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Abstract 
Despite the recent advances, citizen science is limited by multiple biases specific to human 

monitoring that can hamper the quality of the dataset. However, the advent of new technologies 

is revolutionising the generation and access to conservation data. The Wild in Live project aimed 

to prove if such technology could be used in citizen science as a tool to help the data collection. 

We, therefore, created an algorithm capable of scouting social media platforms to categorise and 

detect sea turtles. The prototype has a classification accuracy of 95.53% and can recognise 

individual sea turtles within a considerable database of 22 500 pictures. The preliminary result 

offered a good insight into the untapped potential and limitation of computer-vision to monitor 

ecosystems. The passive collection of data will increase the scope and scale of sea turtle 

monitoring, and Wild in Live project could become a tool to help researchers gather more 

information while citizen science projects could use it to raise awareness. 
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Resumo 
Apesar dos recentes avanços, algumas das iniciativas de ciência cidadã estão ainda limitadas 

por múltiplos constrangimentos específicos à monitorização efectuada pelas pessoas que 

participam deste tipo de projectos e que podem impedir a qualidade dos dados recolhidos. No 

entanto, o advento de novas tecnologias está a revolucionar a recolha e o acesso a dados de 

conservação. O projeto Wild in Live teve como objetivo provar se tal tecnologia poderia ser usada 

em ciência cidadã como uma ferramenta para auxiliar na recolha de dados. Foi desnevolvido um 

algoritmo capaz de rastrear plataformas de redes sociais para categorizar e detectar tartarugas 

marinhas. O protótipo tem uma classificação com uma precisão de 95,53% e pode reconhecer 

tartarugas marinhas individuais dentro de um banco de dados considerável de 22 500 imagens. 

O resultado preliminar ofereceu uma boa visão do potencial inexplorado e da limitação da visão 

computacional para monitorar os ecossistemas. A recolha passiva de dados aumentará o escopo 

e a escala do monitorização de tartarugas marinhas, e o Wild in Live poderá tornar-se uma 

ferramenta para ajudar os pesquisadores a recolher mais informações, enquanto projetos de 

ciência cidadã poderiam usá-los para aumentar a conscientização para a conservação das 

espécies. 

Palavras-chaves 

Machine Learning, Redes Sociais, Citizen Science, Classificação de Imagens, Biologia da 

Conservação. 
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INTRODUCTORY SECTION – putting this 
thesis into context 
The need for citizen science 
Living ecosystems are constantly changing, always subject to an endless possibility of 

disruptions, allowing new species to take place in the communities. Hurricanes, volcanoes, 

shifting continents are forces that are famous for redistributing earth fauna and flora (Fattorini et 

al., 2018). Humans are as well, considered as a force for ecological change and one to be 

reckoned with.  Alteration of natural habitats by humanmade perturbations are known to cause 

broad changes in the ecosystem wellbeing  (Madin et al., 2013), and its influence is felt through 

the different ecological scales (Atkinson & Cameron, 1993, Hendry et al., 2017, Madin et al., 

2013).   

This influence was in part, translated into an increase background extinction rate, which the 

magnitude makes it both exciting and depressing to witness. If the recent loss of species is 

significant, it does not yet qualify as a mass extinction event in the paleontological sense; 

however, there is a concern that with the current extinction trajectory we could be within a few 

human generations of a mass event (Matzke et al., 2011). So here lies one of the main difficulties 

that encounter species today, the change in the environment is too fast to leave any chances to 

adapt appropriately. Under the current scenario about 20 % of all species are projected to become 

extinct within 30 years(Singh, 2002), with 25 % of mammal species declining (Schipper et al., 

2008), 12% of bird species, and with the amphibians that sustain most of the loss of the 

vertebrates with 43.2% of their species currently declining rapidly (Young et al., 2004).  

Given that most of the essential functional aspects of the ecosystem are depending on biotic 

interactions, the loss of biodiversity has an unwelcome negative influence on ecosystems 

functions and provoke the acceleration of species local extinction (Cocucci et al., 2014). The 

adverse effects also appear to have an increasing impact on species which have an essential role 

in the ecosystem and coupled with a diminished diversity interaction (Hendry et al., 2017), it has 

caused an impoverishment of ecosystem services (Bullock et al., 2011).   
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Determining the current state of the ecosystems function and understanding which ones are at 

risk of not being able to function correctly is crucial for the prioritisation of conservation and 

restoration efforts. However, long term trends in species occurrences have faced difficulties as 

the lack of data and robust methodology hamper the determination of the differences between 

the occurrence of opportunist or functional species and what species individual contribution to the 

ecosystem functions (Oliver et al., 2015).  However, despite the efforts of ecologists and 

conservationists to protect threatened communities, their ecological extinction may have already 

had happened (Cocucci et al., 2014). 

Changes in the environment do not often affect biodiversity immediately. Delayed responses are 

still poorly understood, and consequently, the full scope of consequences due to rapid 

environmental changes are often underestimated as it is difficult to contextualise the implications 

(Essl et al., 2015).  

The pervasive effect is accentuated with perception issues called a “shifting baseline”. As 

Humans, we always update our perception unconsciously to our surroundings while giving more 

attention to the latest changes and paying less attention to the previous state, and therefore, for 

us,  the abnormal becomes the new normal (Papworth et al., 2009).  Generational amnesia can 

be a significant problem while setting conservation goals as the target set may not be 

representative of the original environmental state if no data are available to prove the contrary 

(Danielsen et al., 2000).  Understanding the scale of time must be improved to consider the 

mechanisms causing time lags and shifting human perception, and notably by improving and 

expanding existing long-term ecological monitoring (Essl et al., 2015). 

Long term ecological monitoring is valuable for many aspects, as it can help to evaluate responses 

to changes to a complex system such as climate change and ecosystems disturbance and offer 

insights by providing the baseline to appreciate changes. Detecting and evaluating the responses 

of ecological function as a response to conservation management intervention (Lindenmayer & 

Likens, 2009). 

Monitoring can differ in techniques, approaches and focus. Commodity-based monitoring will 

focus on economic matters such as monitoring exploitable resources like fisheries  (Dearden & 

Lunn, 2006) and forestry (Tang & Shao, 2015) but more recently, the focus has also shifted to 

include ecological and social responses as well.  
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Non-commodity monitoring will, however, look at issues that do not seem to be economically 

significant such as monitoring an indicator species (Hendry et al., 2017), songbirds call (Buxton 

et al., 2016) or water quality (Behmel et al., 2016).  

Monitoring activities will look at different aspects of the ecosystems such as composition, structure 

or processes and also include different types of assessment of ecosystems;  

• Status (i.e. monitoring of population),

• Impact (i.e. pollution assessment),

• Adaptive management (Conrad & Hilchey, 2011).

In 1998, the United Nation Economic Commission for Europe (UNECE) adopted the Aarhus 

Convention, which established several rights for the public in regard for the environment. Such 

as the right to access environmental information, the right for public participation in environmental 

decision making and the right to review procedures to challenge decisions that have been made 

with respecting the two previous rights (Aarhus Convention, 1998).    

The Aarhus Convention helped to establish the framework of different type of monitoring 

governance and engage the public into such activities (Mason, 2010).  

a) Consultative governance suggests that a government or a central agency is asking for 

information directly from the public,  a form of participation qualified as “top-down” with the 

purpose to provide early detection of issues or environmental concerns by citizen which 

can then be investigated by the scientific community (Conrad & Hilchey, 2011). This form 

of monitoring has advantages to be used in an area where there is illegal poaching of 

protected species (especially in developing countries), the citizens could serve as a 

“watchdog” assistance for government or conservationists as the data collected could be 

used to create long term dataset to be used by scientists  (Whitelaw et al., 2003).

b) Collaborative governance often represents multiple facets of a community 

with business, government and stakeholders. With its collaborative nature, it often yields 

more decision power than other types of monitoring, as every stakeholder is represented 

equally within the project  (Whitelaw et al., 2003).
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c) Transformative governance describes groups being managed from the “bottom up” are

often born out of a crisis and bear the goal to initiate government action on specific and

local issues, with initiatives, funding and leadership provided by the local community

(Conrad & Hilchey, 2011). In opposition to consultative governance, this model has the

advantage to involve participants in every stage of the monitoring project, from defining

the issues through the communication of the results and taking actions. Scientist and

researcher role in transformative governance is to advise and guide the community.

