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Abstract

Software testing is an activity aimed at the identification and
later correction of faults capable of reducing the software qual-
ity. This activity is essential because the occurrence of mistakes
is inevitable and although some of these mistakes are not rel-
evant, others can be expensive and dangerous. Due to this,
it is important to test everything that is produced. However,
even the best software testing techniques may fail to detect
some faults and in many cases these faults result in security
vulnerabilities.

This dissertation aims at developing an approach to find
the bugs that are prone to create security vulnerabilities and
that are usually invisible to the strategies commonly used. In
the first phase, the types of mistakes more frequently associ-
ated with security vulnerabilities were analyzed. This analysis
allows us to realize a representative fault injection to calculate
the detection rate of the commonly used testing techniques in
order to understand their effectiveness and the type of faults
that are more difficult to detect... develop a methodology more
focused on these faults. The developed tool is capable of creat-
ing test cases based on the constants present in the code. On
the other hand, it is also capable of detecting extraneous faults,
which are often invisible to the commonly used testing tech-
niques. Afterwards, to verify the feasibility of the developed
tool, it was performed a representative vulnerability injection
in order to compare the detection rate of the testing techniques
studied in comparison with the developed approaches.

Keywords

Testing, Software faults, Fault injection, Security vulnerabili-
ties, Security
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Resumo

Software testing é uma atividade que tem como finalidade a
identificação e posterior correção de falhas que podem diminuir
a qualidade do software. Esta atividade é considerada indis-
pensável porque todos cometemos enganos e, apesar de algu-
mas falhas não serem importantes, outras podem ser caras e
perigosas. Por esse motivo, é necessário verificar tudo o que é
produzido. No entanto, mesmo as melhores técnicas de testes
de software deixam falhas por detetar e, em muitos casos, essas
falhas são responsáveis por criar vulnerabilidades de segurança.

Esta dissertação tem como objetivo desenvolver uma meto-
dologia para a deteção de bugs propensos a criar vulnerabil-
idades de segurança e que são normalmente inviśıveis para
as técnicas de teste geralmente usadas. Numa primeira fase,
foi feita uma análise aos defeitos mais frequentemente associa-
dos a vulnerabilidades de segurança. Esta análise permitiu-nos
perceber que tipo de falhas as técnicas de teste falham em de-
tetar e assim desenvolver uma metodologia mais focada neste
tipo de falhas. A ferramenta desenvolvida é capaz de criar ca-
sos de teste com base nas constantes presentes no código. Por
outro lado, também é capaz de detetar código superfluo, que
muitas vezes é inviśıvel às técnicas de teste habitualmente uti-
lizadas. Posteriormente, de modo a verificar a viabilidade da
ferramenta desenvolvida, foi realizada uma injeção de vulnera-
bilidades representativas de forma a avaliar a deteção de falhas
pelas metodologias de teste estudadas em comparação com as
abordagens desenvolvidas.

Palavras-chave

Testes, Falhas de software, Injeção de falhas, Vulnerabilidades
de segurança, Segurança
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Chapter 1

Introduction

Software quality is increasingly becoming essential to all business. Although many factors
can affect the quality of the software, for example a careful design or a good architecture,
testing is still the primary method used by the industry to evaluate developed software.
The concept of software testing can be separated in validation and verification. Validation
is the process of evaluating software at the end of the software development process to
ensure compliance with the intended usage expressed by the software specification. It
normally depends on the knowledge of the application for which the software is written.
For example, validation of software for an airplane requires knowledge from aerospace
engineers and pilots. Verification is the process of determining if the product fulfills the
requirements established in the previous phases. It is usually a more technical activity and
requires knowledge about the individual software artifacts, requirements and specifications
[14].

Even the most advanced testing techniques may fail. The software is complex and
humans are prone to make mistakes, so vulnerabilities tend to occur [15]. As the number
of software systems increases, so do the number of vulnerabilities; and considering that
most systems are exposed through the internet to multiple users, someone may try to
exploit the vulnerabilities to warm the system. New software vulnerabilities are discovered
on an almost daily basis and have caused severe damage to organizations [16]. Thus, it is
crucial to be able to detect and correct them as early as possible.

The main objective on this dissertation is to develop a methodology that complements
the commonly testing techniques on the detection of security vulnerabilities in software
written in C programming language. We decided to focus in C as it is widely used for
developing system software and system bugs can be more dangerous than application bugs.
For example, a vulnerability in OpenSSH can be exploited by an attacker to remotely
obtain access to the system and execute unauthorized actions, exposing information from
end-users and organizations. Also, according to the TIOBE Index [17], this language has
consistently been at the top of popularity for almost 20 years, so it is still a vastly used
programming language.

1



Software verification aimed at security vulnerabilities

1.1 Motivation

It is well known that, nowadays, software is present in almost everything. It is also
known that software possesses a high probability of containing bugs. Some of them do not
change the software functionalities but they can be exploited by an attacker to perform
unauthorized actions. Apart from the information that can be stolen, there are high
costs associated with these attacks. It is projected that “by 2021 the costs related with
cybercrime hit $6 trillion annually” [18].

One of the most famous exploits was the Heartbleed Bug [19]. This security vulner-
ability allowed intruders to read the memory of the systems protected by the vulnerable
versions of the OpenSSL. This bug provided the attackers with the opportunity to eaves-
drop on communications, steal data directly from services and users and to impersonate
them. The problem was that due to a missing bound check on the heartbeat request mes-
sages the attacker could request more data than authorized. However, if a deeper analysis
to the fault itself is done, it is possible to observe that this vulnerability could be fixed by
ignoring the heartbeat request messages that ask for more data than their payload need.
In other words, with the addition of some if-statements to prevent the buffer over-read,
this vulnerability was removed.

Another famous exploits was the Virtualized Environment Neglected Operations Ma-
nipulation, also known as VENON [20]. This vulnerability was present in the virtual
floppy drive code used by many computer virtualization platforms. It allowed an attacker
to escape from the boundaries of an affected virtual machine. This Virtual machine (VM)
escape could give access to the host system and all other VMs running potentially im-
pacting thousands of organizations and millions of end users. However, taking a closer
look at the changes made to correct this vulnerability, it is possible to see that it was only
necessary a single operation on a variable’s value. The vulnerability exploited the memory
access that could get out of bounds leading to a memory corruption. So making sure that
the index is always bounded, in this case through the use of the modulo operation, the
vulnerability was removed.

The Dirty Cow [21] was a security vulnerability on Linux kernel that affected all
Linux-based operating systems including Android. The bug exploited a race condition in
the implementation of the copy-on-write mechanism in the kernel memory-management.
With the right timing, an unprivileged local user could use this flaw to gain write access
to otherwise read-only memory mappings. Although it is a local privilege escalation, it
can be used in conjunction with other exploits allowing remote root access on a computer.
Moreover, another important fact regarding this vulnerability is that the attack does not
leave traces in the system log. Looking at the bug-fix patch, there is the possibility to
realize that it only requires small code changes to correct this security vulnerability. The
vulnerability is reduced to a wrong logical expression used in a branch condition and a
wrong logical expression used in an assignment. These small changes can be detected and
corrected preventing this vulnerability.

It is observed that the commonly used testing techniques may be failing in some cases.
These cases that escape and can lead to serious security breach are the cases that the
present thesis proposes to deal with.

2



Introduction

1.2 Background

The present dissertation aims to complement the existing software testing strategies in
order to detect more vulnerabilities. To this end a study of the situations in which a bug
creates a security vulnerability was made.

This dissertation starts by applying and evaluating the existing software testing strate-
gies in the state of the art. With each of these strategies, a test suite for each selected
program is produced. A test suite can be defined as a collection of test cases. On the
other hand, a test case is defined as an input and an expected result used to exercise the
program. Our objective is to measure the effectiveness of these test suites in identifying
security vulnerabilities. Based on these results, the next step is to complement the strate-
gies in order to obtain better test suites, capable of detecting more security vulnerabilities.
Ntafos [22] conducted a study which compared the effectiveness of three testing techniques
(random, control-flow and data-flow testing). The experiment used seven mathematical
programs with software faults and applied the three testing techniques to detect these
faults. This study reveled that the techniques used have limitations which prevent them
from discovering all faults. Therefore, it is important to use many different testing tech-
niques and develop new ones. This idea is presented in Figure 1.1. Our goal is to reduce
the gap between the total number of faults present in a program and the number of faults
detected using the various testing techniques [1].

Figure 1.1: Limitations of different fault detection techniques, adapted from [1]

This methodology, inspired by mutation testing, provides the opportunity to under-
stand which types of software vulnerabilities tend to remain undetected to the current
strategies of control-flow testing, data-flow testing, etc.

3
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1.3 Scope and Objectives

The core objective of this dissertation is to develop a way to complement the current
testing techniques based on knowledge about which types of faults more frequently lead to
a security vulnerability. Taking into consideration the main objective, the following goals
were developed:

• Study of the conditions in which a software fault leads to a security vulnerability.

• Perform fault injection to emulate representative security vulnerabilities in order to
evaluate the commonly used testing techniques and understand where they may fail.

• Develop an approach to improve upon the commonly used testing by finding more
vulnerabilities.

• Evaluate the results obtained from the developed approach.

The first goal will be addressed by analyzing real bugs shared in open-source project
repositories and manually classifying them. Part of this work has already been done and
it is important to extend it to fully understand why some types of faults are more prone
to create security vulnerabilities. As said before, not all faults are exploitable, and to
accomplish the proposed goals, it is necessary to understand the conditions that lead a
bug to create a security vulnerability.

The second goal is the simulation of representative security vulnerabilities in the pro-
grams selected. The faults are considered representative because they derive from the
study previously conducted on real security faults. The fault injection will help to eval-
uate the effectiveness of the software testing strategies presented in the state of the art
on detecting security vulnerabilities. Each strategy results in a test suite for each of the
selected programs. So afterwards, it is possible to assess the type of faults that require
more attention.

The third goal aims at the development of a methodology that complements the testing
techniques used but focusing more on security vulnerabilities. With the results obtained,
it will be possible to understand the types of faults that escape the testing techniques and
based on this knowledge, develop a methodology to address these particular faults.

The last goal consists on the validation of the approach presented. A similar evaluation
using the same faulty functions will be performed and the results will be analyzed to un-
derstand if it complements or not the testing techniques previously used. It is understood
that it is almost impossible to create a testing technique capable of detecting all type of
faults, the objective consists on complementing the other techniques with a more focused
approach.

These objectives together are summarized in the title of this dissertation, software
verification targeted for the identification of security vulnerabilities.

4
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1.4 Document Structure

This dissertation is divided in 5 chapters: Introduction, Field study on security vulnera-
bilities, Testing for security vulnerabilities, Results, Discussion and Conclusion.

The first chapter identifies the theme of this dissertation, the objectives and the mo-
tivation behind it. The second chapter, State of the Art, presents the study that was
made to deepen the knowledge of the topics of this dissertation. Initially, it is presented
a model whose objective is to perform fault classification. Various studies are also shown
about software fault injection and the software testing techniques studied for this project.
Lastly, some approaches similar to what is intended to be done in this dissertation are
introduced. The third chapter presents a review of an earlier study conducted on security
vulnerabilities and our deepening of the results. The fourth chapter presents the work
done to develop our approach on detecting security related faults. It is also explained in
detail the decisions, assumptions and all the steps made to obtain the resulting tool. The
results of the application of three testing technique are presented in the next chapter. The
sixth chapter, discussion, presents the work plan of this dissertation and the advantages
and disadvantages of using the developed tool. The last chapter concludes the dissertation
and states the final ideas of the project and the future work.

5



This page is intentionally left blank.



Chapter 2

State of the art

This chapter presents a technology which extracts valuable information from the defect
stream of any software engineering process. Afterwards, software testing will be intro-
duced as well as the commonly used mechanisms and their objectives. It is important to
understand the techniques and their limitation to assess their effectiveness. In order to
evaluate the detection ratio of these techniques, it was necessary to emulate software faults.
Therefore, different fault injection tools will be described in this chapter. Finally, a brief
review is presented of studies in the domain so as to understand the current knowledge in
the area of this dissertation.

2.1 Software faults and security vulnerabilities

Software faults are programming mistakes that cause a program to malfunction or to
produce incorrect/unexpected results. Some faults cause the system to crash, some cause
a connection failure, some prevent a user to log in. However, some software faults create
data leakage or elevate user privileges, these are security vulnerabilities. Is important to
consider that every device has software which contains software faults, thus it is inevitable
that it also contains security vulnerabilities [23]. However, as Linus Torvalds said security
problems are just bugs [24]. A security vulnerability is a software fault that can open a
security breach. It is a narrower concept as not all faults are exploitable to the point of
creating a security vulnerability, it depends on the type of software, and on the type of
fault. They represent a serious concert to programmers and organizations as they represent
thousands of millions of euros loss occurring because of what is mostly a preventable
problem. Also, with the increasing in size and complexity of today’s software projects
leads to a growing number of security vulnerabilities.

