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Abstract

A Brain-Computer Interface or BCI is a device that can extract brain activity, where brain sig-
nals are analyzed and processed to enable the machine to accomplish certain purposes, such as
communicating, playing video games, controlling prosthesis, wheelchairs, smart homes, etc. In
the past years, the study of human-computer interaction has been focused on how to improve the
people’s quality of life, with special attention on individuals with additional needs.

People with severe motor disabilities face many challenges in their daily life. During the last
decades, the science community has been concerned about developing BCIs to provide means of
communication and functional rehabilitation for these individuals. The efficiency of a BCI on a
real-world application to help severely paralyzed individuals is still very limited, but the constant
research and improvement on signal processing and machine learning techniques are bringing the
possibility of efficient BCI use in real-world applications one step closer to reality.

The implementation of an electroencephalographic (EEG) based BCI, signal acquisition tech-
nique used in this work to record the electrical activity, has several aspects that need to be taken
into consideration: usability, user comfort, methods, paradigms, etc. To improve the performance
of the BCI system for a specific application, a particular protocol and paradigm have to be chosen
for the experiment. It is essential to choose the right paradigm to enhance the neurophysiological
signal, improving the classification process and therefore providing better performances.

The goal of this dissertation was to develop a standalone framework to implement visual and au-
ditory (hybrid) paradigms in applications outside the Matlab/Simulink system (framework imple-
menting signal acquisition and signal processing). The framework developed is not only a frame-
work for the rapid development of feedback and stimulus applications but also a platform to run
neuroscientific tests independent from BCI systems. Three conditions were proposed and devel-
oped in the context of BCIs based on a neurophysiologic signal designated by ’P300 event-related
potential’. The paradigms were developed and designed in Python 3.7. The Matlab/Simulink
and the Python framework run on the same computer and are synchronized through a TCP/IP
communication. The Python module receives the information provided by the BCI and gener-
ates and presents the stimuli on a visual and auditory interface. The proposed paradigms use an
auditory stimulus based on natural meaningful spoken words and a visual image-based stimulus
(flashing words with overlapped pictures of well-known faces) simultaneously, aiming to enhance
the evoked potentials, increasing stimuli discrimination, and reducing user’s mental effort. Five
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stimulation paradigms were experimentally tested by 10 healthy participants: word flashing, word
flashing with auditory, famous face flashing, famous face flashing with auditory, and flashing a
relative’s faces. The performance of the proposed BCIs was significantly improved in compar-
ison to the control P300-based BCIs (word flashing and word flashing with auditory). The best
online accuracy, effective SPM, and ITR was achieved by the relative’s face paradigm and com-
pares favorably with the state-of-the-art performances with 95.56%, 3.07 symbols per minute, and
8.08 bpm, respectively. Followed by the famous faces paradigms, which had similar performances
with an accuracy of 93.33%. However, the control paradigms had a lower performance with an
accuracy of only 82%. The relative’s face paradigm showed to recruit additional face selectiv-
ity mechanisms in addition to those for non-relative’s face, eliciting the most discriminative ERP
features.

Convolutional Neural Networks (CNNs) were researched and implemented offline to classify
P300 ERPs, to compare their performance with the current classification approach. Although there
are not many studies regarding CNN for EEG classification it is a promising technique in this field
as feature extraction and classification are one single architecture and optimized automatically with
minimal preprocessing. This was an exploratory work with a limited number of datasets, where
the CNN was trained with a small amount of data. The approach currently being used at ISR-
UC showed better performances than the CNN, nevertheless, the CNN was capable of adequately
classifying the data. Although the CNN performed worse than the current approach, the aforemen-
tioned CNN properties are very relevant and give the motivation to further explore deep learning
approaches.

Keywords : Brain-Computer Interfaces (BCI), electroencephalogram (EEG), communication,
event-related potentials, P300, locked-in state (LIS), hybrid visual-auditory, faces paradigm, Con-
volutional Neural Network (CNN).
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Resumo

A interface cérebro-computador ou ICC é um dispositivo extrai a atividade cerebral, onde os
sinais cerebrais são analisados e processados que permite que a máquina atinja certos funções
como comunicação, jogar vídeo jogos, controlar próteses, cadeiras de rodas, casas inteligentes, etc.
Nos últimos anos, o estudo da interação homem-computador está-se a concentrar em melhorar a
qualidade de vida das pessoas, com atenção especial a indivíduos com necessidades especiais.

As pessoas com deficiências motoras graves enfrentam vários desafios no dia-a-dia. Nas últimas
décadas, a comunidade científica tem-se preocupado em desenvolver ICCs que forneçam meios de
comunicação e reabilitação funcional para esses indivíduos. A eficiência de uma ICC para uma
aplicação no mundo real que ajude indivíduos gravemente paralisados ainda é muito limitada, mas
a constante pesquisa e melhoramento em técnicas de processamento de sinais e machine learning
estão a aumentar a possibilidade do uso eficiente de ICC em aplicações no mundo real.

A implementação de uma ICC eletroencefalográfico (EEG), técnica de aquisição de sinal usada
neste trabalho para registrar a atividade elétrica, possui vários aspectos que necessitam consider-
ação: usabilidade, conforto do utilizador, métodos, paradigmas etc. Para melhorar o desempenho
do sistema ICC para uma aplicação específica, um protocolo e paradigma específico devem ser
escolhidos para os testes. É essencial escolher o paradigma certo para melhorar o sinal neurofi-
siológico, melhorando consequentemente o processo de classificação e, portanto, proporcionar
melhores desempenhos.

Esta dissertação tem como objetivo contribuir com um paradigma híbrido no contexto de ICCs,
com base em um sinal neurofisiológico designado pelo ’potencial relacionado a evento P300’. Um
paradigma híbrido (estímulos visuais e auditivos) foi desenvolvido em Python 3.7. A framework
desenvolvida não é apenas uma framework para o rápido desenvolvimento de aplicações de feed-
back e estímulo, mas também uma plataforma para executar testes neurocientíficos independentes
dos sistemas ICC. O Matlab / Simulink (framework que implementa a aquisição e processamento
de sinal) e a framework Python são executados no mesmo computador e são sincronizados através
de uma comunicação TCP / IP. O módulo Python recebe as informações fornecidas pelo ICC e
gera e apresenta os estímulos numa interface visual e auditiva. Os paradigmas propostos usam es-
tímulos auditivos baseados em palavras pronunciadas com significado natural e estímulos visuais
baseados em imagens (palavras intermitentes com imagens sobrepostas de faces conhecidas) simul-
taneamente, destinado a melhorar os potenciais evocados, aumentar a discriminação de estímulos
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e reduzir o esforço mental do utilizador. Cinco paradigmas de estimulação foram testados exper-
imentalmente por 10 participantes saudáveis: palavras, palavras com audição, faces de famosos,
faces de famosos com audição, e faces de um parente/amigo. O desempenho das ICCs propostos
foi significativamente melhorado em comparação com as ICCs de controle (palavra e palavra com
audição). A melhor precisão online, ITR e SPM efetivo foram alcançados pela condição de faces
de um parente e comparam-se favoravelmente aos desempenhos de state-of-the-art com 95,56 %,
3,07 símbolos por minuto, e 8,08 bpm, respectivamente.

Rede neural convolucional (ConvNet) foi estudada e implementada offline para classificar os
ERPs P300, para comparar seu desempenho com a atual abordagem de classificação. Embora
não existam muitos estudos sobre ConvNet para classificação de EEG, é uma técnica promissora
neste campo, pois a extração de features e classificação são uma arquitetura única e otimizada
automaticamente com o mínimo de pré-processamento. Este foi um trabalho exploratório com um
número limitado de datasets, onde a ConvNet foi treinada com uma pequena quantidade de dados.
A abordagem atualmente utilizada no ISR-UC mostrou melhores desempenhos do que a ConvNet,
no entanto, a ConvNet foi capaz de classificar adequadamente os dados. Embora a ConvNet tenha
um desempenho pior do que a abordagem atual, as propriedades da ConvNet acima mencionadas
são muito relevantes e motivam a explorar ainda mais as abordagens de deep learning.

Palavras − chave : Interfaces Cérebro-Computador (ICC), eletroencefalografia (EEG), comu-
nicação, potenciais relacionados a eventos, P300, síndrome do encarceramento, híbrido visual-
auditivo, paradigma de faces, Rede Neural Convolucional (ConvNet).
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1
Introduction

This chapter presents an introduction to this dissertation. Some insights concerning the context
and motivation of the developed work are presented, as well as the main goals and key contribu-
tions.

1.1 Context and motivation

The body’s actions and functions are all controlled by neurons which communicate information
from the brain to the rest of the nervous system using electrical signals. These electric pulses, that
are sent from the brain to the body, control everything we do daily. The understanding of how the
brain controls our body led to the development of devices and algorithms that can be implemented
on a computer that recognizes the patterns of brain signals.

A Brain-computer interface (BCI) is a device that captures brain signals, and then processes and
interprets the information. This human-computer interaction enables brain signals to control exter-
nal applications, such as communication devices, motorized wheelchair (locomotion), prosthetic
devices, smart devices, play video games, or as a tool for neurorehabilitation of motor disorders
(e.g., resulting from a stroke) or for neurorehabilitation of neurodevelopmental disorders (e.g.,
autism). BCIs have endless applications and are used in several fields, such as medical, entertain-
ment, neuroergonomics and smart environment, neuromarketing and advertisement, educational,
etc. The generic representation of a BCI in Fig. 1.1 shows some of these applications.

Human communication and interaction with the surrounding environment are two of the most
important things in everyday life. People with severe motor disabilities face many daily challenges
in their basic needs. Some individuals have their motor control severely affected, having no capac-
ity of movement, or presenting very low dexterity, affecting their head, eyes, limbs, and speech. In
the past years, several efforts have been made to develop BCIs to provide a reliable communication
channel and restore some functional abilities, giving them the opportunity to improve somehow
their interaction with people and the surrounding. Locked-in state (LIS) is a condition where the
patients are fully aware but are unable to move or communicate. Almost all the voluntary mus-
cles are in complete paralysis except vertical eye movements and blinking. The patients with this
condition tend to lose the physical abilities over time and some can enter in a complete locked-in
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Figure 1.1: A generic representation of functional elements of a BCI system (figure inspired in
[52]). The signals are recorded from the user’s brain, the method used can be EEG, ECoG or
intracortical; Brain signals are processed and classified in real-time and then adapted into control
commands.

state (CLIS), losing the ability to control any muscle including their eyes but continue to have full
awareness [4]. Since CLIS patients still produce and control brain signals it is possible to estab-
lish communication with them using BCIs. The efficiency of a BCI on a real-world application
to help severely paralyzed individuals still has several limitations, but the constant research and
improvement on signal processing techniques are bringing the possibility of an efficient BCI use
on real-world applications closer to reality.

BCIs can be based on different neural signals, of which the electroencephalogram (EEG) is the
most common. These interfaces are categorized based on the EEG brain activity patterns into
four different types: P300, SSVEP (Steady-State Visual Evoked Potential), ERD (Event-Related
Desynchronization) and slow cortical potential (SCP). These BCIs have both advantages and dis-
advantages. The SCP and ERD require long periods of training and with no guarantee of success,
the P300 only needs a few minutes to train and SSVEP does not need training. Yet, SSVEP-based
BCIs are very unpleasant due to continuous flashing stimuli and are gaze-dependent [47], so they
cannot be used by patients with eye movement limitations. Additionally, the SSVEP is not evoked
by some people. The P300 can be gaze-independent (covert attention), although the P300 usually
has better results with gaze-dependent mechanism (overt attention) [12]. Therefore, while SSVEP-
BCI generally yields the highest transfer rates, and while ERD-BCI is the only one that does not
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require any stimulation, P300-based BCI has so far shown the most suitable features for clinical
use, and therefore is the most commonly used in clinical case studies with severely paralyzed pa-
tients [52]. Fig. 1.2 shows a comparison between the four BCIs regarding the training time and
information transfer rate. The BCI developed in this work is based on the P300 neural mechanism,
as the main goal of this dissertation is to design a BCI suitable to patients in CLIS states.

The Institute of Systems and Robotics - University of Coimbra (ISR-UC) has been research-
ing methods to improve several aspects of BCI, regarding its information transfer, reliability, and
general usability. To improve the signal-to-noise ratio of the P300 signal, a signal processing tech-
nique, the Statistical Spatial Filter, was designed in [58]. Also, a novel P300 layout paradigm,
he Lateral Single character Speller (LSC), was developed to increase the evoked P300 potential
amplitude to raise the discrimination to non-target events, by decreasing the target probability and
the effect of adjacent distractors [59]. To allow patients to use the interface without ocular devi-
ation (gaze independence), a new arrangement of P300 stimuli and a new paradigm strategy was
proposed (GIBS speller) [57]. To decrease the user effort and improve usability of BCI to drive
a robotic wheelchair, a human-machine shared controller was developed, supported by a motion
planner that allows robust indoor navigation [50][51]. To reduce user effort, a method for detecting
non-control states was implemented, which allowed the design of a BCI in which the user conveys
commands only when desired [60]. More recently, an approach based on error related potentials
(ErrPs) was implemented for BCI error detection and correction [14]. Currently, a technique for
elimination of calibration or reduction of calibration time is in the process of being published,
which will improve user usability.

In this thesis work, a hybrid (visual and auditory) P300 paradigm is proposed aiming to increase
the discrimination of the evoked potentials. Also, the stimulation framework was developed as a
standalone module so that it can be flexibly integrated with different BCIs through TCP/IP com-
munication.

1.2 Goals

Several aspects need to be taken into consideration when developing an EEG-based BCI sys-
tem such as the user needs, the paradigm, the methods, protocols, usability, etc. To improve the
performance of the BCI for a specific application and make it user-friendly, a particular protocol
and paradigm have to be chosen. Paradigm design is of great importance, as several features can
be modeled to enhance brain waves, thus facilitating the classification process. Increase user’s
attention and engagement, decrease unpleasant and tiring effects, are factors that can contribute to
a more effective BCI control.

P300 is a positive component of the event-related potential (ERP) evoked by a rare and rele-
vant stimulus, the target event, in an oddball paradigm. After the target event appears, a positive
peak around 300ms occurs [20]. It was first reported by Sutton et al. in 1965 [73]. P300-based
BCIs require selective attention and working memory, hence depending on the complexity of the
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Figure 1.2: Comparison between SCP, ERD, P300, and SSVEP regarding the training time and
information transfer rate [70].

paradigm [39]. CLIS patients are not capable of gazing peripheral stimuli, outside the foveal vision
due to their visual impairment [4], and may experience reduced concentration spans and cognitive
impairment, restricting them to successfully control highly difficult tasks [43] [47] [6] [67]. Con-
sequently, P300-based BCIs paradigms need to take into consideration CLIS patients limitations,
for example studies [68][26][17][23][61][28][54][7] show that using simpler and less choices for
the paradigms improve the overall perform of the communication performance. Moreover, the
scientific community has been researching strategies/paradigms to enhance the P300 signal and
therefore increase the discrimination of the evoked potentials. Regarding the design of paradigms,
a recent approach based on famous faces stimuli has been proposed as a promising technique to
enhance ERP detection. Several studies in the field of human face perception show that visualiz-
ing a famous face elicits particularly strong ERPs (N170, P300, N400) [40]. Since CLIS patients
usually have an intact hearing system, combining famous faces images and auditory stimuli, si-
multaneously, on a reduced lexicon paradigm may improve the overall BCI performance, which is
the approach followed in this dissertation.