Monitoring allows for citizens to be involved in science as “researchers” (Linda E. Kruger, 2002). 

Citizen science includes community based monitoring which is a management where citizen and 

stakeholders are included in the management of a natural resource (Keough & Blahna, 2006) 

and/or  “a process where concerned citizens, government agencies, industry, academia, 

community groups, and local institution collaborate to monitor, track and respond to issues of 

common community concern”  (Whitelaw et al., 2003) 

The different type of governances will be more effective in specific citizen science project (and 

communities), with transformative and collaborative governance being more commonly 

associated with smaller scale participation while consultative governance being more adapted for 

larger geographic scales (Conrad & Hilchey, 2011).   

I. The origins of Citizen Science
Before the 19th century, what was then defined as science was carried by amateurs. Michael 

Faraday (1791-1867) for example, who discovered the principles underlying electromagnetism 

induction, electrolysis and diamagnetism, never had any formal scientific education, referring as 

himself as an “experimental philosopher” to the end of his carried as director of laboratories of the 

Royal Institution in London (Secord, 2005).  When considering the modern work of citizen science, 

one should remember that the word “scientist” was only coined in 1833 by William Whewell which 

has led to the professionalization of science and excluded citizens (Ross, 1962) The modern 

approach to  science is challenging a century-old approach that science is only to be conducted 

by experts. In 1995, Alan Irwin coined the term “citizen science” to describe expertise that exists 

among those who are traditionally seen as ignorant “lay people”, and should be used as 

complementary due to the uncertainty that they could represent (Irwin, 1995).  

Another renown figure in citizen science, the American researcher of the Cornell Lab of 

Ornithology, Rick Bonney, has a different interpretation on the public participation in science.   
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He compares citizen science as a crowd founding practice as it defines to outsource a job 

traditionally held by an agent to an undefined, large group of people in the form of an open call 

(Science Communication Unit, 2013). 

Humans have always recorded and monitored our environment to better understand our 

surrounding, like some of the oldest record of a phenological event such as the timing of cherry 

blossom in Kyoto for 1200 years (Figure 1) which have been used for climate analysis (Aono & 

Kazui, 2008). However, one of the longest-running crowd-sourced science projects is the 

Christmas Bird Counts by the National Audubon Society which began surveying wintering bird 

population in 1900 with no interruption to this day (Kobori et al., 2016). This survey is open to 

everyone, even with no experience nor knowledge in birdwatching as long that they are situated 

in the study areas. In 2019, just under 77,000  field observers participated in identifying almost 60 

million individuals in 2673 species (Chandler Lennon, 2019). The results are then distributed 

online, and they help conservationist to study the health and status of bird from the North 

American population.  

Figure 1: 1200 years of monitoring of the blossom of the cherry tree in Kyoto. In recent years, the blossom starts in 
late March due to climate change. Credit Yasuyuki Aono, Osaka Prefecture 

During the last decades, the advent of new communication technologies has made it possible for 

amateurs to enlist in extensive participatory studies providing scientific data with an emphasis on 

scientifically sound and measurable goal for public education (Science Communication Unit, 

2013). Different projects were created, each encompassing different methods or models of citizen 

science with a wide range of subjects (i.e. Zooniverse for astronomy; Old Weather for 

climatology; Seafloor Explorer for ocean exploration) (Citizen Science Alliance, 2011).  
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II. Advantages of Citizen Science
By enabling people to be invested in a scientific project, citizen science can contribute to firstly 

provide the opportunity to create new knowledge and insights relevant to science or management 

and government and secondly, it will allow individuals to acquire knowledge, skills and gain 

scientific literacy through their involvement in citizen science projects (Bela et al., 2016).  

Thirdly, it will empower the individual through its active civic participation in the project, allowing 

them to take part in policy debates and decision-making processes. Scientific participation is the 

opportunity for a citizen to be in the centre of knowledge creation, civic participation, and most 

importantly learning about the situation (Turrini et al., 2018). 

One of the critical aspects of citizen science is the generation of new knowledge while addressing 

scientific objectives which makes citizen science projects remarkably successful in generating an 

impressive quantity of data, especially spanning over a large spatial area and temporal extents 

(Devictor et al., 2010).  

This allows the data to be the basis for an analysis of trends and environmental changes while 

supporting local and international monitoring, planning and administration of the environment 

(Turrini et al., 2018). The development of collaborative initiatives between scientists and members 

of the public offers the opportunities and means necessary for in-depth learning (Bela et al., 2016), 

as citizen science is usually aimed to encourage such endeavour, it increases member’s 

awareness of the issues while gaining environmental insight (Johnson et al., 2014). The 

democratisation of science in conservation biology include more multidisciplinary topics to capture 

the attention of the policymakers. As citizen science is an effective way to gain the participation 

of stakeholders and the general public into the planning and management, the community-based 

monitoring tends to be more engaged with the issue and participate more intensely on the 

development and management of the project which increase the project’ success rate (Jarvis et 

al., 2015).  The success can be attributed to the social capital as the public support for the project 

increase, and it helps to establish trust and cooperation with the community involved in the 

monitoring project, as it can lead to volunteer engagement, problem-solving, resource 

identification and agency networking (Conrad & Hilchey, 2011).  

Citizen science offers a non-negligible alternative to government agencies as its implementation 

and management are significantly more cost-effective than direct government monitoring as the 

fieldwork can spawn over large areas and often during regular office hours (Whitelaw et 

al., 2003).   
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The diversity offered by citizen science allows researchers to collect data on the environment or 

ecosystems that are not commonly investigated, with distant places or the inability to be physically 

present directly on the site can hamper with the scientist ability to have continuous monitoring 

(Evans et al., 2005).  

III. The challenges of Citizen Science 
Scientific works have been carried for the last centuries by “experts”, people with a profound 

knowledge of their subject and as such, many experts have questioned the quality and reliability 

of data collection conducted by amateurs and often been regarded as substandard or doubtful 

(Engel & Voshell, 2002). So perhaps, here lies one of the substantial challenges facing 

crowdsourced data collection, getting the trust and recognition of the scientific community and 

any potential users of citizen science gather data. Which is an understandable stance as large 

datasets due to their sampling design, be flawed by bias or pitfalls (Lepczyk, 2005).  

1. Random errors 
In any ecological study, one of the main goals is to determine if the variations in response to an 

interference are due to predictors. Also, random errors represent the variation in a response that 

cannot be imputable to specifics predictors. In the context of crowdsourced monitoring, sampling 

error is more often due to the ability of each observer to detect, identify and estimate the subject 

monitored. Mistake and errors can easily be introduced through recording covariate data or due 

to the variability of the execution of the monitoring protocol. If those errors are not accounted for 

in a model, they are then included in the overall random error, which may complicate the 

detectability of the trends studied (Bird et al., 2014). 

2. Bias 
Different biases are known to be explicitly present in citizen science monitoring, one of which is 

related to plant or animal surveys and is called “heterogeneity of species detection” (Devictor et 

al., 2010). This is the systematic bias; it happens when repeated measure with the same method 

provides a constant under or overestimate of a fixed value.  

This bias is inherent to the ability of the observer to actually detect the studied subject, as the 

counts are shaped by the appearance or absence of the subject. The result may display an 

unknown variation in the abundance of individual studied id the variation in detectability is not 

accounted for (Royle et al., 2007).  
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In 2012, Farmer, Leonard and Horn's study highlighted the importance of testing observers' skills 

in data collection and modelling not to encourage the use of opinion-based indications of observer 

confidence (Farmer et al., 2012).  

This is the overconfidence bias, and it occurs when moderately competent observers were 

significantly less likely to report false positive records of rare species than common species, while 

experts were significantly more likely to report false positives of rare species than common 

species. Because false positives can also result from observers overestimating their own skills. 

Another example of measurement bias happens when divers must estimate the size of a fish. 

Usually, the sizes of large individuals are overestimated whereas the smaller individuals are 

underestimated, typically due to magnification and other factor affecting the observer perception 

while underwater (Edgar et al., 2004) 

When some aspects of the process of interest seem to be more sampled than others, we might 

be in the presence of a sampling bias which will have a significant change in the statistical 

interpretations as the mean will be overly influenced by these samples (Bird et al., 2014).  

