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os momentos bem passados em famı́lia, e todas as vezes que me chateavam, pois nem
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Abstract

In recent years we have seen the emergence of AI in wider application

areas.However, in the IoT ecosystem there is the tendency to use cloud computing

to store and process the vast amounts of information generated by these devices,

due to the limited local resources. This dissertation proposes the implementation of

smart IoT devices able to provide specific information from raw data produced from

some sensor, e.g. a camera or microphone, instead of the raw data itself. The focus

will be embedded image processing using Convolutional Neuronal Networks (CNN).

This approach is clearly distinct from the current trends in IoT devices that use

cloud computing to process the collected data. We intend a twist on the established

paradigm and pursue an edge computing approach. Since we are targeting small

and simple devices, we need some low power solution for the CNN computation.

SoC devices have gained popularity due to their heterogeneity. In our work we

use a system that combines an Hard Processor System (HPS) unit in conjunction

with FPGA, while maintaining low power consumption, taking advantage of FPGA

to achieve high performance. HADDOC2 was used as a tool that converts a CNN

model to VHDL code to be synthesized to FPGA, while in HPS there is a system that

manages the entire process using IoT communication protocols to send the processed

information. A system with a CNN implemented in the FPGA is obtained using the

HPS linux program to manage all the subsystems and sending the processed data

through the MQTT protocol for IoT.





Resumo

Nos últimos anos, temos visto a expanção da inteligência artificial em difer-

entes áreas e dispositivos. No entanto, no ecossistema IoT, temos uma tendência

constante a usar a computação na nuvem para armazenar e processar as vastas quan-

tidades de dados geradas por estes dispositivos, devido aos recursos locais limitados.

Esta dissertação propõe a implementação de dispositivos IoT inteligentes capazes

de fornecer informações espećıficas a partir de dados produzidos a partir de algum

sensor, por exemplo uma câmara ou microfone, em vez dos próprios dados brutos. O

foco será o processamento de imagens usando CNNs. Essa abordagem é claramente

distinta das tendências atuais em dispositivos IoT que usam computação na nuvem

para processar os dados produzidos. Pretendemos uma viragem no paradigma es-

tabelecido e procuramos uma abordagem de edge computing. Como o foco serão

dispositivos pequenos e simples, precisamos de uma solução de baixa potência para

o cálculo da CNN. Os dispositivos SoC ganharam popularidade devido à sua het-

erogeneidade. Este trabalho usará um sistema que combina uma unidade de pro-

cessamento ARM em conjunto com a FPGA, mantendo baixo consumo energético

e explorando a FPGA para obter um alto desempenho. O programa HADDOC2 foi

usado para converter um modelo de uma CNN para código VHDL a ser sintetizado

para a FPGA, enquanto no ARM existe um sistema que gere todos os processos

usando pontes de comunicação com a FPGA e protocolos de comunicação IoT para

enviar as informações processadas. No fim é obtido um sistema com uma CNN

implementada na FPGA o usando o HPS como gestor de todo o processo e que se

comunica com o exterior através do MQTT.
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Chapter 1

Introduction

1.1 Motivation

The search to make physical devices intelligent has always existed. Even

when the first computer was developed, it was intended to draw conclusions and get

results faster than humans can. Embedding Artificial Intelligence (AI) capabilities

on devices can be an interesting solution for improving their sensing capabilities

(human-like) or performing in-situation pattern recognition for producing e.g. se-

mantic interpretations of the raw data, instead of the raw data itself. Among the

AI techniques available Neural Networks (NN) and in particular Convolutional Neu-

ral Networks (CNN) have demonstrated very interesting capabilities in performing

pattern recognition in images. These networks are currently running on comput-

ers with large processing capacity, which are bulky and consume huge amounts of

energy, which is a problem for remote and resource-constrained solutions. When

creating an Internet of Things (IoT) device it needs to fulfil some requirements

such as low energy, connectivity, reduced size (Patel & Patel, 2016), and developing

custom circuits is often required. The development may make use of Application

Specific Integrated Circuits (ASIC), which are custom made chips for specific appli-

cations, having a great optimisation, energy efficient and high performance, but a

fixed design and high production costs. This constrain limits the modularity of the

system and implies a thorough and flawless development. On the other hand, Field
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Programmable Gate Array (FPGA)s are devices with the ability to run dedicated

circuits that can be reconfigured at any time during development or later in the

field. This maintains the modularity without having to spend a lot of money on

production and testing. In addition to being a reconfigurable dedicated circuit they

can have lower power consumption and power saving than Central Processing Unit

(CPU) and Graphics Processing Unit (GPU).

The constant growth of IoT leads to the massive production of data that

needs to be processed. The cloud computing data centers have been growing in

recent years and are being used on a global scale. But IoT devices are growing at

a breakneck speed, which will lead to cloud service outages and existing bandwidth

may no longer be sufficient for the desired demand, which may lead to data pro-

cessing problems. So the paradigm needs to change and one of the solutions is local

processing, so called edge computing.

1.2 Related Work

In order to contextualise this work with the state of the art some works

related to this theme are presented and will be discussed.

Analysing the growth of IoT in various areas, the work by (Shi, Cao, Zhang,

Li, & Xu, 2016) shows how beneficial it would be to use edge computing, thus

changing the current paradigm in data processing, and reducing bandwidth and

increasing efficiency.

The work (Pena, Rodriguez-Andina, & Manic, 2017) shows the IoT and the

internet revolution with the entry of these devices into everyday life, is stated that

the impact of IoT will be as big as the emergence of the internet. One of the biggest

problems with IoT is that the same concept is applied in many different areas. Thus

different architectures have to be developed for different needs. While in some areas

data security and privacy is crucial, in others the continuity of the service is crucial.

IoT systems are very heterogeneous, which, in turn, greatly complicates control and

management tasks. The emergence of System On Chip (SoC) FPGAs combining the
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reconfigurable circuits with the Advanced RISC Machine (ARM) processor increases

the versatility, flexibility, performance, security and scalability of the IoT projects.

Due to the low processing and bandwidth constraints of IoT devices, new

approaches have been emerging to perform data processing locally. Thinking of a

new strategy to realise the processing of CNN in the IoT devices, the work of (Du

et al., 2017) process a CNN in streaming, making use of a dedicated processor for

IoT devices as processing unit. The CNN data flow has been optimised to decrease

the number of times it is accessed, thereby increasing CNN’s computing efficiency.

The results were favourable, being a great strategy for IoT devices, similar to the

CNN implementation of HADDOC2 (Abdelouahab, Pelcat, Sérot, Bourrasset, &

Berry, 2017) in FPGA.

