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A bit beyond perception’s reach

I sometimes believe I see

That life is two locked boxes, each

Containing the other’s key.

- Piet Hien
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tempos da primária. A todos os meus amigos e colegas de faculdade, Gabriel, Pedro,
Shon, Freire, Seco, Daniel, Adriano e todos aqueles que viveram connosco o espı́rito
boémio de Coimbra, mas também pelas noites de desabafo e frustração.

Ao Pedro Cunha, Paulo e Carlos pelos tempos de descontração passados na varanda
durante as pausas na escrita da dissertação.

A todos a aqueles com quem me cruzei e que contribuı́ram para a minha formação
como pessoa. Obrigado pelos bons tempos.
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Abstract

The consultative committee for space data systems (CCSDS) 123 is a hyperspectral
and multispectral image compression algorithm composed of a predictor and an encoder.
Usually, the systems that generate these types of images (satellites, drones, etc.) have
energy restrictions. Hence, field-programmable gate arrays (FPGAs) show themselves as
efficient devices to implement the CCSDS 123 due to its low energy consumption. The
smartphone market has turned central processing units (CPUs) and graphics processing
units (GPUs) into energy-efficient systems, making them potential competitors against
FPGAs implementation dominance in the field of low-energy compression.

The objective of this dissertation is, using a low-power GPU (Jetson TX2), to paral-
lelize the CCSDS 123. Intra-band prediction (P = 0) uses a single kernel. When using
inter-band prediction (P > 0), the predictor has data dependencies within bands, making
parallelization less efficient and more challenging to implement. Hybrid parallelizations
(CPU+GPU) are studied for the two encoders designed for this standard, producing a
heterogeneous computing system.

The implementations are subject to tests that compare the parallel execution times
with the serial execution times in order to identify the best implementations. An energy
analysis is performed, measuring the power used by the board over the algorithm’s run-
ning time. In the end, the throughput rate and energy efficiency are compared with the
state-of-the-art.
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Resumo

O consultative committee for space data systems (CCSDS) 123 é um algoritmo de
compressão de imagens hiperespectrais e multiespectrais composto por um preditor e um
codificador. Normalmente, os sistemas que geram este tipo de imagens (satélites, drones,
etc. . . ) têm restrições energéticas. Este algoritmo é implementado, sobretudo em field-
programmable gate arrays (FPGAs) devido ao seu baixo consumo energético. O mercado
dos smartphones tem tornado os central processing units (CPUs) e graphics processing
units (GPUs) em dispositivos energeticamente eficientes, colocando-os em posição de
competir contra as FPGAs no campo de compressão de baixo consumo.

O objetivo desta dissertação é, utilizando uma Jetson TX2, paralelizar o CCSDS 123.
No preditor, quando a predição é intra-banda (P= 0), é utilizado um único kernel. Quando
se usa predição inter-banda (P > 0), o preditor passa a ter dependências de dados dentro
das bandas, tornando a paralelização menos eficiente e mais difı́cil de implementar. No
codificador, que contém dependências de dados, são estudadas paralelizações utilizando
vários dispositivos (CPU+GPU) nos dois codificadores contemplados nesta norma. Pro-
duzindo uma solução hı́brida de computação heterogénea.

As implementações são alvo de testes que compararam o tempo de execução paralela
com os tempos execução em série de forma a identificar as melhores implementações.
Ainda é feita uma análise energética medindo a potência utilizada pela placa ao longo do
tempo de execução do algoritmo. No final, a taxa de débito e a eficiência energética são
comparadas com o estado de arte.
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1. Introduction

A spectral image is taken across multiple bands through the electromagnetic spectrum.
While an ordinary camera captures light in the visible spectrum, spectral images may
use infrared, visible, ultraviolet, x-rays, or some combination of those spectrums. As a
consequence of high number of spectrums used on these images, spectral imaging can be
divided into 2 groups: multispectral and hyperspectral imaging. These types of imaging
are used in various scientific areas, such as astronomy, agriculture, physics, geosciences
and others.

Multispectral and hyperspectral images (MHIs) acquired in systems such as satel-
lites or aircrafts, must be transmitted to earth-based stations for analysis. As the sensor’s
resolution increases, the collected information also increases [11]. Hence, compression
mechanisms are applied to decrease memory storage and transmission bandwidth by re-
ducing data volume [5, 12, 13].

In order to develop standards in communication and data systems for space applica-
tions, the consultative committee for space data systems (CCSDS) was founded in 1982,
constituted by multiple space agencies that meet periodically to establish norms [5]. One
of the standard algorithms proposed for lossless compression of MHIs is the CCSDS
123 [5]. This standard is composed by a predictor and an encoder.

The predictor uses a low complexity adaptive linear prediction model predicting a
value based on a three-dimensional neighborhood, which outputs a mapped residual. The
residual is the difference between the predicted value and the actual sample [14]. Of all
configurable predictors parameters that affect performance and compression ratios, the
most important are the number of bands used in the neighborhood, the in-band type of
neighborhood (column-oriented or neighborhood-oriented) and the prediction mode (full
mode or reduced mode) [14, 15]. Subsection 2.2.1 describes the predictor in more detail.

The encoder produces a compressed image containing a header with metadata and a
body with the encoded mapped prediction residuals (MPRs). The residuals can be en-
coded using two modes: the sample-adaptive entropy encoder uses Golomb-power-of-2
codes which outputs variable-length binary codewords that adapt to image statistics. The
block-adaptive entropy encoder is the CCSDS 121, an older standard, which uses Rice
coding. The CCSDS 121 can be used as an encoder in the newer standard to take advan-
tage of previous developed space-qualified hardware [14]. This coder packs the MPRs
into blocks and applies different independent methods to select the shortest codeword.
Further details are explained in subsection 2.2.2.

In Figure 1.1 is represented the basic flowchart of the CCSDS 123. The predictor
receives input samples and outputs MPRs to be encoded by the entropy encoder. From [1],
a serial version of the algorithm achieved 45% of processing time for the predictor and
55% for the encoder.
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1.1 Motivation

Figure 1.1: Rate of processing times for compression of MHIs on CPU [1].

Satellites and some aircrafts that employ this standard, impose several limitations in
terms of space, weight, power requirements and energy consumption. Therefore, solu-
tions must meet those requirements while maintaining high throughput. In recent years,
graphics processing units (GPUs) have shown to be an effective way of attaining high
throughput performances with low development efforts compared to CPUs and field-
programmable gate arrays (FPGAs) [9].

1.1 Motivation

Distinctively from conventional systems processing on earth-based stations with small
or no power constraints, on-board systems present energy requirements and compression
algorithms need to be tailored to execute on these devices.

GPUs are gaining relevance in several domains besides rendering graphic applica-
tions. Recently, the smartphone market is turning CPUs and GPUs into more energy-
efficient devices, making them promising candidates for MHI compression in on-board
systems such as satellites and aircrafts. While the usual power required to run a desktop
GPU is around 250~300 W, current GPU families incorporate low-power devices (<15
W), delivering hundreds of cores operating at ~1 GHz of clock frequency, supporting
multithreading, single instruction, multiple thread (SIMT) and single instruction, multi-
ple data (SIMD) execution models and parallel programming frameworks as, for instance,
compute unified device architecture (CUDA) and open accelerators (OpenACC) [7].

For various years, the MHI compression field is dominated by FPGAs. Little research
has been done using alternative implementations. These new types of low-power GPUs
can present a new solution that can benefit in terms of throughput performance, efficiency,
cost and development effort to the traditional implementations of FPGAs.

1.2 Objectives

This thesis proposes an alternative to the dominating approach of using FPGAs on
MHI compression. This document analyzes an alternative solution exploiting the through-
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1. Introduction

put performance and energy efficiency of low-power GPU, namely, the Nvidia Tegra TX2
GPU, and compare it with state-of-the-art solutions for the CCSDS 123 standard. There-
fore, the main objectives of this thesis are:

• Investigate the state-of-the-art developments of the CCSDS 123 algorithm [5, 14];

• Develop parallel functions to parallelize the predictor in CUDA and both encoders;

• Explore CUDA optimization techniques, such as, the use of shared, texture and con-
stant memory, memory coalescence, optimal thread occupancy and high arithmetic
intensity;

• Assess the viability of using heterogeneous computation, running the predictor on
GPU and the encoder on CPU as other combinations;

• Tune the parameters of the algorithm for faster execution times and compression
rates;

• Measure execution times and energy consumption of the algorithm;

• Evaluate throughput and energy efficiency of the low-power proposed solution and
analyze it against state-of-the-art approaches;

1.3 Main contributions

Using parallel computing in signal processing can offer advantages in both time and
energy efficiency. The results are thought to be particularly good for the computation of
residuals, reassuring that the performance (throughput / energy) bridge is closing between
FPGAs and GPUs.

This dissertation offers and heterogeneous implementation of the CCSDS 123. The
predictor is implemented using CUDA in two distinct ways: inter-band prediction (P > 0)
and intra-band prediction (P = 0), which achieves a throughput performance of 1.031
GSa/s. This work also offers the parallel implementations for both sample and block
adaptive encoders. One version of the sample adaptive encoder is implemented in CUDA,
and another using all the CPU cores. The block adaptive encoder uses a combination of
GPU+CPU. Lastly, it is provided an energy analysis using the 2 power modes imple-
mented in the Jetson TX2.

This work resulted in an article entitled ”Combining Low-Power With Parallel Pro-
cessing for Multispectral and Hyperspectral Image Compression Through Roofline Model
Analysis”, submitted in September 2019 to the IEEE International Conference on Acous-
tics, Speech, and Signal Processing 2020 (ICASSP).
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1.4 Dissertation Outline

1.4 Dissertation Outline

This thesis is structured in 7 chapters. It starts with a short introduction followed by
the principles of multispectral and hyperspectral imaging and its sensors as well as the
technical description of the CCSDS 123 algorithm in chapter 2. In chapter 3, it is pre-
sented the Nvidia’s Jetson TX2 hardware description and a brief introduction to CUDA.
Next, in chapter 4, it is analyzed multiple state-of-the-art implementations of the CCSDS
123 . Chapter 5 presents a discussion about the parallelization and optimization tech-
niques used in this thesis. The next chapter exposes the obtained results and its energy
analysis. In the final chapter, a conclusion is performed from the results and future work
lines, goals and possibilities are discussed.
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2.1 Multispectral and Hyperspectral Imaging

This chapter depicts an overview of multispectral and hyperspectral differences and
shows examples of 2 types of sensors. Further on, is shown a description in detail
of the predictor and encoders for the lossless compression algorithm proposed by the
consultative committee for space data systems (CCSDS).

2.1 Multispectral and Hyperspectral Imaging

The main difference between multispectral images and hyperspectral images is the
number of bands in the spectral domain and the wavelength range of those bands. Mul-
tispectral images typically incorporate between 3 to 10 bands [16, 17]. For example, the
Landsat-8 is a multispectral sensor capable of detecting wavelengths between 400 nm and
12500 nm in 11 bands [16]. An example of a hyperspectral sensor is the airborne visi-
ble/infrared imaging spectrometer (AVIRIS). It delivers 224 contiguous spectral channels
with wavelengths ranging from 400 nm and 2500 nm [16, 18]. Accordingly to [16], for
multispectral sensors, for each band the wavelength ranges approximately 100 nm while
bands of hyperspectral images have a narrower wavelength on each band, between 10 nm

and 20 nm. As an analogy of the paragraph above, Figure 2.1 illustrates the differences
between multispectral and hyperspectral images.

A representation of a hyperspectral image can be seen in Figure 2.2. The cube front
plane (XY) represents the spatial coordinates in the same spectral domain, while the co-
ordinate Z represents the variation on the spectral domain. The color variations on ZX
and ZY planes are simply a representation of sample values.

2.2 CCSDS 123 Standard

The CCSDS proposed a solution for the lossless compression of multispectral and
hyperspectral images (MHIs) [5, 14]. The CCSDS 123 is composed of two main parts: a
predictor and an encoder as shown in Figure 1.1. The predictor is fed with a 3D image
with a size Nx by Ny and Nz which represents the number of bands.

Since the MHI has 3 dimensions, the image can be scanned in many forms. The
algorithm contemplates 3 ways: in band-sequential order (BSQ), the samples are read in
the same band, line by line, in band-interleaved-by-pixel order (BIP), the image is read
on the same pixel, band by band and band-interleaved-by-line order (BIL), which reads
lines, band by band as shown in Figure 2.3. These scanning methods are also applied to
encode the mapped prediction residuals (MPRs) after the prediction stage. All symbols
for this algorithm can be consulted in Tables A.1, A.2 and A.3 on appendix A

7



2. Multispectral and Hyperspectral Lossless Compression

Figure 2.1: Differences between multispectral and hyperspectral images in visible, short
wave infrared (SWIR) and long wave infrared (LWIR) spectrums, extracted from [2].

