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Abstract

Upon ionization, the optical absorption of neutral rare-gas clusters shifts from the
ultraviolet range to the visible. Within TDDFT, the photoabsorption spectra of the
Xe +

3 cluster, employing traditional DFT functionals, predicts a reasonable position for
the two experimental peaks, but their relative intensities appears to be inverted. The
improvement on the problem reached within the Hartree-Fock level suggested an expla-
nation based on the unsatisfactory treatment of exchange in common density functionals.
The main goal of this thesis project is to continue investigating on how the exact exchange
improves peaks’ relative height by calculating ground state geometries and absorption
spectra with the following functionals: LDA+ADSIC, OEP-SLATER, OEP-KLI, OEP-
FULL. In the end, it is concluded that the adequate ground state geometries are necessary
for the generation of correct spectra. Also, the bigger the amount of exchange added, the
better the spectrum, even though OEP-FULL probably is the level of theory required to
invert the peaks.





Resumo

Mediante ionização, o espectro de absorção de clusters neutras de gases raros transita
da gama do ultravioleta para a do visível. Em TDDFT e utilizando os tradicionais
funcionais para a correlação e troca, é posível fazer boas previsões para o posicionamento
dos dois picos experimentais da cluster de Xe +

3 , mas a intensidade dos mesmos surge
trocada. O facto deste problema ter sido resolvido ao nível de Hartree-Fock sugere como
possível explicação para esta incapacidade preditiva da DFT a forma insatisfatória como
a troca é tratada nos funcionais da densidade típicos. O principal objetivo desta tese é
continuar a estudar a forma como a troca exata melhora a intensidade relativa dos picos,
calculando-se para tal geometrias de estado fundamental e espectros de absorção com
os seguintes funcionais: LDA+ADSIC, OEP-SLATER, OEP-KLI, OEP-FULL. No fim,
conclui-se que a aquisição das geometrias de estado fundamental corretas é necessária
para a obtenção de espectros comparáveis ao experimental. Também, quanto maior a
quantidade de troca incluída no funcional, melhor o espectro, mesmo que a inversão dos
picos só venha a acontecer, provavelmente, com a utilização de OEP-FULL.
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Chapter 1

Introduction

Neutral rare-gas clusters 1 are van der Waals (Appendix C) bound and their first
electronic transition is in the UV region. Every atom is bound to its neighbors by the
same kind of weak undirectional force. However, upon ionization one electron is removed
from a strongly antibonding orbital. Because of the directional character of the empty p
orbital, the bonding becomes much stronger around the charge and differs in character,
direction and strength. The optical absorption shifts to the visible.

In 1991, Haberland [11] et al. measured the absorption cross-section for Xe +
n , 3 ď

n ď 30. They found out that all these clusters exhibited three broad peaks in the 1-4 eV
region, except Xe +

3 , for which only two peaks could be observed.
In what concerns theoretical studies, most of the previous works on cationic xenon

clusters made use of semiempirical methods, especially the "diatomics in molecules" (DIM)
approach, in which a model Hamiltonian is built using high quality ab initio diatomic
data. Several extensions to the DIM model are required to accurately describe the elec-
tronic properties of cationic xenon clusters: inclusion of spin-orbit coupling (DIM+SO
extension), consideration of many-body polarization forces (not considered in DIM+SO),
account for induced dipole-induced dipole (ID-ID) contributions (DIM+IDID+SO exten-
sion).

On the other hand, ab initio methods like DFT (Density Functional Theory), imple-
mented with some approximation to the exchange-correlation functional, are in general
well capable of describing covalent bonding, but have problems with the long-range
correlation present in these systems. Also, these ab initio methods must incorporate
relativistic effects precisely since those are extremely important in these clusters for
correct ground state geometries and proper description of the absorption cross-section:
if spin-orbit coupling is neglected, Xe +

3 absorption cross-section spectrum only exhibits
one peak.

1Clusters and small particles as systems of bound atoms or molecules are an intermediate form of
matter between atomic and bulk particles. However, solid clusters differ from small particles since their
parameters are not monotonic functions of a number of cluster atoms and have a heightened stability at
magic numbers of atoms. In particular, clusters allow to understand additional aspects of the physics of
bulk particles.
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In [25] the authors have generated, within TDDFT, the photoabsorption spectra of
the Xe +

3 cluster, employing traditional DFT functionals. There they found out that
although it was possible to reach a good agreement (close to the expected accuracy of the
method) between experimental and simulated results for peak positioning, the relative
intensities of the two peaks appeared to be inverted. Three possible sources of error were
subsequently identified: geometry, exchange-correlation functional, spin-orbit coupling.
In order to test the effect of a precise choice of the exchange-correlation functional, the
spectrum was again generated, this time employing an hybrid functional (B3LYP), with
a fraction of exact exchange. B3LYP (over DIM ground state geometry) managed to
change relative intensities in the correct direction, although they still remained inverted
with respect to experiment. In the end, it was concluded that adequate geometries are
necessary in order to have a good agreement in peak positioning, while the error in the
relative intensities was most likely related to the approximate functional used in the
TDDFT calculation.

Figure 1.1: Absorption cross-section of linear Xe +
3 calculated using the DIM geometry and

different exchange-correlation functionals. Experimental results are from reference [11].

Bruce Milne2 completed the Hartree-Fock study by generating spectra at this level
of theory with ORCA v4.1.2 software [23, 22]. The result, as shown in Figure 1.2,
supports the thesis that the inversion of the peaks is a consequence, in DFT, of the poor

2Centre for Computational Physics, Department of Physics, University of Coimbra, 3004-516, Coimbra,
Portugal
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treatment given to the exchange functional, since in this result it is shown that HF is
able to invert the peaks. For the generation of the spectra, scalar relativistic effects
were included in the simulation, as well as spin-orbit effects, which were considered
in ground state calculations through the SOMF1X spin-orbit mean-field approach [12].
Absorption spectra were performed with restricted open-shell configuration interaction
singles (ROCIS) method and the effect of spin-orbit coupling on the calculated one-
electron excitations was included in the configuration interaction stage yielding the
observed splitting of 1.3 eV with the diffuse augmented QZP basis sets.

1.5 2 2.5 3 3.5 4
eV

QZP
s-aug-QZP
d-aug-QZP
t-aug-QZP
q-aug-QZP

Figure 1.2: Hartree-Fock calculation of the absorption cross-section of linear Xe +
3 using a con-

tracted quadruple-zeta basis of Ceolin et al. (QZP) and four diffuse-augmented QZP basis sets:
s-aug-QZP, d-aug-QZP, t-aug-QZP, q-aug-QZP.

In [21], the author concluded the implementation of non-collinear3 KLI equations in
the code OCTOPUS and started to study how the spectrum changed with the inclusion of
exact exchange, by generating the absorption spectrum of Xe +

3 using two approximations
for DFT exact-exchange potential: OEP-SLATER, OEP-KLI (a DIM geometry was used
in both cases). In the end, the Slater approximation was able to invert the intensity of

3Very few numerical implementations have incorporated exact exchange within non-collinear spin
DFT, which is needed when one wishes to take into account the effects from spin-orbit coupling.
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the peaks, although the position was worse than what was predicted by LSDA. KLI also
managed to invert peaks, but the author suggested the repetition of this simulation, due
to the large negative peak that appeared in the spectrum.

Given all this background work, the main goal of this thesis project is to continue
investigating on how the exact exchange improves peaks’ relative height. As so, the
project comprises three main steps:

• Generation of a pseudopotential A fully-relativistic pseudopotential will be gener-
ated for Xe using the APE code;

• Geometry optimization The ground state geometry will be obtained with the same
functional used in the TD propagation;

• TDDFT/Absorption spectrum Time propagation will be performed using the fol-
lowing functionals: OEP-SLATER, OEP-KLI, OEP-FULL (no approximation to
the exchange-only potential) and LDA+ADSIC (LDA with Average Density Self-
Interaction Correction).

Figure 1.3: Stages of the project.

At last, the novelty in this project relies on the fact that ground state geometries are
optimized with the same functional used in the TD propagation and further compared
with the same spectrum obtained using a LSDA geometry.
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Chapter 2

The Basics of Density Functional
Theory

2.1 Motivation
To begin with, let us consider an N -electron system, its N-electron wavefunction

being

Ψpx1,x2, ...,xN q, (2.1)
with xi “ pri, σiq, ri and σi being the space and spin coordinates, respectively. This

function depends on 4N variables, thus being extremely difficult to store and manipulate.
The Density Functional Theory [6, 24] approach succeeds to restate the problem in

terms of a 4 variable-dependent function, the single-particle spin-density1 2 3 :

ρpxq ” γpx1q “ γpx1|x1q

“ N

ż

|Ψp123...Nq|2pdx11q.
(2.2)

This new function, ρpxq, is interpreted as a representation of the number of particles
ˆ the probability of finding a particle in r having spin σ when all the other particles
have arbitrary space and spin coordinates.

2.2 The Hohenberg-Kohn Theorem
It is not obvious that the problem of calculating the electronic structure of atoms,

molecules and solids can be reformulated on the basis of the single-particle density.
1For more information on the definition of density matrices please consult Appendix A.
2The integral already contains a summation over all spin states.
3In (2.2), γpx1|x1q is the diagonal of the first-order density matrix, Ψp123...Nq ” Ψpx1,x2, ...,xN q

and x1 Ñ x in ρpxq for a matter of convenience. See Appendix A for more information on the definition
of density matrices.
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Actually, Hohenberg and Kohn [13], in 1964, showed that all properties of a quantum
many-body system are functionals of its ground state density. Their theorem - the HK
(Hohenberg-Kohn) theorem - was originally formulated for spin-unpolarized systems, so
it is enough to consider, for the moment, the electronic density nprq instead of the whole
spin-density ρpxq:

nprq “ xΨ| n̂prq |Ψy . (2.3)

HK Theorem
The HK theorem applies to systems of N interacting electrons moving in an external

local potential with a non-degenerate ground state and with all electronic densities being
v-representable 4 5. Such a system is represented by the Hamiltonian

Ĥ “ F̂ ` V̂ext, (2.4)

where V̂ext is the external potential operator and F̂ is an operator that groups all
terms that do not depend on the external field. Provided these conditions:

Statement 1 The ground state particle density nprq uniquely determines the external
potential Vextprq to within an additive constant.

Proof of Statement 1
Let us consider a set of external potentials tV̂extu, the space of ground state wave-

functions tΨu and the ensemble of all-electron densities tnu.

tV̂extu
A
ÝÑ tΨu B

ÝÑ tnu (2.5)

Statement 1 is equivalent to say that mapping C “ A ˝B is injective or to say that
A and B are both injective. Its proof follows reductio ad absurdum.

Therefore, so as to demonstrate that A is injective, let us suppose there are two
external potentials V̂ p1qext and V̂ p2qext which differ by more than a constant and which lead
to the same ground state wavefunction Ψ. For each of the cases (F̂ stays the same since
none of its terms depends on the external field):

pF̂ ` V̂
p1q
ext q |Ψy “ Ep1q |Ψy , (2.6)

pF̂ ` V̂
p2q
ext q |Ψy “ Ep2q |Ψy . (2.7)

By taking the difference between (2.6) and (2.7),

pV̂
p1q
ext ´ V̂

p2q
ext q |Ψy “ pEp1q ´ Ep2qq |Ψy , (2.8)

4Some literature contains extensions of the theorem to degenerate ground states [10] and to N -
representable densities [17, 18], i.e. densities coming from an antisymmetric N -electron ground state
wavefunction.

5This theorem makes use of the variational principle, which requires that for all non-negative, normal-
ized and well-behaved functions nprq, it is possible to find an external potential V̂extprq for which nprq is
the ground state density. The density nprq is then said to be v-representable.
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one is able to conclude that V̂ p1qext and V̂
p2q
ext only differ by a constant, thus contradicting

the first assumption. Consequently, A must be injective.
Now, to begin with the proof that B is injective as well, let us suppose there are two

different ground state wavefunctions Ψp1q and Ψp2q with the same ground state density.
From Ritz’s variational principle, the expectation value of an Hamiltonian evaluated in
a quantum state which is not an eigenvector of that operator is always bigger than the
same expectation value evaluated in an eigenstate, i.e.6

Ep1q “
A

Ψp1q
∣∣∣ Ĥp1q ∣∣∣Ψp1qE ă

A

Ψp2q
∣∣∣ Ĥp1q ∣∣∣Ψp2qE . (2.9)

Additionally,

A

Ψp2q
∣∣∣ Ĥp1q ∣∣∣Ψp2qE “ A

Ψp2q
∣∣∣ Ĥp2q ∣∣∣Ψp2qE` A

Ψp2q
∣∣∣ Ĥp1q ´ Ĥp2q ∣∣∣Ψp2qE

“ Ep2q `
A

Ψp2q
∣∣∣ V̂ p1qext ´ V̂

p2q
ext

∣∣∣Ψp2qE (2.10)

and so

Ep1q ă Ep2q `
A

Ψp2q
∣∣∣ V̂ p1qext ´ V̂

p2q
ext

∣∣∣Ψp2qE . (2.11)

By analogy,

Ep2q ă Ep1q `
A

Ψp1q
∣∣∣ V̂ p2qext ´ V̂

p1q
ext

∣∣∣Ψp1qE . (2.12)

However, we hypothesized that the ground state density was the same for both
wavefunctions, which would imply that

A

Ψp2q
∣∣∣ V̂ p1qext ´ V̂

p2q
ext

∣∣∣Ψp2qE “ ż

drpV̂ p1qext ´ V̂
p2q
ext qnprq “ ´

A

Ψp1q
∣∣∣ V̂ p2qext ´ V̂

p1q
ext

∣∣∣Ψp1qE (2.13)

and that, after adding (2.11) and (2.12),

Ep1q ` Ep2q ă Ep2q ` Ep1q. (2.14)

This inequality is absurd and leads to the conclusion that B must be injective.
As a final remark, if A and B are both injective, then C is also injective and according

to Statement 1, it is possible to obtain the external potential and the many-electron
wave function from the density. Since the wavefunction determines every observable of
the system, the ground state expectation value of any physical observable is a unique
functional of the ground state density. ˝

Statement 2 The exact ground state energy can be obtained variationally and corre-
sponds to the exact ground state density.

