiago Cruz and Paulo Simões and presented to the
Department of Electrical and Computer Engineering of the Faculty of

Sciences and Technology of the University of Coimbra.

September 2019

Integração de agentes e componentes numa arquitetura
distribuı́da de segurança

João António Rodrigues Ferreira

Dissertação para obtenção do Grau de Mestre em
Engenharia Electrotécnica e de Computadores

Orientador: Prof. Doutor Nuno Miguel Mendonça da Silva Gonçalves

Co-Orientador: Prof. Doutor Tiago José dos Santos Martins da Cruz

Júri

Presidente: Prof. Doutor Jorge Miguel Sá Silva

Orientador: Prof. Doutor Nuno Miguel Mendonça da Silva Gonçalves

Vogal: Prof. Doutor António Paulo Mendes Breda Dias Coimbra

Setembro de 2019

Success is 1% inspiration, 98% perspiration and 2% attention to detail.

- Phil Dunphy

Agradecimentos

Gostaria de começar por agradecer aos meus familiares, em destaque para os meus

pais, irmã e avós, pela constante ajuda, presença e aconselhamento nos bons e nos maus

momentos.

Quero Agradecer também a toda a equipa do Laboratório de Telemática e Comunicação

da sala G5.4, por me terem acompanhado e guiado ao longo deste ano de tese, ajudando com

qualquer dúvida que tivesse. Ao Vı́tor, por todo o insight que deu em Go, bem como a

”formação” por este colega dada.

Um especial obrigado ao Miguel Freitas pela paciência que teve em me guiar e ajudar com

qualquer dúvida que eu lhe pedisse para me tirar pessoalmente em âmbito deste trabalho.

Aos Professores orientadores Tiago Cruz, Paulo Simões e Nuno Gonçalves pela

possibilidade de ter trabalhado num ambiente diferente ao habitual, bem como a disposição

de ajuda que se submeteram.

Aos meus colegas de curso, mais propriemente à SQUAD, pelos momentos de

convı́vio, diversão e pelo espı́rito de companheirismo e apoio mútuo ao longo destes 6 anos.

Um especial obrigado e um enorme abraço aos meus grandes amigos do ”FQI”.

O mesmo digo a todos colegas da residência Polo2-II, obrigado por todas as vivências ao

longo deste curso.

Aos meus amigos que me acompanharam e apoiaram durante toda esta etapa, sejam

de onde forem. E a todos os que contribuı́ram direta ou indiretamente para o meu processo

de formação académica e pessoal.

A todos,

Muito Obrigado.

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Goals . 2

1.3 Implementation and Key Contributions . 2

1.4 Document Structure . 3

2 Context and State of the Art 5

2.1 Industrial Automation and Control Systems 6

2.2 The ATENA Project . 6

2.3 Intrusion, Intrusion detection and IDS . 7

2.3.1 Signature-based and Anomaly-based IDS 8

2.3.2 SIEM . 9

2.3.3 NIDS and HIDS . 9

2.4 SCADA Systems . 10

2.5 ATENA Work Package 4 - IADS . 11

2.5.1 Architecture of the platform . 12

2.5.2 The IADS-Events Datamodel . 13

2.6 Security Event-Generating Probes . 15

2.7 Previous Implementation . 16

Contents

2.8 Chapter Overview . 17

3 Implementation 19

3.1 Requirements elicitation . 20

3.2 Useful Tools & Libraries . 21

3.3 IADS-Events Agent Architecture . 22

3.3.1 Configuration Component . 23

3.3.2 Event Reader Component . 23

3.3.3 Event Encoder Component . 24

3.3.4 Kafka Producer Component . 24

3.4 Configuration and Mapping Files . 25

3.4.1 Configuration file . 26

3.4.2 Mapping file . 27

3.4.2.A Source Field . 27

3.4.2.B Field Structure . 27

3.4.2.C Item Field . 29

3.4.2.D Complete Layout of the file 29

3.5 Data Structures . 33

3.6 Usage . 35

4 Tests and Validation 37

4.1 Agent in action . 38

4.2 Runtime performance evaluation . 40

5 Conclusion and Future Work 45

List of Figures

2.1 ATENA Architecture and it’s modules, from [1] 7

2.2 Example of a SCADA system. Still taken from [2] 10

2.3 The IADS Platform. Detected events are shown in the lower table. Still taken

from [3] . 11

2.4 IADS Architecture and it’s components.[4] 13

2.5 General overview of the IADS-Events Datamodel. 14

2.6 Example of the Application Event type Payload field. 15

3.1 Depiction of the Agent’s Architecture. 22

3.2 Structure of the event in an Go Interface Format. 24

3.3 Depiction of how Kafka Cluster message transfers work. 25

3.4 The three main structs used, from which the remaining 30 are based on. . . 34

3.5 The three main structs created for information ready to be encoded. 35

4.1 Depiction of the attack, ran by a script ’mitm.py’. 38

4.2 Depiction of the graphic of rapidly growing number of events being detected

in the platform, from the probeevents topic in the Domain Processor, the

topic the agent was configured to produce messages to. 38

4.3 Depiction of the number of event severities and types detected, in this case,

all of emerg severity and of Network types. 39

4.4 The list of events detected. 39

iii

List of Figures

4.5 JSON Message with the Probe’s output, converted into the Data Model. . . 40

4.6 Agent Flow diagram. 40

4.7 Benchmark table of the running time of the agent’s multiple components. . 42

4.8 Running time (ms) of each agent’s main component, per source line. 43

4.9 Average time(ms) of each main agent’s component (excluding kafka sender),

on a given valid event line table. Standard deviation was of 1.0347ms on the

Read component and of 0.0332ms on the encoding component. 43

iv

List of Tables

2.1 Table showing some properties and examples of each type of IDS 10

2.2 Two example lines, the first from Snort and the second from ConPot. 16

3.1 Requirements elicitation with User-stories. 21

3.2 Main packages directly used throughout the development. 22

3.3 Differences between JSON(1), XML(2) and YAML(3). 26

3.4 Example of a filled out config.yml file. 26

3.5 Layout of every field in this type of file. 28

3.6 Layout of every Item Field in this type of file. 29

3.7 EventMap file for a general event type. 30

3.8 All the Data fields for all types of events possible. 33

v

vi

Abstract
Over the past recent years there has been a massive industry growth, and something

we call the Internet of Things has emerged. This phenomenon has set the path for a paradigm

shift in the Industrial Sector, which has allowed for a wider range of digital interconnectivity

when it comes to various industry components. This however has also opened a way for

different types of malicious activity agaisnt the industry. Since the systems went from being

air gapped to being remotely connected to a vast range of networks and other third-party

systems, various exploits have been made possible in order to maliciously affect those in-

dustry components. ATENA, an European Project, aims to provide a range of modern tools

to detect and prevent such activity.

This thesis’ work is part of the lowest level in the ATENA architecture, the detection

of anomalies and events taking place at any point in a host or network, done by multiple

probes. These events should then be taken to a platform where the administrator can monitor

and analyze them. In order to transfer such data between multiple components, a format

(IADS Data Model) is followed throughout the entirety of the IDS platform, the IADS. In

order to read, encode and send to the other components all events from all existing, and yet

under development, probes, a wrapper or adapter had to be created, giving the administrator

the tools required in order to configure how the probe’s output is translated into an IADS

Data Model format event. This wrapper, as well as the mechanisms of differentiating probe

outputs, encoding and validating them, and sending the encoded events to the rest of the

IADS Platform, is part of this thesis’ work.

Keywords
Industrial Automation and Control systems, Intrusion and Detection Systems, Se-

curity information and event management

Resumo
Nos últimos anos, e com um crescimento massivo da indústria, surgiu algo que

chamamos de Internet das Coisas. Esse fenómeno estabeleceu o caminho para uma mudança

de paradigma no setor industrial, que permitiu uma interconectividade digital dos vários

componentes da indústria. No entanto, isso também abriu caminho para diferentes tipos

de atividades maliciosas contra a indústria. Desde que os sistemas deixaram de separados

isoladamente uns dos outros e passaram a ser conectados remotamente a uma vasta gama

de redes e outros sistemas de terceiros, vários exploits foram feitos possı́veis para afetar

maliciosamente esses componentes do setor. O ATENA, um projeto europeu, visa fornecer

uma gama de ferramentas modernas para detectar e impedir essa atividade.

O trabalho desta tese faz parte do nı́vel mais baixo da arquitetura ATENA, a detecção

de anomalias e eventos que ocorrem em qualquer ponto de um host ou rede, realizado por

várias sondas. Esses eventos devem ser enviados para uma plataforma na qual o adminis-

trador possa monitorizar e analisá-los. Para transferir esses dados entre vários componentes,

um formato (Modelo de Dados IADS) é seguido em toda a plataforma IDS, o IADS. Para

ler, codificar e enviar para os outros componentes todos os eventos de todas as sondas ex-

istentes e ainda em desenvolvimento, um wrapper ou adaptador teve que ser criado, dando

ao administrador as ferramentas necessárias para configurar como a saı́da da sonda é traduz-

ida num evento no formato IADS Data Model. Esse wrapper, bem como os mecanismos de

diferenciação das saı́das da sonda, codificação e validação, e envio dos eventos codificados

para o restante da plataforma IADS, fazem parte do trabalho desta tese.