2.2.1 Predictor

The first part of the CCSDS 123 uses an adaptive linear prediction model. The pur-
pose of this component is to calculate the difference between the observed value and the
predicted value, outputting residuals with low entropy. The encoder codifies those resid-
uals and will result in a shorter codeword compared to encoding raw samples. Figure 2.4
shows the flowchart for the predictor of the CCSDS 123 algorithm. Variables in bold
represent vectors.

The predictor outputs mapped prediction residuals from input samples sz,y,x (or sz(t).
t is the alternative indexing variable where:

t = y ·Nx + x. (2.1)

The local sum σz,y,x is calculated from the input samples, where two modes can be used:
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2.2 CCSDS 123 Standard

Figure 2.2: Hyperspectral image with 224 bands from Cuprite Mining District, Nevada,
courtesy of [3].

Figure 2.3: Reading and encoding orders, courtesy of [4]. a) Band sequential order (BSQ),
b) Band interleaved by pixel (BIP), c) Band interleaved by line (BIL).

the neighbor-oriented sum uses the neighbor values from the same band as the input sam-
ple, as depicted in Figure 2.5. The column-oriented sum calculates the sum from the
neighbor pixel in the same column and band. (2.2) and (2.3) describe the formula to cal-
culate the sum by the neighbor-oriented and column-oriented methods respectively [5].
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2. Multispectral and Hyperspectral Lossless Compression

Figure 2.4: CCSDS 123 predictor algorithm flowchart. The dashed red arrows point to
blocks where previous values are needed for the calculation. The black arrow shows the
main computation flow.

σz,y,x =


sz,y,x−1 + sz,y−1,x−1 + sz,y−1,x + sz,y−1,x+1, y > 0, 0 < x < Nx−1,
4sz,y,x−1, y = 0, x > 0,
2(sz,y−1,x + sz,y−1,x+1), y > 0, x = 0,
sz,y,x−1 + sz,y−1,x−1 +2sz,y−1,x, y > 0, x = Nx−1,

(2.2)

σz,y,x =


4sz,y−1,x, y > 0,
4sz,y,x−1, y = 0, x > 0,
not needed, y = 0, x = 0.

(2.3)

The central local difference dz,y,x is calculated when x and y are both different from
zero

dz,y,x = 4sz,y,x−σz,y,x, (2.4)
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2.2 CCSDS 123 Standard

Figure 2.5: Typical Prediction Neighborhood, courtesy of [5].

analogously to the (2.4), when x and y are not both zero, the directional local differences
are defined as:

dN
z,y,x =

{
4sz,y−1,x−σz,y,x, y > 0,
0, y = 0,

(2.5)

dW
z,y,x =


4sz,y,x−1−σz,y,x, x > 0, y > 0,
4sz,y−1,x−σz,y,x, x = 0, y > 0,
0, y = 0,

(2.6)

dNW
z,y,x =


4sz,y−1,x−1−σz,y,x, x > 0, y > 0,
4sz,y−1,x−σz,y,x, x = 0, y > 0,
0, y = 0,

(2.7)

where dN
z,y,x and dW

z,y,x are the difference to the upper and left sample respectively, and dNW
z,y,x

is the difference to the upper-left sample.

The central local difference dz,y,x and the the directional local differences dN
z,y,x, dW

z,y,x

and dNW
z,y,x are used to create a local difference vector UzUzUz(t). The vector is constructed

differently in the two prediction modes. On full prediction mode it is defined as:
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2. Multispectral and Hyperspectral Lossless Compression

Uz(t) =



dN
z (t)

dW
z (t)

dNW
z (t)

dz−1(t)
dz−2(t)

...
dz−P(t)


. (2.8)

P must be a value between 0 and 15 and is the number of spectral bands used for
predicting the current band. Under the reduced prediction mode, UzUzUz(t) is defined as:

Uz(t) =


dz−1(t)
dz−2(t)

...
dz−P(t)

 . (2.9)

As shown in (2.9), the reduced mode ignores the directional local differences dN
z,y,x,

dW
z,y,x and dNW

z,y,x.

A predicted central local difference d̂z(t) is the inner product of vector UzUzUz(t) and
vector of weights WzWzWz(t). This vector WzWzWz(t) decides the difference that is making a better
prediction of the trend in sample values. For the full prediction mode:

Wz(t) =



ωN
z (t)

ωW
z (t)

ωNW
z (t)

ω
(1)
z (t)

ω
(2)
z (t)

...
ω

(z−P)
z (t)


, (2.10)

and for the reduced prediction mode:

Wz(t) =


ω

(1)
z (t)

ω
(2)
z (t)

...
ω

(z−P)
z (t)

 . (2.11)

For each band the initial weight vector WzWzWz(1) may be initialized in 2 modes: default
mode and custom mode. In default mode, the weight components ω

(i)
z (t) are derived

from:
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2.2 CCSDS 123 Standard

ω
(1)
z (1) = 7

82Ω,

ω
(i)
z (1) =

⌊
1
8ω

(i−1)
z (1)

⌋
, i = 2,3, ...,z−P,

ωN
z (1) = ωW

z (1) = ωNW
z (1) = 0,

(2.12)

being Ω the resolution of the weight values, this value is user-defined and must lie between
4 and 19.

In the custom weight initialization mode, the user specifies a custom weight initial-
ization vector ΛzΛzΛz. This vector may be chosen according to the instrument characteristics,
training data or a vector from a previous compressed image. The vector is calculated
from:

Wz(1) = 2Ω+3−Q
Λz +

⌈
2Ω+2−Q−1

⌉
1
1
...
1

 . (2.13)

Q is the weight initialization resolution and is a user specified-parameter between 3
and Ω+3.

The predicted central local difference d̂z(t) is the inner product of weight vector WzWzWz(t)

and local difference vector UzUzUz(t):

d̂z(t) =W>z (t)Uz(t). (2.14)

These equations are used to calculate a scaled predicted sample value defined as:

s̃z(t) =


clip

(⌊
mod∗R[d̂z(t)+2Ω(σz(t)−4smid)]

2Ω+1

⌋
+2smid +1,{2smin,2smax +1}

)
, t > 0,

2sz−1(t), t = 0, P > 0, z > 0,
2smid, t = 0 and (P > 0 or z > 0),

(2.15)

where smax, smin and smid are the upper limit, lower limit and mid-range value, respec-
tively, of data sample’s dynamic range D. This dynamic range must be a value between 2
and 16 bits:{

smin = 0, smax = 2D−1, smid = 2D−1, unsigned integers,
smin =−2D−1, smax = 2D−1−1, smid = 0, signed integers.

(2.16)
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2. Multispectral and Hyperspectral Lossless Compression

R is a user selected size and must be a value in the range of max{32,D+Ω+ 2} ≤
R ≤ 64. The function clip denotes the clipping of the number into the range designated
in brackets, in this case the range is {2smin,2smax +1}.

The function mod∗R is defined as:

mod∗R [x] =
((

x+2R−1)mod 2R)−2R−1, (2.17)

where:

M mod n = M−n
⌊

M
n

⌋
. (2.18)

mod∗R [x] is a natural result of storing a signed integer x in a R-bit register in two’s
complement form.

The predicted sample value ŝz(t) is then calculated:

ŝz(t) =
⌊

s̃z(t)
2

⌋
, (2.19)

and used by the prediction residual ∆z(t):

∆z(t) = sz(t)− ŝz(t), (2.20)

and the difference to the nearest end-point θz(t):

θz(t) = min{ŝz(t)− smin,smax− ŝz(t)} , (2.21)

to finally calculate the mapped prediction residuals δz(t):

δz(t) =


|∆z(t)|+θz(t), |∆z(t)|> θz(t),
2 |∆z(t)| , 0≤ (−1)s̃z(t)∆z(t)≤ θz(t),
2 |∆z(t)|−1, otherwise.

(2.22)

The weight vector WzWzWz(t) is updated every iteration. First the scaled prediction error
ez(t) is calculated:

ez(t) = 2sz(t)− s̃z(t), (2.23)

then the weight update scaling exponent ρ(t) is calculated:
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2.2 CCSDS 123 Standard

ρ(t) = clip
(

vmin +

⌊
t−Nx

tinc

⌋
,{vmin,vmax}

)
+D−Ω, (2.24)

vmin and vmax are user defined integers satisfying the following condition −6 ≤ vmin ≤
vmax ≤ 9. The weight update factor tinc is a power of 2 between 24 and 211. These
parameters control the rate of the weight adaptation to image statistics. Smaller values of
ρ(t) produce a faster adaptation but worse compression performance [5].

Finally, the weight vector is updated:

Wz(t+1)= clip
(

Wz(t)+
⌊

1
2

(
sgn+ [ez(t)] ·2−ρ(t) ·Uz(t)+1

)⌋
,{ωmin,ωmax}

)
, (2.25)

where the function sgn+(x) returns 1 if x ≥ 0 and returns -1 if x < 0. ωmin and ωmax are
the minimum (−2Ω+2) and maximum (−2Ω+2−1) weight values respectively.

2.2.2 Encoder

The encoder produces a compressed image, which is composed of a variable-length
header and a body containing the encoded residuals. The header contains the image,
predictor and coder metadata, while the body contains the encoded MPRs δz(t), as shown
in Figure 2.6. The fields of these headers are described in tables B.1, B.2, B.3 and B.4
from appendix B.

Figure 2.6: Compressed image structure.

In some cases, the MPR is encoded as the binary representation, however, in most
cases the MPRs are encoded following the fundamental sequence (FS), also known as
the alternative unary coding. For instance, the FS codeword of an arbitrary value n is
composed of n ’zeros’ followed by a ’one’ as shown by Figure 2.7.

Those MPRs δz(t), can be encoded by 2 types of entropy coders: the sample-adaptive
entropy coder or the block-adaptive entropy coder.
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2. Multispectral and Hyperspectral Lossless Compression

Figure 2.7: Fundamental sequence codewords as a function of the MPR values δi, adapted
from [6].

2.2.2.A Sample-Adaptive Entropy Coder

This coder uses Golomb-Power-of 2 coding to encode the MPRs δz(t) [19]. This
method uses an accumulator Σz(t) and a counter Γ(t) that are adaptively updated during
the encoding process to generate the compressed stream. These variables are initialized:

Γz(1) = 2γ0, (2.26)

Σz(1) =
⌊

1
27

(
3 ·2k

′
z+6−49

)
Γ(1)

⌋
. (2.27)

The initial count exponent γ0 is a user defined integer between 1 and 8 and k
′
z is also

a user defined integer with range between zero and D− 2. After the initialization, the
variables are defined as:

Σz(t) =

{
Σz(t−1)+δz(t−1), Γ(t−1)< 2γ∗−1,⌊

Σz(t−1)+δz(t−1)+1
2

⌋
, Γz(t−1) = 2γ∗−1,

(2.28)

Γz(t) =

{
Γz(t−1)+1, Γz(t−1)< 2γ∗−1,⌊

Γz(t−1)+1
2

⌋
, Γz(t−1) = 2γ∗−1.

(2.29)
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2.2 CCSDS 123 Standard

The user defined rescaling counter size γ∗ must be an integer between the range of
max{4,γ0 +1} ≤ γ∗ ≤ 9. This value controls the rate at which the counter Γ(t) and the
accumulator Σz(t) are rescaled. Lower values of γ∗ and γ0 produce a faster adaptation to
the image statistics, but worsen the steady-state performance [14].

To encode the first MPR of each band, the codeword is the D-bit unsigned binary
integer representation of δz(0). For the other residuals, the codeword depends on the
unary codeword length uz(t) and the variable length code parameter kz(t), where:

kz(t) =



0, log2

(
Σz(t)+b 49

128 Γ(t)c
Γ(t)

)
< 0,

D−2, log2

(
Σz(t)+b 49

128 Γ(t)c
Γ(t)

)
> D−2,

log2

(
Σz(t)+b 49

128 Γ(t)c
Γ(t)

)
, otherwise,

(2.30)

and uz(t) is defined as:

uz(t) =
⌊

δz(t)
2kz(t)

⌋
. (2.31)

Umax is a user supplied variable between 8 and 32. If uz(t) < Umax the codeword
consists of uz(t) ’zeros’ followed by a ’one’ and kz(t) least significant bits of the binary
representation of δz(t) as shown in Figure 2.8.

Figure 2.8: Codeword format for uz(t)<Umax.

If the previous condition is not verified, the codeword consists of Umax ’zeros’ and the
binary representation of δz(t), as depicted in Figure 2.9.

When the encoding process is finished, zero padding must be done so the compressed
image is multiple of the output word size B, which is a user-selected integer between 1
and 8.

