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Abstract 

 

Multiple Sclerosis (MS) is a neurological disease of the central nervous system, 

thought to predominantly affect white matter (WM). As such, the detection of T2-

hyperintense WM lesions on magnetic resonance imaging (MRI) scans of the brain 

has become a crucial criterion for diagnosis and predicting prognosis in early 

disease. Despite extensive criteria to perform a MS diagnosis and the available 

treatments to manage the disease, MS remains a complex disease with several 

questions to be solved. The cause of the disease depends on many factors and is 

hardly explained, and MS misdiagnosis is still a concern. These questions have 

motivated the study of imaging biomarkers.  

Beyond identification of WM lesions, there are other structural changes in the 

brain that can characterize MS, such as grey matter (GM) lesions and regional WM 

and GM atrophy, which have been associated with cognitive deficit and disease 

severity. Understanding their cause, how early they appear, and which regions are 

primarily affected can provide important clues about the pathophysiology of the 

disease and lead to a more accurate diagnosis. The aim of this work is to identify 

structural neuroimaging biomarkers of interest for the discrimination of MS 

patients and different subtypes, and also for investigation of MS pathophysiology. 

MRI measures of voxel-wise GM and WM volume, cortical thickness and 

gyrification index were used to investigate patterns of structural deficits in MS. 

These measures were extracted from T1-MPRAGE and T2-FLAIR images from 64 

healthy controls and 59 MS patients. The images underwent univariate statistical 

analyses, such as voxel-based morphometry (VBM) and surface-based 

morphometry (SBM), to investigate regional morphometric differences. 

Multivariate pattern analysis (MVPA) using a Support Vector Machine (SVM) 

classifier was also applied to the same dataset, to obtain an automatic classification 

of MS patients and MS subtypes and to explore the potential of pattern recognition 

techniques in the analysis of neuroimaging biomarkers of disease.  

Either VBM analysis, testing regional GM and WM volume differences, and SBM 

analysis, testing surface differences in cortical thickness and gyrification index, 

revealed several morphometric differences between patients and controls. Such 
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results demonstrated the possibility to track morphological MS-related changes 

with these measures. SVM classification based on GM and WM volumes yielded quite 

accurate discrimination of MS patients. The classification of MS subtypes, on the 

other hand, was much lower than the discrimination of MS patients from healthy 

controls. Nonetheless, the significant results obtained suggest that including a 

higher number of participants is expected to allow an accurate discrimination of MS 

subtypes.  

In conclusion, univariate analysis of different morphometric features parameters 

can be used to highlight disease effects in MS. Multivariate pattern analysis can be 

used to distinguish between individuals diagnosed with MS and control participants 

on the basis of neuroanatomical differences. Furthermore, this data-driven analysis 

can reveal subtle distributed networks of abnormal structural patterns in MS and 

might be explored further to derive useful predictive tools with potential in assisting 

diagnosis and accurate discrimination of MS subtypes. 

 

Keywords: Multiple Sclerosis, brain structure, univariate analysis, multivariate 

pattern classification  
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Resumo 

 

A Esclerose Múltipla (EM) é uma doença neurológica do sistema nervoso central, 

que afeta predominantemente a substância branca. Como tal, a deteção de lesões na 

substância branca que aparecem hiperintensas no sinal T2 de ressonância 

magnética (RM) do cérebro tornou-se um critério crucial para o diagnóstico e 

previsão do prognóstico no início da doença. Apesar dos extensos critérios 

necessários para realizar um diagnóstico de EM e os tratamentos disponíveis no 

decorrer da doença, a EM continua a ser uma doença complexa, com várias questões 

a serem resolvidas. A causa da doença depende de muitos fatores sendo dificilmente 

explicada, e o diagnóstico incorreto da EM é também uma preocupação. O estudo de 

biomarcadores de imagem é motivado por estas questões.  

Além da identificação de lesões na substância branca, existem outras alterações 

estruturais no cérebro que podem caracterizar a EM. Lesões na substância cinzenta 

e atrofia regional na substância branca e na substância cinzenta têm sido associadas 

ao défice cognitivo e ao agravamento da doença. Perceber as sua causas, quão cedo 

estas surgem e quais as regiões principalmente afetadas, pode fornecer pistas 

importantes sobre a fisiopatologia da doença conduzindo a um diagnóstico mais 

preciso. O objetivo deste trabalho é identificar biomarcadores estruturais de 

neuroimagem de interesse para a discriminação de doentes com EM e de diferentes 

subtipos e também para investigar acerca da fisiopatologia da EM  

Medidas obtidas com as imagens de ressonância magnética como volume de 

substância cinzenta e substância branca, espessura cortical e índice de girificação 

foram usadas para investigar padrões que revelam alterações estruturais na EM. 

Estas medidas foram extraídas de imagens T1-MPRAGE e T2-FLAIR de 64 controlos 

saudáveis 59 doentes com EM. As imagens foram submetidas a análises estatísticas 

univariadas, como voxel-based morphometry (VBM) e surface-based morphometry 

(SBM), para investigar diferenças morfológicas regionais. A análise multivariada de 

padrões (MVPA), usando um classificador Support Vector Machine (SVM) também 

foi aplicada no mesmo conjunto de dados, para obter uma classificação automática 

de doentes com EM e subtipos de EM e explorar o potencial das técnicas de 
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reconhecimento de padrões na análise de biomarcadores de neuroimagem da 

doença. 

 Tanto a análise VBM, testando diferenças regionais de volume de matéria 

cinzenta e matéria branca, quanto a análise SBM, testando as diferenças de 

superfície na espessura cortical e índice de girificação, revelaram várias diferenças 

estruturais entre doentes e controlos. Tais resultados demonstraram a 

possibilidade de detetar alterações morfológicas na EM com estas medidas. A 

classificação SVM baseada no volume de substância cinzenta e substância branca 

resultou numa discriminação bastante precisa dos doentes com EM. A classificação 

dos subtipos de EM, por outro lado, foi muito menos precisa do que a discriminação 

entre doentes com EM e controlos saudáveis. No entanto, os resultados 

significativos obtidos sugerem que se espera que um maior número de participantes 

permita uma discriminação precisa dos subtipos de EM.  

Concluindo, análises univariadas em diferentes parâmetros estruturais pode ser 

usada para destacar os efeitos da doença na EM. A análise multivariada pode ser 

usada para distinguir indivíduos diagnosticados com EM e participantes saudáveis 

com base em diferenças neuroanatómicas. Além disso, esta análise pode revelar 

padrões estruturais subtis anormais na EM, e pode ser mais explorada para 

investigar biomarcadores preditivos úteis com potencial para auxiliar o diagnóstico 

e para discriminar com precisão subtipos de EM.  

 

Palavras-chave: Esclerose Múltipla, estrutura do cérebro, análises univariadas, 

classificação multivariada  
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1 Introduction 
 

 

1.1 Background and Motivation 

 

1.1.1 Multiple Sclerosis  

Multiple Sclerosis (MS) is a chronic, autoimmune, progressive, inflammatory 

neurological disease with no known cure that affects the central nervous system 

(CNS) [1]. The term Multiple refers to multiple areas of the brain and spinal cord 

that are affected, whereas the term Sclerosis is due to the presence of multifocal 

demyelinated regions of the CNS, essentially known as white matter (WM) lesions. 

Sclerosis is a Latin word which stands for scars and MS literally means many scars. 

WM lesions, the macro structural manifestation of demyelination, are characterized 

by myelin oligodendrocyte glycoproteins (MOG) loss and infiltrated inflammatory 

cells, namely lymphocytes and macrophages [1], [2]. The immune system recognizes 

MOG proteins as being unknown and harmful and the subsequent inflammatory 

response leads to myelin sheath degradation [2], [3]. Myelin sheaths around the 

axons have the function of protecting axons and conducting nerve impulses [2]–[4]. 

Demyelination is characterized by the degradation of myelin sheaths of the axons 

which leads to impairment or interruption of transmission of neuronal signals, and 

ultimately death of nerve cells. 

MS is a progressive disease, its course is quite varied and unpredictable, and is 

characterized by motor, sensory and cognitive deterioration in 65 % of the patients 

[5], [6]. The presence of relatively preserved axons and neurons within the WM 

lesions in the early stages of the disease distinguishes MS from other destructive 

pathophysiological conditions that are followed by focal inflammation [1].  

However, as disease progresses axonal damage becomes irreversible [3].  

In 2016, the Global Burden of Diseases, Injuries, and Risk Factors Study 

(GBD) estimated 2221188 prevalent cases of Multiple Sclerosis worldwide, and 

8367 in Portugal [7]. Women are twice more affected by MS than men and MS is 

mainly incident in Caucasian subjects (more specifically descendants from northern 
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Europe). The disease usually manifests in adults between the ages of 20-50 years 

old. Occasionally it is present during childhood or late middle age [1]–[3]. 

The cause of MS is not fully understood. However, it is believed that the 

emergence of the disease results from a genetic predisposition combined with non-

genetic factors (triggers). These triggers can be a virus, such as Epstein–Barr virus, 

or metabolic and environmental factors, such as smoking, child obesity and low 

levels of Vitamin D [1]–[3]. Genome Wide Association Studies (GWAS)  identified 

more than 100 variants associated with MS, conferring a minimal percentage to the 

risk of the disease [1]–[3]. 

The onset of the disease is marked by a first single attack (isolated in time) known 

by “clinically isolated syndrome” (CIS). Subjects who have experienced CIS manifest 

symptoms that are suggestive of MS. Clinical symptoms of MS vary depending on the 

location and degree of the lesions. Symptoms include muscle weakness, loss of 

vision, dizziness, fatigue, balance problems, sensory disturbances, bladder 

dysfunction, constipation, sexual problems and depression. In 85% of young adults, 

these may be a consequence of monofocal (isolated in space) or multifocal 

(dissemination in space) damages in CNS. These damages involve the optic nerve, 

brainstem, cerebellum, spinal cord, or cerebral hemispheres. To be termed as CIS, 

the episode should last for at least 24h and should occur in the absence of infections, 

inflammatory disorders, genetic diseases, neoplasms, vascular disease, or other 

autoimmune diseases [8].  

Sensory disturbances constitute the initial clinical findings in MS patients. The 

most common are paraesthesia (tingling or “pins and needles”), dysesthesias 

(unpleasant or painful sense of touch, burning sensation), diplopia, ataxia, vertigo, 

trigeminal neuralgia, unilateral numbness in one leg that spreads to other parts of 

the body and bladder (urinary sphincter) disturbances. These disturbances are 

typically solved but sometimes they can evolve into neuropathic pain. Regarding 

muscle weakness, over 30 % of MS patients exhibit spasticity generally in the legs. 

Due to spasticity, more than 50 % of MS patients find problems in walking and need 

help to do common tasks.  Bladder dysfunction is present in 90 % of the patients and 

is characterized by weekly or more frequent incontinence episodes. Optic neuritis is 

also common in MS and is characterized by complete or partial vision loss. Notably, 
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the principal cause of work-related disability is fatigue, which affects 90 % of the 

patients [1]–[3].   

During life, MS patients have relapses, or flare-ups, where new symptoms occur, 

or old symptoms become worse. The symptoms can disappear completely after the 

relapse. However, the neurological damage is permanent. 

Typically, 10 to 20 years after MS diagnosis, approximately 15 % of patients 

evolve to a progressive clinical course from onset, which may lead to impaired 

mobility and cognition [2]. Patients can be grouped into four major MS subtypes 

based on the duration, severity of the symptoms, and the number of relapses that 

occur on a time frame of a subtle progression  [1], [3]: 

 

▪ Relapsing remitting MS (RMMS) 

This is the most common MS form affecting about 85 % of MS patients. It is 

noticeable by acute attacks (relapses), where new symptoms occur or there is 

exacerbation of old MS symptoms due to higher inflammatory response. The 

relapses are followed by periods of remission, when symptoms improve or 

disappear [1], [3], [9]. In RRMS, the disease does not worsen between relapses. 

 

▪ Secondary progressive MS (SPMS) 

Patients typically (up to 50 %) evolve to SPMS about 15 years after RRMS onset. 

SPMS is characterised by a gradual increase in disability level caused by ongoing 

relapses and remissions. Despite a few periods of remission or improvement of 

symptoms, the patients’ condition gets continuously worse [1]–[3], [9].  

 

▪ Primary progressive MS (PPMS) 

Approximately 5 % to 15 % of MS patients develop primary progressive MS. 

There is a regular patients’ condition deterioration, reflected on a progressive 

incapacity such as spastic paraparesis, sensory ataxia, cerebellar ataxia and 

cognitive and visual failure. This form of MS is resistant to pharmacological 

treatments [1], [3], [9]. 

 

▪ Relapsing-Progressive MS (RPMS) 
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This subtype is a rare form of MS, affecting less than 5 % of MS patients. RPMS 

continuously progresses, with sporadic outbreaks of symptoms worsening. 

There are no periods of remission [1]–[3], [9].  

1.1.2 MS Diagnosis  

Magnetic resonance imaging (MRI) is the cornerstone technique to identify 

biomarkers of MS and to diagnose MS. The term “biomarker” comes from the 

combination of the terms “biological” and “marker”. There are several definitions 

for the term biomarker but all of them agree on the same statement. Biomarkers are 

objective indications of the biological processes observed from outside the patient, 

which can be accurately and reproducibly measured. These can indicate normal 

biological processes, pathogenic processes, or pharmacologic responses to a 

therapeutic intervention. Biomarkers can be seen as a subcategory of medical signs 

in which a medical state is designated [10].  

MS diagnosis is based on the McDonald’s criteria and on MAGNIMS guidelines The 

McDonald’s criteria consist of a diagnostic scheme based on “rules” to support 

neurologists for a better and more reliable diagnosis of MS. The European 

collaborative research network for the study of MS with MRI (Magnetic Resonance 

Imaging in Multiple Sclerosis - MAGNIMS) reviews the findings of studies about MRI 

criteria for MS diagnosis and proposes new ones. According to the revised 

McDonald’s criteria and MAGNIMS guidelines, propagation in time (temporal 

progression of the disease) and space (spatial patterns of disease-related changes 

in multiple regions of the CNS) are the main conditions to determine MS diagnosis 

[11], [12]. Demonstration of cerebrospinal fluid (CSF) oligoclonal bands in the 

absence of atypical CSF findings also allows a diagnosis of Multiple Sclerosis to be 

made. Dissemination in space can be demonstrated by one or more T2-hyperintense 

lesions in two or more of four areas of the CNS: periventricular, cortical or 

juxtacortical, and infratentorial brain regions, and the spinal cord. Dissemination in 

time can be demonstrated by the simultaneous presence of gadolinium-enhancing 

and non-enhancing lesions. For example, by a new T2-hyperintense or gadolinium-

enhancing lesion on a follow-up MRI, or by two clinical attacks separated by at least 

three months [11]. These criteria are summarized in Table 1.1.  
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Table 1.1: The 2017 McDonald criteria for diagnosis of Multiple Sclerosis [11]. 

Number of clinical 

attacks 

Number of lesions with 

clinical evidence 

Additional data needed  

≥ 2 clinical attacks ≥ 2 None 

 

≥ 2 clinical attacks 

1 (since there is evidence of a 

lesion in a different 

anatomical location from the 

previous attack) 

 

None 

 

≥ 2 clinical attacks 

 

1 

Dissemination in space demonstrated by 

an additional clinical attack involving a 

different CNS site or by MRI 

1 clinical attack ≥ 2 

Dissemination in time demonstrated by 

an additional clinical attack or by MRI 

OR demonstration of CSF-specific 

oligoclonal bands 

1 clinical attack 1 

Dissemination in space demonstrated by 

an additional clinical attack involving a 

different CNS site or by MRI 

AND Dissemination in time 

demonstrated by an additional clinical 

attack or by MRI OR demonstration of 

CSF-specific oligoclonal bands 

 

 

1.1.3 Importance of supporting tools for MS diagnosis and treatment 

MS is a complex disease with several remaining questions to be solved. The cause of 

the disease depends on many factors and is hardly explained. Treatments available 

to manage the disease course (including shortening the duration of acute 

exacerbations, decreasing their frequency, and providing symptomatic relief) are 

only partially effective and without curative purposes [1]. Moreover, there are 

several downsides related to the applied therapies: high costs, inconvenient 

administration (parenteral administration), frequency of adverse effects (especially 

‘flu-like’ symptoms for several hours, diarrhoea, nausea, abdominal pain) and a 

relatively modest overall impact on disease course (for example, reductions in 

relapse rate of less than 35 %)[13], [14] .  
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MS misdiagnosis is also still a concern. There are several reports of this situation. 

Subjects diagnosed with MS, which did not fulfil the McDonald Criteria are likely 

candidates to an alternate diagnosis. MS misdiagnosis included small vessel 

cerebrovascular disease, migraine, fibromyalgia, and functional neurological 

disorders [15], [16] [17] . The underlying pathogenic heterogeneity of MS disease 

and the impracticality of directly sampling CNS tissue (as opposed to blood or CSF) 

have limited the investigation of biomarkers. Such non-invasive tools would not 

only help to perform a proper MS diagnosis, but also add to the understanding of its 

cause and progress [2]. In this context, imaging appears has a strong candidate to 

allow the identification of clinically and scientifically useful biomarkers of MS. In 

fact, beyond identification of WM lesions, there are other structural changes which 

can characterize MS, e.g. grey matter lesions (GM) and regional WM and GM atrophy 

are associated with cognitive deficit and disease severity in MS [9], [18]. 

The attempt to find a solution to the described current problems has motivated the 

study of these imaging biomarkers and the search for new ones. Understanding their 

cause, how early they appear, and which regions are primarily affected can provide 

cues about the pathophysiology of the disease and lead to a more accurate diagnosis 

[9], [18], [19]. 

 

This work aims to compare different imaging-derived biomarkers of MS via 

standard univariate and pattern recognition analysis of MRI data. The dataset used 

belongs to Doctor Sónia Batista, neurologist at Centro Hospitalar e Universitário de 

Coimbra (CHUC) and was previously described and analysed in other research 

studies [20]–[22]. 

 

1.2 Goals 
 

The main goal of this work is to assess and compare different imaging biomarkers 

of MS based on T1-MPRAGE and T2-FLAIR MR images. Such MS biomarkers consist 

in structural changes, which are here studied in a dataset of MS patients and healthy 

controls by applying univariate and multivariate statistical analyses of MR-derived 

brain morphometric measures. It is hypothesized that MS structural signatures 

might help discriminate MS patients from healthy controls, and furthermore help 
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solving the challenging differentiation of MS subtypes. Notably, the analysis of 

structural biomarkers also has the advantage of guiding scientific research about the 

pathophysiology of MS and its cause. Thus, these tools might in the future facilitate 

the evaluation of predisposition to the disease and its early diagnosis, with potential 

benefits in the prevention and adequacy of clinical interventions.  

The univariate statistical analyses to be applied are Voxel Based Morphometry 

(VBM) and Surface Based Morphometry (SBM). It is aimed to quantify structural 

changes such as volume changes (VBM) and surface changes (SBM). VBM will be 

applied to investigate changes in GM and WM volumes, and SBM to investigate 

changes in surface measures of cortical thickness and gyrification index. 

The multivariate statistical analyses to be applied are based on pattern 

recognition algorithms. Multivariate pattern analyses (MVPA) are implemented by 

mean of classification models using a Support Vector Machine (SVM). These 

classification models aim to differentiate MS patients from controls and to 

discriminate MS subtypes based on GM and WM volume features.  

The novelty of this work is the study of less common features like the gyrification 

index. Another innovative exploration is the differentiation of MS subtypes based on 

MRI brain scans, which was not investigated before, as to our knowledge. Moreover, 

an important objective is to extract different morphometric measures and analysis 

approaches (VBM, SBM and MVPA) in the same dataset. This allows for comparisons 

between the different MS biomarkers studied with both univariate and multivariate 

methods and to discuss about the most discriminative ones. 

 

 

1.3 Research Contribution 
 

The work developed in this dissertation resulted in the submission of the paper 

“Investigating whole-brain MRI markers in Multiple Sclerosis – emerging 

dimensions in morphometric space” to the 15th Mediterranean Conference on 

Medical and Biological Engineering and Computing (MEDICON 2019 - 

www.medicon2019.org/) to be held in Coimbra from 26 to 28 of September 2019. 

The work which has been reviewed by peers and accepted as full paper, will be 
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presented and discussed in the special session INT4DAT – Intelligent Systems and 

Technologies for Diagnostic, Assistance, and Therapeutics. 

 

1.4 Dissertation Outline 
 

The upcoming contents addressed in this dissertation are organized into four major 

chapters. In Chapter 2, a literature review about the primary MS biomarkers 

currently in use is presented. Chapter 3 includes a detailed description of the applied 

methods during the course of this work. In Chapter 4, the results are presented and 

discussed taking into account the research hypotheses of this project. Finally, in 

Chapter 5, conclusions about the work developed in this dissertation and future 

work approaches are presented.  
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2 Literature Review 
 

 

2.1 MRI in the detection of MS  

 

The structure of the brain can be accessed in a non-invasive way and with no 

biological damage through MRI. Anatomical scans with strong imaging contrast 

between different soft tissues and with high resolution are granted, and allow 

identifying biomarkers that other imaging modalities find difficult to achieve [23]. 