2.2 Fault Classification

There has been a number of studies on the nature of software faults specifically aimed at
systematically classifying them by examining software patches and defect corrections. An
important contribution to promote this study of software faults is the Orthogonal Defect
Classification (ODC) [25].

The ODC was originally developed in the early 1990s by Ram Chillarege at IBM. This
classification is a concept that enables in-process feedback for the developers. It extracts

7
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semantic information from the defects that occur through the software development pro-
cess to create cause-effect relationships. ODC essentially means that a defect is categorized
into classes that collectively point to the part of the process that requires more attention.

In the first pilot [26], the classification set was composed of 5 defect types: function,
initialization, checking, assignment and documentation. This set provided a sufficient span
to explain why the development process had troubles and what could be done to fix it,
however, in subsequent discussions and pilots, the model was refined to the current eight
classes [25]:

• Function - This defect affects significant capability, end-user features, product
application programming interface (API), interface with hardware architecture or
global structures. It would require a formal design change.

• Assignment - An assignment defect indicates a few lines of code, such as the ini-
tialization of control blocks or data structure.

• Interface - This defect corresponds to errors in interacting with other components,
modules, device drivers via macros, call statements, control blocks or parameter lists.

• Checking - Addresses program logic that has failed to properly validate data and
values before they are used, loop conditions, etc.

• Timing/serialization - This defects are those that are corrected by improved man-
agement of shared and real-time resources.

• Build/package/merge - These errors occur due to mistakes in library systems,
management of changes or version control.

• Documentation - Errors in documentation that can affect both publications and
maintenance notes.

• Algorithm - Errors that affect the efficiency or correctness of the task and can
be fixed by (re)implementing an algorithm or data structure without the need of a
design change.

8
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2.3 Software Fault Injection

The technique of fault injection dates back to the 1970s when it was used at a hardware
level [27]. This approach tries to emulate hardware failures into the target system. The
system circuit is exposed to some type of interference to produce the fault, and the effect
is examined [28].

It is believed that the first technique to inject faults was a pin-level fault injection,
which either uses probes to drive current on the target pin to produce voltage level faults
or replace the target device by a custom-made socket where digital logical intercepts each
target pin. It was primarily used as a test of the dependability of the hardware system
and later specialized hardware was developed to extend this technique, such as devices
that bombard specific areas of the circuit board with heavy radiation [27].

It was soon found that faults could be emulated using software techniques and this
would bring benefits that could be useful for assessing software systems and it was more at-
tractive because they do not require expensive hardware. Collectively these techniques are
known as Software Implemented Fault Injection (SWIFI). In the simplest case, SWIFI can
confront an interface with randomly generated values. The most complex fault injection
tools operate based on detailed failure cause models and can rely on formal specifications
to work in a more efficient way to guarantee certain fault coverage criteria.

The injection process can be used as a complimentary technique to the usual software
testing mechanisms. While software tests are designed to assert the correct behavior of
the system under a representative workload, fault injection asserts the correct behavior
under an additional fault load [28, 29, 30].

It is possible to categorize the software fault injection by when the injection takes
place:

• Compile-time injection - The program instructions must be modified before the
execution. Instead of injecting faults into the hardware of the target system, this
technique emulates errors in the source code or assembly code of the target program.
The injection generates an erroneous program image and when the system executes
it activates the fault.

• Runtime injections - The faults are injected during the program execution using a
mechanism to trigger the fault. The commonly used triggering mechanisms are:

– Time-out - This is the simplest of the techniques. The injection is triggered
when the timer reaches a specified time and an interrupt is generated to invoke
the fault injection.

– Exception/trap - Hardware exception or software trap mechanisms are used to
generate an interrupt at a specific place in the system code or on a particular
event within the system to transfer control to the fault injector.

– Code insertion - The instructions are added to the target software that allows
the fault injection to occur before particular instructions. Unlike the injection
before running, this technique performs during run-time and inserts instructions
instead of changing the original instructions.

• At the loading time of external components - The injection triggers may be the
dynamic binding of external libraries or the adding of other dependencies during
run-time.

9
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2.3.1 Software Fault Injection Tools

Although these faults can be manually injected, there is a high probability of introducing
unintended defects, so some tools have been developed to parse a program and insert the
faults automatically.

Fault Injection Based Automated Testing Environment (FIAT) [31] is an automated
real-time distributed accelerated fault injection environment. It was created with the ob-
jective of providing suitable tools for the validation process. The FIAT has been designed
for the injection of faults that are representative of errors generated by software, hardware
or network connection faults in the run time environment of each program. It provides the
ability to change where, when, for how long errors will occur. The main objective of this
tool is to uncover deficiencies in a system’s error detection and recovery mechanism and
to guide trade-offs between alternative design enhancements, by providing quantitative
evaluations of their relative effectiveness. In its first version, FIAT could emulate faults
in user application code and data and also inject faults into messages, tasks and timers.

MODel-Implemented Fault Injection (MODIFI) [32] is a fault injection tool for robust-
ness evaluation targeting behavior models in Simulink. Fault models used by MODIFI are
defined using XML according to a specific schema file and the injection algorithm uses the
concept of Minimal cut sets (MCS) generation. Firstly, a user defined set of single faults
are injected to see if the target system is tolerant against single faults. The fault lading
to a failure is stored in a MCS list and removed from the fault space used for subsequent
experiments. When all single faults have been injected, the effects of introducing two or
more faults at the same time are investigated. The resulting list of MCS is then used to
generate test cases to perform the fault injection on the target system.

Fault and ERRor Automatic Real-time Injection (Ferrari) [33] is a tool with the ability
to inject transient errors as well as permanent faults so that it can be used to test the
effectiveness of concurrent error detection and correction mechanisms. It is implemented
to emulate a large number of hardware faults as well as control flow errors and it allows
control over the time, location, type and duration of the fault or error. Ferrari consists of
four components: An initializer and activator, the user information, the fault injector and
the data collector and analyzer. The fault and error injector use software trap and trap
handling to change the content of selected registers or memory locations to emulate actual
data corruptions. The faults injected can be those permanent or transient that resulting
in an address line error, a data line error or a condition bit error.

Fault Tolerance And Performance Evaluator (FTAPE) [34] is a tool that combines a
fault injector with a workload generator to encourage a high level of fault propagation.
FTAPE has the ability to inject faults into CPU registers, memory and disk systems.
Because tolerance mechanisms are present in many different parts of a tolerant system, the
faults must be injected into those different parts to measure how the target system behaves.
The injector evaluates the instantaneous workload activity to determine the injection time
and location that will maximize the fault propagation. The synthetic workload generator
is used to provide an easily controllable workload, and it can be specified to exercise the
CPU, memory or disk.

Integrated software fault injection environment (DOCTOR) [35] is capable of gener-
ating workloads under which system dependability is evaluated, injecting various types
of faults with different options and collecting performance and dependability data. A
comprehensive graphical user interface is also provided to enable the user to construct
complicated fault-injection scenarios. The software-implemented fault injection tool can
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inject communication faults as well as traditional hardware faults like memory and CPU
faults.

Orchestra [36] is a script driven fault injector. The main focus of this tool is the use of
experimental techniques to identify specific problems in a protocol or its implementation
rather than the evaluation of the system’s dependability through statistical metrics. This
tool creates a Probe/fault injection (PFI) between two consecutive layers in a protocol
stack. Then the PFI layer can manipulate the messages transmitted between the two
layers.

Library-level Fault Injector (LFI) [37] is a tool that automates the preparation of fault
scenarios and their injection. It is used to simulate exceptional situations that programs
need to handle at runtime. This tool automatically identifies the errors exposed by shared
libraries doing a static analysis of their binaries. It finds potentially faulty recovery code in
the target program binaries and emulates faults between shared libraries and applications
layers.

Generic Software Fault Injection Technique (G-SWFIT) [38] consists on finding key
programming structures at the machine code-level where high-level software faults can be
emulated. It modifies the binary code of software modules by introducing specific changes
that correspond to the code that would be generated by the compiler if the fault was in
the source code. Emulating software faults at machine-code level brings the advantage of
not requiring the source code of the target application to inject the faults. G-SWFIT is a
very accurate tool and can be easily ported to practically all types of systems.

Xception [39] focuses on testing and certifying critical systems and validating their
reliability. This tool supports and automates the simulation of system failures. It allows
testing systems in exceptional situations and scenarios of failures using a predefined set
of errors (fault model). The faults are injected with the minimum interference within the
target system workload requiring no modification of system source and no insertion of
software traps. The tool uses the built-in debugging features of contemporary processors
to provide minimum intrusiveness.

ucXception [40] is a tool designed to simplify the software fault injection process. The
tool modifies the source code of the target software by altering the abstract syntax tree
and producing software patches. The proposed tool formally specifies the most common
software fault injection operators and the constraints that should be verified to inject
them in a realistic way. It provides a publicly available test suite consisting of source
code files and the resulting patches from applying the most representative and frequent
software fault operators. It has an improved performance of the fault injection process by
compiling only the file in which an emulation operator is applied and linking/installing
that file.

2.3.2 Comparison of software fault injection tools

Although there is a reasonably large set of tools, most of these tools inject the faults at
system level, creating bit-flips, using software traps or creating CPU faults. However, we
want to be able to introduce fault at the source code level to emulate real programmers
mistakes. So to accomplish the proposed realistic fault injection, we selected the ucXcep-
tion tool as it represents a more adequate tool. It alters the source code of the target
programs producing patch files that contain each modification representing the bugs that
the programmers usually make. That way it is possible to also have access to the faulty
code, which helps in the testing phase as white-box techniques were applied to base the
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test cases in the faulty code and not the original code.

2.4 Software Testing Techniques

Software testing is the process of executing a program or system with the intention of
finding errors [41] or involves any activity with the objective of evaluating the software’s
capability. Software is not like other physical processes in which inputs are received and
some outputs are produced. The software differs in the manner in which it fails. Most
physical systems fail in a fixed set of ways, however software can fail in many bizarre ways
[42].

There are many approaches to software testing, but to effectively test a complex system
it is necessary a process of investigation. It is often impossible to test a program in order
to find all its errors. This problem has implications for the economic point of view, leaving
an open question, as to what would be the strategy that should be adopted for testing.

The three most important techniques that are used for finding errors are black-box
testing, white-box testing and grey-box testing.

2.4.1 Black-box Testing

An important testing strategy is black-box, also known as data-driven or input/output-
driven testing. This method views the software as a “black-box” — without any knowledge
of its internal behavior and structure. Instead, it only examines the fundamental aspects
of the system. In this approach the tester does not have access to the source code, using
solely the data from the specifications to produce the tests [42, 43].

It is obvious that the more input space covered, the more problems the technique will
find and therefore more confidence about the quality of the software. Ideally it would
have to exhaustively test all the input space. But as stated above, exhaustively testing is
impossible. Another problem is due to the limitations of the language used in the specifi-
cations, usually natural language, in which ambiguity is often inevitable. The research in
black-box testing main focus is on how to maximize the effectiveness of testing with mini-
mum cost. As it is unfeasible to exhaust the input space, it is common to use partitioning
in order to test exhaustively a subset of the input space [41].

Some important types of black-box testing techniques are the following.

• Random Testing - Random testing is a form of functional testing that is useful when
the time needed to write and run the tests is too long or the complexity of the
problem makes it impossible to test every combination. Another advantage is that
even when if it doesn’t find many defects per time interval, it can be performed
without manual intervention [43, 44, 45].

Considering the following function.

int myAbs( int x ) {
i f ( x > 0) {

return x ;
}
else {

return −x ;
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}
}

In order to test this function it was necessary to generate a random set of input, for
example 1,27,-34,0,-93.

• Equivalence Partitioning - This method divides the input data into partitions of
data from which test cases can be created. An equivalence class is created by the
inputs for which the behavior of the system is expected to be identical. Typically, an
input condition is either a numeric value, an array of values, a set of related values
or a Boolean condition [43, 44]. For example, testing a password field that accepts
a minimum of six characters and maximum of ten characters. It is not possible to
test all the possible number of characters because the possibilities are infinite. To
address this problem, the possible number of characters was divided into sets called
equivalence partitions or equivalence classes. In this case the input was divided in
three classes. From zero to six characters, the system should not accept, between
six and ten characters, it should accept, and between ten and more characters, the
system should not accept. Then, it is necessary to pick at least a value from each
partition for testing [43, 44, 46].