2.2.2.B Block-Adaptive Entropy Coder

Another method to encode the MPRs δz(t) is the CCSDS 121, a 1D universal lossless
encoder that uses Rice codes. The residuals are divided in blocks containing J residuals.
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2. Multispectral and Hyperspectral Lossless Compression

Figure 2.9: Codeword format for uz(t)≥Umax.

J is a user defined number that can be 8, 16, 32 or 64. Four algorithms are executed
concurrently for each block resulting in 4 codewords. The shortest codeword is selected
and introduced in the compressed stream [6]. Figure 2.10 represents the architecture of
block-adaptive coder.

Figure 2.10: Block-adaptive coder diagram, adapted from [6].

The compressed image must be zero padded in the end so that the size is multiple of
the output word size B.

There are four algorithms to compress the blocks:

i) Sample Splitting

This option defines a variable k which iterates from 0 to 13. For each iteration, the
option selects the k least significant bits (LSBs) from the MPR and encodes it as the
binary representation. The remainder value is encoded as the FS codeword as shown in
Figure 2.11.
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2.2 CCSDS 123 Standard

From those 14 iterations, the k value that minimizes the codeword length for the whole
block is selected and competes with the others algorithms for the shortest encoded block.

Algorithm 1 shows the pseudo-algorithm for the selection of the shortest codeword.

Figure 2.11: Sample splitting codeword for one MPR, adapted from [6].

Algorithm 1 Shortest codeword selection for the sample splitting algorithm
for k=0 to 13 do

total length = 0;
foreach residual on block do

encode as binary (residual >> k);
encode as FS (residual & (0x1 << k));
total length += encoded residual (k);

end
if (total length < shortest ) then

shortest = encoded residual (k);
end

end

ii) Second-Extension

The second-extension encodes consecutive pairs of MPRs of δi and δi+1:

γ = (δi +δi+1)(δi +δi+1 +1)/2+δi+1. (2.32)

γ is encoded by the FS for every pair of residuals resulting in J/2 encoded residuals.

iii) Zero Block

When all residuals on a block have a value of zero, this algorithm encodes the number
of consecutive all-zero blocks. This number is converted in FS codewords specified in
Table 2.1. The remainder-of-segment (ROS) denotes that the remainder of a segment
consists of five or more all-zero blocks.
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Table 2.1 Zero-block fundamental sequence codewords as a function of the number of
consecutive all-zeros blocks, from [6]

Number of All-Zeros Blocks FS Codeword
1 1
2 01
3 001
4 0001

ROS 00001
5 000001
6 0000001
7 00000001
8 000000001
.
.
.

.

.

.

iv) No Compression

As the name suggests, the MPR block is not compressed and the values are encoded
unchanged.

The zero block algorithm is prioritized over the other functions since it compresses
more information than the other options. In the case of the sample splitting and second
extension having the same codeword length, the sample splitting is prioritized. Lastly, the
block is not compressed, only if the other 3 methods result in a longer codeword.

After selecting the shortest code, the compressed block is inserted in the bitstream
following a coded data set (CDS) format. Every CDS starts with an ID field that specifies
the method used for the compression. The ID key is represented in the Table C.1 of
appendix C.

If the sample splitting option is selected, the coded format for this method is depicted
in Figure 2.12. The option ID field contains the value of k, the second field contains all the
FS codewords from the block. The second field has the concatenated k least-significant
bits from each MPR.

Figure 2.13, shows the data format for the other methods. All methods start with an ID
field. When the second extension option is selected, the second field is the FS codewords,
as shown in Figure 2.13a. The residuals are encoded in pairs, so only J/2 residuals will
be encoded per block. If the zero block option is chosen, the field is the FS codewords for
the number of all-zero blocks as depicted in Figure 2.13b. Lastly, when no compression is
applied, the CDS is composed by the binary representation of J MPRs as in Figure 2.13c
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Figure 2.12: Coded data format when sample-splitting option is selected, adapted from
[6].

(a) Coded data format when second-extension option is selected, adapted
from [6].

(b) Coded data format when zero-block option is selected, adapted from [6].

(c) Coded data format when no compression option is selected, adapted
from [6].

Figure 2.13: Coded data format for different methods.

2.3 Summary

This chapter presents an overview of multispectral and hyperspectral imaging and
addresses the difference between these two types of images. Two sensors are compared
in terms of number of bands and bandwidth, namely the Landsat-8, a multispectral sensor
and the hyperspectral sensor AVIRIS.

The CCSDS 123 could be described in two parts. The predictor calculates the resid-
uals, which are the difference between the samples and a prediction of samples. This
prediction is calculated from the neighboring samples. Instead of encoding the samples,
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2. Multispectral and Hyperspectral Lossless Compression

this method encodes the residuals, with values close to zero, following a normal distribu-
tion instead of a uniform one.

The residuals are encoded in two modes, 1) the sample-adaptive coder, which encodes
individual residuals and 2) the block-adaptive coder encodes blocks of residuals using
4 different algorithms, which the smallest resulting codewords are then chosen for the
compressed image.
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Graphics processing units (GPUs) were originally designed for rendering graphics and
images. Soon the GPUs manufacturers realized the potential for GPUs to solve problems
with high volume of information and data independence. Comparatively to central pro-
cessing units (CPUs), for similar die sizes, GPUs have more arithmetic logic units (ALUs)
capable of running 10000 threads concurrently [20], but have higher average memory ac-
cess times and less memory capacity.

Handheld devices pushed for a new class of GPUs to emerge, focused on bringing high
data throughput at low energy consumptions. Nvidia started the development of the Tegra
series, a low power system on a chip (SoC) featuring ARM CPUs with Nvidia GPUs in
the late 2000’s, targeting the mobile devices market. In 2014, Nvidia launched the Jetson
series, a low power development board intended to bring GPU compute capabilities to the
embedded systems world.

In this chapter is shown an overview of the CPU and GPU architecture followed by
the basic principles of compute unified device architecture (CUDA) and its optimization
techniques. Lastly, is presented the hardware characteristics of the Nvidia Jetson TX2,
the SoC used to parallelize the consultative committee for space data systems (CCSDS)
123 standard.

3.1 CPU Architecture

In current days, most of the computers use a modified version of Harvard architec-
ture, mixing both von Neumann and pure Harvard architectures. The modified Harvard
architecture is characterized by having the instruction and data in the same space address
but capable of accessing them concurrently. When the CPU loads content from external
storage to cache, it behaves like a von Neumann architecture, loading the instructions
and data within the same bus. When executing from cache, the CPU acts like a Harvard
architecture by accessing different memories for instructions and data.

Instead of requesting content to memory address by address, caches request contents
in blocks of addresses, thus taking advantage of spatial locality and temporal locality
mechanisms to ensure fast memory access times. Conventionally, CPUs have 2 to 3 cache
levels. In multicore systems, each core has 2 different L1 caches, one for instructions
and another for data, while L2 or L3 are usually, but not always, accessible by all cores.
Figure 3.1 shows a typical CPU cache hierarchy.

Since CPUs use different datapaths for instructions and data, they can achieve instruc-
tion level parallelism by using instruction pipelining. The idea behind this concept is to
divide instructions into 5 micro-instructions with each occurring simultaneous in the same
clock cycle, in an attempt to keep the CPU busy all the time. Superscalar processors im-
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plement various pipelines allowing the CPUs to execute various instructions at the same
time. Figure 3.2 shows an example of a simple pipeline and a 2-way superscalar pipeline.

Figure 3.1: Typical multicore CPU cache hierarchy.

(a) Basic five stage pipeline.

(b) 2-way superscalar five stage pipeline.

Figure 3.2: Example of five stage pipelines (IF = Instruction Fetch, ID = Instruction
Decode, EX = Execute, MEM = Memory access, WB = Register write back).

3.2 GPU Architecture and CUDA

While CPUs are optimized to have low latency, GPU architecture is optimized to have
high throughput, allowing to execute various independent operations at the same time.
As stated above, for the same die size, GPUs have more computation units compared
to CPUs. CUDA cores are the Nvidia’s compute units containing ALUs for integer and
both double precision and single precision floating points. These CUDA cores are in-
corporated in streaming multiprocessors (SMs), the basic components of Nvidia GPUs.
Each SM contains hundreds of CUDA cores, load/store units, special function units (sin,
cos, tan, etc...), thousands of 32-bit registers, shared memory, L1 cache, texture memory,
instruction cache, instruction buffers, warp schedulers and two dispatch units [21, 22].
Figure 3.3 depicts an Nvidia’s SM architecture, with a CUDA core in detail.
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Figure 3.3: Characteristic GPU architecture.

CUDA is an application programming interface (API) developed by Nvidia that en-
ables heterogeneous and parallel programming in Nvidia GPUs using C/C++ and For-
tran. This API allows the programmer to write kernels (functions executed on the device
(GPU)). The kernel is organized in a grid with blocks executing threads as illustrated in
Figure 3.4, the user defines the number of threads for each block and the number of blocks
for the grid. Before the host (CPU) launch the kernel, data is usually transferred from the
host to the device and transferred back after the kernel finishes. Memory transfers from
CPU to GPU have a time overhead associated and in some cases, this overhead may sur-
pass the kernel execution time. When a kernel is launched, each block is assigned to SMs
which can execute more than one block. As the blocks terminate execution, new blocks
may be launched in vacated SMs [7].

From the hardware perspective, when an SM executes several blocks, it partitions
them into warps contains 32 threads. The warps are scheduled by the warp scheduler
and executed using a single instruction, multiple thread (SIMT) execution model. If the
block dimension is not multiple of 32, some threads in a warp will be idle during the
kernel execution. In order to achieve full efficiency, the block dimensions should always
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Figure 3.4: Thread execution hierarchy in CUDA, obtained from [7]

be multiple of 32 [7].

From the memory perspective, each thread has its local memory, usually registers as
depicted in Figure 3.5a. This type of memory is the fastest in the GPU, although, it is
very limited in terms of space and is private, meaning that other threads can not access
it. Figure 3.5b portraits the block-accessible shared memory. Compared to registers is
slower and larger, however, it can be accessed by all threads in the same block. Finally,
global memory is the slowest and largest GPU memory and is accessible by all blocks
and threads as shown in Figure 3.5c.

(a) Thread memory hierarchy.
(b) Block memory hierarchy.

(c) Grid memory hierarchy.

Figure 3.5: CUDA memory hierarchy and visibility, adapted from [7].
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3.3 CUDA optimization techniques

This subsection discusses some optimization techniques and its drawbacks, showing
how it can be used to achieve full efficiency on the kernel.

i) Local Memory

The kernel can use the fastest type of memory, the registers. Depending on the kernel
launch configuration, the compiler allocates a determined number of registers for each
thread. Although, if a thread utilizes all the available registers, it incurs in register spilling
and saves data in high-level memory (L1, L2 cache or global memory). Register spilling
does not always decrease performance. It may decrease if there is increased pressure on
the memory bus or a high instruction count per thread [23].

ii) Shared Memory

Each block can use 48 KB of shared memory for compute capabilities before 7.0
[7]. To achieve high bandwidth, shared memory is divided into equally-sized memory
modules, called banks, which can be accessed simultaneously. However, if two addresses
are requested in the same bank, as depicted in Figure 3.6b, there is a bank conflict and
the access has to be serialized, decreasing throughput. Figure 3.6a represents a memory
access without conflicts.

(a) Conflict free shared memory access. (b) 2-way bank conflict.

Figure 3.6: Types of shared memory accesses.

iii) Constant, Texture and Surface Memory

Constant memory and texture memory is a read-only on-chip memory, that is written
before executing the kernel. Constant memory is faster but limited to 64 KB, while,
texture memory is larger, optimized for 2D spatial locality and designed for streaming
fetches with a constant latency. Texture can achieve better performance if there is locality
in the read patterns compared to global or constant memory. Surface memory is the same
as texture but can be written and read. Although, it cannot be read and written within the
same kernel launch.
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iv) Coalesced memory accesses

Memory coalescing refers to combining multiple global memory accesses into a sin-
gle transaction, meaning that a warp can access 32 sequential words in one transaction, as
in Figure 3.7a. The accessed is not coalesced if the memory access is aligned but not se-
quential, misaligned or if the access is stridden, as described, respectively, in Figures 3.7b,
3.7c and 3.7d.