Some works have explored the implementation of NN and Deep Neural

Networks (DNN) in FPGAs. In (Wei et al., 2017) a systolic array architecture is

used to process CNN in FPGAs. A high capacity FPGA, an Intel Aria 10 board, was

used. This system takes advantage of the FPGA by parallelizing the data processing,

achieving up to 1.2 Tops for 8-16 bit fixed point data.

The work (Nurvitadhi et al., 2017) directly compares DNN processing on

FPGAs and GPUs. This makes use of Intel’s latest Aria 10 and Stratix 10 FPGAs

and compares with the latest Nvidia titan X GPU. It took advantage of the DNN’s

sparsity and all unnecessary operations have been removed. This achieved very

satisfactory results for the FPGAs by beating the GPU in the performance tests.

To combat one of the major problems of FPGAs such as the difficult de-

velopment with FPGAs, complexity and a long time-to-market led to the creation

of tools that would facilitate developers in their projects. This gives rise to tools

that automate the Hardware Description Language (HDL) code creation, in this

case from CNN models. Some frameworks to convert CNN models to hardware de-

sign language have been and continue to be developed. CONDOR (Raspa, Bacis,

Natale, & D. Santambrogio, 2018) is an automated framework to implement CNN

on FPGA. This framework is under development and the objective is to map CNN

computation in hardware taking advantage of the parallelism of the CNN. Another
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framework is fpgaConvNet that in addition to custom mapping a CNN in the FPGA,

uses the specifications of the board to create a more optimised code to the platform

(Venieris & Bouganis, 2017). However, neither of the above are open-source, and

since is intended an open software to improve and customise, they were not used

in this work. HADDOC2 is a framework that has the ability to convert CNN caffe

models to VHSIC (Very High Speed Integrated Circuits) Hardware Description Lan-

guage (VHDL) code (Abdelouahab et al., 2017). Using Direct Hardware Mapping

(DHM), HADDOC2 is taking maximum advantage of network parallelism by im-

plementing it without any pipeline. So it takes full advantage of the FPGA. It is

also not limited by the platform and the source code is open-source. This creates

an advantage to developers to modify and improve the current HADDOC2 work.

1.3 Objectives

A key objective of this work is to validate the use of reconfigurable logic

as a means to have simple IoT devices capable processing data and only relaying

curated data to the internet. Opposed to cloud computing, our focus is on edge

computing. By exploring the flexibility of SoC systems that include hard processors

and an FPGA, the aim is to have a full operational pipeline (figure 1.1).

Figure 1.1: Envisioned processing pipeline, with an IoT device capturing an image,
performing local computations, and sending to the internet processed data.
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1.4 Key Contributions

This work stands out for the use of SoC technology that is increasingly used

to build heterogeneous systems, taking advantage of a low power ARM processor and

accelerating a CNN in the FPGA, thus obtaining a system that can be implemented

in the world of IoT devices.

• An IoT device using the MQTT protocol sending the processed data to a

broker (server);

• It was built the necessary HPS structure to the data management and interrupt

handler;

• In the FPGA it was built a system that manages the memory, interrupts and

the HADDOC2 CNN;

• The HADDOC2 framework contained several architectural issues in the FPGA

design. The entire structure has been revised and the necessary modules re-

designed. Only the conversion of CNN weights remained uncorrected;

• At the end, the CNN classification is not the expected, but all the necessary

tools to ramp up this project are assembled;

• With all this tools is achieved a full pipeline implemented in a SoC device.

1.5 Thesis Structure

This thesis is structured by presenting a first chapter with the general

introduction, motivation and related work. Chapter 2 describes the various tools

used in this project. The system architecture is described in chapter 3 showing

several diagrams for ease of understanding. Chapter 4 goes deeper into architecture

by showing the fundamental developments made in this work. In chapter 5 there

is a discussion showing the obtained results. This work ends in Chapter 6 with a

conclusion of the work and present the future work.





Chapter 2

Neural Networks, Internet of

Things and Reconfigurable Logic

2.1 Artificial Neural Networks

The name artificial intelligence began to be discussed in the middle of

the twentieth century (McCarthy, Minsky, Rochester, & Shannon, 2006) following a

research proposal by Dartmouth College. However, due to the processing limitations

of the time only in the 21st century did Artificial Intelligence (AI) regain importance,

becoming part of our daily lives.

Artificial intelligence has gained prestige in several areas for its good results

in the perception of patterns collected from large databases. As a subset of AI,

Neural Networks (NN) appeared as inspiration of the biological network of brains,

learning how to perform tasks through a training process that consists on feeding

the network with large amounts of data, so that they learn the patterns, without

having to be manually programmed.

The NN are based on connections and nodes, called artificial neurons (fig-

ure 2.1). Each connection, like a synapse, passes information from one neuron to

another.
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Figure 2.1: Structure of neural network.

As can be seen in figure 2.2 each neuron performs a summation of the

multiplication of all inputs with the corresponding weight plus a bias (2.1a). Then

the result goes through an activation function (2.1b), that is usually a non-linear

function.

ai =
r∑

k=1

xk ∗ wi,k + bi (2.1a)

yi = f(ai) (2.1b)

Figure 2.2: Neuron of neural network.
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2.1.1 Convolutional Neural Networks

Artificial neural networks with several convolution layers are called Convo-

lutional Neural Networks (CNN), which are a part of Deep Neural Networks (DNN).

As these networks have several layers, and each layer contains several convulsions, it

is possible to have an accurate extraction of image characteristics, finalising with the

fully connected layer that calculates a probability of each output, and thus obtaining

a result.

In figure 2.3 a small CNN network used in this work is shown. This network

has multiple layers, and each convolution layer has several different filter convolu-

tions with the input image to extract the maximum number of features. At the

end of each image convolution there is an activation function (not represented in

the image), usually a nonlinear function as in the neuronal networks like a sigmoid,

tanh (hyperbolic tangent) or ReLU (Rectified Linear Unit) function. The pooling

layer is a filter used to remove redundant points, leaving only the maximum value

of that region. The CNN ends with the fully connected layer which assigns a final

rating from the features extracted in convolution.

Figure 2.3: Convolution neural network.

2.2 Internet of Things

The system goal is to have high processing power while maintaining a small

size and energy efficient. Together with the heterogeneity of the system, it has all

the valences to become an IoT device. Thus, for communication with the outside

world, a communication protocol related to IoT was chosen. Some data protocols
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for IoT communication are the CoAP (Constrained Application Protocol), DDS

(Data Distribution Service) and Message Queuing Telemetry Transport (MQTT).