Proof of Statement 2
6An equality does not old in (2.9) because the theorem does not apply to degenerate ground states.
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At this point, it is possible to write the total energy of the system as a functional of
the density and apply Ritz’s variational principle to such a functional, thus obtaining

Ernp1qs “
A

Ψp1q
∣∣∣ Ĥp1q ∣∣∣Ψp1qE ă

A

Ψp2q
∣∣∣ Ĥp1q ∣∣∣Ψp2qE “ Ernp2qs, (2.15)

meaning that the exact ground state density is the one (from the set V of all v-
representable densities) that minimizes Erns, the minimum being the exact ground state
energy:

E “ min
nPV

Erns. (2.16)

˝

As so, it follows that the exact ground state is obtained through minimization of Erns,
under the constraint that the total number of particles remains constant (

ş

nprqdr ´ N “

0):

δ

δn

ˆ

Erns ´ µ

ż

nprqdr
˙

“ 0 ô

δ

δn
F rns `

δ

δn

ż

nprqvextprqdr´ µ δ

δn

ż

nprqdr “ 0 ô

δ

δn
F rns ` vextprq ´ µ “ 0

(2.17)

2.3 Kohn-Sham Scheme
It still remains to find an expression for F rns, if the intention is to continue on

solving equation (2.17). In order to puzzle out this problem, Kohn and Sham devised
a method, in 1965 [14], that requires the usage of an auxiliary system described by the
same electronic density nprq as the real system.

Figure 2.1: Schematic representation of the real system, on the left, and the Kohn-Sham system,
on the right. Straight lines in the figure are solely a symbolic way of representing interactions
between electrons.
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Real System

• The total energy of the system is

Erns “ F rns `

ż

nprqvextprqdr;
(2.18)

• Electrons interact with each other;

• The system is under the influence of
an external potential vextprq;

• The ground state density is nprq.

Auxiliary system

• The total energy of the system is

ESrns “ TSrns `

ż

nprqvSprqdr,
(2.19)

with TSrns being the kinetic energy of
the non-interacting system;

• Electrons only interact through the
Pauli exclusion principle. The ground
state wavefunction is a Slater deter-
minant of the orbitals φiprq satisfying
7

„

´
1
2∇2 ` vsprq



φiprq “ εiφiprq;

(2.20)

• The system is under the influence of
an external potential vsprq;

• The ground state density is

nprq “
occ
ÿ

i“1
|φiprq|2. (2.21)

Firstly, in the auxiliary system,

δ

δn

ˆ

ESrns ´ µS

ż

nprqdr
˙

“ 0 ô

δTSrns

δn
` vSprq ´ µS “ 0.

(2.22)

Secondly, in the real system

F rns “ TSrns ` Jrns ` Excrns, (2.23)

with Jrns being the classical Coulomb energy term

Jrns “
1
2

ż

nprqnpr1q
|r´ r1| drdr1, (2.24)

Exc being the exchange and correlation energy
7Once more, the ground state is non-degenerate and the external potential is local.
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Excrns “ Eeerns ´ Jrns ` T rns ´ TSrns, (2.25)

T rns being the kinetic energy of the real system and Eeerns being the total electron-
electron interaction energy.

The result of inserting (2.23) in (2.18) and minimizing is

δ

δn
TSrns ` vHrnsprq ` vxcrnsprq ` vextprq ´ µ “ 0, (2.26)

vxcrnsprq “
δExcrns

δn
, (2.27)

vHrnsprq “
ż

npr1q
|r´ r1|dr1.8 (2.28)

At last, if we substitute δ
δnTSrns in (2.22) by (2.26), we get9

vSprq “ vextprq ` vHrnsprq ` vxcrnsprq ´ pµ´ µSq. (2.29)

The quantity µ ´ µS does not depend on r, so it can be absorbed by the external
potential which, according to the HK theorem, is uniquely determined by the density
within an additive constant. Finally, equation (2.20) may be rewritten, with vSprq given
by (2.29):

„

´
1
2∇2 ` vsrnsprq



φiprq “ εiφiprq, (2.30)

vsrnsprq “ vextprq ` vHrnsprq ` vxcrnsprq. (2.31)

Equations (2.30) and (2.21) are the so-called Kohn-Sham equations10. They can be
transformed into a generalized eigenvalue problem through expansion of the KS orbitals
in a basis and then solved self-consistently. This KS approach is, in principle, exact if
the exact form of the exchange-correlation functional is used. However, implementation
of the exact form is unfeasible and one has to resort to approximations.

8This term is the Hartree potential.
9The potential vS is sometimes called Kohn-Sham effective potential and is local.

10KS orbitals and energies have no physical meaning.
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Chapter 3

The Exchange-Correlation Functional

In order to surpass the complexity of the intricate motion of particles in an interact-
ing system, a simplified picture emerged in which systems of interacting real particles
are described in terms of approximately non-interacting fictitious bodies called "quasi
particles". In particular, the "quasi electron" is composed by a bare particle plus the
surrounding exchange-correlation cloud, which screens real particles [20]. The exchange-
correlation cloud is created by three effects: paq self-interaction correction, a classical
effect which guarantees that an electron cannot interact with itself, pbq the (quantum)
Pauli exclusion principle, which tends to keep two electrons with parallel spins apart in
space, and pcq the Coulomb repulsion, which tends to keep any two electrons apart in
space. Effects paq and pbq are responsible for the exchange energy, which gives a "static"
picture of this cloud, while effect pcq is responsible for the correlation energy, the "moving
part", i.e. the energy component resulting from correlations between the real particle
and the movement of other particles.

Due to the infeasibility of implementing the exact expression for Ec and thus for Exc,
one usually resorts to approximations. This chapter will focus on the construction of
such approximations, following the hierarchical structure named Jacob’s ladder. The
three simplest approximations (LDA, GGA and meta-GGA) will be presented in their
spin-polarized versions (LSDA, spin-GGA and spin-meta-GGA) since they are natural
extensions of their spin-unpolarized counterparts. In the end, exact exchange (EXX)
will be defined in the context of DFT and the OPM will be introduced as a method to
construct the multiplicative EXX potential. Two further simplifications of the OPM will
be analysed: the KLI approximation and the even simpler Slater approximation.

3.1 Jacob’s Ladder
The main line of development of density functionals for the exchange-correlation

energy suggests a Jacob’s ladder in which the level of accuracy of the approximation
for Exc increases as one climbs from the Hartree world up to the heaven of "chemical
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accuracy"1.

Figure 3.1: Jacob’s ladder of density functional approximations for the xc energy, as proposed
by John Perdew [19, 27].

3.1.1 Ground Level: Hartree World
The removal of vxc from the KS equations leads to the Hartree equations without

self-interaction correction and thus to a full neglecting of exchange and correlation effects.

3.1.2 Level 1: LSDA
The local spin-density approximation LSDA (LDA when applied to spin-unpolarized

systems) is a functional of only the spin-up and spin-down electronic densities: nÒprq
and nÓprq, respectively. In this approximation, the expression for an arbitrary energy
component G is given by

GLSDArnÒ, nÓs “

ż

drnprq gLSDApnÒprq, nÓprqq, (3.1)

where gLSDApnÒprq, nÓprqq is that energy component per particle in an electron gas
with uniform spin densities nÒ and nÓ, and is the sum of the exchange energy density ex

1"Chemical accuracy" is the accuracy needed to predict the rates of chemical reactions (energy errors
of the order of 1 kcal/mol “ 0.0434 eV).
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with the correlation energy density ec.
The exchange energy per particle in a spin-channel is given by the LDA expression,

with nÓ,Ò Ñ n and nÒ,Ó Ñ 0

eLDAx pnq “ ´
3

4π p3π
2nq1{3 “ ´

3
4π
p9π{4q1{3

rs
, (3.2)

rs being the average distance between two electrons in the gas.
By constrast, analytic expressions for eLDAc pnq are known only on extreme limits.

The high-density limit is obtained from many-body perturbation theory:

eLDAc pnq “ c0 ln rs ´ c1 ` c2 rs ln rs ´ c3 rs ` ... prs Ñ 0q. (3.3)

The low-density limit is the limit in which the uniform fluid phase is unstable against
the formation of a close-packed Wigner lattice of localized electrons [6]:

eLDAc pnq “ ´
d0
rs
`

d1

r
3{2
s

` ... prs Ñ8q. (3.4)

Some of the constants in (3.3) and (3.4) are found by fitting to accurate Quantum
Monte Carlo energies.

By construction, LSDA is exact for a uniform density or, more generally, for a density
that varies slowly over space. More precisely, LSDA should be valid when the length
scale of the density variation is large in comparison with length scales set by the local
density, such as the Fermi wavelength 2π{kF or the screening length 1{ks. Although this
condition is rarely satisfied in real electronic systems, LSDA still is successful in those
cases where electrons see an almost-complete cancellation between the nonlocalities of
exchange and correlation2. In the end, LSDA always fails in the one-electron limit [6] as
a consequence of the non-cancellation of self-interaction.

On the whole, LSDA has been a standard approximation in solid state physics but
it was never popular in the world of quantum chemistry because although it provides
reasonable molecular geometries and vibration frequencies, it can strongly overestimate
atomization energies. Atomization energy errors were greatly reduced by the spin gener-
alized gradient approximation (spin-GGA).

3.1.3 Level 2: Spin-GGA
The spin generalized gradient approximation spin-GGA is a functional of both the

electronic densities and their gradients ∇nÒprq and ∇nÓprq:

Espin´GGAxc rnÒprq, nÓprqs “
ż

drnprq espin´GGAxc pnÒprq, nÓprq,∇nÒprq,∇nÓprqq. (3.5)

2This is the reason why LSDA is almost always a better approximation for Exc than it is for Ex and
Ec separately.
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This functional is the natural step beyond LSDA, thus preserving all the good features
of the latter and even improving over others, mainly over those related to atomic and
molecular systems. Unfortunately, spin-GGA cannot contribute to solving some of LSDA
problems, like the self-interaction error. As an alternative, one could be tempted to think
that, instead of spin-GGA, LSDA successor would be more like a gradient expansion
which would systematically correct it. Such a functional is obtained through the gradient
expansion method (GEA).

In order to infer to what extent a GEA would be advantageous, we begin with the
(without the inclusion of spin, for the sake of simplicity) definition of two measures of
inhomogeneity. The first one

s “
|∇n|
2kFn

(3.6)

is a reduced density gradient that measures how fast and how much the density varies
on the scale of the local Fermi wavelength 2π{kF . The second one

t “
|∇n|
2ksn

(3.7)

measures density variation on the scale of the screening length 1{ks. Therefore, the
quantity (3.6) is relevant for the expansion of the exchange energy functional 3:

Exrnprqs “ Ax

ż

drnprq4{3r1` µs2 ` ...s. (3.8)

For the correlation part, it matters to expand in (3.7) and so

Ecrnprqs “
ż

drnprqrecpnq ` βpnqt2 ` ...s. (3.9)

Finally, the GEA approximation (which is a special case of a GGA) is obtained by
neglecting the dotted terms in (3.8) and (3.9). For this functional type, while the form
of the density is easy to guess, the coefficients can only be calculated by hard work,
summarily described on p.37 of [6]. Numerical tests of these gradient expansions for
atoms show that the second-order gradient term provides a modestly useful correction
to the local spin density approximation for Ex, but seriously worsens LSDA’s results for
Ec and Exc, predicting positive correlation energies.

To conclude, both LSDA and spin-GGA are exact only for the electron gas of uniform
density and represent controlled extrapolations away from the slowly-varying limit (since
they preserve many features of the exact Exc), while (spin-)GEA is an uncontrolled
extrapolation.

3In order to perform this expansion it is necessary to known some desired scaling properties of the
exchange energy functional (equation (1.106) of [6])
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3.1.4 Level 3: Spin-meta-GGA
The meta-GGA approximation results from adding the ingredients ∇2nÒprq, ∇2nÓprq,

τÒ and τÓ (or at least one of them) to the functional dependence:

Espin´MGGA
xc rnÒprq, nÓprqs “

ż

drnprq espin´MGGA
xc pnÒ, nÓ,∇nÒ,∇nÓ,∇2nÒ,∇2nÓ, τÒ, τÓq.

(3.10)
One of the new ingredients, τσ, is the Kohn-Sham orbital kinetic energy density for

electrons of spin σ and is an implicit functional of the density, since the density and the
Kohn-Sham orbitals are mathematically related:

τσprq “
1
2

occ
ÿ

i

|∇φiσprq|2. (3.11)

Among the functionals belonging to the hierarchy of Figure 3.1, meta-GGA is the
highest stage which avoids full nonlocality: LDA is a local functional of the density; GGA
is a semi-local functional of the density since it requires the density in an infinitesimal
neighborhood around r; meta-GGA is a fully nonlocal functional of the density, but a
semi-local functional of the orbitals.

In practice, meta-GGA improves GGA on the calculation of atomization energies,
metal surface energies and lattice constants for solids, but not of bond lengths of molecules,
especially for hydrogen bonds [27]. Additionally, meta-GGA is self-correlation free, i.e.

Ecrn, 0s “ 0 pN “ 1q, (3.12)
with rn, 0s denoting the density of both spin-channels.

3.1.5 Levels 4 and 5: Hyper-GGA
Hyper-GGA has exact exchange EXX4 and is a functional of the Kohn-Sham orbitals,

as well as all the other variables previously mentioned. At its lowest level (level 4), the
correlation energy density is approximated while at level 5 a portion of exact correlation
already starts to be implemented through the inclusion of non-occupied Kohn-Sham
orbitals.

The construction of ExcrnÒ, nÓs from the Kohn-Sham orbitals in hyper-GGA is what
probably is required to solve the self-interaction problem and other problems of LSDA
and spin-GGA, which persist even when a self-interaction correction (SIC) is "manually"
added to LSDA.

3.2 Hybrid Functionals
Hybrid functionals are perhaps the most accurate density functionals in use for

quantum chemical calculations. The idea behind them is the junction of a fraction a of
4The exact exchange in DFT is summarily explained in section 3.4.5.
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exact (Hartree-Fock) exchange with approximate (DFT) exchange and correlation. The
simplest such hybrid functional is

Ehybxc “ aEexactx ` p1´ aqEGGAx ` EGGAc , (3.13)

where the mixing coefficient a - not equal to or close to 1, because full exact exchange
is incompatible with GGA correlation - is adjusted in order to reproduce experimental
values. Since Jacob’s ladder contains only functionals constructed without empirical
input, hybrid functionals are not considered as part of it.

3.3 Average Density Self-Interaction Correction
The Hartree potential acting on single-particle KS wavefunctions

vHrnsprq “
ż
řocc
k |φkpr1q|2

|r´ r1| dr1 (3.14)

contains a sum over all occupied states, therefore including the eigenvector it is acting
on.

This self-interaction term, corresponding (for the jth eigenvector) to

vSIprq “
ż

|φjpr1q|2

|r´ r1| dr1, (3.15)

should be entirely cancelled by the exact exchange potential functional. However,
because it is common practice to approximate exchange and correlation, the cancellation
is not exact and there remains a non-physical self-interaction error.

A rather crude though efficient way to alleviate the error consists of removing the
self- interaction by subtracting a fraction 1{N from the total density. The remaining
npN - 1q{N then characterizes the density of all the other electrons seen by the actual
spectator electron [16].