(b)

(a) (c)

(d)

Figure 3.7: a) Coalesced memory access. b) Uncoalesced not sequential memory access.
c) Uncoalesced misaligned memory access. d) Uncoalesced stridden memory access.

v) Vectorized memory accesses

This technique uses operations at assembly level to read and write data exploring all
the bandwidth from the memory bus. It is different from coalescence, since some coa-
lesced accesses do not consume all the memory bus bandwidth available. This method in-
creases bandwidth and reduces latency but can decrease overall parallelism and increases
register pressure [24].

vi) Asynchronous kernel execution

CUDA allows asynchronous memory transfers and execution. The memory transfers
and kernel execution is divided by the number of available streams. The main advantage
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Figure 3.8: Serial kernel execution and concurrent kernel execution with 3 streams over-
lapped with memory transfers.

of asynchronous launches is that data transfer can be overlapped with kernel execution.
Figure 3.8 shows a comparison between serial and asynchronous launches.

vii) Pinned memory

Host (CPU) data allocations are pageable by default. The GPU cannot access data
directly from pageable memory. When a data transfer from host to device is invoked, the
CUDA driver allocates a pinned array and copy the data to the array, and then transfers it
to device memory. The cost of the transfer between pageable and pinned can be avoided
by directly allocating arrays in pinned memory. Asynchronous data transfers only work
in pinned memory.

viii) Occupancy

Occupancy is defined as the ratio of active warps on an SM to the maximum number
of active warps supported by the SM. Occupancy varies over time as warps are launched.
Low occupancy may be due to the combination of register usage, shared memory per
block and threads per block. If the combination of these factors is not favorable, it may
result in poor instruction issue efficiency because there are not enough eligible warps to
hide latency between dependent instructions. Fortunately, every CUDA toolkit comes
with an occupancy calculator that allows the programmer to parameterize the kernel in
order to achieve full occupancy.

ix) Branch Divergence

If threads within a warp diverge via a data depend-conditional branches, the warp
executes each branch and disables threads that are not on the path. Distinct warps execute
independently regardless of whether they are executing common or disjoint code paths.

The same might occur within blocks. In order for a block to end, all threads in the
block must end, and thread divergence may cause some threads to wait for others that
took conditional branches.
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3.4 Jetson TX2

In order to improve the algorithm’s throughput performance, an Nvidia Jetson TX2 is
used to implement the CCSDS 123. The board, shown in Figure 3.9, is a development
board that runs on a Linux4Tegra (L4T), a linux distribution created by Nvidia.

Figure 3.9: Nvidia Jetson TX2 SoC

The system uses an Nvidia GP10B GPU from the Pascal architecture family with 2
SMs containing 128 CUDA cores each. The CPU module is composed by a dual-core
7-way superscalar Nvidia Denver 2 CPU and quad-core ARM Cortex-A57 CPU. The
CPUs are connected by a high-performance coherent interconnect fabric developed by
Nvidia [8], which allows to share data with reduced overheads. The GPU does not have
its memory, instead, this system uses 8GB of low power double data rate 4 (LPDDR4)
memory with a 128-bit interface shared between the system. The typical energy usage
is around 7.5 watts and is capable of reaching more than one tera floating point opera-
tions per second (FLOPS) of performance [25]. The features of this development kit are
suitable for the compression of multispectral and hyperspectral images (MHIs) at high
throughput performance associated with low-power systems. Table 3.1 shows the specifi-
cations of Jetson TX2 and the board overview architecture is represented in appendix D.
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Table 3.1 Jetson TX2 specifications, adapted from [8]
GPU

Architecture Pascal
CUDA cores 256
Clock 1.3 GHz
SM count 2
Register per Block 32768
L2 Cache 512 KB

L1 Cache
48 KB (per
SM)

Shared memory
48 KB (per
Block)

Constant Memory 64 KB
Global Memory 8 GB
Memory Bus Width 128 bits
Maximum Bus Fre-
quency

1866 MHz

Copy Engine 1
Storage

Type
eMMC 5.1
Flash Stor-
age

Bus Width 8-bit
Maximum Bus Fre-
quency

200 MHz

Storage Capacity 32 GB

ARM Cortex -A57
Instruction Set 64 bit ARMv8.0-A
Cores 4
Clock 2 GHz
L1 cache per
core (instruc-
tion+data)

48 KB + 32 KB

L2 cache 2 MB
Pipeline 3-Way Superscalar

Nvidia Denver 2
Instruction Set 64 bit ARMv8.0-A
Cores 2
Clock 2 GHz
L1 cache per
core (instruc-
tion+data)

128 KB + 64 KB

L2 cache 2 MB
Pipeline 7-Way Superscalar

3.5 Summary

This chapter addresses the hardware characteristics of the Nvidia Jetson TX2 board.
It is also shown an overview of the general CPU and GPU architecture and described the
superscalar pipeline concept. Moreover, it is presented the CUDA API, its optimizations
techniques and described how it operates on the GPU.
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The literature proposes several approaches in order to achieve higher speedups of
the consultative committee for space data systems (CCSDS) 123 algorithm. Although,
single threaded solutions are already well documented and there is an effort to explore
parallel approaches to the algorithm [9], using mainly graphics processing units (GPUs)
[1, 9, 15, 26–29] and field-programmable gate arrays (FPGAs) [9, 13, 30–33].

4.1 OpenMP implementations in CPU

An open multi-processing (OpenMP) implementation used in [26], achieved real-time
compression and decompression. By ignoring band-parallelism, it achieves better per-
formance than the single core implementation. However, the algorithm scales poorly
compared to general purpose graphics processing units (GPGPUs) counterparts. This
phenomenon is caused by multi-core systems not being able to achieve the same degree
of parallelism as GPGPUs, due to the cost of synchronization between threads and data
transfers between the processors, taking more time than GPGPUs.

4.2 FPGA implementations

Space grade FPGAs provide flexible and high performance solutions at low-power
with tolerance to space radiation (Virtex 5QV [9, 13, 32]). In [13], it is proposed a low
complexity architecture with hardware occupancy between 34% and 44% at a maximum
clock frequency of 43 MHz, which was achieved by identifying low complexity param-
eters that affect the performance of the algorithm. Although low energy consumptions
were obtained, compression time increased compared to [34, 35].

Real-time compression was achieved in [9, 31–33, 36] but in [9] older FPGA models
suffer from lack of resources, since it cannot deal with very large images. In [32], the
authors accomplished high throughput performance without using external memory but
incurring in higher energy consumption.

In [28], the authors propose a heterogeneous architecture using an FPGA and a GPU
in the same system. The GPU takes advantage of the high throughput performance to
compute the calculations, while the FPGA uses the flexible logic for formatting and inter-
facing the data between the system storage and the GPU.

A low-cost and lightweight solution is proposed in [36] using a lower number of
look-up tables, flip-flops and digital signal processor (DSP) achieving a high hardware
performance.
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4.3 CUDA and OpenCL implementations on GPU

Using an Nvidia GPU in [15], the authors concluded that of all parameters, 3 had the
most impact on execution time and compression ability, the number of prediction bands,
the prediction neighborhood (column-oriented or neighbor-oriented) and prediction mode
(full mode or reduced mode). Reduced prediction mode and column-oriented local sum
allows for less computation and increases the compression ratio. As for the number of
bands used, it was found that as the number of predicted bands increases, throughput
performance decreases, but compression ratio increases. Consequently, there is a trade-
off between compression ratio and throughput performance. Two versions were coded in
compute unified device architecture (CUDA), one without tiling and another with tiling.
In the tiled version, decreasing tile size increases throughput performance but slightly
decreases compression ratio.

In [26], by using a GPGPU approach to explore spectral and spatial parallelism of the
algorithm, the execution times were superior to the ones developed using OpenMP. The
authors exploited the low cost of synchronization between threads, the high data reuse and
the high speed of shared memory and cache GPU memory to obtain better performance
compared to the OpenMP version.

Writing open computing language (OpenCL) on GPUs is 6 times faster than devel-
oping very high speed integrated circuits hardware description language (VHDL) on
FPGAs [9]. This paper also showed that FPGAs can run directly connected to the camera
sensor, while GPUs need a processor to run in the same way and are susceptible to inter-
ruptions or system calls unlike FPGAs. OpenCL is multiplatform supported but is neither
faster nor more efficient than using register transfer level (RTL) for FPGAs. However, it
is more user-friendly in terms of testing and debugging compared to RTL.

A recent study [29] using a low-power Nvidia Jetson TX1, obtained a higher through-
put performance of 124 Msamples/s versus the FPGA implementation at [30], which was
58 Msamples/sec.

4.4 Results from literature

Table 4.1 shows the results for the CCSDS 123 in various platforms from the litera-
ture. The CUDA solutions are good candidates for the CCSDS 123 for achieving high
throughput performance, but if power consumption is considered, FPGAs usually achieve
a superior performance per Watt. The FPGAs are the devices with better energy perfor-
mance per clock cycle.
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Table 4.1 Results for implementations of the CCSDS 123 in various platforms, adapted
from [9], N/S stands for not specified. * Higher is better

Platform Language Speed
(MSa/s)

Power
(W)

Efficiency*
(MSa/s/W)

Performance per cycle*
(MSa/s/W/GHz)

V-5QV FX130T [32] VHDL 213.00 4.723 45.13 211.86
V-5QV FX130T [13] VHDL 11.30 2.353 4.81 35.88
V-5QV FX130T [9] VHDL 179.70 3.043 59.11 N/S
V-4 XC2VFX60 [9] VHDL 116.00 0.953 122.60 1226.00
RTAX1000S [13] VHDL 3.50 0.172 20.59 502.15
V-4 LX160 [13] VHDL 11.20 1.493 7.51 56.52
V-5 SX50T [31] VHDL 40.00 0.70 57.10 1259.93

V-7 XC7VX690T [9] VHDL 219.40 5.30 31.30 N/S
V-4 LX25 [30] N/S 58.00 1.27 45.67 787.40
Zynq-7020 [33] VHDL 147.00 0.30 490 3333.33

GT 440 [9] OpenCL 62.20 <65.001 0.96 1.19
GT 610 [9] OpenCL 62.60 <29.001 2.15 2.65
i7-6700 [9] OpenCL 35.00 <65.001 0.54 0.16

GTX 560M [26] CUDA 321.91 <75.001 4.29 5.57
2x GTX 560M [26] CUDA 356.63 <150.001 2.38 3.09

Jetson TK1 [1] CUDA 3.36 <2.001 1.68 1.77
GTX 750ti [15] CUDA 401.50 <60.001 6.69 6.17
Jetson TX1 [29] CUDA 124.3 <10.001 12.43 12.45
GTX 580 [27] CUDA 44.85 <244.001 0.18 0.23

Tesla C2070 [27] CUDA 30.09 <238.001 0.13 0.11
i7-2760QM [26] OpenMP 127.89 <45.001 2.84 1.18

2x Xeon X5690 [27] OpenMP 19.14 <260.001 0.07 0.02

The Xilinx Zynq-7020 [33] is the FPGA with the best efficiency of 490 MSa/s/W ,
compared to the 12.43 MSa/s/W of the low-power GPU Nvidia Jetson TX1 [29] . In
terms of throughput performance, the Nvidia GTX 750ti GPU [15] obtained 401.50 MSa/s,
while the Xilinx V-7 XC7VX690T [9] reached 219.40 MSa/s.

4.5 Summary

Currently, in terms of throughput per Watt performance, FPGAs dominate the state-of-
the-art, but in terms of raw throughput, GPUs are the winners. The advent of low-power
GPU potentially increases the efficiency of the algorithm bridging the performance gap
between FPGAs and GPUs, putting the latter in a position for competing in terms of
performance, cost and development effort.

1This denotes the TDP given by the manufacturer
2This value was obtained by the Designer SmartPower tool from Microsemi in [13]
3This value was obtained by the Xilinx XPower Analyzer in [13]
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Taking an overall view on the problem, the predictor presents itself as a promising
candidate for execution on graphics processing unit (GPU). This is justified by data inde-
pendence between samples. A particular case arises when the prediction model only uses
values from the same band (P = 0). This case can remarkably improve throughput per-
formance. The encoder lacks the data independence in the bitstream formation due to the
encoder generating variable-length codewords, although some parts can be parallelized.

5.1 Predictor Parallelization

Before creating the parallel predictor, data dependencies must be assessed. Besides
the critical path data dependencies, there is one data dependency loop in the weights
calculation. From (2.25) for a determined value of t, the current weights vector and local
differences vector are used to calculate the next weights vector in each band, meaning that
the weights calculation can only be parallelized by band. Nevertheless, the other kernels
are independent and can be parallelized by sample. Figure 5.1 proposes a parallel algo-
rithm using 3 kernels: a pre-weights calculation kernel, a weights kernel that encapsulates
the data dependency loop, and another post-weights kernel outputting the mapped predic-
tion residuals (MPRs). A fourth kernel is represented in the figure, which corresponds to
(2.24) used in the weights calculation. This block does not have any dependencies and
can be launched with 1024 threads per block, ensuring maximum occupancy. The result
is a static array in the t domain (2.1) with size Nx×Ny.

Figure 5.1: Proposed CCSDS 123 parallel predictor diagram. Black arrows represent the
critical datapath, while dashed red arrows are indirect data dependencies.