This dissertation aims to contribute with a hybrid paradigm in the context of BCIs based on a
neurophysiologic signal designated by ’P300 event-related potential’. A hybrid paradigm, which
combines visual and auditory stimuli, was developed and designed to try to overcome BCI ineffi-
ciency in patients with neurodegenerative disease. In this work the visual stimuli are famous faces
(flashing words with overlapped pictures of well-known faces). The previous visual-auditory BCI
framework developed at ISR-UC [3] was based on Matlab/Simulink (Highspeed Simulink, gtec),
for visual stimulation (text-based) and signal processing and classification, and on Presentation
software for auditory stimulation. Presentation software requires a commercial license and its
connection to Matlab/Simulink requires a complex setup which limits the flexibility and usability
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of the overall BCI system. To overcome these limitations a new standalone framework was devel-
oped to present visual and auditory stimuli. The framework is fully independent of the rest of the
Matlab/Simulink system, and it was designed with the Python 3.7 programming language. It is not
only a framework for the rapid development of feedback and stimulus applications but also a plat-
form to run neuroscientific experiments independent from BCI systems. The Matlab/Simulink and
the Python framework run on the same computer and are synchronized through TCP/IP communi-
cation. This allows more flexibility and less complexity and also the possibility of connecting with
different BCI applications. The Python module receives the information provided by the BCI and
generates and presents the stimuli on a visual and auditory interface. The paradigm uses auditory
stimuli based on natural meaningful spoken words and visual image-based stimuli concurrently,
aiming to enhance the evoked potentials and increase the stimuli discrimination to improve the
classification process. The suggested bimodal interface includes a reduced vocabulary comprised
of the following words (same as in [3]): yes, no, hunger, thirst, urinate, air and position. The
paradigm goal is to enable a basic ”yes or no” conversation, but also be fitted to provide the oppor-
tunity of some basic-needs/necessities options. The use of famous faces and natural meaningful
spoken words is expected to help to capture the user’s attention and reduce user’s mental effort. On
the other hand, the interface is not complex nor tiring, minimizing memory and cognitive demand,
and maximizing the stimuli discrimination and intuitiveness. Although a BCI based on a reduced
vocabulary can be quite limited when compared with other communication paradigms, it may rep-
resent a feasible BCI to be controlled by CLIS patients, taking into account their limitations. Figure
1.3 shows in red the BCI system blocks that were developed or enhanced in this work.

Another issue was addressed in this work, which was to research the possibility of improving the
overall performance of the BCI system. In the past years, Convolutional Neural Networks (CNNs)
have been proposed for EEG classification [13]. Nevertheless, there are not many studies regard-
ing CNN application for EEG classification, but it is a promising technique in this field [13]. An
advantage of CNNs is it performs automatic feature extraction. The feature extraction and classi-
fication parts are one single architecture and optimized automatically. CNNs also require minimal
pre-processing techniques. In this dissertation, the performance of a CNN classifier and the ap-
proach currently being used at ISR-UC, based on a statistical spatial filter and a Bayes classifier,
were compared.

1.3 Implementations and key contributions

The following implementations and contributions have been achieved:

- Standalone framework implementing visual and auditory paradigms in applications outside Mat-
lab/Simulink, but keeping the acquisition and signal processing in Matlab/Simulink environment.
Specifically, a data communication interface between Matlab/Simulink and external application,
and a visual and auditory paradigm with a high-level programming language were developed;

- BCI laboratory experiments conducted with volunteers to test and validate the paradigms devel-
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Figure 1.3: Representation of the BCI system used in this work. The red modules are the ones
that contain the developed work made in this dissertation. The first module is the acquisition of the
brain signals of the user which are used to extract the subject’s intentions and also the responses
to the stimuli. The next module of a BCI system does the signal pre-processing and classification.
The stimulation module is where the stimuli are displayed on an interface that is presented to the
user. The classification of the EEG signals is made to determinate the intention of the subject, the
control command module provides the predicted results made by the classifier for each trial, as
known as feedback, in the same interface where the stimuli are presented.

oped. Five stimulation paradigms were experimentally tested by 10 healthy participants: word
flashing, word flashing with auditory, famous face flashing, famous face flashing with auditory,
and flashing a relative’s faces. A detailed neurophysiological study of the ERPs evoked by the five
different paradigms was made;

- Application of classifiers to EEG neurophysiological data collected from experiments with the
proposed paradigms;

- Offline implementation of a CNN classifier and performance analysis compared to the approach
currently being used in ISR-UC, which combines a statistical spatial filter and a Bayes classifier.

The course flow of this dissertation and content of each chapter are the following:

• In Chapter 2 an explanation of some neurophysiologic concepts covered in this dissertation
is made, also, the background material on the classification methods studied in this work is
presented.

• Chapter 3 reviews the state of art on P300 paradigms, BCIs frameworks, and P300 detection
using a convolutional neural network classifier.

• Chapter 4 describes the entire hybrid paradigm development environment, the functional
elements performed by the P300-based BCI system, and the classification methods studied

6



1. Introduction

in this work.

• In Chapter 5 a validation and discussion of the paradigms developed in this work are pre-
sented. Furthermore, the performance of the CNN classifier and the statistical spatial filter
and Bayes classifier are discussed.

• Some final conclusions are made in Chapter 6.
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2
Background material

This chapter is divided into two parts, the first section explains some fundamental neurophys-
iologic concepts to facilitate the comprehension of some topics covered in this dissertation. The
second section describes the important background theory of two classification methods applied
in this work.

2.1 Neurophysiological concepts

Brain signals can be recorded by different methods, from non-invasive to invasive approaches.
Intracorticography is an invasive technique that requires a medical procedure, where the signal
acquisition devices are microelectrodes arrays implanted under the skull within the grey matter.
This is a highly invasive procedure with risks of infection involved. Electrocorticographic (ECoG)
is a invasive technique, where the signals are acquired under the skull on the surface of the brain
(exposed surface of the cortex), therefore an intracranial invasive medical procedure is needed.
Electroencephalography (EEG) is a very popular non-invasive method that was first discovered
by Hans Berger in 1929 [36]. Electrodes are placed on the surface of the scalp usually with gel to
improve the conductivity. The electrodes capture the electric signals from the brain to the device
that measures and records the signals. This a simpler, cheaper and safer technique that can be
conducted easily compared to invasive techniques [34]. EEG provides millisecond-level temporal
resolution, being one of the most direct measures of covert mental operations in the brain. EEG
headsets with 10 to 20 electrodes are adequate for most academic or commercial needs. EEG caps
have electrodes which are placed according to International 10-20 system [33]. BCIs based on
EEG have some limitations, namely, they are very susceptible to neurophysiologic artifacts, they
have a limited frequency range and the spatial resolution and signal-to-noise ratio (SNR) are low.
The number of studies with EEG-based BCIs has been increasing over the past years, and on the
contrary, the number of studies using invasive methods has been decreasing, according to [34].

Different neural mechanisms can be used on EEG-based BCIs depending on the application,
research, medical and clinical purposes. The most important experimental paradigms used on
EEG-BCIs systems are motor and mental imagery, P300 event related potentials (based on visual,
auditory or hybrid stimulation), and steady-state visual evoked potential (SSVEP). Each paradigm
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PROS CONS USUAL PACE
NON-MOTOR
MENTAL

IMAGERY &
MOTOR IMAGERY

- does not need stimuli;
- less sensitive to timing than P300.

- needs intensive training;
- can be tiring;
- hard to detect more than two classes.

- one prediction after ∼4 seconds
of single class imagery.

VISUAL
P300

- user does not need skill;
- good for multiple choice selection;
- can be gaze independent.

- many repetitions in each trial;
- very sensitive to timing. - one letter after two to ten of flashes.

SSVEP - user does not need skill;
- less sensitive to timing than P300.

- the flicker may quickly fatigue
the user;
- It may be difficult to reliably select
between more than 3 elements;
- gaze dependent.

- one prediction each few
seconds of signal.

AUDITORY - user does not need skill;
- good for multiple choice selection.

- many repetitions in each trial;
- very sensitive to timing.

- one target sound after tens
of sounds.

HYBRID
- accuracy can be improved;
- classification methods can use
more BCI outputs.

- may be more complicated
than a single paradigm;
- may be more difficult to develop.

- depends on the combination
of the paradigms chosen.

Table 2.1: Comparison of the different types of paradigms used on EEG based BCIs systems.

elicits different kinds of brain signals and each one has its pros and cons. P300 is an event-related
potential (ERP) paradigm in which the user needs to be aware of a specific stimulus/event, which
is usually a visual symbol/image or a sound known as the target. This target must appear randomly
and with a low probability among other events, called standard events (oddball paradigm). When
the visual event is highlighted or the sound occurs, a positive deflection occurs around 300 ms
after the onset of the event (delay between stimulus and response), as shown in Fig. 2.1. Given
the low signal-to-noise ratio (SNR) of the P300 signal it is usually necessary that the target event
is repeated several times in order to gather several responses, to select the target symbol the user
is focused on. By repeating many targets and non-targets the BCI can detect which is the target
that the user was focused on. The P300 waveform is evoked in almost every people, which is a
good property for its general use on BCI. The P300 paradigm is usually applied for communi-
cation applications, like spellers. The classifier of the BCI system predicts for each signal block
(one or more epochs - EEG segments associated to each event) whether it is a P300 or a non-P300
(standard). SSVEP is a paradigm where a periodic brain response is evoked in the visual cortex
by a repetitive presentation of a flickering (visual stimulus) steadily with a certain frequency. The
classifier module distinguishes between the flickering frequencies. Motor imagery is the paradigm
where the user imagines kinesthetic limb movements of the left hand, right hand, foot, tongue, and
so on. During the motor imagery, distinct mu/beta event-related (de)synchronization phenomena
are generally shown around the motor cortex, which can be used for the classification of an individ-
ual’s intention. In the non-motor mental imagery paradigms, the user has to perform mental tasks,
such as mental calculation, internal singing or speech, 3D figure rotation, spatial navigation, letter
composing, etc [34]. In auditory paradigms, the subject has to focus on a specific sound stimulus,
which elicits brain signals. The stimuli can be presented to elicit a P300 ERP or auditory steady
state response (ASSR). Hybrid paradigms combine two or more kinds of stimulation or two or
more types of biosignals (e.g., EEG and EOG) simultaneously. The number of studies with visual
P300, hybrid and SSVEP paradigms have been increasing over the years, unlike the motor imagery
paradigms, as shown in Fig. 2.1. In Table 2.1, a comparison between the different paradigms is
presented.
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Figure 2.1: Percentage of each paradigm used in the published articles from 2007 to 2011 [34].

In this work, the developed BCI was based on a P300 paradigm. The oddball paradigm consists
of having a rare target stimulus that is presented with other more frequent non-target stimuli in a
serial input stream. The oddball paradigm elicits a positive deflection, P300, with a latency (delay
between stimulus and response) of roughly 250 to 500ms [20]. The P300 wave is an Event-Related
Potential (ERP) component elicited in the process of a decision based on an evaluation or catego-
rization of the stimulus. It is considered to be an endogenous potential since its occurrence links
to a person’s reaction to a relevant stimulus. The amplitude of the P300 wave is highly sensitive
to the target stimulus probability and the level of attention of the subject. In the oddball paradigm,
the number of repetitions of standards between two occurrences of a target is randomized, i.e., the
target cannot be predicted by the occurrence of a given stimulus. Another ERP component elicited
by the oddball paradigm is the mismatch negativity (MMN), which is evoked after an infrequent
change in a repetitive sequence. The MMN is less dependent on the level of attention of the user
than the P300.

Figure 2.2 shows the different ERP components produced in an oddball paradigm. The N100
or N1 is a negative evoked potential measured by electroencephalography and it peaks between
80 and 120 milliseconds after the target stimulus. This ERP is considered an exogenous response
sensitive to the physical features (e.g., loudness or brightness) of an auditory, visual, or tactile
stimulus, it has more recently been linked to word segmentation processes [64]. The N1 is often
referred with the P200 (P2) evoked potential as the N100-P200 complex. The P200 component
seems to be modulated by a vast and diverse number of cognitive tasks. It is known that the
P200 is usually evoked as part of the natural response to visual stimuli. It has been investigated
concerning visual search and attention, language context information, and memory and repetition
effects. The N200 or N2 component is a negative wave that peaks at 200-350ms after the target
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stimulus, and it is typically evoked before the motor response, suggesting its link to the cognitive
processes of stimulus identification and distinction. The N400 is a negative deflection that peaks
around 250-500ms post target stimulus, it is part of the normal brain response to words/images and
other meaningful stimuli like well-known faces, environmental sounds, smells, words, etc. The
last ERP component is the P600, which is thought to be elicited by hearing or reading grammatical
errors and other syntactic anomalies.

Figure 2.2: Waveform showing several ERP components, including the N400 and P300. Note:
ERP is plotted with negative voltages upward [16].

2.2 Classification methods

This section describes two techniques used for the classification of event-related potentials that
were tested offline or online in the context of the P300-based BCI system used in this dissertation.
Concepts and methodological issues related to the methods are explained. The Bayes classifier is
used after EEG signals of each channel are processed with a statistical spatial filter. After spatial
filtering results a vector with the concatenation of the two most discriminative projections, which
are then classified by the Bayes classifier. The CNN uses directly the EEG signals without this
processing step.

2.2.1 Statistical spatial filter + Naïve Bayes

Linear classifiers used in P300-based BCIs, such as Naïve Bayes, require pre-processing and
feature extraction before the classification. The pipeline combining spatial filtering and linear
classification is shown in Fig. 2.3. The pre-processing and feature extraction steps are essential to

12



2. Background material

increase SNR, hence they have a significant role in the performance of the subsequent classifier.
Linear algorithms are sufficient for P300 classification, as long as appropriate feature extraction
methods are applied [60]. The spatial filter used in this dissertation is the beamformer based on
the Fisher Criterion (FC), proposed and developed in [60].

Figure 2.3: Pipeline of the statistical spatial filter + Naïve Bayes [60]

A spatial filter is a weighting vector, W, that combines the data of N channels at each time instant
t. The spatial filter output is obtained, in the matrix notation, according to:

y = W ′X (2.1)

where y is the output projection obtained from input channels X, and ’ denotes the transpose
operator. The FC is given by the Rayleigh quotient:

J(W ) =
W ′SbW

W ′SwW
(2.2)

whereSb is the spatial between-classmatrix andSw is the spatial within-classmatrix. The optimum
filterW is obtained determining the generalized eigenvalue problem:

SbW = SwWΛ. (2.3)

The selected filter is the eigenvector associated with the largest eigenvalue. Taking the spatio-
temporal matrixXk (dimensionN ×T ) from each epoch k, the matrices Sb and Sw are computed
from

Sb =
∑
i

pi(Xi −X)(Xi −X)′ (2.4)

and

Sw =
∑
i

∑
k∈Ci

(Xi,k −Xi)(Xi,k −Xi)
′ (2.5)
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where i ∈ {+,−} and, C+ and C− represent respectively the target and non-target classes, and
pi is the class probability. The average of the epochs in class Ci and the average of all epochs are
respectively denotedXi andX.