MRI is the main tool to produce early and reliable diagnosis of MS and to monitor 

disease progression. Through MRI it is possible to track illness progression 

including differentiation of the types of MS, or to evaluate the effectiveness of the 

treatment in order to approve therapies or develop medication that may lead to any 

improvements [11], [24]. MRI is thus the ideal candidate to serve the investigation 

of imaging biomarkers in MS (for more details see methods section). 

Different types of MRI images can be generated, depending on the acquisition 

parameters. These can be proton density (PD), two-dimensional (2D) or three 

dimensional (3D) T2-weighted/T2-fluid attenuated inversion recovery (FLAIR) 

spin echo or turbo spin echo, and 2D or 3D T1-weighted spin echo or turbo spin echo 

[12], [24] . According to the MAGNIMS guidelines, there are specific MRI sequences 

for the appropriate MS diagnosis and to assess morphological changes such as 

described below [12].  

 

2.2 Brain Structural Changes in MS 

 

2.2.1 Volume Changes  

There is a lot of research dedicated to the study of the WM lesions in MS. These 

lesions are considered the hallmark of MS because it was believed this disease was 

defined pathologically as an inflammatory process confined to the WM. Nowadays,  

GM lesions and brain atrophy are also considered essential volumetric brain 
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biomarkers because they are associated with cognitive deficit and correlated with 

the severity of the disease [9], [18], [24], [25].  

 

WM and GM Lesions  

The main disease-related changes in the brain are focal WM lesions, which 

constitute the MRI criteria for MS diagnosis. The distribution, morphology, 

evolution, and signal abnormalities of these lesions are usually studied with 

conventional MRI sequences [11], [12], [24].  WM lesions are best visualized with 

T2 and T2-FLAIR sequences. However, T1-weighted imaging after contrast agent 

application is preferred for initial evaluation of MS [24]. In T2 and PD images, WM 

lesions are observable as hyperintense spots, looking brighter compared to the 

surrounding tissue [9], [18], [24], [26]. In T1-weighted MR images, lesions are 

hypointense, appearing as “black holes” compared to the surrounding WM tissue 

intensities.  

Up to 40 % of the WM lesions might persist for around 6 months and are 

characterized by significant demyelination, axonal destruction and irreversible 

damage. Previous studies have demonstrated that the number, volume and 

localization of WM lesions, in both T2 and T1 images, are associated with 

neurodegeneration and increased MS patients disability [11], [18], [24], [26] [27], 

[28].  

In the last years, a large effort has been devoted to the study of the GM lesions in 

order to improve the understanding of its clinical relevance [25], [29], [30]. Double 

inversion recovery (DIR) MR sequences are used to detect and characterize these 

lesions.  

These sequences have allowed to identify four types of cortical lesions (CL) based 

on their location [18], [30]: 

 

▪ Type I 

WM and GM lesion are combined (known by cortical/juxtacortical lesions).  
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▪ Type II  

Lesions of type II are entirely located within the cerebral cortex, so they are not 

in direct contact with subcortical WM or pia mater. These are in general small 

and are identified as perivascular lesions.  

 

▪ Type III  

Lesions of type III are present in subpial areas, usually confined within the layers 

3 and 4 of the cortex. These are called band-like subpial lesions. 

 

▪ Type IV  

Lesions of type IV are the intracortical lesions because they comprise the entire 

cortex’s width and do not extend to the subcortical WM. These can spread to 

large areas of the gyri or entire lobes.  

 

MRI has also demonstrated that CL are a frequent finding at the earliest clinical MS 

stages, being present in about 35–40 % of patients with clinically isolated syndrome  

[25], [29], [30]. Additionally, the number and volume of CL were found to correlate 

with cognitive impairment (deficits in attention, concentration, speed of 

information processing, and memory) and physical disability. The existence of CL 

has been hypostasized as one of the pathological factors leading to cortical atrophy 

of MS patients [25], [29], [30]. 

 

Whole Brain Atrophy 

Whole brain atrophy provides an estimation of the global brain tissue loss, which is 

present in all stages of the MS disease. As such, its evaluation has been suggested as 

an important parameter in clinical studies. It is strongly correlated with clinical 

disease progression. Increased atrophy over time leads to deterioration of motor, 

sensory and cognitive functions [9], [18], [24], [31]. Importantly, the evaluation of 

whole brain atrophy also informs about the diffuse or aggregate nature of the tissue 

injury [18]. Considering the whole brain to evaluate cortical atrophy provides great 

precision and statistical power to the analysis, due to the huge quantity of voxels 

considered.  
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When studying brain atrophy two issues must be considered. Normal aging 

causes brain atrophy, with an annual loss of brain volume of approximately 0.2–0.5 

%, whereas in MS the atrophy rate is estimated to be 0.5–1.3 % per year [24], [31]. 

Thus, it is important to account for age-related effects in the investigation of brain 

atrophy. In MS, it is also important to have in consideration the “pseudoatrophy” 

phenomenon. Initial treatments reduce CNS inflammation, which translates in a 

decrease of brain volume and regular stabilization. However, brain tissue loss may 

have not occurred [18], [24], [31].  

 

Regional Atrophy  

Besides the loss of whole-brain volume, regional atrophy (with involvement of WM 

and GM separately) has been deeply studied and constitutes one of the main 

advances in atrophy quantification. As an alternative to whole-brain examination of 

atrophy, segmentation of WM and GM, and quantification of their atrophy 

independently, has shown progresses in the prediction of disability over time [18], 

[24], [31]. When compared to whole brain measures, regional measures of atrophy 

are more attentive to detail. Regional measures are not diluted by areas where there 

is little or no change, therefore anatomical changes are detected with more precision 

[31]. 

Although atrophy evaluation involves both GM and WM, the study of GM atrophy 

has revealed clinical information more relevant. As GM atrophy occurs early in MS, 

it has a higher impact to the annual loss of brain volume and shows a better 

correlation with lesion load than WM atrophy [18], [24], [31]. There is evidence of 

multiple regions marked by GM loss that are associated to disability especially in 

verbal memory and cognitive impairment [18], [24], [32] [33]. Thalamus is the 

region with the strongest correlation with disease progression, affecting cognitive 

function and being linked to depression and fatigue [18], [24]. Recently, atrophy of 

the amygdala was shown to be the main predictor of impairment of social cognition 

in multiple sclerosis [20].  

 Regarding WM atrophy, previous studies have shown its negative impact in the 

performance of mental processing and working memory tasks [33]. Moreover, the 

volume decrease of corpus callosum has been related to the prediction of developing 

MS [24].  



2. Literature Review 

13 
 

Quantification of brain atrophy 

Although MRI is extremely useful in detection of structural changes, the access to 

lesion volume, as well as the delineation of regions of interest, is usually done 

manually and may be prone to errors. Automatic methods have emerged to 

automatically handle these difficulties [34]. 

The volume of any brain structure can be quantified if a good MRI image contrast 

is provided (clear differentiation of tissues brightness). Brain atrophy is mostly 

measured from T1-weighted images, where there is a good contrast between a 

bright parenchyma against a dark CSF background and good GM/WM contrast [31].  

Several software tools are currently available in clinical research to quantify brain 

atrophy and to give information about other morphological changes. These tools 

may differ on parameters like levels of user intervention, the target anatomy being 

examined (e.g. cortex or deep GM), and the target feature to be quantified (e.g. 

volume or thickness). However, there are standard methods like normalization, 

registration and automation [31], [35], which are common concepts to the different 

analysis tools (later approached in this dissertation). Brain atrophy assessment 

tools can be divided into two groups: registration and segmentation based, 

according to their dependence mainly on registration and segmentation routines, 

respectively. Nevertheless, most software use a combination of both methods [31], 

[35].  

At the simplest level, brain atrophy can be quantified by segmenting the brain 

and calculating the volume of WM, GM and CSF. However, if these methods are not 

fully automated, it will be difficult to achieve reliable results. In addition, 

segmentation methods are time-consuming and vulnerable to operator bias. 

Currently, there are already fully automated segmentation methods available to 

overcome these problems. Some examples of such methods are: brain parenchymal 

fraction (BPF), index of brain atrophy (IBA), whole-brain ratio (WBR), brain to 

intracranial capacity ratio (BICCR), fuzzy connectedness/Udupa’s method, 

3DVIEWNIX, the Alfano method, and SIENAX [31], [35]. 

As alternative to segmentation-based methods, brain atrophy might be estimated 

using registration-based methods. In these approaches, the brain volume is directly 

quantified through image subtraction. However, it requires images spatially 

matched to produce meaningful results [36]. There are several of these methods 
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currently available as the brain boundary shift integral (BBSI), the structural image 

evaluation using normalization of atrophy (SIENA), the statistical parametric 

mapping (SPM), the template-driven segmentation (TDS), and the Voxel Based 

Morphometry (VBM).  

In this work, VBM was chosen to assess morphological changes between groups. 

VBM is an automated and relatively easy-to–use, time-efficient, whole-brain tool. 

This tool can detect focal microstructural differences in brain anatomy, in vivo, 

between groups of individuals, without requiring any a priori decision concerning 

which structure to evaluate [37], [38]. This method will be described in more detail 

in the methods section.  

 

Limitations of brain atrophy quantification 

The quantification of brain atrophy with MRI is affected by several factors that can 

be source of errors. This might lead to either overestimation or underestimation of 

the atrophy values, causing misinterpretation of the results. Brain volume might be 

affected by image acquisition and processing factors, lifestyle (e.g. alcohol, smoking, 

diet, and dehydration), genetics, and other diseases (e.g. diabetes, cardiovascular 

risks). Importantly, age is also a factor to consider, since there is a decrease of brain 

volume with aging as referred before. Fluctuations of brain volume throughout the 

day must also be taken into account when measuring brain atrophy, particularly in 

matched case-control and longitudinal studies, as the brain volume seems to 

decrease from morning to evening [39]. 

Despite current methods’ precision, brain atrophy measures are not commonly 

used in clinical practice. There is still a lack of comparative studies, a high variability 

between different methods, uncertainty in the results when applied to a single 

patient over the scale of months or a few years, and difficulty in developing 

completely automatic methods [31]. In order to put these measures into clinical 

practice, results need to be confirmed on larger datasets. There is also the need of 

establish normative values for inter-subject brain volume variability (both for 

healthy individuals and patients with MS). Finally, the creation of a worldwide 

standardized protocol for image acquisition, not only for research studies, but also 

for individual patient management, is required [31].  
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2.2.2 Surface Changes  

In the context of brain morphology, cortical thickness and cortical folding are less 

common but relevant features to study in MS. Cortical thickness comprises the 

distance between the white matter surface and the pial surface [40]. Measurement 

of cortical thickness is a way of assessing cortical (GM) atrophy, being accessible by 

brain atrophy quantification methods [18], [28]. Studies have proved that cortical 

thinning is related with lesion volume, clinical symptoms, cognitive deficits and 

clinical disability [42], [43]. 

Cortical folding involves sulci and gyri. The gyrification index  and the sulcal scale 

are examples of measures used to assess folding pattern abnormalities [44]. 

Gyrification index is a metric that quantifies the amount of cortex buried within the 

sulcal folds, as compared with the amount of cortex on the outer visible cortex. The 

mathematical approximation to measure gyrification index is defined as the ratio of 

the total folded cortical surface over the perimeter of the brain. Gyrification index 

can be seen as a degree of cortical folding: a cortex with extensive folding has a large 

gyrification index, whereas a cortex with limited folding has a small gyrification 

index [45], [46]. It is known that there is an increase in gyrification index during 

early stages of brain development, after childhood there is stabilization. Therefore, 

gyrification index can reflect the fundamental principles of cortical development 

and brain organization [47].  

Measurement of cortical thickness and gyrification index is illustrated in Figure 2.1. 

There are several studies showing the correlation of gyrification index and 

cortical thickness with aging and neurodevelopment disorders [44], [46]–[48]. 

Studying how these measures vary in the context of MS can provide valuable 

information for diagnosis and add to the understanding of disease. 
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Figure 2.1: Measurements of surface changes. a) Measurement of cortical thickness. Yellow contours 

represent the frontier between WM and GM. Red contours represent pial surface. b) Measurement of 

gyrification index. Adapted from [45][46] 

 

2.3 Statistical Analysis Methods 

 

2.3.1 Univariate Statistical Analysis 

Morphological alterations in MS are usually studied based in mass-univariate 

statistical analyses. This class of neuroimaging analysis is focused on the 

identification of signal changes at the level of individual image elements (i.e. voxels) 

at specific points in time. The most common approach consists in statistical 

parametric mapping, which performs individual statistical tests (in each voxel) to 

create whole-brain maps showing structural differences between groups. The 

voxels with significant differences highlight structural alterations in the presence of 

a disease, for example. Univariate analyses are advantageous when isolated features 

are able to support a diagnostic and are directly related to a certain pathology [49]–

a 

b 
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[51]. However, this type of statistical evaluation accounts only for individual effects 

and does not provide information about the complex spatial organization of the 

brain structural alterations in MS. 

Whole-brain, mass-univariate analyses (e.g. VBM) accounts for a considerable 

number of voxels in which each one undergoes a statistical test. The higher the 

number of tests, the higher is the probability of false positives occurrence (for 

example, tests that show a significant test statistic but no relevant structural 

differences between groups). A correction for multiple comparisons, which will be 

further elaborated, is then required to limit the occurrence of false positives. 

Correction for multiple comparisons moderates the statistical power of these 

approaches, which might turn them too conservative to detect subtle morphological 

differences in the brain [51]–[54]. Furthermore, a smoothing of the images, applied 

as a preprocessing step in these type of analysis (explained later in the methods 

section), leads to a decrease of spatial resolution to detect differences, which in 

turns leads to reduced ability to detect regional morphological changes. 

 

2.3.2 Multivariate Statistical Analysis 

An alternative to produce biomarkers, which accounts for the complex spatial 

correlations and multivariate relationships among image elements, are the 

multivariate pattern statistical analysis (MVPA)[51], [52]. This family of analyses 

methods focus on the examination of distributed imaging patterns to detect 

differences between groups in the absence of a priori hypothesis. It takes into 

account information ranging from meso to large scale, distributed across multiple 

brain systems from all available brain data. In other words, it considers information 

from multiple voxels rather than information from isolated brain regions (individual 

voxels).  

Identifying subtle multivariate structural alterations in the brain leads to a better 

understanding of MS disease processes. Importantly, it may also allow the 

development of an objective and automated tool, with a strong potential for 

diagnostic and characterization of MS subtypes and progression. Therefore, these 

characteristics has led  these techniques to be considered as  biomarkers of great 

interest in the field of neuroimaging [49]–[51]. 
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Random forest, logistic regression, neuronal networks, decision trees, or support 

vector machines (SVM) are examples of multivariate methods used in the field of 

neuroimaging data, especially when applied to the study of neurological disorders 

[55]–[57].  SVM is a common choice for estimating multivariate patterns in the brain. 

It is prepared to deal with different types of samples, from high to low dimensional 

spaces, with high and low sample sizes. As a supervised method, it has the ability to 

learn the classification of complex and high dimensional training data and to apply 

the learned classification rules to unseen data [50], [56], [58].  

Several classification studies in the context of MS have applied SVM classifiers. 

SVM has proved to reliably identify patterns that can separate MS patients from 

healthy controls with high sensitivity and specificity [55], [56], [58], [59]. On the 

other hand, SVM classification of MS subtypes, to the best of our knowledge, has 

never been tested and might be a useful approach to help diagnose different 

subtypes of MS. This classifier was applied in this work and will be described in more 

detail in the methods section (for more details see section 3.8.1). 

Multivariate analyses methods have been suggested as an important approach to 

the detection of structural brain patterns related to MS. However, a systematic study 

of its performance as compared to the univariate analysis methods is still missing.  
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3 Methods 
 

 

3.1 Experimental Design  

  
 MRI data from MS patients and controls were analysed with three different 

purposes: to quantify MS related volume and surface changes and automatically 

classify patients and controls and two MS subtypes. VBM was applied to investigate 

GM and WM volume changes, and surface-based morphometry (SBM) was used to 

study between-group differences in measures of cortical thickness and gyrification 

index. A MVPA was implemented using a SVM to differentiate MS patients from 

controls and to discriminate MS subtypes based on GM and WM volume features.   

As MS is characterized by white matter lesions, which can deteriorate tissue 

segmentation, leading to suboptimal results of these kind of analyses. We also tested 

the same approaches (VBM, SBM and MVPA) after lesion filling to analyse how 

structural measures are influenced by this procedure 

T2-weighted imaging may, in theory, be more sensitive to microscopic 

neurodegenerative processes than T1-weighted imaging. Furthermore, brain 

atrophy should also be detectable in T2-weighted scans due to the strong signal 

intensity contrast between cerebrospinal fluid and brain tissue. 

Thus, another aim of this study was therefore to test the hypothesis that VBM 

using T2-weighted scans (T2-VBM) could provide additional information of GM 

alterations that are not due to atrophy than standard T1-VBM using MPRAGE, at 

identical spatial resolution. 

T1-MPRAGE images were used as input to VBM, SBM and MVPA analyses, whereas 

T2-FLAIR images were used as input to VBM analysis and MVPA analyses. 

T1-MPRAGE images were preprocessed using SPM12 [60] CAT12 [61] and Lesion 

Segmentation Toolbox (LST) [62] software tools in MATLAB [63] (version R2019a) 

environment. LST was used to segment T2 hyperintense lesions in FLAIR images and 

to calculate lesion probability maps to fill lesions in T1-weighted MR images. 

VBM and SBM analyses were performed in CAT12. MVPA analyses were carried 

with Pattern Recognition for Neuroimaging Toolbox ( PRoNTo)[64], using the same 
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T1-weigthed preprocessed images as for VBM analysis, so that we could qualitatively 

compare the results obtained with different methods. 

T2-FLAIR images were preprocessed using MRIcron software [65], BET: Brain 

Extraction Tool [66] function from MATLAB for skull-striping and SPM12 for 

remaining preprocessing and segmentation. CAT12 is an extension of the 

segmentation in SPM12 but uses a completely different segmentation approach. The 

only common process is the initial removal of non-brain tissue from the image to get 

a starting estimate for the segmentation [67]. Because CAT12 is not optimized for 

the contrast of T2-weighted images, it was therefore unable to perform a precise 

tissue segmentation and we resolved to use SPM12 in the case of T2-weighted 

images. VBM statistical analysis was also performed in SPM12. Since SBM analysis is 

only available in CAT12, it was not possible to perform this analysis in T2 images.  

Further details of preprocessing steps and data analyses are described in the next 

subsections. Scripts of the methods implementation are available as supplementary 

material (Annex A).  

 

3.2 Participants 

 
This study is based on a dataset including 59 MS patients, 51 of which were 

diagnosed with the relapsing-remitting MS subtype and 8 with the secondary 

progressive MS subtype. All patients were recruited by Doctor Sónia Batista at the 

Neurology Department of the Centro Hospitalar e Universitário de Coimbra and met 

the criteria for MS diagnosis according to the McDonald Criteria [11]. A group of 64 

healthy volunteers, matched on age, sex, and educational level with MS patients, was 

recruited from the community and served as healthy controls. These cohorts were 

previously described in research studies for which approval for MRI experiments 

was granted by local ethics committee and all participants gave written informed 

consent [20]–[22]. Demographic information about the participants is summarized 

in Table 3.1.  
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Table 3.1: Demographic Data on the Study Cohort 

Groups RRMS SPMS Controls 

n 51 8 64 

Age (mean ± SD) (years) 
36.35 ± 6.56 40.88 ± 9,47 36.84 ± 9.79 

Gender (F/M) 
32/19 7/1 42/22 

Disease Duration (years) 
9.90 ± 6.45 15.25 ± 5.52 __ 

 
 

3.3 Magnetic Resonance Imaging  

 
Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique that 

produces detailed anatomical (and functional) images [68], [69]. Its non-invasive 

nature and versatility make MRI a powerful method for obtaining detailed 

information about living tissue without the use of damaging radiation.  

The principle of MRI is based on the magnetic properties of the atoms and the 

molecular interactions that constitute the tissues under observation. As the human 

body is constituted mostly by water, the majority of MRI techniques rely on abundant 

and particularly favourable magnetic properties of hydrogen unpaired protons.  

Protons are positive electrical charged particles which are present in the nuclei of 

hydrogen atoms in water. These particles possess a spin and they rotate about its 

axis at a constant velocity. A moving electrical charge is in fact an electrical current. 

Consequently, spinning protons create their own small magnetic fields.  

When applying a strong magnetic field in the MRI scanner, together with 

radiofrequency (RF) pulses, we can disrupt the protons natural alignment and force 

them into a non-natural realignment with the static magnetic field of the MR scanner, 

which is known as magnetization. By absorbing energy, this process has an effect in 

protons own small magnetic fields. When the RF pulse is turned off, the excited 

protons relax back to their lower energy state, which is known as relaxation, 

generating radio frequency waves. Ultimately this is the signal measured (received) 

in the receiver coil (antenna) of the MR scanner. Through advanced computer 

techniques, the signal is processed, and the MR image is formed.  