The original samples are used in 3 kernels and, since the image is static, it might
be beneficial to use faster read-only memory instead of global memory. Using constant
memory is not possible since multispectral and hyperspectral images (MHIs) would not
fit. Another option is to use texture memory.
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In order to utilize all the memory bus width when reading data from global/texture
memory, vectorized accesses are utilized by packing data in such a way that the packed
samples match the bus width size. On the Jetson TX2, the bus size is 128 bits or 16 bytes.
The dynamic range of the CCSDS 123 is from 2 to 16 bits and, fortunately, almost all
sensors that employ this algorithm use 16 bits (2 bytes) for sample representation. In
C language, it is possible to manipulate bits but is very inefficient. A better solution is
to use predefined types such as chars (1 byte) or shorts (2 bytes). With this perspective,
packing 8 samples forces the GPU to use all of the bus width available in a single memory
transaction.

Another question to solve is in which order the samples shall be packed. The packing
should be done so that each thread processes a packed sample. Looking to weights kernel,
which is band-parallel, packing samples in z domain would not bring any benefits since, at
least, 8 parallel threads would read the same data. Since the kernel works on the t domain,
packing samples in order to y would require extra memory and increases divergence. The
best option is to group in order to x as shown in Figure 5.2. The pre-weights and post-
weights kernels do not have data dependencies and can be parallelized in other orders, but
since the weights kernel is restricted to the x axis, the others kernel must be grouped in
the same axis. Even though those packed samples can be converted between kernels, the
performance does not increase because of the overhead to execute that operation.

Figure 5.2: Diagram of grouping samples with 16 bits to groups with 128 bits

The first problem to emerge is how to read data from the GPU. In some kernels,
storing data in local memory does not introduce any advantages since it increases the
number of global memory accesses. In such cases, a better strategy is to load data to
shared memory.

For the pre-weights kernel, each thread computes a packed sample. Depending on
which mode the predictor is running (column-oriented or neighborhood-oriented), each
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thread reads from global memory 2 to 5 times. Reading that data to local memory would
consume too many registers and might induce register spilling. In order to reduce global
memory reads, each thread loads the sample to shared memory accommodating whole
columns in the same band, reducing branch divergence.

Ideally, each column should have a number of elements that is a power of two, so each
block has a number of threads that is also a power of two. Figure 5.3 shows an example
of blocks with different number of threads. The local sum and local difference vector use
values from the sample itself and its neighbourhood (Figure 2.5).

(a) Block processing 2 columns with 1024
samples

(b) Block processing 1 column with 680
samples.

Figure 5.3: Number of columns processed in a block. Each block can execute at most
1024 samples

When the predictor runs on the neighbourhood-oriented mode with shared memory,
each thread makes one global memory access and reads the neighbor samples from shared
memory as depicted in figure 5.4a, except when sample is in the border of the block, then,
the thread makes one more global memory read. If the block executes one column, each
thread reads 3 times from global memory. In column-oriented mode, as illustrated in
Figure 5.4b, the border threads do not need to load to do extra global memory reads.
From (2.3), the particular case in this is in the first line, which loads the x− 1 element.
This value is read to a register, even though it increases branch divergence, reduces shared
memory consumption. The local sum and local differences results are stored in registers
and written to global memory using vectorized writes.

In the weights kernel, since there is a data dependency loop, the kernel must be band-
parallel. The kernel is launched with one block with one thread per band as shown in
Figure 5.5. Since each band is parallelly executed, every band has a weight vector with P

elements which use registers and is initialized by (2.12).
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5.1 Predictor Parallelization

(a) Block processing 3 columns in
neighbourhood-oriented mode. One thread
executes a green sample. Threads in
border columns make to 2 global memory
reads while inside thread make 1 global
read.

(b) Block processing 3 columns in column-oriented
mode. Green samples are loaded to shared memory
by its correspondent thread. The yellow sample in
column a) is loaded to a register by the first thread in
column b).

Figure 5.5: XYZ domain transformation to Zt domain for the weights calculation kernel.

The local difference vector reads values calculated by the pre-weights kernel, more
specifically, it reads P values from the previous bands. In this context, for reducing the
number of global reads, the local differences are loaded to shared memory. Unfortunately,
using this method incurs in shared memory bank conflicts. Surprisingly, it is better than
having repeated global memory reads. One solution would be to have P arrays of shared
memory to store the same local differences, however, for high values of P and images
with high number of bands, the kernel would consume a large amount shared memory.
Other variables calculated in this kernel use registers.

The occupancy of this kernel relies heavily on the number of bands of the image.
Despite the fact that the number of registers per thread can be controlled to achieve better
occupancy, in most cases is not enough to achieve full occupancy.

The post-weights kernel is easily parallelized. Each thread executes one scaled pre-
dicted sample from the weights kernel. All variables use registers and branch divergence
is present but it is inevitable.
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5.1.1 Particular Case (P = 0)

When the predictor runs on the reduced mode and does not use any bands for predic-
tion (P = 0), the kernel can be simplified. In (2.11), the vector is constituted by the values
from previous bands. When no previous bands are used (P = 0) the vector is empty. This
condition implies that the result of (2.14) does not exist and the local differences vector is
not needed. Figure 5.6 shows predictor block diagram under reduced mode for P = 0.

Figure 5.6: CCSDS 123 predictor when no bands are used in the prediction.

As a result of eliminating the data dependency loop, the predictor can be executed
in one kernel. This reduces the overall overheads of calling the kernel compared to the
previous version. In (2.15), the second member is eliminated since it never verifies the
condition P > 0. This elimination is essential, removing the need for values from dif-
ferent bands.. As a consequence, the samples can be packed in order to z for preventing
data dependencies in the local sum calculation. Figure 5.7 illustrates a diagram with the
packing of the samples in the z axis.

This configuration does not make the best prediction since it does not use inter-band
prediction [14] (P > 0) but can be promising in terms of throughput performance due to
data independence.
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Figure 5.7: Diagram of packing samples with 16 bits to 128 bit words across bands in the
z axis.

5.2 Encoder Parallelization

Since the length of codewords varies, the encoder is hardly parallelizable. However,
it is possible to extract some parallelization from the bitstream generation. The rule of
thumb is to distribute the bitstream generation between the compute units and, in the
end, concatenate the various bitstream in one. This part may require bit-wise operations
since the C language does not allow for direct operation at bit level. Figure 5.8 shows an
example of a concatenation of 2 unaligned bitstreams.

Figure 5.8: Bitstream concatenation. The green bits of bitstream 2 must be shifted 2
bits to the left and added to the byte in the bitstream 1. The red bits from bitstream 2
are filtered with an AND mask, shifted to the left 6 bits and added to the second byte in
bitstream 1.

Jetson TX2 has 2 different central processing units (CPUs) with different characteris-
tics. The Denver 2 CPU is 7-way superscalar with 2 cores and the ARM CPU is 3-way
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superscalar with 4 cores. For some types of codes, such as loops or batch operations,
superscalar CPUs can issue multiple instructions on data in the same amount of time. Al-
though, if mechanisms of branch prediction fail, the pipelines must be emptied and this
can be very penalizing. Compared to the Denver 2 CPU, in the 3-way ARM pipeline,
branch prediction misses are not so penalizing, but it cannot execute so many instructions
at the same time.

When parallelizing the encoder, the loads in the cores must be balanced. Depending
on the code and the type of CPU, the cores can process more or fewer instructions. The
main goal is that every core should take the same time to process a variable amount of
data and achieve the best throughput performance. This leads to the problem of balancing
the loads between cores. There is no exact way to automatically balance the cores, unless
if there is previous knowledge about the image. The load needs to be manually tuned to
find the best ratio. Another way to automatically tune the loads would be to formulate an
equation in predictor.

The sample adaptive encoder encodes each band separately in the t domain, achieving
band level parallelism. To parallelize this encoder, 2 approaches are made: 1) using six
cores to encode various bands and merge the resulting bitstreams into one, as shown in
Figure 5.9. The biggest drawback of this method is the difficulty of balancing the loads
in each core. 2) using the GPU by launching a number of threads equal to the number
of bands as depicted in Figure 5.10. Each thread executes one band and generates the
bitstream. In the end, the CPU concatenates all the bitstreams together. This method is
easily parallelized but can potentially turn slower than CPU, since the GPU clock and
transfer time imply penalties.

Figure 5.9: Sample adaptive encoder parallelized in the CPU. Each core encodes a deter-
mined number of bands.

44



5.3 Summary

Figure 5.10: Sample adaptive encoder parallelized in the GPU. The kernel is launched
with a number of threads equal to the number of bands.

In the block adaptive encoder, different algorithms are applied to the blocks of MPRs
as depicted in Figure 2.10. Each of those algorithms is assigned to a compute unit in order
to ensure the lowest processing time. After each method outputting the option selected
for each block, those are divided between cores to generate the bitstream. As in the
sample adaptive encoder, when all the cores finish processing, the bitstreams are merged.
Figure 5.11 shows a basic scheme for the parallel block adaptive encoder.

Figure 5.11: Parallel block adaptive encoder .

5.3 Summary

This chapter explains the parallelization on the CCSDS 123 for the predictor and the
2 types of encoders. It is also discussed a particular type of case when the predictor only
uses samples from the same band (P = 0), simplifying the predictor.
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6.1 System Setup

This chapter presents the achieved results from the parallelization of the CCSDS-123.
Each experiment is executed 20 times to ensure the result consistency. The standard
deviation is calculated but is negligible and, therefore, not represented in the figures. All
obtained results can be found on [37].

6.1 System Setup

The Jetson TX2 has temperature sensors to trigger the fan when temperatures rise.
The temperature values are registered in files by operative system (OS) [38]. In order
to ensure consistency, each run is executed at the same temperature, 39ºC for the central
processing unit (CPU) and 38ºC for the graphics processing unit (GPU). The fan velocity
is controlled using pulse width modulation (PWM) which the operating system reads from
a file [38]. To control the temperature, a bash script that checks the temperature and writes
the PWM value for controlling the fan velocity.

In this thesis is used an implementation of CCSDS 123 made by european space
agency (ESA), downloaded from [39]. This code implements a serial version. All the
speedups and the parallelizations are calculated from this code.

The serial version has macro NO COMPUTE LOCAL. When this macro is deacti-
vated, the local differences are pre-computed and stored in a local buffer but consume
large amounts of memory. Since the system has a limited amount of memory, the macro
is activated in all tests and the local differences are computed whenever needed [40].

The serial version is compiled by gcc for the native architecture (-march=native) and
with level 2 optimizations (-O2). The tests are executed using the command taskset –

cpu-list, which executes the in a defined core, and the command nice -n which gives the
program maximum priority.

The execution times were measured using clock getime from time.h C library. All the
images tested in this thesis were downloaded from [41] and the dimensions and sizes can
be found in appendix E.

The tests for the predictor were done on reduced mode and column-oriented local
sums. The other parameters used are R= 32, Ω= 4, tinv = 2048, vmin =−6 and vmax =−6.
These parameters chosen due requiring less computation effort.

The parameters for the encoders, use the same parameters for predictor with P = 0.
The block adaptive encoder uses B = 1 and J = 64. The sample adaptive encoder runs
with Umax = 8, γ∗ = 9, γ0 = 8, k

′
z = 14.

The serial times were attained by executing the functions in one Denver 2 CPU core.
For counting the number of instructions, it was used nvprof in the GPU and the perf

command for the CPU.
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6.2 Predictor

In section 5.1.1, intra-prediction (P= 0), has the best potential for parallelization. The
approach taken to parallelize the predictor is to analyze how each optimization technique
improves the execution time.

Firstly, the basic functions from the predictor are profiled to see which have the larger
execution time and to decide which ones will be initially parallelized. Figure 6.1 shows
the execution times for a total of 13.01 seconds. The first 4 bars, from left to right,
correspond to (2.3), (2.15), (2.20) and (2.21) respectively. The remaining bars represent
(2.22) with the scaled predicted value sign and the delta absolute value corresponding
(−1)s̃z(t) and |∆z(t)| respectively.
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Figure 6.1: Function profiling times in the serial predictor for the AVIRIS Hawaii image
(P = 0).

Before starting exploring the proposed optimizations, it is analyzed how the kernel
launch parameters and types of memory impacts the execution time. In Figure 6.2 is de-
picted the execution times for different threads per block and the use of pinned memory.
This kernel does not use any optimizations such as shared memory and vectorized ac-
cesses. Using the maximum number of threads per block with pinned memory improves
the execution time by 7.73 times compared to the serial version.