Palavras-Chave
Industrial Automation and Control systems, Intrusion and Detection Systems, Se-

curity information and event management

Acronyms

ATENA Advanced Tools to assEss and mitigate criticality of ICT compoNents and their

dependencies over Critical InfrAstructures. 2, 12

CI Critical Infrastructure. 6

CIA Confidentiality, Integrity and Availability. 7

DDoS Distributed Denial-of-Service. 15

DEEC Department of Electrical and Computer Engineering. 2

DEI Department of Informatics Engineering. 2

HIDS Host-based Intrusion Detection Systems. 9

IACS Industrial Automation and Control Systems. 6

IADS Intrusion and Anomaly Detection System. 2, 10–12, 14, 38

ICT Information and Communication Technology. 6

IDMEF Intrusion Detection Message Exchange Format. 14

IDS Intrusion Detection System. 7–9

IoT Internet of Things. 6

IPS Intrusion Prevention System. 8

LCT Laboratory of Communications and Telematics. 14

MITM Man In The Middle. 38

v

Acronyms

MQTT Message Queuing Telemetry Transport. 12

NIDS Network Intrusion Detection Systems. 9

NIST National Institute of Standards and Technology. 7

SCADA Supervisory Control and Data Acquisition. 10, 11

SIEM Security Information and Event Management. 9

YAML YAML Ain’t Markup Language. 25

vi

Chapter 1

Introduction

The purpose of this chapter is to introduce the work carried out in this thesis. Some

motivation aspects and goals are defined and a brief explanation of the developed software

is given, along with the main contributions where such software was used and validated.

1

1. Introduction

1.1 Motivation

Despite being a student of the Department of Electrical and Computer Engineering

(DEEC), this thesis was developed in a different environment, in the Department of Informatics

Engineering (DEI), due to an interest in aspects such as cyber-security and Software Engin-

eering and the correlation of such aspects with the thesis general theme.

This thesis’ work was undertaken in context of ATENA’s WorkPackage 4 - Intrusion and

Anomaly Detection System (IADS), coordinated by a team of researchers from the Laboratory

of Communications and Telematics (LCT), which is integrated within the Centre for Inform-

atics and Systems of the University of Coimbra(UC). This WorkPackage is better contextu-

alized in Chapter 2, which contains the whole overview of this thesis’ context. Specifically,

the team needed the development of a working agent that acts as a wrapper to each and every

probe deployed in a security architecture.

1.2 Goals

The goal of the thesis was to research and develop a generic and platform-neutral

piece of software that can be wrapped to any detection component, in order to consolidate

the whole detection layer with the rest of the architecture, which already respected the IADS

Data Model, explained later in chapter 2. This software, which we call the agent, had to be

easily configurable and easily deployable in an agile fashion. The former requirement was

one of the key factors to take in account, since probe administrators would be required to

normalize the output of their specific detection component. Therefore, the agent needed to be

configurable to the point of giving full control of sources and data-model field assignments.

1.3 Implementation and Key Contributions

During the thesis’ work plan, some demonstrations were scheduled as part of the

ATENA consortium schedule, and while the first ones were mostly used as a way to gather

feedback from the rest of the WP participants on how to better adapt the agent, the last

one was a project-wide review that required a fully functional agent as part of the efforts to

2

1.4 Document Structure

deliver the expected results for Work Package 4 —(WP4).

Two main implementations of this agent were developed, in line with the work plan. The

first one was a prototype to gather some feedback on a ”real-case scenario” tested for the

first demo, also documented for Deliverable 6.4[5] - Design and development report of the

2nd release of components, taking place in 17th of October 2018. This prototype had run in

two instances alongside two probes, namely a Snort[6] and a ConPot[7] probe, which were

used on a use case scenario to demonstrate the IADS detection capabilities for a series of

network attacks against the reference testbed. This test was successful, providing enough

feedback and inputs to further refine the IADS, as well as the agent being developed.

From here, a new branch was created to further develop the application and, in the following

months, multiple versions of the agent were released until it satisfied the requirements needed

for the Final validation Demo, also documented in the deliverable D7.5[8] - Final ATENA

prototype validation and evaluation of validation results (Final DEM0). This final agent

was tested and validated by the team, being able to successfully send multiple events from

different types of probes, to the domain processors, using the established data model. All the

mentioned and contributed-to deliverables are referenced in the bibliography section of this

document.

1.4 Document Structure

The remainder of this dissertation is organized in the following structure: in chapter

2 the theoretical foundations framed within this work are presented, as long as an overview

of the related work and research done that can be of use for this thesis. Chapter 3 displays the

work made in this dissertation, and finally, in chapter 4, the final conclusions and proposals

for future works are specified.

3

1. Introduction

4

Chapter 2

Context and State of the Art

This chapter lays out the theorical foundations of the thesis’ work, focusing on

introducing its context in terms of the general overview of the ATENA project and the Work

Package 4. It is then explained where the whole IADS architecture fit within the ATENA

architecture and then how this thesis’ work would be situated in the scope of the IADS

architecture. We also go into detail on existing technologies related to this work and elicit

some researched and developed work that can be of use in ambit of the Lab’s Work Package.

5

2. Context and State of the Art

2.1 Industrial Automation and Control Systems

The recent massive industry growth and, by association, the sheer rising number

of interconnected devices and data transferred between components, has led to the dawn of

the ”Internet of Things (IoT)” age. This has of course led to a paradigm shift in Industrial

Automation and Control Systems (IACS). Whereas some years ago Industrial Systems bound-

aries only went as far as monitoring single, non-interconnected and far less complex com-

ponents, the new environment has raised the bar on these Control systems when it comes to

Critical Infrastructure (CI), meaning they now have to take in account the rapidly expanding

network of operators and dependencies that are involved in a complex system (e.g power-

grid Infrastructures, water-supply infrastructures, ...)[9].

With the rise of the IoT age, available technology is also under pressure to keep up, and

ICT/IT (Information and Communication Technology) can benefit from modern technolo-

gies like virtualization and innovative algorithms to provide better and more efficient monit-

oring and management of a set of components, devices, and data traffic.

This new paradigm allows for the development of modern solutions to keep up with the ex-

ponentional Industry growth, and the correlated need for the introduction of security and

monitoring mechanisms.

2.2 The ATENA Project

Following this paradigm shift explained in the previous section, as a follow-up to

two previous European Research activities, the CockpitCI and MICIE-EU projects, and in

the context of an European Commission Framework Program for Research and Technolo-

gical Development, Horizon 2020, the ATENA, or AdvancedTools to assEss and mitigate

the criticality of ICT compoNents and their dependencies over Critical InfrAstructures pro-

ject was created and aimed for innovation in the context of ICT’s and, inherently, CIs and

their security and resilience.[10] This is made possible through the use of modern anomaly

detection algorithms and risk assessment methodologies[1] in the development of a group of

tools and methods which not only enhance the mentioned aspects of security and resilience

in CIs, but also preserves the efficient and flexible monitoring and management inherent to

them.[11]

6

2.3 Intrusion, Intrusion detection and IDS

ATENA had most of the its partners already involved the the previous two men-

tioned projects, CockpitCI [12] and MICIE-EU [13], so each and every one of the thirteen

partners was an expert in one or more security fields. Every partner had a specific task or

set of tasks. These tasks, or modules that ought to be developed in ambit of the project, are

displayed in figure 2.1.

Figure 2.1: ATENA Architecture and it’s modules, from [1]

2.3 Intrusion, Intrusion detection and IDS

To better understand the concept of a Intrusion Detection System (IDS), we need to

explain and make the distinction between the concepts of Intrusion, Intrusion detection and

IDS. We can start by describing what an intrusion is, which, in accordance with National

Institute of Standards and Technology (NIST)’s description is an attempt to disturb or com-

promise with ill-intent the Confidentiality, Integrity and Availability of a single computer

system or network[14]. These can be, for example, Denial of Service attacks, system in-

formation manipulation, denial of a system action and retransmission of valid messages un-

der invalid circumstances to produce unauthorized effects.[15] Intrusion Detection is simply

7

2. Context and State of the Art

the process of monitoring and analyzing events that take place in a network or system that

might suggest an intrusion, while an IDS is a system that allows for the automation and con-

figuration of the Intrusion Detection process. There is also the existing concept of Intrusion

Prevention Systems, but since the emphasis of the work is on the detection rather than the

prevention of Intrusions, we won’t go into detail about them. IDS detection mechanisms can

be of two different types: Signature-based and Anomaly-based.