Another common bias for dataset when collected by multiples observers, is the variability that 

arises between them in their sampling efficacity. The mean value of the measurement described 

by the volunteers may be close to the real value, but some volunteers may contribute more sample 

than others and therefore skewing the values collected. If the observations made by a single 

volunteer are consistently underestimated or overestimated, then by considering each 

observation as an independent sample could have the potential to bias the entire estimate of a 

trend of a mean (Bird et al., 2014).  

The volunteer effort may also vary due to declining commitment and availability, the weekend 

bias describes an overabundance of data relative to the week and may underestimate the 

presences of species and making more difficult to distinguish between seasonal patterns over a 

more extended period (Courter et al., 2013).   

Citizen science will only be available to areas accessible to the crowdsourcing community.  

Therefore, explaining the overabundance of terrestrial monitoring projects as it usually faces 

fewer challenges than projects in marine settings.  
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Aside from all the logistical challenges and safety measures that a marine project will demand, it 

may be more challenging to find recruit and train volunteers willing to accompany scientist for 

those gruelling and lengthy monitoring sessions where it may be harder for them to “take 

ownership” of a site without visible demarcation nor boundaries (Cigliano et al., 2015). 

3. Difficulty to share the data 
The data collected by crowdsourced monitoring needs to be openly shared with both the 

participants and thirds parties, as it improves the data relevance and quality for science and policy 

management. 

The only way for the records to be exploitable as ecological data, they must be submitted in a 

defined standardised format that has been objectively selected to be included and stored in the 

corresponding database (Ganzevoort et al., 2017). However, one must be wary of the tensions 

that may arise when the data collected by volunteers become too dissembled from contextual 

richness lost during the process; as it has direct effects on both the data collection the motivation 

of volunteers.  If there is a lag time between the monitoring event and the publication of the study 

in academic review, it can be challenging for the volunteers of the project as the participants may 

have to wait years before seeing the results of the study (Tenopir et al., 2011). 

 It requires scientists and managers of a citizen science project to listen and consider the views 

of the volunteers regarding ownership and the appropriate use of their data (Turnhout & 

Boonman-Berson, 2011).  

 

IV. Mitigating the challenges in Citizen Science 

1. Project design and volunteer’s motivation  
With crowd-sourced monitoring, there is an underlying assumption that as a source of knowledge, 

the project requires the volunteers to conform to the scientific method. However, more flexible 

engagements can help curb the requirement by allowing the volunteers to have more influence 

on the project design and empowering them to exchange with the other actors among which 

scientist are only one of the kinds (Hecker et al., 2018). Those are frequently addressed with face 

to face interactions to increase trust and inducing a real sense of transparency. By supporting 

those collaborations, citizen science project can benefit from creating and modifying techniques 

or processes, reducing information asymmetry and cognitive complexity while increasing 

transparency through the different views of the stakeholder (Novak, 2009).  
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Those approaches still come with substantial time investment for the managers of the project; 

however, it allows to get a better grasp of the full range of factors that motivate volunteers.   

Such factors can emanate from a desire to discover and learn new things to further personal 

interest or a yearning to help the project as the volunteer share values and belief that come with 

such project (e.g. free and shared knowledge). Volunteering can also be motivated by the human 

desire to meet new people sharing the same interest, to gain recognition or solely for 

divertissement (Hecker et al., 2018). It is also seen as a way to gain experience during the project 

for the future career of the participant (Geoghegan et al., 2016).  All those engagements except 

for career development are intrinsic motivations.   

To ensure engagement from the volunteers, regular feedbacks and recognition are essential to 

maintain motivation (Rotman et al., 2012). The interactions between scientists and volunteers are 

essential for creating social cohesion through regular group activities and regular face to face 

meetings but require effort from both parties. Moreover, even if spatial constraints can be 

mitigated through online interactions, it tends not to be the most representative as usually, a few 

volunteers provide most of the contribution, while others are considered as passive during the 

project with only a few punctually participating (Hecker et al., 2018).  

This is also better known as the 90-9-1 rule coined by in 2006 by Nielson while describing that “in 

most online communities, 90% of users never contribute, 9% of users contribute a little, and 1% 

of users account for almost all the action” (Nielson, 2006).  

Unfortunately, participation inequality will be always present regardless of the actions taken in 

every online community and user services. However, it is possible to achieve more equitable 

distribution (e.g. 75-20-5), by taking steps to help increase participation engagement: 

• Facilitating contributions: allowing the user to give input with minimal effort required such 

as star rating and minimalising natural language inputs.

• Participation side effect: collecting data from other activities realised by the user on the 

service that is exploitable as an input.

• Gentler learning curve: letting the user learn the service by allowing to modify but not 

create from scratch input. By building their contribution, the user will be more compelled 

to complete than instead, recreate entire entities.

• Fair reward system: reward is a useful enticing tool to motivate user from the punctual 

base to a more active role while cementing active users. Perks and recognition promoting 

quality contributors who have proven value (e.g. reputation ranking).
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Therefore, a successful participation model must include simple tasks with little complexity or 

cognitive effort (e.g. monitoring) along with more complex activities which require more significant 

commitment (e.g. data analysis). Face to face meetings or workshops and design-creation can 

be combined with online participation with different options according to the different knowledge 

required with a flexible continuity in the engagement. Engagement can be more easily created 

with game design element incorporated to the project to reward achievement of volunteers and 

allowing for social recognition and reputation that are combined with regular feedback from the 

project (Bowser et al., 2013). Sharing issues and solutions with the volunteers of the project allow 

to alleviate information asymmetry and facilitate the application of new tools.   

2. Random error fix 
If a dataset contains a large number of random errors hampering the ability to detect patterns and 

distinguish trends, it may not necessarily be a problem if an increased quantity of crowd-sourced 

data can be collected to offset the issues (Bird et al., 2014). However, in cases when no additional 

data can be collected, accounting for random errors in both metadata and covariate is required. 

Identifying the overall effectiveness of a volunteer by attributing them an identifier to relate 

different metrics (e.g. engagement, training and experience) to determine better how sampling 

was performed and to help understand variations (Snäll et al., 2011). To be able to measure the 

effort made by each volunteer is an essential factor to be integrated into standardised monitoring 

data.  

However, covariates can include factors that can have an impact on the data collected (i.e. 

underwater visibility for visual survey affect the observer regardless of its skills) (Edgar et al., 

2004).  

Modelling approaches can offer options that account for the different types of errors and biases 

encountered in the dataset.  

3. Linear Models 
One of the most widely used statistical tools to quantify random errors in ecological data are the 

linear models. The premise of the linear models is that the changes in the response data could 

be the results of studied predictors as a linear function, covariate or metadata which are described 

as fixed effects. A linear model can be extended by allowing non-linear relationships between the 

predictor and response data with the use of smoothing functions with multiple degrees of freedom 

as an additive model (Hastie & Tibshirani, 2007). 
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Usually, a significant amount of variations in the response data can be described simply with 

relationships. However, it is unlikely that the only available predictors and covariates are the only 

factors influencing the response variable. Therefore, any variations can be regarded as a 

stochastic process if it cannot be accounted for used parameters and can be described using a 

probability distribution, which allows the remaining or residual variations to be described based 

on the goodness of fit model (Bird et al., 2014).   According to Royle in 2013, linear and additive 

models assume that the response variation will follow a normal distribution, which is only suited 

a specific kind of measurement but may not be adapted for count or binary data which are 

described with other distribution (i.e. Negative regression or Poisson for count data and logistic 

regression for binary). Zero-inflated models are useful if a dataset contains a significant amount 

of null counts which can violate the Poisson or negative binomial distributions’ assumptions (Arab 

et al., 2008). In the cases where the closely spaced samples have more chance to present 

similarities with one another than with the one that are more spaced, an autoregressive regression 

model can be used (Pierre et al., 2002). 

The broad application and the relative accessibility of generalised linear and additive models still 

present limitations concerning the number of predictors and covariate they can describe 

simultaneously which demanded an extensive and crucial preliminary research on which model 

is the most adapted to analyses the data with the fewest parameters possible (Royle, 2013).  

With a large amount of data, there can be an equally substantial number of predictors and 

covariates influencing the response variance, which machine learning can offer a more suitable 

solution. Besides, linear and additive models are generally, not the best fit for presence-only data 

except in the context of species distribution model and uneven variance across samples within 

the dataset (i.e. heteroscedastic) (Bird et al., 2014). 