• Boundary Value Analysis - This technique explores the system tendency to fail on
boundary values. Due to programmers often making mistakes on the boundary of
the input domain, the boundary values must include the maximum, minimum, inside
and outside boundaries, typical values and error values [43, 44]. The basic idea in
boundary value testing is to select input variable values at their:

– Minimum

– Just above the minimum

– A nominal value

– Just below the maximum

– Maximum

• Fuzzing - Fuzz testing is a technique which is used for finding implementation bugs
by inputting malformed/semi-malformed data in an automated or semi-automated
fashion. It is used to find bugs associated with assertion failures and memory leaks.
It is also used to test for security problems in software. The main limitation with
this method is that it generally only finds very simple faults [43, 44]. For example,
this can be performed by shifting random blocks of bits through the file of existing
inputs.

• Cause-Effect Graph - This testing technique begins by creating a graph and es-
tablishing the relation between the effect and its causes. The cause is the input
condition, and the effect is a sequence of computations to be performed. The graph
shows the nodes representing the causes on the left and the nodes representing the
effects on the right side. There may be intermediate nodes in between that combine
the inputs using logical operators such as AND and OR [43, 44]. Taking as an exam-
ple a software application that reads two characters and, depending of their values
a message is printed or a file is updated.

– The first character must be an ‘A’ or a ‘B’.

– The second character must be a digit.

– If the first character is an ‘A’ or ‘B’ and the second character is a digit, the
file is updated.
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– If the first character is incorrect (not an ‘A’ or ‘B’ ), the message X is printed.

– If the second character is incorrect (not a digit), the message Y is printed.

Causes:

– C1 - The first character is ‘A’

– C2 - The first character is ‘B’

– C3 - The second character is a digit

Effects:

– E1 - The file is updated — (C1 OR C2) AND C3

– E2 - The message X is printed — (NOT C1 AND NOT C2)

– E3 - The message Y is printed — (NOT C3)

Figure 2.1: Example of a cause-effect graph, adapted from [2]

From the graph, it is possible to create the table with the test cases.

Table 2.1: Example of decision table, adapted from [8]

Nodes TC 1 TC 2 TC 3 TC 4 TC 5 TC 6

C1 1 0 0 0 1 0

C2 0 1 0 0 0 1

C3 1 1 0 1 0 0

E1 1 1 0 0 0 0

E2 0 0 1 1 0 0

E3 0 0 0 0 1 1

For the test case 1 (TC 1) it is necessary to validate that the system updates the file
when the first character is ‘A’ (C1) and the second character is a digit (C3) and the
outcome should be E1, the file updated. For the test case 2 (TC 2) it is necessary
to validate that the system updates the file when the first character is ‘B’ (C2) and
the second character is a digit (C3) and the outcome should be E1, the file updated.
In a similar fashion, it is possible to create the remaining test cases.

• All Pair Testing - It is a test design technique in which test cases are designed to
execute all the possible discrete combinations of each pair of input parameters. Using
carefully chosen test vectors, this can be done faster than executing all combinations
of all parameters [43, 44]. If there are ‘n’ parameters, each with ‘m’ different values
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then between each two parameter we have n * m pairs. Assuming we have an
application to test which has a simple list box with 10 elements, a checkbox, a radio
button and a text box. The text box can only accept values between 1 and 100. So
the values that each one of the GUI objects can take are the following.

– List Box - 0,1,2,3,4,5,6,7,8,9

– Check Box - Checked or Unchecked

– Radio Button - On or Off

– Text Box - Values between 1 and 100

The number test cases using Cartesian method: 10*2*2*100 = 4000. So the idea of
all pair testing is to reduce the number of test cases. It is possible to consider that
the list box values as 0 and others as 0 is neither positive nor negative. The values
in the text box can also be reduced into three types of inputs, valid integer, invalid
integer or alpha character. Now, the number of test cases needed are calculated using
a non-combinatorial testing technique: 2*2*2*3 = 24. However, using the all pair
testing technique it is still possible to reduce the combinations. Table 2.2 presents
the test cases created.

Table 2.2: Example of test cases created using all pair testing, adapted from [9]

Text Box List Box Check Box Radio Button

Valid Int 0 Check On

Valid Int Others Uncheck Off

Invalid Int 0 Check On

Invalid Int Others Uncheck Off

Alpha Character 0 Check On

Alpha Character Others Uncheck Off

• Orthogonal Array Testing - Orthogonal Array Testing (OAT) is a testing technique
applied when the domain of inputs to the system is relatively small but too large
to accommodate exhaustive testing. It is a technique similar to all pair testing
but instead of using each combination of parameters, an orthogonal array is used
to choose just a subset of these combinations. This enables to design test cases
that provide maximum test coverage with reasonable number of test cases [43, 44].
For example a web page that has three distinct sections (Top, middle and bottom)
that can be individually shown or hidden from a user. There are three factors
(Top, middle and bottom), each of them with two levels (Shown or hidden). If a
conventional testing technique is chosen, 2 * 3 = 6 test cases are needed.

Table 2.3: Example of conventional testing technique, adapted from [10]

Test Case Scenarios Visibility

1 Hidden Top

2 Shown Top

3 Hidden Middle

4 Shown Middle

5 Hidden Bottom

6 Shown Bottom

If Orthogonal array testing is chosen, it requires four test cases as shown below.
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Table 2.4: Example of Orthogonal array testing technique, adapted from [10]

Test Case Scenarios Visibility

1 Hidden Top

2 Shown Top

3 Hidden Middle

4 Shown Middle

• State Transition Testing - It is another testing technique which is useful when testing
state machines and navigation of graphical user interface. It is defined as a method
in which input condition changes cause a state change in the application under test.
The main advantage of this technique is to generate a state transition diagram,
so the tester can understand the system behavior more efficiently [43, 44]. Taking
the ATM system as example where the user enters the password to access his/her
account, and if he/she makes a mistake three times the account will be locked.

Figure 2.2: Example of a state transition diagram, adapted from [3]

As presented in the diagram, whenever the user enters the correct PIN the state
moves to Access granted, and if he/she enters an incorrect password the state changes
to a next try and if he/she repeats it two more times it reaches a blocked state.

Table 2.5: Example of a state transition table, adapted from [3]

States Correct PIN Incorrect PIN

S1 - Start S5 S2

S2 - 1st attempt S5 S3

S3 - 2nd attempt S5 S4

S4 - 3rd attempt S5 S6

S5 - Access Granted - -

S6 - Account blocked - -

When the user enters the correct PIN the state is changed to S5 which is access
granted. If the user enters a wrong password he/she is moved to next state and if
the same thing happens three times, he/she will reach the account blocked state.
The tests can be designed to test every transition or to cover all pairs of two valid
transitions shown in the diagram.
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2.4.2 White-box Testing

Another testing strategy, white-box also known as logic-driven testing, allows the exam-
ination of the internal structure of the target software. It is one of the most important
software testing techniques and is typically very effective in finding programming and im-
plementation errors. White-box testing is based on the analysis of internal workings and
structure of a piece of software to derive test cases [43, 47].

This technique causes every statement in the program to execute at least once with the
idea that if all the possible paths of control flow are executed then possibly the program
has been completely tested. To help with the white-box testing is often created a control
flow diagram of the target software. In this diagram each node represents a segment of
statements that execute sequentially, possible terminating with a branch condition. Each
represents a transfer of control between segments [41].

Some important types of white-box testing techniques are the following.

• Control Flow Testing - Control flow testing can be applied to almost all software
and is effective for most software. It is a testing strategy that uses the program’s
control flow as a model to design the test cases. It favors more but simpler paths
over fewer but complicated path. Studies show that control-flow testing catches half
of all bugs caught during unit testing, this happens because most of the bugs can
result in control flow errors and therefore a wrong functionality of the software could
be caught by control flow testing [43, 47].

The adequacy and completeness of the set of test cases is measured with a metric
called coverage. Some coverage methods are the following.

– Statement Coverage - Statement coverage is a measure of the percentage of the
statements that have been executed at least once by test cases. Less than 100%
of statement coverage means that not all lines in the source code have been
exercised. The main drawback of this technique is that it does not test the
false conditions in the source code.

– Branch Coverage - A stronger coverage criterion is the branch coverage. This
is a measure of the percentage of the decision point of the program has been
evaluated as both true and false in test cases.

– Condition Coverage - A even stronger criterion is condition coverage. It is a
measure of percentage of Boolean sub-expressions of the program that have
been evaluated as both true and false in the test cases.

Using the following control-flow graph as example.
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Figure 2.3: Example of a control flow graph, adapted from [4]

For the statement coverage it is necessary that every statement in the program has
been executed at least once:

1→ 2→ 3→ 4→ 5→ 6→ 7→ 2→ 8

For the decision coverage it is necessary that every statement in the program has
been executed at least once and every decision in the program has taken all possible
outcomes at least once:

1→ 2→ 3→ 5→ 6→ 7→ 2→ 3→ 4→ 5→ 6→ 7→ 2→ 8

For the condition coverage it is necessary that every statement in the program has
been executed at least once and every condition in each decision has taken all possible
outcomes at least once. Assuming we want to test the following code.

i f ( (A | | B) && C ) {
/∗ i n s t r u c t i o n s ∗/

}
else {

/∗ i n s t r u c t i o n s ∗/
}

A, B and C represent atomic boolean expressions (i.e. not divisible in other boolean
sub-expressions). In order to ensure condition coverage for this example, A, B and C
should be evaluated at least one time as true and one as false. So, in this example,
we need three tests to ensure condition coverage.

A = true and B = not evaluated and C = false

A = false and B = true and C = true

A = false and B = false and C = not evaluated
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• Basis Path Testing - Basis path is a technique first introduced by Tom McCabe
[48]. It analyzes the control flow graph of the target program to find a set linearly
independent paths of execution. This method usually uses McCabe’ cyclomatic com-
plexity to determine the number of linearly independent paths and then generates
test cases for each path. Basic path testing guarantees complete branch coverage,
all the edges of the control flow graph, but it will not cover all the possible paths of
the graph [43, 47]. Taking the following graph as example [5].

Figure 2.4: Example of a control flow graph, adapted from [5]

In this example there are 3 paths or condition that need to be tested.

– Path 1: 1,2,3,5,6,7

– Path 2: 1,2,4,5,6,7

– Path 3: 1,6,7

• Data Flow Testing - Data flow testing uses a model of the flow of data connected
with the flow of control to understand how the program variables are defined and
used. It is used to check every data object that has been initialized prior to its use
and all the defined objects that have been used at least once. The method divides
the variable occurrences in two, definitions and uses. The definitions are occurrences
where a variable is given a new value. The uses are occurrences where a variable is
not given a new value, but where the variable is the predicate portion of a decision
statement (P-uses) or where the variable appears on the right side of an assignment
statement or an output statement (C-uses) [43, 47, 49].

Using the following piece of code as example [49, 50].

1 . read x ;
2 . i f ( x > 0) ( 1 , ( 2 , t ) , x ) , ( 1 , ( 2 , f ) , x )
3 . a = x + 1 (1 ,3 , x )
4 . i f ( x <= 0){ ( 1 , ( 4 , t ) , x ) , ( 1 , ( 4 , f ) , x )
5 . i f ( x < 1) ( 1 , ( 5 , t ) , x ) , ( 1 , ( 5 , f ) , x ) ,

( 6 , ( 5 , t ) , x ) , ( 6 , ( 5 , f ) , x )
6 . x = x + 1 ; ( go to 5) (1 , 6 , x ) , ( 6 , 6 , x )
7 . else
8 . a = x + 1 (1 ,8 , x )
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}
9 . p r i n t a ; ( 3 , 9 , a ) , ( 7 , 9 , a )

It is possible to create test cases according to a certain test criteria. One example is
the all definitions coverage. In this testing coverage criteria it is necessary to create
test cases that include a path from every definition to some corresponding use (c-use
or p-use), in this case the definitions are the following.

(1, (2, f), x), (3, 9, a), (6, 6, x), (7, 9, a)

since they represent all occurrences of a value being attributed to a variable. If we
want to cover all the computation uses (c-uses) we need test cases that include a
path from every definition to all of its corresponding c-uses, in this case the c-uses
are the following.

(1, 3, x), (1, 6, x), (1, 8, x), (3, 9, a), (6, 6, x), (6, 8, x), (7, 9, a)

They represent all the statements where a variable is used to compute a value for
output or for defining another variable. To cover all the predicate uses (p-uses)
we need to create tests cases that cover a path from every definition to all of its
corresponding p-uses, in this case the p-uses are the following.

(1, (2, t), x), (1, (2, f), x), (1, (4, t), x), (1, (4, f), x), (1, (5, t), x), (1, (5, f), x), (6,
(5, t), x), (6, (5, f), x)

There are other types of coverage such as all c-use some p-use coverage. It is similar
to the all c-uses coverage with the difference that if a definition has no c-use then
the test cases include a path to some p-use. The same happens with the all p-use
some c-use coverage, if a definition has no p-use then the test cases include a path
to some c-use. There is also the all uses coverage criteria where the test cases must
include a path from every definition to each of its uses, including both c-uses and
p-uses.