2.3.1 Signature-based and Anomaly-based IDS

Signature-based IDS detect intrusions by checking for specific patterns in network

traffic and instruction sequences, taken from known malicious activity samples, interpreted

as their ’signature’. Since these systems rely on a database of some sort that contains multiple

malicious signatures, they are often not reliable for new or unknown attacks or events, and

sometimes fail to detect or give out an alarm for an intrusion if one occurs.[16] Anomaly-

based IDS on the other hand can be used to detect intrusions through the comparison of

normal behaviour model created with machine-learning and the new model of unknown new

behaviour[17]. If the models show significant differences between them, an detection alert

might be given.

Below is a list of advantages and disadvantages of each type of IDS, based on [15].

• Signature-based IDS

– Advantages

∗ Accurate, low false-positives rate

∗ Easier to track alarm cause, detailed logs

– Disadvantages

∗ Dependant on existing signature databases;

∗ Administrator needed to update databases;

∗ Can cause systems to slow down with the huge amount of traffic packets

analyzed, sometimes making them be dropped;

8

2.3 Intrusion, Intrusion detection and IDS

• Anomaly-based IDS

– Advantages

∗ No need for constant manual database updates;

∗ Little maintenance required;

∗ Gets more accurate the longer the system is used.

– Disadvantages

∗ If the system creates a model while the system is under malicious activity,

might consider it normal behaviour, thus failing to send out an alarm in that

case;

∗ Higher rate of false-positives;

2.3.2 SIEM

IDS systems are usually dependant of a Security Information and Event Management

(SIEM) to capture events occuring in the system. These systems gather data from a broad

multitude of sources and channels of different types [18]. This thesis’ work is centered on

this part of the IDS platform that was developed (the IADS), since each tool or probe has a

specific manner of outputting detected events.

2.3.3 NIDS and HIDS

Other than classifying IDS based on their detection mechanism, we can also classify

them through their point of implementation in a system (whether the IDS component is

actively functioning on a host or on a network point) and therefore range of data scanned. To

the system that analyzes a given single host or device, meaning all its inbound and outbound

data as well as the integrity of critical system files, we give the name of Host-based Intrusion

Detection Systems (HIDS). These systems are usually strategically deployed in hosts where

configurations and files are not likely to change.

On the other hand, Network Intrusion Detection Systems (NIDS) are placed in strategic

points of a network in order to monitor all traffic within that subnet, generating events for

9

2. Context and State of the Art

any abnormal activities in the network. IADS contains both of these types of mechanisms in

different points of the system.

NIDS HIDS
Host Independant Host Dependant
High false positivity rate Low false positivity rate
Requires acceptable bandwidth No need for Bandwidth

Detects Network attacks
Helps detect complex attacks
on certain hosts and machines

May slow down the network
where it is implemented May slowdown it’s IDS host

Examples:
Snort[6] OSSEC[19]
Suricata[20] Samhain[21]
IBM QRadar[22] Fail2Ban[23]

Table 2.1: Table showing some properties and examples of each type of IDS

2.4 SCADA Systems

Supervisory Control and Data Acquisition (SCADA) systems are industrial control

systems that through the use of supervisory computers and human-machine interfaces, al-

low the user to monitor a wide range of components in a given project, like Programmable

Logic Controllers (PLC) or PIDs (proportional–integral–derivative controller), through a

Graphical User Interface (GUI).

Figure 2.2: Example of a SCADA system. Still taken from [2]

10

2.5 ATENA Work Package 4 - IADS

2.5 ATENA Work Package 4 - IADS

In the context of the ATENA project, already introduced in section 2.2 and dis-

played in figure 2.1, the LCT/CISUC team was in charge of leading the development of the

Intrusion and Anomaly Detection System, or IADS[1], a platform consisting of a set of tools

and components that allow for the detection, aggregation, filtering and analysis of security

data that might be of critical importance to CI’s. Since this system uses both physical and vir-

tual tools, enabled by technologies such as SDNs, it can be considered a Cyber-Physical IDS.

This IDS platform, along with the all the algorithms and components required for its integra-

tion and efficiency, was developed within the context of WP4. Essentialy, the project aimed

to provide a solution that enables a higher standard of protection in a Supervisory Control

and Data Acquisition (SCADA) environment, monitoring the data transfered between its

components and detecting anomalies that might reveal a threat to the Critical Infrastructure.

In order for this to be possible, anomaly detection probes had to be developed along with a

system that allows for the data to be aggregated and analyzed.

Figure 2.3: The IADS Platform. Detected events are shown in the lower table. Still taken
from [3]

11

2. Context and State of the Art

2.5.1 Architecture of the platform

The IADS, while being composed of multiple tools and mechanisms, has an archi-

tecture of its own, composed by three main sub components:

• The management component;

• The Distributed Intrusion Detection System component;

• The Forensics and Compliance Auditing component.

These three work in parallel, with the first one being in charge of configuration and

settings of the other two components; the forensics and Compliance component acts as the

front-end of the platform, allowing the administrator to monitor and filter the detected events

in it; The main one, the Distributed Intrusion detection system does the main work of the

architecture, from the point where a probe is applied to a host or node in network and sends

an event to the domain processor, to the point where this second component sends an event

via Message Queuing Telemetry Transport (MQTT) to an external point in the ATENA

architecture.

12

2.5 ATENA Work Package 4 - IADS

Figure 2.4: IADS Architecture and it’s components.[4]

The figure 2.4 displays the IADS architecture and its components and data flow

channels. In red is the part where this thesis work is inserted, having an emphasis in the

probes and their communication and data flow channels. The Data from the probes is be-

ing to a given Kafka[24] cluster, Domain Processor in the architecture, which the various

components in the platform are subscribed to, and therefore can access the messages sent to

it.

2.5.2 The IADS-Events Datamodel

As we can observe in figure 2.4, throughout the entire IADS data is sent and re-

ceived through multiple data flow channels, so a uniform and user-friendly format of data

13

2. Context and State of the Art

interchangeability between IADS components was proposed and implemented[25] as part of

the whole platform. This format was based on the Intrusion Detection Message Exchange

Format (IDMEF), and the LCT denominated it as the ”IADS-Events Datamodel”. Every

component developed in ambit of this project must respect it and every message transferred

between them must follow it.[26]

The Data-Model is composed of a header field with metadata information, a payload field,

where all the actual event information is stored and detailed and an Universally unique

identifier (uuid).

Figure 2.5: General overview of the IADS-Events Datamodel.

The payload field ’Data’ changes depending on the Event, which can be of five

different types:

• Application;

• CyberPhysical;

• Host;

14

2.6 Security Event-Generating Probes

• Network;

• Other;

In Figure 2.6, the details on a specific type (Application) can be seen, with the

remaining types’ Payloads examples being annexed in 5.

Figure 2.6: Example of the Application Event type Payload field.

2.6 Security Event-Generating Probes

To firstly detect any kind of activity, we needed a tool or set of Tools, either physical

or virtual, that act as an examination or sifting mechanism. To these tools we call Probes,

and in this context they are the lowest layer in the architecture. It is from their processes

that we are able to extrapolate what is happening in a given host and/or network, and that

information is transferred up for processing in the IADS.

Multiple Probes can be running at the same time in the same machine, since each one can

be configured to detect a specific type of activity. For example, a snort probe can be used

to detect a Distributed Denial-of-Service (DDoS) attack, while a ConPot probe will most

likely be used to detect new, strange, connections to the system. These are the two probes

15

2. Context and State of the Art

we mainly used and validated in the testing scenarios.

While using multiple probes has it upsides, it also has its disadvantages. Since every probe

works differently from each other, they can and mostly do have different ways of outputting

activity data. They can send it through the syslog [27] , output it to a file in their system or

even to a Network and/or UnixSocket.

Examples of these differences in the probes’ outputs can be seen below, in this case, when

there are two probes outputting to a logfile.

1 Snort Line:

2 2018-10-09T19:25:15.354460-04:00 nids2 snort: (spp_arpspoof)

Attempted ARP cacheoverwrite attack,(Mismatch mapping

00:1c:7f:32:18:9d <-> 172.27.248.1, sha b8:27:eb:d9:bc:e0, spa

172.27.248.1, tha 00:0d:22:09:bd:dd, tpa 172.27.248.213

↪→

↪→

↪→

3 Conpot Line:

4 2018-10-10T02:39:21.356365+00:00 a0e47df0f785 New Modbus connection

from 192.168.1.15:59272. (2b60648e-f337-404a-b8b0-be6a9a0cd670)↪→

Table 2.2: Two example lines, the first from Snort and the second from ConPot.

Since all the IADS platform mechanisms must follow the IADS-Events Model, this

creates a challenge to the administrator, that now needs to configure each probe properly in

order to output it in an encoded model format. This can be time-consuming as the number

of probes increases and each probe changes. Therefore, an agent needed to be developed in

order to read any probe’s output, encode it to the Data-Model format, and lastly send it to the

Kafka Cluster.