The Naïve Bayes (NB) algorithm is a probabilistic classifier based on the Bayes Theorem, which
was created by Thomas Bayes [1701-1761]. NB is a particular case of the rule-based Bayes clas-
sifier, which considers independence between features. In the Bayes theorem the attribution of a
given feature vector y = (y1, y2, ..., yn) to a class variable C, is made according to [55]:

P (C|y) = P (C)P (y|C)

P (y)
(2.6)

The P (wk | X) is called the posterior conditional probability of class wk, P (X | wk) the like-
lihood, P (wk) is the prior probability of class, and P (X) the prior probability of predictor. The
learning problem consists of estimating the posterior probability from the likelihood and prior
probabilities. The likelihood P (X | wk) can be expressed using the chain rule:

P (y | C) = P (y1, ...,yn | C) =

= P (y1 | y2, ...yn, C)P (y2 | y3, ...yn, C) · · ·P (yn−1 | yn, C)P (yn | C)
(2.7)

The previous sets of probabilities can be difficult and expensive to estimate. Fortunately, with the
naïve conditional independence hypothesis, stated as:

P (yi | yi+1, ...,yn | C) = P (yi | C) (2.8)

it is possible to express the likelihood as follows:

P (y | C) = P (y1, ...,yn | C) =
n∏

i=1

P (yi | C) (2.9)

Finally, the posterior probability can then be written as:

P (C|y) =
P (C)

n∏
i=1

P (yi | C)

P (y)
(2.10)

2.2.2 Convolutional Neural Network

To understand the main ideas, the key points, and the functionality of each layer within the
convolution neural network (CNN) architecture, a detailed reading of [45] was made. CNNs are a
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group of deep neural networks that can utilize the spatial structure of data to learn about the data
so that the algorithm can output something valuable. A neural network is based on a collection of
connected units or nodes called artificial neurons, where the output of a neuron can be the input
of another. A neuron is a placeholder for a mathematical function, and its mission is to provide an
output by applying the function on the inputs provided. The function used in a neuron is called an
activation function. The most common activation functions are step, sigmoid, tanh, and ReLU.

CNN trains and tests the data given to the network, the data passes through three distinct el-
ements, the convolution layers with kernel filters, pooling layers, and fully-connected layers, as
shown in Fig 2.4 [45]. The four main ideas behind CNNs are local receptive fields (locally con-
nected layer), weight sharing across spatial positions using convolutional filters, spatial/temporal
pooling, and the use of many layers. A typical CNN has two main parts. The first is responsible for
feature extraction and consists of one or more pairs of convolution and pooling layers. The second
part is just a classic fully-connected multilayer perceptron taking extracted features as input.

Figure 2.4: Example of a complete CNN architecture (LeNet-5) [45].

The convolutional layer is the first layer of a CNN. The convolution kernel operation in this
layer outputs a high value for a given location if the convolution feature is present in that position,
else outputs a low value. It is a process where a small matrix of numbers (called kernel or filter)
passes over the image and transforms it based on the values from filter. The exact value is decided
according to the following formula:

hi,j =

m∑
k=1

m∑
l=1

wk,lxi+k−1,j+l−1 (2.11)

wherem is the kernel width and height, h is the convolution output, the row and column indices of
the result matrix are marked with i and j respectively, x is the input data, and w is the convolution
kernel. The kernels are convolved with the input data to obtain feature maps (convolution output).
Feature maps indicate activated regions, i.e., regions where features specific to the kernel have
been detected in the input. The kernel usually is a smaller-sized matrix in comparison to the input
dimensions of the image, which consists of real-valued entries. For example, when we perform
convolution over a 6x6 image with a 3x3 kernel, we get a 4x4 feature map. This is because there are
only 16 (4x4) unique positions where we can place our kernel inside this picture. The convolution
operation can be thought of as performing some transformation. If the input of the CNN is an
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image this transformation can result in various effects (e.g. extracting edges, blurring, etc.). The
size and type of the kernel will depend on what the application of CNN is for since each filter
captures different characteristics of the image. Typically the filter size is 3x3, but 5x5 or 7x7 are
also used depending on the application.

The pooling layer, also called subsampling or downsampling layer, makes the CNN a little bit
translation-invariant in terms of the convolution output while reducing the number of parameters.
There are three subsampling methods used: max-pooling, sum-pooling, and average-pooling. The
most common type of pooling is max-pooling. Max-pooling partitions the input into a set of non-
overlapping rectangles and for each such sub-region, outputs the maximum value. In other words,
this layer reduces the dimensionality, the number of parameters as well as the computational com-
plexity but retains the important information. Besides, it helps to make the features robust against
noise and distortion. So mathematically, for example for the max pooling:

hi,j = max{xi+k−1,j+l−1 ∀ 1 ≤ k ≤ m and 1 ≤ l ≤ m} (2.12)

Contrary to the convolution operation, pooling has no parameters. It slides a window over its
input, and simply takes the max value in the window. If the max-pooling is a 2x2 window and
stride 2, this configuration halves the size of the feature map. This is the main use case of pooling,
downsampling the feature map while keeping important information. Deciding the number of
layers and other parameters of a CNN is a very subjective process, which usually involves a lot of
trial and error. The easiest thing to do is pick a network that has been proven to work for a similar
problem and train it for the task. Another approach is beginning with a very small model and
gradually increasing the model size (adding layers and increasing the number of units per layer).

In the fully connected (FC) layer, the feature map matrix is converted into a vector, the features
are combined to create a model. Then, an activation function classifies the outputs. The neurons
in the FC layer will get activated based on whether multiple entities represented by convolution
features are present in the inputs. The activated neurons will produce different activation patterns
based on what features are present in the input data. This provides a compressed representation of
what exists in the input data, to the output layer, that the output layer can easily use to accurately
classify the data. In other words, the goal of the FC layer is to sum up the weights of the features
coming from the prior layers and designate the probability of each class. For example, if there is
a CNN for gender classification, and the output vector is a probability of [0.8, 0.2], it means there
is an 80% probability of male gender and 20% for the female gender.

The CNN has to learn the convolution features given the input data. To do this, a cost function
(e.g. root mean squared error, cross-entropy loss, etc.) is defined, which rewards the correctly
identified data and penalize misclassified data. After the loss is defined, the weights of the features
(neuron value of the features) can be optimized to reflect useful features that lead the CNN to
accurately classify a specific object.
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3
State of the art

This chapter is divided into three sections and reviews the state of the art that supports the
developed work in this dissertation. The state of the art is focused on P300 paradigms, BCI plat-
forms/frameworks, and P300 detection using a CNN.

3.1 Paradigms

In the past few years, the number of publications related to P300-based BCIs has been increasing
substantially. In this chapter, some of the most representative P300 paradigms currently available
will be presented and analyzed.

3.1.1 Visual paradigms

Visual paradigms are usually displayed on a screen. The user observes the paradigm to inter-
act with the BCI application by performing a given selective attention task, and receives visual
feedback of the user’s intention that was detected by the classification algorithm. In a P300 vi-
sual paradigm, the subject needs to focus on one specific object/image/character which is called
the target stimulus among a set of other stimuli which are called the non-target stimuli. The P300
component appears in the EEG 300-600ms after the target stimulus is shown. Some important
visual paradigms are here mentioned:

1. Row/column paradigm (RCP) [20]: RCP is based on a 6x6 matrix of characters (26 letters
and 10 digits) where the rows and columns flash randomly. The RCP was the first impor-
tant paradigm boosting the growth of the BCIs interfaces. Many studies were based in this
paradigm, where the subject has to focus on a specific character and mentally count the num-
ber of occurrences of the target stimulus. The flashing row and column that contain the target
character are expected to elicit a P300 component. Figure 3.1 shows a visual representation
of the RCP.

2. Checkerboard paradigm (CBP) [75]: CBP uses an 8x9 matrix with 72 items, the matrix
is placed over a checkerboard which the subject does not have a perception about (visual
explanation in figure 3.2). The CB paradigm was created to overcome specific issues that

17



Hybrid BCI based on visual and auditory stimuli

Figure 3.1: RCP, the rows, and columns of the matrix flash in random order. The infrequent event
(i.e., the row or column containing the item the BCI user wishes to select) has a 1/6 probability of
appearing [25].

lead to errors in the RCP, like incorrect selections due to stimuli adjacent to the intended
item. The items that are located in the white cells of the checkerboard are set into a white
6x6 matrix and the same goes for the items that are in the black cells. Before the group
of items flash, the white or black matrix join random items. The result is random groups
of six characters/items flashing. In [75], the main goal was to compare the CBP over the
RCP, where the online results showed much higher accuracy in the CBP over the RCP. Not
only the mean accuracy was higher in the CBP but also the number of sequences was lower.
Regarding the waveformmorphologies, the results differ in several aspects in which the CBP
had higher amplitudes at 200ms and had a larger late negative peak.

Figure 3.2: CB paradigm, the left image is the checkerboard pattern. In the middle are the two vir-
tual 6x6 matrices derived from the checkerboard. Finally, the right image is the matrix as presented
to the subject with the top row of the white 6x6 virtual matrix flashing [74].

3. Lateral single-character Speller paradigm (LSC) developed at ISR-UC [59]: in the LSC
paradigm all letters of the alphabet follow an event strategy that significantly reduces the
time for symbol selection (eliminating the inter-symbol interval), reduces target probability
(single character flash instead of a group) and reduces adjacent distractor effects which are
very common on the RC speller. In [59] RC and LSC paradigms were tested with a healthy
group and a clinical group with motor disabilities (people with amyotrophic lateral sclerosis
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and cerebral palsy), where the LSC paradigm had significantly higher mean accuracy. The
two paradigms produced different waveforms and the signal-to-noise ratio was also signifi-
cantly higher for LSC. A screenshot of the paradigm is shown in Fig. 3.3.

Figure 3.3: Screenshot of the ISR-UC LSC speller [59].

4. Faces paradigms. Table 3.1 shows a brief summary of relevant studies that use the faces
paradigm:

• Familiar faces paradigm [41]: in this study the subjects were asked to send a personal
known face, either family or friends, to compare the results with a famous face and an
unknown face, using the same paradigm as in the Kaufmann et al. 2011 study [40].
This previous study consisted of using famous faces that the subjects could recognize
as stimuli for flashing items in the character matrix of the P300-Speller. In [41] the
results showed that no significant differences were found between the three conditions
using faces, however, the classical character flashing (CF) and the face flashing (FF)
showed some relevant differences. The amplitude of the P300 was much higher in
the FF paradigm than the CF and an interesting occurrence was that the FF with the
unknown face also evoked an N400f wave with high amplitude. This result is very
interesting since the N400f wave is involved in face recognition and normally is ob-
served for faces that are known (see Chapter 3.1: Neurophysiological concepts). In
this study, experiments were conducted with 16 healthy subjects and 9 patients with
neurodegenerative disease. As expected the patients had lower performances than the
healthy subjects in the CF condition, however in the FF condition the differences were
not so significant which means that the FF paradigm helps to overcome the difficulties
and inefficiency in patients with neurodegenerative diseases.

• Configural processing of human faces [78]: several experimental stimuli were studied
with an oddball paradigm. The conditions proposed were: a face, an eyeless face and
only eyes, where each condition was analyzed with the corresponding upright image
and the inverted image. The inverted face condition obtained the best online classifica-
tion accuracy. The P300 amplitude examination exhibited a notable difference among
stimuli, larger P300 amplitudes were evoked by the face-related stimuli than by the
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highlight icon.

• Random set presentation and face familiarity [77]: three different spellers, all derived
from the RCP speller, were analyzed. In these conditions a second modification was
studied, self-face (image of the subject) and non-self-face images were used for stim-
ulation. The paradigms using an image of a face show higher classification accuracies
than the paradigms using flashing characters. Also, face stimuli show significantly in-
tensified N400 waves when compared to flashing character paradigms. The self-face
condition had a slightly (three percent) better classification accuracy than the non-self-
face condition.

• Green Famous Faces Paradigm [48]: this study aims to examine if the performance
of the P300 speller can be increased when the chromatic characteristic and the famous
face paradigm are incorporated. Two conditions were studied: a picture of a famous
face (FF) and a green picture of a famous face (GFF). The GFF paradigm showed
higher online accuracy than the FF paradigm. Opposite to previous studies, the FF and
GFF paradigms did not elicit the N400.

3.1.2 Auditory paradigms

Since CLIS patients have several limitations, like the inability to control their eye muscles to
gaze visual targets (as mentioned in Chapter 1.1), an auditory stimuli is an alternative solution since
it does not rely on gaze. Halder et al. (2013) [24] proposed a five-by-fivematrix. The speller has 25
letters where different auditory stimuli are assigned to rows and columns. In [24], it can be noticed
that in the auditory paradigm the ERPs have lower amplitudes and longer latencies. Höhne et al.
(2012) [31] used three spatial directions for sound presentation. In the study three conditions were
compared: artificially tones, spoken and sung syllables. From the experiments, it was verified that
the spoken and singed syllables were easier to focus than the artificial tones. Schreuder et al. (2010)
[66] used five speakers and five tones at the ear’s subject level. The speakers covered 180º of the
face area and were placed a meter from the subject. Halder et al. (2010) implemented a binary
oddball paradigm by using three stimuli [23], with different variables such as pitch, amplitude,
and direction. The best results were obtained with the pitch stimuli for most of the subjects. In
[27] two binary paradigms were compared, one of the paradigms was based on spoken words and
the other one on tones. Better performances were obtained using the spoken words, tested on
healthy subjects. In [38] a comparison between an eye-tracking, an electrooculography system,
and a binary auditory BCI in a LIS patient was made. It was demonstrated that a LIS patient can
control the three studied cases with accuracy higher than 70%.
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Performance (repetitions)Paradigm Participants Stimuli properties Offline classification Online accuracy

Familiar
faces
[41]

10 healthy +
9 ND*

personally known face
flashing speller (36-choice)

famous face
flashing speller (36-choice)

-

-

77.14%
(2)

88.71%
(2)

Configural
processing of
human faces

[78]

7 healthy

face image upright flashing
direction command

(8-choice)

face image inverted flashing
direction command

(8-choice)

-

-

85.4%
(2)

97.9%
(2)

Random set
presentation
and face
familiarity

[77]

15 healthy

self-face flashing
on random set

presentation speller
(36-choice)

non-self-face flashing
on random set

presentation speller
(36-choice)

90.7%
(2)

93.7%
(2)

-

-

Green famous
faces
[48]

17 heathy

famous face
flashing speller
(36-choice)

green famous face
flashing speller
(36-choice)

-

-

75.6%
(4)

86.1%
(4)

Familiar
faces

9 healthy

10 healthy

personally known face
flashing in specific lexicon

(7-choice)

famous face flashing
speller in specific lexicon

(7-choice)

-

-

95.6%
(mean: 4.2)

93.3%
(mean: 4.3)

Table 3.1: Relevant studies of BCIs based on visual faces: results of offline and online sessions.
*ND: neurodegenerative disease. The red row corresponds to the paradigms developed in this
dissertation.
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3.1.3 Hybrid paradigms

Auditory paradigms work well when it is a binary system, however when the paradigm has a
higher number of choices it has limited results, therefore the study and experiments that combine
the auditory stimuli with other modalities (hybrid paradigms) on BCIs have been increasing and
showed some promising results. Table 3.2 shows a brief summary of relevant studies of hybrid
paradigms.