• Loop Testing - Loop testing is another type of white-box testing which exclusively
focuses on the validity of loop construct. It can reveal loops initialization problems
and also reveal performance bottlenecks [43, 47]. For example, a simple loop is tested
in the following ways [51].

– Skip the entire loop

– Make 1 pass through the loop

– Make 2 pass through the loop

– Make m pass through the loop where m ¡ n, n is the maximum number of
passes through the loop

– Make n, n-1; n+1 pass through the loop where n is the maximum number of
allowable passes through the loop.

• Mutation Testing - Mutation testing is a powerful, yet computationally expensive,
technique for unit testing software. It provides a testing criterion called the mutation
adequacy score which can measure the effectiveness of a test set in terms of its ability
to detect faults [52].
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The general principle behind mutation testing is to emulate faults into the target
software that represent the mistakes that programmers usually make. These faults
are deliberately emulated into the program to create a set of faulty programs called
mutants, each containing a different change. To determine the quality of a test set,
these mutants are executed, if the resulting output is different from the output of
running the original program for any test case, then the fault in the mutant was
detected. One of the outcomes of this process is the mutation score, which is an
indicator of the quality of the input test set. The mutation score is defined by the
quotient between the number of detected faults and the total number of injected
faults [52]. Taking this piece of code as example :

int myAbs( int x ) {
i f ( x > 0) {

return x ;
}
else {

return −x ;
}

}

We can create mutants making small changes in the original code such as replacing
arithmetic operators or removing statements, for example:

int myAbs( int x ) {
i f ( x < 0) { // Replacing the > with <

return x ;
}
else {

return −x ;
}

}

int myAbs( int x ) {
i f ( x %% 0) { // I n c o r r e c t syntax

return x ;
}
else {

return −x ;
}

}

Once all the mutants are created they are subjected to the test data-set. If the
data-set detects all mutants, it is effective. Otherwise we include more or better test
data. It is not necessary for each test in the test suite to detect all mutants but
together they should detect all [8].
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2.4.3 Grey-box Testing

Grey-box testing technique increases the testing coverage by allowing to focus on all the
layers of any complex system through the combination of white-box and black-box testing.
It still tests the software as a black-box, but supplements the work by taking a peek (not a
full look, as in white-box testing) at what makes the software work. This involves having
access to the internal structures and algorithms to design the test cases, but testing at the
black-box level [43, 53].

Different forms of grey-box testing techniques are the following.

• Orthogonal Array Testing - A statistical testing technique first developed by Genichi
Taguchi [54]. The black-box technique will not provide sufficient testing coverage.
A black-box team cannot understand the underlining infrastructure connections be-
tween servers and legacy systems, however a grey-box testing team will have the
necessary knowledge to elaborate a testing net that can be set-up and implemented
[11]. This technique is used to reduce the number of combinations of inputs but sill
maximize the coverage. The technique uses an array of values, where each column
represents a variable, which can take a set of values called levels. Each row repre-
sents a test case and then the values are combined pair-wise to create an efficient,
concise test set. Supposing we are testing a software web application. We need to
test different operative systems and different browsers [11, 43, 55]. In table 2.6 all
the conditions we want to test are shown.

Table 2.6: Example with three factors and three levels, adapted from [11]

OS Browser Function
Factor 1 Factor 2 Factor 3

Level 1 Linux Chrome Library

Level 2 Mac OS
Internet
Explorer

Scheduling

Level 3 Windows Firefox
Personal
Information

With this example the tester would need to create 33 = 27 test combinations. Using
the orthogonal array testing we reduce the total number of test cases drops from 27
to nine.

Table 2.7: Table of test cases, adapted from [11]

Test Case Factor 1 Factor 2 Factor 3

1 1 1 3

2 1 2 2

3 1 3 1

4 2 1 2

5 2 2 1

6 2 3 3

7 3 1 1

8 3 2 2

9 3 3 2
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• Regression Testing - Regression testing is a technique executed after making a func-
tional improvement or a repair to the software. Its objective is to determine if the
change made has regressed the other features of the program [43].

Figure 2.5: Regression testing diagram, adapted from [6]

We have a software application with functionalities A and B. Testing the application
reveals a bug. Patches and bug-removal processes are applied to the code in order
remove or resolve the identified bug. However, the process may affect the existing
functionalities: B-A. So it is necessary to execute regressing testing to evaluate if
the existing functionalities have been impaired or not with the bug removal.

Another example is when we want to upgrade or add a new feature C and the existing
functionalities of the software application have been changed with the new feature:
A*B. In this case, regressing tests are executed to find if the existing functionalities
have been affected or not.

• Pattern Testing - This technique is best executed when data from system’s previous
defects are analyzed. The analysis will include the reasons behind the defect to
determine why the failure happened. This information is valuable as future design
of test cases will use this information to prevent similar faults [11, 43].

• Matrix Testing - This technique starts by defining all the variables that exist in the
target program. Then each variable will have an inherent technical risk and business
risk and can be used with different frequencies during its life cycle. The objective
is to eliminate uninitialized and unused variables by identifying the ones used by
the program. For example, for this type of testing it is important to summarize the
information in two types of tables as the following [11, 43].

Table 2.8: Client name and address input-recall testing, adapted from [12]

Element
Data
type

Min
length

Max
length

Create Read Update Delete

Name String 2 20 Yes Yes Yes No

Surname String 2 25 Yes Yes Yes No

Address String 2 45 Yes Yes Yes Yes

City String 2 45 Yes Yes Yes Yes
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Table 2.9: Summarized information of Table 2.8, adapted from [12]

Function Technical Risk Frequency Business Risk

Update Record Low Medium Low

Save Record Medium High High

Delete Record High Medium Medium

With the information from table 2.8 and table 2.9 the tester can decide which techni-
cal and business aspect of the code, in this case saving and deleting records, require
a more careful testing.

2.5 Related projects

Du [56] described an approach for vulnerability testing using fault injection. Usually,
security testing uses penetration testing and formal methods, but the effectiveness of
these methods can be influenced by the team that performs the analysis. The authors
noticed that most security faults are triggered because of a faulty interaction with the
environment. In order to prove this, environment faults were injected into the target
system and observed their behavior. Nowadays, the importance of a safe product has
been growing more and more, so this work is focused on the evaluation of the software
capacity to detect faults that might lead to security violations. The authors chose the
fault injection because it allows the emulation of defects independently of how they could
occur in practice. The objective of this paper is to create a way to overcome the limitation
of when the testers’ knowledge about the environment is reduced.

Loise et al.[57] designed security aware mutation operators to support mutation analy-
sis. As the operators used by the Java mutation testing tools are restricted to simple faults
they may not suitable to exercise security related aspects of the applications. Therefore,
the authors designed 15 security mutation operators for Java based on common security
vulnerability patterns. Using the FindBugs tool they showed that the traditional muta-
tion operators from the PIT mutation testing engine fail to introduce vulnerabilities. So
authors extended it so it supports the traditional and the new mutation operators. They
also showed that their security aware mutation operators are applicable on open source
projects, providing evidence that mutation analysis can be applied in security testing
activities.

Jimenez et al.[58] performed an analysis focused on the vulnerabilities of two security
critical open-source software systems. The main objective was to increase the understand-
ing of the aspects that characterize the vulnerabilities on each project, such as location,
type and criticality. In order to perform this, the authors analyzed 863 vulnerabilities
and used the Common Weakness Enumeration to categorised them. They found that it
is important to make project specific approaches focusing on specific types of vulnerabil-
ities, since the different vulnerability types have different profiles. The results also show
that the majority of the vulnerabilities are located on up to 4 directories of the analyzed
projects and only a few types are critical. The results also suggest that these two aspects
are related.

Durães and Madeira [13] also present a significant study on fault emulation. This
paper addresses the emulation of software faults for software reliability. The authors
analyzed an extensive collection of real software faults according to the Orthogonal Defect
Classification [25]. In a second step the faults were grouped according to the nature of the
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defect, that is for each ODC class a software fault is characterized by one programming
language construct that is either missing, wrong or superfluous. In the resulting data set
we can see that 67.6 percent of all the faults collected can be represented by a small set
of defects. With the data set collected they made a more practical approach using a tool
called G-SWIFT [38]. The objective was to evaluate the tool’s accuracy on finding key
programming structures at the machine code-level where high-level software faults can
be emulated. In the end, the results were usually simple programmer mistakes that are
responsible for most software failures. It was also shown that a small subset of specific
faults types is dominant regarding fault occurrence, being these “good” candidates for the
emulation of software faults.

A similar approach was carried out by Basso et al. [59]. The authors analyzed a 574
faults in order to understand if the fault representativeness of Java applications follows the
same pattern as the software faults in C applications. They selected the Java programming
language because it is widely used in software applications, including web-based systems.
In order to perform a complete classification, the authors refined the classification pre-
sented by Durães and Madeira [13] in order to accommodate new fault types. These fault
types were created because as Java has different characteristics and is object-oriented,
unlike C, there are some faults that cannot be classified in accordance with the methodol-
ogy proposed by Durães and Madeira [13]. The results show that the most frequent Java
faults correspond to the most frequent C faults, which means that the mistakes made by
programmers follow a similar pattern, independently of the programming language.

2.6 Summary

To sum up the findings of the conducted research, there are a few software fault injection
tools but most of them emulate the faults at the system level becoming difficult to create
a representative emulation of programmers mistakes. However, one of the studied tools
(ucXception) creates the faults in the form of patches files, allowing us to control the type
of faults to inject and how they are injected.

It was also conducted a study about most known testing techniques. Some of these
techniques are applied to certain types of situations, like the regression testing technique
only applied to a more complex software with various functionalities. Ideally, we should
use a black-box and white-box technique to try to generalize our study. It is also important
to understand how they exercise the code to find the defects. With this information we can
comprehend where they fail to, in the end, focus our approach based on these limitations.

Loise et al.[57] provided evidence that mutation analysis can be applied to large real-
world projects. The authors with their study also reveled that a certain type of vulner-
abilities are prevalent in open source projects. Jimenez et al.[58] showed that the bugs
on the Linux kernel and in the OpenSSL are very located, restricting themselves to a few
directories and to a few types of faults. Durães and Madeira [13] present a field study
on software faults that resulted in a fault classification based on ODC classes. They also
showed that the most frequent faults in C correspond to a small subset of fault types.
Basso et al. [59] presented a similar approach based on the Java programming language.
They used the classification system presented by Durães and Madeira, and came to very
similar conclusions. Only a small subset of faults characterizes the mistakes that program-
mers make, and this subset is similar in both languages. This demonstrates that the faults
are related to the programmers and not the language used.
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Chapter 3

Field study on security
vulnerabilities

This chapter presents a short review of a field study conducted on security vulnerabilities
and the results obtained. In addition, it is also presented the expansion of the results
based on the data set created in the field study to understand the conditions in which a
software fault leads to a security vulnerability.

3.1 Previous field study overview

We took advantage of a field study [7] that we previously conducted to clarify the most
common programming mistakes that result in security vulnerabilities. For each analyzed
software projects (Xen hypervisor, Linux kernel and the OpenSSH tool) a specific soft-
ware version was selected. Then the patch files were collected from public vulnerabilities
databases, starting from the most recent to the oldest vulnerability that affected the
selected versions. Each patch was analyzed to confirm that the modification was only
altering C code and not source code macros. This resulted in 147 vulnerabilities, corre-
sponding to all the vulnerabilities in the OpenSSH tool and the majority of vulnerabilities
for the other two projects. Finally, we manually mapped the modifications carried out to
correct the vulnerability onto emulation operators described by Durães et al. [13]. These
emulation operators are similar to the operators used in mutation testing with some differ-
ences. The emulation operators are defined as minimal code changes in order to emulate
a unitary programming mistake. They are based on field observation of real faults and
not synthetically generated like the mutation operators.

Firstly, the study analyzed how the vulnerabilities are distributed in terms of number
operators required to reverse the fix, number of functions and the number of files involved.
The results are presented in Figure 3.1. As it is possible to observe, 64 out of 147 vulnera-
bilities (43.5%) consist on the need of a single operator to emulate the vulnerability. This
means that it is only necessary one emulation operator in order to create this type of vul-
nerability. In addition, it shows that in 30 of the cases (20.4%) the vulnerability affected a
single function but was composed of multiple operators. This means that to correct these
vulnerabilities, it was only required to change the code of one function. On the other hand,
to emulate these vulnerabilities multiple fault operators were injected. In the remaining
cases, 20 vulnerabilities affected multiple functions but all the functions changed were
located in a single file. The remaining 33 vulnerabilities involved corrections on multiple
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files. It is important to highlight that the majority of the vulnerabilities affected a single
function, either using one or multiple operators. These cases constitute a total of 63.9%
of all the vulnerabilities analyzed. This information is important because the emulation
involving a single function is less complex than doing so for multiple functions, and far
less complex that those involving multiple files [7].