RRMS referrers to the group of MS patients characterized with relapsing-remitting subtype and 

SPMS is the group of MS patients characterized with secondary progressive subtype. 
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MRI is capable to distinguish many different normal and pathologic tissues. There 

are several ways to contrast different tissues. The two main factors to create 

different MRI contrasts are the imaging sequences of RF pulses being used [68], [69] 

and the existence of two simultaneous types of relaxation effects: the longitudinal 

relaxation and the transversal relaxation, characterized by time constants T1 and 

T2, respectively [70] [71]. There are three types of MRI images, as exemplified in 

Figure 3.1: proton density images (PD), which have also the influence of the protons 

present in the tissues being examined, T1-weighted images and T2-weighted images 

[71].  

 

 

For quantitative structural brain analysis normally only T1-weighted and T2-

weighted images are used. T1-weighted imaging offers the greatest segmentation 

clarity between GM, WM and CSF, and is therefore most frequently used for 

quantitative MRI studies of brain morphology. On the other hand, T2-weighted 

imaging may be preferably used for quantification of intracranial volume. These 

images have increased signal intensity of CSF that allows easier quantification of CSF 

and brain parenchyma together. T2 images are conceived to study conditions with, 

Figure 3.1: Magnetic resonance images of the same anatomical section showing a range of tissue 

contrasts. TR stands for repetition time and TE stands for echo time. In the first image, cerebrospinal 

fluid is black, whereas in the last image it is bright. Contrast is manipulated during image acquisition 

by adjusting several parameters, such as the TR and the TE (times given in milliseconds), which 

control the sensitivity of the signal to the local tissue relaxation times T1 and T2 and the local proton 

density. In the proton density weighted image GM is brighter than CSF, despite CSF has the highest 

proton density. The reason is that the T1 of CSF is too long, and for TR = 3 seconds the CSF signal is 

still substantially T1-weighted. Adapted from [122] . 
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for example, abnormal inflammation or lesions associated to a disease [71]. In 

general, tissue signal intensities visualized on PD images are very similar to the ones 

pictured on T2-weighted images. Yet, some white matter lesions, such as 

periventricular MS plaques, and small superficial lesions are more hyperintense 

relative to CSF on PD images. Therefore, these images are useful to detect such 

lesions, which are difficult to identify on T2-weighted images, especially when 

lesions are adjacent to CSF [71].  

In order to obtain more information about a disease, to produce reliable diagnosis 

and to monitor treatment, integration of various types of images is a common and 

sensible approach.  

 
 

3.4 MRI Acquisition 

 

MRI data were collected in a Siemens Magnetom TIM Trio 3 Tesla scanner (Siemens, 

Munich, Germany) with a phased array 12-channel birdcage head coil. For each 

participant two structural sequences were acquired. First, it was acquired an 

anatomical T1-weighted 3D magnetization prepared rapid gradient-echo 

(MPRAGE) sequence:  TR 2530 ms; TE 3.42 ms; TI = 1100 ms; flip angle 7°; 176 

slices with no gap, with isotropic voxel size 1 x 1 x 1 mm3; field of view (FOV) 256 x 

256 mm2. Then, a sagittal 3D fluid-attenuated inversion recovery (FLAIR) sequence 

was also acquired: TR 5000 ms; TE 388 ms; TI 1800 ms; 160 slices with 1 x 1 x 1 

mm3 voxel size; FOV 250 x 250 mm2. 

 

3.5 Preprocessing  
 

Firstly, MRI data were converted into a standard format, aligned to match the SPM 

template orientation, T1 images were coregistered, and the WM lesions were filled. 

Then, VBM and SPM processing were followed separately. Common preprocessing 

steps for both univariate analyses are described below.  
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Conversion into NIfTI format  

Many neuroimaging quantitative software tools, including SPM12, CAT12 and 

PRoNTo, deal with MR images in NIfTI (Neuroimaging Informatics Technology 

Initiative) format.  NIfTI format offers a standardized way to represent images, it is 

the most commonly used type of analytic file and it was developed to facilitate cross-

platform and cross software interpretability [72]. During MRI acquisition, images 

were saved in DICOM (Digital Imaging and Communications in Medicine) format. 

Once SPM does not accept DICOM formats as inputs it was necessary to convert 

images to NIfTI format.  

 

Correcting images orientation  

Orientation of each structural scan was manually corrected by aligning each image 

onto the axis of the anterior and posterior commissures and setting the centre of the 

image in the anterior commissure. This step is needed to match the SPM template 

and is an important step to further processing less prone to errors, and to give the 

spatial normalization a good place to start from [73].  

 

Coregistration of within-section anatomical scans and mean image 

For each subject T1-MPRAGE images and one T2-FLAIR image were acquired in the 

same session. In order to increase the signal to noise ratio (SNR) of the data, the two 

T1 images were coregistered. A better-quality image was obtained with calculation 

of the mean of the two T1-MPRAGE scans from each participant. Coregistration is a 

fundamental step that also serves to align the scans that may be in different 

orientations, modalities, or acquired in different scanning sessions. The 

coregistration method is based on work by Collignon et al. using voxel based (VB) 

registration algorithms [74].  

 

Lesion Filling  

It has been shown that the heterogeneity of the tissue with WM lesions can distort 

registration, normalization and tissue segmentation. Consequently, if lesions are 

processed within the images, it might lead to an underestimation or overestimation 

of different brain metrics or analyses [75]–[78]. 
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 In T1-weighted images, WM lesion are hypointense, so they are displayed with 

MR signal intensities close to GM and cerebrospinal fluid (CSF). After brain 

segmentation and subsequent tissue classification, these lesions are categorized as 

GM or, in some cases, as CSF. It can also occur the inverse case: if WM lesion voxels 

are classified as WM (which is hyperintense in T1-weighted images), lesion voxels 

with hypointense signal intensities are added into the WM tissue distribution, 

increasing the probability of GM voxels with similar intensity to be misclassified as 

WM [75]–[77].  

Several authors have proposed different methods to overcome the issues caused 

by the effects of WM lesions in MS patients. The commonly proposed solution 

consists in filling WM lesions with intensities like those of WM before performing 

tissue segmentation and image registration. By segmenting and filling the lesions, it 

is admitted that lesions are not present and therefore that their effect is cancelled. 

These methods can be divided into two groups: methods which use local intensities 

from the surrounding neighbouring voxels of lesions and methods which use global 

WM intensities from the whole brain [75]. 

Here, lesion filling was performed  using the LST version 2.0.15 for SPM [62] T1 

MPRAGE images from all participants were filled with WM lesion maps extracted 

automatically from T2 FLAIR images from the same corresponding participants. The 

following steps were required: 

 

▪ Lesion segmentation 

LST offers two algorithms to obtain lesion probability maps, Lesion Prediction 

Algorithm (LPA) and Lesion Growth Algorithm (LGA). LGA demands an initial 

threshold defined by the user, while LPA, despite being a beta version in LST, 

requires no user-defined parameters. Moreover, LPA  is faster and more sensible 

in some regions when compared to LGA [62]. For this reason, lesions were 

segmented using the LPA [79], as implemented in the LST toolbox.  

This algorithm consists of a binary classifier, in the form of a logistic regression 

model, previously trained on a dataset of 53 MS patients with severe lesion 

patterns. As covariates for this model, a similar lesion belief map as for the lesion 

growth algorithm [80] was used, as well as a spatial covariate that takes into 

account voxel specific changes in lesion probability. Parameters of this model fit 
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are used to segment lesions in new T2-weighted images by providing an estimate 

of the lesion probability for each voxel. The main output of this segmentation was 

the lesion probability map of each subject. Segmentation of lesions is a critical 

aspect and it is recommended to be done by experts (or at least reviewed by 

experts in case it is done by automatic algorithms). Since this is an exploratory 

study, lesion probability maps were used without a revision by an expert. Yet, it 

is important to have the notion that manual segmentation by experts is one 

factor that could improve the performance of analyses of this type of images.  

 

▪ Lesion Filling 

Lesion probability maps were then coregistered with corresponding T1 

MPRAGE images, and the filling algorithm was applied, resulting in filled T1 

MPRAGE images. The LST filling method uses global WM intensities from the 

whole brain. As such, the T1 images were filled using a method inspired by a 

technique proposed on the work of Chard et al. [81], where lesion voxels are 

replaced by random intensities from a Gaussian distribution. This distribution is 

generated from the normal-appearing WM (NAWM) intensities and then filtered 

to re-establish the original spatial variation in WM [82].  

 

A reliable tissue classification is crucial not only for quantify volume, but also for 

assessing more complex features of brain structure, for example surface measures, 

cortical thickness and gyrification index [76]. Filling the lesions with intensities 

corresponding to the surrounding NAWM granted an accurate tissue classification 

and trusty measurements of brain volumes [78]–[82]. 

 

3.5.1 VBM Preprocessing  

VBM preprocessing includes steps such as normalization to a reference brain 

(template), modulation, tissue segmentation (GM, WM and CSF) and spatial 

smoothing of segmented images. VBM preprocessing of T2-weighted images 

required an additional prior step: skull stripping.  
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T2-Skull stripping 

Skull stripping is a method to exclude brain areas that are not relevant to the study 

of structural differences between groups. These areas are non-brain tissues such as 

skin, fat, muscle, neck, and eyeballs which constitute a major obstacle for automatic 

brain image segmentation and analysis techniques. Therefore, quantitative 

morphometric brain studies often require a preliminary processing to separate the 

effective brain region accountable for the study from extra-cranial or non-brain 

tissues [83]. Performance of further preprocessing algorithms such as warping 

algorithms (normalization) and consequently results from statistical analyses, VBM 

and SBM, can be improved [84], [85].  

In CAT12, skull stripping is part of the tissue segmentation step, by segmenting 

the anatomical scan and using a version of the sum of GM and WM probability maps 

restricted based on a threshold to mask out the bias corrected structural scan [73]. 

Due to the poor contrast of T2-weighted images in differentiating brain areas, skull 

tripping was performed manually with MRIcron software and BET function.  

 

Spatial Normalization 

Spatial normalization is the method to match all the brain images in the same 

stereotactic space in order to ensure a voxel wise correspondence across different 

images, which is crucial for group data analyses. All scans were normalized into a 

reference brain (template), which in SPM is in the standard Montreal Neurological 

Institute (MNI) brain space [86], [87]. By removing variability between brain sizes 

and shapes, a considerable amount of errors in further analysis is avoided [88]–[91].  

Normalization can be divided into two steps: the linear (affine) registration and 

the nonlinear registration. The linear registration consists in linear transformations 

applied to the brain images (rotations, translations, scaling). This type of 

normalization considers the brain image as a rigid body, and only apply 

transformation steps that do not affect the brain shape. The goal is to remove global 

differences between the subject and the template by matching the MR images with 

the template in overall shape. The nonlinear registration accounts for local 

nonlinear shape differences by expanding or contracting brain regions, and thus 

changing local volume of specific structures [89], [91]. 
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Both SPM12 and CAT12, during the segmentation step, provide a template for 

the normalization algorithm (the high-dimensional Diffeomorphic Anatomic 

Registration Through Exponentiated Lie - DARTEL) to spatially align each subject’s 

image with the corresponding template [92]. The idea behind DARTEL is to increase 

the accuracy of intersubject alignment by modelling the shape of each brain using 

millions of parameters (three parameters for each voxel) [93]. The normalization 

step in CAT12 includes both linear (affine) and nonlinear options. We applied the 

affine normalization. Although nonlinear normalization was defined by default in 

previous VBM-toolbox versions, this method is no longer recommended. The use of 

standard modulation (described shortly later) in combination with total 

intracranial volume (TIV) as covariate provides more reliable results [67].  

Importantly, normalization was not meant to make changes on a fine scale, i.e. to 

match every brain feature and transform one brain into another, exactly. 

Normalization was necessary to detect regional differences between groups 

disregarding global shape differences. Indeed, if the spatial normalization was made 

at such fine scale, all the segmented images from all participants would be identical 

and no significant differences would be detected at a local scale [90]. To correct for 

the effects of spatial normalization in our study, we applied modulation (described 

below) to our data and used TIV as covariate to correct different brain sizes. 

 

Tissue Segmentation 

Brain segmentation consists of classifying brain tissues into GM, WM and CSF. A 

brain image with a clear differentiation between tissues is required to an accurate 

segmentation. As such, T1-weighted images are preferred to perform brain tissue 

segmentation.  

There are several ways to perform segmentation, usually prior probability maps, 

as well as voxel intensities, are the base of segmentation algorithms. Tissue 

probability maps from normal subjects provide prior spatial information, i.e. contain 

information about each voxel intensities’ distribution for the various tissue types. 

This way, each voxel is assigned the corresponding (most likely) tissue type. 

Segmentation steps also consider smooth intensity variations (non-uniformity of 

image intensity), for example magnetic field variations or variations caused by 
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different positions of cranial structures within the MRI scanner and corrects for 

them [88]–[90].  

 

Modulation 

As explained before, in the case of an extremely precise spatial normalization, all 

MRI segments would look identical and no intersubject structural differences would 

be detected. Modulation serves to compensate for these possible effects and 

involves resizing brain structures that were expanded or contracted. The total 

amount of GM/WM in the modulated images remains the same as it would be in the 

original images [88]–[90]. This scaling is achieved through multiplication of the 

segmented images by the relative voxel volumes before and after warping. These 

relative volumes are called the Jacobian determinants of the deformation field [88].  

Without this adjustment, VBM can be thought as an analysis that compares 

concentration of GM or WM tissues between groups. This is because brain structures 

are decreased or increased and therefore have less or more voxels (variations in 

concentration). With the adjustment, VBM compares the absolute volume of GM or 

WM structures between groups. The two approaches are known as “non-

modulated” and “modulated” VBM, respectively [89].  

At this point warped, modulated and segmented images were obtained from all 

participants.  

 

Extraction of additional volume measures 

TIV was computed trough “Estimate TIV” function in CAT12 to be used as covariate 

in the statistical models, with both no filled and filled data, and correct for different 

brain sizes. A good reason to use TIV as covariate is that at a later age, a reduction in 

brain volume is normal. However, the aim is to test the volume difference between 

controls and patients regardless of their age or gender. 

Two other additional variables were extracted through “Extract Values of 

Interest” function of LST to be used as covariates in the statistical model with the 

filled data: the total lesion volume (TLV) and the number of lesions. Large lesions or 

multiple lesions with small volume might bias the volume measures. These two 

covariates were used to eliminate or at least account for these effects in the 

statistical analysis.  
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Smoothing (and bias correction) 

Normalized, segmented and modulated images were smoothed with an isotropic 

Gaussian kernel. Smoothing can be thought of as a filter for bias correction of 

intensity non-uniformities, required to guarantee normality of the data for 

subsequent statistical parametric analysis [88]–[91]. After smoothing, each voxel 

intensity represents the weighted average of the surrounding voxels intensities, 

which results in a blurred image [90]. The size of the smoothing kernel determines 

the number of surrounding voxels that accounts for the average intensity, which 

typically varies between 4-16mm [88]. The size depends on the image resolution, 

i.e. it must be of the same order of magnitude of the expected regional differences 

between the groups [89], [91]. 

Smoothing of the images makes the regions around the voxels encompassed by 

the smoothing kernel contain a more homogeneous GM or WM intensities, leading 

to noise suppression and to improve the quality of the analysis. Smoothing also 

removes fine scale structure from the data, i.e.  brain structures that are not constant 

(same position, same shape, same size) from subject to subject. One example is the 

primary sulci, quite deep brain structures, which are formed at early age and are 

conserved over subjects, however, sulci developing later generate more variability. 

Therefore, some structures can precisely match, whereas others cannot [88]. 

Smoothing increases the sensitivity of statistical analysis to detect variations by 

reducing the inter-subject variability, although excessive smoothing may diminish 

the accuracy to localize such differences in the brain [90].  

During normalization, registration errors may occur and smoothing also 

compensates for the inexact nature of this step by blurring anatomical differences 

[89], [91]. These beneficial features of smoothing render the data more normally 

distributed, increasing the validity of parametric statistical tests and reduces the 

effective number of statistical comparisons, making the correction for multiple 

comparisons less severe [88]–[91]. 

Normalized and modulated images of both GM and WM from T1 filled/no filled 

and T2 images were smoothed in SPM12 using an 8 mm full-width-at-half-maximum 

(FWHM) isotropic Gaussian kernel. After these steps, normalized, segmented, 

modulated and smoothed images were obtained, which will be used as inputs to the 

statistical analyses. VBM preprocessing steps are illustrated in Figure 3.2. 
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3.5.2 SBM Preprocessing  

SBM analysis of T1 images deals with surface measures, which requires further 

preprocessing steps. Similarly to VBM, images have to be normalized, segmented 

and modulated, and then the same images that undergo smoothing and VBM 

statistical analysis, undergo in the case of SBM: surface reconstruction, topological 

correction, spherical mapping, spherical normalization, extraction of surface 

measures of cortical thickness and gyrification index, spatial smoothing of extracted 

metrics and SBM statistical analysis. Cortical thickness is obtained through 

delimitation of the outer and inner boundaries of GM. The determination of the 

distance between the two borders in each voxel give us a cortical thickness metric. 

On the other hand, gyrification index is obtained by delimitating the outer and inner 

counters of the cortex. The mathematical approximation to measure gyrification 

index is defined as the ratio of the total folded cortical surface over the perimeter of 

the brain. The extraction of these surface parameters was obtained with the function 

“Extract Additional Surface Parameters” in CAT12. Then, the extracted metrics were 

corrected for inhomogeneities using the CAT12 “Resample and Smooth Surface 

Data” function. 

 

Figure 3.2: Main steps of voxel-based morphometry preprocessing. In this case it is shown GM VBM as 

an example. Adapted from [123]. 
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Surface Reconstruction  

After segmentation step in CAT12, a surface mesh is generated (surface 

reconstruction) from volume images, to allow the estimation of cortical thickness 

and gyrification index. This surface mesh is obtained through a fully automated 

method called projection-based thickness (PBT). Through brain segmentation, WM 

distance to outer GM is estimated and local maxima (which corresponds to cortical 

thickness) is projected onto GM voxels using a neighbouring relationship described 

by the WM distance [94].  

 

Topological Correction 

Surface mesh contain topological defects which can interfere with estimation of 

surface measures. Errors during segmentation, noise, partial volume effects, and 

artifacts during the MRI data acquisition are examples of possible causes of 

topological defects. Topological defects usually are in the form of handles and holes 

that prevent the deformation of the flat surface mesh into a sphere. A method called 

topological correction is needed to deal with these defects. During the topology 

correction process, handles should be cut, and the holes should be filled. Besides this 

correction, smoothing is also necessary because cortical surface contains sharp 

edges, caused by artifacts such as noise, that need to be minimized [95].  

 

Spherical Mapping  

Brain mapping analyses require the deformation the flattened surface mesh into a 

suitable inflated brain coordinated system. Since the cortical surface is roughly 

homeomorphic to a sphere, the most commonly used coordinate system is a 

spherical one. This process is called spherical mapping. The spherical mapping 

method provides an isometric map that conserves all angle and area information in 

the original cortical mesh, which facilitates an inter-subject analysis. Furthermore, 

an inflated brain makes regions with differences in surface measures more easily 

visible [96]. In addition, reparameterization is performed to reduce distortion 

inherent to the initial spherical maps. The reparameterization algorithm used by 

CAT12 is described in Yotter et al. work [96]. 
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Spherical Normalization  

Finally, spherical normalization is performed by adapting the volume-based 

diffeomorphic DARTEL algorithm, used by CAT12, to work with spherical maps and 

achieve spatial normalization of surfaces [97].  

 

Smoothing 

For the same reasons as described for VBM preprocessing, smoothing is applied to 

surface measures prior to statistical analysis. Cortical thickness and gyrification 

index images were smoothed using 15 mm and 20 mm FWHM kernel respectively 

through “Resample and Smooth Surface Data” function in CAT12.  

 

Steps of SBM preprocessing are illustrated in Figure 3.3. 

 

 

3.6 Sample Homogeneity  
 

Sample homogeneity of all images was performed to identify images with poor 

quality, possibly containing artifacts, and to check if enough data quality was 

assured to proceed to further analyses. This quality check step would help to 

identify and optimize problematic processing steps and to exclude problematic 

images.  

The method behind this process is based in the standard deviation (SD) of each 

image across the sample. In order to obtain standard deviation values, firstly it was 

Figure 3.3: Main steps of surface-based morphometry preprocessing. Green areas represent gyri and 

red areas represent sulci. Adapted from [124].  
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needed to calculate sample mean homogeneity, then the squared distance of each 

image to the sample mean, and finally the sum of the squared distance of each image 

from the sample mean, which resulted in SD. The squared distance of one image 

from the sample mean is the measure that represents how much that image 

homogeneity deviates from the sample mean homogeneity. Images that presented a 

mean correlation below two standard deviations were carefully checked [98]. 