In what concerns the exchange-correlation energy term (and using LDA as an ex-
ample), it is corrected by the average density self-interaction correction in the following
way:

ELDA`ADSICxc rns “ ELDAxc rns ´
1
N
Eeerns

“

ˆ

1´ 1
N

˙

ELDAxc rns ´
1
N
Jrns.

(3.16)

3.4 Orbital-Dependent Exchange-Correlation Functionals
Given some orbital-dependent xc-functional, the first question to be addressed is the

evaluation of the corresponding multiplicative xc-potential vxc.
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3.4.1 Motivation
The motivation for orbital-dependent functionals - namely those implicit functionals

appearing on the top of Jacob’s ladder (Figure 3.1) - comes from the knowledge of those
situations where nowadays extensively used GGA fails:

• Heavy Elements There is a tendency of GGA to loose accuracy with increasing
nuclear charge. For light molecules, since GGA consistently stretches bond lengths
(Re) and reduces bond energies (De) compared with LDA, it corrects LDA’s un-
derestimation of Re and the accompanying overestimation of De. However, in the
case of heavy constituents LDA results are often rather close to the experimental
numbers, so that GGA overcorrects LDA values.

• Negative Ions If one electron moves sufficiently far from the nucleus, it must
experience the remaining net charge of the system, which consists of N´1 electrons
and N protons. However, vH still contains the Coulomb self-repulsion, which has
to be eliminated by vx. The component of vx which cancels the self-interaction in
the Hartree potential must be as nonlocal as vH itself. Since neither LDA or GGA
are nonlocal, this term stays and as a consequence it is not possible to reproduce
the 1{r behaviour of vx and vS , which is required to obtain a Rydberg series. The
system is then unable to bind an additional electron.

• Dispersion Forces In this case, LDA and GGA fail to reproduce this kind of van
der Waals forces due to the short-range nature of their correlation functional. In
order to succeed with this description, the correlation functional would have to be
nonlocal.

• Strongly Correlated Systems Some results suggest that the inappropriate handling
of self-interaction is responsible for the failure of LDA and the standard GGAs in
the description of strongly correlated systems.

3.4.2 Optimized Potential Method (OPM)
In order to produce single-particle orbitals we need to use the proper single-particle

potential: namely the one which is optimized in the sense that its orbitals minimize the
total-energy functional. In the case of orbital-dependent functionals, the usual procedure
of directly calculating the multiplicative potential vxc by taking the functional derivative
of Exc with respect to n, the electronic density, is not possible because the functional
dependence of φk on n is not known. Therefore, the traditional way of obtaining the
potential is substituted by what is called the Optimized Potential Method (OPM) [4,
28].

There are three different ways to derive the OPM equation which yield the multiplica-
tive xc-potential [6]. Here we will follow the total energy minimization derivation because
it represents the original approach and also shows more clearly the physics behind OPM.
The first step in this derivation consists of requiring that the total energy is stationary
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with respect to the KS potential. This requirement becomes intuitive if we recall that the
Hohenberg-Kohn theorem guarantees (for a system under a local external potential) that
there is a unique relation between n and vS and therefore the standard minimization of
Etot with respect to n can be replaced by a minimization with respect to vS :

δEtotrφk, εks

δvSprq
“ 0. (3.17)

The derivative in (3.17) can be transformed into derivatives with respect to φk and
εk, using the chain rule for functional differentiation:

δEtotrφk, εks

δvSprq
“

occ
ÿ

k

!

ż

dr1
”δφ˚kpr1q
δvSprq

δEtot
δφ˚kpr1q

` c.c.
ı

`
δεk

δvSprq
BEtot
Bεk

)

. (3.18)

Now it matters to find expressions for δEtot{δφ˚kprq and BEtot{Bεk. Once Etot is
related to TS , Exc, Eext and EH and the expressions for these energy functionals are
known, these functional derivatives can be derived in a straightforward manner:

δEtot
δφ˚kprq

“ Θk

”

´
∇2

2m ` vextprq ` vHprq
ı

φkprq `
δExc
δφ˚kprq

, (3.19)

BEtot
Bεk

“
BExc
Bεk

. (3.20)

One can then use KS equations to rewrite (3.19)

δEtot
δφ˚kprq

“ Θk

”

εk ´ vxcprq
ı

φkprq `
δExc
δφ˚kprq

. (3.21)

Returning to (3.18), the derivatives δφ˚k{δvS and δεk{δvS can be evaluated by varying
vS infinitesimally and looking at how φk and εk react, through KS equations:

!

´
∇2

2m ` vsprq ` δvsprq
)”

φkprq ` δφkprq
ı

“

”

εk ` δεk

ı”

φkprq ` δφkprq
ı

. (3.22)

To first order one thus finds
!

´
∇2

2m ` vsprq ´ εk
)

δφkprq “
”

δεk ´ δvsprq
ı

φkprq. (3.23)

Multiplication by φ˚kprq, integration over r and use of the unperturbed KS equation
then yield [3]

δεk “

ż

drφ˚kprqδvSprqφkprq. (3.24)

Moreover, the inhomogeneous differential equation can be solved with the aid of the
associated Green’s function,
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!

´
∇2

2m ` vSprq ´ εk
)

Gkpr, r1q “ δp3qpr´ r1q ´ φkprqφ˚kpr1q, (3.25)

Gkpr, r1q “
all
ÿ

l‰k

φlprqφ˚l pr1q
εl ´ εk

. (3.26)

In terms of the Green’s function, δφk is given by

δφkprq “ ´
ż

dr1 Gkpr, r1qδvSpr1qφkpr1q. (3.27)

From (3.27) and (3.24) it follows, respectively

δφ˚kprq
δvSpr1q

“ ´φ˚kpr1qGkpr1, rq, (3.28)

δεk
δvSprq

“ φ˚kprqφ˚kprq. (3.29)

Insertion of (3.28), (3.29), (3.20) and (3.21) into (3.18) leads to

ż

dr1
«˜

´

occ
ÿ

k

φ˚kprqGkpr, r1qφkpr1q ` c.c.

¸

pεk ´ vxcpr1qq ´
occ
ÿ

k

ˆ

φ˚kprqGkpr, r1q
δExc
δφ˚kpr1q

` c.c.

˙

ff

`

occ
ÿ

k

|φkprq|2
BExc
Bεk

“ 0

(3.30)

The inverse of δvs{δn is the static response function of the KS auxiliary system:

χSpr, r1q “
δnprq
δvSpr1q

“ ´

occ
ÿ

k

φ˚kprqGkpr, r1qφkpr1q ` c.c.. (3.31)

The inhomogeneity is defined as

Λxcprq “
occ
ÿ

k

!

´

ż

dr1
”

φ˚kprqGkpr, r1q
δExc
δφ˚kpr1q

` c.c.
ı

` |φkprq|2
BExc
Bεk

)

. (3.32)

After identification of χSpr, r1q and Λxcprq in (3.30) and usage of the orthogonality
relation (which follows from definition (3.26))

ż

drφ˚kprqGkpr, r1q “
ż

dr1Gkpr, r1qφkpr1q “ 0, (3.33)

one ends up with the OPM integral equation:
ż

dr1 χSpr, r1q vxcpr1q “ Λxcprq. (3.34)
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3.4.3 Krieger-Li-Iafrate (KLI) Approximation
OPM calculations are very inefficient. The main reason for this inefficiency is the

presence of the Green’s function both in the response function (3.31) and in the inhomo-
geneity (3.32), as this function depends on the complete spectrum, not just on occupied
states.

To solve this problem, Krieger, Li and Iafrate had the idea of approximating the
denominator of (3.26) by an average ∆ε̄

Gkpr, r1q «
all
ÿ

l‰k

φlprqφ˚l pr1q
∆ε̄ “

δp3qpr´ r1q ´ φkprqφ˚kpr1q
∆ε̄ , (3.35)

which, nevertheless, only speeds up the calculation of Gk, but not of the other OPM
ingredients.

Insertion into the OPM equation leads to

vKLIxc prq “ 1
2nprq

occ
ÿ

k

!”

φ˚kprq
δExc
δφ˚kprq

` c.c.
ı

` |φkprq|2
”

∆vKLIk ´∆ε̄BExc
Bεk

ı)

, (3.36)

∆vKLIk “

ż

dr1
!

|φkpr1q|2vKLIxc pr1q ´ φ˚kpr1q
δExc
δφ˚kpr1q

)

` c.c.. (3.37)

In the exchange-only limit,

vKLIx prq “ 1
2nprq

occ
ÿ

k

!”

φ˚kprq
δEx
δφ˚kprq

` c.c.
ı

` |φkprq|2∆vKLIk

)

, (3.38)

∆vKLIk “

ż

dr1
!

|φkpr1q|2vKLIx pr1q ´ φ˚kpr1q
δEx

δφ˚kpr1q

)

` c.c.. (3.39)

and one does not have to bother with the BEx{Bεk term, which is identically 0 since
Ex only depends on the eigenvectors, not the eigenvalues.

There are two alternative methods to solve (3.38). One can either linearise the
exchange-only version of (3.36) and (3.37), thus determining ∆vKLIk without prior knowl-
edge of vKLIx or one can solve the problem self-consistently, starting from an approxima-
tion to ∆vKLIk . In the OCTOPUS code, the implemented alternative for the evaluation
of (3.38) is the one that implies linearisation (Appendix B).

3.4.4 Slater Approximation
The Slater approximation provides a simplification, beyond KLI, to the expression

for the multiplicative potential. The main ingredient to construct such a simplification is
the Slater potential [32], which arose from the necessity of simplifying the Hartree-Fock
equations. These equations can be regarded as ordinary Schrödinger equations for the
motion of electrons. Each electron moves in a slightly different potential field, which is
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computed by electrostatics from all the charges of the system, corrected by the removal
of an exchange charge, equal in magnitude to one electron and surrounding the electron
whose motion is being investigated. By forming a weighted average of the exchange
charges over the various electronic wavefunctions at a given point of space, we set up a
single averaged potential field (the Slater one) in which we can consider all electrons to
move, thus leading to a great simplification of the Hartree-Fock method [21]:

vslaterprq “
1

2nprq

occ
ÿ

k

” δEx
δφkprq

φkprq ` c.c.
ı

. (3.40)

.
This allows us to rewrite (3.38) in a more compact way

vKLIx prq “ vslaterprq `
1

2nprq

occ
ÿ

k

φ˚kprq∆vKLIk φkprq. (3.41)

The Slater approximation thus consists in discarding the second term in (3.41):

vKLIx prq « vslaterprq. (3.42)

3.4.5 Exact Exchange in DFT
The whole point of developing the OPM equations was to have a way of constructing

the multiplicative potential arising from orbital dependent energy functionals, like EXX.
At this point we note that the precise definition of Exrns is somewhat arbitrary. It is

nevertheless the natural first choice to define the exchange functional in such a way that
the total energy EHF and density nHF of the Hartree-Fock (HF) approximation are re-
produced in DFT if the correlation functional is completely neglected. The corresponding
ground state exchange-only energy functional Ẽrns,

Ẽrns “ TSrns ` Eextrns ` Jrns ` Ẽxrns (3.43)

is hence to be minimized by nHF ,

EHF “ ẼrnHF s, (3.44)

while for any other density one must have

EHF ă Ẽrns, @n ‰ nHF . (3.45)

One could then set up a KS scheme on the basis of Ẽxrns. Unfortunately, this
definition creates dificulties:

• No explicit expression for the exact functional Ẽxrns is available;

• No virial relation can be formulated;

• A gradient expansion does not exist for Ẽxrns.
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For these reasons, an alternative definition of the exchange energy functional has
become the standard in DFT,

Exrns :“
@

Φmin
n

∣∣∣ V̂ee ∣∣∣Φmin
n

D

´ Jrns, (3.46)

where
∣∣Φmin

n

D

is the single Slater determinant that yields n and minimizes xT̂ y. By
evaluating explicitly (3.46), one obtains the standard Fock expression written, however,
in terms of the KS orbitals

Exrns “ ´
1
2

occ
ÿ

kl

ż

dr
ż

dr1φ
˚
kprqφlprqφ˚l pr1qφkpr1q

|r´ r1| . (3.47)

In spite of the agreement of functional (3.46) with the Fock expression, the density
which minimizes the total x-only energy functional of DFT,

Ex´onlyrns :“ TSrns ` Eextrns ` EHrns ` Exrns, (3.48)

is not identical with nHF . As a matter of fact, the multiplicative nature of the total
KS potential vS represents a subsidiary condition in the minimization procedure. In the
HF approach one thus has some additional variational freedom, which, in general, leads
to a lower energy minimum,

EHF ď min
n
Ex´onlyrns. (3.49)

In other words, HF orbitals are not included in the variational space available to x-only
DFT, which implies that the insertion of the HF ground state density into Ex´onlyrns
does not yield the HF ground state energy,

EHF ‰ Ex´onlyrnHF s ě min
n
Ex´onlyrns. (3.50)

The x-only DFT minimization coincides with the HF scheme only in those special
situations when the HF potential can be recast as a local potential for the occupied
states. The main differences between the two approaches are the following:

• While the HF wavefunction is meant to provide an approximation for the many-
body wavefunction (has physical meaning) itself, the Kohn-Sham wavefunction is
meant to reproduce the exact particle density;

• While Hartree-Fock orbitals are produced by a non-local effective potential, Kohn-
Sham orbitals are produced by a single particle equation with a local effective
potential. Nevertheless, and as can be seen in Table 3.1, the additional variational
freedom of the HF approach thus appears to be of very limited importance;

• The EXX (Kohn-Sham exact exhange) potential decays asymptotically as ´1{r for
finite systems and this asymptotic form acts on all orbitals. Therefore, the KS EXX
potential supports a whole Rydberg series of unoccupied bound states as well as
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negative ions. By contrast, the HF potential decays as ´1{r for occupied orbitals,
but decays exponentially for virtual orbitals. Therefore, the HF approximation
does not support a Rydberg series [8, 1].

Table 3.1: Exchange-only ground state energies of closed-subshell atoms: self-consistent OPM
results versus HF energies (all energies in mhartree) [6].

Atom EOPMtot EHFtot ´ E
OPM
tot

He ´2861.7 0.0
Be ´14572.4 ´0.6
Ne ´128545.4 ´1.7
Mg ´199611.6 ´3.1
Ar ´526812.2 ´5.3
Ca ´676751.9 ´6.3
Zn ´1777834.4 ´13.8
Kr ´2752042.9 ´12.0
Sr ´3131533.4 ´12.2
Pd ´4937906.0 ´15.0
Cd ´5465114.4 ´18.7
Xe ´7232121.1 ´17.3
Ba ´7883526.6 ´17.3
Yb ´13391416.3 ´39.9
Hg ´18408960.5 ´31.0
Rn ´21866745.7 ´26.5
Ra ´23094277.9 ´25.8
No ´32789472.7 ´39.5
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Chapter 4

Time-Dependent Density Functional
Theory (TDDFT)

There exists a necessity to extend DFT to systems under the influence of time-
dependent external potentials V̂extpr, tq, so as to provide a treatment of excitations and
more general time-dependent phenomena.