2.7 Previous Implementation

In ambit of a previous work[10], an agent wrapper was developed called Syslog-

Probe [28], which was on version 0.4 at the time I joined the project. Unfortunately, that ver-

sion only worked in very specific scenario, where the probe was sending Network events to

the syslog, and no other scenario. Between updating the SyslogProbe to the desired standards

and building a new wrapper with a more general-approach to every type of probe possible

from scratch, the team chose the later option.

The OSSEC HIDS[19] also has a component capable of collection data from various

16

2.8 Chapter Overview

sources [29], but to implement it in this case would be a case of ’using a sledgehammer to

crack a nut’, since it is a somewhat heavy tool to use in the machines, and containers, the

probes would run in.

2.8 Chapter Overview

Having gone through the context of the project and some of the work that has

already been done in ambit of it up until the date I joined the project, the foundations were

laid in order for the thesis’ main work to be done. There was already a tool in use for similar

use cases, LogStash[30], but since it was developed and configured by default for another

third-party data-flow, we opted to develop a generic adapter instead. Some advantages were

also taken in account from the capability syslog-ng[27] has in received a feed of data from

multiple sources, but ultimately they were not used in the adapter since they didn’t quite

directly serve the purpose. Some knowledge of technologies such as Regular Expressions

[31] also facilitated the development of a solution.

17

2. Context and State of the Art

18

Chapter 3

Implementation

In this chapter we present the all the requirements, and their rationale, that needed to

be fulfilled in order for the agent to be validated. We also give a brief overview of some useful

libraries used in the project, as well as an explanation of why we chose the GO Language

and YAML formats for the development of the agent.

Afterwards, we present the main architecture of the program and then an explanation of

every sub-component in the following sections. We finish up this chapter by mentioning

some notes about the development process itself, such as obstacles found, and reasoning for

multiple branches. The development process of the agent can be seen in detail in its Git

Repository[32], although it is inherently private. This thesis’ work tasks, alongside their

order and goals followed a timing plan, annexed as well in this thesis.

19

3. Implementation

3.1 Requirements elicitation

The development of an agent in the Project’s environment has certain functional

requirements, some taking a higher level of priority than others.

These requirements are taken from a set of needed functionalities in the probe/developer’s

point of view, the User Stories. The priorities in table 3.1 are rated in an ascending order,

starting in the highest degree of priority, 1.

The software also needed to run on small hosts, often within Docker[33] containers, so a pre-

built agent would be preferred for the deployment. For this reason, it was decided that the

development language had to be based based on a compiler and not on an interpreter, mean-

ing a compiled programming language had to be used. A large number of dependencies was

also to be avoided for the same reason, so Languages such as Python were excluded.

Since a Java[34] Implementation would require the whole Java Virtual Machine to be de-

ployed along with the agent, it was also taken out of equation. This left languages such as

C, C++ and GO on the table. Compared to the former two languages, GO has advantages

such as the use of interfaces, easier pointer manipulation, easier multi-platform deployment,

better package management and functioning optimal garbage collection. For those reasons,

I opted to develop the agent in this modern language.[35]

20

3.2 Useful Tools & Libraries

User Stories Requirements Priority
The agent must be able to read from
any of the probe’s output methods

Development of a generalized
method of reading output from
the following sources: syslog,
files, sockets and command-line
prompted values

1

The user must be able to map any
value he wants to any field in the
event

Capability to set a data source as
static, and therefore gathering in-
formation from a string given by the
user.

1

The agent must be able to map any
type of Data-Model* Event.

Develop a parsing&mapping
method for any kind of data-model
event type

1

The agent must be as general as
possible, supporting a broad range
of probes with different output
methods between eachother

Support any type of probe, multi-
platform capabilities

1

The agent needs to map any data
from the probe’s output to the cor-
rect field in the Data-Model Event

Map any given information into a
Data-model* event field

1

The agent needs a certain level of
concurrency when mapping mul-
tiple events

Capability to parse multiple events
from the same probe, and a setup
file which allows to do so.

1

For debug purposes, the agent’s
user may be able to read a log of
the agent’s functions

Log each and every main agent’s
process, as well as the line-by-line
input and output of the agent.

1

The user must be able to set the
destination of the parsed & mapped
event

Kafka cluster message transfering
integration and configuration

1

The user may have the ability to val-
idate the output’s data

Development of a way to validate
each mapped data through use of
regex’s

2

The configuration of the agent
should be as intuitive as possible

Use of a setup file that has
a format/language similar to the
Data-Model Event

2

The agent must be able to set a
backup source in case the data isn’t
validated

Have the possibility of a
backup/fallback route** configured
in the mapping configuration file

3

Table 3.1: Requirements elicitation with User-stories.

3.2 Useful Tools & Libraries

As explained in the previous section, the software was developed in Go, so any tools

and libraries had to be compatible with it. Due to the recent nature of the language, those

21

3. Implementation

weren’t as easy to find as packages are found in Python implementations. Nonetheless, after

some research, packages that helped with the configuration of the agent and the last process

the agent needed to do, producing an message with the event information to a kafka cluster,

were found:

Package Description
Viper[36] Configuration solution for Go applications. It is designed to work

within an application, and can handle all types of configuration needs
and formats.

pKafka[37] Producer for a Kafka topic, from an Avro Message.

Table 3.2: Main packages directly used throughout the development.

3.3 IADS-Events Agent Architecture

Figure 3.1: Depiction of the Agent’s Architecture.

This agent was be deployed as a ’middleware’, placed between any given probe and

a kafka broker, acting as an adapter or wrapper for all types of events and probes.

The diagram on image 3.1 depicts where the agent stands in the general IADS architecture,

as well as its four main process components.

The agent makes the data communication between its multiple parts through the use of chan-

nels, a handy mechanism that Go allows us to use in order to efficiently process and if

desired, multiplex, each sub-component.[35]

22

3.3 IADS-Events Agent Architecture

3.3.1 Configuration Component

The first component that’s actually ran is the Configuration one. Basically what it

does is read all the variables set in the config.yml file and store them in a Public Structure

which every other part of the agent can access. An example of a variable stored is Verbose,

a boolean variable that the every processes check every time a function is called to print any

information to the log. With these settings assigned and set, the software’s main components

are ready to run.

3.3.2 Event Reader Component

Having set the required configurations, the first component in the event mapping

process is the event reader. From a succinct point of view, it does the following actions, in

order:

1. Checks the source of a given field to be passed on to the Data-Model Event. This is

described in the Mapping file;

2. Reads any source text outputted through the probe, line by line;

3. Applies the given regex to the text found, extracting the useful information out of it

and stores it into a struct;

4. Sends the created organized structure through a DataForMessage-type channel, to the

Encoder component.

23

3. Implementation

3.3.3 Event Encoder Component

After receiving the event from the Reader Component, and through the use of the

DataForMessage-type channel, this component goes through the information and assigns

the gathered data to their specific fields in a Go interface.

Figure 3.2: Structure of the event in an Go Interface Format.

After evaluating the type of event and having all the information correctly assigned,

we use the method BinaryFromNative, which is based on the GoAvro.v2[38] package, to

encode the Go interface into an Apache Avro [39] Binary Message Format, a format our

Kafka Producer can use to send a message to our Domain Processor, which is en essence a

Kafka Cluster. It then sends the message through a Binary channel to the next component in

the architecture, the Kafka Producer.

3.3.4 Kafka Producer Component

While integrated in the agent, this component was based on prior work, developed

by an UC team member,, the pKafka [37] Package. It takes the configuration properties from

the con f ig.yml file and produces a message in the given topic, in the Kafka Cluster.

24

3.4 Configuration and Mapping Files

Figure 3.3: Depiction of how Kafka Cluster message transfers work.

3.4 Configuration and Mapping Files

Two main files are used to configure the agent and to specify what information

from a source goes to a certain field in the data Model[26]. These are the config.yml and, by

default, EventMap.yml files respectively. These were determined to be formatted in YAML

(YAML Ain’t Markup Language), a variant of JSON, for its simplicity to read, since no

delimiters are used, whereas JSON has them and thus makes it less human-readable. The use

of this Format also allowed us to make the file itself really similar to the data model schema,

which is also an advantage for the administrator who will end up mapping the information

in the file.

25

3. Implementation

{

"person": {

"firstname": "Tom",

"lastname": "Smith",

"year": 1982,

"favorites": ["tennis",

"golf"]↪→

}

}

<person>

<firstname>Tom<firstname>

<lastname>Smith<lastname>

<year>1982<year>

<favorites>

<value>tennis</value>

<value>golf</value>

</favorites>

</person>

person:

firstname: "Tom"

lastname: "Smith"

year: 1982

favorites:

- "tennis"

- "golf"

Table 3.3: Differences between JSON(1), XML(2) and YAML(3).