Single Operator
64 (43.5%)

Multiple 
Operators

Single Function
30 (20.4%)

Multiple 
Functions

Single File
20 (13.6%)

Multiple Files
33 (22.4%)

All 
Vulnerabilities

Figure 3.1: Distribution of emulation operators across multiple functions and multiple
files, from [7]

We also analyzed how many emulation operators are needed to emulate each vulnera-
bility. Even though we know that 63.9% of the vulnerabilities affect a single function, it
is important to understand how many operators they usually consist of. The results are
shown in Figure 3.2. It is worth noting that if an operator appears more than once in a
single vulnerability all the occurrences are counted in the histogram.

Figure 3.2: Absolute frequency of vulnerabilities over the number of operator instances
necessary to emulate them, from [7]
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As it is possible to observe in Figure 3.2, the majority of the vulnerabilities consist of
up to three programming mistakes. A single operator is sufficient in 43.5% of all defects.
The use of two and three operators represent 16.3% and 15.0% of the vulnerabilities,
respectively. It is important to highlight that approximately 74.8%, nearly three-fourths
of the vulnerabilities, are composed of up to three programming mistakes.

We also collected the types of defect that are relatively frequent in software vulnerabil-
ities. In Table 3.1 it is presented a detailed analysis of the actual programming mistakes
found in software projects. It presents the number of vulnerabilities in which each opera-
tor was found. It is worth noting that if an operator appears multiple times in the same
vulnerability, it is counted as a single vulnerability.

Table 3.1: Most frequent types of programming mistakes that cause software vulnerabilities

Operator Description Type #Faults

MIFS Missing if construct plus statements Algorithm 57 (38.8%)

MFC Missing function call Algorithm 32 (21.8%)

EFC Extraneous function call Algorithm 16 (10.9%)

WLEC Wrong logical expression used as
branch condition

Checking 12 (8.2%)

EIFS Extraneous IF construct plus state-
ments

Algorithm 10 (6.8%)

MLOC Missing OR EXPR in expression
used as branch condition

Checking 10 (6.8%)

MLAC Missing AND EXPR in expression
used as branch condition

Checking 10 (6.8%)

WALR Wrong algorithm - code was mis-
placed

Algorithm 9 (6.1%)

MVAV Missing variable assignment using a
value

Assignment 9 (6.1%)

In Table 3.1 the fault operators that are more commonly related with security vulnera-
bilities are presented. As it is possible to observe, the Missing if construct and surrounded
statements (MIFS) and Missing function call (MFC) operators are the most prone to cre-
ate a security vulnerability. Missing some function call or if-statement may lead to an
incomplete memory cleaning or the lack of a NULL verification, therefore these operators
can easily lead to a security vulnerability. Also, three of the most common operators
are related to a missing or incorrect use of expressions in branch conditions (Missing OR
sub-expr in expression used as branch condition (MLOC), Missing AND sub-expr in ex-
pression used as branch condition (MLAC) and Wrong logical expression used as branch
condition (WLEC)). Having a fault in a branch condition can lead the system through an
erroneous execution path putting the system in a vulnerable state which can be exploited
by an attacker.

These results are important because the injection of security vulnerabilities involves
different operators than the injection of software fault. In order to understand the dif-
ferences, we analyzed a similar approach made by Durães et al. [13] on software faults.
The authors analyzed more than 650 real software faults and identified the most frequent
operators. The results are shown in Table 3.2.
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Table 3.2: Most frequent fault types occurring in software, from [13]

Operator Description Type #Vulnerabilities

MIFS Missing if construct plus statements Algorithm 71 (10.6%)

MLAC Missing AND EXPR in expression
used as branch condition

Checking 47 (7%)

MFC Missing function call Algorithm 46 (6.9%)

MIA Missing if construct around state-
ments

Checking 34 (5.1%)

MLOC Missing OR EXPR in expression
used as branch condition

Checking 32 (4.8%)

MLPA Missing small and localized part of
the algorithm

Algorithm 23 (3.4%)

WLEC Wrong logical expression used as
branch condition

Checking 22 (3.3%)

MVAE Missing variable assignment using
an expression

Assignment 21 (3.1%)

MFCT Missing functionality Function 21 (3.1%)

As it is possible to observe in Table 3.2, the majority of the software faults are re-
lated with missing constructs. As humans we make mistakes, therefore we can forget a
functionality or forget to make a function call. Also this type of faults is the one that
represents a bigger difficulty to the testing techniques. The common testing techniques
exercise the code based on its structure, however, if something is missing, the technique
cannot exercise it as it is not there.

In order to make the comparison between the two studies easier, we made a Venn
diagram showing the most common operators associated with software faults and the most
common operators associated with security vulnerabilities. The diagram is presented in
Figure 3.3.

Figure 3.3: Most common operators associated with software faults and security vulnera-
bilities

It is possible to observe in Figure 3.3 that some operators that cause software faults
are also associated with security vulnerabilities. This can be explained by the fact that
even though the objective of our analysis [7] was focused on the faults that cause secu-

30



Field study on security vulnerabilities

rity vulnerabilities, they are still software faults. Therefore, it is expected to find some
operators that are common in both sides.

As it is also possible to observe, our study [7] shows new operators which have not
been included in the emulation of software faults like, the Extraneous function call (EFC),
the Extraneous IF construct plus statements (EIFS) and the Wrong algorithm — code
was misplaced (WALR) types of defect. Unlike the rest, the extraneous operators usually
do not compromise the correct behavior of the software, otherwise they would be detected
by common software testing techniques. Instead they execute code that is unnecessary to
the correct outcome but may contain faults. The same happens with the WALR operator.
A change in the order of the statements may not cause any change to the output of the
software but, may cause the software to enter into a faulty state which can open a security
breach.

The MIFS and MFC operators are the most common among the software faults and
also the most prone to create a security vulnerability. Missing some kind of expression
may lead to an incomplete memory cleaning or to the lack of a null check, therefore, these
operators can easily lead to a security vulnerability.

From the software vulnerabilities side, it is possible to observe that four of the operators
most common types of faults are related to if-statements (MLAC, MIFS, WLEC and
MLOC). Missing or performing a wrong check on a variable or a memory address can lead
to incorrect executions in which an adversary may exploit the lacking coverage. Also two
of most common types of faults are related to function calls (MFC and EFC).

3.2 Study expansion

Based on the results obtained by the field study, it is possible to understand which type
of faults are more prone to create a security vulnerability, however, it is still important
to understand which type of functions are more likely to contain these faults. In order to
accomplish this, we decided to deepen our study [7]. Thus, from this point onward, it is
presented the work carried in the scope of this dissertation.

From our previous study, we created a data set with information about the fault
injection operators required to revert the correction of each vulnerability, the file and
function where the vulnerability was and the number of files and the number of functions
it affected. With access to this information and since the three projects are open source, we
were able to collect the source code from each function before the vulnerability correction.
Based on the code from the faulty functions, we measured the cyclomatic complexity and
the number of line of code to understand the type of functions that contain vulnerabilities.
We decided to focus the analysis on the vulnerabilities that affected a single function, which
covers up to two-thirds of all the vulnerabilities. Out objective is to develop an approach
more focused on the most frequent faults, increasing the probability of achieving good
results.

Vilela et al. [60] conducted a study about the evaluation of simple metrics as good
predictors of software faults. In this study, the authors concluded that the number of lines
tend to be a good indicator of the presence of faults. So we collected all the functions
analyzed in our study and searched the original source code before the correction. In a
first approach, we analyzed the number of non-commented lines of code (nloc) of these
functions. The results are presented in the graph of Figure 3.4. The graph presents the
probability of the presence of a software fault according to the number of lines.
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Figure 3.4: Lines of code distribution of the functions analyzed and all functions

The functions analyzed represent all the functions that were present in the data set and
contain security vulnerabilities. As it is possible to observe in Figure 3.4, the functions
with the security vulnerabilities have, in average, a higher number of lines of code than
the rest of the functions. When the number of lines of code grow it can make functions
more complex and harder to fully test them. Therefore, it is possible that the number of
lines is related with the tendency to contain security vulnerabilities, in which functions
with a higher number of lines tend to be more prone to contain security vulnerabilities.

Schroeder [61] also found a positive correlation between cyclomatic complexity and the
number of defects, as functions and methods that have higher complexities tend to also
contain the most defects. And, since occasionally the program size is not a controllable
feature of software, McCabes’s number has been used as a guideline to reduce the number
of faults in software. Therefore, we made an analysis to understand if the cyclomatic com-
plexity is also a good guideline of functions with security vulnerabilities. So we compared
the complexity of the faulty functions in each software project with the rest of the code.
The results are presented in Figure 3.5. The graph presents the probability of the presence
of a software fault as function of cyclomatic complexity.

Figure 3.5: Complexity distribution of the functions analyzed and all functions
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As it is possible to observe in Figure 3.5, the functions analyzed tend to have, in aver-
age, a higher complexity than the rest. When the cyclomatic complexity of the functions
tend to grow it can become harder to fully test them. Therefore, it is possible that the
cyclomatic complexity is related with the tendency to contain security vulnerabilities. It
is also possible that a higher complexity is related with a higher number of lines of code.
Even though it is not a direct relation, functions with a low number of lines of code are
unlikely to have high cyclomatic complexities. Thus, we can conclude than functions with
higher complexities may be more prone to contain security related faults.

As we can see both metrics can be a good indicator of problematic functions, although
these two metrics are not totally independent. However, this information alone cannot
fully prove that the functions with higher complexity are more prone to have faults that
cause security related problems. It is needed a more detailed research to validate these
findings and to derive more generalized results. However, for the experiment we are trying
to produce, these results already provide us with enough information for what we want
to accomplish. Therefore, we used this metric as a reference to find similar functions to
conduct our practical approach. Once again, we analyzed the functions referred in the
data set to understand how their cyclomatic complexity is distributed. The results are
presented in Table 3.3.

Table 3.3: Cyclomatic complexity of functions with software vulnerabilities

Cyclomatic complexity
Minimum First quartile Median Third quartile Maximum

Software
Linux 1 6 12 25 187

OpenSSH 1 9 16 31 85
Xen 1 4 13 43 927

Average 1 6.3 13.7 33 388.7

The results presented in Table 3.3 are very important for the project because they
justify that the operators presented in Table3.1 could also be applied to our project. In
order to apply the most frequent operators, we need to use functions that are similar
to the ones that contain security vulnerabilities. As it is possible to observe the smaller
complexities are very similar, however in the higher complexities such as the third quartile
and the maximum the Xen presents a much higher complexities compared with the others.

We calculated the median of the values to avoid the outliers that could be found in the
data set. If we used the mean, this would not represent how the values are distributed.
And, as we can observe, the maximum complexity of Xen’s functions is very high and it
could become difficult to find functions with similar complexities to the average.

Another observation that was made during the expansion of the analysis was that
many vulnerabilities seem to be related with the constants in the code. Some examples of
real vulnerabilities taken from the three software projects analyzed that are related with
constants are shown bellow.

if (!( quirks & CP_RDESC_SWAPPED_MIN_MAX ))

return rdesc;

+ if (* rsize < 4)

+ return rdesc;

+

for (i = 0; i < *rsize - 4; i++)

if (rdesc[i] == 0x29 && rdesc[i + 2] == 0x19) {
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rdesc[i] = 0x19;

Listing 3.1: Example of a software vulnerability 1

In example 3.1 it is possible to observe that to correct the software vulnerability it was
required the addiction of an if construct plus statements. In the binary expression used
as condition it was used a constant in order to terminate the function earlier and prevent
a denial of service through integer underflow. Therefore, if the function was tested where
the value of rsize was higher and lower than four it would be possible to expose the fault.

for (i = 0; i < DRM_VMW_MAX_SURFACE_FACES; ++i)

num_sizes += req ->mip_levels[i];

- if (num_sizes > DRM_VMW_MAX_SURFACE_FACES *

- DRM_VMW_MAX_MIP_LEVELS)

+ if (num_sizes <= 0 ||

+ num_sizes > DRM_VMW_MAX_SURFACE_FACES *

DRM_VMW_MAX_MIP_LEVELS)

return -EINVAL;

size = vmw_user_surface_size + 128 +

Listing 3.2: Example of a software vulnerability 2

To correct the vulnerability shown in 3.2 it was required to add a binary expressions
(num sizes <= 0). Once again on one of sides of the expression is a constant. Therefore, if
this condition was tested the num sizes with a value above and another value below zero,
the bug would probably arise and be corrected.

if (options ->permit_local_command == -1)

options ->permit_local_command = 0;

- if (options ->use_roaming == -1)

- options ->use_roaming = 1;

+ options ->use_roaming = 0;

if (options ->visual_host_key == -1)

options ->visual_host_key = 0;

Listing 3.3: Example of a software vulnerability 3

In the example shown in 3.3 it is possible to observe that the constant attributed to
the options-¿use roaming was wrong. It was also used another constant in the binary
expression used as condition for the if statement. Therefore, if the function was testing
where options-¿use roaming had the value -1 and a value different that -1 would probably
result in the detection of the bug and posterior correction, preventing the occurrence of a
security vulnerability.