In this context, two regimes can be observed: if the time-dependent potential is
weak, it is sufficient to resort to linear-response theory to study the system; if the time-
dependent potential is strong (such as in the case of strong laser fields), a full solution
to Kohn-Sham equations is required.

The aim of this chapter is to extend its predecessors to include time-dependence. As
so, the first sections will be a reformulation of DFT foundations and exchange-correlation
functionals. Following it, there is a whole new section dedicated to characterising elec-
tronic response to external fields, based on the evaluation of the absorption cross-section.
The latter is intimately related to the concept of dynamical polarizability, which will
also be defined.

4.1 The Basics of TDDFT
4.1.1 Hohenberg-Kohn in TDDFT

In time-dependent systems there is no variational principle on the basis of the total
energy for it is not a conserved quantity. There exists, however, a quantity analogous to
the energy, the quantum mechanical action

ArΨs “
ż t1

t0

dt xΨptq| i B
Bt
´ Ĥptq |Ψptqy , (4.1)

which provides a stationary point - but no minimum - at the solution of the time-
dependent Schrödinger equation. Anyhow, even on the basis of the quantum mechanical
action, the HK theorem cannot be trivially generalized to time-dependent systems and
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a new theorem - the Runge-Gross theorem [29] - is needed to extend HK to arbitrary
time-dependent situations (described by v-representable densities).

Statement 1 (Runge-Gross theorem) For every single-particle potential vextpr, tq which
can be Taylor expanded around t “ t0 and for a given fixed initial state Ψpt0q “ Ψ0, the
map G : vextpr, tq Ñ npr, tq can be inverted up to an additive merely time-dependent
function in the potential.

Proof of Statement 1
If a given potential vext is Taylor expandable around the initial time t0, then

vextpr, tq “
all
ÿ

k

ckprqpt´ t0qk, (4.2)

ckprq “
1
k!
Bk

Btk
vextpr, tq

ˇ

ˇ

ˇ

t“t0
. (4.3)

Moreover, if two potentials are different by more than a purely time-dependent
function, at least one of the coefficients in (4.3) will differ by more than a constant, i.e.

Dkě0 : ukprq ‰ constant, (4.4)

with

ukprq “
Bk

Btk
rv
p1q
extpr, tq ´ v

p2q
extpr, tqs

ˇ

ˇ

ˇ

t“t0
, (4.5)

and vp1qext, v
p2q
ext being two different external single-particle potentials.

Firstly, it will be demonstrated that if vp1qext ‰ v
p2q
ext ` cptq, then current densities jp1q

and jp2q

jpr, tq “ xΨptq| ĵprq |Ψptqy , (4.6)

are also different, with

ĵprq “ ´ 1
2i

!”

∇ψ̂:prq
ı

ψ̂prq ´ ψ̂:prq
”

∇ψ̂prq
ı)

. (4.7)

Therefore, as the quantum-mechanical equation of motion is valid for any operator
Ôptq

i
d

dt
xΨptq| Ôptq |Ψptqy “ xΨptq| i B

Bt
Ôptq `

”

Ôptq, Ĥptq
ı

|Ψptqy , (4.8)

it may be applied to the current density, giving

i
d

dt
jp1qpr, tq “

A

Ψp1qptq
∣∣∣ ”ĵprq, Ĥp1qptqı ∣∣∣Ψp1qptqE , (4.9)

i
d

dt
jp2qpr, tq “

A

Ψp2qptq
∣∣∣ ”ĵprq, Ĥp2qptqı ∣∣∣Ψp2qptqE . (4.10)
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Densities and current densities of the two systems must be equal at t0 since the
starting point was a fixed many-body state. Also, at that time the difference between
the two equations of motion is given by:

i
d

dt

”

jp1qpr, tq ´ jp2qpr, tq
ıˇ

ˇ

ˇ

t“t0
“ xΨ0|

”

ĵprq, Ĥp1qpt0q ´ Ĥp2qpt0q
ı

|Ψ0y

“ xΨ0|
”

ĵprq, vp1qextpr, t0q ´ v
p2q
extpr, t0q

ı

|Ψ0y

“ in0prq∇
”

v
p1q
extpr, t0q ´ v

p2q
extpr, t0q

ı

.

(4.11)

1

At this point, if it is assumed that (4.4) is fulfilled already for k “ 0, then the
derivative on the left-hand side of (4.11) differs from zero and the two current densities
will consequently deviate for t ą t0. Alternatively, if the criterion is verified only for
k ą 0, the equation of motion should be applied k ` 1 times, in order to obtain

dk`1

dtk`1

”

jp1qpr, tq ´ jp2qpr, tq
ı
ˇ

ˇ

ˇ

t“t0
“ n0prq∇ukprq. (4.15)

Again, the right-hand side differs from 0, which implies that the two current densities
differ for t ą t0.

The second part of the proof consists of showing that a difference in current densities
jp1q ‰ jp2q for all t ą 0 implies np1q ‰ np2q. To prove that, we first evaluate the continuity
equation

1

B

Bt
j “ ´ iN2

ż

dr2...drN
B

Bt
pΨ:∇Ψ´Ψ∇Ψ:q

“ ´
iN

2

ż

dr2...drN p
BΨ:

Bt
∇Ψ`Ψ:∇BΨ

Bt
´
BΨ
Bt

∇Ψ: ´Ψ∇BΨ
:

Bt
q

“
N

2

ż

dr2...drN
´

pHΨ:q∇Ψ´Ψ:∇pHΨq ` pHΨq∇Ψ: ´Ψ∇pHΨ:q
¯

(4.12)

∆v “ v
p1q
extpr, t0q ´ v

p2q
extpr, t0q (4.13)

B

Bt

”

jp1qpr, tq ´ jp2qpr, tq
ıˇ

ˇ

ˇ

t“t0
“
N

2

ż

dr2...drN
´

∆vΨ:∇Ψ´Ψ:∇p∆vΨq `∆vΨ∇Ψ: ´Ψ∇p∆vΨ:q
¯ˇ

ˇ

ˇ

t“t0

“ ´
N

2

ż

dr2...drN
´

Ψ:p∇∆vqΨ`Ψp∇∆vqΨ:
¯ˇ

ˇ

ˇ

t“t0

“ ´N

ż

dr2...drN |Ψ|2∇∆v
ˇ

ˇ

ˇ

t“t0

“ ´n0prq∇
”

v
p1q
extpr, t0q ´ v

p2q
extpr, t0q

ı

(4.14)
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B

Bt

”

np1qpr, tq ´ np2qpr, tq
ı

“ ´∇.
”

jp1qpr, tq ´ jp2qpr, tq
ı

. (4.16)

As before, we seek for the kth time derivative of the external potential, so we take
the pk ` 1qth time-derivative of equation (4.16) to obtain (at t “ t0)

Bk`2

Btk`2

”

np1qpr, tq ´ np2qpr, tq
ıˇ

ˇ

ˇ

t“t0
“ ´∇ ¨

Bk`1

Btk`1

”

jp1qpr, tq ´ jp2qpr, tq
ıˇ

ˇ

ˇ

t“t0

“ ´∇.
”

n0prq∇ukprq
ı

.

(4.17)

While assuming that ∇.
”

n0prq∇ukprq
ı

“ 0 with ukprq ‰ constant, we then apply
Green’s theorem

ż

drn0prq
”

∇ukprq
ı2
“ ´

ż

drukprq∇.
”

n0prq∇ukprq
ı

`

ż

S
n0prqukprq∇ukprq.dS, (4.18)

and we note that the first term on the right-hand side is zero by assumption and
the second one vanishes in the limit r Ñ 8 (if density decays in a reasonable manner).
Consequently, either n0prq is 0 or ∇ukprq is 0. As the density cannot be zero for all r, the
second possibility must be verified, but as that would contradict our initial assumption,
according to which uk is not a constant, then ∇.

”

n0prq∇ukprq
ı

‰ 0 and np1q ‰ np2q for
t ą t0, @k ě 0. ˝

Statement 2 The action integral (4.1) is a functional of the density (Arns) and has a
stationary point at the exact ground state density of the system, i.e.

δA

δnpr, tq “ 0 (4.19)

Proof of Statement 2
Although the wavefunction is determined by the density only within a TD phase

factor (not uniquely determined), the expectation value

xΨptq| i B
Bt
´ Ĥptq |Ψptqy “ xΨptq| i B

Bt
´ T̂ ´ Ŵ ´ V̂ ptq |Ψptqy (4.20)

is uniquely determined since the function Cptq contained in the potential V̂ ptq is
cancelled by the time derivative of the time-dependent phase in the wavefunction 9αptq “
Cptq. Therefore, the action is a unique functional of the density and since it is stationary
for the exact solution of the TD Schrödinger equation, the corresponding action density
functional must be stationary for the exact TD ground state density of the system.
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4.1.2 TD Kohn-Sham Scheme
In TD Kohn-Sham equations

i
B

Bt
φipr, tq “

”

´
∇2

2 ` vspr, tq
ı

φipr, tq, (4.21)

vspr, tq “ vextpr, tq ` vHpr, tq ` vxcpr, tq, (4.22)
all right-hand terms in (4.22) except vxc are the same as in the static case, but with

a time-dependence introduced via the density n. The exception, the time-dependent xc
potential, is written as the functional derivative of the xc part of Ã

vxcpr, tq “
δÃxc
δnpr, τq

ˇ

ˇ

ˇ

npr,tq
, (4.23)

where Ã is a new action functional defined (according to Keldish formalism [15]) to
solve a problem related to causality.

4.2 TD Exchange-Correlation Functionals
4.2.1 Adiabatic Approximations

In the adiabatic approximation of exchange-correlation energy (explicit density) func-
tionals, the same functional form is applied, but its evaluation is performed at each time
with a time-dependent density npr, tq, giving an xc functional that is local in time:

vadiabaticxc “ vxcrnsprq
ˇ

ˇ

ˇ

n“npr,tq
. (4.24)

4.2.2 TD Optimized Potential Method
In order to derive a time-dependent generalization of the OPM [33] we consider an

N -electron system at some finite time t0 which for all times up until t0 has been in the
ground state associated with a time-independent potential vSprq. We assume that the
corresponding stationary OPM problem has been solved for that system, i.e. a local
effective potential and a set of N single-particle orbitals tφju - with energy eigenvalues εj
- minimizing an energy functional are assumed to be known. From t0 on, an additional
time-dependent potential is switched on and stays so until an arbitrary time t1. This
way, in order to have a TDOPM, one starts by writing the quantum mechanical action
in terms of KS orbitals2:

Arφjs “
occ
ÿ

j

ż t1

´8

dt

ż

drφ˚j pr, tq
”

i
B

Bt
`

∇2

2 ´vextpr, tq´vHpr, tq
ı

φjpr, tq´Axcrφjs. (4.25)

2In order to recover the static limit from the time-dependent formalism one had to extend the time
integral in (4.25) to ´8.
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We then make use of Schrödinger’s equation to further simplify it

i
B

Bt
φjpr, tq “

”

´
∇2

2 ` vSpr, tq
ı

φjpr, tq ô
”

i
B

Bt
`

∇2

2 ´ vextpr, tq ´ vHpr, tq
ı

φjpr, tq “ vxcpr, tqφjpr, tq,
(4.26)

with φjpr, tq “ ψjprqexpr´iεjpt´ t0qs for ´8 ă t ď t0:

Arφjs “
occ
ÿ

j

ż t1

´8

dt

ż

drφ˚j pr, tqvxcpr, tqφjpr, tq ´Axcrφjs. (4.27)

Just as in the time-independent version of the OPM we were searching for the potential
that minimized the energy, when time-dependence is included, we start looking for the
potential that makes the action stationary. In mathematical language, this translates to

δArφjs

δvSpr, tq
“

occ
ÿ

j

ż 8

´8

dt1
ż

dr1
´ δArφjs

δφ˚j pr1, t1q
δφ˚j pr1, t1q
δvSpr, tq

` c.c.
¯

“ 0. (4.28)

The first multiplicative quantity on the right-hand side of (4.28) corresponds to the
functional derivative of (4.27) with respect to the complex conjugate of the jth KS
orbital

δArφjs

δφ˚j pr1, t1q
“ Θpt1 ´ t1qvxcpr1, t1qφjpr1, t1q ´Θpt1 ´ t1q

δAxc
δφ˚j pr1, t1q

“

”

vxcpr1, t1q ´
1

φjpr1, t1q
δAxcrφjs

δφ˚j pr1, t1q

ı

φjpr1, t1qΘpt1 ´ t1q,
(4.29)

or

δArφjs

δφ˚j pr1, t1q
“

”

vxcpr1, t1q ´ u˚xc jpr1, t1q
ı

φjpr1, t1qΘpt1 ´ t1q, (4.30)

with u˚xc j being a new defined potential:

u˚xc jpr1, t1q “
1

φjpr1, t1q
δAxcrφjs

δφ˚j pr1, t1q
. (4.31)

In order to evaluate the second multiplicative factor δφ˚j pr1, t1q{δvSpr, tq, we consider
two sets of orbitals: tφjpr, tqu, representing unperturbed states with null variations with
respect to variations in the potential at t “ t1; tφ1jpr, tqu which solve the backward
Schrödinger equation

i
B

Bt
φ1jpr, tq “

´

´
∇2

2 ` vSpr, tq ` δvSpr, tq
¯

φ1jpr, tq, j “ 1, ..., N, (4.32)
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subject to the initial condition φ1jpr, t1q “ φjpr, t1q. Equation (4.32) cannot be treated
with time-dependent perturbation theory as the unperturbed Hamiltonian already has
a time-dependence. Alternatively, one uses Dirac’s method of variation of constants
[9]. Following the method, we first expand the perturbed wavefunction in terms of the
unperturbed set

φ1jpr, tq “
all
ÿ

k

cjkptqφkpr, tq (4.33)

and insert this expansion in (4.32). The resulting equation

i
all
ÿ

k

9cjkptqφkpr, tq “
all
ÿ

k

cjkptqδvSpr, tqφkpr, tq (4.34)

is then multiplied by φ˚l pr, tq and integrated over all space, yielding

9cjlptq “
1
i

all
ÿ

k

cjkptq

ż

drφ˚l pr, tqδvSpr, tqφkpr, tq. (4.35)

We now insert the ansatz

cjkptq “ c
p0q
jk ptq ` c

p1q
jk ptq ` ... (4.36)

on (4.35), further collecting terms according to their order

9c
p0q
jl ptq “ 0

9c
p1q
jl ptq “

1
i

all
ÿ

k

c
p0q
jk ptq

ż

drφ˚l pr, tqδvSpr, tqφkpr, tq

...