1. Gaze-dependent visual and auditory tasks [15]: in this study, the subjects had a target face
image and simultaneously a target audio stimulus. The followed protocol was based on the
P300 visually evoked potential. The P300 wave showed a higher amplitude on the hybrid
stimuli over the visual and appeared between 200-250 ms after the target stimuli. This study
showed good results with a 96% average accuracy. However, the paradigm does not suit for
CLIS patients since it demands visual overt control.

2. Four different gaze-independent paradigms [2]: the applied paradigms were 1) visual speller
(V); 2) auditory speller (A); 3) a simultaneous auditory and visual stimuli (AV); 4) an alter-
nating auditory and visual cues (V*A). Paradigm V is a gaze-independent speller with 6
symbols. The A paradigm used only 6 stimuli, short spoken syllables (left ’ti’, left ’to’, mid-
dle ’it’, middle ’ot’, right ’ti’, right ’to’) were sung with different pitches by three speakers
(bass, tenor and soprano human voices) as stimuli. Paradigm AV corresponds to visual and
auditory stimuli presented simultaneously. In paradigm AV was noticed that ERP compo-
nents (P1 and N1) have the biggest impact, between 250-450ms, the P300 component can
be observed in the conditions V and AV with no big differences, but condition A has no sig-
nificant P300 component. The visual speller had the best offline accuracies and the worse
was the auditory speller.

3. P300-based gaze-independent BCI developed at ISR-UC, which combines auditory stimuli
and visual stimuli detected covertly by S. Barbosa et al. (2016) [3]. The conditions were:
visual stimuli (VO-Visual Overt and VC-Visual Covert), auditory stimuli (AU) and a hybrid
with both (HVA). The visual and the auditory stimuli were made with seven words oddball
tasks. In this experiment, theVO condition had a higher amplitude of thewave P300 (23.6V),
then the AU condition, followed by the HVA and finally the VC condition with a 20.0V
value. The VO evokes not only the higher amplitude of the wave P300 but also of the N200;
the AU task showed almost none N200 component. It can be noticed that the waveforms of
HVA and VC are very similar although the VC has a higher amplitude, suggesting that in
the HVA condition the visual stimuli have a bigger impact. The HVA condition leads to the
best online performances having an online accuracy of 85.3%, and it was considered less
demanding.
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Paradigm Participants Gaze Stimuli properties Performance (repetitions)
Online accuracy

Visual and
auditory tasks

[15]
3 healthy Dependent

Face image + spoken syllables: Cued by number and
arrow + “a”, “i”, “u”, ”e”, “o”, en”, “da” and “go”

(8-choice)
96% (2)

Gaze-independent
paradigms

[2]
15 healthy Independent

Visual symbols + spoken syllables: unique geometrical
shape and color visual symbols + “ti” and “to” left, “ti”

and “ot” middle, “ti” and “to” right, 3 pitches
(6-choice/step, 2-step)

Alternated visual symbols and spoken syllables: unique
geometrical shape and color visual symbols and

“ti” and “to” left, “ti” and “ot” middle, “ti” and “to”
right , 3 pitches (6-choice/step, 2-step)

92% (6)

87.7% (10)

Auditory and visual
stimuli

detected covertly
(HVA-BCI)

[3]

10 healthy Independent
Word image + spoken words: Words within a specific
lexicon + Natural spoken words within a specific

lexicon (7-choice)
85.3% (6)

P300-based
gaze-independent
auditory and visual

face stimuli

10 healthy Independent
Face image + spoken words: face image flashing
within a specific lexicon + Natural spoken words

within a specific lexicon (7-choice)

93.3%
(mean: 4.3)

Table 3.2: Summary of relevant studies of hybrid (auditory and visual) based BCIs: results of
online sessions. The red row represents the paradigm developed in this work.

3.2 Platforms for BCIs

Stimuli generation and presentation involves the development of a framework that has to be in-
tegrated on the BCI system. In this chapter we present several available frameworks that can be
helpful in the design of the stimulation. An overview of publicly available software platforms for
BCIs is done, identifying the advantages and disadvantages of each platform available on the mar-
ket. One of the most popular commercial general-purpose platforms is the MATLAB/SIMULINK
(The Mathworks, Inc.), from which it is possible to develop a variety of applications for scientific
purposes. Software platforms specifically designed for the development of BCIs consist of the
following blocks: data acquisition, processing, and feature extraction, classification and feedback
presentation. ManyBCI research labs use either existingmodules from open generic BCI platforms
or create new frameworks/modules fitted to their particular needs. In the past few years several
BCI platforms were developed with the purpose to help people to build a BCIs, and to increase the
BCI research community. Note that in Chapters 2.1 and 2.2, some background knowledge can be
found to facilitate the comprehension of some topics. Table 3.3 contains a summary of open BCI
platforms currently available.

In the Appendix A, BCI platforms are presented with more detail. The BCI2000 was considered,
however, the programming language is C++. The syntax of C++ is complex and the standard library
is small, making C++ difficult to learn for someone with little programming experience. Our goal
is to have a framework of rapid development of feedback and stimulus applications and easy to
use for everyone. Being this a goal, the platforms with programming languages with C++ were
excluded. The Python language was considered to be the best option. Python is very easy to code as
compared to other popular languages like Java and C++. It is a high-level language, meaning that

23



Hybrid BCI based on visual and auditory stimuli

Platform Operating system Programming
language License Features

BCI2000
Windows
Mac OS
Linux

C++ General Public
License

Wide usage by BCI community;
Modular programming; It can be used for data acquisition,
stimulus presentation, and brain monitoring applications.

OpenViBE Windows
Linux

LUA and
Python

Lesser General
Public License

Modular API; Suitable for different users (developers,
researchers, and clinicians.); Supports many acquisition
devices; It can be used to acquire, filter, process, classify,

visualize brain signals in real time.

TOBI Mac OS
Linux C++ General Public

License

Cross-platform set of interfaces that connect parts with
different BCI systems; Server that can handle data

devices at the same time.

BCI++ Windows C++ General Public
License

Modular API; It can be used for signal acquisition,
storage, visualization, real-time processing, and

creation and management of stimuli.

xBCI
Windows
Mac OS
Linux

GNU C/
C++

General Public
License

High extendibility and flexibility; Easy-to-use; High
speed data processing; Modular API; GUI-based system

development; Multi-threaded parallel processing.
Pythonic feedback

framework
(Pyff)

All OP’s that
run Python Python General Public

License

Development of experimental paradigms; Promote
standardization of feedback and stimulus presentation;

Decrease the need of reprogramming standard paradigms.

Hybrid python
framework

All OP’s that
run Python Python -

Suitable for hybrid BCIs; Real-time capabilities;
Easy-to-use; It can be used for the development of
stimulus presentation; It connects with every BCI

that supports a TCP/IP connection.

Table 3.3: Summary of relevant BCIs platforms. The red row is the platform designed and tested
in this dissertation.

writing in Python does not require to remember the system architecture, nor to manage the memory,
which makes it more programmer friendly. OpenViBE only works in Windows or Linux operating
systems, which is an disadvantage. Also, OpenViBE is not capable of developing stimulation and
presentation applications. Pyff framework was considered, however, the interface was considered
not to be practical nor intuitive. For these reasons, a Python framework that suits all of our demands
was developed from scratch.

3.3 P300 detection using Convolutional Neural Network

CNN’s have the benefit of automatically learning feature representations from raw signals data,
which may represent a good approach to learn features invariant/independent of subjects. Conse-
quently, CNN’s can increase the full potential of recognizing P300 waves. However, despite CNNs
have been successfully used on image processing and speech recognition, their use for P300 detec-
tion is still incipient [11] [53] [49]. ACNNusual performs a spatial convolution on the raw data and
then performs temporal convolution on the abstract data that came from the spatial convolution.

1. CCNN [11] has three stages and uses as input a matrix N x C, where N indicates the number
of temporal signal samples and C represents the number of channels used for EEG signal
recording. In the initial stage, it performs convolution along space to learn spatial features.
In the following stage, a convolution along time of the abstract data that came from the spatial
convolution is completed, to learn temporal features. The final stage uses fully-connected
layers to obtain an accurate correspondence within learned features and a particular class.
Table 3.4 shows the specifications of the CCNN.
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Layer Operation
in a layer Kernel Size Feature Maps/

Neurons
1 Convolution (1,C) 10
2 Convolution (13,1) 50
3 Fully-Connected - 100

Output Fully-Connected - 2

Table 3.4: CCNN architecture [11], the first column specifies the sequence of layers. The sec-
ond column represents the operation in a layer. The third column describes the kernel size in the
convolution layers. The last column specifies the number of feature maps/neurons in a layer.

Layer Operation
in a layer Kernel Size Feature Maps/

Neurons

1
Convolution

Dropout

(N/15,C)

-

16

-
Output Fully-Connected - 2

Table 3.5: OCLNN architecture [71], the first column specifies the sequence of layers. The sec-
ond column represents the operation in a layer. The third column describes the kernel size in the
convolution layers. The last column specifies the number of feature maps/neurons in a layer.

2. OCLNN [71] performs both spatial and temporal convolution in the primary layer rather than
performing only spatial convolution as in CNN’s quoted above and the input is an N x C ma-
trix. This classifier can learn feature representations from raw temporal data and simultane-
ously can learn spatial features with only one convolution layer and without fully-connected
layers before the output layer, which decreases the network complexity significantly. Table
3.7 shows the specifications of the OCLNN.

3. BN3 [49] combines Batch Normalization and Dropout techniques and the input is an N x
C matrix. It uses Batch Normalization in Layer 1 and Layer 3. Batch normalization is a
method we can use to normalize the inputs of each layer, to improve the speed, performance,
and stability of a neural network. [49] also applies dropout in the fully-connected layers
to decrease overfitting. Dropout is a regularization technique for reducing overfitting in
neural networks by preventing complex co-adaptations on training data. Before the output
layer, BN3 employs two fully-connected layers rather than one for better generalization and
accumulation of features. Table 3.5 shows the specifications of the BN3.

4. CNN-R [53] uses a deeper and wider network structure. Since it is a complex network, this
classifier uses pooling and dropout techniques to reduce overfitting. The input is an N x C
matrix. It uses smaller kernel sizes but more extra layers for temporal convolution. It also
uses two fully-connected layers before the output layer. Plus, CNN-R uses more feature
maps for the convolution layers and more neurons for the fully-connected layers than the
CCNN. Table 3.6 shows the specifications of the CNN-R.
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Layer Operation
in a layer Kernel Size Feature Maps/

Neurons

1
Batch Normalization

Convolution

-

(1,C)

-

16
2 Convolution (20,1) 16

3

Batch Normalization

Fully-Connected

Dropout

-

-

-

16

128

128

4
Fully-Connected

Dropout

-

-

128

128
Output Fully-Connected - 2

Table 3.6: BN3 architecture [49], the first column specifies the sequence of layers. The second
column represents the operation in a layer. The third column describes the kernel size in the con-
volution layers. The last column specifies the number of feature maps/neurons in a layer.

Layer Operation
in a layer Kernel Size Feature Maps/

Neurons

1
Convolution

Pooling

(1,C)

(3,1)

96

96

2
Convolution

Pooling

(6,1)

(3,1)

96

96
3 Convolution (6,1) 96

4
Fully-Connected

Dropout

-

-

2048

2048

5
Fully-Connected

Dropout

-

-

4096

4096
Output Fully-Connected - 2

Table 3.7: CNN-R architecture [53], the first column specifies the sequence of layers. The sec-
ond column represents the operation in a layer. The third column describes the kernel size in the
convolution layers. The last column specifies the number of feature maps/neurons in a layer.
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P300-based face and auditory hybrid

paradigm

In this chapter, all functional elements comprising the BCI system are described, namely the
classification architecture, experimental setup, software framework, protocols, and terminology.
The experimental setup is shown in Figure 4.1. Signal processing and classification were devel-
oped with the Simulink/Matlab framework [Mathworks 2012b], using the ’Highspeed’ Simulink
g.USBamp driver for signal acquisition. The newmodules developed in this dissertation were inte-
grated on a hybrid-BCI based on visual (text) and auditory stimuli previously developed at ISR-UC
[3].

Figure 4.1: Picture of the experimental setup.

The synchronization between the signals recorded and events in a P300-based BCI system is crucial
for the success of the experiments. The new stimulation module developed in this dissertation was
implemented with Python 3.7 and is synchronized with the Matlab/Simulink framework through a
TCP/IP communication. Simulink/Matlab and the Python framework run on the same computer.
The data processing and storage were performed on a TOSHIBA laptop (Intel Core i7 2.30 GHz,
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8.00 GB RAM, Microsoft Windows 7 Ultimate). The delay between event generation and stimuli
presentation has to be constant and minimal. All algorithms in the framework are executed in
real-time, triggered by the acquisition sampling rate of 256 Hz.

The functional modules of the BCI used in this work are represented in Figure 4.2. The devel-
oped work was a stimulation and presentation module. A new classifier based on a CNN was also
implemented but it was only tested offline.

Figure 4.2: BCI system representation of functional elements and information flow of the P300
BCI. The red modules represent the modules that were developed in this dissertation.

BCI experiments are divided into two sessions: calibration and online operation. In the calibra-
tion session, the user selects a pre-defined set of symbols (target events), in order to gather labeled
data (ground truth) to train the classifier. The obtained classification models are then applied in
the online session. Main blocks of the BCI system are shown in Fig. 4.3.

4.1 Signal acquisition

The BCI system records the EEG brain signals using active Ag/AgCl electrodes electrodes
placed on a cap (g.EEG cap). Active electrodes pre-amplify the EEG signal and are sent to the
g.USBamp acquisition system. EEG signals were recorded monopolarly utilizing 16 electrodes,
placed accordingly to the extended international 10-20 standard, as shown in Fig. 4.4. The right
or left earlobe was selected for reference and the AFz channel for ground. Sixteen channels were
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Figure 4.3: Main blocks of the BCI system, and representation of User in the loop.