0

2

4

6

8

10

12

T
o
ta

l 
S

p
e
e
d
u
p

13.01

 5.03

 1.77  1.68

Serial GPU

(1 thread/block)
GPU

(1024 threads/block)

GPU

(1024 threads/block) +

pinned memory

 2.8

7.37 7.73

0

5

10

S
e
c
o
n
d
s

Figure 6.2: Predictor execution times for AVIRIS Hawaii, with GPU improvements. The
red squares represent the speedup in relation to the serial time.

Figure 6.3 shows the times for transferring the same amount of data from host to
device (HtoD) and device to host (DtoH). Using pinned memory does not affect the
transfer time from HtoD but greatly affects time between DtoH.
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Figure 6.3: HtoD and DtoH transfer times for the same amount of data.

In CUDA, 2 types of texture memory can be used. Texture reference is the traditional
way of using textures. Texture objects are a new type of memory that does not require
manual binding and unbinding, and behave like C++ objects being handled as if they were
pointers [42]. Figure 6.4, using both types of memory, yields the same execution time,
although, texture objects scale better than texture references [42], and for that reason, they
will be used in the rest of the experimental results. Surface memory is not used since it
would be hard to implement and cannot be read and written in the same kernel since the
cache is not kept coherent [7], thus, eliminating memory reuse.
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Figure 6.4: Texture reference and object against global pinned memory. The red squares
represent the speedup in relation to the global pinned memory.

The parallelization is produced using global pinned memory and texture objects. From
this point on, the proposed optimizations will be progressively applied. Figure 6.5 shows
the execution times when shared memory is utilized. The optimization is applied to store
the image, and then, consecutively until the mapped prediction residuals (MPRs) cal-
culation. The squares represent the speedups to their respective base versions without
optimizations. The texture memory version, typically, achieves faster execution times.
This happens due to texture memory residing inside the device (faster reading times) and
by exploiting the spatial locality compared to global memory [7].

The second optimization employed is vectorized accesses. One version processes 4
samples per thread, while another processes 8 samples. The 8 samples version uses all
the available memory bus width, which increases register pressure and shared memory
utilization. Processing 4 samples might be beneficial since it can provide more flexibility.

Vectorized accesses might lead to an inefficient kernel, by causing register spilling
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Figure 6.5: Shared memory applied to global memory and texture memory. The opti-
mization is applied cumulatively from left to right. The speedups lines are in relation to
the basic version on global memory and texture object from Figure 6.4.

or preventing the kernel from executing because it uses significant amounts of shared
memory per block. In order to avoid these problems, the shared memory will only be
used to store essential variables, as long as, the requested memory per block does not
surpass the maximum allowed value (48 KB).

To avoid register spilling, the variables can be stored in shared memory but this can
decrease the occupancy by half. When blocks run on 48 KB of shared memory, the kernel
cannot achieve full occupancy. To achieve full occupancy, each block should have at most
32 KB of shared memory. Another option to avoid the drop in occupancy is to split the
kernel and use a maximum of 32 KB of shared memory.

In the following figures, to assess this phenomenon, 2 types of tests were made: using
kernels with 48 KB of shared memory and using kernels with 32 KB of shared memory.
For processing 4 samples per thread, Figure 6.6 shows the results when using global
memory and Figure 6.7 when using texture memory.
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Figure 6.6: Execution times when the kernel processes 4 packed samples stored in global
memory. The speedups lines are in relation to the basic version on global memory and
texture object from Figure 6.4.

In both cases, using split kernels (32 KB), marginally improves the speedups. Using
texture memory is slightly better than global memory. In scaled predicted value calcula-
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Figure 6.7: Execution times when the kernel processes 4 packed samples stored in texture
memory. The speedups lines are in relation to the basic version on global memory and
texture object from Figure 6.4.

tion, there is a notable discrepancy between the 48 KB version and the 32 KB version.
The only difference between the kernels is that the scaled predicted values are stored in
shared memory in 48 KB version while the 32 KB version used registers.

Figures 6.8 and 6.9 show the times and speedups for threads executing 8 samples.
Although the first functions take more time to execute compared to the 4 samples version,
the MPRs function breaks the record by achieving a time of 87.9 ms for the global memory
version and 85.96 ms for the texture memory version. The speedups for global and texture
versions are higher than 4 samples version. Also, as expected, the 32 KB version is faster
than 48 KB version.
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Figure 6.8: Execution times when the kernel processes 8 packed samples stored in global
memory The speedups lines are in relation to the basic version on global memory and
texture object from Figure 6.4

Next, is applied asynchronous launches and data transfers. This method is applied to
the best executing times from the 8 and 4 packed samples versions. Each stream process a
number of bands. In Figure 6.10, in the 8 samples version, using global memory, improves
by 24.8 times concerning to the time obtained in Figure 6.4. In Figure 6.11, the execution
time on the device decreases almost by one quarter from the 4 samples version to the
8 samples. The DtoH transfer time also decreases due to the kernel using the data bus
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Figure 6.9: Execution times when the kernel processes 8 packed samples stored in texture
memory. The speedups lines are in relation to the basic version on global memory and
texture object from Figure 6.4

more efficiently. For an unknown reason, the overhead in the 8 samples texture version
increases. This might be due to synchronization and memory management and is also
observed in the version with 14 and 7 streams.
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Figure 6.10: Execution times for asynchronous kernels with 28, 14 and 7 streams. The
speedups lines are in relation to the basic version on global memory and texture object
from Figure 6.4

Figure 6.12 shows how the different types of optimizations influence the data transfer
times. From Figure 6.3 it was concluded that the pinned memory affects the HtoD time.
The vectorized accesses improves DtoH times. Usually, HtoD transfers using texture
memory are slower than global memory, this happens due to textures being bound to
CUDA arrays. These arrays are indexed in 1D, 2D or 3D and access times are slightly
slower than linear memory [7]. Using streams, the times increase slightly due to overhead
and synchronizations between streams.
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Figure 6.12: Data transfer times between optimizations.

Finally, in Figure 6.13 it is represented the overall speedup to the serial version. Using
28 streams in global memory and processing 8 samples per thread, it is achieved a speedup
of 191.81 times. Analyzing the speedup lines, texture memory achieves a better result for
all optimizations except when using streams.
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Figure 6.13: Overall speedups in the CCSDS 123 predictor implemented in the GPU.The
speedups lines are in relation to the serial version.

In Figure 6.14 it is shown the roofline model for the GPU optimizations. The serial
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point was executed in the CPU, and, compared to the GPU points, this point has more
operations due to the loops in the algorithm. The measure also may be skewed as a con-
sequence of being measured with a different command. The kernel increases the perfor-
mance by reducing memory transactions, following the philosophy of single instruction,
multiple data (SIMD), reducing intensity.
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Figure 6.14: Roofline model for the optimizations applied to the predictor.

These tests were conducted in the AVIRIS Hawaii image. For other images, Fig-
ure 6.15 shows the obtained results. The best speedups are from the AVIRIS images. The
remaining images obtained gains around 150 times. This is due to problem mentioned
in Figure 5.3. The image dimensions do not allow to launch the kernel with a maximum
number of threads. Nevertheless, the gains are significant. The multispectral images were
not tested due to not having more than 8 bands. Tests were done for the texture memory.
However, the attained results were not better than its counterpart. The roofline model
for the various images is described in Figure 6.16, showing a good performance that is
limited by thread divergence.

All kernels developed in this thesis follow the procedure described above. The paral-
lelization for the inter-band predictor (P > 0) from Figure 5.1 is also analyzed.

In Figures 6.17 and 6.18 illustrate the serial execution times in various images. As
expected, the times follows a linear increase as P rises, except for the 3 largest images
in Figure 6.17. For P > 4 in the AVIRIS Yellowstone and for P > 14 in the compact
reconnaissance imaging spectrometer for mars (CRISM) sensor images, the times stop
following a linear increase. This may be explained by cache misses that happen especially
in large images. The characteristics of the image also influence the prediction execution
time.
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Figure 6.15: CCSDS 123 predictor implemented in the GPU with P = 0 for various im-
ages. The speedup line is compared to the serial version.
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Figure 6.16: Roofline model for the parallelized version of the predictor.

Figures 6.19 and 6.20 represent the execution times for the parallelized predictor run-
ning on the GPU. The time evolution follow a linear pattern but the cache miss effect
takes place when P > 6 for the images of the CRISM sensor. In multispectral images, the
times do not follow a linear increase. This can be due to cache misses but also explained
by shared memory bank conflicts. These problems are present in the hyperspectral but
since multispectral have less bands, this effect is more pronounced.
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Figure 6.17: Execution times for the serial CCSDS 123 predictor for P > 0 in hyperspec-
tral images.
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Figure 6.18: Execution times for the serial CCSDS 123 predictor for P > 0 in multispec-
tral images.
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Figure 6.20: GPU execution times for the CCSDS 123 predictor for P> 0 in multispectral
images.

The speedups for this kernel are calculated in Figure 6.21. The first thing to notice
is that the multispectral images did not obtained the desired performance. Many of those
runs resulted in speedups below the horizontal red which represents a unitary speedup.
However, the hyperspectral images obtained speedups between 5 and 15 times.
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Figure 6.21: Speedups for the CCSDS 123 predictor. The red horizontal line stands for
the speedup equal to one. The Landsat image has 6 bands while the Toulouse image has
3.

Upon analyzing Table 6.1, some of the kernels parallelized did not achieved full oc-
cupancy. The occupancy on the pre-weights kernel is influenced by the number of rows
in the image, as explained by Figures 5.3 and 5.4b. The number of threads running on
the weights kernel must equal to number of bands in the image. The worse occupancies
are from the CRISM images and multispectral images. The multispectral image have an
inherently poor occupancy due to the kernel executing less than 10 threads.The CRISM
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images, despite having 545 threads per block, have a low occupancy due to how threads,
shared memory per block and registers per thread interferes in division of the streaming
multiprocessor (SM), as shown in Figure 6.22.

Figure 6.22: Influence on the occupancy for the weights kernel in the number of threads
per block vaires for images from the CRISM sensor. The red triangle shows the actual
occupancy. Image taken from the CUDA occupancy calculator from the CUDA toolkit
9.0

From Table 6.1, the weights kernel consumes between 89.5% and 99.56% of the pre-
dictor time. This means that this kernel is very sensitive to its occupancy. In fact, from
Figure 6.21, for P< 3, the images with the highest occupancies also have higher speedups.
For P > 3, other events take control of the speedups, such as caches misses and shared
memory bank conflicts. The speedups stagnate for P > 3 with three exceptions. The first
is the speedup increase in images from the CRISM sensor. This happens because of the
drop in performance on the serial version. The second is the compact airborne spectro-
graphic imager (CASI) image, which the speedup drops for P > 4, this is explained by
inconsistencies in time of the GPU version. The last is AVIRIS Yellowstone, which the
speedup increases until P = 10 because of the instability in the serial version. However,
in [14], for most images, using more than 3 bands for the prediction, does not bring any
significant differences in the compressed bit rate performance.

4Values are from 1 band to 6 bands
5Values are from 1 band to 3 bands
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Table 6.1 Table for the occupancy rates and times in percentage for the kernels repre-
sented in Figure 5.1. The occupancy of the kernels that are omitted are 100%. The times
of the scaling component kernel are very close to 0% and therefore, not represented. The
occupancy rates were measured using the CUDA occupancy calculator from the CUDA
toolkit 9.0

Image Pre-Weights
kernel occupancy

Weights
kernel occupancy

Pre-Weights
kernel time

(1 band - 16 bands)

Weights
kernel time

(1 band - 16 bands)

Post-Weights
kernel time

(1 band - 16 bands)
aviris
hawaii 63% 88% 4.32% - 1.54% 94.66% - 98.1% 1.02% - 0.36%

aviris
yellowstone 69% 88% 4.01% - 1.47% 94.99% - 98.15% 1.00% - 0.37%

crism
frt00010f86 07 100% 56% 3.46% - 0.83% 95.78% - 99.00% 0.77% - 0.18%

crism
frt00009326 07 100% 56% 3.46% - 0.82% 95.75% - 99.00% 0.79% - 0.18%

casi
t0477f06-raw 81% 94% 8.14% - 1.58% 89.5% - 97.91% 2.35% - 0.51%

Landsat
agriculture 100% 50% 0.85% - 0.36% 4 98.96% - 99.56% 4 0.17% - 0.07% 4

toulouse
spot5 100% 50% 0.44% - 0.34% 5 99.45% - 99.57% 5 0.09% - 0.08% 5

6.3 Block Adaptive Encoder

The parallelization of the block adaptive encoder follows the architecture from Fig-
ure 5.11. The encoder is parallelized by distributing the load between the compute units
using portable operating system interface (POSIX) threads.