3.4.1 Configuration file

The first file, config.yml, is a file with simple fields to fill out, in regards to some

debug settings, and, most importantly, the name/path of the second YAML file or pipe and

the properties of the kafka cluster, to where we want the encoded data to be sent, along with

its topic. An example of a fully filled out config.yml file can be seen in table 3.4.

global:

verbose: true

printJSON: true

benchmarks: false

source:

MappingFile: "EventMap" #path of file, with the extension excluded

kafka:

nbrokers: 1

addrs: "123.45.67.890:1337"

topic: "probeevents"

magicBytes should contain an even set of hexadecimal bytes that

are added to begin of kafka messages↪→

magicBytes: "0000000001"

Table 3.4: Example of a filled out config.yml file.

26

3.4 Configuration and Mapping Files

3.4.2 Mapping file

The Mapping file was structured with the possibility of allowing the user/developer

to:

• Define the method in which the probe’s & event’s information is captured. Static

values are supported.

• Define fields as arrays. This means that a field can have multiple entries, as required

per the Data Model.

• Parsing and transmission of multiple & different events from the same probe, using

only one agent per probe.

This file is configured by the administrator to work with any given probe that outputs non-

normalized data to any feed of information, effectively working as a dictionary to the agent,

so it correctly assigns each word or set of words in the data feed to a field in the message

sent in the format of the data model. Since the file is in YAML format, careful indentation is

required in order to take advantage of the format’s inherent hierarchy.

3.4.2.A Source Field

The first field to be filled in the file is the Source field. It defines the input’s main

source, and it may be overridden by each and every declared field, in case some specific data

is gathered from a different source than the one declared in the Source field.

3.4.2.B Field Structure

Every Data Model field is defined in the following manner, represented in table 3.5

27

3. Implementation

Field:

GetFrom:

Value:

Regex:

ValidateRegex:

Fallbacks:

-FallBack1:

GetFrom:

Value:

Regex:

...

Table 3.5: Layout of every field in this type of file.

Field is the name of the field to be filled in the Data Model message (URI, User-

Agent, URIofType,...). Depending on the method used to obtain the field’s information,

various values can be attributed to the GetFrom property: STATIC, FILE, STREAM, UNIX-

SOCKET and EXEC. Value, an optional value in the STREAM case, can be a static string,

the file path or the command used to extract such information.

Regex is the regular expression, in RE2 Syntax[40] (in order to be compatible with golang’s

regexp package), interpreted by the agent to find specific information contained in strings

whether in streams, files or commands.

ValidateRegex is the validation field, also written in RE2’s Regex syntax. This field allows

the user to set a validation method using a regex that targets the extracted information. If the

check fails, the agent tries to obtain the information from the list of FallBacks. −Fallback

is an optional field that acts as backup in case the regular method of obtaining information

fails. More than one fallback may be defined, in case the fallback also fails the validation

check. It is recommended that the last fallback be of static type.

28

3.4 Configuration and Mapping Files

3.4.2.C Item Field

Item1:

Format:

ID:

GetFrom:

Value:

Regex:

ValidateRegex:

Meaning:

GetFrom:

Value:

Regex:

ValidateRegex:

Content:

GetFrom:

Value:

Regex:

ValidateRegex:

Table 3.6: Layout of every Item Field in this type of file.

The Item field, contained in multiple event types, can have its meaning in two

formats: ASCII(string) and Binary(Byte Array). Therefore an additional field is required

to define which one of the two is used: the Format field. This field can take on two values,

”string” or byte.

3.4.2.D Complete Layout of the file

The Metadata part of the file, as well as the type and severity is exactly the same

for all event types. Only the payload’s Data field changes per type. It is assumed that each

agent runs in parallel with one, and one only probe. This probe may or may not send various

types of events.

29

3. Implementation

Metadata:

Origins:

URI:

GetFrom:

Value:

Regex:

ValidateRegex:

UserAgent:

GetFrom:

Value:

Regex:

ValidateRegex:

Timestamp:

GetFrom:

Value:

Regex:

ValidateRegex:

Payload:

Events:

- Event1:

Type:

Value:

URIofType:

GetFrom:

Value:

Regex:

ValidateRegex:

Severity:

GetFrom:

Value:

Regex:

ValidateRegex:

Data:

Table 3.7: EventMap file for a general event type.

The Type field is required to have one of the following 5 values attributed: Ap-

plication, Network, Host, CyberPhysical, Other. The Data fields for each type are defined

in table 3.8, and the field key should be renamed to APPDATA, HOSTDATA, CPDATA,

OTHERDATA or NETWORKDATA.

30

3.4 Configuration and Mapping Files

Application Event:

Data:

Assets:

- Asset1:

AssetType:

GetFrom:

Value:

Regex:

ValidateRegex:

Value:

GetFrom:

Value:

Regex:

ValidateRegex:

- ItemID1:

GetFrom:

Value:

Regex:

ValidateRegex:

Items:

- Item1:

Format:

Meaning:

GetFrom:

Value:

Regex:

ValidateRegex:

FallBacks:

- FallBack1:

GetFrom:

Value:

Regex:

Content:

GetFrom:

Value:

Regex:

ValidateRegex:

FallBacks:

- FallBack1:

GetFrom:

Value:

Regex:

.

Network Event:

Data:

Subtype:

GetFrom:

Value:

Regex:

ValidateRegex:

Entities:

Sources:

- Source1:

Protoname:

GetFrom:

Value:

Regex:

ValidateRegex:

Value:

GetFrom:

Value:

Regex:

ValidateRegex:

Destinations:

- Destination1:

Protoname:

GetFrom:

Value:

Regex:

ValidateRegex:

Value:

GetFrom:

Value:

Regex:

ValidateRegex:

Items:

- Item1:

Format:

Meaning:

GetFrom:

Value:

Regex:

Content:

GetFrom:

Value:

Regex:

ValidateRegex:

FallBacks:

- FallBack1:

GetFrom:

Value:

Regex:

31

3. Implementation

Host Event:

Data:

Items:

- Item1:

Format:

Meaning:

GetFrom:

Value:

Regex:

ValidateRegex:

FallBacks:

- FallBack1:

GetFrom:

Value:

Regex:

Content:

GetFrom:

Value:

Regex:

ValidateRegex:

FallBacks:

- FallBack1:

GetFrom:

Value:

Regex:

- Item2:

...

.

CyberPhysical Event:

Data:

NodeID:

GetFrom:

Value:

Regex:

ValidateRegex:

Location:

Values:

- Value1:

GetFrom:

Value:

Regex:

ValidateRegex:

Items:

- Item1:

Format:

Meaning:

GetFrom:

Value:

Regex:

ValidateRegex:

FallBacks:

- FallBack1:

GetFrom:

Value:

Regex:

Content:

GetFrom:

Value:

Regex:

ValidateRegex:

FallBacks:

- FallBack1:

GetFrom:

Value:

Regex:

32

3.5 Data Structures

Data:

Code: #optional

GetFrom:

Value:

Regex:

ValidateRegex:

Items:

- Item1:

Format:

Meaning:

GetFrom:

Value:

Regex:

ValidateRegex:

FallBacks:

- FallBack1:

GetFrom:

Value:

Regex:

Content:

GetFrom:

Value:

Regex:

ValidateRegex:

FallBacks:

- FallBack1:

GetFrom:

Value:

Regex:

- Item2:

...

- Event2:

...

Table 3.8: All the Data fields for all types of events possible.

Example files for all types of events are appended to this thesis.

3.5 Data Structures

With the proposed configuration and mapping file formats, the agent needed an

appropriate data structure to store the information from them. A total of 34 Structs were

implemented in GO in an almost identical way the fields in the previous files were formated,

33

3. Implementation

one of them being the struct to store the configuration (debug variables and such).

With the use of the Viper [36] package, it was extremely easy to immediately map the in-

formation in the files to the structs, as long as it was defined what variable in the list would

store what data. The full list of structures implemented is appended aswell. The Main struct

field is , like in the files, a ”FieldStruct” struct.

Three other structs were created to store all the information, now organized, that will be

encoded to create the final Event in the Data-Model Format, displayed in 3.5.

Figure 3.4: The three main structs used, from which the remaining 30 are based on.

34

3.6 Usage

Figure 3.5: The three main structs created for information ready to be encoded.

3.6 Usage

The user should configure both the config and EventMap(this one can be renamed)

.yaml or .yml files in a per case manner. The config file is pretty self-explanatory due to the

verbosity of values stored in it. If the configuration file is in any directory other than the

one the agent is located in, the user should specify its path using the flag c when running the

agent.

Example: If the agent’s location is /home/ and the config.yml is located in /home/con f ig/,

the user should start the agent with the command: ./agent−c= ”/home/con f ig/con f ig.yml”

or ./agent− c = ”/home/con f ig/con f ig”

35

3. Implementation

36

Chapter 4

Tests and Validation

This chapter serves as a form of validation (functional and non-functional) to the

work developed by presenting the results, feedback and validation from the ATENA team,

and representations of the agent in action. Some benchmarking data was also gathered and

is represented after the former results.