Figure 4.4: Location of elec-
trodes, according to the in-
ternational 10-20 extended
system, of the 65 channel
cap used in the experiments
(g.EEGcap). Bold circles il-
lustrate the channels used in
the P300 experiments in this
work.

selected: Fz, Cz, C3, C4, CPz, Pz, P3, P4, PO7, PO8, POz, Oz, T7, CP5, T8, and CP6. The
first 12 channels were selected respecting the visual task [59] and the last four channels were se-
lected considering the auditory cortex location [21]. EEG signals are sample at a 256Hz rate with
a 16-channel g.USBamp acquisition system (g.tec medical engineering GmbH, Austria) [22]. The
data were epoched (segmented) between the stimulus onset and 1s after. The ’Highspeed’ Simulink
g.USBamp driver provides a hard real-time clock through a hardware interrupt that drives thewhole
Simulink model, which ensures a real-time operation. Since the EEG signals are very sensitive to
noise, the acquisition system performs directly a preprocessing step. EEG signals are filtered by a
band-pass filter between 0.5 and 30 Hz to remove high frequency noise and a notch filter at 50 Hz,
which rejects the power line noise source. The g.USBamp Simulink block allows some hardware
configurations: sampling rate, monopolar and bipolar montages, pre-set filters, etc.
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4.2 Event synchronization, processing, and classification

The ’Event & synchronization & processing & classification’ block performs the event genera-
tion and synchronization, data buffering, epoch segmentation, and implements the algorithms for
EEG signal processing and classification. This block is implemented in a Simulink S-function,
which allows buffering and real-time operation [Mathworks 2012b]. As already described, the
BCI system is based on the oddball paradigm. To create this paradigm, random events have to
be created and synchronized with the recorded EEG data. The events generated are synchronized
with the signal samples, whose sampling period is 1/256 seconds. Temporal events generated in
this block are fully parameterized, stimulus time (TON ) = 550ms, inter-stimulus interval (ISI)
= 100ms, inter-trial interval (ITI) = 8s, as shown in Fig. 4.5. Each event is associated with an
epoch of 1 second long, as shown in Fig. 4.6. Each event has an associated code, which indicates
the word/symbol that will be ON (highlighted) or OFF. At any given time there can be only one
ON event. No significant changes have to be made between the offline and online implementa-
tions since the classification algorithms are directly embedded in this module after they have been
trained offline in Matlab.

Figure 4.5: Temporal diagram of a set of stimulus events. SOA: stimulus-onset asynchrony, the
time between the onset of one stimulus and the onset of the next stimulus. ISI: inter-stimulus
interval, the time between the offset of one stimulus to the onset of another [60].

Figure 4.6: Temporal diagram relating epochs extracted from the continuous EEG data stream and
the events [60].

4.2.1 Statistical spatial filter and Naïve Bayes

The BCI uses the same classification method as the one presented in [58]. It uses a statistical
spatial filter based on a Fisher criterion beamformer (SF-FCB), represented in Fig. 4.7 by the
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“Spatial Filter W” block. After spatial filtering, the feature space is an unidimensional vector that
results from the concatenation of the two most discriminative projections of the spatial filter. This
correspond to a vector with 512 features (amplitudes of the time samples). To further reduce the
dimension of the feature vector, extracted features are selected according to their discriminative
power using a feature selection method. From the 512 size vector, 200 features are selected using
the R-square correlation method, y = [y(t1)y(t2)...y(tT )]. The r-square coefficient (square of
the Pearson’s correlation coefficient) obtains the discriminative relevance of the features between
target and non-target epochs, returning a value ranging from 0 to 1. High r2 values denote large
discrimination.

For the calibration session, the selected features are then used to train a Bayesian classifier that
is presented in its naïve form, which implies that the features are conditionally independent:

p(y|Ci) =

Nf∏
j=1

p(y(j) | Ci) =

Nf∏
j=1

1√
2πσi(j)

exp

(
− ( y(j)− µi(j)) 2

2σ2
i (j)

)
(4.1)

where each feature j is assumed to have a normal distribution N (µi(j), σ2
i (j)). Nf represents

the number of features, and the target and non-target classes are defined by Ci(i ∈ {+,−}). The
posterior conditional probability p(Ci|y) is calculated from the conditional probabilities using the
Bayes theorem:

P (Ci|y) =
P (Ci)p(y|Ci)

p(y)
(4.2)

the prior probability (P (Ci)) for target is 1/14 and for non-target is 13/14. The class is detected
using the maximum a posteriori decision rule:

ĉ = argmax{P (C+|y), P (C−|y)}. (4.3)

From the offline session, a classification model is saved to be used in the online session, which
includes: 200 indices of the selected features, the classification, and spatial filter models. These
models are then used to classify online each stimulus event as target or non-target (binary classifi-
cation). Then, a C-class classification is applied (where C is number of classes, i.e., the number of
possible choices (symbols) in the paradigm), which combines the posterior probabilities of the bi-
nary classifiers associated to each event. The word/symbol associated with the highest probability
is chosen as being the word mentally selected by the user. Fig. 4.7 shows the overall classification
process.
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Figure 4.7: Classification architecture of the P300-based BCI system. Left: offline training to
obtain feature extractor models, selected features, and classifier models. Right: for the online
recognition, the binary classifiers are applied to each event, and then their output scores are com-
bined to identify the mentally selected symbol. Figure adapted from [3].

4.2.2 Convolutional Neural Network

The Bayesian classifier was implemented in combination with a statistical spatial filter. This
spatial filter significantly increases the signal-to-noise ratio of the EEG signals at the same time
as it reduces the feature vector dimension. These properties make the subsequent choice of the
classifier almost irrelevant as it was shown in [60], where several linear and non-linear classifiers
were tested. Here, we want to compare the current approach with a CNN-based classifier providing
as input the rawEEG channels, to analyze whether the CNN can learn effective spatial and temporal
features. CNN’s can learn highly complex patterns due to its non-linear architecture and have been
considered for use with EEG since the network can handle large variability in the data.

The CNN studied and implemented offline in this dissertation was based on the CNN proposed
in [11]. It is implemented in Matlab 2012b. Figure 4.8 shows the proposed CNN architecture
applied. The CNN input is the matrix (C × N) where C expresses the number of electrodes
used for EEG signal recording, and N represents the number of recorded temporal samples in one
epoch (1 second segment associated to each event). In this work, C = 16 and N = 256. The
temporal signal samples were previously band-pass filtered between 0.5Hz and 30Hz to remove
high-frequency noise and notch filtered at 50Hz, to reject the power line frequency noise source,
the same way as in the ”spatial filter + Naive Bayes” approach. The CNN classifier was trained
based on subject-specific datasets.

The CNN is composed of five layers (L0,L1,...,L4), each layer is composed of one or several
maps (M ). The map(s) in each layer are the result of the convolution of the map(s) of the previous
layer with a kernel mask. A CNN kernel mask is simply a set of weights shared all over the input
space (different sets of weights describe different convolution kernels). The first hidden layer,
L1, performs a spatial convolution operation with a kernel with size (1, 16). This convolution
operation converts each receptive field of the signal samples into an abstract datum in a feature
map. The signal samples in each receptive field are from all C channels in the space domain and
sampled at one-time point in the time domain. The kernel size (1, 16) is used to make this layer to
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Figure 4.8: Convolution neural network architecture [11].

learn the spatial features from EEG signals acquired using all channels. L1 generates ten feature
maps, which are the input to the second hidden layer. The choice of 10 feature maps follows the
suggestion in [11]. These feature maps are abstract temporal signals instead of raw signals since
the spatial convolution layer converts each receptive field of raw signals into an abstract datum.
The second hidden layer, L2, performs the temporal convolution operation with the kernel size (32,
1). The temporal convolution operation converts each receptive field of the abstract signal samples
into a feature map. The CNN architecture is based on what is traditionally done in BCI. Firstly an
optimal spatial filter is performed, then the signal is processed in the time domain. The convolution
kernels are all vectors and not matrices. The third hidden layer, L3, is a fully-connected layer of
size 100. L4 is the output layer of the network with a size of two neurons, which represent the
probabilities of the absence or the presence of a P300 wave. The layers are defined as:

• Input layer L0: (16 x 256) matrix, Ii,j , 0 ≤ i < C, 0 ≤ j < N .

• First hidden layer L1: has ten maps (L1M0..9), each map has a size of 256. The convolution
kernel size is [1 x 16].

• Second hidden layer L2: is composed of fifty maps (L2M0..49), where each map has 8 neu-
rons. The convolution kernel size is [32 x 1].

• Third hidden layer L3: is composed of one map with 100 neurons. This map is fully con-
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nected to the different maps of L2.

• Output layer L4: has one map with two neurons, one neuron represents the class ”P300” and
the other neuron represents the class ”non-P300”. This layer is fully connected to L3.

The current value of a neuron, n(l,m, j), in the CNN is xlm(j), wherem denotes the map, l the
layer, and j the position in the map:

xlm(j) = f(σl
m(j)). (4.4)

The activation function, f , varies from layer to layer. For the first and second hidden layer the
activation function used is a scaled sigmoid function, which represents convolution of the input
signal:

f(σ) = 1.7159 tanh(
2

3
σ) (4.5)

the constants are set according to [46]. For the last two layers the activation function is the classical
sigmoid function:

f(σ) =
1

1 + exp−σ
(4.6)

σl
m(j) is defined for each layer and represents the scalar product between a set of input neurons and

the weight connections between these neurons and the neuron n(l,m, j). The first hidden layer is
a space convolutional layer and the second hidden layer is a time convolutional layer. In L1 and
L2 each neuron is related to a subset of neurons from the prior layer. For the first hidden layer:

σ1
m(j) = w(1,m, 0) +

i<16∑
i=0

Ii,jw(1,m, i) (4.7)

a set of weightsw(1,m, i)withm fixed, and 0 ≤ i < C, corresponds to a spatial filter. The goal of
this layer is to find the best channel combination for the classification. The convolution represents
spatial filters, and the kernel size is [1x16].

For the second hidden layer:

σ2
m(j) = w(2,m, 0) +

i<32∑
i=0

x1m(j ∗ 32 + i)w(2,m, i) (4.8)

this layer transforms the signal of 256 values into 8 new values in L2. The convolution represents
temporal filters, and the kernel size is [32x1].
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For the third hidden layer:

σ3(j) = w(3, 0, j) +
i<50∑
i=0

k<8∑
k=0

x2i (k)w(4, i, k) (4.9)

the second and the third hidden layers are fully connected. For the output layer:

σ4(j) = w(4, 0, j) +

i<100∑
i=0

x3(i)w(5, i) (4.10)

the third hidden layer and the output layer are fully connected.

The threshold (w(1, 0, j), w(2, 0, j), w(3, 0, j), and w(4, 0, j)) and the input weights, for each
neuron, are initializedwith a standard distribution around±1/n(l,m, i)Ninput . Then(l,m, i)Ninput

is the number of inputs of n(l,m, i). The learning rate, γ, for L1 and L2 is:

γ =
2λ

n(l,m, 0)Nshared

√
n(l,m, i)Ninput

(4.11)

n(l,m, 0)Nshared
represents the number of neurons that share the same set of weights and λ is a

constant, which was set to 0.2. The learning rate, γ, for L3 and L4 is:

γ =
λ√

n(l,m, i)Ninput

. (4.12)

The training of the CNN is carried out by a classical backpropagation learning algorithm to tune
the filter values/weights of the CNN, where the weights are corrected due to a gradient descendent
to minimize the output error. The training stops once the least mean square error is minimized. The
output layer is composed of two neurons, x4(0) and x4(1), where x4(1) represents the presence of
a P300 wave and the x4(0) the absence of a P300 wave. During the test, a P300 wave is detected
if x4(1) > x4(0), otherwise there is no P300 wave.

4.3 Stimulation and presentation

A P300 BCI system requires a strict synchronization between recorded data and stimuli events,
where the delay between event generation and stimuli presentation has to be very small and also
constant. The stimulation module provides information about the presented stimuli using trigger
signals and events, which are used to synchronously process the input signals and extract corre-
sponding features. At the end of each trial, the classifier determines the intention of the subject and
sends the control output (symbol detected) to the ’Hybrid paradigm’ framework where the presen-
tation module shows the feedback to the user, which enhances the user’s response to the presented
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stimuli and helps assess the system’s efficacy.

4.3.1 S-Functions

The goal of the ’Hybrid paradigm’ block in Fig. 4.3 is to be an interface that is capable of
receiving the codes from the Matlab framework, and present visual images and auditory stimuli
simultaneously, in real-time. The visual paradigms previously designed in the laboratory were im-
plemented with S-Functions in Matlab script using simple graphic structures. S-Functions provide
a powerful mechanism for extending the capabilities of the Simulink environment. An S-Function
is a computer language description of a Simulink block written in Matlab, C, C ++, or Fortran, and
that can be compiled as MEX files. S-Functions are dynamically linked sub-routines that the Mat-
lab interpreter can automatically load and execute. After studying the implementation of stimuli
based on images in the paradigm through S-Functions, it was concluded that their implementation
would be difficult due to poor documentation, lack of flexibility and no warranty of image render-
ing in real-time. On the other hand, first tests with auditory stimuli showed the impossibility of
loading sounds in real-time, without affecting the 256 Hz sampling rate acquisition.

In order to include in the paradigms an improved graphic component, with the possibility of in-
cluding audio, 2D stylized graphics, images, and interaction, it was decided to develop the stimula-
tion module outsideMatlab/Simulink as a standalone application module. On the previous version,
the visual stimuli (based on text) were implemented with an S-function and the auditory stimuli
were produced outside Matlab using the commercial software ”Presentation”, which required an
expensive license and and a complex set-up. Since all the rest of the system is still implemented
in Matlab/Simulink it was necessary to create a communication channel between Matlab/Simulink
and the external application.

4.3.2 Python stimulation framework

To increase flexibility in the development of paradigms, the feasibility of various development
environments outside of Matlab/Simulink was explored. Some platforms were considered as men-
tion in Chapter 3.2, however, they were excluded since the interfaces were considered not to be
practical nor intuitive, they depended onmany package dependencies, and proved to be not flexible
enough.

Although some platforms implemented in Python were discarded, Python language was still the
most appealing approach as it is a high level, interpreted and versatile dynamic programming lan-
guage that emphasizes code readability. So it was decided to move on with and implementation
from scratch based on Python. The Python framework is completely written in Python 3.7 and
consequently not attached to a special operating system. This framework allows for implement-
ing feedback and stimuli without having to worry about the underlying BCI system. Hence, it is
not only a framework for the rapid development of feedback and stimulus applications but also a
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platform to run neuroscientific experiments independent from BCI systems. Some graphical user
interface (GUI) toolkits that Python supports were searched. At an early stage the visual part of the
paradigm was developed in Tk/Tcl, which is part of Python, and the auditory stimuli were devel-
oped with the Winsound module. Firstly, the framework was tested without real-time restrictions
and seemed to provide a good performance. However, tests in real-time exhibited high processing
delays. Although Tk/Tcl and Winsound are popular for their simplicity and effectiveness, they are
slow to update, generating delays in real-time applications. To solve this problem the framework
was re-written in PyQt and PyGame (a cross-platform set of Python modules designed for writing
video games).