The CoAP bases on the UDP protocol does not ensure data delivery. The DDS

is similar to the Message Queuing Telemetry Transport (MQTT), based on the

TCP protocol, being reliable and having decentralised nodes. The MQTT have a

centralised node, the broker (server), so it suit in this work ((Chen & Kunz, 2016)).

The MQTT is a TCP based protocol published by IBM and then open-

sourced for messaging applications. It works in a publish-subscribe format, where

clients can publish a message to a specific topic in the broker (server), and this

message will be published to the clients that have subscribed to the same topic

(figure 2.4). This enables a lightweight implementation, with security and reliability.

Another characteristics that suit this project is the low bandwidth consumption by

the MQTT protocol and the hide community support.

Figure 2.4: MQTT diagram.

2.3 NN Frameworks

2.3.1 HADDOC2

One of the biggest difficulties in the world of reconfigurable systems is the

slow and painful development.To face this problem, various tools are beginning to

appear, helping and facilitating the developing of dedicated circuits. The HADDOC2

is a tool that automatically converts the CNN model to VHDL code for the FPGA,

making its use practical and flexible. Also the framework is opensource, making
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possible to develop and improve the current code.

The CNN are widely used in pattern perception in images and object recog-

nition. It also have a unique structure to become a great candidate for using FPGAs.

It has various convolutions per layer, containing filters that multiply with the same

image, making possible the use of full power of FPGA by maintaining a synchronous

system and parallelizing its entire structure, obtaining the shortest path and a high

throughput.

As shown in figure 2.5, the framework uses Caffe CNN models as input

and generates the corresponding VHDL code to be synthetized and then deployed

in the FPGA.

Figure 2.5: HADDOC2 operation.

The HADDOC2 framework creates a full design of the network in the

FPGA, called Direct Hardware Mapping (DHM). The compilation process maps to

hardware code a complete CNN, which means that all neurons in a layer are mapped

on the device to take advantage of inter-neuron parallelism, and each convolution

is mapped separately and, finally, each multiplier is instantiated separately. This

method occupies a considerable space of FPGA hardware.

Since the code generated by HADDOC2 does not depend on the used

FPGA, an ”infinite” circuit is created. This means that if the CNN is too big, in

the end the circuit may not fit in the FPGA. The only parameter that can be changed

in the HADDOC2 compilation is the size of the bitwidth used in the network. As it

was used a low-end educational board, FPGA’s usable space is very limited, so in

this project it was used a small LeNet character detection CNN.

To decrease the space used in the FPGA, the HADDOC2 implements some

methods to optimise the final code. The number of multiplications is reduced by

detecting redundant operations, multiplications by 0 removed, by 1 replaced by a

single connection and by a power of 2 are transformed into shift registers.
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A major issue encountered while using this tool was the miss-synchronization

of the FPGA code that performs the CNN, that results in poorly performed opera-

tions. There were also compilation errors in the code synthesis. Thus, we proceeded

to study, correct and develop this tool to achieve the desired processing as will be

explained in detail in the following chapter.

2.3.2 Caffe Deep Learning Framework

To convert the CNN model to VHDL code the HADDOC has to receive as

input a specific model. The framework was developed to work only with the models

created by the Caffe (Jia et al., 2014). Caffe is a deep learning framework, one of

the first to turn up, which was developed by Berkeley AI Research (BAIR), who

made it open-source so it continues to grow with the help of a wide community.

2.4 Reconfigurable Logic Systems

2.4.1 DE1-SoC Terasic Board

For this project, as a processing platform for code development and test-

ing, the Terasic DE1-SoC Development Kit board.This is a entry level board widely

used for educational purposes. It includes the Altera Cyclone V SoC which in-

cludes a dual-core Cortex-A9 ARM processor (Hard Processor System (HPS)) with

a re-configurable FPGA that has about 85K logic elements and 4450 Kbits of On-

Chip Memory (OCM), 1 Gbyte of Synchronous dynamic random-access memory

(SDRAM) and communication bridges to easily operate both sides. Figure 2.6

shows the peripherals connected to the Cyclone V. This diagram shows the different

types of memory coupled to FPGA and HPS, as well as the various buttons, switches

and LEDs that are connected to the board which facilitates the development and

debugging of the system.
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Figure 2.6: CycloneV diagram. (Source: (Terasic, 2019))

2.4.2 FPGA Development Software

The FPGA code developed requires dedicated software. For this board is

used the Quartus programmable logic device design software produced by Intel. In-

side this there is a SOPC builder (System on a Programmable Chip Builder) called

Qsys, that automatically generates interconnect logic of complex dedicated blocks,

like HPS-FPGA system, dedicated processors, memory management (SDRAM, OCM),

interfaces, protocols and peripherals. This tool is referred later, separating the code

developed for FPGA, from the mounted system using Qsys.

2.4.3 HPS-FPGA bridges

The DE1-SoC board contemplate a cyclone V Integrated Circuit (IC). This

chip has both the HPS processor and the FPGA.

To easily send information from the HPS to the FPGA the board has some

mapped bridges. As seen in figure 2.7 there are 3 bridges connecting the HPS and
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the FPGA. Also there is a bridge connecting the FPGA to the SDRAM controller

subsystem. This bridge allows the FPGA to have full access of the SDRAM.

Figure 2.7: Cyclone V diagram. (Source: (Molanes, Rodriguez-Andina, & Farina,
2017))



Chapter 3

Proposed System Architecture

3.1 Overview

This project intend to make use of the reconfigurable ability of FPGAs to

accelerate the calculations of a CNN, maintaining a low power device usable in an

IoT field. For this, several components were added in order to get a pipeline from

the input of the image to be processed in the system, until the output of the data.

This way the high level architecture showed in figure 3.1 was reached. This image

shows as input the image source, then the use of a development board DE1-SoC as

control system, memory management, interrupt handler and CNN processing. At

the end the data is sent to the MQTT broker that can be reached by various devices.

Figure 3.1: High level architecture.
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3.2 System Operation

To run this project, it is mandatory to have a main program that controls

the process flow and manages all data. This way, it was developed a program in

C language that will manage every system in DE1-SoC. Figure 3.2 shows the main

C program receiving the image, and communicating with memory and FPGA. The

program execution steps are as follows:

1. Receive a image as input;

2. Put the image in memory (SDRAM);

3. Activate the CNN processing on FPGA;

4. Receive an interrupt from FPGA representing the end of CNN processing;

5. Sends the data to the broker via MQTT;

Figure 3.2: HPS and FPGA program in DE1-SoC and its communication

3.3 HPS Management & Communication System

This program runs on the Linux in the HPS. It is responsible to manage

all data and keep track on every process. After the image reading, this image is
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then sent to a specific address of the SDRAM, a shared memory region between the

HPS and the FPGA, so the FPGA can then do the processing. Also it manages

the interrupt to and from the FPGA using communication bridges. The figure 3.2

shows all the communications that the HPS Management System has.