+

+ if (nresp > 100)

+ fatal ("%s: too many replies", __func__ );

+

for (i = 0; i < nresp; i++) {

int j = context_pam2.prompts[i];

Listing 3.4: Example of a software vulnerability 4
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In order to correct the vulnerability shown in 3.4 it was added a if construct and
statement. The binary expression used as condition for the if construct uses a constant in
order to prevent the occurrence of an integer overflow and posterior privilege escalation.
In this case, it was required to test the function with a value higher than 100 in order
to detect the vulnerability, but once again the vulnerability shows to be related with
constants.

if ( op_bytes == 8 )

+ {

vcpu_must_have_cx16 ();

- op_bytes *= 2;

+ op_bytes = 16;

+ }

+ else

+ op_bytes = 8;

Listing 3.5: Example of a software vulnerability 5

In example 3.5 the problem was that the value of op bytes was being miscalculated.
There was missing an else construct and statement with an attribution of a constant to
op bytes. In this case the function needed to be tested where op bytes had a value equal
to eight and a value different than eight, and in the second case, the bug would probably
arise.

As it is possible to observe many of the vulnerabilities analyzed seems to be related
with the constants present in the code. Even though they may not affect directly the
vulnerability, as they are only used to calculate the value that causes the problem, but in
many cases they appear related with if-statements that cause the vulnerabilities.
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Chapter 4

Testing for security vulnerabilities

With the results collected by Barbosa et al. [7] and the results obtained from our analysis
we can make the following considerations.

• The majority of the vulnerabilities only affects one function and up to three opera-
tors.

• Functions with higher complexities tend to be more prone to contain security vul-
nerabilities.

• The most frequent faults associated with security vulnerabilities are related with
function calls and if-statements.

• The analysis of real security vulnerabilities showed that some were related with the
constants present in the code.

4.1 Workflow and implementation

We decided to explore the results obtained from our analysis and create an approach to
meet the vulnerabilities analyzed. Firstly, we created a tool that designs test cases based
on the use of the constants present on the code. This methodology represents a grey-box
testing in which the code is tested as a black-box, however, we take advantage of some
features of the code to create the test cases. We also decided to focus our approach on the
detection of extraneous faults. As the extraneous type of faults do not change the output
of the software, we explored that and developed a methodology to detect the statements
that do not alter the outcome of a program.

The workflow of the tool is presented in Figure 4.1.

The tool was developed in Java and uses the CDT plugin from Eclipse to parse the
source code and build the respective Abstract syntax tree (AST). We chose to use the
CDT plugin from Eclipse to help in the implementation since it provides very useful
characteristics to support source code modifications. This plugin also uses the Visitor
Pattern which means that it traverses all the nodes from the AST. So for the literal based
testing, the tool inspects all the literals found in the AST. Based on the formal parameters
of the target function, the constants are either used or throw away. For example, if a
functions receives a integer as input, all the integers are saved while the other data types
get discarded. Although some of them could be casted, we decided to not do this because
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Figure 4.1: Developed tool workflow

this way we would not use the literal found but a modified version of it. In addition, if
the target function does not have any formal parameters, the code is analyzed in order to
perceive whether or not the inputs are received by standard input, i.e. received from the
terminal/console. If it’s the case, the tool generates text files based on the strings found in
the source code and some standard files. These standard files are composed by an empty
file, a small file and a big file.

The developed tool also have the option to create test cases using a combinatorial test
case generation. When the AST has been traversed and all the possible inputs saved,
it uses the functionalities of the Automated Combinatorial Testing for Software (ACTS)
tool [62]. This tool receives the list of formal parameters and a list of inputs for each
parameter and generates a combinations of inputs in order to increase the test coverage
without exponentially increasing the number of test cases.

At first, we also wanted to use the limits of each data type in the generated test
cases. This way, we could also test for boundary faults. However, when applied to the
selected function, they would crash. After some research we discovered that the functions
were crashing because they were allocating too much memory. Some of these functions
use dynamic memory allocation in which the size depends on the parameters received,
therefore, when the function tries to allocate a enormous quantity of memory it overflows
the stack. So we had to abandon this idea and continue only with the constants present
in the code.

We also created a more focused approach aimed at the extraneous type of faults. In real
software projects the correction of this type of faults is done by the removal of instructions.
Thus, if the software continues to operate properly, it means that these instructions may
not be contributing to the system’s output as the system continues to operate correctly.
Therefore, they may be useless to the program and cause security problems as they may
carry external bugs.

To this extent, the main focus of our approach was the removal of small parts of
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the code, more specifically, function calls and if-statements, and evaluate whether or not
the program would still be executed properly. We used function calls and if statements
because, as observed in the previous section, the most frequent faults related with security
vulnerabilities are associated with function calls and if-statements. The main idea behind
our approach is to create a base output, from the normal execution of the program. Then
remove a small part of the code, execute the program again and compare the output given
with the base output. If the output is the same, the removed part of the code may be
unnecessary. After this, repeat the same process for every function call and if-statement.

This approach was integrated in the previously developed tool. It also uses the CDT
plugin to perform the modifications to the AST. As the objective was to remove small
parts of the code, the easiest way to do it is to emulate missing type faults. These faults
correspond to the emulation of the MFC and the MIFS operators. Therefore, we re-used
part of the ucXception [40] and applied it to the problem. The tool creates the AST based
on the target function, and when certain constrains are met, it performs the necessary
modifications to the AST. When a mutant version of the program is created, the tool
compiles it, executes it and saves the output given. This output is then compared with
the output from the initial version of the program. In order to compare the outputs, the
Jaro Winkler distance between them is calculated. The Jaro Winkler distance is a metric
used to calculate the distance between two strings that outputs a number between 0 and 1.
Based on the number obtained, the tool is capable of distinguishing the similar executions
and warn about the part of the code that may be unnecessary.

4.2 Usage

In order to be able to use the developed tool, it is important to note some particularities
related to its usage. The structure of the command to run it is the following.

java -jar TestingTool.jar File [Option...]

File: .c or .cpp file

Option:

• -p - Pair wise option - Uses the ACTS tool to create orthogonal arrays to combine
the inputs created.

• -c - C Parser - Uses the GNU C Parser as provided by Eclipse CDT. (default)

• -cpp - C++ Parser - Uses the GNU C++ Parser as provided by Eclipse CDT.

• -f - Focused testing [Function...] - Experimental method that removes func-
tionalities and compares the output in order to find extraneous code. (The function
name is case-insensitive)

• -k - Keep output files - Keep the auxiliary files used during the execution.

• -h - Help - Show the help menu.

• -d - Debug option - Prints the operations the tool is performing and additional
notes related with the execution.
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Below are presented some examples of commands to execute the testing tool, for dif-
ferent situations.

$ java −j a r Test ingTool . j a r f i l e . c −p

This command creates test cases using orthogonal arrays to combine the inputs, for
the functions present in file file.c.

$ java −j a r Test ingTool . j a r f i l e . c −d −f

This execution activate the DEBUG option which shows information related to the
steps that are made by the tool, and it uses the approach focused on the extraneous type
of faults for all the functions present in file file.c.

$ java −j a r Test ingTool . j a r f i l e . c −f=function

This execution differs from the previous one by specifying the function where the
focused testing should be perform.

4.3 Limitations

The developed tool is capable of creating test cases and testing a vast set of function,
however, it contains some limitations that restrict the extension of its use.

One of these limitations is when the target function uses preprocessor directives and
macros. The tool was developed using the features of CDT plugin and in order to build
the AST the plugin parses the source code, removing certain parts of the code. Thus,
when the tool searches for extraneous constructs creating mutant versions of the original
program, the mutant version does not contain these directives and macros. One solution
to this problem could be an initial scanning of the code to save all the statements that
the CDT plugin discarded. In addition, when the mutant versions of the program were
created, the tool would insert the saved statements again.

Another limitation is the data types that it covers. The developed tool is capable of
creating test cases for functions that receive standard C data types as formal parameters
and for functions that receive inputs by terminal/console. However, there is a much larger
set of data types available that the tool does not cover. Another problem concerns the
function that receives arrays and structures as input. Even though it is not a limitation,
since the tool is capable of creating inputs for these cases, they usually present worst
results than the functions that receive simple data types. However, the tool is limited to
arrays of simple data types and to only one dimension.
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Chapter 5

Results

In order to evaluate the feasibility of the developed tool, it was decided to perform a
representative security vulnerabilities injection to compare its detection of security vul-
nerabilities with the commonly used testing techniques. With this in mind, in this chapter,
we present the results from the application of two testing techniques in comparison with
the results obtained from the developed methodology.

First, we searched for functions publicly available, which followed approximately the
complexities presented in Table 3.3. As said before, it is important to use functions that
follow similar complexities with the functions analyzed in order to be able to apply similar
faults. In other words, in order to inject software vulnerabilities it is required software
that is prone to contain security vulnerabilities. Most of the functions were picked from
The Computer Language Benchmarks Game web page [63] and one was provided by the
advisor of this dissertation. We decided to use these functions because the objective of the
web page is to compare the performances of simple algorithmic problems between different
programming languages. Therefore, it contains the best implementations of the problems
for each programming language. In addition, we also needed to use functions without
faults, however, we cannot prove that some piece of code is free of faults. Thus, using
the best implementations we could reduce the probability of the code already containing
faults.

To perform the fault injection, we decided to focus on the five functions with a small
complexity and five functions with a medium complexity, according to the results presented
in Table 3.3. We chose to not include functions with high complexity due to the difficulty
of finding functions with similar complexity. Although it still represents a large set, it
is important to consider that the functions analyzed have a complexity higher than the
usual. Hence, the difficulty in finding similar functions.

The description and some metric of the selected functions are presented in Table 5.1.

For the representative emulation of security vulnerabilities, we decided to focus on
two missing, two wrong and two extraneous operators. Based on the most frequent fault
operators, we decided to focus on the EFC and the EIFS operator for the extraneous
construct, the MIFS and the MFC operator for the missing construct and for the wrong
construct, we choose the WLEC and the WALR operator.

To inject the security vulnerabilities, we used a software fault injection tool previously
studied, the ucXception suite [40]. This tool produces a set of patches, each consisting of

1Perfect binary tree - A binary tree in which all internal nodes have two children and all leaves are at
the same level.
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Table 5.1: Functions selected for the fault injection

Function Description
Cyclomatic
complexity

Number
of lines

binary-trees Create perfect binary trees 1 4 47
pidigits Generate digits of Pi 5 22
hondt D’Hondt method implementation 6 38
regex-redux Manipulate DNA sequences 6 77
k-nucleotide Count all the nucleotide sequences 7 21
n-body Model the orbits of Jovian planets 12 39
fasta Generate DNA sequences 12 58
fannkuch-redux Fannkuch benchmark implementation 13 56
reverse-complement2 Converts a DNA sequence into its reverse 14 46
reverse-complement Converts a DNA sequence into its reverse 14 70

a single emulation operator instance. However, as this tool is targeted at the emulation
of software faults, it does not feature the operators required for the emulation of security
vulnerabilities, such as the WALR, the EFC and the EIFS. The WALR was based on one
operator that the tool supports, the Missing small and localized part of the algorithm
(MLPA). The MLPA operator consists on the removal of a small part of the code. Thus,
to create the desired fault, the WALR, we changed the patch file to, instead of removing
a small part of the code, place that part in a different location. The rest of the operators
were manually created based on the real defects analyzed in the data set in order to be the
more realistic possible. The number of patch files created for each function is presented
in Table 5.2.

Table 5.2: Number of patches for each function

Function
Missing Wrong Extraneous Total of

patchesMIFS MFC WLEC WALR EIFS EFC

binary-trees 0 5 5 4 3 5 22
pidigits 3 9 4 4 1 4 25
hondt 1 0 5 2 1 0 9
regex-redux 1 15 6 3 3 2 30
k-nucleotide 2 8 12 5 3 4 34
n-body 0 1 9 4 4 3 21
fasta 4 1 8 3 3 5 24
fannkuch-redux 2 1 8 3 3 2 19
reverse-complement2 6 3 9 6 4 2 30
reverse-complement 4 10 7 8 3 4 36
Total 23 53 73 42 28 31 250

As it is possible to observe in Table 5.2, there are, in some cases, zero patches for an
operator. This can happen if the function in question does not contain the instructions
that the operator affects. For example, the n-body function does not contain if conditions,
therefore it is impossible to emulate the MIFS operator. The same problem occurs in the
hondt, where the function does not call any external function.