All the volume segments of GM and WM from T1 and T2 images, as well as surface 

images from T1 images were checked for sample homogeneity.  

 

3.7 Univariate Statistical Analyses  
 

In the framework of neuroimaging studies, statistics are applied in order to find 

patterns in the data. These patterns can be achieved by studying the variables of 

interest in a sample. A variable is a characteristic that can be measured, or it is 

observed on a subject. This variable can be dependent, if it is on the influence of 

other variables, or independent. In clinical studies, a sample is collected, a number 

of variables of interest are considered, and a statistical test is performed to compare 

variables. When the goal is to study only one variable, this is called univariate 

statistical analysis [99]. VBM and SBM analyses are univariate approaches, in the 

sense that only one dependent variable is tested for differences between 

independent groups at a time (GM, WM, cortical thickness or gyrification index). In 

fact, a mass univariate approach is behind VBM and SBM analyses, as the same 

independent statistical test is performed on every single voxel or vertex, 

respectively. 

 

3.7.1 Univariate Statistical Models  

 

General Linear Model  

VBM and SBM analyses are based on the application of General Linear Models 

(GLMs). A GLM is statistical method to relate continuous or categorical predictors 

(independent variables and confounds) to a single outcome variable (dependent 

variable). It describes a response (Y) in terms of all its contributing factors (𝑋) in a 
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linear combination (with weights 𝛽), while also accounting for the contribution of 

error (𝜀). This model is built on a simple equation: 

        

       𝑌 = 𝑋𝛽 +  𝜀                                        (Equation 3.1)                                                     
 

Y is the observed data, the dependent variable in which we are interested in study 

(e.g. GM volume), which will be modelled/predicted with as much as different 

factors that can account for its variation between images. X is the experimental 

design matrix, which embodies as predictors all experimentally controlled factors 

and potential confounds. 𝛽 represents the regression coefficients, also known as 

beta weights, quantifying how much each predictor X independently influences the 

dependent variable Y.  Finally, ε is the error, the variance in the data (Y) which is not 

explained by the linear combination of predictors (X) [100], [101]. 

Confounds are variables (covariates) that may produce effects with no interest 

for the study and bias the results. They may also capture interesting effects 

correlated with data. For example, if we are interested in observing the GM atrophy 

in patients when compared to controls, we want to look at differences that appear 

exclusively due to the disease and not due to effects related to age or gender. 

However, we can be interested in study how the brain atrophy develops with aging, 

by correlating the effects of age with brain atrophy. 

We want to see whether our design matrix has an effect on brain structure (the 

dependent variable Y). In other words, we want to see how GM or WM volume in 

each voxel varies across different scans. The null hypothesis is that there are no 

differences between controls and patients, i.e. our design matrix has no effects on 

brain structure. 

 In this work, as there are many samples (multiple scans of the same voxel) of a 

response Y, it resulted in a mass-univariate analysis. Equation 3.1 was applied for 

each voxel of the dataset resulting in the following equation: 
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                          (Equation 3.2)                       

Each row of the design matrix is one scan and each column is a predictor or 

confound. At each voxel, the optimal linear combination of the effects that may 
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influence the outcome is computed. At this point, all the 𝛽 parameters were 

estimated for each voxel and ready to proceed to statistic tests.  

 

▪ Design matrix of VBM 

For VBM analysis performed with each image type (no filled T1-MPRAGE, filled 

T1-MPRAGE, T2-FLAIR), X corresponds to scans containing brain segments of 

WM or GM from the control and MS groups; Age, gender and TIV are the 

covariates for all models, and  TLV and number of lesions are additionally 

included as covariates in the model with T1 scans after lesion filling.  

 

▪ Design matrix of SBM 

For SBM analysis performed with T1-MPRAGE no-filled or T1-MPRAGE filled, X 

corresponds to scans containing cortical thickness or gyrification index from the 

control and MS groups. Age and gender are included as covariates in both 

models.  

 

Contrasts 

Contrasts are linear combinations of predictors coefficients corresponding to the 

null hypothesis, represented by a row vector in the form c’β. As here it was intended 

to test only a single hypothesis, volume/surface differences between two groups, 

disregarding the effects of the covariates, t-contrasts were used for this purpose.   

By defining a contrast, relationships between data are generated disregarding 

others, for example ignoring the effects of the confounds initially defined in the 

model that have no interest for the study. The linear combination established by the 

contrast supresses the effects of these variables. The null hypothesis is that the 

linear combination c’B is zero. To model the analysis towards the goal of testing 

groups’ differences, the predictors weights must be specified in the contrast vector. 

The construction of the design matrix will determine the order of the weights to be 

specified in the contrast vector c. The order of the predictors in the β column must 

have a correspondence with the order of the weights in the contrast vector c [102] . 

Example: 

The hypothesis to be tested is if there are GM volume differences between groups 

(controls and patients). GM volume is the dependent variable (Y) whereas T1 GM 
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segments of controls, T1 GM segments of patients, age, gender and TIV are the 

independent variables. These variables may or not produce an effect in the observed 

data (Y), depending on the defined contrast. In this context, a t-contrast specified by 

[1 -1 0 0 0] tests whether there are brain regions where GM volume in the control 

group is higher than the one of disease group, excluding from the analysis the effects 

caused by age, gender and TIV.  

In this work, it was only tested one hypothesis in each model – to test for differences 

between the patients and controls data specified in each VBM and SBM analysis. The 

groups are all the same in each analysis, controls and patients. The inputs of the 

analyses vary depending on the type of image and what was intended to study. In 

each analysis there was only one type of image, thus one dependent variable being 

studied.  

 

▪ VBM t-contrasts 

Differences in GM/WM volume are inspected by an increase or decrease of the 

GM/WM volume in one group relative to the other. Therefore, the following t-

contrasts in each of the 6 VBM analyses were applied (3 VBM analyses of GM and 

3 VBM analyses of WM):  

T1-MPRAGE no-filled scans: t-contrast = [1 −1 0     0 0] to find brain 

regions where there is an increase of GM/WM volume in the control group 

relative to MS group, ignoring the effects of age, gender and TIV.  

T1-MPRAGE filled scans: t-contrast = [1 −1  0     0  0     0 0] to find brain 

regions where there is an increase of GM/WM volume in the control group 

relative to MS group, ignoring the effects of age, gender TIV, TLV and number of 

lesions. 

T2-FLAIR scans:  t-contrast = [1 −1 0     0 0] to find brain regions where 

there is an increase of GM/WM volume in control group relative to MS group, 

ignoring the effects of age, gender and TIV.  

The contrasts destined to find increases of GM/WM volume in MS group were 

also tested, by changing the contrast weights to their symmetrical.  
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▪ SBM t-contrasts 

Similarly, the following t-contrasts were applied in SBM analyses. The t-contrast 

= [1 −1     0 0]  was applied to cortical thickness and gyrification index maps 

from both T1-MPRAGE no-filled scans or T1-MPRAGE filled scans. It allowed to 

find brain regions where there is an increase of cortical thickness/gyrification 

index in the control group relative to the MS group, ignoring the effects of age 

and gender. 

A contrast to find an increase of cortical thickness/gyrification index in MS group 

was also applied, by changing the contrast weights to their symmetrical: t-

contrast = [−1 1     0 0]. 

 

t-test 

A t-test is a statistical test to make inferences about parameters of populations. 

Usually, it is used to compare the mean of a variable in one group against a given 

mean value or to compare the means between two groups. t-tests belong to class of 

parametric methods, in which the data are assumed to be normally distributed.  

A brain scan contains millions of voxels (in volume space) and vertexes (in 

surface space). Each voxel contains a certain volume of GM/WM and each vertex has 

cortical thickness and gyrification index values associated. Therefore, each group 

containing all the subject has a mean value of GM/WM volume and a mean value of 

cortical thickness and gyrification index in each voxel, all assumed to be normally 

distributed due also to the smoothing preprocessing step. The t-test will compare if 

the two gaussian samples have the same mean in each voxel. In this case, it is a two-

sample t-test where the two sample are the two independent groups.  

In this study, the null hypothesis assumes that there are no differences between 

the groups and so no linear combination between the regressors of the design 

matrix exists,  𝑐𝑇𝛽 = 0. As the linear combinations of regressors are normal 

distributed, 𝑐𝑇�̂�, the mean value of the combination of regressors was tested against 

zero in order to find regional differences.  

The mathematical approximation to perform these tests is given by: 

 

𝑇 =  
𝑐𝑇�̂�−𝑐𝑇𝛽

√𝑣𝑎𝑟(𝑐𝑇�̂�)
      =  

𝑐𝑇�̂�

√𝑣𝑎𝑟(𝑐𝑇�̂�)
                          (Equation 3.3) 
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Where, 𝑣𝑎𝑟(𝑐𝑇�̂�) is the standard deviation of the linear combinations.  

From each t-test performed in each voxel results a value of t which comes from a t-

distribution. A small t-value indicates that the null hypothesis has a low probability 

of being true and a large t-value that the null hypothesis is likely false. However, to 

evaluate if these values provide sufficient evidence to reject the null hypothesis, it is 

necessary to compare the computed t-values to a given value, a specified threshold. 

This threshold is a quantity, a percentile from the t-distribution. The selected 

percentile has a significance level α associated, specified by the user. If the p-value 

associated to a given t-value is below the significance level α,  the null hypothesis 

should be rejected in favour of the alternative one. [102] [103]. 

 

Correction for Multiple Comparisons  

In statistics, the multiple comparisons problem occurs when a statistical analysis 

involves multiple simultaneous statistical tests. A comparison of the p-value with 

the chosen confidence level is generally applied to each test individually. However, 

it is desirable to have a confidence level for the whole family of simultaneous tests.  

In VBM and SBM analyses, the results of voxel-wise statistical tests require a 

correction for multiple comparisons to determine the significance of an effect in any 

given voxel, accounting for the simultaneous tests. The correction for multiple 

comparisons decreases the false positives probability, because the more tests are 

carried, the higher the probability that some reject the null hypothesis by chance. 

Without any correction, the number of false positives would be proportional to the 

number of the independent t-tests. At the brain scale, there is a considerable number 

of false positives due to the very high number of voxels or vertexes tested with VBM 

or SBM.  

There are several methods to solve this problem. In the context of VBM, the most 

used is called the family wise error (FWE) correction. Within these class of methods, 

the Bonferroni correction is often used, although its conservative nature. This 

method controls the false positives adjusting the statistical threshold: the p-value 

threshold is divided by the number of performed comparisons. Here, the number of 

comparisons is equal to the number of voxels or vertexes being study. Bonferroni 

correction assumes that all the tests are independent from each other, but at the 

brain scale this is not entirely true. The structure of the spatial correlations of the 
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brain data is very complex and difficult to understand, in such a way that one 

voxel/vertex is not completely independent from the surrounding ones.  

An alternative approach is the random field theory (RFT). RTF considers the 

spatial variance of the data, and therefore assumes the dependent relationships 

between the voxels/vertexes. To control the FWE rate, RTF calculates the 

smoothness of a given statistical map, analyses voxels/vertexes (or clusters or 

patterns) with particular statistical levels and estimates how these voxels/vertexes 

would appear by chance in an image with that local smoothness. This way, RTF 

controls the number of false positives at a regional level (e.g. within clusters) 

instead at the voxel level [104], [105]. Instead of RTF, there are other FWE 

correction methods that can be put into practice, such as the false discovery rate 

(FDR), permutation testing and small-volume correction. Nonetheless, RTF was 

here applied in both SPM12 and CAT12 analyses.  

 

Statistical Parametric Maps 

Statistical Parametric Maps are the resultant outputs of the VBM and SBM analyses. 

These maps are images that show the outcome of the parametric t-test performed 

in each voxel. At a specified threshold, with correction for multiple comparisons, 

SPM highlight the brain regions where there are significant differences between the 

groups.  

 

3.7.2 Implementation  

 

VBM Model  

Based on VBM analysis the hypothesis of regional GM and WM differences, between 

the MS patients and controls, was tested. 

The statistical models based on no filled T1-MPRAGE data and T2-FLAIR data was 

built with 2 independent samples, i.e. the two groups, and with 3 covariates (gender, 

age and TIV). For this reason, it was chosen a two-sample t-test. It was applied a 0.1 

absolute masking threshold to compute the statistics only in areas that are above 

this intensity threshold. Areas below this threshold will be excluded. This allows to 

eliminate voxels with very low intensity values  (e.g. voxels  outside the brain or 

voxels with noise) and helps preventing the analysis of voxels in WM when 
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performing the analysis in GM and vice versa [106]. A statistical threshold of p < 

0.05 with FWE correction for multiple comparisons was also applied.  

The statistical models based on the filled T1-MPRAGE data was similarly 

constructed, except for the covariates. In this case, 5 covariates were used: gender, 

age, TIV, TLV and number of lesions.  

 

To summarize, the following models were built: 

 

• One statistical model based on GM volume extracted from no filled T1-

MPRAGE images; 

• One statistical model based on WM volume extracted from no filled T1-

MPRAGE images; 

• One statistical model based on GM volume extracted from filled T1-MPRAGE 

images 

• One statistical model based on WM volume extracted from filled T1-MPRAGE 

images; 

• One statistical model based on GM volume extracted from T2-FLAIR images; 

• One statistical model on WM volume extracted from T2-FLAIR images; 

 

These statistical tests allowed a qualitative comparison between the results of filled 

and no filled data, as well as between T1 and T2 images.  

 

 

SBM model  

Based on SBM analysis the hypothesis of regional cortical thickness and gyrification 

index differences, between MS patients and controls, was tested. 

The statistical models of both filled and no filled T1-MPRAGE data were built 

similarly to VBM analysis, with 2 samples i.e. two groups, 64 controls and 59 patients 

and with 2 covariates, gender and age. Surface measures do not depend on volume 

measures, so TIV is not needed as covariate in the model [107]–[109]. No masking 

threshold was applied to the data. Cortical thickness maps were corrected with FWE 

correction (p < 0.05) while gyrification index maps were obtained with no 

correction (p < 0.001) for both analyses.  
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The following models were built: 

• One statistical model based on cortical thickness extracted from no filled T1-

MPRAGE images; 

• One statistical model based on gyrification index extracted from no filled T1-

MPRAGE images; 

• One statistical model based on cortical thickness extracted from filled T1-

MPRAGE images; 

• One statistical model based on gyrification index extracted from filled T1-

MPRAGE images. 

 

3.7.3 Descriptive Univariate Plots  

Descriptive univariate scatter graphics are a useful and practical way to show 

results derived from a comparative analysis. These graphics were obtained through 

MATLAB function “UnivarScatter” [110] with the purpose of plot the features values 

and to see how they differ between groups.  

Graphics of GM and WM volume, as well as cortical thickness and gyrification 

index values in the regions that show differences between groups were obtained. To 

access GM and WM volume values, a mask of each cluster (region) that carry 

significant differences was saved in SPM. These masks were applied to GM and WM 

volumes of each subject and the volume values were extracted through “get_totals” 

function from MATLAB. To obtain surface values, cortical thickness and gyrification 

index, in the regions that show evidence of surface differences, the “Display Surface 

Results” and “Plot mean inside cluster” functions from CAT12 were used. 

 

3.8 Multivariate Pattern Statistical Analysis  

 
Statistical pattern recognition is a field within the area of machine learning, which is 

concerned with automatic discovery of regularities (patterns) in data using 

computer algorithms. Computer algorithms take advantage of these regularities to 

take actions for example to classify the data into different categories. In the field of 

neuroimaging studies, brain scans contain numerous spatial patterns which are 
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used by learning models to discriminate between experimental conditions or groups 

of subjects [64].  

 

3.8.1 SVM Classification Models  

In this work, SVM classification was applied to investigate if MS patients and 

controls can be discriminated through morphometric brain measures. The 

automatic classification of different groups of patients, SPMS vs RRMS patients, was 

also tested. 

SVM is a discriminative classifier formally defined by a separating hyperplane. 

Given labelled training data (supervised learning), the algorithm outputs an optimal 

hyperplane which categorizes new examples. In two-dimensional space this 

hyperplane is a line dividing a plane in two parts where in each class lay in either 

side (Figure 3.4). The idea behind SVM algorithm consists in defining a decision 

boundary that separates the study objects in different classes, based on their 

features, as generally as possible. Then SVM determines the maximal distance 

between the decision boundary and the closest objects of each class, to define the 

support vectors. The largest margin between support vectors ensures the maximal 

generalization capacity of the classifier regarding new data (unknown 

subject)[111]–[113] . 
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Decision function 

Given a dataset D constituted by the brain scans from the groups we want to 

discriminate and considering the classification between MS and controls as an 

example, 

𝐷 = {𝑥𝑖, 𝑦𝑖}, 𝑖 = 1…𝑁 

 

where 𝑥𝑖 represents the features being evaluated (voxels) and 𝑦𝑖  the labels (controls 

and MS patients), a feature is categorized as part of a class by the decision function 

or classifier model: 

 𝑓(𝑥𝑖) = 𝑦𝑖                                            (Equation 3.4)   
                                           

For all sample data x, SVM should find weights (w) such that the data points will be 

separated according to a decision rule: 

 

𝑦𝑖 = 𝑤𝑇𝑥𝑖 + 𝑏0                                        (Equation 3.5)   

Figure 3.4: Schematic representation of a binary SVM classifier. In this example two groups of 

subjects (two classes, patients and controls) can be separated based in two distinct features of each 

group (feature 1 and feature 2). The support vectors mark the largest margin with the optimal 

separation between groups. The largest margin ensures the maximal generalization capacity of the 

classifier regarding new data (unknown subject). If more features are available a higher 

dimensional space is used. Adapted from [113] 
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In our case, 𝑦𝑖  represents our decision value, i.e. data to be classified (T1-

MPRAGE/T2-FLAIR images to be labelled as controls or MS patients),  x represents 

the features we want to evaluate, i.e. GM or WM volume in each voxel and w 

represent the parameters to be learned,  the weights attributed to each voxel. In this 

analysis each brain image is assigned to MS or control group according to the 

decision value [112]–[114]  

 

High Dimensional spaces  

Real life classification problems are usually complex and cannot be demonstrated 

by a linear relation. A great advantage of the SVM is to overcome this issue by 

mapping the original feature space into a higher dimensional space and by finding a 

linear boundary through decision hyperplanes. Then, it returns to the original input 

space and draws the obtained solution of the classification problem that was 

learned. This method is called “kernel trick”[113]. Schematic representation of the 

“kernel trick” is illustrated in Figure 3.5.  

 

In this higher dimensional space, two parallel hyperplanes are constructed on each 

side of a hyperplane that optimally separates the data. The separating hyperplane is 

Figure 3.5: Schematic representation of the kernel trick. SVM algorithm maps the input feature space 

into a higher-dimensional space, in which the decision boundary is linear Then, it returns to the 

original input space and draws the solution of the classification problem that was learned. Adapted 

from [113] 
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the hyperplane that represents the distance between the two parallel hyperplanes, 

built upon the support vectors. This distance, in its turn, represents how well the 

SVM could distinguish the groups. Subjects who are relatively close to this frontier 

are subjects that were more difficult to be assigned to a class. Therefore, it can be 

assumed the larger the distance between these parallel hyperplanes the better is the 

performance (the higher is the accuracy of the classifier).  

For a better understanding of the mathematical functioning of the SVM classifier, 

assuming the two classes are represented by 1 and -1,  

 

𝑦 = 1 𝑜𝑟 𝑦 = −1     (Equation 3.6 and Equation 3.7)                           
and if 

𝑤𝑇𝑥𝑖 + 𝑏0 = 0                                       (Equation 3.8)     
                                

it means no discrimination was achieved for this example. In other words, the 

classifier could not place the example on any side of the separating hyperplane. This 

equation (3.8) represents the separating hyperplane, where no difference between 

the subjects exists. If the classifier can place a given unseen example at a distance 

from the separating hyperplane, it means the example will be assigned the class 

corresponding to the side of the hyperplane in which it falls. If the distance from the 

example is negative (whatever value), the example will be classified as belonging to 

class -1, whereas if the distance is positive (whatever value) the example will be 

classified as belonging to class 1. The higher the distance from the hyperplane, the 

easier it is to classify the example. 

If all data examples, brain images of controls and MS patients in this case, would 

fall on the correct side of the hyperplane, we would have an ideal classifier, with an 

accuracy performance of 100 %. Accuracy is a metric for the ability of the classifier 

to predict the real labels of unseen examples. What happens in reality is that not all 

examples are correctly classified, there are controls being misclassified as MS 

patients and MS patients being misclassified as controls. From here, measures of 

performance such as sensitivity and specificity can be estimated [115], [116].  

 

Cross-Validation 

To be able to perform this assignment, SVM as a supervised method, needs to learn 

this function from data for which the labels are known – training data. Then the 
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function is applied to unseen brain images – test data - without knowing its label, so 

that it can test the learned function for its accuracy. To accomplish this, part of the 

dataset is given to the SVM algorithm along with the labels’ assignment (classes to 

which every example belongs to). This is the training set. From the training set the 

SVM will learn the decision boundary between the classes (labels). This is called the 

training phase. Then, after the training phase the remaining examples, which 

constitute the test set, are given to the SVM without the labels’ to be assigned to one 

of the classes.  