37

4. Tests and Validation

4.1 Agent in action

In the following images, we can see the results of the agent’s successful work on

June 12th, reading from a Snort 2.9.13 probe’s output, which was running on a docker con-

tainer on an Intel NUC, with 6 CPUs, 12 GB RAM and 40GB of disk space. The attack

the probe was detecting was an ARP-Based Man In The Middle (MITM) attack. The probe

administrator configured the agent correctly and the agent began reading, encoding and send-

ing the information to the the specified cluster and topic, which multiple components in the

Intrusion and Anomaly Detection System (IADS) platform were subscribed to, allowing

them to be fed with information from the security probe integrated by means of the agent

that was developed.

Figure 4.1: Depiction of the attack, ran by a script ’mitm.py’.

Figure 4.2: Depiction of the graphic of rapidly growing number of events being detected in
the platform, from the probeevents topic in the Domain Processor, the topic the agent was
configured to produce messages to.

38

4.1 Agent in action

Figure 4.3: Depiction of the number of event severities and types detected, in this case, all
of emerg severity and of Network types.

Figure 4.4: The list of events detected.

When the administrator clicks on an event on this list, a full JSON message can be

observed in the data model format, and more detailed properties can be read by doing so.

Example of an event of this type in image 4.5.

39

4. Tests and Validation

Figure 4.5: JSON Message with the Probe’s output, converted into the Data Model.

4.2 Runtime performance evaluation

A diagram of the Agent flow is displayed in figure 4.6, in order to contextualize the

reader about the different steps where the timing was measured in this section.

Figure 4.6: Agent Flow diagram.

From a Log File where the Agent was getting its input from, only a small subset of

the entries (around 7%) corresponded to actual valid events. The agent would therefore need

to separate the valid ones from the non-valid ones in order to prevent the cluttering of trash

40

4.2 Runtime performance evaluation

in the Kafka cluster, and therefore the IADS platform. It succesfully did so by detecting the

invalid lines as garbage and not even trying to encode them, with the right configurations

of data to be actually detected and read. A benchmark procedure was undertaken, in order

to evaluate the performance of the agent, depicted in figures 4.7 to 4.9. Since pKafka, and

therefore the sending component, are dependant on network states and inherent bottlenecks,

as well as the package being developed by a different developer, the sending times are not

measured.

41

4. Tests and Validation

Figure 4.7: Benchmark table of the running time of the agent’s multiple components.

42

4.2 Runtime performance evaluation

Figure 4.8: Running time (ms) of each agent’s main component, per source line.

Figure 4.9: Average time(ms) of each main agent’s component (excluding kafka sender), on
a given valid event line table. Standard deviation was of 1.0347ms on the Read component
and of 0.0332ms on the encoding component.

43

4. Tests and Validation

All this data was also sent on the D7.5 contribution, which served to describe the

final results of ATENA prototype validation and demonstration of the ATENA prototype.

The D7.5 deliverable finalizes the deliverable D7.3 ”Demonstration of the ATENA prototype

(Interim DEM)”. The performance of the agent was concluded to be satisfactory, with the

added advantage of being multiplexable if required. The possible bottleneck happening on

the sender component is something the user or administrator might have problems mitigating,

since it is extremely dependant on network conditions and KafKa Cluster configurations,

which might be of a third-party’s ownership.

44

Chapter 5

Conclusion and Future Work

This brief chapter serves not only as the conclusion of this thesis but also as a way

to give some insight on future work that might be done if so required. In essence, the agent

fulfilled its purpose and, along with the rest of the IADS components, was submitted for

review and was validated successfully in the final Prototype validation Delivery. All the

work and its code was passed on to the team and further maintenance or stability releases

can be made.

If interest arises, the agent developed may be applied to multiple use cases, not only

from a security point-of-view, given its inherent generalism. Its components may be used in

any case where a user might need to retrieve information from any source specified in this

document, such as a syslog or a unixsocket, and map it to any structure the user configures

previously, which might be usefull in another environment. Further work in this agent can

also be done, such as the development of an interface that allows for easier configuration of

the two files required for the successfull functioning of the software.

This concludes my work as part of the LCT’s team, and on this project.

45

5. Conclusion and Future Work

46

Bibliography

[1] ATENA Consortium. {ATENA:} {A}dvanced {T}ools to ass{E}ss and mitig-

ate the criticality of {ICT} compo{N}ents and their dependencies over {C}ritical

{I}nfr{A}structures, {H}orizon 2020 {S}ecure {S}ocieties - {DS}-3-2015 {G.A.}
700581, https://www.atena-h2020.eu, 2016.

[2] Scada example drill by using wincc. URL https://www.youtube.com/watch?v=

mqW7edwe75A.

[3] IADS dashboard walkthrough. URL https://www.youtube.com/watch?v=

oVOgus5-FLw&list=PLyl2zhykZrH_jltW0C2NKUjChOJ-5o4R1&index=3&t=0s.

[4] Miguel Rosado Borges de Freitas, Doutor Tiago Cruz Co-Supervisor, and Doutor

Paulo Simões. Network Softwarization for IACS Security Applications. Technical

report, 2018.

[5] ATENA Consortium. ATENA - Deliverable 6.4 - Design and development report of the

2nd release of components, 2019.

[6] Martin Roesch. Snort-Lightweight Intrusion Detection for Networks. Technical report.

[7] Arthur Jicha, Mark Patton, and Hsinchun Chen. SCADA honeypots: An in-depth

analysis of Conpot. In IEEE International Conference on Intelligence and Secur-

ity Informatics: Cybersecurity and Big Data, ISI 2016, pages 196–198. Institute of

Electrical and Electronics Engineers Inc., 11 2016. ISBN 9781509038657. doi:

10.1109/ISI.2016.7745468.

[8] ATENA Consortium. ATENA - Deliverable 7.5 - Final ATENA prototype validation

and evaluation of validation results (Final DEM0), 2019.

47

https://www.youtube.com/watch?v=mqW7edwe75A
https://www.youtube.com/watch?v=mqW7edwe75A
https://www.youtube.com/watch?v=oVOgus5-FLw&list=PLyl2zhykZrH_jltW0C2NKUjChOJ-5o4R1&index=3&t=0s
https://www.youtube.com/watch?v=oVOgus5-FLw&list=PLyl2zhykZrH_jltW0C2NKUjChOJ-5o4R1&index=3&t=0s

Bibliography

[9] Abdulmalik Humayed, Jingqiang Lin, Fengjun Li, and Bo Luo. Cyber-Physical Sys-

tems Security—A Survey. IEEE INTERNET OF THINGS JOURNAL, 4(6), 2017. doi:

10.1109/JIOT.2017.2703172.

[10] Filipe Sequeira. Development and Integration of Specialized Probes for IACS Applica-

tions. PhD thesis, 2018.

[11] L. P. Dias, J. J.F. Cerqueira, K. D.R. Assis, and R. C. Almeida. Using artificial

neural network in intrusion detection systems to computer networks. In 2017 9th

Computer Science and Electronic Engineering Conference, CEEC 2017 - Proceedings,

pages 145–150. Institute of Electrical and Electronics Engineers Inc., 11 2017. ISBN

9781538630075. doi: 10.1109/CEEC.2017.8101615.

[12] Executive Summary. CockpitCI Cybersecurity on SCADA : risk prediction , analysis

and. (285647):1–20.

[13] Marco Castrucci, Alessandro Neri, Filipe Caldeira, Jocelyn Aubert, Djamel Khad-

raoui, Matthieu Aubigny, Carlo Harpes, Paulo Simoes, Vincenzo Suraci, and Paolo

Capodieci. Design and implementation of a mediation system enabling secure commu-

nication among Critical Infrastructures. International Journal of Critical Infrastructure

Protection, 5(2):86–97, 7 2012. ISSN 18745482. doi: 10.1016/j.ijcip.2012.04.001.

[14] Rebecca Bace and Peter Mell. NIST Special Publication on Intrusion Detection Sys-

tems Intrusion Detection Systems. Technical report.

[15] Brandon Lokesak. A Comparison Between Signature Based and Anomaly Based In-

trusion Detection Systems. 2008.

[16] Christos Douligeris. Network Security: Current Status and Future Directions - Christos

Douligeris, Dimitrios N. Serpanos - Google Livros. URL https://books.google.

pt/books?id=dHys9OXMFMIC&lpg=PA86&dq=signature+IDS+disadvantage&pg=

PA86&redir_esc=y#v=onepage&q=signatureIDSdisadvantage&f=false.

[17] Rowayda A Sadek, M Sami Soliman, and Hagar S Elsayed. Effective Anomaly Intru-

sion Detection System based on Neural Network with Indicator Variable and Rough set

Reduction. 2013. URL www.IJCSI.org.