The data communication interface between Matlab/Simulink and the external application is
based on a TCP/IP connection, providing a reliable, connection orientated, with no packet loss.
The data shared between Matlab/Simulink and the external application are the event codes. How-
ever, the interface can receive any data, for example it can be used to share EEG data. To send the
event codes from the Matlab to the Python framework, a TCP/IP server object was issued on the
’Event synchronization & processing & classification’ block (Fig. 4.3), and thereby Matlab was
acting as server which provided the flexibility to have different clients connected to it. An excerpt
of the Matlab code is given as an example:

1 . . .
2

3 disp ( ' Esperando c l i e n t e . . . ' ) ;
4 LIGACAO = tcpip ( ' l o c a l h o s t ' , 2000 , ' NetworkRole ' , ' s e rve r ' ) ;
5 fopen (LIGACAO) ;
6 disp ( ' Conectado ! ' )
7

8 . . .
9

10 i f ( block.Dwork (25) .Data ( IndexEv ) != 0)
11 %Mensagem a enviar
12 ca rac t e r e s = [ num2str ( block.Dwork (25) .Data ( IndexEv ) ) 1 0 ] ;
13 f w r i t e (LIGACAO, caracte re s , ' char ' ) ;
14 end
15

16 . . .
17

18 det = sf_output_class ( c l a s s , val )
19 i f ( det != 0)
20 d = det ;
21 ca rac t e r e s = [ num2str (d) 1 0 ] ;
22 f w r i t e (LIGACAO, caracte re s , ' char ' ) ;
23 end
24

25 . . .

The variable block block.Dwork(25).Data(IndexEv) stores the random sequence of event gener-
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ation, i.e., event code number, and sf_output_class(class,val) is the code for the symbol/event
detected by the classifier. Online and calibration modes use the same process, except that in cali-
bration mode there is no detection.

The external Python framework was implemented using modular programming, i.e., breaking
the larger code into separate, smaller, more manageable subtasks or modules. Also, it uses asyn-
chronous programming, which is a form of parallel programming that allows a unit of work to
run separately from the primary application thread. A TCP/IP client socket was implemented in
a module to connect with the Matlab server and receive the codes in real-time. By default, the
client connects to the hostname 127.0.0.1 (localhost) and the port 2000. Another module was im-
plemented to load the .wav files and to issue the auditory stimuli. Each .wav file has a natural
meaningful spoken word. To load and play the sounds the PyGame library was used.

To develop the the visual stimuli, PyQt libraries were considered. PyQt is a Python binding
of the cross-platform GUI toolkit Qt, implemented as a Python plug-in. PyQt is free software
developed by the British firm Riverbank Computing. PyQt implements around 440 classes and
over 6,000 functions and methods including a substantial set of GUI widgets. GUI programming
with Qt is built around the concept of signals and slots for communication between objects. A
signal is emitted when an event occurs (e.g. a button is clicked), and slots are callable functions
that handle the event (e.g. show a pop-up when a button is clicked). This allows more flexibility
when handling GUI events which results in a cleaner codebase. A disadvantage is that it can take
a while to get familiar with PyQt. It is a huge framework and there are many ways to implement
different things, some of them are conflicting and might be confusing.

PyQt5 has several Python modules, from which were here used the QtCore, QtGui, and QtWid-
gets. The QtCore module includes non-GUI functionality. All other PyQt modules depend on
this module. The QtGui module comprises the majority of the GUI classes. These include several
table, tree, and list classes based on the model–view–controller design pattern. It also presents an
advanced 2D canvas widget able to save thousands of items. The QtWidgets module implements
a set of UI elements to create classic desktop-style user interfaces. Widgets are the basic elements
for designing user interfaces in Qt. Widgets can display data and status information, receive user
input, and render a container for other widgets that should be grouped.

To create the GUI a module, which implements all the specifications of the visual interface,
was developed. The GUI is shown to the user and has a button, Receive server instructions, to
connect to the Matlab/Simulink server and start the hybrid paradigm test. Once the connection is
successfully established, the method async def get_one_code() is called, and several threads are
initialized. An excerpt of this method, for the online test, is presented:

1 async def get_one_code ( s e l f , t cp_cl i ent ) :
2 serv_code = tcp_cl i ent . read_only_one_code_from_server ( )
3 t_sound = PlaySoundThread ( thread_id=serv_code ,
4 name=serv_code ,
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5 counter=int ( serv_code ) ,
6 index_vec=int ( serv_code ) )
7 t_sound . s t a r t ( )
8 i f t cp_cl i ent . count in [ c 1 , c ∗ 2 , c ∗ 3 + 1 , c ∗ 4 + 2 , c ∗ 5 ...

+ 3 , c ∗ 6 + 4 , c ∗ 7 + 5 , c ∗ 8 + 6 , c ∗ 9 + 7 , c ∗ 10 + 8 , ...
c ∗ 11 + 9 , c ∗ 12 + 10 , c ∗ 13 + 11 , c ∗ 14 + 12 , c ∗ 15 + 1 3 ] :

9 s e l f . update_code_in_label ( serv_code )
10 await asyncio . s l e ep (1)
11

12 e l s e :
13 s e l f . decode_code ( serv_code , True )
14 await asyncio . s l e ep (2)
15 t_sound . j o i n ( )
16 return serv_code

This asynchronous method waits for the Matlab/Simulink server to send the event codes. The
codes are received by tcp_client.read_only_one_code_from_server(). The event codes are sent as
an argument to the PlaySoundThread class and the corresponding sound to is played. The received
codes are counted so the GUI can provide feedback to the user after each trial (c is the number of
repetitions times the number of events used in the paradigm (one trial), which correspond to 10 x
7 for the calibration test and for the online test the number of repetitions varies from participant
to participant and has to be updated at the beginning of each online test), online tests have 15
trials. Otherwise, the GUI presents the visual stimuli regularly, where the interface flashes the
corresponding word of the event code received. When all the event codes are received, all the
threads terminate its execution and the program closes.

4.3.3 Paradigms description

Five P300-based gaze-independent conditions were tested, one with visual stimuli (flashing
words), one with visual image-based stimuli (flashing words with overlapped pictures of well-
known faces), one with visual image-based stimuli (flashing words with overlapped pictures of
relative’s faces), one with auditory and visual stimuli simultaneously (flashing words + spoken
words), and one with auditory and visual image-based stimuli (flashing words with overlapped
pictures of well-known faces + spoken words). A set of seven Portuguese words comprising a
small communication lexicon was used in the five oddball tasks. The words chosen were SIM
(Yes), NÃO (No), FOME (Hunger), SEDE (Thirst), AR (Air), POSIÇÃO (Position), and URINAR
(Urinate) according to [3]. For the auditory stimuli the same Portuguese words were used and were
recorded and rectified using the Audacity (Audacity Team, version 2.0.5) software, provided from
[3]. Fig. 4.9 shows the layout of the visual paradigm during a stimulus flashing associated with
word ’SIM’.

The seven words were chosen regarding some of the basic needs of CLIS patients, with the pos-
sibility of a ”YES/NO” conversation. The word AR is regarding the breathlessness sensation,
POSIÇÃO concerns the need for position changing due to pain or discomfort, the rest of the words
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Figure 4.9: Layout of the seven visual stimuli on the flashing words with overlapped pictures
of well-known faces task. The highlighted event is ”SIM”, the background is changed from
white/gray to an image of a famous face.

are intuitive. The suggested bimodal interface is not complex and includes a reduced set of vo-
cabulary due to the intention of increasing the involvement of patients with the task, improve their
selective attention, and reduce their working memory demands. Each of the five tasks consisted
of a 7-stimuli oddball paradigm and were divided into a calibration session and an online session:

• The calibration session was composed of 14 trials, each trial corresponds to a specific word
that was pre-established before the test. The 14 trials that constitute the calibration session
are composed with the following word targets: SIM, FOME, URINAR, POSIÇÃO, NÃO,
SEDE, AR, SIM, FOME, URINAR, POSIÇÃO, NÃO, SEDE, and AR. Each trial consisted
of 10 sequences (7 random stimuli per sequence). In each sequence, there was one target
stimulus and nine non-target (standard) stimuli. For each trial, the participant has to focus
on the target stimuli and to mentally count them ignoring all other standard events. The
time between each selection (inter-trial interval—ITI) was 8 s. The 8 s value was selected
to allow the participants to rest and perform ocular movements between trials. This session
records the data labeled with class information, associated with true labels (ground truth).
At the end of each calibration session the information is saved (140 target epochs and 840
standard epochs) and used to train the classification models and then applied in the online
sessions.

• For the online session, the sets per trial were optimized for each participant using the cal-
ibration data. Once chosen the best number of repetitions for each participant (chosen on
the first task), it remained the same for the rest of the tasks, to compare the performance
between them. The system returned the selected symbol after one trial (see Fig. 4.10). Par-
ticipants had to complete a set of 15 trials (selection of 15 words): SIM, FOME, URINAR,
POSIÇÃO, NÃO, SEDE, AR, SIM, FOME, URINAR, POSIÇÃO, NÃO, SEDE, AR, and
SIM. The set of words was the same for all participants and for the 5 conditions. Before each
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trial, participants were informed of the target word to focus. Feedback (selected word) was
visually provided at the end of each trial for the five conditions.

Figure 4.10: Illustration of one online trial and inter-trial interval (in which it is returned the
selected symbol), Fig. reproduced from [3]. The number of repetitions, for this participant, is six.

The temporal diagram of the stimuli of one sequence for the hybrid modality is presented in
Fig. 4.11. All stimuli have a duration of 550 ms and an interstimulus interval of 100 ms (stimuli
onset asynchrony of 650 ms). The TON was set has 550 ms based on the minimum requirements
for the perception of the auditory stimuli. The TISI of 100 ms was set as the minimum interval
required to distinguish two consecutive words. The temporal parameters were maintained for the
five conditions, even though for the tasks with no auditory stimuli the temporal parameters could
considerably be shortened. The time between trials, on the online session, was 27.3 s (6 × 7 ×
0.650s) plus the ITI of 8 s, for a participant with the number of sequences equal to 6. For a par-
ticipant with a number of sequences equal to 3, the time for one-word selection was 13.7 s (3 ×
7 × 0.650s). Participants performed four conditions in a single experiment, which took about 2-3
h to complete, depending on the number of sequences chosen for the online sessions. The period
of the experiment also included the EEG montage and a period for familiarization with the stimuli
and interface arrangement. The subjects performed the flashing words with overlapped pictures of
relative’s faces task on another day, which took about 30 minutes.

Figure 4.11: Temporal diagram of stimuli presentation for the hybrid modality with word flash-
ing + spoken words (Fig. reproduced from [3]). All stimuli have a duration of 550 ms and an
interstimulus interval of 100 ms (stimuli onset asynchrony of 650 ms).
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5
Analysis and results

This chapter presents all the tests, results, and analyses that have been done to verify and validate
the developed work. The first section concerns the stimulation and presentation modules, reporting
the experiments with the five P300 paradigms conditions. The second part of this chapter concerns
the classification module, comparing the performance of the two classification approaches.

5.1 P300 Paradigms

Five stimulation paradigms were experimentally tested by 10 healthy participants: word flash-
ing (W), word flashing with auditory (WA), famous face flashing (F), famous face flashing with
auditory (FA), and flashing a relative’s faces (FF). Each test consisted of a calibration session and
a subsequent online session. The order of the paradigms for each participant was randomized. The
conditions W, WA, F, and FA were all conducted in the same day. Participants had a brief interval
between each paradigm that allowed subjects to rest between the different tests. Condition FF was
conducted after a week of conducting the other four conditions.

5.1.1 Participants

The five tests were conducted with ten healthy participants, except participant five (P5) that was
not available at the time of the FF experiment to perform the FF task. Eight of the participants were
male, and two were female. The mean age of the participants is 28.5 years, with a range from 21
to 50. None of the participants has a hearing impairment, and all had a normal or corrected vision.
Only two participants (P1 and P10) had previous experience with BCIs, the other participants
had never controlled a BCI before (naïve users). Table 5.1 shows their identification codes, ages,
gender, BCI experience, first condition conducted, and number of repetitions.

5.1.2 Offline classification results

The offline classification results were obtained for the five condition tests. The BCIwas operated
using several repetitions per trial (Nrep), adjusted individually to each participant. Since the signal
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Participant 1 2 3 4 5 6 7 8 9 10
Age 22 23 50 25 23 23 23 50 21 25

Gender F M M M M M M M M F
BCI experience yes naïve naïve naïve naïve naïve naïve naïve naïve yes

First condition conducted WA WA W FA F F FA WA F W
Nrep 3 6 5 4 5 5 6 3 3 3

Table 5.1: Gender, age, BCI experience, first condition conducted, and number of repetitions for
online operation. (F—Female, M—Male, Nrep—Number of repetitions).

has a very low SNR, it is usually not possible to detect the P300 with only one sequence. Figure 5.1
depicts the offline classification accuracy (y-axis) for each subject as well as averaged accuracies
for all subjects. The number of sequences considered was from one to six (x-axis) for all five
different paradigms.

The analysis of the average of the 10 subjects indicated that accuracy increases with the se-
quence number in all five paradigms. The average classification accuracy of the P300-paradigm
was greater in the F paradigm, followed by the WA paradigm, then the FA paradigm and the FF
and W paradigm have a close accuracy. However, it must be taken into consideration that partici-
pant 9 (P9) had a 50% accuracy for every number of sequence in the FF condition, which indicates
that some type of error occurred during the calibration session. By eliminating the P9 of the mean
accuracy the average classification accuracy of FF condition is approximately the same as the FA
condition. Besides, we counted the number of sequences needed for subjects to achieve a ≥70%
accuracy level in the five paradigms. A level of ≥70 is regarded as a minimum level of communi-
cation [44][42].

A paired t-test was calculated between theW and F conditions, theWA and FA conditions, the F and
FF conditions, and between theW and FF conditions (see Table 5.2). The results of the paired t-test
indicate that the number of sequences was not significantly different between any of the paradigms
pair (to determine statistical significance p has to be p<0.05). The participants required 1.9 ± 1.52
(mean ± standard deviation) sequences to achieve the goal of ≥70% classification accuracy in the
W paradigm, whereas 1 ± 0 sequences were needed to achieve the same goal in the F paradigm.
For the WA paradigm, the subjects required 1.3 ± 0.67 to achieve the goal of ≥70% classification
accuracy, whereas 1.8 ± 1.68 sequences were needed to achieve the same goal in the FA paradigm.
Offline selection accuracies for selecting one symbol out of 7 by using single sequence data were
86.98% ± 16.41 for FF (without P9), 85.29% ± 7.36 for F, 81.12% ± 11.51 for WA, and 80.93% ±
17.81 for FA, and 75.59% ± 16.04 for W.

As said previously, the order of the five conditions was randomized for each participant. In the
first condition tested, the number of sequences was decided and maintained for the rest of the four
online sessions (see Table 5.1).
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Figure 5.1: Individual and average offline classification accuracies of the P300-paradigms for 10
participants in the five conditions.

5.1.3 Online performance metrics

To compare the performance of the five tasks and these with the state of art results, some online
metrics were calculated: online classification accuracy, the information transfer rate (ITR), and the
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W& F W & FF F & FF WA & FA
p 0.0782 0.6865 0.1520 0.3955

Table 5.2: Results of the paired t-test between the five paradigms for the offline sessions taking
into account the number of sequences needed for subjects to achieve a ≥70% accuracy (to determine
statistical significance p has to be p<0.05).