4. Mixed-effect
Mixed effect models are a powerful tool to account for sampling bias; it can estimate the influence 

of predictors on the variability of the dataset without affecting the mean response by including 

fixed effects that are used in a linear or additive model with random effects (Royle, 2013). This is 

extremely useful in a situation where observers have different sampling efficiency as the mixed 

model will assume that if each volunteer contributed with one observation, the mean of these 

observations would then be centred on the real mean. However, it is necessary to attribute the 

observers with identification as if some of the volunteers contribute more to the dataset than 

others it can skew the overall average, and the identification could be used as an index to the 

model viability preliminary to estimate the influence of predictors (Schwarz, 2013).  
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Mixed models have proven to be useful in ecological studies due to their flexibility and predictive 

power; therefore, they also been able to accommodate observatory and spatial clustering bias 

(Bolker et al., 2009).  

5. Hierarchical models
When the sampling design of a crowdsourced dataset present element of systematic bias, a 

hierarchical model is a valid option to measure their influence. The hierarchical model presents 

similarity to the mixed models as they are used to describe the relationship between predictor and 

response variable but where the hierarchical model differs is that the parameter themselves can 

be described as a function of the other predictor variables (Schwarz, 2013). The model can be 

adapted to match specific citizen science projects and deal with false positive, misidentification, 

and detection imperfection; however, hierarchical models usually require specific sampling design 

to be able to correctly and accurately describe the process (Bird et al., 2014).  

V. Some words on new technologies and Artificial Intelligence in

Citizen Science

The last decades have witnessed an unprecedented technologic expansion allowing to collect an 

enormous amount of data. The web 2.0 that started to emerge in the early 2000s permitted users 

to have a more powerful influence on the contents published by allowing them to directly post, 

edit, comment and provide different information on numerous platforms and networking tools 

(Galaz et al., 2010).  

There are currently 3.6 billion internet users, just shy under 50% of the human population (Meeker, 

2018),. However, the access to information technology is still unequally distributed with developed 

countries having and adoption rate close to 80% whereas the least developed countries, only one 

in 5 citizens have access to the worldwide web (International Telecommunication Union, 2017). 

The internet adaption rate has seen its growth reduced to 7% per year in 2018 globally due to the 

saturation of developed market but still have a double-digit adoption growth in developing 

economy (Meeker, 2018).  

Along with the rapid development of information and communication technology, with the 

increased flow of data, there has been an evolution on the uses of internet available information 

in several creative ways to take advantage to help environmental causes.  



14 

The advancement of technology helped scientist to go away from expensive devices (e.g. radio 

collars) to smaller and smarter (e.g. satellite tracked)  devices and even innovative non-invasive 

approaches (i.e. photo recognition) (Pimm et al., 2015). 

One area where existing technology has seen a significant improvement on the quality of data 

collection is through live location-based mapping services by only using the volunteer´s 

smartphone automatic capture feature (Ko Lwin & Murayama, 2011). Mobile phones are 

becoming personal measurement tools and will offer yet-unimagined services, but the volume of 

data generated by those advancements will require proper management capabilities. 

 The increased use of web services helped to develop the automation of computer to computer 

interactions with metadata generation and interoperability between large databases (i.e. Wild Me 

project). The challenge remains still acute, as for conservation biology species of interest are 

usually rare and count far fewer observations which can be drowned by the massive flow of data 

coming from millions of data entries (Pimm et al., 2015). Moreover, it sometimes needs human 

intervention to manually sort through thousands of pictures as most of the database to have 

exploitable results (Bowser et al., 2013). Computer vision tools are started to be integrated into 

the crowdsourcing database to reduce workflow and add efficiency (Figure 2). 

Operating within the broader field of artificial intelligence, computer vision is part of a category of 

deep learning algorithms which are a set of methods that make them learn from a dataset without 

human guidance (Di Minin et al., 2018). The algorithm will work with multiple levels of 

representations that are obtained by transforming the representation at each level, starting with 

the raw inputs, into a higher layer of representation while discriminating irrelevant variation to 

allow a classification (Lecun et al., 2015).  By applying the classification that offers deep-learning 

algorithms to social media, they could analyse metadata on an unprecedented scale to address 

biodiversity crisis, as many social media platforms offer the user to generate texts, images and 

video along with other exploitable data such as time and location.  

Processing the data by hand will be extremely time consuming and excruciating, but the machine 

learning algorithms can be trained to distinguish, and filter specific aspect of the content analysed. 

They can detect specific species, determine if the picture is real and even the individual if patterns 

are visible (Di Minin et al., 2018). 
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Figure 2: Diagram displaying the differences and relationships of the fields contained in artificial intelligence technology 

 

For this review, we focused our approach on the implications that the deep-learning algorithm, 

coupled with the usage of social media in citizen science. By exploring the feasibility of this 

technology by creating a simple neural network and test how the algorithm would react to the 

different pictures and comparing the output results. Analysing and exploiting metadata to give a 

proficient assessment of the quality of the algorithm depending on the input pictures so we can 

learn what the limits of this process are.  
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What this thesis is all about: The Wild in 
Live project 

The Wild in Live project was created for the 

development of a simple task: Is it possible to save time 

and effort, by extracting valuable data directly available 

on a picture of sea turtle and be able to match that 

individual with a database containing thousands of other 

sea turtles? Image recognition is a critical aid for wildlife 

conservationists and is used on many  studies requiring data on habitat use, 

distribution, behaviour and population (Van Tienhoven et al., 2007). 

By recognising patterns and other natural marks on an animal, the photo-identification technique 

is a non-invasive tool ideal to identify a specific individual which is threatened or endangered 

(Reisser et al., 2008). The wildlife photo identification technic pioneered by Dr Bigg in 1976 (Obee 

& Ellis, 1992)  is not by any means new, but the improvement of the technology have allowed 

scientists to process far more data than a single ever human could. With the introduction of 

machine learning algorithms in ecological studies, the potential for these advancements will be 

even more significant (Kotsiantis, 2007). By Pairing the ability of scientists to social media data, 

it could bring another set of tools that will be able to interpret and visualise the vast and 

ecologically untapped data available on social media platforms. With the aid of machine learning, 

an algorithm can be specifically designed for image recognition could be created and then be 

used to identify a specific species and recognise its features that allow for individual recognition.  

The metadata collected along with the picture on social media (e.g. location, date) are also 

exploited to give more information on the whereabouts of the individual identified. The automated 

collection and analysis of data will act as a passive citizen science programme where the inputs 

are made passively by the users of social media platforms and actively exploitable by 

conservation scientists. All while reducing bias that humans tend to fall into while collecting, 

sampling and monitoring during citizen science project.  
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I. Aim and Development steps 
For this project to be fulfilled, different goals have been set to ensure the creation of a tool that is 

serviceable for conservation by scientists and amateurs alike. 

1. A database, to save all the collected information with the algorithm with futureproofing to 

be available for other databases.  

2. An identification tool algorithm capable of automatically roam social media platforms 

collecting and analysing pictures. 

3. An intuitive display of the data and its results with professional features for customisation. 

4. The ability to download and upload data directly on the database and be shared freely 

with other conservation organisations. 

By making the project accessible to scientists and citizen scientists, the impact on the data 

collection and confidence could be increased as the immense amount of data collected.  

 

The Wild in Live project started in September 2018, but the actual development was 

accomplished during the last six months, the project is created in collaboration with the Fikalab 

(which is the incubator from Critical Software) that provided the necessary resources for the 

development of the project.  

Figure 3: Development diagram of the Wild in Live prototype at Critical; it represents the number of issues and tasks 
completed overtime with a chronological timeline of the main event that occurred during the project. 
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There were two crucial deadlines for the development of the prototype; the first one occurred two 

months into development when the first version of the prototype was presented during the 

international sea turtle symposium in Charleston, South-Carolina.  

This event was the occasion to get preliminary feedback on the project directly from the scientific 

community working directly with sea turtle conservation and tailor the project by recovering useful 

insights in the matter before starting further development. The second deadline, at the end of the 

six months of development, was a review by the Critical software of the state of the project and 

to discuss further development (Figure 3).  