The ideal would be to train the classifier with as much data as possible but the 

size of the available data is typically limited. The goal is to obtain a classifier model 

as general as possible, thus able to label any future image belonging to test set 

correctly. Using just a few examples for training does not seem a good approach, as 

few brain scans do not provide a representative amount of all possible patterns to 

discriminate groups. On the other hand, training with all the data available causes 

the problem of overfitting, which means the classifiers learns a very good relation 

between the features and the labels for that particular set of data but it will not be 

able to generalize it and accurately classify new unseen (potentially different) data. 

To optimize the data exploration, to increase the size of the test set and to avoid 

overfitting (loss of generalization ability of the model), a cross-validation scheme is 

commonly used. The idea of cross-validation is to determine a scheme of partition 

of the whole data set into training and test sets that tells the algorithm what data are 

going to be the training set (and consequently the remaining data is the test set), in 

which the classifier will learn the decision function. There can be several partition 

schemes, and cross-validation means that every split set of data is both used as 

training and test set in different iteration. The simplest one would be to split the 

dataset in two, so that half the data is used as the training set and the other half is 

used as the test set in one iteration, and in a second iteration the sets are used the 

other way around. However, in order to optimize the use of often limited amount of 

data, a cross-validation scheme is used in which larger parts of data are used for 

training and fewer for testing in each iteration. This could be e.g. splitting the data 

set in 5 and use 4 parts for training and 1 part for testing, with different parts being 

used for training and testing in a number of iterations that allow every example f 

data to be used at least once for testing, without ever being used for training and 
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testing in the same iteration. This is called k-fold cross-validation, where k is the 

number of parts into which the dataset is divided. Usually it is used k=10 or k=5, 

corresponding to leaving out 10% or 20% of the data on each testing fold [64], [115]. 

The training phase will be performed with k-1 subsets and the test phase test with 

the remaining unseen set. This is repeated k times and the classification results are 

averaged to obtain performance measures of the classifier as accuracy, sensitivity 

and specificity. 

In neuroimaging, a context in which the number of subjects is usually low, a more 

extreme cross-validation is often used, a leave one out cross-validation (LOO-CV) or, 

better, a leave one per group out cross-validation (LOGO-CV). This means that the 

dataset containing N subjects of each class is split in N folds, such that each fold 

contains only one subject of each class. The training and testing will be performed N 

times, each time leaving a different fold out for testing, while training on all the 

remaining folders. This scheme of LOGO-CV follows these steps: 

▪ leave one subject per group out, train on the remaining ones (training set), 

make a prediction for these subjects (test) 

▪ repeat the previous step for each pair of subjects (in case it is a binary 

classification of two groups), leaving in each iteration one different subject 

per group out.  

▪ compute the accuracy, sensitivity and specificity of the predictions made for 

all the iterations. 

The cross-validation scheme we used is the LOGO-CV because it allows to maximize 

the amount of data used for training while using all the data for testing as well, while 

maintaining the balance between classes in training/test sets. 

 

Performance 

The most commonly used measures to evaluate the performance of a classifier are 

sensitivity, specificity, and accuracy. When classifying images of the test set, any 

given image can be classified correctly or incorrectly. Considering two classes with 

labels 1 and -1, we can refer to the classes as positive and negative. Typically, in 

clinical context, the group of patients is considered as the positive class and the 

controls as the negative one. The following cases might occur during automatic 

classification: 
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TP = true positives = subjects who were correctly labelled as MS patients; 

TN = true negatives = subjects who were correctly labelled as controls; 

FN = false negatives = subjects who were mislabelled as controls; 

FP = false positives = subjects who were mislabelled as MS patients.  

 

Sensitivity tell us the proportion of patients, among all the patients’ samples, 

correctly classified.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁 
                               (Equation 3.9)              

                     
Specificity tell us the proportion of controls, among all the controls’ samples, 

correctly classified.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                              (Equation 3.10)         

                         
Accuracy is an estimative of the overall classifier performance. It translates the 

proportion of controls and patients correctly classified.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+ 𝑇𝑁+ 𝐹𝑃+𝐹𝑁
                   (Equation 3.11)                       

 

It is considered that the classification algorithm has learned properly the relation 

between the features that describe the data and the labels when:  the performance 

measures significantly exceed a level considered as reasonable (it depends on the 

context of the problem); and if it is significantly higher than chance level (50 % in 

the case of a binary classifier). In such case, the null hypothesis that there is no 

discriminative information in the data (no difference between the classes) is 

rejected [64], [115].  

 

Statistical significance of the accuracy value 

In order to evaluate if the classifier was sufficient to reject the null hypothesis, the 

classification results were validated by a permutation test. A permutation test is 

used to obtain a level of statistical significance, the p-value. The p-value gives the 

probability of classification performance occurs given that the null hypothesis is 

true. As such, the smaller the p-value value, the more relevant are the accuracy, 

sensitivity and specificity classification values[104], [111], [115] .  
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A permutation test repeats the classification many times, each time shuffling the 

labels assigned to the samples. This way any true relation between the data and the 

labels is destroyed. The classification performance p-value was then computed as 

the proportion of times the classification performance of randomly assigned labels 

was equal or higher than the one obtained with true labels. Essentially, the 

permutation test procedure measures how likely the observed accuracy would be 

obtained by chance.  

The same test was repeated 1000 times (cross validation LOGO-CV) with 

differently randomized labels each time. At this point, the p-value can be computed 

as low as 1/1000 = 0.0001. 

 

3.8.2 Implementation  

PRoNTo software has five main analysis modules: dataset specification, feature set 

selection, model specification, model estimation and weights computation. It 

receives as input any NIfTI images [117].  

In dataset specification, the brain scans were introduced with the features to be 

analysed (e.g. GM segments). Each image was assigned to the corresponding group 

(e.g. controls or MS patients). In this module a first-level mask was also entered, 

which was used to optimise the feature set preparation, by discarding all 

uninteresting features, such as voxels outside the brain [117] . 

In feature set preparation, the entered images were selected, and the program 

computed both the feature matrix to be written into an appropriate format and the 

linear kernel (dot product of the images, representing a similarity measure). The 

result was used as input to the classification algorithm. Any operations on the 

features were performed using the original features matrix to compute a new kernel 

matrix. 

In model specification, the classes to be discriminated, the algorithm to be used 

(in this case a SVM), and the cross-validation scheme (in this case a LOGO-CV) were 

defined.  

Finally, the model was estimated, and the performance values were obtained. 

From this step, results outputs as the histogram of the decision function values, the 

ROC/area under the curve plot, the model predictions and the confusion matrix, 
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could be extracted. These outputs help to understand the behaviour of SVM and to 

interpret the performance of the classifier.  

In addition, PRoNTo provides the displaying of the weights in the original 

features (voxels) space. Weights are displayed into maps that contain at each voxel 

the corresponding weight of the linear model, which relates to how much this 

particular voxel contributed to the classification.  

 

MS patients vs Controls Classification models 

Depending on the features and type of images being analysed, 6 SVM classifiers to 

discriminate MS patients and controls were built: 

 

▪ One SVM classifier with GM volumes from no filled T1-MPRAGE images; 

▪ One SVM classifier with WM volumes from no filled T1-MPRAGE images; 

▪ One SVM classifier with GM volumes from filled T1-MPRAGE images; 

▪ One SVM classifier with WM volumes from filled T1-MPRAGE images; 

▪ One SVM classifier with GM volumes from T2-FLAIR images; 

▪ One SVM classifier with WM volumes from T2-FLAIR images. 

 

MS Subtypes Classification models 

The available dataset includes only eight patients diagnosed with secondary 

progressive MS (SPMS patients), which is a very small sample to train the classifier. 

In order to achieve a reasonable classification performance, 100 different SVM 

models were built with the eight SPMS patients and with different sets of 8 

participants diagnosed with relapsing-remitting MS (RRMS patients). For each 

model, the eight RRMS patients were randomly selected (and different in each time).  

However, SVM classification of MS subtypes with T2 scans accounted with even 

less subjects, since images of certain participants had to be excluded due to 

excessive heterogeneities.  

To discriminate SPMS patients and RRMS patients, four SVM classifiers were 

built: 

▪ One SVM classifier with GM volumes from filled T1-MPRAGE images; 
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▪ One SVM classifier with WM volumes from no filled T1-MPRAGE images; 

▪  One SVM classifier with GM volumes from T2-FLAIR images; 

▪ One SVM classifier with WM volumes from T2-FLAIR image. 
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4 Results and Discussion 
 

4.1 Global Measures 

 
This section presents how global measures such as total intracranial volume (TIV), 

total grey matter (GM) volume and total white matter (WM) volume are distributed 

in controls and MS patients. Number of lesions and total lesion volume (TLV) in both 

groups are also illustrated. Graphics of these measures are illustrated in Figures 4.1 

and 4.2.  

 

 

 

Figure 4.1: Global Volume Measures from filled T1-MPRAGE of controls and MS patients. CNT stands 

for controls and MSC stands for MS patients. Yellow represents the global measures values of control 

group and red represents to the global measures values of MS patients group a) GM distribution 

values. b) WM distribution values c) Total Intracranial Volume distribution values. 

 

a b 

c 
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Discussion 

The overlap in the distribution of global volume measures suggests that globally 

there are no significant differences between the brains of MS patients and controls. 

From these results it is assumed that these measures should not be considered as 

structural differences between groups. However, we can only guarantee that there 

are no significant differences if the t-value and p-value, resulting from a t-test 

performed between these measures of each group, indicate that there are in fact no 

such differences. The distribution of the number of lesions and their total volume 

illustrate how these features can indeed be clinically important biomarkers of MS. 

As expected, images from controls revealed a very low number of lesions and 

volume when compared to MS patients, as this is a well-known characteristic of the 

disease. 

In what concern global surface measures of cortical thickness and gyrification 

index, CAT12 does not provide an option to quantify these measures globally. It is 

debatable if a global value of cortical thickness or gyrification is meaningful, as these 

can greatly vary across subjects. Therefore, the distribution of these measures 

among groups is not shown here.  

 

 

Figure 4.2: Lesion measures from filled T1-MPRAGE of controls and MS patients. CNT stands for 

control group and MSC stands for MS patients group. Yellow represents the global measures values 

of control group and red represents to the global measures values of MS patients group a) Total 

Lesion Volume distribution values. b) Number of Lesions distribution values.  

 

a b 
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4.2 Voxel-Based Morphometry Results 

 

4.2.1 Sample homogeneity  

CAT12 manual recommends using the unsmoothed segmentations to check sample 

homogeneity, which provide more anatomic detail. Boxplots showing homogeneity 

values of normalized and modulated segments of GM and WM from no filled T1-

MPRAGE, filled T1-MPRAGE and T2-FLAIR images for both groups can be found as 

supplementary material to this dissertation (annex B).  

From all the boxplots resulting from the tests performed in the three types of 

images (no filled/filled T1 images and T2 images), in annex, it is evident which are 

the images that have a mean correlation below two standard deviations. Yet, in the 

case of T1-weighted images, these have high correlation values, so there was no 

need to exclude any subjects from the subsequent analyses. T1-weighted images 

showed correlation values close to one, meaning that these images are globally like 

each other in terms of intensity homogeneity. However, there are T2-weighted 

images that showed very low correlation values. When visually inspected, these 

images seemed abnormal when compared to the remaining images. Their 

heterogeneities were probably due to errors during the segmentation step. As such, 

images with excessive deviation from the mean were excluded from analyses (VBM 

and classification), as follows: 

 

▪ 3 normalized and modulated GM segments from MS patients group; 

▪ 5 normalized and modulated GM segments from controls group; 

▪ 6 normalized and modulated WM segments from MS patients group; 

▪ 5 normalized and modulated WM segments from controls group.  

 

Thus, the dataset with T1-weighted images remained complete, with 59 MS patients 

and 64 controls, while the dataset with T2-weighted images was reduced:  

 

▪ 56 normalized and modulated GM segments from MS patients’ group; 

▪ 59 normalized and modulated GM segments from controls group; 

▪ 53 normalized and modulated WM segments from MS patients’ group; 

▪ 59 normalized and modulated WM segments from controls group.  
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4.2.2 Statistical Parametric Maps 

The statistical parametric maps for VBM analyses of T1-weighted and T2-weighted 

GM and WM images were obtained considering differences to be significant at p < 

0.05 (FWE corrected).  Clusters of contiguous voxels with significant differences 

were overlaid onto brain templates and their coordinates identified the 

corresponding brain regions. These coordinates correspond to Montreal 

Neurological Institute (MNI) space and to Talairach (TAL) space [118]. Tables with 

coordinates and corresponding name of regions are available as supplementary 

material to this dissertation (annex B, Tables B.1, B.2, B.3, B.4, B.5, B.6). In all VBM 

analyses with GM and WM we tested the contrast controls > MS patients, i.e. the 

regions where there was more GM/WM volume in controls. The defined contrast 

would reveal the opposite effect (higher GM/WM volume in MS patients) by 

significant negative t-values. In any case, the opposite effect (higher GM/WM 

volume in MS patients) would be revealed by significant negative t-values with the 

defined contrast 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Results and Discussion 

57 
 

Grey Matter results  

Statistical parametric maps from GM VBM analysis yielded several significant 

clusters (p < 0.05, FWE corrected) showing GM atrophy in MS patients. These are 

illustrated in Figure 4.3.  

 

Volume differences in GM obtained from no filled T1-MPRAGE images showed 

evidence of GM atrophy in MS patients. This was found for clusters in right and left 

pulvinar of the thalamus, right and left lentiform nucleus, right cingulate gyrus, left 

medial frontal gyrus, left lingual gyrus, right middle frontal gyrus, right rectal gyrus, 

and in right fusiform gyrus.  

Volume differences in GM obtained from filled T1-MPRAGE images showed evidence 

of GM atrophy in MS patients in clusters corresponding to regions in right and left 

pulvinar of the thalamus, right thalamus, right and left culmen (cerebellum), left 

lingual gyrus, and right lentiform nucleus.  

Maps of volume differences in GM obtained from T2-FLAIR images showed evidence 

of GM atrophy in MS patients in clusters in the right pulvinar of the thalamus, right 

caudate body, left medial frontal gyrus, right superior frontal gyrus, left paracentral 

Figure 4.3: Results of VBM analysis of GM volume (controls > MS). Results are presented at a voxel-

level p-value < 0.05, FWE corrected. Color bar scale represents t-values. a)  Results of VBM analysis of 

GM segments obtained from no filled T1-MPRAGE images. b)  Results of VBM analysis of GM segments 

obtained from filled T1-MPRAGE images. c)  Results of VBM analysis of GM segments obtained from 

T2-FLAIR images. All maps are overlaid onto a representative MR image in standard space in SPM. 

t-value 



4. Results and Discussion 

58 
 

lobule, right middle frontal gyrus, right inferior temporal gyrus, and right fusiform 

gyrus.  

 

Discussion 

These results show that GM atrophy is indeed a biomarker of MS, being present 

in a considerable number of brain regions. The results regarding the location of GM 

atrophy are in accordance with previous literature of VBM studies in MS [32][77]. 

The only common region resultant from each of the three analyses (different types 

of brain images) is the thalamus, which is the most significantly affected region. It is 

highly associated with cognitive deficits, which is commonly a disease effect [119]. 

Most of the differences that appear in no filled T1 images are present in T2 

images, which were not filled either. It is known that the lesion filling in T1-MPRAGE 

images provides more reliable VBM results [75]–[77], [82]. As such, differences 

between groups in no filled T1 images and T2 images, which do not appear in maps 

resulting from the analysis of GM segments of T1 images after lesion filling, might 

be less reliable. On the other hand, in theory T2-weighted imaging might be more 

sensitive to microscopic neurodegenerative processes than T1-weighted imaging. 

This might also explain the differences visible in T2 images that did not appear in T1 

images. These differences correspond to superior frontal gyrus and right inferior 

temporal gyrus. Therefore, these results should be considered to further 

investigation of brain regions revealing atrophy. 
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White Matter results 

Statistical parametric maps from WM VBM analysis yielded several significant 

clusters (p < 0.05, FWE corrected) showing WM atrophy in MS patients. These are 

illustrated in Figure 4.4.  

 

 

 

 

Volume differences in WM obtained from no filled T1-MPRAGE images showed 

evidence of WM atrophy in MS patients in clusters corresponding to regions in right 

and left parahippocampal gyrus and regions in frontal and temporal lobe.  

Volume differences in WM obtained from filled T1-MPRAGE images showed 

evidence of WM atrophy in MS patients in clusters corresponding to regions in 

temporal and frontal lobes, in left hippocampus, in left precentral gyrus, in right 

cuneus.  

Volume differences in WM obtained from T2-FLAIR images showed evidence of WM 

atrophy in clusters corresponding to regions in temporal lobe and brainstem. 

 

 

t-value 

Figure 4.4: Results of VBM analysis of WM volume (controls > MS). Results are presented at a voxel-

level p-value < 0.05, FWE corrected. Color bar scale represents t-values. a)  Results of VBM analysis of 

WM segments obtained from no filled T1-MPRAGE images. b)  Results of VBM analysis of WM 

segments obtained from filled T1-MPRAGE images. c)  Results of VBM analysis of WM segments 

obtained from T2-FLAIR images. All maps are overlaid onto a representative MR image in standard 

space in SPM. 
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Discussion  

Despite the lower sensitivity for WM analysis, were found significant volume 

differences between patients and controls in the 3 VBM analyses performed. The 

VBM results show significant differences in hippocampus and parahippocampal 

gyrus, which are regions associated to memory function. These results are in 

accordance with a previous study regarding atrophy in MS, which has correlated 

WM atrophy with a negative impact in working memory tasks [120].  

Even though WM atrophy is not commonly studied, the results here presented add 

to the MS understanding by demonstrating that WM atrophy is in fact a feature in 

this disease. However, there are methods more appropriate to quantify WM atrophy, 

as for example diffusion tensor imaging [21]. 

 

4.2.3 Descriptive Univariate Plots Results 

The distribution of GM and WM volume in the brain regions that have shown the 

most significant differences between patients and controls in VBM analyses are 

illustrated below. GM volumes distribution from T1 images and T2 images are 

illustrated in Figures 4.5 and 4.6, respectively. Whereas, WM volumes distribution 

from T1 images and T2 images are illustrated in Figures 4.7 and 4.8, respectively.  
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Figure 4.6: GM volumes extracted from T2-FLAIR images in the regions that contain the most 

significant differences between controls and MS patients. CNT stands for control group and MSC 

stands for MS patients’ group. Yellow represents the GM volume values of control group and green 

represents the GM volume values of MS patients group a) GM volume of the right pulvinar of the 

thalamus. b) GM volume of the right caudate body. c) GM volume of the left medial frontal gyrus.  

a b 

c 

Figure 4.5: GM volumes extracted from filled T1-MPRAGE images in the regions that contain the most 

significant differences between controls and MS patients. CNT stands for control group and MSC 

stands for MS patients’ group. Yellow represents the GM volume values of control group and green 

represents the GM volume values of MS patients group a) GM volume of the pulvinar of the thalamus. 

b) GM volume of the right thalamus. c) GM volume of the left culmen (cerebellum). 

a b 

c 
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Figure 4.7: WM volumes extracted from filled T1-MPRAGE images in the regions that contain the most 

significant differences between controls and MS patients. CNT stands for control group and MSC 

stands for MS patients’ group. Yellow represents the WM volume values of control group and green 

represents the WM volume values of MS patients group a) WM volume of frontal lobe. b) WM volume 

of the left hippocampus. c) WM volume of the left precentral gyrus. 

 

a b 

Figure 4.8: WM values from T2-FLAIR images of the regions of that contain the most significant 

differences between controls and MS patients. CNT stands for control group and MSC stands for MS 

patients’ group. Yellow represents the GM volume values of control group and green represents the 

GM volume values of MS patients’ group. a) WM volume of temporal lobe. b) WM volume of 

brainstem. 
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Discussion  

These results illustrate how both GM and WM atrophy is present in MS patients. 

However, not all patients exhibited brain atrophy. There are MS patients with 

regional GM/WM volume similar to controls. This suggests that atrophy measures 

in addition to be investigated as potential MS biomarkers, might also be explored to 

personalized patient characterization.  

 

General VBM Discussion 

In all VBM analyses the contrast used was controls > MS patients. The inverse 

contrast, MS patients > controls, did not reveal any region where patients have 

significantly higher tissue volume than controls, as expected. As there is atrophy in 

MS patients, an increase of volume relatively to controls is not expected in any brain 

region. However, without correction for multiple comparisons, a few regions 

survive to this contrast. This was probably due to physiognomy differences in brain 

or hyperintensity of images (data not shown).   

 

4.3 Surface-Based Morphometry Results  

 

4.3.1 Sample homogeneity 

Despite the better performance of this function when using unsmoothed images, in 

the case of surface data this analysis was performed in smoothed images. This was 

because the extraction of cortical thickness and gyrification index and 

preprocessing were entirely done in one single step. Therefore, it was not possible 

to obtain unsmoothed cortical thickness and gyrification index data.  