W WA F FA FF
Pac eSPM ITR Pac eSPM ITR Pac eSPM ITR Pac eSPM ITR Pac eSPM ITR

Participants P1 93.33 3.82 9.34 93.33 3.82 9.34 100 4.10 11.50 100 4.10 11.50 100 4.10 11.50
P2 93.33 1.98 4.84 80 1.70 3.33 80 1.70 3.33 100 2.12 5.95 86.67 1.84 4.02
P3 86.67 2.19 4.79 80 2.02 3.96 100 2.53 7.10 100 2.53 7.10 100 2.53 7.10
P4 46.67 1.46 1.35 53.33 1.67 1.89 86.67 2.71 5.93 93.33 2.92 7.13 100 3.13 8.77
P5 73.33 1.85 3.24 73.33 1.85 3.24 86.67 2.19 4.79 86.67 2.19 4.79 - - -
P6 93.33 2.36 5.76 66.67 1.68 2.60 100 2.53 7.10 93.33 2.36 5.76 100 2.53 7.10
P7 100 2.12 5.95 100 2.12 5.95 100 2.12 5.95 86.67 1.84 4.02 93.33 1.98 4.84
P8 86.67 3.55 7.77 93.33 3.82 9.34 100 4.10 11.50 100 4.10 11.50 100 4.10 11.50
P9 60 2.46 3.29 80 3.28 6.42 80 3.28 6.42 73.33 3 5.25 80 3.28 6.42
P10 86.67 3.55 7.77 100 4.10 11.50 100 4.10 11.50 100 4.10 11.50 100 4.10 11.50

mean 82 2.53 5.41 82 2.61 5.76 93.33 2.94 7.51 93.33 2.93 7.45 95.56 3.07 8.08
STD 16.07 0.77 2.31 14.31 0.97 3.15 8.43 0.86 2.81 8.43 0.84 2.80 7.03 0.85 2.73

Table 5.3: Online session accuracy Pac, ITR, and eSPM for the five conditions: W, WA, F, FA,
and FF (STD—Standard Deviations).

effective symbols per minute (eSPM).Word accuracy of online testing is the most important metric
since it defines the feasibility of the interface, and it is calculated as the percentage of correctly
selected words for each online test. The interface speed depends on the number of repetitions
chosen for each participant and was established as a trade-off between accuracy and speed. For
Nrep=6 the interface speed was fixed to 2.2 SPM,Nrep=5 the interface speed is 2.6 SPM,Nrep=4
the interface speed is 3.3 SPM, Nrep=3 the interface speed is 4.1 SPM (discarding the ITI time).
The effective SPM (eSPM) is also calculated. The bit rate or information transfer rate (ITR) embeds
concurrently the number of encoded symbols, the online accuracy, and the SPM:

SPM =
60

Nrep × (Nev × SOA) + 1
(5.1)

eSPM = SPM × Pac (5.2)

ITR = SPM
[
log2(Ns) + Pac log2(Pac) + (1− Pac) log2

(1− Pac)

(Ns − 1)

]
(5.3)

where Nrep is the number of repetitions selected according to Table 5.1, Nev is the number of
events on the paradigms (Nev = 7), SOA is the stimulus onset asynchrony (TON + TOFF = 0.650
s), the value 1 represents the time needed to record the epoch of the last event of the trial, Pac is
the online accuracy, and Ns is the number of symbols/words (Ns = Nev).

For the online session, each subject had to select a sequence of 15 words for each of the five
conditions. Table 5.1 shows the online accuracy, Pac, the bit rate, ITR, and the eSPM for the
five conditions.

The best performance, with an accuracy of 95.6%, a eSPM of 3.07 symbols per minute, and
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W& F W& FF F & FF WA &FA
Pac eSPM ITR Pac eSPM ITR Pac eSPM ITR Pac eSPM ITR

p-value 0.0773 0.3093 0.1003 0.0410 0.1948 0.0432 0.5653 0.7584 0.6770 0.0556 0.4622 0.2439
test decision - - - * - * - - - - - -

Table 5.4: Results of the paired t-test between the five paradigms for the online sessions (for
statistical significance p<0.05, test decision—*).

an ITR of 8.08 bpm, was yielded by the FF paradigm, followed by the F and FA conditions,
which had similar performances with an accuracy of 93.33%, a eSPM of 2.93 for FA and 2.94
for F condition symbols per minute, and an ITR of 7.45 bpm for FA condition and 7.51 bpm for
F condition. The W and WA paradigms had a lower performance with an accuracy of 82%. The
results of the paired t-tests showed that the accuracy (p < 0.05) and ITR (p < 0.05) were significantly
different between the FF and W paradigms. The mean classification accuracy in the FF paradigm
was 13.56% higher than that of the W and WA paradigm, while the mean ITR in the FF paradigm
was 2.67 bpm higher than that of the W paradigm. For the W and F conditions, we observe that the
mean accuracy is 11.33% higher for the F case, however, the paired t-test shows that this difference
is not statistically significant (paired t-test, p = 0.0773). A paired t-test, regarding the accuracy,
was performed between the conditions WA and FA but no significant difference between them
was found (paired t-test, p = 0.0556). Table 5.4 shows all the p-paired tests performed between
the conditions. Results show that the approach based on famous and relative’s faces is effective in
comparison to text stimuli, and that the combination with auditory stimuli did not introduce any
improvements.

5.1.4 ERP analysis

The grand averages of target and non-target EEG signals are plotted for the five conditions in
Fig. 5.2 A). According to [37], the fusiform face area is a part of the human visual system used
in facial recognition. Hence, channel PO7 was selected to represent the fusiform face area, and
channels Cz and Pz were also selected as they are channels of reference for the analysis of P300
ERPs [41] [48] [77].

The amplitude and latency of the P300 and N400 waves were analyzed. The amplitude measures
the value of the wave peak and the latency is the instant of the wave peak. These two parameters
were analyzed from the epochs evoked by the target events gathered during the calibration sessions
of the 10 participants taking the 16 channels, making a total of 140x16=2240 epochs per condition.
Each of the five stimuli produces distinct waveforms. The specified time windows to examine the
P300 amplitudes and latencies were set to 300–450 ms. The specified time windows to examine
the N400 amplitudes and latencies were set to 450–750ms for. The time windows were determined
by examining the grand mean waveforms shown in Fig. 5.2.
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Figure 5.2: A) Grand average of target and non-target EEG signals for the channels Cz, PO7, and
Pz for the five conditions (obtained from the 10 participants, except P5 for FF condition). B) Target
grand average of EEG signals for PO7 channel for the five conditions.

5.1.4.1 P300 ERP analysis

A paired t-test was calculated for the maximum peak found on the time window 300–450 ms for
the 2240 epochs for the five conditions for each participant. The paired t-tests results, in Fig. 5.3,
show that for the majority of the participants the face paradigms (F, FF, and FA) amplitudes are
significantly higher than the non-face paradigms (W and WA) amplitudes. Between the F and the
FF amplitudes, there is also a significantly statistical difference. The average of the maximum peak
found on the time window 300–450 ms for the 2240 epochs of each participant was calculated. The
mean amplitude of the P300 wave for the condition FF is the highest (18.69 µV), followed by the
conditions F (18.01 µV), W (17 µV), WA (16.16 µV), and FA (15.91 µV). The P300 wave has an
average latency of 368.8 ms, 372.9 ms, 381.7 ms, 383.3 ms, and 384.6 ms for the F, FF, W, WA,
and FA conditions, respectively. The latency for FF and F conditions are statistically lower than
the latency for the condition W (paired t-test, p = 0.03, p = 0.01) and when comparing the FF and
F conditions no significant differences were found (paired t-test, p = 0.32). Moreover, the FA and
WA conditions do not present significant differences (paired t-test, p = 0.75). The higher latency
for the conditions FA and WA may be due to the increased complexity in stimuli perception, as
more time is needed for the subject to perceive the auditory stimulus [32].

The ERP waveforms obtained for F, FF and FA conditions are very different from the W and WA
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Figure 5.3: Results of the paired t-test between the five paradigms for the P300 wave amplitudes
(for statistical significance p<0.05, test decision—1)

conditions as shown in Fig. 5.2. The FF condition evokes the most pronounced P300 ERPs and
the W and WA conditions the least pronounced. The FF waveform is similar to the F and FA
waveforms but with a higher amplitude. The conditions W and WA have identical waveforms.
This suggests that the evoked potentials are mostly driven by the image visual stimuli. Comparing
the waveforms of the conditions with auditory and no auditory (F with FA andWwithWA) we can
conclude that the waveforms are very similar. This is emphasized in Fig. 5.2 B), comparing the
grand average of the P300 epochs for the five conditions in the P07 channel. Most interestingly, the
most pronounced P300 waveforms are from the face paradigm conditions (F, FF, and FA), which
are more pronounced in the channels placed in the fusiform face region than in other channels.
Another interesting aspect is that the P300 waveforms of the channels Pz and Cz are different from
the waveform from the channel PO7 in the F and FA conditions. However, in condition FF the
Pz and Cz channels have more pronounced waveforms and are similar to the PO7 channel. This
suggests that different perceptual/cognitive processes are triggered in visualizing a relative’s face.

5.1.4.2 N400 ERP analysis

The N400 component is related to face processing, it is accentuated by face structural congru-
ence in well-known faces and associated person information [56]. An identical analysis performed
for the P300 ERP was completed for the N400 ERP. A paired t-test was calculated for the mini-
mum peak found on the time window 450–750 ms for the 2240 epochs for the five conditions for
each participant (see Figure 5.4). The paired t-tests show that for the majority of the participants
the face paradigms (F, FF, and FA) negative amplitudes are significantly higher than the non-face
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paradigms (W and WA) amplitudes. Between the F and the FF amplitudes, there is also a signif-
icantly statically difference for all the participants except P7. The mean amplitude of the N400
minimum peaks is -16.61 µV for the condition FF, -16.33 µV for F condition, -15.19 µV for W,
-14.13 µV for FA paradigm, and -13.83 µV for WA. The N400 wave has an average latency of
607.3 ms, 609.6 ms, 614.5 ms, 615.4 ms, and 616.1 ms for the W, FF, WA, F, and FA conditions,
respectively.

Figure 5.4: Results of the paired t-test between the five paradigms for the N400 wave amplitudes
(for statistical significance p<0.05, test decision—1).

Similar to the P300 ERPs, Fig. 5.2 shows that the N400 ERPs are most pronounced in the FF
condition, and the conditions W and WA have the least pronounced N400 waveforms. The PO7,
channel positioned on the fusiform face area, has a higher negative peak amplitude, on the con-
ditions with the face paradigm (F, FF, and FA), than the Cz and Pz channels. However, in the W
and WA conditions, PO7 channel presents a slight pronounced N400 peak practically nonexistent,
but the Pz and Cz channels present some type of negative wave around 450–750 ms. In Fig. 5.2
B) it is clear that the N400 waveforms are similar between the WA & W conditions and between
the FA & F conditions. The FF paradigm presents similar waveforms to the FA & F conditions but
with higher negative peak amplitudes. This suggests that visualizing a relative’s face evokes more
pronounced N400 ERPs than visualizing a famous face, and even more with just viewing the word
flashing.

5.1.5 Discriminative feature analysis

The R-square values, between the target and non-target epochs of the 10 participants for the 16
channels, were computed to evaluate the discriminative information derived from the five types of
stimuli. Fig. 5.6 shows the temporal distributions of the most discriminative information for the
five paradigms. The discriminative components match the P300 (300–450ms) and N400 (450–750

50



5. Analysis and results

ms) location. It is also possible to observe that before 300 ms there are discriminative components.
For channels 1-5 and 13-16, there is a high discrimination for the P200 component (see also Fig.
5.2A)). P200 is typically elicited as part of the normal response to visual stimuli, the amplitude of
the peak may be modulated by many different aspects of visual stimuli, such as color, orientation,
shape, etc. Fig. 5.2 A) shows that the face stimuli present a higher peak than the word flashing
stimuli. For the PO7 channel, a pronounced positive peak followed by a negative wave occurs
before 300 ms. Since the positive peak is pronounced in the face paradigms and does not appear
in the word flashing paradigms, leads us to assume that it is a vertex positive potential (VPP) ERP.
VPP is a wave that peaks between 140 and 200ms following the onset of a face stimulus [8] [35]. A
negative peak is elicited by the five paradigms which was interpreted as the N200 ERP component,
typically evoked 180 to 300 ms. The N200 is evoked by oddball paradigms typically suggesting
a link to the cognitive processes of stimulus identification and distinction [29]. We analyze the
brain areas and the different ERPs evoked by a non-face condition and a face condition, Fig. 5.5
shows the analysis for a representative participant P6. The channels were divided into two groups
taking into thought the brain areas, we observe that these two areas evoke different ERPs. P6
evokes what was assumed a P200 ERP on Fz to CP6 channels, which is in agreement to previous
studies that state that the P200 wave displays maximal amplitudes at the frontal electrodes [63][69].
For channels that are positioned on the visual cortex (Pz to OZ), a positive peak around 200 ms
followed by a negative wave occurs. For these channels, the positive peak considered the VPP
ERP, is higher on the F condition than the W condition, which is in agreement with [62][18], that
state that the VPP is sensitive to face processing.

Figure 5.5: Target EEG signals for the 16 channels for F and W conditions, obtained from the
participant 6.

Fig. 5.6 shows that all of the face-related stimuli yielded more discriminative features than the
highlighted word after stimulus onset, which is in agreement with the online results (please note
that the color scales in Fig. 5.6 are different for each condition (right vertical bar)). The most
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outstanding components in the features were found around 350 ms and 600 ms, which correspond
to P300 and N400, respectively. The discriminative components around 450–750 ms, for the face
conditions, were mainly located at the channels placed over the fusiform face area related to N400
component.

Figure 5.6: R-square color maps between target and non-target taking the 10 participants for the
five conditions. (Channel numbers correspond to: 1–Fz, 2–Cz, 3–C3, 4–C4, 5–CPz, 6–Pz, 7–P3,
8–P4, 9–PO7, 10–PO8, 11–POz, 12–Oz, 13–T7, 14–CP5, 15–T8 and 16–CP6). Please note that
the color scales are different for each condition (right vertical bar).

5.1.6 Discussion

Previous studies have proposed that superimposing the visual stimuli (characters, words, num-
bers, etc.) with images of faces, the P300 and N400 components should increase the speed and
accuracy of target and non-target selection [40][41]. To further investigate the factors contributing
to these effects, we present a BCI based on a hybrid paradigm (famous face images with auditory
stimuli), a famous face images paradigm, and a relative’s face images paradigm and compared
these stimuli to a control paradigm based on text stimuli. We predicted, based on previous lit-
erature, that facial stimuli would lead to better performances than the non-facial stimuli, and our
results confirmed it. Moreover, we can say that the face stimulus prompts participants to focus at-
tention on the target more actively, concerning the obtained cognitive processes which are proved
by the results. In particular, the relative’s face, which has been shown to recruit additional face
selectivity mechanisms in addition to those for non-relative’s face, elicited the most discriminative
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ERP features in our experiment. As foreseen, both offline and online results showed that the fa-
cial conditions achieved higher classification accuracies and ITRs than the non-facial conditions.
The online results indicated that the facial conditions evoked larger ERP components, resulting in
the improvement of BCI performance. In agreement, both ITR and eSPM were higher for those
conditions. Our study shows that the stimuli of relative’s faces improve the ITR of the BCI system
in comparison to the rest of the paradigms. The relative’s face interface had the best results and
there was a ceiling effect on six participants, with online accuracies of 100%, with a mean accu-
racy of 95.6%. The famous face images paradigm and the hybrid paradigm (famous face images
with auditory stimuli) had an online classification of 93.3%. The online results compare positively
with similar studies as observed in Table 3.1. and Table 3.2. The control paradigms (non-facial
stimuli) presented a classification of 82%. This suggests that stimuli with higher cognitive task
requirements, facial stimuli, are more effective than the intensified stimuli of words/characters for
the P300-based BCI system.