II. Description of the operation of the algorithm  
 

1. Architecture 

 

Figure 4: Schematic of the architecture of the Wild in Live’s processes 

 

The structure of Wild in live is shown in Figure 4; the system is composed of an Image 

Processing Algorithm (IMA), a Database and Interaction (DBI) and a data retriever (Application 

Programming Interface or API). The interface includes options to access identification tools and 

monitoring results computed on servers always available online as a web application running on 

Flask © (version 1.02) with PostgreSQL © (version 11.2) managing the data. Since the project is 

still a prototype, different clients were available depending on the web-based service available 

throughout the development (Amazon Cloud Service is our final one).   
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The IMA contains image pre-processing tools to improve the picture data by suppressing 

undesired distensions and by enhancing some of the features for later processing and analysis. 

The DBI and IMA interact closely together to implement a workflow that each picture undergoes 

to be usable data imported with the API.   

 

Figure 5: Wild in Live’s workflow is an interaction between the users and the system and includes preprocessing, 
feature extraction, user search retrieval and relevance feedback. The information is then synchronised n the indexed 
database. 

 

The workflow depicted in Figure 5, typically involves two different possibilities with a passive data 

collection and active user search in the database. The first option results from salvaging images 

and metadata from social media (i.e. Flickr ©) through the API script. Once the images are pre-

processed for correct illumination and geometry, the features are extracted to be ranked and 

compared to the data available in the system, a relevance score is produced and stored. The 

second option let users to directly look through the database using natural language to retrieve 

information collected by the API or upload its data to be processed and analysed.  

The output of the system is a table with all the sighting and identification information of the 

researched individual or if a result came back without matching, the ability to add or edit entries 

in the database if the user had uploaded the picture. The DBI and IMA can work asynchronously 

and operate in different modes depending on the user’s interaction with the web application (e.g. 

identification, monitoring, data upload /download). Wild in Live enables users to work on a 

different aspect of the workflow in parallel, since some users may help the identification process 

by giving feedbacks if a picture is misidentified with another by adding sighting data on an 

identified individual. In this case, the DBI register the changes in the cloud, and the IMA improve 

its detection and matching algorithm.  
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It is necessary to implement in such a system state a harmonisation across the multiple steps to 

reduce different inputs made by users or algorithm. Therefore, all the picture that shared the same 

identity will be merged or created as needed, with the option for the user to update the information 

available. 

2. Why sea turtles? 
The Wild in Live project is focusing on sea turtles for proving its concept as they are the perfect 

candidates to start with. Sea turtles are under threats from rising sea water which is a loss of 

habitat for the nesting beach (Fish et al., 2005), fisheries bycatch (Lewison & Crowder, 2007), 

nutrient availability (Chaloupka et al., 2008), poaching and illegal trade (Mancini & Koch, 2009) 

that are the results of human impacts making some population of sea turtles endangered (Figure 

6).   

 

Figure 6: Poaching activity, credit to primeirasesegundas 

However, sea turtles have an impact in the collective mind especially in western culture as it is an 

ambassador for the marine environment, a charismatic representant of its habitat and of the 

impacts that it is being threatened with. Sea turtles are easily recognisable by almost everyone 

and can be used by conservation projects to appeal to their causes more effectively.  
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They are by definition a flagship species. Being easily recognisable is crucial as it allows for a 

more efficient identification by social media users that may recognise a sea turtle and add 

additional metadata. Being a relatively large vertebrate will allow having an overall better-quality 

picture as more features of the animal can be identified (e.g. scale patterns) with the limited 

resolution imposed on most of the social media platform (between 320 x 320 and 1080 x 1080 

pixels for Instagram). The scale patterns are used as an identification feature to recognise an 

individual (Reisser et al., 2008) valid for the entire life cycle of a sea turtle (estimated to be around 

80 years). Having a lifespan longer than most species, research projects will increase the chance 

of sighting of the same individual by a random encounter with users of social media poster, thus 

increasing the chance of collecting more data passively for the detection algorithm.  

III. Development of the identification and classification algorithm

1. Current methods
In order to define how the technology used in this project works, an explanation of the current 

level of software devolvement is required. Most of the models available are coded in a 

spreadsheet or a monolithic bloc code in various programming languages that are developed as 

an in-house project for unique cases. With often a documentation not matching the complexity of 

the displayed code which makes the code difficult to be reused and adapted for other projects 

that often need to start from the beginning of development (Pauliuk et al., 2015).  

 Currently,  one of the most used identification software was 

developed by Van Tienhoven et al., in  2007, called the 

Interactive Individual Identification System (I³S).  The 

software will use a two-dimensional transformation to 

compare two individuals in a similar setting and defined 

space. It requires the user to manually map the features of 

the animal studied (i.e. spots or scales pattern), then the 

software will convert the picture into two dimensions by the 

affine transformation which enables for the mapping of the 

marking and feature present on the individual onto a matrix 

of a coordinate Figure 7.  
Figure 7: Process of identification by the I³S 
software; each scale is a reference point that 
will be analysed after affine transformation 
as coordinate. 
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Then the comparison is achieved by comparing the source points onto the destination points, and 

the best score from all the possible transformations is used as the final matching score between 

the compared images. The software can have a correct chance of identifying the same individual 

of 95% if more reference images are present in the database (Van Tienhoven et al., 2007).  

The main feature of the I³S software is that human intervention is still used to judge and distinguish 

between the features and artefacts (e.g. reflections, shadows and particles) present in the 

pictures.  

If the I³S software offers scientifically exploitable results with high confidence, it relies on the need 

for human intervention to judge each individual picture, implying that the researcher conducting 

this method, would spend hours to confirm an identification of multiple individuals. Moreover, it 

would require to manually enter additional information collected by citizen scientists such as 

location and date or distinguishing features as the software does not offer to group those under 

one bundle. This constitutes a substantial limitation when it comes to processing a large amount 

of information. 

Unfortunately, I³S have not received any updates since 2014, and as discussed before, those 

software developments are dependent on the creators and institution managing I³S. Since the 

code is open, there is a real possibility that another researcher is using a more recent version, 

but without any distribution, the current version of the software lacks any advancement.  

Therefore, by ensuring that the Wild in Live project is as open as it can be and available online, 

newer features will automatically be available and distributed to all and the uniform code (Python) 

could be adapted for other research and monitoring projects. Python language allows 

programmers to focus more on the design than the coding, easing the creation of a prototype and 

experimenting features that could then be easily implemented. Python is also one of the most 

popular languages when it comes to machine learning, as the code is free, open source and 

commonly used most of the computer-vision cases are already available in Python libraries for 

scientists (Pedregosa et al., 2011).  

The picture, along with its metadata (date of creation, GPS coordinate) and tags (location, input 

name from the user) are retrieved directly from the Flickr servers. The data is made available 

through Flickr’s system application programming interface (API). The Flickr API enables third-

party services to communicate directly with Flickr’s servers and access the users' data with 

special authorisation (Nov et al., 2008).  
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2. The deep learning technology  
As mentioned earlier, deep-learning algorithms offer an adapted solution for automatization of 

image recognition with supervised learning. These algorithms need human intervention to provide 

input during the learning mechanism, which in return get feedback on the task performed for the 

creation of the model or the classification function (Thomaz & Breazeal, 2006). 

a. Training of the machine  

The training of the machine happens on Tensor Flow©  which is a development platform that 

enables the facilitation of a large number of computational resources for training models on large 

datasets and moving them into production (Xu et al., 2016). The learning starts by “feeding” the 

algorithm with the collected data set of 22,500 pictures representing each of the five previously 

defined categories. The dataset is partitioned for training and validation purposes, using 75% and 

25% of the images of the training dataset respectively. 

 For the Wild in Live project, the classifying machine is shown an image, and it then produces an 

output in the form of vectors of scores, one for each category. Each category is assimilated to 

features to help determine what the picture is representing to be then able to differentiate between 

species of sea turtles or if the picture is showing a juvenile or a dead individual while getting more 

information out of the data (Figure 8).  

The categories chosen for differentiation are: 

A. Sea Turtle 

B. Juvenile Sea Turtle 

C. Sea Turtle Laying Eggs 

D. Edited Sea Turtle 

E. Tortoise 

F. Not Sea Turtle 
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During the training, the desired category (sea turtle) should get the highest vector score of all the 

available category. The errors of the categories are computed by an objective function that 

measured the difference between the outputs scores and the desired pattern of scores. The 

machine will then automatically adjust its internal parameters to reduce this error. The parameters 

are often referred to as “knob” and define the input and output function of the machine. Typically, 

a machine has millions of these adjustable weights along with hundreds of millions of labelled 

examples to which the machine can train. For the proper adjustment of the weight vector, the 

algorithm calculates what would happen to the error if the weight was changed by a minuscule 

increment either increased or decreased.  