(4.37)

Since cp0qjk ptq “ δjk and cp1qjk pt1q “ 0, then

c
p1q
jl ptq “

1
i

ż t

t1

dt1
ż

drφ˚l pr, t1qδvSpr, t1qφjpr, t1q. (4.38)

.
Finally, to first-order

δφjpr, tq “
all
ÿ

k

c
p1q
jk ptqφkpr, tq “ i

all
ÿ

k

ż t1

t
dt1dr1 φ˚kpr1, t1qδvSpr1, t1qφjpr1, t1qφkpr, tq (4.39)

and so
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δφjpr1, t1q
δvSpr, tq

“ i
all
ÿ

k

φ˚kpr, tqφjpr, tqφkpr1, t1qΘpt1 ´ tqΘpt´ t1q, (4.40)

δφ˚j pr1, t1q
δvSpr, tq

“ ´i
all
ÿ

k

φkpr, tqφ˚j pr, tqφ˚kpr1, t1qΘpt1 ´ tqΘpt´ t1q. (4.41)

In closing, we insert (4.30) and (4.41) in (4.28)

occ
ÿ

j

ż `8

´8

dt1
ż

dr1
”

vxcpr1, t1q ´ u˚xc jpr1, t1q
ı

φjpr1, t1qΘpt1 ´ t1qˆ

”

´ i
all
ÿ

k

φkpr, tqφ˚j pr, tqφ˚kpr1, t1qΘpt1 ´ tqΘpt´ t1q
ı

` c.c. “ 0 ô

´ i
occ
ÿ

j

ż t1

´8

dt1
ż

dr1
”

vxcpr1, t1q ´ u˚xc jpr1, t1q
ı

φjpr1, t1qφ˚j pr, tqˆ

”
all
ÿ

k

φkpr, tqφ˚kpr1, t1qΘpt´ t1q
ı

` c.c. “ 0,

(4.42)

we define the retarded Green’s function of the system

´iG˚Rprt, r1t1qq “
all
ÿ

k

φkpr, tqφ˚kpr1, t1qΘpt´ t1q, (4.43)

and use it to write the final form of TDOPM equation

occ
ÿ

j

ż t1

´8

dt1
ż

dr1
”

vxcpr1, t1q ´ u˚xc jpr1, t1q
ı

φjpr1, t1qφ˚j pr, tqG˚Rprt, r1t1q ` c.c. “ 0. (4.44)

Furthermore, in the exchange-only limit

Axrφjs “ ´
1
2

occ
ÿ

j,k

ż t1

t0

dt

ż

dr
ż

dr1
φ˚j pr1, tqφkpr1, tqφjpr, tqφ˚kpr, tq

|r´ r1| , (4.45)

u˚x jpr1, t1q “
1

φjpr1, t1q
δAxrφjs

δφ˚j pr1, t1q
(4.46)

and

occ
ÿ

j

ż t1

´8

dt1
ż

dr1
”

vxpr1, t1q ´ u˚x jpr1, t1q
ı

φjpr1, t1qφ˚j pr, tqG˚Rprt, r1t1q ` c.c. “ 0. (4.47)
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4.2.3 TD Krieger-Li-Iafrate Approximation
At this point, just as in the time-independent version of the theory, we seek for

a simplified, easier to implement scheme for OPM. Therefore, one starts by rewriting
TDOPM, giving it a new shape

occ
ÿ

j

njpr, tqpjpr, tq ` c.c. “ ´i
occ
ÿ

j

njpr, tq
ż t

´8

dt1
´

uxc jpt
1q ´ u˚xc jpt

1q

¯

, (4.48)

with

pjpr, tq “ ´
i

φ˚j pr, tq

ż t1

´8

dt1
ż

dr1 rvxcpr1t1q´uxc jpr1, t1qsφ˚j pr1, t1q
all
ÿ

k‰j

φ˚kpr, tqφkpr1, t1qΘpt´t1q,

(4.49)

uxc jptq “

ż

drnjpr, tquxc jpr, tq. (4.50)

and
ż

drnjpr, tqpjpr, tq “ 0, (4.51)

where njpr, tq “ |φjpr, tq|2. From (4.48) one can then extract an expression for the
xc potential, just by evaluating φjpr, tq

”

´ i B
Bt `

∇2

2 ´ vSpr, tq
ı

φ˚j pr, tqpjpr, tq (which only
requires some straightforward algebra)

vxcpr, tq “
1

npr, tq

occ
ÿ

j

njpr, tq
1
2

´

u1xc jpr, tq ` u1˚xc jpr, tq
¯

`
1

npr, tq

occ
ÿ

j

njpr, tq
”

vxc jptq ´
1
2

´

uxc jptq ` u
˚
xc jptq

¯ı

`
i

4npr, tq

occ
ÿ

j

∇2njpr, tq
ż t

´8

dt1
´

uxc jpt
1q ´ u˚xc jpt

1q

¯

,

(4.52)

where

u1xc jpr, tq “ uxc jpr, tq`
1

njpr, tq

”1
2∇.ppjpr, tq∇njpr, tqq`injpr, tq

B

Bt
pjpr, tq`iJjpr, tq.∇pjpr, tq

ı

,

(4.53)
with the current density

Jjpr, tq “ p2iq´1
´

φ˚j pr, tq∇φjpr, tq ´ φjpr, tq∇φ˚j pr, tq
¯

(4.54)
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and

vxc jptq “

ż

drnjpr, tqvxcpr, tq. (4.55)

The advantage of (4.52) is that it is a very convenient starting point to building
approximations to vxcpr, tq, as an explicit functional of tφjpr, tqu, through approximation
of pjpr, tq. Among all possibilities, KLI [9] is the simplest one and is obtained by replacing
pj by its average value, which is 0 by means of (4.51):

vKLIxc pr, tq “ 1
npr, tq

occ
ÿ

j

njpr, tq
1
2

´

uxc jpr, tq ` u˚xc jpr, tq
¯

`
1

npr, tq

occ
ÿ

j

njpr, tq
”

vKLIxc j ptq ´
1
2

´

uxc jptq ` u
˚
xc jptq

¯ı

`
i

4npr, tq

occ
ÿ

j

∇2njpr, tq
ż t

´8

dt1
´

uxc jpt
1q ´ u˚xc jpt

1q

¯

.

(4.56)

Ultimately, the last term of (4.56) vanishes identically for a large class of exchange-
correlation actions, which includes all functionals depending on tφju only through com-
binations of φjpr, tqφ˚j pr1, tq. Specifically, the term vanishes in the exchange-only limit,
where

vKLIx pr, tq “ 1
npr, tq

occ
ÿ

j

njpr, tq
1
2

´

ux jpr, tq ` u˚x jpr, tq
¯

`
1

npr, tq

occ
ÿ

j

njpr, tq
”

vKLIx j ptq ´
1
2

´

ux jptq ` u
˚
x jptq

¯ı

.

(4.57)

4.2.4 TD Slater Approximation
At this point, we introduce the time-dependent Slater potential [6]

vslaterpr, tq “
1
2

occ
ÿ

j

|φjpr, tq|2

npr, tq

”

ux jpr, tq ` c.c.
ı

(4.58)

and substitute it on (4.57), thus obtaining (after some straightforward manipulations)

vKLIx pr, tq “ vslaterpr, tq `
1

2npr, tq

occ
ÿ

j

φ˚j pr, tq∆vKLIj ptqφjpr, tq, (4.59)

∆vKLIj ptq “

ż

dr
!

|φjpr, tq|2vKLIx pr, tq ´ |φjpr, tq|2ux jpr, tq
)

` c.c. (4.60)
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Once more, the Slater approximation consists of ignoring the second term on the
right of (4.59):

vKLIx pr, tq « vslaterpr, tq. (4.61)

4.3 Electronic Response to External Fields
4.3.1 Full Solution of TD Kohn-Sham Equations

Photoabsorption spectra can be calculated either by propagating the time-dependent
Kohn-Sham equations or by using linear-response theory. Here we will focus on the
former.

Accordingly, let us consider that the system is perturbed by a delta potential at t “ 0

vpr, tq “ ´k0xiδptq, (4.62)

where xi “ x, y, z are spatial coordinates, and k0, the amplitude, must be small in
order to keep the response linear 3 and dipolar. After an infinitesimal time interval, at
t “ 0`

φjpr, t “ 0`q “ T̂ exp
!

´ i

ż 0`

0
dt
”

ĤKS ` vpr, tq
ı)

φjpr, t “ 0q

“ exppik0xiqφjpr, t “ 0q,
(4.63)

where tφjpr, t “ 0qu are ground-state Kohn-Sham wavefunctions and T̂ is the time
ordering propagator, whose presence in (4.63) is justified by the explicit time-dependence
in the Kohn-Sham Hamiltonian. Kohn-Sham orbitals are then propagated during a finite
time.

4.3.2 Dynamical Polarizability
To begin with the introduction to the concept of dynamical polarizability [25], let us

consider a finite system of electrons and nuclei subject to an external electromagnetic
field. At the frequencies we are interested in, usually optical frequencies, the dimensions
of the atomic and molecular systems are much smaller than the wavelength of the field
and we can consider the fields to be uniform in space. Consequently

Eptq “ Ewcospwtq, (4.64)

where Ew is a vector that defines the amplitude and the polarization direction of the
field.

3In this case, linearisation is present in TDDFT as it is in linear-response theory, the difference being
that TDDFT is extendable to non-linear responses, just by using larger amplitudes for the delta potential.
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Usually, the response of the system is characterized by its dipole moment, which for
finite systems can be Taylor expanded

piptq “pip0q `
3
ÿ

j“1
αijpwqE

w
j cospwtq `

1
4

3
ÿ

j,k“1
βijkp0qEwj Ewk `

`
1
4

3
ÿ

j,k“1
βijkp2wqEwj Ewk cosp2wtq `

1
8

3
ÿ

j,k,l“1
γijklpwqE

w
j E

w
k E

w
l cospwtq`

`
1
24

3
ÿ

j,k,l“1
γijklp3wqEwj Ewk Ewl cosp3wtq ` ...,

(4.65)

with α being the dinamical polarizability tensor and γ and β being hyperbolarizability
tensors. If the perturbing field is small enough, non-linear terms in (4.65) can be neglected
and the induced dipole moment is, in frequency domain,

δppwq “ αpwqEpwq (4.66)

and in the context of the full solution to TD Kohn-Sham equations, the dynamical
polarizability can be obtained from

αipwq “ ´
1
k

ż

drxiF
”

npr, tq ´ npr, t “ 0q
ı

, (4.67)

where F stands for Fourier transform.

4.3.3 Absorption Cross-Section
The electric field in the absence of external sources is the one that solves the curl of

Maxwell’s equation ∇ˆE “ ´1
c
BB
Bt :

∇ˆ∇ˆE “ ´1
c

B

Bt
p∇ˆBq. (4.68)

Also, because B “ µH and ∇ˆH “ 1
c
BD
Bt ,

∇p∇ ¨Eq ´∇2E “ ´1
c

B

Bt

´µ

c

BD
Bt

¯

, (4.69)

which, since D “ εE and ∇ ¨D “ 0 (the last is valid only in the absence of external
sources), is equivalent to

∇2E “ εµ

c2
B2E
Bt2

. (4.70)

The general solution to this equation is

Epr, tq “ E0e
ipk¨r´wtq, (4.71)
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with k being a vector with direction equal to that of the propagating beam k̂

k “ w

c

?
εµk̂. (4.72)

Furthermore, for the class of non-magnetic materials (µ “ 1), one can define a
complex refractive index ñ “

?
ε “ n` iκ and so

Epr, tq “ E0e
ipw
c
nk̂¨r´wtqe´κ

w
c

k̂¨r. (4.73)

Let us now consider monochromatic radiation of frequency w and with direction
k̂ “ êz passing through a medium of thickness dz with Nd molecules per unit volume.
Equation (4.73) immediately simplifies to

Epz, tq “ Ep0, 0qeipn
w
c
z´wtqe´κ

w
c
z. (4.74)

Also, for such a system, an absorption cross-section σ can be defined which relates
the number of molecules per unit area Nddz with the attenuation of the intensity of the
beam:

dI

dz
“ ´NdσpwqI. (4.75)

The solution to this differential equation is, inside the medium,

Ipw, zq “ Ipw, 0qe´Ndσpwqz. (4.76)

Moreover, equations (4.74) and (4.76) are related since the intensity of the beam is
proportional to the square of the electric field. Therefore, by comparing the square of
the former with the latter, we obtain

Ndσpwq “
2κw
c
. (4.77)

Additionally, ñ “
?
ε “

?
1` 4πχe « 1` 2πχe, with χe being the magnetic suscepti-

bility and ñ “
?
ε “ n` iκ, giving:

Ndσpwq “
4πw
c

Imχe. (4.78)

Once that macroscopic polarization is related to the average microscopic dipole
moment per molecule by

Ppwq “ Ndxppwqy “ NdExαpwqy (4.79)

and P “ χeE,

χe “ Ndxαpwqy, (4.80)

then absorption cross-section [25] is finally given by
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σpwq “
4πw
c

Imxαpwqy. (4.81)

or

σpwq “
4πw
c

1
3Im

3
ÿ

i“1
αipwq. (4.82)
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Chapter 5

Spin Density Functional Theory
(SDFT)

Spin density functional theory (SDFT) stems from a Hamiltonian for interacting
electrons which includes a Zeeman coupling of the spin degrees of freedom to an external
magnetic field Bextprq. There are three practical reasons to use SDFT: p1q When an
external potential is spin-dependent; p2q Even when the potential is spin-independent,
we may be interested in the physical spin magnetization (e.g., in magnetic materials); p3q
Even when neither p1q nor p2q applies, our local and semi-local approximations typically
work better when we use SDFT instead of DFT.

In particular, the most general description that can be considered within SDFT,
the non-collinear one, does not require the magnetic field to have a constant direction
in space and can be naturally obtained if one accepts to employ exchange-correlation
functionals which explicitly depend on two-component Kohn-Sham spinors, as we will
see.

Notation
Thus, in the general non-collinear formalism, for weak magnetic fields, the Hamilto-

nian writes 1

Ĥ “ T̂ ` V̂ee ` Ŝ, (5.1)
where T̂ is the kinetic energy operator

T̂ “ ´
1
2

ÿ

τ“Ò,Ó

ż

dr ψ̂:τ prq∇2ψ̂τ prq, (5.2)

V̂ee is the electron interaction operator and Ŝ is the spin-potential operator

Ŝ “

ż

dr
´

ψ̂:Òprq ψ̂:Óprq
¯

Vspinprq
ˆ

ψ̂Òprq
ψ̂Óprq

˙

, (5.3)

1In order to make the Hamiltonian gauge invariant one should include the interaction of the current
with the vector potential. As it stands, Ĥ is appropriate for weak magnetic fields.