In the present study, we assessed grand-averaged ERP waveforms elicited by the target and non-
target trials in all the paradigms (W, WA - control paradigms and F, FA, FF - proposed paradigms).
Besides, we analyzed the difference waveforms of ERPs elicited by the target trials and compared
the offline and online classification performance of all five paradigms. As can be seen from the
grand average ERP in Fig. 5.2, a positive ERP component was observed at around 140–200 ms on
the channel PO7 for the facial stimuli conditions, which may represent the vertex positive potential
(VPP), a potential implicated in face-sensitive brain responses reflecting the neural processing of
faces [78]. Another positive ERP component between 300 and 450 ms was found, which may well
represent the expected P300 [5]. Also, a negative ERP component elicited by the target trials was
found at around 450–750 ms on the facial conditions. This ERP component is similar to N400,
which is involved in face recognition [19]. Waveform analyses indicated that the face conditions
produced more robust P300 and N400 ERPs than the non-facial conditions, similar to the results
observed by Kaufmann [40][41]. Both P300 and N400 achieved significantly larger amplitudes
for the face-related stimuli than the word stimuli for most of the participants, Fig. 5.3 and Fig. 5.4.
The P300 and N400 waves tend to be more pronounced at the parietal-occipital and occipital sites
for the face-related stimuli, whereas those evoked by the highlighted word are mainly distributed at
the frontal, temporal, and parietal sites. These suggest a higher level of cognitive components in the
visual areas derived from the face task, in contrast to the cognitive components reflecting memory
updating for the oddball task. These seem to imply that the P300 and N400 cognitive components
were modulated by the face information. These cognitive components associated with face stimuli
helped to yield more discriminative features than those of the highlighted word (see Fig. 5.6).

A question worthy of consideration is whether the proposed paradigms work properly for dis-
abling subjects. Preceding studies [30][68] found that disable patients have impairments in work-
ing memory hence lower and more delayed P300s. However, no studies have stated such impair-
ments to affect face perception and structural encoding. Although the reduced vocabulary pre-
sented by the proposed BCI is quite limited when compared with a BCI-speller, it may represent
one way to achieve a feasible BCI adapted to the skills and needs of disabling patients. To inves-
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tigate in detail the applicability for disabled patients, the presented paradigms should be further
tested in patients with different cognitive impairments.

5.2 Convolutional Neural Network

This chapter chapter analyzes whether a CNN classifier can be used on a real BCI application.
The CNN is compared with the approach currently being used in our lab which consists of a sta-
tistical spatial filter combined with a Naïve-Bayes classifier.

5.2.1 Datasets

The datasets were collected from the calibration sessions conducted with the 10 participants who
tested the W, F, and FF paradigms. Data and paradigm specifications were already explained in
section 4.4.3. Ten possible target ERPs should be detected for each target symbol (10 repetitions
per trial, and 14 targets) on the calibration session and 3 to 6 from the online experiments.

For the training database, the number of P300 epochs to detect is 14 x 10, and there are 14 x 10
x 7 - 140 = 840 epochs labelled ”non-P300”. The number of samples labeled ”P300” and ”non-
P300”, for the online experiments, vary from participant to participant. For P1, P8, P9, and P10
the number of epochs chosen was 3, hence the number of P300 to detect is 15 x 3 = 45 and the
number of non-P300 is 15 x 3 x 7 - 45 = 270. For P4 the number of epochs is 4, therefore, 15 x 4 =
60 number of P300 to detect and is 15 x 4 x 7 - 60 = 360. P3, P5, and P6 have 5 number of epochs
which corresponds to 75 sets of signal samples labeled ”P300” and 450 sets labeled ”non-P300”.
For P2 and P7 the number of epochs chosen was 6, therefore, 90 number of P300 to detect and 540
number of non-P300 to detect.

5.2.2 Experimental results

Fig. 5.7 presents the offline binary classification rate in percentage for each classification
method for each W, F, and FF conditions and for each participant. When the number of epochs is
n, it indicates that only the n first epochs are considered. If n is equal to one, there is only one
P300 possible response for determining a symbol (called single trial detection).

The goal of this analysis is to compare the performance of the CNN classifier with the performance
of the FCB spatial filter + Naïve-Bayes classifier, therefore, the differences between the conditions
(W, F, and FF) are not relevant for the analysis. The mean accuracy of the 10 participants is shown
in Fig. 5.7 (mean). For the three tested conditions, ”FCB+Naïve-Bayes” has a binary classification
accuracy higher than 85% for all the number of epochs. The CNN has a low accuracy for initial
n’s, nevertheless, as n increases the accuracy progressively increases as well. The best accuracy
achieved by CNN is when n = 6 with 82.38%, 82.85%, and 89.52% for the three conditions. The
progression of the accuracy concerning n is not linear, in some cases adding more epochs does
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Figure 5.7: Percentage of the character recognition rate for the different classifiers, FCB Spatial
filter + Naïve-Bayes and CNN, for the conditions W, F, and FF. In the legend ”bayes” refers to
FCB spatial filter plus Naïve-Bayes.

not necessarily increase accuracy. Fig. 5.8 simulates the online ITR, in bits per minute (bpm),
concerning the number of considered epochs, i.e., over the time required for the recognition of a
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word. The performance of the Naïve-Bayes classifier presents higher accuracies than the CNN
classifier.

Figure 5.8: ITR (in bits per minute) in relation to the number of epochs (mean of the 10 participants
per condition).

5.2.3 Discussion

One of the goals of the BCI community is tomake BCI systemsmore practical and reliable. Deep
neural networks have shown state of the art performance in computer vision and speech recognition
and thus have great promise for other learning tasks, such as multidimentional EEG data. The CNN
method does not require any electrode selection before the classification. All of the electrodes are
handled with no neuroscience knowledge about the best electrodes or some preceding features
selection, i.e., it does not consider a prior set of selected features or high-level features as input.
The classification is done directly on the EEG signals signals after basic preprocessing. It classifies
a signal without directly considering the usual shape of the expected signal to detect. Another
important aspect of CNN is that it may allow deeper analysis of brain activity, particular features
can be discovered in the training step. This method does not separate the different parts of the
classification (features selection, spatial filters, etc.) as most of the classifiers, instead, a CNN has
the ability to learn and extract all of the appropriate features from the input data automatically by
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optimizing the weight parameters of each filter through the forward and backward propagation to
decrease the classification errors. These advantages are important for its implementation in a real
BCI, where its all embedded approach can highlight the subject particularities without any tuning.
Thus, although the CNN performed worse than the current approach, the aforementioned CNN
properties are very relevant and give the motivation to further explore deep learning approaches.

By increasingn, the CNN accuracy becomesmore similar to the accuracies on the Bayesmethod.
The CNN is capable of adequately classifying the data, however, the algorithm needs to be im-
proved. The CNN performs a spatial convolution with kernel (1, C), where C denotes the number
of electrodes, in the first layer which makes the CNN not able to learn temporal features well.
Every column in the input matrix contains a set of C signal samples. These samples come from C
electrodes at a certain sampling time point. The spatial convolution operation converts each col-
umn of spatial data into an abstract datum in a feature map. The spatial convolution layer outputs
several feature maps, which are given as input to the temporal convolution layer. These feature
maps are abstract temporal signals instead of raw temporal signals. Thus, the spatial convolution
operation leads to losing raw temporal information, which means loosing important P300-related
features. As a result, the network can not learn temporal features well. A possible solution is to
apply both a spatial and temporal convolution in the first layer, allowing the CNN to learn features
from raw temporal and spatial information simultaneously. We also need to take into consideration
that this is an exploratory work with a limited number of datasets, where the CNNwas trained with
a small amount of data. CNNs usually require a big amount of training datasets to present high
performances, however collecting more data would require a lot of time and it was not possible.
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6
Conclusions and further work

The goal of this dissertation was to develop a standalone framework to implement visual and au-
ditory paradigms in applications outside the Matlab/Simulink system. The framework developed
is not only a framework for the rapid development of feedback and stimulus applications but also a
platform to run neuroscientific tests independent from BCI systems. Three P300-based conditions
using the faces paradigm (famous face images, relative’s face images, and famous face images +
auditory) were proposed and developed, and two P300-based on text stimuli conditions (words
and words + auditory) were replicated from [3] to serve as control paradigms. The performance
of the proposed BCIs was significantly improved in comparison to the control P300-based BCIs.
The best online accuracy, ITR, and effective SPM was achieved by the relative’s face condition
and compares favorably with the state-of-the-art performances. An analysis of the discriminative
ERP features was performed. The relative’s face condition showed to recruit additional face se-
lectivity mechanisms in addition to those for non-relative’s face, eliciting the most discriminative
ERP features. Future work will focus on the use of faces in ERP–BCI controlled applications, in
particular, to test it with complete locked-in state patients.

Another issue was addressed in this dissertation, a CNN approach proposed in [11] was imple-
mented offline and it was compared with the approach currently being used at ISR-UC, based on
a statistical spatial filter and a Bayes classifier. An advantage of the CNN classifier is that it does
not consider a prior set of selected features or high-level features as input, also, the classifica-
tion is done directly on the EEG signals after basic preprocessing. The ”statistical spatial filter +
Bayes classifier” approach showed better performances than the CNN, nevertheless, the CNN was
capable of adequately classifying the data. Although the CNN performed worse than the current
approach, the aforementioned CNN properties are very relevant and give the motivation to further
explore deep learning approaches. Future work will focus on improving the CNN by performing
both spatial convolution and temporal convolution in the first layer. Another intersting aspect to
continue this exploratory work is to try to make the CNN subject invariant, which would allow
the use of BCIs without the calibration tests. This issue requires the collection of large amount of
datasets to train the CNN.
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7
Appendix A

Platforms for BCIs
1. BCI2000 [65] supports a variety of data acquisition systems, brain signals, and study/feed-

back paradigms. BCI200 provides support for 19 different data acquisition systems includ-
ing the major EEG amplifiers. It also provides a customized auditory/visual stimulation that
is synchronized with the signal acquisition. The BCI2000 platform separates the BCI sys-
tem in different modules on different levels, in the first level, we have four modules: source
(signal acquisition and storage) module, the signal processing, user application, and operator
interface (system control). The Source module acts as an input and receives neural signals
from the brain. The signal processing module transforms the brain signals into an output sig-
nal. The User application module uses the output signal to drive the specific BCI program
in use. The modules communicate with each other over TCP/IP connections. The second
level is modularized into a sequence of pre-processing filters that operate on the signals,
which have a common programming interface. A third level exists for re-usable software
building blocks, that support the creation of new processing filters or application modules.
BCI2000 provides a comprehensive document for the programmers that describes the data
structures, data types, internal events in the system, and it explains the process on how to
extend BCI20000 with new modules like the acquisition, signal processing or application.
BCI2000 is written in C++ but provides a programming interface that allows accessing sys-
tem parameters, data signals, and event information intuitively. This platform also allows
the signal processing code to be written in MATLAB and includes Python compatibility. For
more compatibility with other programming languages and external applications, BCI2000
can be loadable as a library and can be wrapped into an application that accesses this library.
Also, the BCI2000 internal state can be sent over UDP connection (user datagram protocol)
which an external application can access.

2. OpenViBE [9] is a free and open-source software platform for designing, testing, and using
brain-computer interfaces. Similar to the BCI200 the OpenViBE also consists of a set of
modules, these modules can easily be consolidated to develop functional interfaces. The
softwaremodules are acquisition, pre-processing, processing, and visualization of brain data.
It also supports various acquisition devices such as EEG orMEG amplifiers. The OpenViBE
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platform can be integrated with other applications. The OpenViBE platform includes several
useful tools: acquisition server, designer, 2D visualization tools, and sample scenarios for
BCIs or neurofeedback applications.

3. TOBI [1] is a cross-platform set of interfaces that connect parts with different BCI systems, to
facilitate distributed BCI research between different systems and platforms. These different
systems transmit the data acquired, extracted features, classifier outputs, and events in a
standardized way. The design of this Common Implementation Platform (CIP) is based
on a pipeline system. The data is acquired via a data acquisition system and delivered to
a data processing module. Since the TOBI platform supports multiple processing streams
different processing pipes exist. The modules are connected by four interfaces A, B, C and
D. The interface A transmits raw biosignals, B transmits signal features such as band power,
C transmits detected classes and class labels and D is used to transmit events and markers
within the CIP.

4. BCI++ [10] is an open-source framework that provides a set of tools for the development
of BCIs. It is composed of two principal modules, which establish communications over
TCP/IP connections. One module is the Hardware Interface Module (HIM) for signal acqui-
sition, storage, visualization, and real-time processing. HIM has a main block that takes care
of tasks common to all protocols and loads plug-ins, in which the user develops the algo-
rithms. Algorithms for signal processing can be designed in C/C++ and MATLAB. BCI++
has many tools that simplify the development of updates without developing from scratch.
HIM supports many signal acquisition devices and provides compatibility with some of the
devices developed in selected laboratories. The other module is called AEnima which pro-
vides a Graphical User Interface (GUI), and it’s for the creation and management of different
protocols based on the 2D/3D graphics engine. AEnima is based on a sophisticated graphics
engine so a more realistic experience is provided for the user.

5. xBCI [72] is a general-use platform for developing online BCIs. The platform provides an
easy system development tool with extendable and modular system design, GUI-based sys-
tem development, multi-threaded parallel processing, multi-OS support, and open-source.
The developers can design and build different types of BCI systems by combining these
different components: basic mathematical operations, data processing, data acquisition, net-
work communications, data visualization, experiment control, real-time feedback presenta-
tion. The user can also develop new components, in C++ or a scripting language. Every
component is completely independent as a plug-in, they are executed in their thread.

6. Pythonic feedback framework (Pyff) [76], was created for the development of experimental
paradigms and a platform to run neuroscientific experiments. The goal is to create BCI stim-
ulus and feedback presentation applications fast and easy. The framework is implemented in
Python which is a high-level programming language that can be relatively easy to learn. The
framework is also compatible with many different BCI systems, by coupling Pyff with the
rest of the BCI system using UDP connections to transport data from the system to the Pyff
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and XML to wrap arbitrary data in a format that Pyff can read. Pyff also supports the TOBI
interface for communications between the BCI system modules. Pyff has four parts, the first
one is the feedback controller which receives signals from the BCI system and translates
and forwards them to the feedback and stimulus application. The second part is the graphi-
cal user interface that controls the feedback controller remotely over the network. The third
is a set of feedback paradigms and stimuli, and the fourth part is a collection of base classes
which provides methods and functionality shared by feedback and stimulus applications.
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