As it is also possible to observe, the number of patches from the missing and extraneous
type are relatively close, however, the wrong instances have a much higher number. This
can happen because the missing constructs have the limitations of needing the instruction
that the operators affect. The EFC has the limitation as it is required to have some
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external functions to call in order to implement such faults. As in the case of the hondt
function, it does not have any function, therefore, the number of EFC operators are zero.
However, the wrong construct does not have any limitations, and its nature allows for
large growth of faults. For example, in a if statement, if the condition is i < 10, applying
the WLEC operator, we can change the condition to i <= 10, i > 10, i >= 10, i == 10

or i != 10, and all of them represent a wrong logical expression.

First, we decided to evaluate the detection of a black-box testing technique. We decided
to use random testing as it is commonly used in the industry since it represents a technique
that it is cheap to implement and easy to understand [64], and then complemented with a
more sophisticated technique. It is also able to detect the basic faults that can be found
by simply executing the program.

The metric used to evaluate the effectiveness of the testing technique is based on the
mutation score in the domain of mutation testing. However, in our analysis we cannot
refer to mutation score since it is a representative software fault injection. What we are
trying to accomplish is an emulation of real mistakes that programmers make, instead
of simple mutations on the source code. Therefore, we define it as detection rate, which
is the quotient between the number of detected faults and the total number of injected
faults.

The testing environment was created by an oracle, whose objective was to compare
the output given by the correct version of the program with the output from the program
with the fault. Since we are performing random testing, the function needs to receive
randomly generated inputs. These inputs are created using a pseudorandom number
generator and adapted to the domain of each function. However, we needed to initialize
the generator with the same seed in both executions (the correct and the faulty one) to
prevent it from creating different inputs in executions that must be similar. Each function
is executed several times in which the number of executions depends on the complexity of
the functions. In order to simplify the method, we defined the number of executions as the
McCabe’s number of the functions. Therefore, the more complex functions are executed
more times than the smaller ones.

We applied several faults using the respective patch files, which contained the modifi-
cation necessary to emulate a security vulnerability. Then we compared the output from
the faulty execution and the correct output. If they are equal, it means that the injected
fault was not detected. On the other hand, if the output is different then it means that
fault was detected by the testing technique. After testing all the functions, we obtained
these results presented in Table 5.3.

It is possible to observe in Table 5.3 that, on average, almost 60% of the emulated
faults remain undetected using a random testing technique. As we can see, in some of the
functions no fault is detected. This can happen because some functions need to receive
as input a string in the FASTA format. The FASTA format is a text based format used
to represent nucleotide sequences or peptide sequences [65]. Therefor, when the input is a
random generated string the program stops the execution earlier because the input given
is not in the correct format. Thus, the program is not completely exercised, not allowing
the detection of the injected faults.

As we are injecting faults that represent security vulnerabilities, the ones that are
being overlooked can be the ones that cause the security vulnerabilities. In terms of
security, detecting 40% of all faults is a low detection ratio. In a real software project it
is unthinkable to deploy it with this amount of security vulnerabilities still present in the
source code. Therefore, one can understand that, even though we are applying a shallow
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Table 5.3: Results from random testing

Function
Number of

faults
Test suite

size
Undetected
faults (%)

binary-trees 22 4 54.6
pidigits 25 5 32.0
hondt 9 6 55.6
regex-redux 30 6 46.7
k-nucleotide 34 7 100.0
n-body 21 12 33.3
fasta 24 12 41.7
fannkuch-redux 19 13 31.6
reverse-complement2 30 14 96.7
reverse-complement 36 14 100.0
Total 250 93 60.4

technique, there are improvements that can be made.

To obtain a better comprehension of the types of faults that are being overlooked,
our results were grouped according to their nature (missing, wrong and extraneous). The
results obtained are presented in Table 5.4.

Table 5.4: Detailed results from random testing

Function
Missing Wrong Extraneous

Total Undetected Total Undetected Total Undetected

binary-trees 5 2 9 4 8 6
pidigits 12 3 8 3 5 2
hondt 1 0 7 4 1 1
regex-redux 16 10 9 3 5 1
k-nucleotide 10 10 17 17 7 7
n-body 1 0 13 6 7 1
fasta 5 2 11 3 8 5
fannkuch-redux 3 0 11 4 5 2
reverse-complement2 9 8 15 15 6 6
reverse-complement 14 14 15 15 7 7
Average 64.5 % 64.3 % 64.4 %

Random testing was unable to accomplish a higher detection rate because it is a shallow
technique that does not take into consideration the structure of the code. As the inputs are
randomly generated, the technique could be always exercising the same execution path,
missing the execution paths that would traverse through the inserted fault.

As mentioned before, some functions do not detect any type of faults due to the
inputs being randomly created. However, in the reverse-complement2 function, one fault
is detected. This happens because one of the faults is injected before the verification of
the input, making it possible to detect that fault.

Also as we can observe in Table 5.4, there is no specific type of fault that requires more
attention since random testing detects all types of faults likewise since all types of faults
have a similar detection rate. As said before, random testing is a shallow technique from
which it is expected to detect only the basic faults.
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As said before, random testing is usually complemented with a more sophisticated
technique. We decided to evaluate control flow testing because it represents a more focused
technique since it is based on an analysis of the internal structure of the code. Moreover,
most of the bugs result in control flow errors, therefore, they can be caught using control
flow testing [47]. In order to test the selected functions, we created a set of test suites for
each function. It is important to note that we created test cases to test the faulty version
of the program. This means that if the fault injected creates a new execution path, this
path is also tested. Also if a fault removes a execution path, the test case that tested that
path is removed. When testing real software, the testers create the test cases based on
the code with bugs, therefore we need to follow the same approach.

The testing environment is similar to one created for the random testing. One of the
differences is that each program is executed with inputs manually created based on the
control-flow of each program. Then for each fault, inputs are added or removed according
to the type of fault. Then the oracle compares the output given by the original version of
the program with the output from the program with the fault. If the outputs are different,
it means that the fault was detected by the test suite. If the output from the mutant
program is equal to the output given by the correct version of the program, then the type
of fault is collected. After testing all the functions we obtained the results presented in
Table 5.5.

Table 5.5: Results from control flow testing

Function
Number of

faults
Test suite

size
Undetected
faults (%)

binary-trees 22 2 54.6
pidigits 28 5 28.0
hondt 9 6 11.1
regex-redux 30 3 50.0
k-nucleotide 34 3 32.3
n-body 21 2 38.1
fasta 25 5 41.7
fannkuch-redux 19 3 36.8
reverse-complement2 30 2 56.7
reverse-complement 37 5 47.2
Total 250 36 42.0

Comparing these results with the ones obtained using random testing we can observe
that the detection rate has increased slightly. This behavior is expected since we are using a
more thorough testing technique, allowing it to exercise more thoroughly all the execution
paths functions. Also, unlike what happened with random testing, all the functions have
faults that have been detected. As control-flow has access to the source code and its
specification, we could create test cases in the required format for each function.

Although the detection rate is higher that in random testing, it still fails to detect
many vulnerabilities. The requirements for security testing are more restricted, therefore,
detecting 60% of all injected faults is still a low detection rate. Thus, there are some
improvements that can be made in order to detect those vulnerabilities.

To get a better comprehension of the types of faults that are being overlooked, our
results were grouped according to their nature (missing, wrong and extraneous). The
results obtained are presented in Table 5.6.

As one can observe in Table 5.6, the undetection rate is near 40%, except for the
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Table 5.6: Detailed results from control flow testing

Function
Missing Wrong Extraneous

Total Undetected Total Undetected Total Undetected

binary-trees 5 2 9 4 8 6
pidigits 12 2 8 3 5 2
hondt 1 0 7 1 1 0
regex-redux 16 10 9 3 5 2
k-nucleotide 10 1 17 7 7 3
n-body 1 0 13 4 7 4
fasta 5 2 11 3 8 5
fannkuch-redux 3 0 11 5 5 2
reverse-complement2 9 4 15 8 6 5
reverse-complement 14 6 15 8 7 3
Average 39.5 % 34.8 % 59.4 %

extraneous type of faults. Control-flow represents a more complete testing technique, as
it tests all the execution paths of the functions, therefore, it is expected to present better
results than random testing.

The extraneous type of faults are the ones less detected in our experiment and the ones
that appear often associated with security faults, making us conclude that these types of
faults are the ones that need more attention in software development. As the instructions
do not affect the output of the functions, the commonly used testing techniques may fail
to detect this type of defects.

The detection rate of wrong operators is higher due to the type of fault it creates.
Altering the structure of the code by changing the position of a block of instructions or
changing the condition of a branch instruction can alter the whole execution of the code.
This way, the testing technique can easily detect the presence of a fault. However, the
detection rate is not higher because from the change of place of an instruction block may
also result no change. A clear example of this is when the instructions are independent,
i.e. if we have two variables and need to make an operation to each one, and neither the
operations nor the variables have a relation with each other, it is normal to change the
order of the instructions, as there is no change in the output.

The missing constructs have a similar detection rate than the wrong. As we are
using a technique focused on exercising all the execution paths, it was able to exercise the
execution paths that would pass through the removed instructions, detecting the ones that
are missing. In contrast to what happened with random testing, as inputs are randomly
generated they may be following the same path and not fully exercising the program.

Using the developed tool, we were able to create test cases for each selected function.
We developed a oracle similar to the ones used previously. It executes the program with
the test cases created by the developed tool to get the correct version of the output. Then
it injects a fault into the program and executes it again with the same inputs and compares
the output. If the output is equal, it means that the fault was not detected. After testing
all the functions, we obtained the results presented in table 5.7.

In general, we can see that our methodology presents a higher undetection rate than
the two testing techniques previously evaluated. However, with the missing type of faults
we were able to get better results than random testing.

Another problem we found was that the test cases involving structures, arrays and
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Table 5.7: Detailed results from literal based testing

Function
Missing Wrong Extraneous

Total Undetected Total Undetected Total Undetected

binary-trees 5 2 9 3 8 5
pidigits 12 3 8 3 5 2
hondt 1 1 7 5 1 1
regex-redux 16 9 9 3 5 1
k-nucleotide 10 10 17 17 7 7
n-body 1 1 13 13 7 7
fasta 5 5 11 11 8 8
fannkuch-redux 3 0 11 6 5 3
reverse-complement2 9 6 15 13 6 6
reverse-complement 14 6 15 15 7 7
Average 56.6 % 77.4 % 79.7 %

strings have worse results than the rest. The developed tool is capable of creating test
cases involving structures, however, as it is a more complex data type, the idea of using the
constants present in the code may not be enough. The same happens with the functions
that receive inputs via terminal/console. The tool is capable of detecting if the functions
use the stdin to receive the inputs, and creates a set of text files to exercise the target
function. However, using only the strings present in the code may be a shallow technique
and it is necessary to have a deeper understanding of the function to perceive the type
of inputs it receives. One of the cases is when the functions need to receive as input a
string in the FASTA format. First the function analyze the input received in order to
understand if it presents the correct format. However, as the test cases are created based
on the strings present in the code, the tool is not capable of understanding of the inputs
specifications, presenting worse results than the functions that receive the simple data
types as input.

As one can observe, in some cases there were functions in which no fault was detected.
This problem arises the same way as in random testing. Although the test cases were
created based on the constants present in the code, the functions are still tested as a
black-box. Therefore, the developed methodology encountered the same problem with the
functions that need to receive as input a string in the FASTA format. As the input do
not correspond to the required format the functions stop the execution earlier, preventing
the complete exercise of the code.

However, we were expecting to obtain a slightly higher fault detection rate than random
testing. Since our approach tests the code similarly to random testing but in a more
focused way, we were expecting it to be able of producing better test cases. However,
the main objective of this dissertation is to complement the commonly used software
testing techniques. Thus, we made an analysis of the faults not detected by the used
testing techniques (random and control flow) in comparison with the faults detected by
the developed approach. In table 5.8 are presented the faults that our approach detected
that the previously used techniques were unable to detect.

As it is possible to see, the results show that our approach was capable of detecting
some faults that other testing technique failed to do so. As said before, the objective of
this dissertation is to complement the testing techniques, and for the selected functions
we were able to accomplish it. The developed tool detected two vulnerabilities in the
binary-trees function. This function only receives one input which is a integer, therefore,
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Table 5.8: Faults detected only by our methodology

Function
Missing Wrong Extraneous

Total Undetected Total Undetected Total Undetected

binary-trees 5 0 9 1 8 1
pidigits 12 0 8 0 5 0
hondt 1 0 7 0 1 0
regex-redux 16 0 9 0 5 0
k-nucleotide 10 0 17 0 7 0
n-body 1 0 13 0 7 0
fasta 5 0 11 0 8 0
fannkuch-redux 3 0 11 0 5 0
reverse-complement2 9 0 15 0 6 0
reverse-complement 14 0 15 0 7 0
Average 0.0 % 0.9 % 1.7 %

as the tool uses the constants present in the code it may have been able to find a corner
case that the other testing techniques did not cover.