38



with ψ̂:τ prq and ψ̂τ prq being second quantization creation and annihilation fermion
field operators and Vspinprq being a 2ˆ 2 matrix of the spin-potential,

Vspinprq “
ˆ

VÒÒprq VÒÓprq
VÓÒprq VÓÓprq

˙

. (5.4)

Another way of writing this matrix is

Vspinprq “
ˆ

Vextprq ` µBBz
extprq µBpB

x
extprq ´ iB

y
extprqq

µBpB
x
extprq ` iB

y
extprqq Vextprq ´ µBBz

extprq

˙

(5.5)

or, in a more compact form,

Vspinprq “ VextprqI2ˆ2 ` µBBextprq ¨ σ, (5.6)

with the external potential and the magnetic field being given by

Vextprq “
VÒÒprq ` VÓÓprq

2 , (5.7)

µBB
x
extprq “

VÒÓprq ` VÓÒprq
2 , (5.8)

µBB
y
ext “

VÒÓprq ´ VÓÒprq
´2i , (5.9)

µBB
z
extprq “

VÒÒprq ´ VÓÓprq
2 , (5.10)

and σ being the vector of the Pauli spin matrices.
A consequence of this separable form for the spin-potential matrix is that the operator

for the spin-potential Ŝ can also be split into a sum of operators for the potential and
the magnetic field

Ŝ “ V̂ext ` B̂ext, (5.11)

where

V̂ext “

ż

dr n̂prqVextprq, (5.12)

B̂ext “

ż

dr m̂prq ¨Bextprq, (5.13)

n̂prq being the charge density operator

n̂prq “
ÿ

τ“Ò,Ó

ψ̂:τ prqψ̂τ prq, (5.14)

and m̂prq being the magnetization density operator
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m̂prq “ µB

´

ψ̂:Òprq ψ̂:Óprq
¯

σ

ˆ

ψ̂Òprq
ψ̂Óprq

˙

. (5.15)

Additionally, we can define the spin density N as a 2ˆ 2 matrix

N prq “ 1
2

„

nprqI2ˆ2 `
1
µB

mprq ¨ σ


, (5.16)

with

nprq “ nÒÒprq ` nÓÓprq, (5.17)

mxprq “ µBrnÒÓprq ` nÓÒprqs, (5.18)

´imyprq “ µBrnÒÓprq ´ nÓÒprqs, (5.19)

mzprq “ µBrnÒÒprq ´ nÓÓprqs. (5.20)

Kohn-Sham scheme
The presence of Bext in SDFT requires the usage of an additional basic density in

the formulation of the energy variational principle

Ev,B “ min
n,m

Ev,Brn,ms, (5.21)

with

Ev,Brn,ms “ F rn,ms `
ż

dr vextprqnprq `
ż

dr mprq ¨Bextprq. (5.22)

Further, at this point a Kohn-Sham scheme for SDFT may be introduced by assuming
non-interacting pv,Bq-representability of the interacting densities pn,mq. Then F rn,ms
may be decomposed as

F rn,ms “ TSrn,ms ` Jrns ` Excrn,ms. (5.23)

and the single-particle Kohn-Sham equation of SDFT reads
„

´
1
2∇2 ` vSprq ` µBσ ¨BSprq



Φiprq “ εiΦiprq, (5.24)

where Φiprq are two-component single-particle Pauli spinors.
What is more, as a special case of non-collinearity, there exists collinear SDFT, which

assumes that the external magnetic field, the exchange-correlation magnetic field and
the magnetization vector (mprq “ p0, 0,mprqq) are all parallel along a z-direction. In
practice, that corresponds to a decomposition of the Kohn-Sham spinors into spin-up
(σ “Ò) and spin-down (σ “Ó) orbitals, i.e., Φiprq “ pφi,Òprq, 0q or Φiprq “ p0, φi,Óprqq [7].

40



5.1 Non-Uniqueness Problem
In going from DFT to SDFT one faces what at first may seem a shocking surprise: the

Hohenberg-Kohn theorem as stated in DFT is not valid anymore [28]. In fact, the one-
to-one correspondence between the sets of external potentials and ground state densities
is missing and without a warranty that the spin-potential could be uniquely determined,
the KS system would not be unique.

Off course, even in DFT the mapping can be broken in a trivial way since there is
an infinite number of potentials, differing by an additive constant, that yield the same
ground state density. Also, the mapping vrΨs breaks down if finite basis sets are used to
represent wavefunctions [2]. Therefore, the correspondence is not always strictly unique
in DFT.

Instead, in multidensity DFT, such as SDFT, the mapping between the set of effective
potentials and the set of ground state densities can break down in a non-trivial way even in
the complete basis-set limit because inversion of Schrödinger’s equation does not establish
a unique relation between the set of densities and the set of conjugate potentials2.

The problem of non-uniqueness is tackled differently in the collinear and non-collinear
cases, as we should see in what follows.

5.1.1 Collinear SDFT
Since the mapping Ψrns remains intact (in collinear SDFT), and internal-energy

functionals can be defined exclusively in terms of wavefunctions,

F rns “ xΨrns| T̂ ` Û |Ψrnsy , (5.25)

then the functionals Evrns “ F rns ` V rns, TSrns “ xΦrns| T̂ |Φrnsy and Excrns “
F rns ´EHrns ´ TSrns still exist 3, where Φ stands for a Slater determinant, and Ψ for a
general many-body wavefunction 4.

5.1.2 Non-collinear SDFT
Before introducing the problem of invertibility arising within non-collinearity, let us

distinguish between pure- and impure-spin states:
2Reference [2] explores solutions to the breaking of Ψrns alone and to the breaking of both mappings.
3However, we stress out that we are only proving the existence of functionals, not their differentiability.

In fact, in open systems all these functionals are expected to display derivative discontinuities.
4Nevertheless, within the aim of collinear SDFT, Capelle and Vignale discovered two cases of freedom

in determining the spin-potential. First, for a system of electrons that are all spin-polarized in one
direction, say, nÒprq ą 0, nÓprq “ 0, the spin component of the potential in the other direction, VÓprq, is
completely arbitrary (as long as the system remains fully polarized). Even so, this kind of indeterminacy
cannot have any practical consequence as there are no electrons to experience the arbitrariness. Second,
together with the freedom of a constant shift in the potential, there is an additional freedom of a constant
shift in the magnetic field, B0, appearing because the magnetization operator commutes with Ĥ. Together,
and according to Capelle and Vignale, these two examples represent an accidental nonuniqueness (i.e.
arising from special features of the ground state) and a systematic nonuniqueness (i.e. arising from a
conserved quantity), respectively.
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• Pure-spin states are states which through a local rotation of the spin coordinates
may be transformed to have a definite number of spin-up and -down electrons;

• Impure-spin states are states which cannot be transformed to have a definite
number of spin-up and -down electrons under any local spin rotation.

In this context, impure-spin states are of special importance because it can be proven
that they do not lead to any kind of nonuniqueness [5]. On that account, the question
about the invertibility of the mapping between spin-potentials and ground states for non-
collinear spin Hamiltonians boils down to the existence or not of a local transformation
that spin diagonalizes Ĥ.

Theorem The Hamiltonian Ĥ cannot be transformed to spin-diagonal form, unless
the magnetic field is collinear.

Proof We begin the proof by introducing the general unitary transformation that
rotates locally, at every point in real space, the spin degrees of freedom,

Uprq “
ˆ

eiθprq coswprq ´eiζprq sinwprq
e´iζprq sinwprq e´iθprq coswprq

˙

, (5.26)

with θprq, ζprq and wprq real functions. The result of applying the transformation is
´

Ψ̂:Òprq Ψ̂:Óprq
¯

“

´

ψ̂:Òprq ψ̂:Óprq
¯

U :prq, (5.27)

for the second quantized fermion field operator;

T̂ “
1
2

ż

dr
´

Ψ̂:Òprq Ψ̂:Óprq
¯

r´i∇`As2
ˆ

Ψ̂Òprq
Ψ̂Óprq

˙

, (5.28)

for the kinetic-energy operator T̂ , where Aprq “ ´iUprq∇U :prq is a gauge vector
potential in spin space;

N̂Uτ “

ż

drΨ̂:τ prqΨ̂τ prq, τ “Ò, Ó, (5.29)

for the spin-up and -down number operators;

b̂U “ N̂UÓ ´ N̂UÒ, (5.30)

for the magnetization operator. In fact, a rotation in spin space may transform
locally b̂U to diagonal form, even though V̂ext and V̂ee do not change form since they are
independent of spin. Moreover, rotating back to the original spin space, we see that b̂U
is the operator of a magnetic field bU prq{µB:

b̂U “

ż

dr m̂prq ¨ bU prq
µB

, (5.31)

where bU prq is in general non-collinear.
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In practice, the question is whether an operator b̂U exists that commutes with Ĥ,
because in that case Ĥ could be brought to spin-diagonal form. To answer the question,
we need the commutator rĤ, b̂U s. Therefore, we have rV̂ee, b̂U s “ rV̂ext, b̂U s “ 0 and

rT̂ , b̂U s “ i
ÿ

α“x,y,z

ż

dr ĵαprq ¨∇bUαprq, (5.32)

rB̂ext, b̂U s “ 4i
ż

dr m̂prq ¨ Bextprq ˆ bU prq
µB

, (5.33)

where

ĵαprq “
i

2

"

r∇pψ̂:Òprqqψ̂
:

Óprqsσα
ˆ

ψ̂Òpr
ψ̂Óprqq

˙

´ pψ̂:Òprqψ̂
:

Óprqqσα
„

∇
ˆ

ψ̂Òprq
ψ̂Óprq

˙*

, α “ x, y, z.

(5.34)
These two commutators correspond to different physical quantities: irT̂ , b̂U s describes

the interaction of currents with vector potentials and irB̂ext, b̂U s the energy of a magnetic
moment in a magnetic field, and hence they cannot cancel each other. As so, in order
to have rĤ, b̂U s “ 0, each commutator must vanish separately. From (5.32), we have
∇bUαprq “ 0, i.e., bU is independent of r. From (5.33) we have Bextprq ˆbU “ 0 and so
Bextprq must be collinear, as it has to be parallel to bU , which does not depend on r. ˝

Hence, in the non-collinear case the Hamiltonian cannot be spin diagonalized by
a rotation in spin space, and for many-electron systems the mapping between spin-
potentials and ground states is invertible.

5.2 The Exchange-Correlation Functional
5.2.1 Non-collinear LSDA and GGA

The problem of obtaining the equivalent of the local spin-density approximation
(LSDA) and generalized gradient approximation (GGA) for the exchange and correla-
tion energy functional Exc in the non-collinear case was tackled by employing collinear
functionals to simulate non-collinearity. This way, the process begins with a rotation of
the magnetization density to locally spin-diagonal form,

mprq ¨ σ Ñ Uprqmprq ¨ σU :prq “Mzprqσz. (5.35)
Then, the locally diagonal spin magnetization Mzprq is viewed momentarily as if it

was the magnetization density of a collinear system and the corresponding exchange and
correlation collinear magnetic field Bz

xcprq is found by taking the functional derivative of
the collinear exchange and correlation functional E0

xc:

Bz
xcprq “

δE0
xcrn,Mzs

δMzprq
. (5.36)

Finally, Bz
xcprq is rotated back,
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Bz
xcprqσz Ñ U :prqBz

xcprqσzUprq “ Bxcprq ¨ σ, (5.37)

to obtain the non-collinear magnetic field Bxcprq.

5.2.2 Optimized Potential Method (OPM)
When dealing with the magnetic properties of many-electron systems, LDA- and

GGA-type approximations (within SDFT) are awkward to use in practical calculations
[30]:

• Landau LevelsWhen a uniform electron gas is exposed to an external magnetic field,
Landau levels form and, for given magnetic field, the xc energy density exhibits
derivative discontinuities as a function of the density whenever a new Landau level
is filled;

• Time-dependent extension As stated before, LDA’s and GGA’s non-collinear spin
extension is obtained through the assumption of local collinearity. Such approx-
imations that lead to local collinear magnetization and xc magnetic field cause
mprq ˆBxcprq to vanish everywhere in space and this fact renders the adiabatic
time-dependent extension of these functionals improper for the study of spin dy-
namics.

Alternatively, to solve those problems, it is attractive to use explicitly orbital-
dependent approximations to Exc because a natural non-collinear description is immedi-
ately obtained if one accepts to employ exchange-correlation functionals which explicitly
depend on two-component Kohn-Sham spinors without further restricting their form.

In order to derive the Optimized Effective Potential (OEP) equations in the general
non-collinear case, we start with the KS equation for two-component spinors Φi, which
has the form of a Pauli equation:

ˆ

´
1
2∇2 ` vSprq ` µBσ ¨BSprq

˙

Φiprq “ εiΦiprq. (5.38)

For a given external potential vext and magnetic field Bext, the total energy reads

Ern,ms “ TSrn,ms `
ż

nprqvextprqdr`
ż

mprq ¨Bextprqdr` Jrns ` Excrn,ms

“

occ
ÿ

i

εi ´

ż

nprqvxcprqdr´
ż

mprq ¨Bxcprqdr´ Jrns ` Excrn,ms.
(5.39)

The xc potential and xc magnetic field are given by

vxcprq “
δExcrn,ms
δnprq

and Bxcprq “
δExcrn,ms
δmprq

, (5.40)
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respectively.
Assuming that the densities pn,mq are non-interacting pv,Bq-representable, one may

minimize the total-energy functional over the effective scalar potential and magnetic
field:

δErn,ms
δvSprq

ˇ

ˇ

ˇ

BS

“ 0 and δErn,ms
δBSprq

ˇ

ˇ

ˇ

vS
“ 0. (5.41)

That being the case, for the energy functional (5.39), using the EXX approximation
to Exc, one obtains the following coupled integral equations for the exchange potential
and magnetic field:

δEx
δvSprq

“

ż

dr1
„

δEx
δnpr1q

δnpr1q
δvSprq

`
δEx
δmpr1q ¨

δmpr1q
δvSprq



“

“

ż

dr1
occ
ÿ

k

«

δΦ:kpr1q
δvSprq

δEx

δΦ:kpr1q
` c.c.

ff

,

(5.42)

δEx

δBpiqS prq
“

ż

dr1
«

δEx
δnpr1q

δnpr1q
δBpiqS prq

`

3
ÿ

j“1

δEx
δmpjqpr1q

δmpjqpr1q
δBpiqS prq

ff

“

“

ż

dr1
occ
ÿ

k

«

δΦ:kpr1q
δBpiqS prq

δEx

δΦ:kpr1q
` c.c.

ff

.