Homogeneity values of smoothed images of cortical thickness and gyrification 

index of no filled T1-MPRAGE and filled T1-MPRAGE images for both groups can be 

found as supplementary material of this dissertation (annex B). No subjects were 

excluded from the analyses as they all have shown high values of correlation and all 

close to one. 
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4.3.2 Statistical Parametric Maps 

Clusters of contiguous vertexes with significant cortical thickness and gyrification 

index differences were overlaid onto brain templates for visualization. Then, their 

coordinates in standard space identified the corresponding brain regions. Tables 

with coordinates and corresponding names of the regions are available as 

supplementary material to this dissertation (annex C, tables C.1, C.2, C.3, C.4, C.5, 

C.6).  

 

Cortical thickness results  

SBM analysis of cortical thickness values extracted from no filled T1-MPRAGE and 

filled T1-MPRAGE images yielded several significant clusters (p < 0.05, FWE 

corrected). Differences were tested with the contrast controls > MS patients and the 

results are shown in Figure 4.9.   

 

 

 

Maps of differences in cortical thickness obtained from no filled T1-MPRAGE images 

show a decrease of cortical thickness in MS patients, as compared to controls, in the 

following regions: right and left superior temporal gyrus, right and left inferior 

parietal lobule, right and left middle temporal gyrus, left parahippocampal gyrus, 

left postcentral gyrus, right and left precentral gyrus, right posterior cingulate, right 

posterior lobe, declive (cerebellum), right precuneus, right cuneus, left paracentral 

a b 

Figure 4.9: Results of SBM analysis of cortical thickness (controls > MS) showing a decrease of cortical 

thickness in MS patients. Results are presented at a voxel-level p-value < 0.05, FWE corrected. Color 

bar scale represents log p-values. a) Results of SBM analysis of cortical thickness extracted from no 

filled T1-MPRAGE images. b) Results of SBM analysis of cortical thickness extracted from filled T1-

MPRAGE images. Maps are overlaid onto a representative inflated brain in standard space in CAT12. 
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lobule, right and left middle frontal gyrus, right superior frontal gyrus, right middle 

occipital gyrus, and left insula.  

 

Maps of differences in cortical thickness obtained from filled T1-MPRAGE images 

show a decrease of cortical thickness in MS patients as compared to controls, in the 

following regions: right and left superior temporal gyrus, right posterior lobe, 

declive (cerebellum), left middle temporal gyrus, left middle frontal gyrus, right and 

left inferior parietal lobule, right posterior cingulate, left postcentral gyrus, left 

cingulate gyrus, left lingual gyrus, right and left paracentral lobule.  

 

Discussion 

SBM analysis revealed a substantial decrease of cortical thickness in MS patients, 

which firstly confirms that cortical thinning may be a promising neural marker for 

clinical trials and secondly stresses the need of investigate its relationship with the 

disease effects.  

Most of the differences observed in measures of cortical thickness extracted from 

no filled T1 images are also found when using filled T1 images. The investigation of 

the mechanisms underlying the decrease of cortical thickness in these regions may 

help to understand the pathophysiology of the disease. However, there were also 

surface differences that did not survive after lesion filling and others that only 

appeared after lesion filling. 

The symmetric contrast (MS > controls) did not reveal regions with significant 

differences (data not shown). 

 

 

 

 

 

 

 

 

 

 



4. Results and Discussion 

66 
 

Gyrification index results  

SBM analysis of gyrification index in no filled T1-MPRAGE and filled T1-MPRAGE 

yielded several significant clusters (p < 0.001, uncorrected). Differences were 

tested with both contrasts, controls > MS patients and MS patients > controls. 

Gyrification index maps showing these differences for both contrasts for no filled 

T1-MPRAGE and filled T1-MPRAGE are represented in Figure 4.10.  

 

Maps of differences in gyrification index obtained from no filled T1-MPRAGE images 

show decreased gyrification index in MS patients in: right and left insula, right and 

left precentral gyrus, right and left postcentral gyrus, right and left superior 

temporal gyrus, right and left cuneus, left superior occipital gyrus, right medial 

frontal gyrus, and right cingulate gyrus.  

Increased gyrification index in MS patients was found in: right and left inferior 

frontal gyrus, right and left precentral gyrus, right and left parahippocampal gyrus, 

right and left superior temporal gyrus, left inferior temporal gyrus, right subcallosal 

gyrus, right and left cuneus, left lingual gyrus, right and left cingulate gyrus, left 

rectal gyrus, left superior frontal gyrus, right paracentral lobule, right postcentral 

gyrus, right posterior cingulate, right middle frontal gyrus, and right precuneus.  

 

a b 

Controls > MS Patients  MS patients > Controls 

Figure 4.10: Results of SBM analysis of gyrification index. Results are presented at a voxel-level p-value 

< 0.001 (uncorrected). Blue and red indicates decreased (controls > MS patients) and increased 

gyrification index (MS patients > controls), respectively. a) Results of SBM analysis of gyrification 

index measures extracted from no filled T1-MPRAGE images. b) Results of SBM analysis of 

gyrification index measures extracted from filled T1-MPRAGE images. Maps are overlaid onto a 

representative inflated brain in standard space in CAT12. 
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Maps of differences in gyrification index obtained from filled T1-MPRAGE images 

show decreased gyrification index in MS patients in: right cingulate gyrus and in 

right and left insula cortex.  

Increased gyrification index was found in: right parahippocampal gyrus, right 

orbital gyrus, right superior frontal gyrus, right uncus, and right inferior temporal 

gyrus. 

 

Discussion 

Since this is an exploratory study of a less commonly explored morphometric 

measure, we opted to use a more liberal threshold, p < 0.001 (uncorrected). This 

option does not allow a strong control of false positives and reports suggestive 

rather than significant results.  

Gyrification maps showing differences between groups, in each contrast at a time, 

with the respective p-values are available as supplementary material of this 

dissertation (annex C, Figures C.5, C.6). These maps allow to inspect which regions 

are the most/less different between groups. The gyrification maps illustrated above 

are more informative in the sense that they allow to see the results of both contrasts 

in the same brain image. They allow seeing what regions have a higher/lower 

gyrification index in MS patients compared to healthy controls. However, they do 

not provide information about the p-values, and therefore does not allow to infer 

which are the most significant differences among all the differences. 

Both decreased and increased gyrification index in MS patients was observed in 

different brain regions. Nevertheless, only increases of gyrification index cases 

survived the statistical correction for multiple comparisons, p < 0.05 (FWE 

corrected). Gyrification maps with FWE correction as well brain coordinates and 

corresponding name of the regions showing differences are available in annex C, 

Figure C.7.  

Studies addressing correlations between surface measures and aging have 

suggested that increased gyrification index is linked to brain plasticity mechanisms 

to facilitate brain connectivity and functional development [48]. On the other hand, 

it is believed that MS patients have their brain connectivity altered [121]. As such, 

increased gyrification index in MS patients might be related with reflecting 

compensatory mechanisms.  
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4.3.3 Descriptive Univariate Plots Results  

Descriptive univariate plots of the regions that show the most significance 

differences between groups resulting from the previously analyses in filled T1 

images are represented in Figures 4.11, 4.12 and 4.13.  

 

 

 

 

 

 

 

 

 

 

a b 

c 

Figure 4.11: Distribution of cortical thickness values extracted from filled T1-MPRAGE images in the 

regions that contain the most significant decrease in MS patients. CNT stands for control group and 

MSC stands for MS patients’ group. Yellow represents the cortical thickness values of control group 

and green represents the cortical thickness values of MS patients’ group. a) cortical thickness of the 

right superior temporal gyrus. b) cortical thickness of the right declive (cerebellum) c) cortical 

thickness of the left middle frontal gyrus.  
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Figure 4.12: Distribution of gyrification index extracted from filled T1-MPRAGE images in regions that 

contain the most significant decrease in MS patients. CNT stands for control group and MSC stands for 

MS patients’ group. Yellow represents the gyrification index values of control group and green 

represents the gyrification index values of MS patients’ group. a) Gyrification index of the right 

cingulate gyrus. b) Gyrification index of the left insula c) Gyrification index of the right insula.  

 

a b 

c 



4. Results and Discussion 

70 
 

 

 

These results illustrate how cortical thickness and gyrification index are altered in 

MS and support the hypothesis that beyond regional volumetric differences of GM 

and WM volumes, there are surface regional differences between groups.  

 

 

 

 

 

 

 

 

Figure 4.13: Distribution of Gyrification Index extracted from filled T1-MPRAGE images in regions that 

contain the most significant increase in MS patients. CNT stands for control group and MSC stands for 

MS patients’ group. Yellow represents the gyrification index values of control group and green 

represents the gyrification index values of MS patients’ group a) Gyrification index of right 

parahippocampal gyrus. b) Gyrification index of right superior frontal gyrus. c). Gyrification index 

orbital gyrus 
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4.4 Support Vector Machine Classification Results 

 

4.4.1 MS patients vs Controls Classification  

 

Classification performance based on no filled T1-MPRAGE  

SVM classification applied to GM segments extracted from no filled T1-MPRAGE 

images correctly classified 74.58 % (sensitivity) of patients and 98.44 % 

(specificity) of controls, achieving an overall classification balanced accuracy of 

86.51 % (p ≤ 0.001). In what concerns, WM segments, SVM correctly classified 

67.80 % (sensitivity) of patients and 96.88 % (specificity) of controls achieving an 

overall classification balanced accuracy of 82.34 % (p ≤ 0.001).  

The confusion matrixes showing the true positives (TP), false negatives (FN), true 

negatives (TN) and false positives (FP) values for the classification based on GM and 

WM segments are illustrated in Figure 4.14. Plots showing the decision boundary 

and the prediction of each test example are illustrated in Figure 4.15. 

 

 

 

a b 

Figure 4.14: Confusion matrixes resulting from SVM classification of GM (a) and WM (b) segments 

extracted from no filled T1-MPRAGE images. True are the true labels of each example and predicted 

are the labels assigned by the SVM classifier. In these plots, 1 refers to MS patients’ class and 2 refers 

to controls class. With the information of the first column we calculate sensitivity and with 

information of second column we calculate specificity. 
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Classification performance based on Filled T1-MPRAGE  

SVM classification applied to GM from filled T1-MPRAGE correctly classified 71.19 

% (sensitivity) of patients and 98.44 % (specificity) of controls. The overall 

classification was performed with 84.81 % of accuracy (p ≤ 0.001). In what 

concerns WM, SVM correctly classified 69.49 % of patients and 95.31 % of controls, 

achieving an overall classification of 82.40 % (p ≤ 0.001).  

Confusion matrix showing the TP, FN, TN and FP is illustrated in Figure 4.16. 

Predictions showing boundary decision and hyperplane dimension is illustrated in 

Figure 4.17.  

 

 

 

 

 

 

 

 

Figure 4.15: Predictions resulting from SVM classification of GM (a) and WM (b) segments extracted 

from no filled T1-MPRAGE images. Crosses represent the controls and circles represent the MS 

patients. The dashed line represents the decision boundary determined by the classifier during 

the training phase. Examples falling on the positive part of the decision space (function value) are 

classified as class 1 = MS patients, while examples falling on the negative half of the decision space 

are classified as class -1 = controls. We can observe that there are examples easily classified (very 

far from the decision boundary) while other are much closer to the decision boundary and a few 

are on the wrong side, ended up misclassified. 

 

a b 
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Figure 4.17: Predictions resulting from SVM classification of GM (a) and WM (b) segments extracted 

from filled T1-MPRAGE images. Crosses represent the controls and circles represent the MS patients. 

The dashed line represents the decision boundary determined by the classifier during the training 

phase. Examples falling on the positive part of the decision space (function value) are classified as 

class 1 = MS patients, while examples falling on the negative half of the decision space are classified 

as class -1 = controls. We can observe that there are examples easily classified (very far from the 

decision boundary) while other are much closer to the decision boundary and a few are on the wrong 

side, ended up misclassified.  

a b 

Figure 4.16: Confusion matrixes resulting from SVM classification of GM (a) and WM (b) segments 

extracted from filled T1-MPRAGE images. True are the true labels of each example and predicted are 

the labels assigned by the SVM classifier. In these plots, 1 refers to MS patients’ class and 2 refers to 

controls class. With the information of the first column we calculate sensitivity and with information 

of second column we calculate specificity. 

 

a b 



4. Results and Discussion 

74 
 

Classification performance based on T2-FLAIR  

SVM classification applied to GM from T2-FLAIR correctly classified 71.43 % 

(sensitivity) of patients and 91.53 % (specificity) of controls, achieving an overall 

classification of 81.48 % (p = 0.001). In what concerns WM, SVM correctly classified 

71.40 % of patients and 96.61 % of controls, achieving an overall classification of 

84.15 % (p = 0.001).  

Confusion matrix showing the TP, FN, TN and FP is illustrated in Figure 4.18. 

Predictions showing boundary decision and hyperplane dimension is illustrated in 

Figure 4.19.  

 

 

 

 

 

 

 

 

Figure 4.18: Confusion matrixes resulting from SVM classification of GM (a) and WM (b) segments 

extracted from T2-FLAIR images. True are the true labels of each example and predicted are the labels 

assigned by the SVM classifier. In these plots, 1 refers to MS patients’ class and 2 refers to controls 

class. With the information of the first column we calculate sensitivity and with information of second 

column we calculate specificity. 

 

a b 
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The performance values of all SVM classifier models are summarized in Figure 4.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Predictions resulting from SVM classification of GM (a) and WM (b) segments extracted 

from filled T1-MPRAGE images. Crosses represent the controls and circles represent the MS patients. 

The dashed line represents the decision boundary determined by the classifier during the training 

phase. Examples falling on the positive part of the decision space (function value) are classified as 

class 1 = MS patients, while examples falling on the negative half of the decision space are classified 

as class -1 = controls. We can observe that there are examples easily classified (very far from the 

decision boundary) while other are much closer to the decision boundary and a few are on the wrong 

side, ended up misclassified.  

 

a b 
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Discussion 

Despite the three models based on GM segments present similar balanced 

accuracies, the one with the highest balanced accuracy corresponds to the model 

using no filled T1-MPRAGE images. However, no filled data contains the effects of 

lesions which can lead to an overestimation of the classification results. In what 

concerns WM, all the three models present similar values for balanced accuracy as 

well, nevertheless the highest balanced accuracy is observed in the model using T2 

images. T2 data is not lesion filled either which can bias the classification results. 

However, when compared to T1 images, T2 images can provide additional 

information crucial to discriminate groups and to produce a more efficient 

classification. In both GM and WM models, it is denoted that specificity presents 

Figure 4.20: Sensitivity, specificity, balanced accuracy and p-values of MS patients vs controls 

classification of GM and WM segments extracted from no filled T1-MPRAGE images, filled T1-

MPRAGE images and T2-FLAIR images 
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higher values compared to sensitivity. This demonstrates a greater facility of the 

SVM to classify subjects as controls.  

From the presented results, it is demonstrated a reliable detection of MS patients, 

which reveals that MVPA is a useful predictive tool that could be used as biomarker 

with potential for support of MS diagnosis. 

 

4.4.2 MS patients and controls classification weight maps  

The weight maps representing the contribution of each voxel for a classification 

procedure were overlaid onto a template brain image. Figures 4.21 and 4.22 present, 

on left panels, the slices of the brain containing the most contributing voxels of GM 

and WM classification, respectively. On the right panels of the figures the same slices 

are presented but with the statistical parametric maps of VBM analyses of GM and 

WM, respectively. Comprehensive weights maps of the whole brain for each 

classification are available in annex D, Figures D.1 and D.2 of this dissertation. In 

these weight maps, also called discriminative maps, negative weights represent the 

contribution of a feature to classify an example as a control, whereas positive 

weights represent the contribution of that particular feature (voxel) to classify the 

image as an MS patient.  
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Figure 4.21: Comparison between GM SVM classification and GM VBM results. The left panel presents 

the brain slices with the highest weights of SVM classification of GM images. In color bar scale, 

positively weighted voxels are displayed in blue/green while negatively weighted voxels are 

displayed in orange/red. The right panel presents the same slices with the results of VBM analysis 

of GM. The contrast here represented is controls > MS patients and the color scale represents t-

values. Results are presented at a voxel-level p-value < 0.05, FWE corrected. a) Weights of GM 

classification from no filled T1-MPRAGE images. b) Weights of GM classification from filled T1-

MPRAGE images. c) Weights of GM classification from T2-FLAIR images. a’) VBM analysis of GM 

extracted from no filled T1-MPRAGE images. b’) VBM analysis of GM extracted from filled T1-

MPRAGE images. c’) VBM analysis of GM extracted from T2-FLAIR images.  
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Discussion 

Weight maps from SVM classification highlighted similar regions to those found with 

VBM analysis. In GM maps, higher weights were assigned to thalamic regions. In WM 

maps, higher weights were assigned to temporal regions. These results suggest that 

differences in such regions are crucial for the discrimination between MS patients 

and control groups. 

 

 

 

Figure 4.22: Comparison between WM SVM classification and WM VBM results. The left panel presents 

the brain slices with the highest weights of SVM classification of WM images. In color bar scale, 

positively weighted voxels are displayed in blue/green while negatively weighted voxels are 

displayed in orange/red. The right panel presents the same slices with the results of VBM analysis of 

WM. The contrast here represented is controls > MS patients and the color scale represents t-values. 

Results are presented at a voxel-level p-value < 0.05, FWE corrected. a) Weights of WM classification 

from no filled T1-MPRAGE images. b) Weights of WM classification from filled T1-MPRAGE images. 

c) Weights of WM classification from T2-FLAIR images. a’) VBM analysis of WM extracted from no 

filled T1-MPRAGE images. b’) VBM analysis of WM extracted from filled T1-MPRAGE images. c’) VBM 

analysis of WM extracted from T2-FLAIR images. 
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4.4.3 MS Subtypes Classification: SPMS vs. RRMS 

 

Classification performance based on filled T1-MPRAGE  

SVM classifier applied to GM volume segments extracted from filled T1-MPRAGE 

data correctly classified 46.50 % of SPMS patients (mean sensitivity) and 67.88 % 

of RRMS patients (mean specificity). The overall mean classification balanced 

accuracy of was 57.19 %. In what concerns WM, volume segments extracted from 

filled T1-MPRAGE images, SVM correctly classified 54.25 % of SPMS and 63.75 % of 

RRMS patients. The overall mean classification balanced accuracy was 59.00 %. 

 

Classification performance based on T2-FLAIR  

SVM classifier applied to GM volume segments extracted from T2-FLAIR data 

correctly classified 44.86 % of SPMS and 56.43 % of RRMS patients, achieving an 

overall mean classification balanced accuracy of 50.64 %. In what concerns WM 

volume, SVM correctly classified 35.17 % of SPMS patients and of 57.83 % RRMS 

patients, achieving an overall mean classification balanced accuracy of 46.50 %. 

 

Validity of the performance values 

Given these low balanced accuracy values, it was important to test whether these 

classifications resulted by chance or not. To accomplish this, a one sample t-test was 

performed with the mean accuracy values for each classification against a chance 

level of 50 %. 100 repetitions of each classification model were performed, 

randomly selecting the RRMS patients to compare with SPMS patients. From each 

individual t-test resulted a p-value which indicates the probability of these results 

occur by chance. The mean p-value of each classification is listed in the Table 4.1. 

 

Table 4.1:  mean p-values of MS subtypes classification 
 Filled T1-MPRAGE T2-FLAIR 

Grey Matter 5.53e-10 0.689 

White Matter 2.61e-14 0.017 

 

Performance values of SVM discrimination between MS subtypes are summarized 

in Figure 4.23 
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Discussion 

At a first glance these are not the most optimal results, since the values of balanced 

accuracy are around 50 % - 60 %. For both GM and WM models, models using filled 

T1 images present the highest balanced accuracy. Despite the model being 

performed 100 times with different RRMS patients each time, the limited number of 

subjects of each class contributes to a less reliable classification and therefore to 

lower accuracy values. However, obtained p-values of classification using T1 images 

reveal that the probability of these results happening by chance is very low. 

Therefore, it is still possible to discriminate subjects with different MS subtypes 

based on T1 images. 

During sample homogeneity testing, T2 images of certain subjects had to be 

excluded which limited even more the number of subjects per group (7 subjects per 

group in GM model and 6 subjects per group in WM model ), which might explain 

the lower performance values obtained using T2 images. The p-value classification 

of GM extracted from T2 images indicates that the hypothesis that our classification 

results happen by chance cannot be rejected. On the other hand, the p-value of 

Figure 4.23: Sensitivity, specificity, accuracy and p-values of MS subtypes classification applied to GM 

and WM volume segments extracted from filled T1-MPRAGE images and T2-FLAIR images. 
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classification of WM extracted from T2 images indicates that the hypothesis that our 

results happen by chance, i.e. with a mean accuracy of 50 %, can be rejected. 

However, WM classification revealed a mean accuracy below 50 % which means that 

it was not possible to perform a discrimination between MS subtypes.  