The process is repeated until the average of the objective function stops decreasing. Then a 

performance review of the system is measured by testing the machine on a different set of images 

to determine its ability to produce sensible answers on inputs it has never encountered before. 

This entire training process is referred to as an “epoch” (or generation), and a machine usually 

goes through hundreds of them before offering satisfying results (Lecun et al., 2015). 

A B 

D E 

C 

F 

Figure 8: Pictures of each different categories that can be processed by the algorithm. 
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b. Image recognition 

The purpose is to identify which features that are extracted from a picture can allow being correctly 

matched with a high probability against an extensive database containing the features for sea 

turtle image recognition. To extract those features without looking each pixel of the image, which 

would need exponentially more computing powers. The images are processed through a cascade 

of filtering approach in which the more demanding operations are only applied in the location of 

an image that passes an initial test. 

Wild in Live’s machine uses computer vision and therefore focus its computing power on the 

interpretation of features from the image that are generated through four different “layers”. 

 
Figure 9: Example of a convolutional layer network. 

 
 
These layers can interpret input by transforming it by performing a convolutional operation and 

create a modified output that is then picked up into the next layer. With image recognition, each 

convolutional layer has a specific number of trainable filters, which are applied to the input image 

and will allow the detection of patterns (Figure 9). The first layer of representation will look for the 

presence or absence of edges at a singular orientation or location within the picture. This layer is 

defined as the Scale-space extrema detection and uses the differences of a Gaussian function to 

identify potential interest points that are invariant to the scale and orientation of the image. The 

second layer will look within each candidate location detected in the previous layer to determine 

key points which are based on their stability from the localisation and the scale. The third layer 

will add one or more orientations to each key point based on the local image gradient directions.  

Therefore, all future operations performed on the original input image will only require the 

assigned orientation, scale and location for each feature and thereby providing invariance to these 

transformations. Finally, the fourth layer will measure the gradient of the image at a determined 

scale in the region around each key point.  
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The key point descriptor layer can assemble motifs into a more significant combination to 

correspond to part of a familiar object, and therefore, the layer would detect an object as 

amalgamations of those previous part (Figure 10).  

 
Figure 10: A keypoint descriptor is created by first computing the orientation at each image sample point in a region 
around the keypoint location, as shown on the left. These samples are then accumulated into orientation histograms 
summarising the contents of the region, as shown on the right, with the length of each arrow corresponding to the 
sum of the orientation near that direction within the region (David G. Lowe, 2004). 

 
These layers create a structure defined as the convolutional layer network (CNN), which is the 

most widespread model in machine learning technology for image recognition (Wang et al., 2018). 

The result of the image transformation through the different layer is a 2-dimensional activation 

map with scale-invariant coordinates relative to local features. 

This approach has been named by David G. Lowe in 2004 as the Scale Invariant Feature 

Transform (SIFT) and allows for a typical image of 500x500 pixels to deliver about 2000 

exploitable features. A higher quantity of discernable features in an image is extremely important 

as it allows to increase the probability of a reliable detection by the algorithm even if an image 

recognition requires at least three features to create the allow the matching ability.  

 
Only the key points and key points descriptors of the features linked to an image saved in the 

database. It allows to optimise the algorithm’s performance as it only needs to look through 

numerical values of the 2-dimensional activation map to be able to identify a specific individual. A 

new image is matched by individually comparing each key point from the new image to the 

database and finding candidate matching key points based on the shortest distance between two 

points (also named the Euclidean distance) of their feature vectors. 
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IV. Application to the Wild in Live prototype 
 

1. Turtle image classifier 
Several configurations of the algorithm were 

tested to obtain the best accuracy with minimal 

validation and training loss.  

Those values allow to evaluate the performance 

of a supervised learning algorithm, the loss 

function (also referred to as “cost”) measures the 

divergence between the predicted output and the 

desired output value. 

The best algorithm iteration happened with the 

287 epochs, with the initial learning rate equal to 

1e-3 and had an accuracy of 95.53% and 

presented lower validation and training loss.  

However, as seen in Figure 11, the validation loss while still higher than training loss is increasing 

toward the 400 epochs, which means the model is starting to overfitting. Which happen when the 

model starts learning patterns from the training data that does not generalise to the test data and 

need more training images to improve. To reach accuracy close to 100%, calculation estimate 

that half a million of training picture is required in each category; totalling 2,5 million pictures to 

develop an algorithm with near perfect recognition.  

 

A B C 

Figure 11: Graph demonstrating the accuracy and 
loss from training and validation 

Figure 12: Result of categorisation by the algorithm. Picture A and B show a correct interpretation of the subject in the 
picture, whereas picture C is a false negative due to the angle of which the picture was taken. 
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Testing of the classification algorithm shown to work extensively well within a delimited range. If 

the picture is displaying a sea turtle in its entirety (full body picture), the algorithm can classify the 

input with a variance of 9.52% (Table 1). However, due to limited training pictures for tortoise, the 

algorithm will struggle to differentiate between sea turtle and tortoise and can misclassify a sea 

turtle due to overfitting (Figure 12).    

2. Matching turtles  
 

Once the picture has been categorised as a sea turtle, the 

identification process can start to extract key points and 

descriptor from the input picture. The extracted data 

points are then loaded to the database and compared to 

other pictures’ data points. The best match is the pictures 

having the highest number of similarities between the 

data points and the analysed picture, called “good 

matches” and consider the ratio of the closest distance to 

the second closest distance. The results are then ranked 

depending on the matches points and displayed to the 

user Figure 13.  

The combination of the two processes of identification 

and matching make possible the automatization of the 

monitoring of sea turtle across social media platforms. 

They both need to perform appropriately in their task to 

increase the reliability of the process. 

The performance for each category depends on the 

difficulty of the task presented and the number of training 

pictures available. As the “Sea Turtle” and the “Not Sea 

Turtle” have 0.163 and 0.168 average times for 

categorisation and with the lowest variance possible in 

their confidence score, they can carry out the full 

identification in a reduced amount of time (Figure 14). 

However, categories with training picture will have increased variability in their confidence score 

as the algorithm is not trained on enough data to be operational as a scientific identification tool. 

Figure 13: Individual identification process. The 
higher the good match count, the higher the 
probability that this particular individual is the 
same as the two other pictures. 
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This effect can be illustrated by both the “tortoise” category and the “juvenile sea turtle”. They 

have both lower average in their confidence score; the ‘tortoise” one is due to the resemblance to 

the better established “sea turtle” category, which increases the identification time. Whereas 

juveniles are harder to distinguish from small artefacts as their feature are smaller than most of 

the other categories making the categorisation and identification more dependent on the quality 

of the input picture (table 1). 
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3. The interface: the Web application 
The Wild in Live prototype is available online (https://wildinlive.org/) and offers different features 

to collect and sort data on social media while allowing the consultation of its database (Figure 
15). However, some of the features are still in development and not fully completed as more 

testing are being conducted.  

1. Social media search: the feature will use the API to communicate directly with Flickr´s 

server and analyse the last pictures posted (capped at 30 in the wait of better optimisation) 

and detected if a sea turtle is present (Figure 16). If so, the picture is displayed for further 

analyse, such as individual recognition (Figure 17). 

2. Identifying individuals: if a user owns pictures of sea turtles, this feature enables to upload 

the sea turtle picture to the prototype directly. Then the recognition algorithm will analyse 

then to find potential matches already present in the database and display any additional 

information available on the previous sightings of the individual (Figure 18). 

3. Import data: if a researcher has sighting data along with pictures, it can be imported 

directly in the database so the information can then be treated and made available for later 

search (Figure 19). 

4. The Live Map: is the most ambitious feature in development. Its purpose is to display the 

data from the database in a different way depending on the natural language input of the 

user. The user could look for the specific data source in a search request like what a user 

could ask on Google, and only select what is significant all with the ability to download the 

data (Figure 20).  