3.4 FPGA Management System

The HADDOC2 system implemented on the FPGA does not work stand-

alone. It is necessary to create a control system that delivers the data to be processed

to the CNN and receives the data on the output. In FPGA the system is divided in

two. The modules designed using the Qsys tool and the modules developed in HDL

code.

In this way as shown in figure 3.3 a dedicated system was built that reads

an image from OCM, sends the image to the CNN, and in the end stores the CNN

values in another OCM. An approach to directly read from the SDRAM to the

FPGA could be tested, but would involve an increased research and development

effort. Since the FPGA contains free memory banks (OCM), these were used to

store and read information from global memory SDRAM. In addition, the access to

the OCM is simple and intuitive. This system is supported by the HPS Management

& Communication system, which controls the FPGA memory access.

In Qsys tool 7 modules were used. In figure 3.3 only 5 modules are pre-

sented, the other 2 refer to signals sent from HPS to FPGA using the bridges to

activate the system, and from FPGA to HPS informing the end of processing. The

HPS-FPGA System block is a module developed for the CycloneV chip that im-

plements the communication bridges between HPS and FPGA, accessing SDRAM,

and allowing access to various board peripherals, interrupt systems, reset and clocks.

Both DMAs are controlled from the HPS, through the HPS-FPGA System. The data

is collected from the SDRAM and placed in the On-Chip Memory 1, that is read by

the Read Image. Then the CNN processing starts and the output is written in the

On-Chip Memory 2 and the hps controller DMA 2 puts the information in SDRAM.
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Figure 3.3: FPGA System

3.5 HADDOC2 Architecture

HADDOC2 framework was developed with the intention of making the

process of developing dedicated systems using FPGAs simpler and more practical.

For this, the framework converts convolutional neural network models to VHDL

code, which can then be synthesized for any FPGA device. The HADDOC2 is a

Python program that generates VHDL code with the parameters of the network.

It begins by reading the CNN Caffe model and then generates the corresponding

VHDL files. The only parameter that can be changed in the program is the bitwidth

size of the network. This way, the network is not dedicated to a specific platform, so

the code generated is for a hypothetical infinite space FPGA. This way, the network

is not dedicated to a specific platform, so the generated code is for a ”infinite”

FPGA.

A CNN is constituted by convolutions. These convolutions are masks that

contain weights. These weights, the size of convolutions and the fully connected
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layer is what defines a CNN. In a Caffe model, all weights are distributed between

-1 and 1, that is, decimal numbers. FPGAs have some difficulty in dealing with

decimal numbers, and when it comes to a large problem, the use of decimal numbers

is avoided. Thus HADDOC2 begins by performing a conversion of the positive

and negative decimal numbers by a scaling factor. The equation 3.1 receive N as

parameter, corresponding to the bitwidth size defined by the user. After multiplying

all the numbers with this scale factor, these are converted to binary representation,

from 0 to 2N with sign, 2’s complement.

scale factor = 2N−1 − 1 (3.1)

The figure 3.4 shows the HADDOC2 files used in the FPGA project. The

cnn process, bitwidth and params are the files generated by the HADDOC2 Python

program. These files have the necessary variables and network parameters. All the

other files use these parameters, so the synthesis process instantiate the necessary

convolutions (DotProduct j and TanhLayer j ) in each ConvLayer i. The cnn process

file that is created by the HADDOC2, has the network structure, connecting the

ConvLayer i to the PoolLayer k and instantiating the necessary ConvLayer i and

PoolLayer k.

So this framework has all the necessary features implemented for a simple

CNN. It has the convolution layer, it accepts the tanh activation function, and does

the pooling of the image. It also has VHDL custom data types created to easily

manage the data in arrays and matrix.

One major problem that was detected is that despite it has all necessary

layers for a simple CNN implemented, it has timing problems in ConvLayer i and

PoolLayer k functions, and compilations errors. This means that the convolutions

are not performed correctly, the multiplications are done with the wrong masks,

the pooling is poorly performed, and the propagation of errors through the network

makes its use impossible. So the converted CNN could never work properly. In the

next chapter, the development and patches made to HADDOC2 will be discussed.
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Figure 3.4: HADDOC2 file structure.



Chapter 4

Implementation of Proposed

System

After the overview of the general architecture, this chapter addresses im-

plementation details and the steps taken to have an operational system.

4.1 Memory and Bridges Management

As discussed in the previous chapter, the HPS Management & Communi-

cation System does all the management of the system, controlling the interrupts to

and from the FPGA, send the data using the MQTT protocol to the broker and

manage the data memory.

4.1.1 Memory Management

The Linux system performs all the management of physical memory. Nor-

mally it is not possible to access physical memory directly, but as this is a modified

version of the linux kernel, the security that blocked user access to physical mem-

ory is disabled. Physical memory is divided into page frames. Virtual memory is

organised into pages. The size of the page will match the size of the page frame
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in physical memory. In this system, each page frame occupies 4096 bytes. When

allocating space in memory, linux creates a virtual address that will map to a phys-

ical memory zone. If the allocation is less than the page frame then the addresses

will be consecutive in both virtual and physical memory. If the allocation is larger

than the page frame, the information will be consecutive in virtual memory, but in

physical memory it will be filling page frames, but scattered throughout the mem-

ory (figure 4.1). This is a problem when HPS and FPGA have the same memory.

Since the goal is to give the initial address to the FPGA and from there, knowing

the allocated size, it deals with the readings and writings. With the information

scattered in memory, the FPGA would have to skip memory addresses. Thus this

approach was discarded.

Since this is a development system, it is easy to change system properties.

Thus in the boot menu (U-Boot) the memory specifications have been modified to

limit its use by linux by 50%. This way there is 50% of memory that can be used

and managed by the user to best suit the project needs, and linux will not interfere.

Figure 4.1: Memory mapping.

4.2 Shared Memory

The free space in the SDRAM is used as shared memory between the HPS

and the FPGA. The DMA 1 and 2 are Direct Memory Access (DMA) controllers used

to copy information from memory spaces. This DMA controllers are created in the
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FPGA space, but controlled by the HPS Management & Communication System.