Classification values were obtained through the mean of 100 classification 

models, each with a different subset of participants (RRMS). As the obtained 

discrimination was not successful, we do not show the weight map. In future work, 

when reaching a satisfactory discrimination, the discriminative map(s) shall be 

investigated in order to understand which features are behind the distinction of MS 

subtypes.  
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5 Conclusions and Future Work 
 

Assessing different structural medical MR imaging-derived biomarkers, with 

different types of analyses, in the context of MS was the focus of this dissertation. It 

was hypothesized that structural signatures might help discriminate MS patients 

from healthy controls, and furthermore help solving the challenging differentiation 

of MS subtypes, ultimately leading to an earlier diagnosis of new patients or 

progression to a clinical subtype of MS. To assess structural changes in the brain of 

MS patients, univariate and data driven multivariate statistical analyses were 

implemented.  

With univariate analyses, it was aimed to find brain regions with alterations in 

regional morphometric features (GM and WM volume, cortical thickness and 

gyrification index) in MS. On the other hand, with multivariate pattern analysis, it 

was aimed to discriminate between MS patients and controls and identify the most 

discriminative features (voxels). In addition, in the framework of multivariate 

methods, the discrimination between MS subtypes was tested. It was also aimed to 

perform a comparison between the performance of univariate and multivariate 

methods in the same dataset. 

Voxel based morphometry (VBM) and surface-based morphometry (SBM) were 

the univariate methods applied. VBM results confirmed the presence of GM and WM 

atrophy in MS patients. Since VBM is more sensible to detect changes in GM, this 

atrophy was more evident than WM atrophy in MS. To assess WM atrophy, more 

appropriate methods should be applied, for example Diffusion Tensor Imaging 

(DTI). Surface based morphometry (SBM) confirmed that in MS the cortical 

thickness is decreased and revealed alterations of the gyrification index as well. Both 

decreased and increased gyrification index was found in MS, although the increase 

of gyrification index is more prominent.  

In all analyses, clusters with between-group differences in GM/WM/cortical 

thickness/gyrification index are assigned to a brain location, which is identified by 

their anatomical correspondence with coordinates in a standard space. These allow 

a qualitative description of disease discrimination features based on 

macrostructural measures from MRI. Quantitative analysis of the statistical maps, 
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e.g. number of voxels per cluster and peak localization, is required for further 

investigation of disease pathophysiology. 

Support Vector Machine (SVM) classification was the multivariate method used 

to implement pattern recognition analysis. SVM classification of MS patients or MS 

subtypes was based on GM and WM volume features. Regarding the discrimination 

of MS patients and controls, performance values demonstrated this is a useful 

predictive tool that could be used as biomarker with potential for diagnosis. Weight 

maps of this classification revealed structural differences between groups. The most 

contributive weights revealed patterns of differences very similar to the results 

obtained with VBM analysis. Besides these, weight maps of SVM classification 

revealed additional differences between groups, demonstrating its ability to detect 

subtle differences that univariate methods cannot achieve. Such differences may 

explain effects in MS and should be further investigated, both qualitatively and 

quantitatively, to provide precise clues about the disease.  

Classification of MS subtypes, relapsing-remitting MS (RRMS) patients and 

secondary progressive MS (SPMS) patients, yielded low performance values. The 

limited number of subjects in each group probably explains these results. With a 

higher number of subjects and considering performance values of MS patients and 

controls classification, accurate discrimination of subtypes within MS should be 

possible to achieve.  

Another aim of this study was therefore to test whether these types of analysis 

using T2-weighted scans could provide information of structural alterations 

additional to more commonly used T1 data, at identical spatial resolution, as T2-

weighted MRI signal can be more sensitive to microscopic neurodegenerative 

processes. Indeed, we were able to detect morphometric differences that were not 

visible with analysis of T1 images. Furthermore, the highest accuracy of 

discrimination between MS patients and healthy controls based on WM content was 

achieved using T2 images. 

Univariate and multivariate findings were compared in the three types of images 

used. All types of images revealed very similar affected regions with univariate 

analyses, and similar performance and weight maps with SVM classification. 

However, it should be noted that the results obtained with the analysis of images 

after lesion filling are those that should be interpreted as the most reliable. Even if 
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other models yield better classification results or morphometric regional 

differences in very different areas, these should be interpreted with caution, as (at 

least part) of these can arise from artifacts due to lesions. 

Both methods have advantages and disadvantages. On the one hand, results of 

univariate analysis are derived from a priori hypothesis. An a priori hypothesis 

requires the definition of the groups and what differences between them, defined by 

contrasts, are intended to test. In univariate analysis, it was intended to find in which 

voxels individually MS patients have higher or lower values of measured 

morphometric features when compared to controls. The assessment of other 

regional variances between groups is not possible to achieve unless an indication of 

what is intended to test is given. One the other hand, results from multivariate 

analysis do not derive from an indication of what is supposed to find. Through 

pattern recognition of the relationship between given features and labels, 

differences between subjects are algorithmically found and used to discriminate 

groups. To sum things up, univariate analyses provide knowledge about what is 

being tested and about what represents the differences between groups. 

Multivariate analyses allow finding subtle differences that are not detected by other 

methods and which indeed allow discriminating groups, but with little knowledge 

of what these represent. To conclude, this data-driven analysis indicated spatially 

distributed networks of brain regions with abnormal structure in individuals with 

MS. It might provide important clues for the pathophysiology of this disorder, with 

potential benefits in the prevention and adequacy of clinical interventions.  

Notably, we applied different analysis approaches (VBM, SBM and MVPA) to 

investigate a set morphometric measures in the same dataset. This allowed for 

comparisons between the different MS biomarkers studied with both univariate and 

multivariate methods and to discuss about the most discriminative ones. Notably, 

the analysis of structural biomarkers also has the advantage of guiding scientific 

research about the pathophysiology of MS and its cause. 

Considering the results obtained in this work, future approaches should be 

considered. A multimodal imaging classification could provide a more accurate 

discrimination between groups. Since surface measures were proved to be altered 

in MS, classification based on surface features together with volumetric features 

could also be a promising approach in the field of MS diagnosis. 
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DICOM to NIfTI format: https://github.com/juufsoares/Structural-Imaging-Biomarkers-

MS/blob/master/dicomtonifti_job.m 

 

Corregistration of T1-MPRAGE images : https://github.com/juufsoares/Structural-Imaging-

Biomarkers-MS/blob/master/coregistration_job.m 

 

Mean of T1-MPRAGE images: https://github.com/juufsoares/Structural-Imaging-Biomarkers-

MS/blob/master/meanimgs_job.m 

 

Segmentation of T1-MPRAGE images: https://github.com/juufsoares/Structural-Imaging-

Biomarkers-MS/blob/master/segimgs_job.m 

 

Segmentation of T2-MPRAGE images: https://github.com/juufsoares/Structural-Imaging-

Biomarkers-MS/blob/master/Segment_Data_T2_job.m 

 

Lesion Probability Maps of T2-FLAIR images: https://github.com/juufsoares/Structural-Imaging-

Biomarkers-MS/blob/master/Lesion_Probability_Maps_job.m 

 

Lesion Filling: https://github.com/juufsoares/Structural-Imaging-Biomarkers-

MS/blob/master/Lesion_Filling_job.m 

 

Extraction of Total Lesion Volume and Number of Lesions: https://github.com/juufsoares/Structural-

Imaging-Biomarkers-MS/blob/master/Extract_Values_of_Interest_job.m 

 

Extraction of Global Measures: Total Intracranial Volume, GM, WM: 

https://github.com/juufsoares/Structural-Imaging-Biomarkers-

MS/blob/master/Estimate_TIV_GM_WM_job.m 

 

Extraction of Surface Parameters from no filled T1-MPRAGE images: 

https://github.com/juufsoares/Structural-Imaging-Biomarkers-

MS/blob/master/Extract_Additional_Surface_Parameters_job.m 

 

 

Extraction of Surface Parameters from filled T1-MPRAGE images: 

https://github.com/juufsoares/Structural-Imaging-Biomarkers-

MS/blob/master/Extract_Additional_Surface_Parameters_Filled_Images_job.m 

 

Resample and Smooth of surface parameters from no filled T1-MPRAGE images*: 

https://github.com/juufsoares/Structural-Imaging-Biomarkers-

MS/blob/master/Resample_and_Smooth_Surface_no_filled_job.m 

 

Resample and Smooth of surface parameters from filled T1-MPRAGE images: 

https://github.com/juufsoares/Structural-Imaging-Biomarkers-

MS/blob/master/Resample_and_Smooth_Surface_Data_Filled_Images_job.m 

 

Check Sample Homogeneity of VBM data: https://github.com/juufsoares/Structural-Imaging-

Biomarkers-MS/blob/master/Check_Sample_Homogeneity_VBM_Data_job.m 

 

Check Sample Homogeneity of SBM Data: https://github.com/juufsoares/Structural-Imaging-

Biomarkers-MS/blob/master/Check_Sample_Homogeneity_Surface_Data_job.m 

 

https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/dicomtonifti_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/dicomtonifti_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/coregistration_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/coregistration_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/meanimgs_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/meanimgs_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/segimgs_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/segimgs_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Segment_Data_T2_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Segment_Data_T2_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Lesion_Probability_Maps_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Lesion_Probability_Maps_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Lesion_Filling_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Lesion_Filling_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Extract_Values_of_Interest_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Extract_Values_of_Interest_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Estimate_TIV_GM_WM_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Estimate_TIV_GM_WM_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Extract_Additional_Surface_Parameters_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Extract_Additional_Surface_Parameters_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Extract_Additional_Surface_Parameters_Filled_Images_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Extract_Additional_Surface_Parameters_Filled_Images_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Resample_and_Smooth_Surface_no_filled_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Resample_and_Smooth_Surface_no_filled_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Resample_and_Smooth_Surface_Data_Filled_Images_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Resample_and_Smooth_Surface_Data_Filled_Images_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Check_Sample_Homogeneity_VBM_Data_job.m
https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Check_Sample_Homogeneity_VBM_Data_job.m
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https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Check_Sample_Homogeneity_Surface_Data_job.m
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Data and Design of GM classification from no filled T1-MPRAGE images: 

https://github.com/juufsoares/Structural-Imaging-Biomarkers-

MS/blob/master/Data_and_Design_GM_from_no_filled_T1.m 

 

Data and Design of WM classification from no filled T1-MPRAGE images: 

https://github.com/juufsoares/Structural-Imaging-Biomarkers-

MS/blob/master/Data_and_Design_WM_from_no_filled_T1.m 

 

Data and Design of GM classification from filled T1-MPRAGE images: 

https://github.com/juufsoares/Structural-Imaging-Biomarkers-

MS/blob/master/Data_and_Design_GM_from_filled_T1.m 

 

Data and Design of WM classification from filled T1-MPRAGE images: 

https://github.com/juufsoares/Structural-Imaging-Biomarkers-

MS/blob/master/Data_and_Design_WM_from_filled_T1.m 

 

Data and Design of GM classification from T2-FLAIR images: 

https://github.com/juufsoares/Structural-Imaging-Biomarkers-

MS/blob/master/Data_and_Design_GM_from_T2.m 

 

Data and Design of WM classification from T2-FLAIR images: 

https://github.com/juufsoares/Structural-Imaging-Biomarkers-

MS/blob/master/Data_and_Design_WM_from_T2.m 

 

Data and Design of subtypes classification: https://github.com/juufsoares/Structural-Imaging-

Biomarkers-MS/blob/master/Data_and_Designx100.m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Smooth of VBM Data was performed directly on SPM interface
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https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Data_and_Design_WM_from_T2.m
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https://github.com/juufsoares/Structural-Imaging-Biomarkers-MS/blob/master/Data_and_Designx100.m


 
 

97 
 

 

 

 



 
 

98 
 

 

 

 

 

 

 

 

 

B. Voxel-Based Morphometry Results 
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Sample Homogeneity Values 

 

 

 

 

 

 

 

 

 

 

 

a b 

Figure B.1: Boxplots of homogeneity of normalized and modulated GM segments from no filled T1-

MPRAGE images. a) Correlation of normalized modulated GM segments in MS patients’ group 

with sample mean. b) Correlation of normalized modulated GM segments in controls’ group with 

sample mean. Images obtained in CAT12. 
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Figure B.2: Boxplots of homogeneity of normalized and modulated WM segments from no filled 

T1-MPRAGE images. a) Correlation of normalized modulated WM segments in MS patients’ 

group with sample mean. b) Correlation of normalized modulated WM segments in controls’ 

group with sample mean. Images obtained in CAT12. 
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Figure B.3: Boxplots of homogeneity of normalized and modulated GM segments from  filled 

T1-MPRAGE images. a) Correlation of normalized modulated GM segments in MS patients’ 

group with sample mean. b) Correlation of normalized modulated GM segments in controls’ 

group with sample mean. Images obtained in CAT12. 
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Figure B.4: Boxplots of homogeneity of normalized and modulated WM segments from  filled 

T1-MPRAGE images. a) Correlation of normalized modulated WM segments in MS patients’ 

group with sample mean. b) Correlation of normalized modulated WM segments in controls’ 

group with sample mean. Images obtained in CAT12. 
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Figure B.5: Boxplots of homogeneity of normalized and modulated GM segments from  T2-

FLAIR images. a) Correlation of normalized modulated GM segments in MS patients’ 

group with sample mean. b) Correlation of normalized modulated GM segments in 

controls’ group with sample mean. Images obtained in CAT12. 
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Figure B.6: Boxplots of homogeneity of normalized and modulated WM segments from T2-

FLAIR images. a) Correlation of normalized modulated WM segments in MS patients’ group 

with sample mean. b) Correlation of normalized modulated WM segments in controls’ group 

with sample mean. Images obtained in CAT12. 
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Brain coordinates and corresponding regions 

 

 

Table B.1: Standard space coordinates and corresponding regions with clusters 
yielding differences of GM volume extracted from no filled T1-MPRAGE images 

 
Coordinates 

(MNI) 
X, Y, Z 

Coordinates 
(TAL) 
X, Y, Z 

Brain Regions 

 
Grey Matter 

 

-15, -30, 5 -14, -30, 8 Left Thalamus, Pulvinar 

17, -30, 5 16, -30, 8 Right Thalamus, Pulvinar 

24, -6, -3 23, -8, 1 
Right Lentiform Nucleus, Lateral Globus 
Pallidus 

-21, -3, -2 -20, -5, 1 
Left Lentiform Nucleus, Lateral Globus 
Pallidus 

2, -11, 48 2, -8, 44 Right Cingulate Gyrus 

-2, -15, 56 -1, -12, 51 Left Medial Frontal Gyrus, 

-12, -57, -3 -11, -56, 1 Left Lingual Gyrus, Brodmann area 19 

35, 24, 42 35, 26, 40 
Right Middle Frontal Gyrus, Brodmann 
area 8 

38, 30, 32 37, 31, 31 
Right Middle Frontal Gyrus, Brodmann 
area 9 

6, 35, -24 5, 30, -22 Right Rectal Gyrus, Brodmann area 11 

38, -38, -24 36, -39, -16 Right Fusiform Gyrus, Brodmann area 20 

 

 

Table B.2: Standard space coordinates and corresponding regions with clusters 
yielding differences of GM volume extracted from filled T1-MPRAGE images 

 

Table B.3: Standard space coordinates and corresponding regions with clusters 

yielding differences of GM volume extracted from T2-FLAIR images 

 
 
 

Coordinates 
(MNI) 
X, Y, Z 

Coordinates 
(TAL) 
X, Y, Z 

Brain Regions 

 
 

Grey Matter 
 

Coordinates 
(MNI) 
X, Y, Z  

Coordinates 
(TAL) 
X, Y, Z 

Brain Regions 

-18,-30, 8 -17, -30, 10 Left Thalamus, Pulvinar 

20, -29, 5 19, -29, 8 Right Thalamus, Pulvinar 

5, -8, 2 4, -9, 5 Right Cerebrum, Thalamus 

-8, -69, -9 -7, -67, -3 Left Cerebellum, Anterior Lobe, Culmen 

-15, -51, -5 -14, -51, 0 Left Lingual Gyrus 

29, -6, -8 28, -8, -3 Right Lentiform Nucleus, Putamen 

14, -47, -11 14, -47, -5 Right Cerebellum, Anterior Lobe, Culmen, 
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Grey Matter 
 

9, -26, 11 9, -26, 13 Right Thalamus, Pulvinar 

-11, -27, 12 -11, -27, 14 Right Thalamus, Pulvinar 

11, 11, 11 10, 9, 12 Right Caudate, Caudate Body 

-9, 71, -3 -9, 65, -4 
Left, Medial Frontal Gyrus, Brodmann area 
10 

-6, 66, -14 -6, 60, -15 
Left Medial Frontal Gyrus, Brodmann area 
11 

8, 69, -8 7, 63, -9 
Right, Superior Frontal Gyrus, Brodmann 
area 10 

0, -21, 48 0, -18, 44 Left Paracentral Lobule 

29, 32, 51 29, 35, 47 
Right Middle Frontal Gyrus, Brodmann 
area 8 

54, 0, -41 52, -5, -32 
Right Inferior Temporal Gyrus Brodmann 
area 20 

14, 62, 32 13, 60, 28 
Right Superior Frontal Gyrus, Brodmann 
area 9 

42, -75, -21 43, -75, -13 Right Fusiform Gyrus, Brodmann area 19 

-2, 63, -17 -2, 56, -18 
Left, Medial Frontal Gyrus, Brodmann area 
11 

12, 59, 36 11, 58, 32 
Right Superior Frontal Gyrus, Brodmann 
area 9 

 

Table B.4: Standard space coordinates and corresponding regions with clusters 
yielding differences of WM volume extracted from no filled T1-MPRAGE images 

 
 
 
 
 
 

 
 

 
White Matter 

 

Coordinates 
(MNI) 
X, Y, Z 

Coordinates 
(TAL) 
X, Y, Z 

Brain Regions 

-29, -29, -8 -27, -30, -3 
Left Parahippocampal Gyrus, White 
Matter 

30, -53, 20 30, -51, 21 
Right Cerebrum, Temporal Lobe, Sub-
Gyral, White Matter 

29, -27, -6 28, -28, 0 
Right Cerebrum, Sub-lobar, Extra-
Nuclear, White Matter 

-9, -36, -39 -8, -37, -29 Left Brainstem, Pons 

32, -21, -21 30, -23, -14 Right Parahippocampal Gyrus 

-14, 38, -12 -14, 33, -11 
Left Cerebrum, Frontal Lobe, Sub-Gyral, 
White Matter 

11, -3, -15 10, -5, -9 
Right Cerebrum, Sub-lobar, Extra-
Nuclear, White Matter 

5, -27, -21 4, -28, -14 Right Brainstem, Midbrain 

-27, -3, -12 -26, -5, -7 
Left Cerebrum, Sub-lobar, Extra-Nuclear, 
White Matter 

 

Table B.5: Standard space coordinates and corresponding regions with clusters 
yielding differences of WM volume extracted from filled T1-MPRAGE images 

 
 

White Matter 
 

Coordinates 
(MNI) 
X, Y, Z 

Coordinates 
(TAL) 
X, Y, Z 

Brain Regions 

23, -24, 30 23, -23, 29 
Right Cerebrum, Frontal Lobe, 
Sub-Gyral, White Matter 
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26, -36, 23 26, -35, 23 
Right Cerebrum, Sub-lobar, Extra-
Nuclear 

33, -9, 26 32, -9, 26 
Right Cerebrum, Frontal Lobe, 
Sub-Gyral 

-29, -27, -9 -27, -28, -3 Left Hippocampus 

-44, -33, -8 -41, -34, -2 Left Hippocampus 

-39, -33, 2 -37, -33, 5 Left Hippocampus 

-26, -26, 32 -25, -25, 31 
Left Cerebrum, Frontal Lobe, Sub-
Gyral 

-24, -44, 29 -23, -42, 28 
Left Cerebrum, Frontal Lobe, Sub-
Gyral 

-36, -11, 27 -35, -11, 26 Left Precentral Gyrus 

27, -26, -8 26, -27, -2 
Right Cerebrum, Sub-lobar, Extra-
Nuclear 

21, -75, 11 21, -72, 13 Right Cuneus 

14, -41, 8 14, -40, 11 
Right Cerebrum, Sub-lobar, Extra-
Nuclear, Corpus Callosum 

-14, -42, 6 13, -41, 9 
Right Cerebrum, Sub-lobar, Extra-
Nuclear, Corpus Callosum 

-20, -9, 35 -19, -8, 33 
Left Cerebrum, Frontal Lobe, Sub-
Gyral 

-27, -57, 18 -26, -55, 19 
Left Cerebrum, Temporal Lobe, 
Sub-Gyral 

 

Table B.6: Standard space coordinates and corresponding regions with clusters 
yielding differences of WM volume extracted from T2-FLAIR images 
 
 
 

White Matter 
 

Coordinates 
(MNI) 

Coordinates 
(TAL) 