Figure 6.23 shows a diagram for the solution used in the encoder. The first phase
applies a pre-processing to determine the shortest codeword for each block using the 3
methods. From the 3 algorithms executed concurrently, the most expensive is sample
splitting. Fortunately, this algorithm is easily parallelizable and runs on the GPU with
one thread per MPR block, achieving faster times compared to running in CPU. For these
methods, the Denver 2 CPU achieves better performances related to the ARM CPU and,
for that reason, the remaining methods are executed, each one, on a Denver 2 core.

Then, in the second phase, the bitstream generation is divided between the cores using
threads. Each core has to access the information calculated in the previous phase, in order
to identify which method produced the shortest codeword. Due the Denver 2 being 7-way
superscalar CPU, the MPR blocks to be encoded are divided roughly by 30% for each
Denver 2 CPU core and 10% for each ARM CPU core.

After the bitstream generation, one Denver 2 core concatenates the bitstreams from
the previous phase into a single one using bitwise shifting, as explained in Figure 5.8.
The CASI image does not qualify for this encoder since the total number of samples is
not divisible by 64.
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Figure 6.23: Diagram of the parallelized CCSDS 123 block adaptive entropy coder.

Figure 6.24 shows the times for the encoder before the parallelization. Figures 6.25
and 6.26 shows the resulting times and speedups for the parallel version for the hyper-
spectral and multispectral images respectively. The chart is divided into the 3 phases:
the sample splitting, second extension and zero block compose the first phase, ARM and
Denver 2 the second and the third is the bitstream concatenation. The second and third
phases only start when all functions from the previous phases are finished. Figure 6.25
shows good results for the balance between the CPU cores with the difference being ap-
proximately 100 ms. In Figure 6.26 a good balance is harder to achieve between the CPUs
cores. Nevertheless, speedups of 9.05 and 7.54 were obtained.
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Figure 6.24: Execution times for the serial version of CCSDS 123 block adaptive encoder.

The parallelized block adaptive encoder achieves a great performance shown by Fig-
ure 6.27. The points surpass the CPU peak performance due the sample splitting block
being executed in GPU. This function represents between 30% to 40% of the execution
time, which is significant amount. Executing this block in the GPU shows how powerful
the GPUs are when executing operations per second.
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Figure 6.25: Execution times for in detail for the CCSDS 123 block adaptive encoder
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Figure 6.26: Execution times for in detail for the CCSDS 123 block adaptive encoder
for multispectral images. The chart is divided into 3 phases and one only starts after all
functions from the previous phases had finished.
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Figure 6.27: Roofline model for the parallelized version of CCSDS 123 block adaptive
encoder.
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6.4 Sample Adaptive Encoder

The parallelization for this encoder follows the approaches from Figures 5.10, using
one thread per band, and 5.9 using one core to process various bands. Figure 6.28 illus-
trates the serial times executed in one core.
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Figure 6.28: Execution times for the serial version of CCSDS 123 sample adaptive en-
coder.

In figure 6.29 is represented the execution times obtained for the GPU version. The
kernel is similar to the weights kernel in the predictor, launching one thread per band.
The results for the AVIRIS images are satisfactory, achieving speedups of approximately
3. For the CASI image, it was obtained a speedup of 1.76. This unexpected, since, from
the table 6.1, the kernel’s occupancy is 94% and the speedup should be similar to those
the AVIRIS images. The characteristics of the image itself can explain this phenomenon.
For the CRISM images, very low speedups were obtained due to the low occupancy and
by the images requiring too much memory to the point of consuming all available random
access memory (RAM) memory, causing stalls to the OS. The multispectral images did
not obtained good speedups as a result of the kernel running with only 6 and 3 threads.
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Figure 6.29: Speedups and execution times for the GPU version of the CCSDS 123 sample
adaptive encoder.

In Figures 6.30 and 6.31 is depicted the results for the parallel CPU version. As in the
previous section, the chart is divided into 2 phases: the ARM and Denver 2 in one, and the
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second phase composed of the bitstream concatenation. The results obtained show better
results than the GPU version.

In Figure 6.30 all speedups are higher than 5, except for the CASI image. Firstly,
the loads in this image are harder to balance between the CPUs cores due to the low
number of bands. This type of image takes more computation effort to be encoded by this
algorithm. In Figure 6.31 it is not possible to balance the loads. The Landsat image only
has 6 bands, which means that each band is processed by one core. The SPOT5 image
only has 3 bands, meaning that the first phase, equals the processing time in one of the
ARM CPU cores. Nevertheless, the speedups are better than the GPU version. From this
conclusion, the weights kernel in the predictor could be executed in CPU instead of the
GPU. The roofline model for this optimization is described in Figure 6.32.
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Figure 6.30: Execution times in detail for the CCSDS 123 sample adaptive encoder run-
ning on the CPU for hyperspectral images. The bands executed in each core are: AVIRIS
Hawaii - Denver 2=48, ARM=32; AVIRIS Yellowstone - Denver 2=48, ARM=32; CASI
- Denver 2=4, ARM=16; CRISM frt00010f86 - Denver 2=120, ARM=76; CRISM
frt00009326 - Denver 2=120, ARM=76;
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Figure 6.31: Execution times in detail for the CCSDS 123 sample adaptive encoder run-
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Figure 6.32: Roofline model for the CCSDS 123 sample adaptive encoder parallelized in
the CPU.

6.5 Throughput and Energy-efficiency Analysis

The Jetson TX2 comes with built-in power monitors capable of measuring six different
rails [38]. The tests were executed with a bash script that takes power measurements at
a certain frequency. The manufacturer recommends to have a measuring frequency of a
second or more since reading internal nodes too frequently, incurs in an excessive amount
of energy consumption [38]. However, some tests run in less than one second. In those
cases, the sampling frequency is increased and the difference between the two states is
subtracted to the power measurements in tests executed with high sampling rates.

To optimize power efficiency, the Jetson TX2 has 5 power modes described in ap-
pendix F. The only 2 modes valid for the parallelization are Max-N and Max-P All core
modes. The other modes do not have all cores activated. All tests, until this point, were
executed in Max-N mode but in [25], it is noted that running in MAX-P All cores mode,
brings maximum system performance under less than 15 W. With that information in
mind, the best results from both the predictor and the encoder were tested using the 2
power modes. The obtained results are presented in appendix G.

For the predictor, a throughput of 1.038 GSa/s was obtained by AVIRIS Yellowstone
running in MAX-N. In terms of efficiency, the best result was attained by running in
MAX-P mode for the CASI image (269.436 MSa/s/W). For the encoders, the results are
poorer than the predictor because of data dependencies. In the block adaptive encoder,
the best results were collected by the Landsat image. In throughput performance (97.022
MSa/s) and efficiency (21.936 MSa/s/W), for MAX-N mode and MAX-P respectively.
For sample adaptive encoder it was tested for both GPU and CPU implementations. The
GPU version is the only test where better throughput and efficiencies were obtained in
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MAX-N mode. The AVIRIS Hawaii reached 23.053 MSa/s of throughput and 5.435
MSa/s/W of efficiency. In the CPU version, the CRISM frt00009326 attained a throughput
of 35.017 MSa/s in MAX-N mode and the AVIRIS Hawaii obtained a efficiency of 5.814
MSa/s/W in MAX-P mode.

In order to calculate the overall performance, the predictor and the encoder must be
combined. The best result achieved is for the AVIRIS Hawaii image using the block
adaptive encoder. Table 6.2 shows the combination using the 2 power modes.

Table 6.2 Overall power performance for AVIRIS Hawaii using the predictor (P = 0) and
the block adaptive encoder for the 2 power modes. * Higher is better.

Predictor
power
Mode

Encoder
power
mode

Power
(W)

Time
(s)

Throughput
(MSa/s)

Efficiency *
(MSa/s/W)

MAX-N MAX-N 6.276 0.806 87.384 13.925
MAX-N MAX-P 4.646 0.997 70.641 15.204
MAX-P MAX-N 6.142 0.816 86.292 14.049
MAX-P MAX-P 4.555 1.007 69.925 15.353
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6.6 Summary

This chapter analyzes the results obtained for the parallelization of the predictor and
the encoder. In the predictor, the optimizations are applied progressively and the best
combinations of parallelizations are discussed. Then, the top performer parallelization
is tested in several images. The encoders are parallelized mainly in CPU using all cores
when available. Finally, an energy analysis is performed running the system in two dis-
tinct power modes.
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7. Conclusions

The use of low-power graphics processing units (GPUs) brings a new paradigm to the
field of multispectral and hyperspectral compression. Even though, not as the efficiency
as field-programmable gate arrays (FPGAs), GPUs deliver high throughput rates. The
parallelization of the intra-band predictor is quite effective, achieving speedups above
190x. Inter-band prediction did not achieve the same results due to data dependencies.
Intra-band prediction always yields a worse compression ratio but consumes less energy
to compress the image. If the system is implemented in satellites, using intra-band pre-
diction might be beneficial against inter-band prediction. In this trade-off, intra-band
consumes more energy to transmit data to earth-based stations but spends less energy in
the compression phase..

The parallelization in the predictor is quite effective for intra-band prediction, break-
ing the mark of 1 GSa/s (1.038 GSa/s) in terms of throughput performance. The solutions
developed for the encoder are satisfactory. By exploring all available compute units, it
is possible to attain speedups of 10 times taking less than 1 second to encode hundreds
of MBs of data. The overall system, in terms of efficiency, is the best result found in
the literature, breaking the record for the GPU-implemented systems, achieving 15.353
MSa/s/W.

When processing data on GPU, the performance achieved is quite sensible to the
dimensions of the image. These devices would benefit if the sensor had dimensions that
were power of two. In the future, the manufacturers should have this detail in mind when
designing new sensors.

The compact reconnaissance imaging spectrometer for mars (CRISM) images are the
largest image the Jetson TX2 can handle. The board struggles with the image occupy-
ing all the available memory. For larger images, the system must have more memory
available.

To conclude, the gap between FPGAs and GPUs is closing in terms of efficiency.However,
FPGAs still dominate the best solutions in the market. If we relax power constrains in the
system design, GPUs can take advantage due to lower cost and development effort, which
significantly increases competitiveness.

7.1 Future work

The results obtained are very positive and encourage to continue investigating this
subject. Although good performance has been observed, there are some aspects that can
be further studied, namely:

• Expand the kernel to other parameters in the predictor, namely, the full mode and
neighbourhood-oriented local sum;
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• Parallelize the weights kernel in the central processing unit (CPU) cores, instead of
the GPU;

• Expand to the newly issued low-complexity and near-lossless standard consultative
committee for space data systems (CCSDS)-123.0-B-2, which expands the predic-
tor, and contemplates a new hybrid encoder;

• Testing the developed system in other low-power GPUs.
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A. Appendix A

Table A.1 Table containing the image symbols, adapted from [5]
Symbol Meaning Allowed values Reference

x, y, z Image coordinate indices N\A Page 12
t Alternate image coordinate index N\A 2.1

sz,y,x, s(t) Image data sample smin .. smax Page 12
Nx, Ny, Nz Image dimensions N\A Page 12

D Image dynamic range in bits 2 .. 16 2.16
smin Lower sample value limit −2D−1 or 0 2.16
smax Upper sample value limit 2D−1−1 or 2D−1 2.16
smid Mid-range sample value 0 or 2D−1 2.16
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Table A.2 Table containing the predictor symbols, adapted from [5]
Symbol Meaning Allowed values Reference

σz,y,x Local sum N\A 2.2, 2.3
dz,y,x Central local difference N\A 2.4

dN
z,y,x, dW

z,y,x,
dNW

z,y,x
Directional local differences N\A 2.5, 2.6, 2.7

Uz(t)Uz(t)Uz(t) Local difference vector N\A 2.8, 2.9

P
Number of spectral bands
used for prediction

0 .. 15 2.8, 2.9

d̂z(t)
Predicted central local differ-
ence

N\A 2.14

Wz(t)Wz(t)Wz(t) Weight vector N\A 2.10, 2.11,
2.13

ω
(i)
z (t),

ω
(N)
z (t),

ω
(W )
z (t),

ω
(NW )
z (t)

Weight values N\A 2.12

Ω Weight resolution 4 .. 19 2.12
ΛzΛzΛz Weight initialization vector N\A 2.13
Q Initial weight value resolution 3 .. Ω+3 2.13

s̃z(t)
Scaled predicted sample
value

N\A 2.15

R Register size, in bits
max(32,D+Ω+

2) .. 64
2.15

ŝz(t) Predicted sample value N\A 2.19
∆z(t) Prediction residual N\A 2.20

θz(t)
Difference between s̃z(t) and
nearest endpoint smin , smax

N\A 2.21

δz(t) Mapped prediction residual N\A 2.22
ez(t) Scaled prediction error N\A 2.23

ρ(t)
Weight update scaling expo-
nent

N\A 2.24

vmin
Initial weight update scaling
exponent parameters

-6 .. vmax 2.24

vmax
Final weight update scaling
exponent parameters

vmin .. 9 2.24

tinc
Weight update scaling expo-
nent change interval 24, 25 .. 211 2.24

ωmin, ωmax
Minimum and maximum
weight values −2Ω+2, 2Ω+2−1 2.25
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A. Appendix A

Table A.3 Table containing the encoder symbols, adapted from [5] and [6]
Symbol Meaning Allowed values Reference

Σz(t) Accumulator N\A 2.26, 2.28
Γ(t) Counter N\A 2.27, 2.29
γ0 Initial count exponent 1 .. 8 2.26

k
′
z

Accumulator initialization
parameter

0 .. D−2 2.29

γ∗ Rescaling counter size
max(4,γ0 +1) ..