This system starts by receiving the input image, and place it in the shared memory.

After that the DMA 1 is configured with the right addresses, and then activated.

It copies the desired content from the SDRAM to the On-Chip Memory 1. After

the CNN processing in the FPGA, again, the HPS Management & Communication

System configures the DMA 2 to copy the information from the On-Chip Memory 2

to the SDRAM. This way, in the end the linux program has access to all information

created by the FPGA, accessing it from the SDRAM.

Figure 4.2: Shared memory and memory flow diagram.

4.3 Communication Bridges

A SoC system has many features to take advantage from many different ap-

plications. To meet the needs of various types of projects, features have been added

that facilitate the development with these boards. The communication bridges are

one of these features. This implementation makes it easier to transfer information

between HPS and FPGA. It also allows direct connection of these bridges to FPGA

I/O devices, memory managers and others.



24 Implementation of Proposed System

There are three bridges connecting the HPS and the FPGA as shown in

figure 4.3. The first is the HPS-to-FPGA bridge which has 3 different bit-width

configurations, 32, 64 and 128 bit. The second is the lightweight HPS-to-FPGA

bridge which has only a 32 bits configuration, becoming the most used bridge for

it’s simple configuration. Both addresses to access these bridges are presented in

table 4.1. The third is a FPGA-to-HPS bridge that is used to access information in

the HPS side, more common to access memory components.

Bridge Start Address End Address
HPS-to-FPGA 0xC000 0000 0xFBFF FFFF
Lightweight HPS-to-FPGA 0xFF20 0000 0xFF3F FFFF

Table 4.1: Bridges start addresses.

Figure 4.3: DE1-SoC bridges diagram. (Source: (Altera, 2018, p. 612))

The project uses the lightweight HPS-to-FPGA bridge to configure the

DMA controllers and manage the interruptions to and from the FPGA.

To communicate with the SDRAM, there is a specific bridge for this pur-

pose, the FPGA-to-SDRAM. This bridge is shown in figure 4.4, and also gives the

information that there are up to 6 masters that can connect to the SDRAM. This

way, it was created two FPGA-to-SDRAM bridges, one for read and other for writ-

ing.
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Figure 4.4: DE1-SoC Cyclone V block diagram (Adapted from: (Altera, 2018, p. 43))

4.4 Board Configuration

This project makes use of the DE1-SoC board. This being a development

board it has multiple combinations for its functioning. From the back side it has

dip-switches as show in figure 4.5 that allows to change the board configuration

mode. The two modes used in this project is the stand-alone mode only to program

the FPGA and the U-Boot, with image stored in the SD card a Linux with frame

buffer distribution. Both modes correspond to the MSEL[4:0] configuration 10010

and 00000 respectively.

A modified version of ubuntu linux was used in this project. This version

already has implemented the device driver to communicate with the FPGA, and has

enabled the most common bridges for communication with the FPGA.



26 Implementation of Proposed System

Figure 4.5: DE1-SoC dip switches. (Source: (Terasic, 2015, p. 13))

An older version of ubuntu with more documentation for this board was

tried, but the communication with the FPGA is not activated, and the software

support has already ended. The Caffe framework and the MQTT protocol also no

longer worked in this version.

4.4.1 Boot Stages

The board initialisation process goes through various stages. To make the

changes in the memory used by the linux Operating System (OS), and change the

bridges configuration, a study to the board boot stages was made. In image 4.6 is

shown the boot flow. Following is a description of each step.

1. Reset - The CPU 1 on board exits from the reset state and starts running

code at the reset exception address. This exception address is usually mapped

to the Boot ROM.

2. Boot ROM - Is responsible to determine the boot source (has mentioned in

the previous chapter) and set up the clock manager.

3. Preloader - initializes the SDRAM interfaces and configure the I/O pins.

Initialising the SDRAM alows the Preloader to load the next stage of the

bootsoftware, usually a open source boot loader, like U-Boot (universal boot-

loader).
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4. Boot Loader - Loads boot configuration and the OS.

Figure 4.6: DE1-SoC boot stages

This last stage is very important as it is here that the user can change

certain initial settings by entering in a interactive command-line session. Here it

is possible to change the memory used by the OS, set MAC addresses, enable and

disable the communication bridges between the HPS and the FPGA, and other

configuration settings.

4.5 HADDOC2

The HADDOC2 tool was originally intended to do all CNN conversion of

the VHDL code. However, this was not the case, and after some study it was con-

cluded that several improvements would have to be made to correct the problems of

timing between the various modules and compilation errors. Also the documenta-

tions of the HADDOC2 does not go into detail in the configuration of the modules.

So, after this, an intense reverse engineering journey began to understand all the

layers created in HADDOC2 construction.

As shown in the previous chapter, the HADDOC2 creates 3 files when it

runs. The compilation error came from here, because the bitwidth must be re-

spected for all parameters. However, the network bias values were not respecting

this bitwidth value, and it was higher sometimes. This leads to compilation errors.

The solution was to limit the maximum and minimum value of the bias to the value

of the scale factor (equation 3.1).

Then the HADDOC2 inputs and outputs were analysed. Originally it has

6 inputs, clock, reset, enable, in data, in dv and in fv as can be seen in figure 4.7.

The clock signal used in this project is the 50MHz clock. The reset input makes a
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reset of the whole system. The enable activates the system. The in data receives

a bus width, with the size predefined in the HADDOC2 file creation. Each input

data corresponds to a pixel of the image, in stream mode. The in dv is a input

that communicates to the HADDOC2 system that is receiving an input data. The

in fv is used to communicate the processing of a new image (for run-time image

processing).

Figure 4.7: HADDOC2 inputs and outputs.

Each time the in fv input was zero, it reset the system to receive a new

image. Allied to the interpretation of RTL (register-transfer level) of the circuit, it

was concluded that the in fv input was the same as activating the reset input, it

would put the system in the initial state, ready to receive an image. At the same

time, it was realised that the critical path of the circuit would be reduced. Removing

this input, also reduces the complexity of the system, reducing the number of mul-

tiplexers. To verify the activated inputs, the VHDL code makes use of if conditions.

These 1 bit if conditions in design space are represented with multiplexers. The im-

age 4.8 shows what happens in the design space. When the program has a cascade

of if conditions, the corresponding RTL circuit creates a cascade of multiplexers.

This increases the complexity and the critical path of the system.