(5.43)

Following a procedure analogous to that applied to spin-unpolarized OPM:

δΦkpr1q
δvSprq

“

all
ÿ

j‰k

Φjpr1qΦ:jprq
εk ´ εj

Φkprq “ ´Gkpr1, rqΦkprq, (5.44)

δΦkpr1q
δBSprq

“

all
ÿ

j‰k

Φjpr1qΦ:jprq
εk ´ εj

σΦkprq “ ´µBGkpr1, rqσΦkprq. (5.45)

Moreover, through the use of perturbation theory, one can derive the sixteen compo-
nents of the linear response tensor

χnnpr1, rq “
δnpr1q
δvSprq

“ ´

occ
ÿ

k

Θk

”

Φ:kpr
1qGkpr1, rqΦkprq ` c.c.

ı

, (5.46)

χnmpr1, rq “
δnpr1q
δBSprq

“ ´µB

occ
ÿ

k

Θk

”

Φ:kprqσGkpr, r
1qΦkpr1q ` c.c.

ı

, (5.47)

χmnpr1, rq “
δmpr1q
δvSprq

“ µB

occ
ÿ

k

Θk

”

Φ:kprqGkpr, r
1qσΦkpr1q ` c.c.

ı

, (5.48)
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χpi,jqmmpr1, rq “
δmpiqpr1q
δBpjqS prq

“ µ2
B

occ
ÿ

k

Θk

”

Φ:kprqσjGkpr, r
1qσiΦkpr1q ` c.c.

ı

, (5.49)

and by using equations (5.40) and (5.44)-(5.49) in (5.42) and (5.43), one finally arrives
to the OEP equations:

ż

dr1
 

vxpr1qχnnpr1, rq `Bxpr1q ¨ χmnpr1, rq
(

“

“ ´

ż

dr1
occ
ÿ

k

#

Φ:kprqGkpr, r
1q

δEx

δΦ:kpr1q
` c.c.

+

,

(5.50)

ż

dr1
#

vxpr1qχpiqnmpr1, rq `
3
ÿ

j“1
Bpjqx pr1qχpj,iqmmpr1, rq

+

“

“ ´µB

ż

dr1
occ
ÿ

k

#

Φ:kprqσiGkpr, r
1q

δEx

δΦ:kpr1q
` c.c.

+

.

(5.51)

5.2.3 Krieger-Li-Iafrate (KLI) Approximation
Once more, a full solution of (5.50) and (5.51) requires evaluation and storage of

all occupied and unoccupied KS states. Such a problem is solved by approximating the
denominator in Gkpr, r1q (equation (5.44)) to an average value ∆ε̄:

Gkpr, r1q «
all
ÿ

l‰k

ΦlprqΦ:l pr1q
∆ε̄ “

δp3qpr´ r1q ´ ΦkprqΦ:kpr1q
∆ε̄ . (5.52)

Therefore, one reaches the KLI equations 5, with mprq “ µB
řocc
k Φ:kprqσΦkprq:

nprqvxprq´mprq ¨Bxprq “
1
2

occ
ÿ

k

#«

Φ:kprq
δEx

δΦ:kprq
` c.c.

ff

` Φ:kprqΦkprq∆vKLIk

+

, (5.53)

mprq
µB

vxprq ´ nprqµBBxprq “
1
2

occ
ÿ

k

#«

Φ:kprqσ
δEx

δΦ:kprq
` c.c.

ff

` Φ:kprqσΦkprq∆vKLIk

+

,

(5.54)

∆vKLIk “

ż

dr1
!

Φ:kpr
1q

”

vxpr1q ´ µBσ ¨Bxpr1q ´ u:x,kpr
1q

ı

Φkpr1q ` c.c.
)

, (5.55)

5The coefficient ∆ε̄ is ignored as it is irrelevant in the exact exchange level.
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u:x,kpr
1q “

1
Φkpr1q

δEx

δΦ:kpr1q
. (5.56)

Since one has to deal with relations between two groups of four objects, it is convenient
to use Einstein’s summation convention and the usual notation from Special Relativity,
even though this is not a relativistic theory. Accordingly, due to the use of atomic units,
one defines the metric matrix as νµ,v “ diagp1, 1, 1, 1q “ I4ˆ4. Also, we define the vector
exchange potential and the four-density as

vµxprq “ pvxprq,´µBBxprqq nµprq “
ˆ

nprq, mprq
µB

˙

, (5.57)

and by establishing the following four-vector

σµ “ pI2ˆ2,σq (5.58)

one can rewrite the four KLI equations in the compact form

MµvprqvKLIx,v prq “ Λµxprq, (5.59)

with

Mµv “

¨

˚

˚

˚

˚

˝

nprq mxprq
µB

myprq
µB

mzprq
µB

mxprq
µB

nprq 0 0
myprq
µB

0 nprq 0
mzprq
µB

0 0 nprq

˛

‹

‹

‹

‹

‚

(5.60)

and

Λµxprq “
1
2

occ
ÿ

k

#«

Φ:kprqσ
µ δEx

δΦ:kprq
` c.c.

ff

` Φ:kprqσ
µΦkprq∆vKLIk

+

, (5.61)

∆vKLIk “

ż

dr1
!

Φ:kpr
1q

”

σµv
KLI µ
x pr1q ´ u:x,kpr

1q

ı

Φkpr1q ` c.c.
)

, (5.62)

vKLI µx prq “
`

vKLIx prq,´µBBKLI
x prq

˘

. (5.63)

Besides, this system of equations can be inverted 6 in order to obtain a set of coupled
integral equations which can then be solved iteratively or linearised. Firstly, inverting
the matrix Mµv in (5.59) yields

vKLI µx prq “ ΓprqNµvprqΛx,vprq, (5.64)
6There is the question of whether rΓprqs´1 is 0 because when multiplied by the density it constitutes

the determinant of Mµv
prq. Reference [21] contains a few calculations on the conditions for Γ to be

different from zero.
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with

rΓprqs´1
“ nprq

„

n2prq ´ mprq ¨mprq
µ2
B



(5.65)

and

N00prq “ n2prq, (5.66)

N0iprq “ ´nprqmiprq
µB

“ N i0prq, (5.67)

N iiprq “ n2prq `
3
ÿ

j“1
pδij ´ 1q

m2
j prq
µ2
B

, (5.68)

N ij
i‰jprq “

miprqmjprq
µ2
B

. (5.69)

Secondly, in order to linearise (5.64), one calculates the scalar product σµvKLI µx :

σµv
KLI µ
x “ ΓσµNµvΛx,v “ Γ

ˆ

N0vΛx,v `N3vΛx,v N1vΛx,v ´ iN2vΛx,v
N1vΛx,v ` iN2vΛx,v N0vΛx,v ´N3vΛx,v

˙

(5.70)

and it can be easily obtained that

N0vprqΛx,vprq “ nprq
occ
ÿ

k

"

Φ:kprq
„

nprq
2 ´ σ ¨

mprq
2µB

 „

u:x,kprq `
∆vKLIk

2



Φkprq ` c.c.
*

,

(5.71)

N ivprqΛx,vprq “ ´
miprq
µB

occ
ÿ

k

"

Φ:kprq
„

nprq
2 ´ σ ¨

mprq
2µB

 „

u:x,kprq `
∆vKLIk

2



Φkprq ` c.c.
*

`
1

2Γprqnprq

occ
ÿ

k

"

Φ:kprqσi
„

u:x,kprq `
∆vKLIk

2



Φkprq ` c.c.
*

.

(5.72)

Combining (5.70)-(5.72), it comes that the resulting expression for σµvKLI µx prq is

σµv
µ
xprq “ 2Γprq

„

nprq
2 ´ σ ¨

mprq
2µB

 occ
ÿ

k

"

Φ:kprq
„

nprq
2 ´ σ ¨

mprq
2µB

 „

u:x,kprq `
∆vKLIk

2



Φkprq ` c.c.
*

`

`
1

2nprq

occ
ÿ

k

!

Σx,kprq ` Σ:x,kprq `∆kprq∆vKLIk

)

,

(5.73)
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with 7

Σx,kprq “

˜

Φ:kprqσ3u
:

x,kprqΦkprq Φ:kprqpσ1 ´ iσ2qu
:

x,kprqΦkprq
Φ:kprqpσ1 ` iσ2qu

:

x,kprqΦkprq ´Φ:kprqσ3u
:

x,kprqΦkprq

¸

, (5.74)

∆kprq “

˜

Φ:kprqσ3Φkprq Φ:kprqpσ1 ´ iσ2qΦkprq
Φ:kprqpσ1 ` iσ2qΦkprq ´Φ:kprqσ3Φkprq

¸

. (5.75)

The great advantage of left multiplying by the Pauli matrices is the possibility of
changing the representation of the main objects of SDFT from four-vectors to two by
two hermitian matrices. As so, let the following matrix be the exchange potential

V KLI
x prq “ σµv

KLI µ
x (5.76)

and N prq be the density in its matrix form

N prq “ nprq
2 I2ˆ2 ` σ ¨

mprq
2µB

. (5.77)

The inverse of the density matrix is represented by ρprq, apart from a factor which
is its determinant:

ρprq “ nprq
2 I2ˆ2 ´ σ ¨

mprq
2µB

. (5.78)

Thus, (5.73) can be rewritten as

V KLI
x prq “ 2Γprqρprq

occ
ÿ

k

"

Φ:kprqρprq
„

u:x,kprq `
∆vKLIk

2



Φkprq ` c.c.
*

`
1

2nprq

occ
ÿ

k

!

Σx,kprq ` Σ:x,kprq `∆kprq∆vKLIk

)

.

(5.79)

5.2.4 Slater Potential
Again, the exchange potential can be separated into two main components: one

independent of ∆vKLIk , the Slater potential Vslater,

Vslaterprq “
occ
ÿ

k

"

2Γprqρprq
”

Φ:kprqρprqu
:

x,kprqΦkprq ` c.c.
ı

`
1

2nprq

”

Σx,kprq ` Σ:x,kprq
ı

*

,

(5.80)
and another component that depends on ∆vKLIk , such that:

7There is no factor 1{2 before ∆vKLIk as one should note that ∆kprq “ ∆:

kprq.
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V KLI
x prq “ Vslaterprq `

occ
ÿ

k

"

2ΓprqρprqΦ:kprqρprqΦkprq `
1

2nprq∆kprq
*

∆vKLIk . (5.81)

In the Slater approximation, the exchange potential is approximated to the Slater
part:

V KLI
x prq « Vslaterprq. (5.82)
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Chapter 6

Results and Discussion

6.1 Technical Details
6.1.1 Pseudopotential

The first step consisted of generating a pseudopotential for Xe, using a relativistic
extension of the Troullier-Martins method, as implemented in the code APE.

For this purpose, the Dirac version of the Kohn-Sham equation was solved for a
closed-shell (spin-unpolarized) atom with LDA exchange (relativistically corrected) and
modified Perdew-Wang LDA correlation. Moreover, the chosen cutoff radii were 1.35 a.u.
for the 5s component, 1.50 a.u. for 5p1{2, 1.55 a.u. for 5p3{2 and 2.10 a.u. for 5d.

6.1.2 Geometry Optimization
Equilibrium geometries were calculated for Xe +

3 (`1 charge) using the code OCTO-
PUS and the following exchange-correlation functionals: LDA with modified Perdew-
Wang version for correlation, LDA+ADSIC (the same Perdew-Wang version for LDA
correlation), OEP exchange (SLATER, KLI, FULL). The states were represented by
Pauli spinors, except for LDA+ADSIC which is incompatible with a spin-noncollinear
formalism. In that case one is forced to restrict the calculation to a spin-polarized level
which disables the inclusion of spin-orbit correction.

Additionally, geometry optimization was performed using the FIRE algorithm, which
combines molecular dynamics applied to the calculation of new geometries and velocities,
with a conjugated gradients algorithm for the optimization per se. The process was
controlled by a convergence criterion of 1.9447ˆ 10´5 a.u. in the forces on every atom.

Finally, the grid was a set of minimal simulation boxes, i.e. spheres centered on each
nuclei with a radius of 4.0

˝

A and a spacing of 0.16
˝

A each.

6.1.3 TDDFT/Absorption Spectrum
Time-dependent Kohn-Sham equations were solved by time propagation. The system

was initially perturbed by a delta-like field with 0.01{
˝

A, corresponding to an excitation

51



in all frequencies. The specific values used for TD variables are identified on Table 6.1, for
each particular case. All other input options were the same as the ones used previously
in the geometry optimization procedure, except the parallelization options, which had to
be modified in OEP-KLI calculations (forced the code to parallelize in domains), since
otherwise the process would terminate with an error.

XC Functional Time-step/eV´1 Nº steps TD Exp. Method

LDA 0.001 20000 Taylor
LDA+ADSIC no SO 0.001 20000 Taylor

LDA+ADSIC no SO (LDA geom.) 0.001 20000 Taylor
OEP-SLATER 0.001 20000 Lanczos

OEP-SLATER (LDA geom.) 0.0001 159762 Lanczos
OEP-KLI 0.001 15082 Taylor

OEP-KLI (LDA geom.) 0.001 12300 Taylor
OEP-FULL (KLI geom.) 0.001 20000 Taylor
OEP-FULL (LDA geom.) 0.001 15585 Taylor

Table 6.1: Time-propagation step-length, number of steps and exponential method chosen for
each exchange-correlation functional.

6.2 Results and Discussion
6.2.1 Geometry Optimization

Cluster Method b1{
˝

A b2{
˝

A E/eV

Xe`3 DIM+IDID+SO 3.273 3.273
LDA 3.337 3.337 ´1266.1425431761

LDA+ADSIC no SO 2.799912 2.799912 ´1263.1645581338
OEP-SLATER 3.177113 3.177113 ´1249.4156106451

OEP-KLI 3.384512 3.384512 ´1249.5996588188

Table 6.2: Xe +
3 ground state geometry (linear) and total energy, as predicted by the different

exchange-correlation functionals. The quantities b1 and b2 are the bond lengths (from the left to
the right). DIM values were taken from reference [26].

The following observations result from the analysis of Table 6.2:

• LDA geometry is the closest to DIM geometry;

• LDA+ADSIC result is far from being a good prediction for the geometry, so in
principle spin-orbit coupling must play a fundamental role in the prediction of
equilibrium geometries;
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• OEP-SLATER and OEP-KLI approach the DIM result with approximately the
same diference, but from opposite directions.

It was not possible to reach an equilibrium geometry using OEP-FULL. Unexpectedly
big forces guided the two external ions to extremely distant positions.