9
2.28, 2.29

uz(t) Unary codeword length N\A 2.31

kz(t)
Variable length code parame-
ter

N\A 2.30

Umax Unary length limit 8 .. 32
Figure 2.8,
Figure 2.9

B Output word size 1 .. 8 Page 20
J Block size 8, 16, 32, 64 Page 20

k
Number of least-significant
bits

0 .. 29 Page 21

γ Second extension N\A 2.32
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B. Appendix B

Table B.1 Table for the image metadata header, adapted from [5]

Field Width (bits) Description

User-Defined
Data 8

The user may assign the value of this field arbitrarily,
e.g., to indicate the value of a user-defined index of
the image within a sequence of images.

NxSize 16 The value Nx encoded mod 216 as a 16-bit unsigned
binary integer.

NySize 16 The value Ny encoded mod 216 as a 16-bit unsigned
binary integer.

NzSize 16 The value Nz encoded mod 216 as a 16-bit unsigned
binary integer.

Sample Type 1
‘0’: image sample values are unsigned integers.
‘1’: image sample values are signed integers.

Reserved 2 This field shall have value ‘00’.

Dynamic Range 4
The value D encoded mod 24 as a 4-bit unsigned bi-
nary integer.

Sample Encoding
Order 1

‘0’: samples are encoded in band-interleaved order.
‘1’: samples are encoded in band-sequential order.

Sub-Frame Inter-
leaving Depth 16

When band-interleaved encoding order is used, this
field shall contain the value M encoded mod 216 as a
16-bit unsigned binary integer. When band-sequential
encoding order is used, this field shall be all ‘zeros’.

Reserved 2 This field shall have value ‘00’.

Output Word Size 3
The value B encoded mod 23 as a 3-bit unsigned bi-
nary integer.

Entropy Coder
Type 1

‘0’: sample-adaptive entropy coder is used.
‘1’: block-adaptive entropy coder is used.

Reserved 10 This field shall contain all ‘zeros’.
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Table B.2 Table for the predictor metadata header, adapted from [5]

Field Width (bits) Description
Reserved 2 This field shall have value ‘00’.
Number of Pre-
diction Bands 4

The value P encoded as a 4-bit unsigned binary inte-
ger.

Prediction Mode 1
‘0’: full prediction mode is used.
‘1’: reduced prediction mode is used.

Reserved 1 This field shall have value ‘00’.

Local Sum Type 1
‘0’: neighbor-oriented local sums are used.
‘1’: column-oriented local sums are used.

Reserved 1 This field shall have value ‘00’.

Register Size 6 The value R encoded mod 26 as a 6-bit unsigned bi-
nary integer.

Weight Compo-
nent Resolution 4

The value (Ω− 4) encoded as a 4-bit unsigned binary
integer.

Weight Update
Scaling Exponent
Change Interval

4
The value (log2tinc− 4) encoded as a 4-bit unsigned
binary integer.

Weight Update
Scaling Exponent
Initial Parameter

4
The value (vmin + 6) encoded as a 4-bit unsigned bi-
nary integer.

Weight Update
Scaling Exponent
Final Parameter

4
The value (vmax + 6) encoded as a 4-bit unsigned bi-
nary integer.

Reserved 1 This field shall have value ‘0’.
Weight Initializa-
tion Method 1

‘0’: default weight initialization is used.
‘1’: custom weight initialization is used.

Weight Initializa-
tion Table Flag 1

‘0’: Weight Initialization Table is not included in
Predictor Metadata.
‘1’: Weight Initialization Table is included in
Predictor Metadata.

Weight Initializa-
tion Resolution 5

When the default weight initialization is used, this
field shall have value ‘00000’.
Otherwise, this field shall contain the value
Q encoded as a 5-bit unsigned binary integer.

Weight Initializa-
tion Table (Op-
tional)

(variable) (See section 5.3.3.2 of [5].)
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B. Appendix B

Table B.3 Metadata header when the sample adaptive entropy coder is used, adapted
from [5]

Field Width (bits) Description
Unary Length
Limit 5 The value Umax encoded mod 25 as a 5-bit unsigned

binary integer.
Rescaling
Counter Size 3

The value (γ∗−4) encoded as a 3-bit unsigned binary
integer.

Initial Count Ex-
ponent 3

The value γ0 encoded mod 23 as a 3-bit unsigned bi-
nary integer.

Accumulator
Initialization
Constant

4

When an accumulator initialization constant K is
specified, this field encodes the value of K as a 4-bit
unsigned binary integer. Otherwise, this field shall be
all ‘ones’.

Accumulator Ini-
tialization Table
Flag

1

‘0’: Accumulator Initialization Table is not included
in Entropy Coder Metadata
‘1’: Accumulator Initialization Table is included in
Entropy Coder Metadata.

Accumulator Ini-
tialization Table
(Optional)

(variable) (See 5.3.4.2.2 of [5].)

Table B.4 Metadata header when the block adaptive entropy coder is used, adapted from
[5]

Field Width (bits) Description
Reserved 1 This field shall have value ‘0’.

Block Size 2

‘00’: Block size J = 8.
‘01’: Block size J = 16.
‘10’: Block size J = 32.
‘11’: Block size J = 64.

Restricted Code
Options Flag 1

This field shall have value ‘1’ when D ≤ 4 and the
Restricted set of code options (as defined in section
5.1.2 of [5]) are used. Otherwise, this field shall have
value ‘0’.

Reference Sample
Interval 12

Value of r encoded mod 212 as a 12-bit unsigned bi-
nary integer.
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C. Appendix C

Table C.1 Table for the code option identification key, adapted from [6]
Code Option Codeword
Zero Block 00000
Second Extension 00001
k =0 0001
k =1 0010
k =2 0011
k =3 0100
k =4 0101
k =5 0110
k =6 0111
k =7 1000
k =8 1001
k =9 1010
k =10 1011
k =11 1100
k =12 1101
k =13 1110
no compression 1111
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E. Appendix E

Table E.1 Table with the images dimensions and sizes

Image Height
(rows)

Width
(columns) Bands Bytes

aviris
hawaii 614 512 224

140836864
(134.31 MB)

aviris
yellowstone 680 512 224

155975680
(148.75 MB)

crism
frt00010f86 07 640 510 545

355776000
(339.29 MB)

crism
frt00009326 07 640 510 545

355776000
(339.29 MB)

casi
t0477f06-raw 406 1225 72

71618400
(68.30 MB)

Landsat
agriculture 1024 1024 6

12582912
(12 MB)

toulouse
spot5 1024 1024 3

6291456
(6 MB)
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F. Appendix F

Table F.1 Table with the power modes for the Jetson TX2, from [10]

Mode
Denver 2
activated

cores

Denver 2
clock

frequency

ARM
activated

cores

ARM
clock

frequency

GPU
clock

frequency

Power
budget

Max-N 2 2.0 GHz 4 2.0GHz 1.3 GHz n/a
Max-Q 0 4 1.2 GHz 0.85 GHz 7.5 W
Max-P

Core-All 2 1.4 GHz 4 1.4 GHz 1.12 GHz 15 W

Max-P
ARM 0 4 2.0GHz 1.12 GHz 15 W

Max-P
Denver 1 2.0 GHz 1 2.0GHz 1.12 GHz 15 W
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G. Appendix G

Table G.1 Power measurements for the predictor (P = 0) from the results of Figure 6.11
using the 2 power modes. * Higher is better

Power
Mode Image Power

(W)
Time
(ms)

Speed
(MSa/s)

Efficiency *
(MSa/s/W)

Performance
per cycle *

(MSa/s/W/GHz)

MAX-N

AVIRIS
Hawaii 4.813 67.848 1037.888 215.630 165.869

AVIRIS
Yellowstone 4.836 77.174 1010.545 209.949 160.730

CASI 4.621 37.984 942.745 204.014 156.934
CRISM
10f86 5.101 226.646 784.872 153.875 118.366

CRISM
9326 5.206 225.421 789.136 151.570 116.593

MAX-P

AVIRIS
Hawaii 3.610 78.050 902.217 249.906 223..130

AVIRIS
Yellowstone 3.454 83.789 930.765 269.436 240.568

CASI 3.303 40.192 890.945 269.714 240.816
CRISM
10f86 3.807 265.499 670.013 175.975 157.120

CRISM
9326 3.873 253.233 702.467 181.386 161.952
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Table G.2 Power measurements for the block adaptive encoder using the 2 power modes.
* Higher is better

Power
Mode Image Power

(W)
Time

(s)
Speed

(MSa/s)
Efficiency *
(MSa/s/W)

Performance
per cycle *

(MSa/s/W/GHz)

MAX-N

AVIRIS
Hawaii 6.410 0.738 95.427 14.888 1.943

AVIRIS
Yellowstone 6.637 0.895 87.095 13.122 1.796

CRISM
10f86 7.805 2.316 76.822 9.842 1.589

CRISM
9326 7.792 2.345 75.859 9.735 1.607

Landsat 4.93 0.065 97.022 19.679 3.077
SPOT5 4.611 0.040 78.996 17.130 3.685

MAX-P

AVIRIS
Hawaii 4.634 0.929 75.811 16.361 1.697

AVIRIS
Yellowstone 4.739 1.152 67.716 14.289 1.521

CRISM
10f86 5.107 3.153 56.411 11.045 1.310

CRISM
9326 4.972 3.063 58.083 11.683 1.477

Landsat 3.695 0.078 81.045 21.936 2.865
SPOT5 3.492 0.052 60.899 17.439 2.892
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Table G.3 Power measurements for the sample adaptive encoder using the 2 power modes
implemented in the GPU. * Higher is better

Power
Mode Image Power

(W)
Time

(s)
Speed

(MSa/s)
Efficiency *
(MSa/s/W)

Performance
per cycle *

(MSa/s/W/GHz)

MAX-N

AVIRIS
Hawaii 4.242 3.055 23.053 5.435 4.181

AVIRIS
Yellowstone 4.310 3.462 22.527 5.227 4.021

CASI 3.831 2.835 12.632 3.298 2.537
CRISM
10f86 3.991 28.676 6.203 1.554 1.196

CRISM
9326 3.971 28.612 6.217 1.566 1.204

Landsat 3.916 2.675 2.352 0.601 0.462
SPOT5 3.656 2.310 1.362 0.372 0.287

MAX-P

AVIRIS
Hawaii 3.571 3.778 18.638 5.220 4.660

AVIRIS
Yellowstone 3.606 4.361 17.882 4.959 4.428

CASI 3.350 3.374 10.613 3.168 2.829
CRISM
10f86 3.576 31.401 5.665 1.584 1.414

CRISM
9326 3.576 31.434 5.659 1.583 1.413

Landsat 2.257 3.026 2.080 0.639 0.570
SPOT5 3.230 2.711 1.160 0.359 0.321
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Table G.4 Power measurements for the sample adaptive encoder using the 2 power modes
implemented in the CPU. * Higher is better

Power
Mode Image Power

(W)
Time

(s)
Speed

(MSa/s)
Efficiency *
(MSa/s/W)

Performance
per cycle *

(MSa/s/W/GHz)

MAX-N

AVIRIS
Hawaii 6.482 2.034 34.624 5.342 0.475

AVIRIS
Yellowstone 6.542 2.286 34.106 5.211 0.463

CASI 6.531 2.056 17.420 2.667 0.250
CRISM
10f86 6.813 5.213 34.124 5.009 0.452

CRISM
9326 6.998 5.080 35.017 5.004 0.443

Landsat 5.263 0.240 26.174 4.974 0.501
SPOT5 4.964 0.207 15.188 3.060 0.653

MAX-P

AVIRIS
Hawaii 4.432 2.732 25.769 5.814 0.739

AVIRIS
Yellowstone 4.526 3.109 25.084 5.542 0.704

CASI 4.434 2.821 12.693 2.863 0.384
CRISM
10f86 4.558 7.597 23.416 5.137 0.663

CRISM
9326 4.554 7.386 24.083 5.287 0.669

Landsat 3.670 0.346 18.193 4.957 0.713
SPOT5 3.557 0.287 10.943 3.076 0.938
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