48

https://books.google.pt/books?id=dHys9OXMFMIC&lpg=PA86&dq=signature+IDS+disadvantage&pg=PA86&redir_esc=y#v=onepage&q=signature IDS disadvantage&f=false
https://books.google.pt/books?id=dHys9OXMFMIC&lpg=PA86&dq=signature+IDS+disadvantage&pg=PA86&redir_esc=y#v=onepage&q=signature IDS disadvantage&f=false
https://books.google.pt/books?id=dHys9OXMFMIC&lpg=PA86&dq=signature+IDS+disadvantage&pg=PA86&redir_esc=y#v=onepage&q=signature IDS disadvantage&f=false
www.IJCSI.org

Bibliography

[18] Maurizio Martellini. Cyber and Chemical, Biological, Radiological, Nuclear,

Explosives Challenges. 2017. URL https://books.google.pt/books?id=

klE8DwAAQBAJ&lpg=PA31&dq=siem+alarm+filtering&pg=PA31&redir_esc=y#

v=onepage&q=siemalarmfiltering&f=false.

[19] Daniel B Cid. Log Analysis using OSSEC. Technical report, 2007.

[20] David Jonathan Day, David J Day, and Benjamin M Burns. A Performance Ana-

lysis of Snort and Suricata Network Intrusion Detection and Prevention Engines

Games Physiotherapy for Children with Cystic Fibrosis View project A Perform-

ance Analysis of Snort and Suricata Network Intrusion Detection and Prevention

Engi. 2011. ISBN 9781612081168. URL https://www.researchgate.net/

publication/241701294.

[21] Host Integrity Monitoring Using Osiris and Samhain - Brian Wotring - Google Livros.

URL https://books.google.pt/books?hl=pt-PT&lr=&id=CGE2synNNSEC&

oi=fnd&pg=PP1&dq=Samhain&ots=BuujZ7np4p&sig=wHzDVE3PcmlE_

O4z7wEJb5IBGjY&redir_esc=y#v=onepage&q=Samhain&f=false.

[22] Filip Holik, Josef Horalek, Sona Neradova, Stanislav Zitta, and Ondrej Marik. The

deployment of Security Information and Event Management in cloud infrastruc-

ture. In Proceedings of 25th International Conference Radioelektronika, RADI-

OELEKTRONIKA 2015, pages 399–404. Institute of Electrical and Electronics Engin-

eers Inc., 6 2015. ISBN 9781479981175. doi: 10.1109/RADIOELEK.2015.7128982.

[23] T Amick, L Soles, and D Snider. Moving Towards an Adaptive Enterprise Intrusion

Detection and Prevention System. Technical report.

[24] Apache Kafka - Documentation. doi: 10.1145/1570000/1563874. URL https://

kafka.apache.org/documentation/.

[25] Atena- Deliverable 4 . 8 - Design of the Distributed IDS for IACS (final version).

(700581):1–61, 2018.

[26] Luis Rosa. IADS-Events Data Model, Private Repository, 2018. URL https:

//github.com/lmrosa/iads-events.

[27] Balabit - Syslog-ng, . URL https://github.com/balabit/syslog-ng/releases.

49

https://books.google.pt/books?id=klE8DwAAQBAJ&lpg=PA31&dq=siem+alarm+filtering&pg=PA31&redir_esc=y#v=onepage&q=siem alarm filtering&f=false
https://books.google.pt/books?id=klE8DwAAQBAJ&lpg=PA31&dq=siem+alarm+filtering&pg=PA31&redir_esc=y#v=onepage&q=siem alarm filtering&f=false
https://books.google.pt/books?id=klE8DwAAQBAJ&lpg=PA31&dq=siem+alarm+filtering&pg=PA31&redir_esc=y#v=onepage&q=siem alarm filtering&f=false
https://www.researchgate.net/publication/241701294
https://www.researchgate.net/publication/241701294
https://books.google.pt/books?hl=pt-PT&lr=&id=CGE2synNNSEC&oi=fnd&pg=PP1&dq=Samhain&ots=BuujZ7np4p&sig=wHzDVE3PcmlE_O4z7wEJb5IBGjY&redir_esc=y#v=onepage&q=Samhain&f=false
https://books.google.pt/books?hl=pt-PT&lr=&id=CGE2synNNSEC&oi=fnd&pg=PP1&dq=Samhain&ots=BuujZ7np4p&sig=wHzDVE3PcmlE_O4z7wEJb5IBGjY&redir_esc=y#v=onepage&q=Samhain&f=false
https://books.google.pt/books?hl=pt-PT&lr=&id=CGE2synNNSEC&oi=fnd&pg=PP1&dq=Samhain&ots=BuujZ7np4p&sig=wHzDVE3PcmlE_O4z7wEJb5IBGjY&redir_esc=y#v=onepage&q=Samhain&f=false
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://github.com/lmrosa/iads-events
https://github.com/lmrosa/iads-events
https://github.com/balabit/syslog-ng/releases

Bibliography

[28] syslogProbe: Probe that consumes events from Syslog and sends them to Kafka, . URL

https://github.com/vgraveto/syslogProbe.

[29] Centro Nacional de CiberSegurança. C-Days 2019 - 26JUN - Sala/Room B - Sessões

da Tarde / Afternoon Sessions. 2019. URL https://www.youtube.com/watch?v=

XHnYrYQcPk0&feature=youtu.be&t=3528.

[30] Sushma Sanjappa and Muzameel Ahmed. Analysis of logs by using logstash. In Ad-

vances in Intelligent Systems and Computing, volume 516, pages 579–585. Springer

Verlag, 2017. ISBN 9789811031557. doi: 10.1007/978-981-10-3156-4{\ }61.

[31] Jeffrey E F Friedl. Mastering regular expressions. ” O’Reilly Media, Inc.”, 2006.

[32] João Ferreira. IADS events agent, 2019. URL https://github.com/vgraveto/

iads-events-agent.

[33] Charles Anderson. Docker, 5 2015. ISSN 07407459.

[34] Ken Arnold, James Gosling, and David Holmes. The Java programing language,

Fourth Edition. 2005. ISBN 0321349806.

[35] Version May. The Go Programming Language Specification. 2013. URL http://

golang.org.

[36] Spf13. spf13/viper: Go configuration with fangs. URL https://github.com/spf13/

viper.

[37] vgraveto/pKafka: Producer for Kafka. URL https://github.com/vgraveto/

pKafka.

[38] linkedin/goavro. URL https://github.com/linkedin/goavro.

[39] Apache AvroTM 1.9.0 Documentation. URL https://avro.apache.org/docs/

current/.

[40] Syntax · google/re2 Wiki. URL https://github.com/google/re2/wiki/Syntax.

50

https://github.com/vgraveto/syslogProbe
https://www.youtube.com/watch?v=XHnYrYQcPk0&feature=youtu.be&t=3528
https://www.youtube.com/watch?v=XHnYrYQcPk0&feature=youtu.be&t=3528
https://github.com/vgraveto/iads-events-agent
https://github.com/vgraveto/iads-events-agent
http://golang.org
http://golang.org
https://github.com/spf13/viper
https://github.com/spf13/viper
https://github.com/vgraveto/pKafka
https://github.com/vgraveto/pKafka
https://github.com/linkedin/goavro
https://avro.apache.org/docs/current/
https://avro.apache.org/docs/current/
https://github.com/google/re2/wiki/Syntax

Appendices

Thesis Planning
João Ferreira

Main Goals
This thesis has a main implementation goal:

• Goal 1 - The development of a generic adapter agent that should be ran in parallel with any given probe that may or may not
exist at the time of writing.

Thesis Milestones

Along with the goals, some set milestones are:

• Demo 1 - 17/10/18 - A functional prototype of an agent described in goal 1 had to be developed until this date. This
prototype had to run in two instances alongside two probes, namely a Snort and a ConPot probe. It served it’s
purpose and some validation input was taken from the team members.

• Demo 2 - Final demo and Validation - 12/06/19 - A functional prototype of an agent described in goal 1 had to be
developed until this date. This prototype had to run in two instances alongside two probes, namely a Snort and a
ConPot probe. It served it’s purpose and some validation input was taken from the team members.

• Final Thesis Delivery - 31/07/19 or 09/09/19 - The final written thesis delivery milestone. This is the date of the
Normal season for dissertations. If needed, access to the special season can be requested, on the second date
mentioned.

Despite this thesis’ background in the Department of Informatics Engineering, it is still a dissertation from the Department
of Electrical and Computer Engineering and, as such, has no inherent intermediate delivery for evaluation, altough some
form of continuous development of the dissertation is encouraged.

Tasks

Some defined tasks were/are:

• Task 1 - Introduction to the project, team involved, coordinators and past work.

• Task 2 - Research on multiple options and paths to fulfill requirements for Goal 1.

• Task 3 - Development of a prototype for September’s demo.

• Task 4 - Research of further options according to demo’s validation results; start of Thesis’ writing.

• Task 5 - Further Development of Goal 1’s Agent.

• Task 6 - Validation of different incremental releases of agent mentioned in above task.

• Task 7 - Final Thesis’ writing.