6.2.2 TDDFT/Absorption Spectrum
LDA

Figure 6.1: Absorption cross-section of linear Xe +
3 calculated using the LDA functional for both

geometry optimization and time propagation. Comparison to the experimental results, from
reference [11].

In Figure 6.1, peak positioning seems to be in good agreement with the experimental
data, but oscillator strengths are switched.
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LDA+ADSIC no SO

Figure 6.2: Absorption cross-section of linear Xe +
3 calculated using the LDA+ADSIC functional

for both geometry optimization and time propagation. Comparison to the experimental results,
from reference [11].
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Figure 6.3: Absorption cross-section of linear Xe +
3 calculated using the LDA functional for

geometry optimization and LDA+ADSIC for time propagation. Comparison to the experimental
results, from reference [11].

As can be seen in the previous two graphics, only one peak can be observed when
spin-orbit coupling is not included as a correction to the Hamiltonian. Also, obtaining a
correct geometry is essential for a good agreement with the experimental positioning of the
peak: when the propagation is done over LDA’s geometry the peak is centered between
the two experimental peaks, but when the geometry is as predicted by LDA+ADSIC,
the peak moves to higher energies.
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OEP-SLATER

Figure 6.4: Absorption cross-section of linear Xe +
3 calculated using OEP-SLATER for both

geometry optimization and time propagation. Comparison to the experimental results, from
reference [11].
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Figure 6.5: Absorption cross-section of linear Xe +
3 calculated using LDA for geometry optimiza-

tion and OEP-SLATER for time propagation. Comparison to the experimental results, from
reference [11].

OEP-SLATER exchange provides an excellent prediction for the position of the peaks
when time-propagation is also done over SLATER’s geometry. When performed over
LDA’s, the result is also good. However, no peak inversion was observed so far. It may
be that at the SLATER level the amount of exchange is not enough to invert the peaks.
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OEP-KLI

Figure 6.6: Absorption cross-section of linear Xe +
3 calculated using OEP-KLI for both geometry

optimization and time propagation. Comparison to the experimental results, from reference [11].
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Figure 6.7: Absorption cross-section of linear Xe +
3 calculated using LDA for geometry optimiza-

tion and OEP-KLI for time propagation. Comparison to the experimental results, from reference
[11].
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Figure 6.8: Comparison between the experimental absorption spectrum of linear Xe +
3 and

theoretical spectra calculated using LDA, OEP-SLATER and OEP-KLI (with the corresponding
ground state geometries).

In Figure 6.6 there is a small negative valley between the two peaks, but its strength is
small when compared to the height of the positive peaks and, moreover, peak positioning
is not as good as the one previously got with SLATER. However, and even though the
relative strength of the peaks haven’t changed its sign yet, it is getting smaller (see
Figure 6.8). Perhaps the shift would be observed with the addition of more exchange.
Propagation with OEP-FULL could, in principle, confirm such an hypothesis.

Additionally, comparing the two graphics generated on the KLI level, we notice
that there are no major differences between them, except perhaps those resulting from
different propagation intervals (12300 iterations for the first graphic and 15083 iterations
for the second).

OEP-FULL

It was not possible to find the correct OEP-FULL geometry. Nevertheless, by knowing
that the KLI potential is an excellent approximation to the full OEP, the OEP-FULL
spectrum was propagated over the KLI ground state geometry.
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Figure 6.9: Absorption cross-section of linear Xe +
3 calculated using OEP-KLI for geometry

optimization and OEP-FULL for time propagation. Comparison to the experimental results,
from reference [11].
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Figure 6.10: Absorption cross-section of linear Xe +
3 calculated using LDA for geometry opti-

mization and OEP-FULL for time propagation. Comparison to the experimental results, from
reference [11].

This is not a good result: peaks are unrecognizable and there is a strong negative
peak. This can be a consequence of a wrong ground state geometry. Changing it to the
LDA one did not improve the spectrum. In fact, there are no major differences between
the last two plots: the few ones being related to the fact that the first case is the result
of a time propagation of 20000 iterations while the second propagation only lasted for
15585 iterations.
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Chapter 7

Conclusions and Future Work

The general conclusion of this work is that the correct treatment of exchange is
mandatory if we want to obtain reliable oscillator strengths in the absorption spectrum
of Xe +

3 clusters. In fact, peak inversion was observed on the Hartree-Fock level. On a
DFT level, LDA+ADSIC promise to be capable of solving exchange-related problems,
while being considerably fast. However, in OCTOPUS it is not yet possible to combine
LDA+ADSIC with spin-orbit correction. Much more time consuming are the tested OEP
alternatives. Within them, it was verified that the bigger the amount of exchange added,
the closer the peaks are of inverting intensities. Nevertheless, OEP-FULL probably is
the level of theory required to reach inversion. Here we were unable to test OEP-FULL,
possibly due to the lack of a proper ground state geometry.

Concerning ground state geometries, spectra generated with the same functional for
the geometry and the propagation were better than their counterparts generated with
LDA geometries, except in the LDA+ADSIC case. Moreover, peak positioning is better
in the LDA level and worsens in OEP-SLATER and even more in OEP-KLI.

In the future, it would be interesting to find a way of converging the ground state ge-
ometry using OEP-FULL. Also, it would be very useful to try to implement LDA+ADSIC
in OCTOPUS for non-collinear spin systems.
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Appendix A

Definition of Density Matrices

Let us consider a system of N identical fermions with coordinates x1, x2, ... xN -
being xi “ pri,σiq, with ri and σi the space and spin coordinates, respectively - moving
under the influence of a fixed potential framework and their mutual interaction. The
physical situation is described by an assumably normalized wave function which fulfills
the antisymmetry condition

PΨpx1,x2, ...,xN q “ p´1qpΨpx1,x2, ...,xN q, (A.1)

where P is a permutation operator working on the indices of the N coordinates and
p is the parity of such a permutation.

A physical quantity Ω associated to the system is represented in the configuration
space by an Hermitian operator Ω̂ which is symmetrical in the particle indices. That
operator may be expanded in a series of zero-, one-, two-, ..., or many-particle operators

Ω̂ “ Ω̂p0q `
ÿ

i

Ω̂i `
1
2!
ÿ

ij

1 Ω̂ij `
1
3!
ÿ

ijk

1 Ω̂ijk ` ..., (A.2)

where the prime on the summation signs indicates omission of all terms having two
or more equal indices. For the expectation value of the second order term, one has 1 2

ż

Ψ:p12
ÿ

ij

1 Ω̂ijqΨpdxq “
ˆ

N

2

˙
ż

tΨ:p11213...NqΩ̂12Ψp123...Nqux11“x1,x12“x2dx1dx2pdx12q
1

“

ż

tΩ̂12Γpx11x12|x1x2qux11“x1,x12“x2dx1dx2,

(A.3)

with
1In the previous expressions we adopted the convention according to which operators Ω̂ij only act on

unprimed coordinates and that only after operations are carried out we set the equalities x1i “ xi, etc.
2Here, pdxq indicate integration-summation over all coordinates and pdx1ijq the same over all coordi-

nates except xi and xj , etc.
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Γpx11x12|x1x2q “

ˆ

N

2

˙
ż

Ψ:p11213...NqΨp123...Nqpdx112q, (A.4)

being the second-order density matrix. Inspired by ((A.3)), we arrive at the following
expression for the expectation value of operator ((A.2)):

xΩ̂y “ Ω̂p0q `
ż

Ω̂1γpx11|x1qdx1

`

ż

Ω̂12Γpx11x12|x1x2qdx1dx2

`

ż

Ω̂123Γpx11x12x13|x1x2x3qdx1dx2dx3

` ...

(A.5)

Therefore we will now introduce a series of density matrices of various orders:

γpx11|x1q “ N

ż

Ψ:p1123...NqΨp123...Nqpdx11q, (A.6)

Γpx11x12|x1x2q “

ˆ

N

2

˙
ż

Ψ:p11213...NqΨp123...Nqpdx112q, (A.7)

...

Γppqpx11x12...x1p|x1x2...xpq “
ˆ

N

p

˙
ż

Ψ:p112131...p1...NqΨp123...p...Nqpdx112...pq, (A.8)

...

ΓpNqpx11x12...x1N |x1x2...xN q “ Ψ:p112131...N 1qΨp123...Nq, (A.9)

where pdx1iq indicate integration over all coordinates except xi and pdx1ijq the same
over all coordinates except xi and xj .

Among the many properties of these matrices, the following recurrence relation
between density matrices of successive orders proves to be useful in various contexts:

Γpp´1qpx11x12...x1p´1|x1x2...xp´1q “
p

N ` 1´ p

ż

Γppqpx11x12...x1p´1xp|x1x2...xp´1xpqdxp.

(A.10)
Moreover, diagonal elements are of special importance

γpx1q “ γpx1|x1q, (A.11)

Γpx1,x2q “ Γpx1x2|x1x2q, (A.12)

...
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and have the following physical interpretation:

• γpx1qdv1 “ number of particles ˆ probability of finding a particle within volume
dv1 around r1 having spin σ1 when all the other particles have arbitrary space and
spin coordinates;

• Γpx1,x2qdv1dv2 “ number of pairs ˆ probability of finding one particle within the
volume dv1 around the point r1 with spin σ1 and another within the volume dv2
around the point r2 with the spin σ2, all others having arbitrary space and spin
coordinates.
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Appendix B

Linearisation of the KLI equations

This appendix contains an overview of the linearisation scheme applied to three
versions of the KLI equation: KLI applied to spin-unpolarized and time-independent
systems (Simple KLI); time-dependent (spin-unpolarized) KLI; KLI applied to non-
collinear spin systems (Non-collinear KLI).

B.1 Simple KLI
By taking the diagonal matrix elements of the KLI potential

vKLIx prq “ vslaterprq `
1

2nprq

occ
ÿ

k

φ˚kprq∆vKLIk φkprq, (B.1)

∆vKLIk “

ż

dr1
!

|φkpr1q|2vKLIx pr1q ´ |φk|2ux kpr1q
)

` c.c., (B.2)

ux kpr1q “
1

φ˚kpr1q
δExrφks

δφkpr1q
, (B.3)

one obtains

xi| vKLIx prq |iy “ xi| vslaterprq |iy `
occ
ÿ

k

1
2Mi,k∆vKLIk , Mi,k “

ż

dr |φiprq|
2|φkprq|2

nprq .

(B.4)
Definition of the exchange potential ux,kprq

δEx
δφ˚kprq

“ u˚x,kprqφkprq, (B.5)

allows rewriting ∆vKLIk with a different notation:

∆vKLIk “

”

xk| Θkv
KLI
x prq |ky ´ xk|ux,kprq |ky

ı

` c.c.. (B.6)
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Now, by adding and subtracting xi|ux,iprq |iy to (B.4), one gets

xi| vKLIx prq ´ ux,iprq |iy ´
occ
ÿ

k

1
2Mi,k∆vKLIk “ xi| vSlaterprq |iy ´ xi|ux,iprq |iy (B.7)

and the complex conjugate

xi| vKLI ˚x prq ´ u˚x,iprq |iy ´
occ
ÿ

k

1
2Mi,k∆vKLIk “ xi| v˚Slaterprq |iy ´ xi|u˚x,iprq |iy . (B.8)

Finally, by adding these two equations, one arrives at (Θk becomes redundant because
now the sum is performed only over occupied states)

∆vKLIi ´

occ
ÿ

k

Mi,k∆vKLIk “ xi| vslater ´ ux,i |iy ` c.c.ô

occ
ÿ

k

rδi,k ´Mi,ks∆vKLIk “ xi| vslater ´ ux,i |iy ` c.c..
(B.9)

B.2 Time-dependent KLI
Given the final form of the TDKLI equation

vKLIx pr, tq “ vslaterpr, tq `
1

2npr, tq

occ
ÿ

j

φ˚j pr, tq∆vKLIj ptqφjpr, tq, (B.10)

∆vKLIj ptq “

ż

dr
!

|φjpr, tq|2vKLIx pr, tq ´ |φjpr, tq|2ux jpr, tq
)

` c.c. (B.11)

and its clear similarities with (B.1), (B.2), the process of linearisation is a repetition
of what was developed in the previous section for the time-independent case and will
therefore be omitted.

B.3 Non-collinear KLI
In order to obtain an equation for ∆vKLIk like (B.9), one should write

xi|V KLI
x |iy ´ xi|u:x,i |iy “ xi|Vslater |iy ´ xi|u:x,i |iy `

occ
ÿ

k

Mi,k∆vKLIk , (B.12)
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xi|V KLI :
x |iy ´ xi|ux,i |iy “ xi|V :slater |iy ´ xi|ux,i |iy `

occ
ÿ

k

Mi,k∆vKLIk , (B.13)

with

Mi,k “

ż

dr
"

2ΓprqΦ:i prqρprqΦiprqΦ:kprqρprqΦkprq `
1

2nprqΦ
:
i prq∆kprqΦiprq

*

, (B.14)

u:x,iprq “
1

Φiprq
δEx

δΦ:i prq
. (B.15)

Given that

∆vKLIi “ xi|V KLI
x |iy ´ xi|u:x,i |iy ` c.c., (B.16)

one can add the two previous equations, thus obtaining

∆vKLIi ´

occ
ÿ

k

2Mi,k∆vKLIk “ xi|Vslater ´ u:x,i |iy ` c.c.ô (B.17)

occ
ÿ

k

rδi,k ´ 2Mi,ks∆vKLIk “ xi|Vslater ´ u:x,i |iy ` c.c.. (B.18)
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Appendix C

Van der Waals Forces

Van der Waals bonding 1 is very typical of inert atoms whose electrons do not
participate in covalent bonds or ionic bonds and also between inert molecules. As a
matter of fact, even though those atoms or molecules may be very far from each other,
there possibly remains a van der Waals attraction between them.

In order to understand the origin of the corresponding van der Waals force, let us
begin by considering a two-level quantum mechanical system, as a simplified model for
an atom/molecule:

|Ψy “ c1 |φ1y ` c2 |φ2y . (C.1)
In the previous equation, |φ1y and |φ2y are proper states of the Hamiltonian operator

Ĥ.
Even though the atom/molecule may have a zero dipole moment on average, the net

dipole moment of each of its levels is finite. Due to the energy-time quantum mechanical
relation 2,

∆E∆t „ 1, (C.2)
the system is allowed to fluctuate momentarily between the two energy levels, and

so between the two dipole moments, with a frequency

w „ 2π|E2 ´ E1|. (C.3)
Consequently, if the first atom/molecule obtains a momentary polarization PA, it

will create an electric field E, which will correspondingly induce a polarization PB in
the second atom/molecule

PB “ χeE, (C.4)
with χe being the magnetic susceptibility.
Consequently, the result is an attractive force between the two bodies [31].

1Sometimes known as fluctuating dipole forces or molecular bonding.
2In atomic units.
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