Our tool was also used to detect the presence of functionalities that may be unnecessary
to the correct operation of the software. We developed an oracle that injects extraneous
faults and tests the functions with the developed tool. The tool executes the original
program to create a base output. Then it removes a functionality and executes the program
again and warns if the removed functionality was superfluous or not, i.e. if the removed
functionally affected or not the outcome of the program. If the tool warns that the
extraneous fault injected is unnecessary, it means that the fault was detected. If the fault
injected alter the output, then the tool does not consider it superfluous, which means that
the fault was not detected. The results obtained are presented in Table 5.9.

Table 5.9: Focused extra functionalities

Function
EIFS EFC

Total Undetected Total Undetected

binary-trees 3 1 5 1
pidigits 1 0 4 0
hondt 1 0 0 0
regex-redux — —
k-nucleotide 3 1 4 2
n-body 4 1 3 0
fasta 3 2 5 2
fannkuch-redux 3 1 2 0
reverse-complement2 4 1 2 1
reverse-complement 3 1 4 2
Average 32.0 % 27.6 %

As is it possible to observe, the undetected faults represent 30% of all the faults
injected. Comparing these results with the ones previously obtained from the control flow
and random testing, this methodology seems to be able to reduce the undetection rate
from 60% to 30%, which represents half of the undetection rate of commonly used testing
techniques.

In one of the selected function, we were unable to extract results. The regex-redux
function uses C preprocessor directives. And when the CDT plugin parses the code, it
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removes all the directives and comments present in the code. Thus, when the tool creates
the mutant versions of this program, they do not contain the directories, which makes it
unable to execute. This way, it was not possible to extract results from it.

The EIFS operators represent a bigger difficulty to be detected using our approach
because these operators can represent a larger number of instructions. In other words, a
function call is usually composed with only one instruction, however, the if-statement is
usually composed by a varied number of instructions, always larger than one. Therefore,
the removal of an if-statement is more prone to change the output of the program. And,
in this case, if the output is different than the base output, it means that the fault was
not detected.

Although some of faults remain undetected, and in terms of security this situation is
still a matter of concern, we were able to complement the testing technique studied, which
is the main objective of this dissertation.
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Chapter 6

Discussion

6.1 Advantages and disadvantages

The main advantage of our approach is that it is capable of detecting security vulnera-
bilities that the commonly used testing techniques fail to do. Based on the results from
the previous section, it was possible to observe that our approach is capable of detecting
two security vulnerabilities that random testing and control-flow testing are unable to
detect. In addition, regarding the extra operators, our methodology was able to increase
the detection rate of the other testing techniques by 30%, which is the double what they
had achieved.

A disadvantage of the tool is that it still has some limitations, as it cannot be applied
to all types of functions. Before using it, it is important to keep in mind the limitations
the tool presents. As said before, the detection of security vulnerabilities in functions
that receive arrays and structures presented worst results than in functions that receive
standard C data types. In addition, for the superfluous code testing, when the target
function should not contain C preprocessor directives as the CDT plugin removes them
making it impossible to produce results.

Another disadvantage is that the developed tool alone does not have a high detection
rate. The objective was to complement the other testing techniques and not the develop-
ment of a new methodology capable of detecting all security vulnerabilities. Therefore, it
is recommended to use other testing techniques to test the software and then complement
them with the developed tool.

6.2 Work plan

Initially, the work plan was defined so that all the objectives of this project could be
completed. With this draft, it was possible to plan ahead the allocation of time needed
for each task.

First Semester
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Figure 6.1: Gantt chart for the expected work plan

Task 1 - State of the art study

The first task consisted in developing the knowledge of the topics on which this project is
based, with particular attention to software testing, emulation of software faults, security
vulnerabilities and software faults in general. This work should result in the writing of
the state of the art chapter in the dissertation.

Task 2 - Study of security faults

It is important to understand the conditions that lead a simple mistake to create a security
vulnerability. These conditions can be related to the fault itself or the code in which the
fault is found. Therefore, it is crucial to fully understand the security faults to proceed to
the next stages. This study was already initiated by us, but for this dissertation it was
decided to deepen the analysis to obtain more detailed results.

Task 3 - Choice of tools and preparation of the test environment

This task consists in choosing the best tools for the test suites creation based on the
test methods previously studied. It will also be necessary to choose a representative set
of functions and fragments of code from open-source projects in C language that will
be targeted on the test suites. The ucXception tool will be used for the software fault
emulation, followed by an approach inspired by mutation testing.
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Task 4 - Evaluation of the existing test methodologies

The objective of this task is to evaluate the software testing methodologies chosen during
the previous studies (e.g., control-flow testing, data-flow testing and black-box testing).
An emulation of faults in various functions of the chosen code will be performed, using
a tool already created (ucXception). The defects to be inserted will be representative of
security vulnerabilities, being this is the fundamental point of this task. The evaluation
consists in counting the faults that the tests methodologies cannot detect and determine
how often this behavior happens. This task is divided into two smaller sub tasks.

Task 5 - Writing the intermediate report

The tasks made within the first semester must be documented in the form of an inter-
mediate report, followed by the public presentation and discussion. In this disseration,
it is important to present the results of the evaluation of the existing software testing
methodologies, identified in the state of the art.

Second Semester

Task 6 - Development of the practical approaches

With the results of the evaluation made previously, it was possible to identify the most
frequent faults that can go unnoticed. Therefore, the objective of this task is to develop
an approach to complement the software testing methodologies studied.

Task 7 - Evaluation of the developed approach

This task consists in the evaluation of the approach proposed in the previous phase.
The objective is to compare these results with the results obtained using the common
methodologies. With this it is possible to conclude whether or not we can to complement
the software testing techniques with a more focused approach.

Task 8 - Writing the Master’s dissertation

The purpose of this task is to complete the writing of the master’s thesis. It also in-
cludes the feedback from the advisors and their respective indications. The final report
must document all the work done in the scope of software verification aimed at security
vulnerabilities.

6.3 Work plan alterations

Some of the tasks did not meet the initial work plan. In the first semester the preparation
of the testing environment took more time than the expected. The initial idea was to work
with code taken from open source projects but soon it was possible to understand that
this could represent a laborious task. As the intention was to focus on simple functions, it

53



Software verification aimed at security vulnerabilities

was necessary to have code with few or no dependencies, either from code or from libraries
to reduce the possibility of external faults. Therefore, it was essential to make a more
extensive research to find more adequate functions for the project. The third task was also
delayed due to difficulties on finding tools to automate the program testing. Even though
some tools were found, they did not work with the selected functions. The evaluation
of the existing test methodologies was also delayed because there was the expectation to
find a more helpful tool. Because of this delay, it was decided to split the evaluation of
the testing techniques into the two semesters, leaving one testing technique for the first
semester and another for the second.

In the second semester, a second research was done on tools to automatically test the
selected programs but more focused on automatic white-box testing. The development of
the practical approach also took more time than the expected as we decided to also explore
a more focused approach based on the results obtained in the previous tasks. Therefore,
task eight (evaluation of the developed approach) had to be done again in order to extract
different results from the extension of our approach.

Figure 6.2: Gantt chart for the real work plan
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Conclusion

The main objective of this dissertation is to complement the commonly used testing tech-
niques, considering the software faults more associated with security vulnerabilities. In
order to accomplish this, we proposed four core objectives.

• Study of the conditions in which a software fault leads to a security vulnerability.

• Perform fault injection to emulate representative security vulnerabilities in order to
evaluate the commonly used testing techniques and understand where they may fail.

• Develop an approach to improve upon the commonly used testing by finding more
vulnerabilities.

• Evaluate the results obtained from the developed approach.

In order to complete the first objective, we took advantage of a field study previously
done on security vulnerabilities and expanded its results. Based on the analysis of the
security vulnerabilities, we found that vulnerabilities often seem to be related with the
constants present in the code. We were also able to conclude that functions with a higher
complexity are more prone to have security faults. The same happens with the functions
with more lines of code. Even though there is a correlation between these two metrics, as
functions with a higher number of lines tend to have a higher complexity, we concluded that
they can be good indicators of the functions more prone to contain security vulnerabilities.

It was performed a representative injection of security vulnerabilities using 10 bench-
mark programs in order to evaluate the effectiveness of the commonly used testing tech-
niques. The programs were selected based on their cyclomatic complexity to be similar
to functions that contain security vulnerabilities. Regarding the faults injected, they were
based on the type of faults that showed to be more prone to create security vulnerabilities.
With the results obtained, it was also possible to understand the main limitations that
the commonly used testing techniques present.

We developed an approach to complement the commonly used testing techniques. This
tool was developed in Java together with the CDT plugin, which parses source code, gen-
erates the respective AST and applies modifications to it. On one hand, the developed
tool is capable of creating test cases based on the literals present in the code for functions
written in C. On the other hand, it provides a testing methodology focused on the extra-
neous type of faults. As this type of faults may not compromise the correct execution of
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the software, they are invisible to the common testing techniques, thus, the focus of our
approach is to find code that may be superfluous.

The obtained results show that random testing is capable of detect approximately
40% of the injected vulnerabilities. Using control-flow it was possible to complement the
detection rate up to 60%. Using our methodology we were not able to surpass the detection
rate obtained using random testing. As the developed approach is a similar to random
testing technique but creates the tests in a more focused way we were expecting to obtain
better results. However, we were able to complement the other testing techniques used,
as it was possible to detect two software vulnerabilities that the other testing techniques
studied failed to detect.

In relation to the detection of extraneous software faults the commonly used testing
techniques were capable of detecting around 40%. However, using our approach we were
able to increase the detection rate to around 70%, simply looking for code that may not
affect the correct operation of the program. This means that out methodology was able
to double the detection rate of the other testing techniques studied in the detection of
extraneous type of faults.

Based on these conclusions, future work should continue the study on software faults
capable of creating security vulnerabilities, namely:

• Use a more vast type of functions in order to generalize our results.

• Apply other testing techniques to verify if the results are similar.

• Resolve the limitations of the developed tool.

• Meet the cases that the tool was unable to detect.

It is important to perform a similar fault injection in a more vast number of functions
in order to understand if our results are indeed representative. Our analysis was focused
on the emulation of security vulnerabilities on 10 functions which is not representative of
all the software written in C. The ideal would be to use a larger number of functions and
functions with different complexities. Even though our analysis covered the first quartile
and median of the complexities of the functions studied, it is important to expand it to
include other complexity values that we did not cover, for example functions with higher
complexities.

It is also important to apply other testing technique in order to understand if they
present the same limitations as the testing techniques applied in our analysis. The question
being made is if we used different testing techniques, could we detect a larger number of
faults? And even if the detection rate wasn’t higher, were the other testing techniques
able to detect the faults that random, control-flow and our approach fail to do?

Also, our tool is capable of creating a set of test cases for function that use the standard
C data types, and functions that receive inputs by terminal/console. However, there is a
much larger set of data types available that the tool does not cover. Also, the tool is capable
of creating arrays of values and structures to use as input, however, they present worst
results than the rest of the functions that receive simple data types as input. Therefore,
an objective for future work is to improve the creation of these types of inputs, expand
it to the types of inputs that it does not cover and resolve the other limitations that the
tool presents.

There is still a large set of faults that our approach was not capable of detecting.
Therefore, it is important to analyze these faults in order to understand the reason they
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escape. A full comprehension of these faults can be a large step towards the identification
of potential vulnerabilities and posterior prevention of data and money loss on organiza-
tions. Thus, it is important to continue developing the study on faults that cause security
vulnerabilities in order to understand what makes them different from the rest.
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representative software vulnerabilities using field data. Computing, pages 1–20, 2018.

[8] Software Testing Help. Mutation Testing: Testing Technique with a Simple Ex-
ample. Available at https://www.softwaretestinghelp.com/what-is-mutation-
testing/ (2019/06/11), 2019.

[9] Tutorialspoint. What is All pairs Testing? Available at https:

//www.tutorialspoint.com/software{_}testing{_}dictionary/

all{_}pairs{_}testing.htm (2019/06/15).

[10] Guru99. What is Orthogonal Array Testing (OATS)? Available at https://www.

guru99.com/orthogonal-array-testing.html (2019/06/10).

[11] Alex Samurin. Explore the World of Gray Box Testing? Available at
http://extremesoftwaretesting.com/Articles/WorldofGrayBoxTesting.html

(2018/12/20), 2003.

[12] Testbytes. All Info About Grey Box Testing (With Examples). Available at https:

//www.testbytes.net/blog/grey-box-testing/ (2019/06/15), 2019.
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