The VHDL code has a cascade of if conditions because of the else condition

when in fv becomes 0. Removing this condition, it was also possible to join both

enable and in dv conditions as shown in image 4.9. This way, not only removed a

layer of multiplexers, it also removed 2 layers of multiplexers, because the inputs

enable and in dv were verified using a and logic gate. Almost all HADDOC2 modules

performed input checking through if conditions. Thus in these modules, the code

has been changed.

The HADDOC2 has 2 major structures, the Convolution layer and the
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Figure 4.8: If condition in block diagram using multiplexers.

(a) Long if example. (b) Short if example.

Figure 4.9: Different if conditions examples.

Pooling layer. From here, the debugging of the HADDOC2 was divided in two

parts, the Convolution layer and the Pooling layer.

4.5.1 Convolution Layer

In order to optimise the number of operations performed by the FPGA and

to take advantage of all its parallelism for the execution of convolutions, first there is

a process of extracting the necessary values to perform the respective convolutions.

Thus, there is a layer ”TensorExtrator” that realises the operation represented in

image 4.10. As the HADDOC2 receives the pixel stream from the image in each

clock cycle, these pixels are stored in a vector with size equal to the equation 4.1.

This way the vector is filled with that size. At each clock cycle it is possible to

extract the necessary values from the image to convolve these values with a mask.

Since CNN can have several convolutions, the image values are divided by several

convolution modules, where each will convolve. In this way we use the minimum of

space keeping the parallelism in the operations.

The FPGA is a dedicated circuit, it allows to perform several operations

in the same clock cycle, and parallelize the multiple convolutions. Thus, each kernel

convolution with the image is performed in a clock cycle, multiplying all values. In
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the next clock cycle, all values are summed using the binary adder tree. This keeps

the flow of data and does not have to store the received values again, saving space

on the FPGA, and speeding up the CNN process. At the end of the convolution,

the data is passed by a activation function, a tanh non linear function.

Tensor Extrator Array = Image Width ∗ (Kernel Height− 1) + Kernel Width

(4.1)

Figure 4.10: Input array for Convolutions.

4.5.1.1 Changes to Convolution Layer

Initially the Convolution Layer has to store the input data. This was done

by using a structure called taps. This structure would save a line of the image, so

the program would create as many taps, as the kernel width size. In the figure 4.11

the kernel width number is represented by the letter i. As can be seen, each taps

passes the following structure the oldest pixel value, ie at the end the structure taps i

will have the corresponding oldest line. By passing the value from one structure to

another, one value is passed from one register to another. This will create a delay

between values in various taps.

This complex structure of independent lines had a lot of issues, first by

having a 1 clock cycle delay between all of them (so as more taps it had, more delay
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Figure 4.11: HADDOC2 original taps.

the program had), and each one, had the same coding, so it was repeating the circuit

in the FPGA, which led to the use of more logical elements. To solve this a single

taps where created, to store all the necessary values represented in image 4.10, and

remove the delay.

The taps structure only stores the values not managing the data flow. To

control the data flow and activate the in dv output for the next stage, it is needed

a controller that counts the number of values received. As represented in the figure

4.10 to start the first convolution with the kernel, it has to receive the number of

values represented in equation 4.1. This controller was redesigned and tested leading

to perfect results.

4.5.2 Pooling Layer

The HADDOC2 using a sequential process, has to manage the input data

so that it uses the fewer possible clock cycles in the FPGA. This way, the pooling

layer receives a stream of data corresponding to the filtered image in the convolution

layer. Each clock cycle the poolV layer receives the data corresponding to a pixel

from the convolution layer, and stores this data in a buffer. The size of the buffer

is represented by the equation 4.2.

Kernel Height− 1 ∗ Image Width (4.2)

The image 4.12 represents the array of the pooling module containing the

data from the convolution layer. This module does the maximum of Pool1 and Pool2



32 Implementation of Proposed System

Figure 4.12: Data array poolV module.

values. Then it sends this values to the poolH module. Every 2 received values, it

calculates the maximum of the values. In this way the data stream can be kept in

the input while performing the necessary operations to continue the propagation in

the network (figure 4.14).

Figure 4.13: Data array poolH module.

Figure 4.14: poolV and poolH modules.

4.6 Time Analysis

It was made the study of the time needed to travel the entire network in

the FPGA. The image is streamed on CNN, so as long as there is enough data,

processing is being done. When the last pixel in the image enters, the time required

to finish the processing will be the time required to traverse the entire network.

Network propagation time depends on the number of existing convolution and pool-

ing layers plus the InputLayer (see figure 3.4). Each convolution layer has 3 main
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modules, TensorExtractor, DotProduct and TanhLayer. The latter is performed

asynchronously, meaning no clock cycle is lost. Within DotProduct, 2 clock cycles

are lost (1 cycle in each internal module). In Tensor Extractor 2 clock cycles are

lost due to storage of data in an array. Thus, in each convolution layer, it occupies 4

clock cycles. The pooling layer contains 2 modules. Each one of these modules loses

1 clock cycle. In the end the pooling layer occupies 2 clock cycles. Thus, M being

the number of convolution layers and N the number of pooling layers, the network

propagation time is represented in clock cycles in equation 4.3.

Network propagation time = M ∗ConvLayer+N ∗PoolLayer+InputLayer (4.3)





Chapter 5

Preliminary Results and

Discussion

During this project several challenges were faced. Initially we had to draw

the whole pipeline. Then we had to chose the architectures and protocols. When

everything was ready to go, the problems encountered in HADDOC2 forced a re-

structuring of the original plan.

Finally, after all the study, development and patches, we were able to get

a complete pipeline, from image acquisition, memory management, FPGA circuit

control, CNN results and communication using the MQTT IoT protocol.

To test the entire pipeline, it was necessary to train a new version of the

LeNet character detection network, using the MNIST dataset, because of the space

limitation of the DE1-SoC board. Using only 2 convolution layers, followed by a tanh

activation function and a pooling layer each (see figure 2.3) the network achieved a

accuracy of 99% during training.

From table 5.1 we can see that even the reference implementation on CPU

has issues with discerning between images 9 and 4, but correctly identifies the oth-

ers. However, despite all the above mentioned corrections made to the HADDOC2

structure (convolution and pooling layers), the results on the FPGA are not all sat-

isfactory. While the consistency and timing of the data flow pipeline was checked,
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Image
Number

Classification
FPGA

Classification
FPGA (%)

Classification
CPU

Classification
CPU (%)

1 2 50% 1 57%
3 2 88% 3 70.5%
4 3 92% 4 100%
5 3 99% 5 99.6%
7 2 61% 7 82.2%
9 3 92% 4 94.3%

Table 5.1: Classification results for the same input data using the FPGA and the
CPU.

there remain errors that render the results useless. One of the possibilities is the

weight conversion and also the normalisation along the network to avoid having de-

generate computations. Having established an operational system end to end, from

the sensor to the IoT, future work will have to double check the HADDOC2 revised

modules to ensure numerical consistency of all computations.
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Conclusion and Future Work

6.1 Conclusion

This work presents a heterogeneous system that combines HPS processing

with the use of FPGA to deploy a CNN based system/device.The HADDOC2 frame-

work which was intended to automatically generate the VHDL code from the CNN

model, was restructured because it contained several flaws that prevented its use.