 

 

 

 

 

 

 

Figure 15: Screenshot of the home page from www.wildinlive.org, the two main option for citizen 
science project “detection” and “categorisation”. Other services are available in the menu bar but 
are only available once the user has logged its credentials. 

https://wildinlive.org/
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Figure 16: Screenshot of the detection page. It allows to look for hashtags or title through social media, and the 
algorithm will fetch the results in the last pictures posted with an accuracy previously determined. 

Figure 17: Screenshot of the detection result page, each picture is clickable and with the option for individual 
identification. If a picture is not a sea turtle, the user has the option to report the result as feedback to the algorithm. 
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Figure 18: Screenshot of the identify turtle option. A researcher can import its pictures directly into the website to be 
analysed and possibly matched with the database. 

Figure 20: Screenshot of the Wild map. Here the user can search the database for specific information that is available. 
It allows to have all the data easily accessible and d downloadable for further analysis 

Figure 19: Screenshot of the import data option. A user has the option if none of some of its pictures have not 
matched in the database to upload them along with the sighting data directly into the dataset  
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V. Issues encountered during the development of the project 
 

1. The training of the algorithms starts with manual inputs. 
As time-saving automation processes created with the help of machine learning are, it still 

requires a significant time to set up and especially for computer-vision processes. As seen earlier, 

to make an algorithm learn, it must be “fed” massive quantity of data to learn what to “look” for. 

However, to ensure that the data supplied to the algorithm is representing one of the categories 

in need of description, the pictures need to be manually sorted, checked and placed in files to be 

used either for training or validation. More than 22,500 pictures were collected through many 

conservationists willing to share their data freely to help the development of this project.  

To complete the project and have a reliable classification algorithm, even more pictures will be 

needed, and a modified classification system inspired on Wild in Live’s algorithm would be 

needed to sort through the bulk of the pictures with human supervision to guaranty the quality of 

the data. This process will be necessary before the Wild in Live’s algorithm has reached a high 

scientific standard. Reaching this goal will require even more data that would need to be stored 

and handled correctly to reduce the risk of loss or misappropriation. If the Wild in Live project 

can be relatively simple to manage as of now, reaching this goal will demand an upscaling in 

mean and human resources to conserve high performance throughout exploitation.  

There is a direct correlation between an increasing amount of data processed and the 

computation power needed to complete the task. With the current iteration of the algorithm, it 

processes an input query by comparing with all the pictures of the database, the algorithm risk to 

have its processing time dependent of the amount of data in the database. Different techniques 

can mitigate this issue such an orthogonal approach to partition data that avoid running the 

algorithm on an extended dataset (Kotsiantis, 2007) but are not implemented yet.  
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2. Difficulty in distinguishing different sea turtles’ image. 
Social media platforms and their never-ending stream of content often came with a great variety 

of closely similar pictures. Determining what a sea turtle is could seem a simple question. 

However, thanks to the advance in technology and computer-assisted editing software, their 

frontier between what is real and what is computer generated or modified makes it more 

ambiguous to identify as an authentic sea turtle. This issue is particularly relevant when collecting 

data directly from those social media platforms, as the probability of having a false positive 

registered in the database could in term reduce the validity of the data and deteriorate the capacity 

of the algorithm to identify its subject correctly.  

 

Despite the advantages of image recognition such as reduced manipulation of the animal, 

increased efficiency in recording and storing data without the problem of damaged tag, photo ID 

is not always error proof either. Although in recent year the advent of technology made the quality 

of picture crispier at each new iteration, poor quality photographs decrease the match success by 

increasing artefact of the picture to be misinterpreted by the identification algorithm (Figure 21) 

(Reisser et al., 2008).   

A filter must be placed within the categorisation process to sort picture coming from social media 

platforms. Not all the same pictures will have the same value in the “eyes” of the algorithm since 

some of them can be duplicate of a famous original post or edited post.  

 

 

Figure 21: Examples of pictures that are photorealistic of a sea turtle but could be misinterpreted by the categorisation 
algorithm 



35 
 

All of which can be considered valid input but the metadata behind each picture will indicate 

completely unusable coordinates or date as some individuals will have been reposted hundred 

times. To reduce the contamination, the database and possible overfitting, any picture not 

reaching a high confidence score will not be used (Figure 22). 

  

 
 

 

 

3. Authorisation of websites to get the data 
The core of this project lies in its ability to fetch data directly on social media platforms, using API 

to communicate with the appropriate servers. However, since the Cambridge Analityca scandal 

that revelated in 2017 the misuse of data from Facebook by a third party to pollical purposed 

(Cadwalladr, 2018), the global outrage that rightfully resulted forced internet companies to revisit 

their approaches to personal data management. Subsequently tightening the rules to receive 

permission to tap in their resources, such as asking for a completely operational prototype before 

gaining access. This condition made accessing the Facebook-owned social media Instagram 

unavailable during the development of the project, setting a setback in the ability of the prototype 

to get real-time monitoring of sea turtles. As a default, the Wild in Live project had to default to 

the Flickr API as it offered less restriction in the admission request. However, it diminished the 

real-time monitoring feature since the picture posted on this platform are often edited before being 

posted, decreasing the spontaneity of the information.   

  

 High 

Confidence 
Low 

Confidence 

Figure 22: This diagram illustrates the variations when looking for sea turtles on social media. Not all picture carries 
the same information and, they need to be classified or filtered to ensure that the algorithm is only focussing on the 
“good picture” e.g. the pictures with high confidence of classification.   
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Future developments and applications  

1. Gamification 
As talked earlier in the “Mitigating the challenges in Citizen Science” chapter (page 9), increasing 

the part of an active user is crucial for the viability of such platform as the input from scientist or 

wildlife enthusiasts contribute significantly to the quality of the data for a crowdsourced project. 

Moreover, one way to increase the active user proportion 

is through the gamification of such project. Gamification 

is the uses of game design elements in a non-game 

context, which can help create more enjoyment while 

interacting with an application. Citizen science is the right 

candidate for those kinds of opportunities as one of the 

significant volunteers’ motivation is an interest in 

technology and rewards (Bowser et al., 2013).  By 

integrating game-like elements such as leaderboard, 

badges and an occasional narrative to inspired 

volunteers, classification or reviewing tasks could be 

implemented at a lower cost of time and effort for the 

developers (Figure 23).  

2. Data background analysis 
One of the current limitations of the project is its ability to manage a large amount of data; as the 

prototype will retrieve data only when the user requests it. Therefore, the accumulation of data 

only occurs during the active use of the prototype, which can lead to missed collected information. 

To improve this aspect, the next version of the prototype should be able to retrieve automatically 

all the information posted on social media platform at any time to offer a real-time location of sea 

turtles around the world. It could allow the development of an alert system in the event of hatching 

or poaching as notification could be sent automatically to the concerned conservation 

organisations to deal with those issues as fast as possible.  

Alternatively, if a researcher needs to know the whereabouts of an individual, a notification could 

be sent if the individual has been picked up in a newer location and time frame. 

Figure 23: Mock-up of a user profile along with 
its badges and experience to motivate the user 
into being more active on the platform. 
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3. Estimate population and Migration patterns 
Currently, the results available in the database mainly focus on the individual identification and 

will present factual data as it was collected, as individual point representing a sea turtle. These 

sighting data could also be used to offer additional information by including an estimate of the 

population depending in an area by including statistic model directly in the website, thus offering 

additional content to the user, and displaying the result in a more understandable way for later 

interpretations. The migration patterns could be created by linking the different sighting of an 

individual over time, displaying a network and heatmap of the whereabouts of the sea turtles.  

The data collected with the monitoring could allow to calculate the average mortality rates, 

average recruitment rates, the size distribution of the population. Including those formulae in the 

algorithm could estimate the ability of a specific sea turtle population to persist in the future.   

4. Alerts and notifications 
A feature that was requested by sea turtle researchers is the ability to be notified if an event or 

sighting of a specific individual occurs. A researcher could then be informed if a hatching event is 

happening in the area under his supervision and send volunteers to protect and monitor the site. 

If a researcher is interested in a specific individual, Wild in Life could send a weekly review on 

its whereabouts. The alerts could also notify competent protection organisations if an illegal trade 

of sea turtle activity is detected on social media, as wildlife dealers often use social media to 

release photos and information about its product to attract potential customer (Di Minin et al., 

2018). The notifications could be easily be set up in the profile of the user but only available to 

researchers as it is sensitive information. 