Regions 

27, -50, 15 25, -48, 17 Right Cerebrum, Temporal Lobe, Sub-Gyral 

30, -42, 17 29, -41, 18 Right Cerebrum, Sub-lobar, Extra-Nuclear 

-14, -5, -15 13, -7, -9 Right Brainstem, Midbrain 
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C. Surface-Based Morphometry 

Results 
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Sample Homogeneity Values 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1: Boxplots of homogeneity of smoothed cortical thickness extracted from no filled T1-

MPRAGE images. a) Correlation of smoothed cortical thickness in MS patients’ group with 

sample mean. b) Correlation of smoothed cortical thickness in controls’ group with sample 

mean. Images obtained in CAT12. 
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a b 

Figure C.2: Boxplots of homogeneity of smoothed gyrification index extracted from no filled 

T1-MPRAGE images. a) Correlation of smoothed gyrification index in MS patients’ group 

with sample mean. b) Correlation of smoothed gyrification index in controls’ group with 

sample mean. Images obtained in CAT12. 
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Figure C.3: Boxplots of homogeneity of smoothed cortical thickness extracted from filled T1-

MPRAGE images. a) Correlation of smoothed cortical thickness in MS patients’ group with 

sample mean. b) Correlation of smoothed cortical thickness in controls’ group with sample 

mean. Images obtained in CAT12. 
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a b 

Figure C.4: Boxplots of homogeneity of smoothed gyrification index extracted from  filled T1-

MPRAGE images. a) Correlation of smoothed gyrification index in MS patients’ group with 

sample mean. b) Correlation of smoothed gyrification index in controls’ group with sample 

mean. Images obtained in CAT12. 
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Brain Coordinates and Corresponding Regions 

 

Table C.1: Standard space coordinates and corresponding regions with clusters 
yielding differences of cortical thickness extracted from no filled T1-MPRAGE 

images 

 
 
 
 
 

Cortical Thickness 
 
 
 
 
 

Coordinates 
(MNI) 
X, Y, Z 

Coordinates 
(TAL) 
X, Y, Z 

Brain Regions 

60, -34, 4 57, -34, 8 Right Superior Temporal Gyrus 

49, -30, 27 48, -28, 27 Right Inferior Parietal Lobule 

50, -41, -2 48, -41, 3 
Right Cerebrum, Temporal Lobe, 
Sub-Gyral 

61, -35, -6 58, -36, 0 Right Middle Temporal Gyrus 

39, 12, -3 37, 8, 1 Right Cerebrum, Sub-lobar, Insula 

44, 18, -26 42, 12, -18 
Right Superior Temporal Gyrus, 
Brodmann area 38 

-26, -11, -27 -25, -13, -19 Left Parahippocampal Gyrus 

-21, -5, -33 -21, -8, -25 Left Parahippocampal Gyrus 

-46, -18, 35 -45, -17, 33 Left Postcentral Gyrus 

-42, 3, -23 -41, -1, -17 Left Temporal Lobe, Sub-Gyral 

-46, -18, 35 -45, -17, 33 
Left Frontal Lobe, Postcentral 
Gyrus 

-36, -21, 43 -35, -19, 40 Left Frontal Lobe, Sub-Gyral 

-27, -29, 53 -27, -26, 49 
Left Precentral Gyrus, Brodmann 
area 4 

16, -60, 3 16, -59, 7 Right Posterior Cingulate 

31, -52, -18 30, -52, -11 
Right Cerebellum, Posterior Lobe, 
Declive 

34, -74, 41 35, -70, 38 Right Precuneus 

-10, -65, 3 10, -63, 7 Right Cuneus 

-15, -42, 59 -15, -38, 53 
Left Paracentral Lobule, Brodmann 
area 3 

-21, -47, 63 -21, -43, 57 Left Parietal Lobe, Sub-Gyral 

-32, 24, 44 -31, 25, 41 
Left Middle Frontal Gyrus, 
Brodmann area 8 

28, -13, 53 28, -9, 49 
Right Precentral Gyrus, Brodmann 
area 6 

23, -2, 50 23, 0, 46 
Right Cerebrum, Frontal Lobe, 
Sub-Gyral 

28, 35, 32 27, 35, 30 Right Superior Frontal Gyrus 

4, -81, 26 4, -77, 25 Right Cuneus, Brodmann area 18 

18, -98, 15 18, -94, 17 Right Middle Occipital Gyrus 

19, -69, 32 19, -66, 30 Right Precuneus 

-55, -17, -17 -51, -19, -11 Left Middle Temporal Gyrus 
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-47, -29, 51 -47, -26, 47 
Left Postcentral Gyrus, Brodmann 
area 2 

28, 35, 32 27, 35, 30 Right Superior Frontal Gyrus 

29, 21, 46 29, 23, 43 
Right Middle Frontal Gyrus, 
Brodmann area 8 

 45, -28, 50 45, -25, 46 Right Postcentral Gyrus, 
Brodmann area 2 

52, -37, 48 52, -34, 45 
Right Inferior Parietal Lobule, 
White Matter 

15, -44, 57 16, -40, 51 
Right Paracentral Lobule, 
Brodmann area 7 

11, -33, 49 11, -30, 45 Right Frontal Lobe, Sub-Gyral 

-47, -35, 38 -46, -33, 36 
Left Inferior Parietal Lobule, 
Brodmann area 40 

-41, -24, 3 -39, -25, 6 Left Superior Temporal Gyrus 

-39, -7, 2 -37, -8, 5 Left Insula 

 

Table C.2: Standard space coordinates and corresponding regions with clusters 
yielding differences of cortical thickness extracted from filled T1-MPRAGE images 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Cortical Thickness 

Coordinates 
(MNI) 
X, Y, Z 

Coordinates 
(TAL) 
X, Y, Z 

Brain Regions 

57,-34,4 55, -34, 8 Right Superior Temporal Gyrus 

31, -52, -18 30, -52, -11 
Right Cerebellum Posterior 
Lobe, Declive 

-56, -19, -15 -52, -21, -9 Left Middle Temporal Gyrus 

-29, 32, 39 -28, 32, 36 
Left Middle Frontal Gyrus, 
Brodmann area 9 

-31, 25, 42 -30, 26, 39 
Left Middle Frontal Gyrus, 
Brodmann area 8 

48, -30, 26 47, -29, 26 Right Inferior Parietal Lobule 

44, 18, -26 42, 12, -18 
Right Superior Temporal Gyrus, 
Brodmann area 38 

8, -59, 2 8, -58, 6 Right Posterior Cingulate 

-35, -22, 43 -34, -20, 40 Left Frontal Lobe, Sub-Gyral 

48, -41, 1 46, -41, 3 Right Temporal Lobe, Sub-Gyral 

-43, -19, 34 -42, -18, 32 Left Postcentral Gyrus 

-21, -32, 57 -21, -29, 52 Left Postcentral Gyrus 

-1, -19, 28 0, -18, 27 Left Cingulate Gyrus 

-10, -57, 0 -9, -56, 4 
Left Lingual Gyrus, Brodmann 
area 18 

23, 0, 50 23, 2, 46 Right Superior Frontal Gyrus 

-16, -42, 58 -16, -39, 53 Left Paracentral Lobule 

-46, 7, -19 -44, 2, -13 Left Superior Temporal Gyrus 

-43, -33, 50 -43, -30, 46 
Left Inferior Parietal Lobule, 
Brodmann area 40 

15, -44, 57 16, -40, 51 
Right Paracentral Lobule, 
Brodmann area 7 
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Table C.3: Standard space coordinates and corresponding regions with clusters 
yielding differences of decreased (controls > MS patients) gyrification index 

extracted from no filled T1-MPRAGE images 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Decreased 

Gyrification 
index 

Coordinates 
(MNI) 
X, Y, Z 

Coordinates 
(TAL) 
X, Y, Z 

Brain Regions 

-46, -14, -8 -43, -16, -3 Left Insula 

48, -15, 36 47, -13, 35 Right Precentral Gyrus 

45, -17, 5 42, -18, 0 Right Insula, Brodmann area 13 

-34, 2, 9 -33, 0, 10 Left Insula 

-32, -26, 14 -31, -26, 15 Left Insula, Brodmann area 13 

41, -24, 53 41, -20, 49 
Right Postcentral Gyrus, Brodmann area 
3 

-49, -18, 38 -48, -17, 36 Left Precentral Gyrus 

38, -20, 59 39, -16, 54 
Right Precentral Gyrus, Brodmann area 
4 

-9, -29, 74 -9, -24, 66 Left Precentral Gyrus 

-20, 0, 58 -20, 3, 53 
Left Frontal Lobe, Sub-Gyral, Brodmann 
area 6 

-51, -34, 9 -48, -34, 11 Left Superior Temporal Gyrus 

54, -5, 33 52, -4, 32 Right Precentral Gyrus 

-36, -22, 63 -36, -18, 57 Left Precentral Gyrus 

14, -66, 4 14, -64, 7 Right Cuneus 

6, -78, 4 6, -75, 7 Right Cuneus 

57, -36, 5 55, -36, 9 Right Superior Temporal Gyrus 

13, -25, 71 13, -20, 64 Right Precentral Gyrus 

-32, -79, 26 -32, -76, 26 Left Superior Occipital Gyrus 

-12, -70, 3 -12, -68, 6 Left Cuneus 

2, -31, 69 2, -27, 62 Right Medial Frontal Gyrus 

18, -43, 69 19, -38, 62 Right Postcentral Gyrus 

3, -23, 27 3, -22, 26 
Right Cingulate Gyrus, Brodmann area 
23 

-47, -29, 49 -47, -26, 45 Left Postcentral Gyrus, Brodmann area 2 

14, -37, 41 14, -34, 38 Right Cingulate Gyrus 

45, -36, 17 44, -35, 18 Right Insula, Brodmann area 13 

 

Table C.4: Standard space coordinates and corresponding regions with clusters 
yielding increased (MS patients > controls) gyrification index extracted from no 

filled T1-MPRAGE images 
 
 
 

Coordinates 
(MNI) 
X, Y, Z 

Coordinates 
(TAL) 
X, Y, Z 

Brain Regions 
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Increased 
Gyrification 

index 
 
 

24, 34, -12 23, 29, -9 
Right Inferior Frontal Gyrus, Brodmann 
area 47 

-34, -19, 40 -33, -17, 37 Left Precentral Gyrus 

-27, -26, 51 -27, -23, 47 Left Precentral Gyrus 

34, -18, 41 34, -16, 39 Right Precentral Gyrus 

-24, 36, -12 -24, 31, -9 Left Inferior Frontal Gyrus 

35, -46, -10 34, -46, -4 
Right Parahippocampal Gyrus, Brodmann 
area 19 

37, -24, -25 35, -26, -17 Right Parahippocampal Gyrus 

65, -33, 15 62, -32, 17 Right Superior Temporal Gyrus 

30, 8, -41 29, 2, -32 Right Temporal Lobe, Sub-Gyral 

30, -4, -35 29, -7, -26 Right Parahippocampal Gyrus 

39, 18, -36 37, 11, -28 Right Superior Temporal Gyrus 

-31, 1, -43 -31, -3, -35 Left Inferior Temporal Gyrus 

-25, -13, -27 -24, -15, -19 Left Parahippocampal Gyrus 

10, 45, -22 9, 39, -22 Right Frontal Lobe, Sub-Gyral 

12, 13, -16 11, 9, -11 Right Frontal Lobe, Subcallosal Gyrus 

-23, -71, 6 -22, -69, 9 Left Occipital Lobe, Cuneus 

-6, -77, -2 -5, -75, 2 Left Lingual Gyrus, Brodmann area 18 

45, -30, -4 43, -31, 1 Right Temporal Lobe, Sub-Gyral 

11, -7, 45 11, -5, 41 Right Cingulate Gyrus 

11, -93, 13 11, -86, 16 Right Cuneus 

-6, 41, -24 -6, 35, -23 Left Rectal Gyrus 

-5, 61, -18 -5, 54, -19 
Left Superior Frontal Gyrus, Brodmann 
area 11 

-29, 28, 5 -28, 25, 6 Left Frontal Lobe, Sub-Gyral 

-62, -51, 18 -60, -50, 20 Left Superior Temporal Gyrus 

6, -37, 75 6, -32, 67 Right Paracentral Lobule 

19, -45, -4 19, -45, 1 Right Parahippocampal Gyrus 

-48, -38, -2 -45, -38, 2 Left Temporal Lobe, Sub-Gyral 

60, -9, 20 57, -9, 21 Right Parietal Lobe, Postcentral Gyrus 

7, -43, 24 7, -41, 24 Right Posterior Cingulate 

24, 59, -8 23, 54, -8 
Right Middle Frontal Gyrus, Brodmann 
area 10 

-13, -16, 42 -12, -14, 39 Left Cingulate Gyrus, Brodmann area 24 

 -11, -5, 43 -10, -3, 40 Left Cingulate Gyrus 

20, -75, 45 21, -71, 41 Right Precuneus 

-35, -25, -24 -33, -26, -17 Left Parahippocampal Gyrus 

-34, -45, -10 -32, -45, -4 
Left Parahippocampal Gyrus, Brodmann 
area 19 

63, -6, 0 59, -8, 4 Right Superior Temporal Gyrus 

-12, -1, 70 -12, 3, 63 Left Superior Frontal Gyrus 

47, -1, 47 46, 1, 45 Right Precentral Gyrus 

-59, -9, 18 -56, -10, 19 Left Postcentral Gyrus 
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-10, 9, -17 -10, 5, -12 Left Frontal Lobe, Subcallosal Gyrus 

 -6, -40, 74 -5, -35, 66 Left Paracentral Lobule, Brodmann area 4 

-54, -20, -28 -51, -22, -21 Left Inferior Temporal Gyrus 

11, 29, 57 11, 32, 52 Right Superior Frontal Gyrus 

34, 8, 29 33, 8, 28 Right Frontal Lobe, Sub-Gyral 

14, -90, -8 14, -88, -2 Right Lingual Gyrus 

33, 19, 11 31, 17, 13 Right Insula, 

32, -64, 45 33, -60, 41 Right Inferior Parietal lobule 

-38, 22, 22 -37, 21, 22 Left Frontal Lobe, Sub-Gyral 

17, -63, 63 18, -59, 56 Right Precuneus, Brodmann area 7 

45, -46, 15 44, -45, 17 Right Superior Temporal Gyrus 

21, -27, 54 21, -23, 49 Right Precentral Gyrus 

-35, 55, -7 -35, 51, -5 Left Middle Frontal Gyrus 

22, -61, 22 22, -59, 22 Right Precuneus 

 

Table C.5: Standard space coordinates and corresponding regions with clusters 
yielding decreased (controls > MS patients) gyrification index extracted from filled 

T1-MPRAGE images 

 

Table C.6: Standard space coordinates and corresponding regions with clusters 
yielding increased (MS patients > controls) gyrification index extracted from filled 

T1-MPRAGE images 

 
 
 
 
 
 
 
 

Increased Gyrification 
index 

Coordinates 
(MNI) 
X, Y, Z 

Coordinates 
(TAL) 
X, Y, Z 

Brain Regions 

23,-3,-34 22, -6, -26 
Right Parahippocampal Gyrus, 
Brodmann area 35 

38, 15, -39 37, 8, -30 Right Superior Temporal Gyrus 

29, -12, -33 28, -15, -24 
Right Parahippocampal Gyrus, 
Brodmann area 35 

14, 33, -27 13, 27, -24 
Right Orbital Gyrus, Brodmann area 
47 

5, 36, -26 4, 30, -24 
Right Rectal Gyrus, Brodmann area 
11 

33, -43, -14 32, -44, -7 
Right, Parahippocampal Gyrus, 
Brodmann area 37 

7,33,56 7, 36, 50 Right Superior Frontal Gyrus 

-22, -1, -34 -22, -4, -26 Left Uncus 

 
 
 

Decreased Gyrification 
index 

Coordinates 
(MNI) 
X, Y, Z 

Coordinates 
(TAL) 
X, Y, Z 

Brain Regions 

2, -13, 29 2, -12, 28 Right Cingulate Gyrus 

-35, -10, 11 -33, -11, 12 Left Insula 

38, -18, 10 36, -18, 12 Right Insula 
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41, -24, -23 39, -26, -15 
Right Parahippocampal Gyrus, 
Brodmann area 36 

 52, -18, -37 49, -21, -28 
Right Inferior Temporal Gyrus, 
Brodmann area 20 

 
Table C.7: Standard space coordinates and corresponding regions with clusters 

yielding increased (MS patients > controls) gyrification index in filled T1-MPRAGE 
images, corrected for multiple comparisons (p<0.05, FWE corrected). 
 
 
 
 
 
 
 
 
 
 
 
 

 
Increased 

Gyrification 
index 

 

Coordinates 
(MNI) 
X, Y, Z 

Coordinates 
TAL 

X, Y, Z  
Brain Regions 

24, 34, -12 23, 29, -9 
Right Inferior Frontal Gyrus, Brodmann 
area 47 

-34, -19, 40 -33, -17, 37 Left Frontal Lobe, Sub-Gyral 

34, -18, 41 34, -16, 39 Right Frontal Lobe, Sub-Gyral 

-24, 36, -12 -24, 31, -9 Left Inferior Frontal Gyrus 

35, -46, -10 34, -46, -4 
Right Parahippocampal Gyrus, Brodmann 
area 19 

65, -33, 15 62, -32, 17 Right Superior Temporal Gyrus 

30, 8, -41 29, 2, -32 Right Temporal Lobe, Sub-Gyral 

30, -4, -35 29, -7, -26 Right Parahippocampal Gyrus 

39, 18, -36 37, 11, -28 Right Superior Temporal Gyrus 

-31, 1, -43 -31, -3, -35 Left Inferior Temporal Gyrus 

10, 45, -22 10, 45, -22 Right Frontal Lobe, Sub-Gyral 

-25, -13, -27 -24, -15, -19 Left Parahippocampal Gyrus 

-23, -71, 6 -22, -69, 9 Left Cuneus 

-6, -77, -2 -5, -75, 2 Left Lingual Gyrus, Brodmann area 18 

45, -30, -4 43, -30, 7 
Right Superior Temporal Gyrus Brodmann 
area 41 

11, -7, 45 11, -5, 41 Right Cingulate Gyrus 

11, -93, 15 11, -89, 16 
Right Middle Occipital Gyrus, Brodmann 
area 18 

24, -8, -29 23, -11, -21 Right Parahippocampal Gyrus 

54, -17, -28 51, -20, -20 Right Inferior Temporal Gyrus 

 

Table C.8: Standard space coordinates and corresponding regions with clusters 
yielding increased (MS patients > controls) gyrification index extracted from filled 
T1-MPRAGE images, corrected for multiple comparisons (p<0.05, FWE corrected). 
 

 

 

 Coordinates 
(MNI) 
X, Y, Z 

Coordinates 
(TAL) 
X, Y, Z 

Brain Regions 

Increased Gyrification 23, -3, -34 22, -6, -26 
Right Parahippocampal Gyrus, 
Brodmann area 35 
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Gyrification Maps 

 

 

 

 

 

 

 

 

 

a b 

Figure C.5: Results of SBM analysis of decreased (controls > MS patients) gyrification index in MS, 

extracted from no filled T1-MPRAGE images (a) and from filled T1-MPRAGE images (b). Results are 

presented at a voxel-level p-value < 0.001 (uncorrected). Color bar scale represents log p-values. 

Images obtained in CAT12.  

 

 
 

Figure C.6: Results of SBM analysis of increased (MS patients > controls) gyrification index in MS, 

extracted from no filled T1-MPRAGE images (a) and from filled T1-MPRAGE images (b) Results are 

presented at a voxel-level p-value < 0.001 (uncorrected). Color bar scale represents log p-values. 

Images obtained in CAT12. 

a b 
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a b 

Figure C.7: Results of SBM analysis of increased (MS patients > controls) gyrification index in MS, 

extracted from no filled T1-MPRAGE images (a) and from filled T1-MPRAGE images (b) Results are 

presented at a voxel-level p-value < 0.005 (FWE corrected). Color bar scale represents log p-values. 

Images obtained in CAT12. 
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Classification Results 
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Weights maps 
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a b c 

Figure D.1: Whole-brain representation of the discriminative map obtained from SVM classification of 

GM volume. In color bar scale, positively weighted voxels are displayed in blue/green and negatively 

weighted voxels are displayed in red/orange. a) Weight maps obtained with classification of GM 

segments extracted from no filled T1-MPRAGE images. b) Weight maps obtained with classification 

of GM segments extracted from filled T1-MPRAGE images. c) Weight maps obtained with 

classification of GM segments extracted from T2-FLAIR images. 
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-0.01  -0.005  0  0.005  0.01 

Figure D.2: Whole-brain representation of the discriminative map obtained from SVM classification of 

WM volume. In color bar scale, positively weighted voxels are displayed in blue/green and negatively 

weighted voxels are displayed in red/orange. a) Weight maps obtained with classification of WM 

segments extracted from no filled T1-MPRAGE images. b) Weight maps obtained with classification 

of WM segments extracted from filled T1-MPRAGE images. c) Weight maps obtained with 

classification of WM segments extracted from T2-FLAIR images. 

 