1

A Thesis Planning

Planned schedule

Below is a Gantt chart of the planned and scheduled work, as of 06-11-18. This schedule can suffer changes, and a final
schedule will be made in the final writing of the thesis for comparisons.

2018 2019
7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Task 1
Task 2
Task 3

Demo 1

Task 4
Task 5
Task 6

Demo 2

Task 7
Thesis Delivery

Special season Delivery

Overlapping courses

Along with the thesis, I am also enrolled in the following courses:

• Controlo Digital - 1st Semester.
1st Theorical Evaluation: 13/11/18
2nd Practical Evaluation: 12/12/18
2nd Theorical Evaluation: 17/01/19

Some time before the dates mentioned above is needed for preparation purposes, which can overlap with the thesis
development schedule.

2/2

B Thesis Planning

C CyberPhysical Data-Model Payload

Metadata:

Check the Metadata structure here: https://github.com/lmrosa/cpids-events

Payload:

Events:

URIofType

Type (CyberPhysical)

Severity

Data:

NodeID

Location: (0..1)

Values (1..*)

Items: (1..*)

Meaning

Content (Binary/ASCII)

D Host Data-Model Payload

Metadata:

Check the Metadata structure here: https://github.com/lmrosa/cpids-events

Payload:

Events:

URIofType

Type (Host)

Severity

Data:

Items: (1..*)

Meaning (syslog, ...)

Content (Binary/ASCII)

E Network Data-Model Payload

Metadata:

Check the Metadata structure here: https://github.com/lmrosa/cpids-events

Payload:

Events:

URIofType

Type (Network)

Severity (emerg, alert, crit, err, warn, notice, info, debug - rfc5424)

Data:

SubType

Entities:

Sources (0..*)

ProtoName

Value (0..*)

Destinations (0..*)

ProtoName

Value (0..*)

Items: (0..*)

Meaning

Content (Binary/ASCII)

F Other Data-Model Payload

Metadata:

Check the Metadata structure here: https://github.com/lmrosa/cpids-events

Payload:

Events:

URIofType

Type (Other)

Severity

Data:

Code (Types of HTTP errors to be reading by machines)

Items: (1..*)

Meaning

Content (Binary/ASCII)

G Application Configuration Example .yaml file

Source: "FicheiroLogTeste.txt" #name of file/pipe

Metadata:

Origins:

URI:

GetFrom: "STATIC"

Value: "/home/file.txt"

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

UserAgent:

GetFrom: 'STATIC'

Value: '/home/file2.txt'

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Timestamp:

GetFrom: 'EXEC'

Value: 'date'

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Payload:

Events:

- Event1:

Type:

Value: 'Application'

URIofType:

GetFrom: "STATIC"

Value: 'ApplicationEvent.xml'

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Severity:

GetFrom: "STATIC"

Value: 'alert'

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

AppData:

Assets:

- Asset1:

AssetType:

GetFrom: STATIC

Value: "Assetname"

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Value:

GetFrom: STATIC

Value: "plc1.disney.dei.uc.pt"

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

ItemIDs:

- ItemID1:

GetFrom: STATIC

Value: "A1"

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

- Asset2:

AssetType:

GetFrom: STATIC

Value: "IP"

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Value:

GetFrom: STREAM

Value:

Regex: "`(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)(.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)){3}`"

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

ItemIDs:

- ItemID1:

GetFrom: STATIC

Value: "A2"

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Items:

- Item1:

Format: "string"

ID:

GetFrom: STATIC

Value: "A1"

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Meaning:

GetFrom: STATIC

Value: "PID"

Regex:

Content:

GetFrom: STREAM

Value:

Regex: '\b Controller ID:\b.*\b'

- Item2:

Format: "byte"

ID:

GetFrom: STATIC

Value: "A2"

Regex:

Meaning:

GetFrom: STATIC

Value: "PID"

Regex:

Content:

GetFrom: STREAM

Value:

Regex: '\b Controller ID:\b.*\b'

H CyberPhysical Configuration Example .yaml file

Source: "FicheiroLogTeste.txt" #name of file/pipe

Metadata:

Origins:

URI:

GetFrom: "FILE"

Value: "/home/file.txt"

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

UserAgent:

GetFrom: 'FILE'

Value: '/home/file2.txt'

Regex: '\bUserAgent:\b.*\b'

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Timestamp:

GetFrom: 'EXEC'

Value: 'date'

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Payload:

Events:

- Event1:

Type:

Value: 'CyberPhysical'

URIofType:

GetFrom: "STATIC"

Value: 'CyberPhysicalEvent.xml'

Regex:

Severity:

GetFrom: "STATIC"

Value: 'info'

Regex:

CPData:

NodeID:

GetFrom: 'STATIC'

Value: "PLC_1"

Regex:

Location:

Values:

- Value1:

GetFrom: 'STREAM'

Value:

Regex: '\bCoordinates:\b.\b*\b'

Items:

- Item1:

Format: "string"

Meaning:

GetFrom: 'STATIC'

Value: 'syslog'

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Content:

GetFrom: 'STREAM'

Value:

Regex: '\bPID:\b\b.*\b'

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

I Host Configuration Example .yaml file

Source: "FicheiroLogTeste.txt" #name of file/pipe

Metadata:

Origins:

URI:

GetFrom: "FILE"

Value: "/home/file.txt"

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

UserAgent:

GetFrom: 'FILE'

Value: '/home/file2.txt'

Regex: '\bUserAgent:\b.*\b'

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Timestamp:

GetFrom: 'EXEC'

Value: 'date'

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Payload:

Events:

- Event1:

Type:

Value: 'Host'

URIofType:

GetFrom: "STATIC"

Value: 'HostEvent.xml'

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Severity:

GetFrom: "STATIC"

Value: 'info'

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

HostData:

Items:

- Item1:

Format: "string"

Meaning:

GetFrom: 'STATIC'

Value: 'syslog'

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Content:

GetFrom: 'STREAM'

Value:

Regex: '\bPID:\b\b.*\b'

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

J Network Configuration Example .yaml file

K Other Configuration Example .yaml file

Source: "FicheiroLogTeste.txt" #name of file/pipe

Metadata:

Origins:

URI:

GetFrom: "FILE"

Value:

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

UserAgent:

GetFrom: 'FILE'

Value: '/home/file2.txt'

Regex: '\bUserAgent:\b.*\b'

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Timestamp:

GetFrom: 'EXEC'

Value: 'date'

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Payload:

Events:

- Event1:

Type:

Value: 'Other'

URIofType:

GetFrom: "STATIC"

Value: 'OtherEvent.xml'

Regex:

Severity:

GetFrom: "STATIC"

Value: 'info'

Regex:

OtherData:

Code:

GetFrom: "STATIC"

Value: "103"

Regex:

Items:

- Item1:

Format: "string"

Meaning:

GetFrom: 'STATIC'

Value: 'syslog'

Regex:

ValidateRegex: '*'

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

Content:

GetFrom: 'STATIC'

Value: "AAA"

Regex:

ValidateRegex:

FallBacks:

- FallBack1:

GetFrom: 'STATIC'

Value: 'not found'

Regex:

	Abstract
	Resumo
	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Implementation and Key Contributions
	1.4 Document Structure

	2 Context and State of the Art
	2.1 Industrial Automation and Control Systems
	2.2 The ATENA Project
	2.3 Intrusion, Intrusion detection and IDS
	2.3.1 Signature-based and Anomaly-based IDS
	2.3.2 SIEM
	2.3.3 NIDS and HIDS

	2.4 SCADA Systems
	2.5 ATENA Work Package 4 - IADS
	2.5.1 Architecture of the platform
	2.5.2 The IADS-Events Datamodel

	2.6 Security Event-Generating Probes
	2.7 Previous Implementation
	2.8 Chapter Overview

	3 Implementation
	3.1 Requirements elicitation
	3.2 Useful Tools & Libraries
	3.3 IADS-Events Agent Architecture
	3.3.1 Configuration Component
	3.3.2 Event Reader Component
	3.3.3 Event Encoder Component
	3.3.4 Kafka Producer Component

	3.4 Configuration and Mapping Files
	3.4.1 Configuration file
	3.4.2 Mapping file
	3.4.2.A Source Field
	3.4.2.B Field Structure
	3.4.2.C Item Field
	3.4.2.D Complete Layout of the file

	3.5 Data Structures
	3.6 Usage

	4 Tests and Validation
	4.1 Agent in action
	4.2 Runtime performance evaluation

	5 Conclusion and Future Work
	Appendices
	A Thesis Planning
	B Thesis Planning
	C CyberPhysical Data-Model Payload
	D Host Data-Model Payload
	E Network Data-Model Payload
	F Other Data-Model Payload
	G Application Configuration Example .yaml file
	H CyberPhysical Configuration Example .yaml file
	I Host Configuration Example .yaml file
	J Network Configuration Example .yaml file
	K Other Configuration Example .yaml file