A HADDOC2 support system was implemented on the FPGA together with the

necessary modules needed to make it accessible to the management and controlling

system running under linux. This system communicates to the internet by sending

the processed data through the MQTT protocol. Besides the numerical aspects that

steel need to be improved, a complete and functional pipeline is now available to

generate an FPGA-based implementation from a Caffe CNN model.

One short paper and one demo have been accepted and presented at the

REC’19 (XV Jornadas sobre Sistemas Reconfiguráveis) and Experiment@ Interna-

tional Conference 2019 (exp.at’19) respectively. Author versions of these articles are

included as attachments to this document.



38 Conclusion and Future Work

6.2 Future Work

The HADDOC2 framework has many features to improve. It has demon-

strated that it is possible to have a fully CNN implemented in the FPGA, but the

weight conversion has to be redesigned. Also this FPGA has approximately 500

kbytes of OCM. This is enough space to store all weights of a CNN, and be able

to have larger networks running in the FPGA, or simply by using high-end larger

FPGAs. Another aspect that needs attention is the pooling layer only accepts 2x2

filter size, and the convolution layer does not accept any stride. Weight conversion

needs to be improved. As HADDOC2 creates code for a NN, regardless of target

device this creates problems if FPGA space is small. Thus, multiplexing the con-

volution layers could be implemented to reduce the circuit design, keeping only one

convolution layer in the FPGA, and loading the weights when necessary, so HAD-

DOC2 could run on smaller platforms, using large CNNs. With the addition of

these features and new activation functions, the capabilities of HADDOC2 will be

increased by making a software capable of running CNN on the FPGA efficiently.

Another necessary improvement is to make HADDOC2 compatible with

the new ONNX format, supporting NN models produced from different frameworks.
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Images used in the CNN

(a) (b)
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Figure A.1: Images used as CNN input.





Appendix B

Using the Communication Bridges

in the DE1-SoC

This tutorial is intended for SoC devices (specific the DE1-SoC) and shows

how to create a Quartus project to communicate between the HPS and FPGA using

the HPS-to-FPGA bridges.

In this tutorial is used the Quartus 14.1 Subscripted Edition, but any other

Quartus version that supports the board should work.

1. Install the Quartus software and the Intel SoC EDS that has specific libraries

necessary to create the program.

2. Crete a blank project in Quartus.

3. Open Qsys with a open project, it will only have the clock. Save it with the

name FPGA to HPS system.

4. Add the Arria V/Cyclone V Hard Processor System from the IP Catalog, and

keep the default settings.

5. Add 2 of PIO (Parallel I/O), one with bitwidth = 10 and output with name

PIO LEDR and other with bitwidth = 10 and input with name PIO SWITCHES.



6. Connect the clock to all components, and connect both h2f axi master and

h2f lw axi master to the PIO’s.

7. In both PIO’s go to external connection in Export column and double-click to

export. For the PIO LEDR add the name ledr and for the PIO SWITCHES

add the name sw.

8. Go to Address Map tab and for the PIO LEDR add the address 0x0000 0000

and for the PIO SWITCHES add the address 0x0000 0020 in both bridges.

9. Now Finish and Generate the system.

10. Add the .qip file to the Quartus Project (go to Project → Add/Remove Files in

Project... and add the file < project directory > / < name of qsys project >

/synthesis/FPGA to HPS system.qip)

11. Set the .qip file as the Top-Level Entity

12. Add the pin assignments for the corresponding clock, reset, leds and switches

(Assignments → Pin Planner)

13. In Quartus go to Processing → Start → Start Analysis & Synthesis and wait

until complete

14. Now go to Tools → Tcl Scripts... and Run the script hps sdram p0 pin assignments.tcl

(its necessary because the Arria V/Cyclone V Hard Processor System block in

Qsys has memory inputs and outputs, and this file generates the corresponding

pin assignment)

15. Compile the Project

It is necessary to program the FPGA. This board when running with a

linux OS, programs itself when turns on. So the programming file in the project

folder is in < project directory > / < output files > / < project name > .sof .

This file has to be converted and added to the SD card. Following is a short tutorial:

1. In Quartus, go to File → Convert Programminf Files...



2. Add the .sof file in Input files to convert and in Programming file type select

Raw Binary File (.rbf) and in File name change it to ”soc system.rbf”. Click

Generate.

3. Connect the SD card image to the computer. In the Shortest partition, should

have a ”.rbf” file. Substitute by the new file (if the file in the SD card has a

different name then ”soc system.rbf”, change the name of the new file to the

name of the file in the SD card)

There is other simple way of do the conversion, and is shown bellow:

1. In the project folder go to < project directory > / < output files > and

open a terminal here

2. Now execute the following: ”quartus cpf -c < project name.sof > soc system.rbf”

3. Now in the same folder there is a new ”.rbf” file, copy it to the SD card

Now its necessary a program to run on the HPS side to interact with the

FPGA. The code presented bellow is written in C language. Starts by including

the libraries, then define the ”HW REGS BASE” that has control for a lot of pe-

ripherals, including the lightweigth bridge. Then define the normal bridge and the

addresses for the leds and switches. After this the memory file is opened to map

to the specific region of the lightweight bridge or the normal bridge (to change the

bridges, check the commented lines in the code).

Save the program as ”main.c”. To compile is needed a cross-compile. Use

the following code in terminal:

”arm-linux-gnueabihf-gcc -Wall -I /opt/altera/14.1/embedded/ip/altera/hps/

altera hps/hwlib/include main.c -o de1 soc hps”.

Copy the generated file ”de1 soc hps” to the linux in the DE1-SoC board. Run it

and use the switches in the board. It should change the corresponding led.