5. Ability to send feedback to improve the algorithm 
As a supervised learning algorithm, human input is required to steer the system to identify its 

inputs accurately. However, as accurate the algorithm might be, some miss-categorisation or 

miss-identification might happen due to artefacts in the picture rendering the processing 

inadequate for the input image. Since the process is automatised, scanning a massive volume of 

pictures could create a significant number of unreliable results. A safeguard to this situation is 

through the gamification of the project, asking users directly to review the pictures themselves to 

correctly categorise them, increasing the certainty and reliability of the results while sending 

valuable information to the algorithm to learn from the feedbacks. If a picture cannot be identified 

by the algorithm nor by a user, it will be discarded to preserve the integrity of the database.  

These implementations can be added with continuous updates on the project.  
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Critical overview of the project  
The rise of citizen science has been proven indispensable as environmental preservation has 

become one of the main challenges facing our society. There is now a renaissance of citizen 

science through expanded government models, technological innovation and the increased 

interest in participatory and open science. The versatility of crowdsourced projects tends to 

provide a transdisciplinary paradigm, moving beyond isolated scientific disciplines and toward a 

matter of societal relevance across different fields. (Hecker et al., 2018). It is with that very 

essence of innovation and interdisciplinarity that Wild in Live was created, to answer a simple 

problem using knowledge of both conservation biology and computer science. 

Presently, the Wild in Life project is just a prototype and is not ready to be released in the hands 

of scientists or sea turtle aficionados. It is the evidence that real-time species identification through 

social media for conservation purposes is possible, but it still requires further developments to be 

able to provide the full set of services needed to be used as a scientific tool.  

The development of the project shed light on matters arising from the creation of such an 

algorithm. One of the primary objectives was to reduce errors bias by reducing the human input 

in the data collection and to reach such level, the algorithm itself must be trained rigorously. 

Requiring that an automated process does at least as well as a human is not an easy task. A 

technological company like Google have been trying to render commercial self-driving vehicle 

since years and are still in the development process (Bimbraw, 2015). The stakes as not as high 

as Wild in Live is dealing in big data and not human lives and do not require an endless number 

of accreditations to get authorisation from a legal standpoint to be approved. However, even with 

a rudimentary training dataset, the algorithm can offer a sea turtle categorisation similar than 

human accuracy with a much-increased yield (Dodge & Karam, 2017). 

Further finetuning of the algorithm will then help in the areas where it lacks performances due to 

less furnished training datasets, disordered data input and overfitting. The algorithm does not 

have the vocation of replacing professional researchers and would not be able to until 

advancement in computer-vison enables the algorithm to have more than a binary response to 

the input. The human visual system is better suited and has a more robust representation of visual 

stimuli than state of the art neural networks, being able to recognise subject under different 

conditions using past experiences and information available. An algorithm will only look for 

specific details in the picture, which might be unavailable due to the quality or the noise present 

in the image. 
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If presented with a picture containing ambiguities (i.e. picture with a dead juvenile in a nest), 

human’s classification does not necessarily offer a more accurate classification than Wild in 
Live’s, as each volunteer can have a different opinion on what the image represents. The 

advantages with a predictable process are that it allows for a better understanding of the outputs 

and we can easily identify where the ambiguities can lies, reducing the contamination of the 

crowdsourced database with low accuracy data (Russakovsky et al., 2015). Besides, scaling up 

the dataset will always reveal unexpected challenges that will require a rewrite of parts of the 

algorithm’s code and be often updated. Therefore, the growth of unlabelled dataset will imply to 

rely (until better iteration of the classification algorithm) on human supervision after the algorithm 

make its categorisation to verify its precision (estimates that the algorithm made and how many 

were deemed correct by humans). Once completed, the algorithm will minimise the effects of 

human-related bias in a crowdsourced project and be able to save time to researchers by 

scanning through thousands of pictures in one set.  

To properly save time, performance must be noticeably higher than average volunteers carrying 

out the task. If the individual categories performance offers promising results with less than a 

second to get results, testing of the algorithm revelated that many other factors could make the 

experience significantly longer. The overall website performance lacks behind the standard of 

other applications users are accommodated to use and is the most case was either due to the 

local internet bandwidth or the algorithm was not correctly set up to handle an immense amount 

of inputs. These issues have been addressed multiple time during the development through 

optimisation of the database search and correction of architecture processes, but improvement is 

bottlenecked as only more power could improve the performances situation (i.e. more dedicated 

servers).  

Here lies one of the main flaws of crowdfunding assisted algorithm, the user experience cannot 

be inadequate, or the project will be at risk of losing daily users and become irrelevant to 

scientists. To improve user experience, an intuitive interface and decent performance are 

mandatory to keep the project operational and therefore, higher investment is needed for the 

creation of the finished project.  

The high initial investment is what makes the creation and development of these project delicate. 

Investing a significant amount of money in a project that might not be used by its niche user while 

maintaining update services and operational cost could explain why a substantial number 

of projects that are discontinued (e.g. Sloop, I³S). 
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Fortunately for researchers most of those projects have an open source directory available to 

enable customisation of the source code and update them to today standard, but it needs proper 

cyber-infrastructure investment in standardisation, interoperability, attribution, curation and 

preservation of the metadata to be used for crowdsourced project (Crowston et al., 2012). The 

result is often the creation of a capable algorithm, but due to the lack of funding, it will only be 

used internally to the institution and not be easily shared with other projects, disseminating the 

scientific advancement in computer ecology to the only researchers skilled in this domain.  

Wild in Live is using data available from social media platform and data uploaded by researchers, 

therefore, it must remain free and open to scientific projects as those conservation initiatives often 

run with a limited budget. Ensuring free access to scientific data need to come with a guarantee 

that it will not be used for non-conservation projects. Determine where and when sea turtle 

migrate, and their real-time location is valuable data that could be used as effectively to start 

poaching activity actively. Ensuring that the data is in good hands, will reduce the ease of access 

to information available in the database as not everyone should be able to download the database 

without any accreditation first. One way to deliver data to everyone while safeguarding sea turtles 

is to include in the algorithm a function that will approximate the data and will, for example, only 

disclose data to a country level of accuracy. For the raw data, a researcher will have to prove that 

its conservation project is indeed for the wellbeing of the individual and safeguards could be 

implemented to encrypt the raw data in the database in case of hacking.  

Once the Wild in Live project will be fully functional and perform adequately,  the algorithm will 

be able to identify to an exceptionally low degree of errors, that will come with an improved 

classification algorithm, bias inherent to the volunteer capacity to detect, identify and record the 

sea turtles.  The immense amount of data collected over the years could help conservation 

community to have a more accurate of the state of biological threat that the seven species of sea 

turtles are facing; be notified when a hatching event occur and send volunteers to protect the area 

and be a great tool of communication to raise awareness.  Working with this “big data” could 

enable the unearthing of patterns and the creation of new analytic models that were not could be 

developed before due to relatively low access to a massive amount of data. 

Being an open data project (excluding Live map which is based on software developed internally 

by Critical), the code could be shared on other similar projects to help the spread of the computer 

vision technology at a significantly reduced cost to other conservation projects. Since 

development would already have been done, only a few modifications would be required to 

monitor other species. 
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Alternately, new species could be directly integrated to other iteration of the Wild in Live algorithm 

by enabling the researchers to import a large quantity of training data to create a new version of 

a computer vision process. 

The ingenuity of this learning process is that the layers are not the result of human conception, 

but they are learned from using a general purpose learning process. (Lecun et al., 2015). Exactly 

like it is impossible to explain how neurones in a human brain interact to identify and recognise 

an object, the CNN will create a network between neurone that will have the same ability without 

the ability to explain it how it developed it. However, with an essential advantage that it can be 

copied and improved with minimal resources which give machine learning an evolution capacity 

much higher than nature’s (Burrell, 2016). 

Machine learning tools have been used for more than two decades but only now with the advent 

of the internet of things that an incredible amount of information is available, that a new way of 

collecting conservation data is possible. Wild in Live proved that it could collect data 

automatically and if integrated to a citizen science project, it could become a tool that will enable 

an improve passive monitoring by decreasing the time needed to collect data while guarantying 

its reliability. Other challenges not foreseen will inevitably arise with the adoption of new methods 

to related to machine learning, but we are eagerly awaiting the future development of object 

recognition datasets and algorithms, as the possible application will surely have a positive impact 

on the way crowdsourced projects and conservation effort are conducted.  
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