//=====================================================================

// This program uses the sw i t ch e s to con t r o l the l e d s in the FPGA

// To con t r o l the l e d s in the fpga , i t makes use o f the l i g h t w i g h t

// br idge , or the normal b r i d g e

//

// Made by : Ricardo Barreto Date : 14/05/2019

//=====================================================================

#define DEBUG 1 // d e f i n e s the shown informat ion in the conso l e

#include <s t d i o . h> // p r i n t f ( )

#include <uni s td . h> // c l o s e ( ) and us l e ep ()

#include < f c n t l . h> // open ()

#include <sys /mman. h> // MAP

#include <s i g n a l . h>

//#inc l ude ” hw l i b . h” // not used in t h i s p r o j e c t

#include ” s o c a l / s o c a l . h”

#include ” s o c a l /hps . h” // t h i s f i l e has the de f ined v a r i a b l e ALT STM OFST

//#inc l ude ” so ca l / a l t g p i o . h” // not used in t h i s p r o j e c t

//=====================================================================

// s e t t i n g s f o r the l i g h t w e i g h t HPS−to−FPGA br i d g e

// The ALT STM OFST s t a r t s a t 0 xfc000000 and the HW REGS SPAN of

0x04000000 occup i e s a l l

the phy s i c a l space un t i l the end

// l i g h t w e i g h t HPS−to−FPGA br i d g e s t a r t s a t 0 xf f200000−>ALT LWFPGASLVS OFST

#define HW REGS BASE ( ALT STM OFST )

#define HWREGS SPAN ( 0x04000000 )

#define HWREGSMASK ( HW REGS SPAN − 1 )

//=====================================================================

// s e t t i n g f o r the HPS2FPGA AXI Bridge

#define ALT AXI FPGASLVS OFST (0 xC0000000 ) // ax i mas ter

#define HW FPGA AXI SPAN (0 x40000000 ) // Bridge span 1GB

#define HW FPGA AXI MASK ( HW FPGA AXI SPAN − 1 )

//=====================================================================

// Define the addres se s o f the l e d s and sw i t ch e s

#define PIO LED BASE 0x00000000

#define PIO SWITCHES BASE 0x00000020

//=====================================================================



volat i le s i g a t om i c t stop ;

void catchSIGINT ( int signum ){

stop = 1 ;

}

int main ( int argc , char ∗argv [ ] ) {

// catch SIGINT from c t r l+c , i n s t ead o f having i t a b rup t l y c l o s e

s i g n a l (SIGINT , catchSIGINT ) ;

p r i n t f ( ”Running . To ex i t , p r e s s Ctr l+C.\n\n” ) ;

int mem fd = open ( ”/dev/mem” , ( ORDWR | O SYNC ) ) ;

i f (mem fd == −1) {

p r i n t f ( ”Can ’ t open /dev/mem\n” ) ;

return ( 1 ) ;

}

void ∗map base lw br idge ;

// lw b r i d g e

map base lw br idge = mmap(NULL, HW REGS SPAN, PROTREAD|PROTWRITE,

MAP SHARED, mem fd , HW REGS BASE + ALT LWFPGASLVS OFST) ;

// normal b r i d g e

//map base lw br idge = mmap(NULL, HW FPGA AXI SPAN,

PROTREAD|PROTWRITE, MAP SHARED, mem fd , ALT AXI FPGASLVS OFST) ;

i f ( map base lw br idge == MAP FAILED){

p r i n t f ( ”Can ’ t mmap\n” ) ;

c l o s e (mem fd ) ;

return ( 1 ) ;

}

volat i le unsigned int ∗ h2p lw led addr = NULL;

volat i le unsigned int ∗h2p lw sw addr = NULL;

h2p lw led addr = (unsigned int ∗ ) ( map base lw br idge + PIO LED BASE ) ;

h2p lw sw addr = (unsigned int ∗ ) ( map base lw br idge + PIO SWITCHES BASE) ;

unsigned int sw val ;

sw val = a l t r ead word ( h2p lw sw addr ) ;

a l t w r i t e wo rd ( h2p lw led addr , sw val ) ;

while ( ! stop ){



i f ( sw val != a l t r ead word ( h2p lw sw addr ) ){

sw val = a l t r ead word ( h2p lw sw addr ) ;

i f (DEBUG) p r i n t f ( ” Switches changed !\n” ) ;

}

a l t wr i t e wo rd ( h2p lw led addr , sw val ) ;

u s l e ep (0 . 5∗1000000 ) ; // us l e ep i s in microseconds = 1∗10ˆ−6 seconds

}

i f ( munmap( map base lw bridge , HW REGS SPAN ) != 0 ) {

p r i n t f ( ”ERROR: munmap( ) f a i l e d . . . \ n” ) ;

c l o s e (mem fd ) ;

return ( 1 ) ;

}

c l o s e (mem fd ) ;

return 0 ;

}
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Abstract. This paper proposes the implementation of IoT devices that
can communicate processed data obtained from local images. The image
processing is done using convolutional neuronal networks (CNN). IoT
devices follow the trend of using cloud computing to process the col-
lected data. We intend a twist on the established paradigm and pursue
an edge computing approach. Since we are targeting small and simple
devices, we need some low power solution for the CNN computation.
We also need to broke the IoT data. We will use a Terasic DE1 (SoC)
reconfigurable system, with a field programmable gate array (FPGA),
and hardwired ARM processor to build the IoT device. We will initially
use the HADDOC2 framework that converts CNN models specified in
Caffe to VHDL code. This will be integrated with the local IoT system
on the SoC board. Building upon this initial solution, we will tackle how
to address dimensionality issues and implement partitioning, pipelining,
and multiplexing in time of the NN computations. In the end we expect
to have a full toolchain to enable powerful IoT applications that rely
on edge computing to only propagate to the network curated and useful
data.

1 Introduction

The search to make physical devices intelligent has always existed.
Even when the first computer was developed, it was intended to
draw conclusions and get results faster than the human could. Ar-
tificial intelligence presents itself as a tool capable of increasing the
intelligence of current devices. CNNs appear as part of artificial in-
telligence aimed at recognising patterns in images, or videos. These
networks are currently running on computers with large processing
capacity, which are bulky and consume a lot of energy, which is a
problem for remote and resource-constrained solutions. When creat-
ing an IoT device it needs to fulfil some requirements such as low
energy, connectivity, reduced size [5], and developing custom circuits
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is often required. ASICs are custom-made chips for specific applica-
tions, having the advantage of being faster than FPGAs and are
highly optimised. However they have great design and production
costs. FPGAs are reconfigurable devices with the possibility of rapid
prototyping, but also for end products. In this project we will use
the FPGA due to the greater ease of programming and prototyping
The design in FPGA can be a time consuming task. Thus, if we
could have a program with the ability to produce VHDL code for
the FPGA, the programming would be much simpler.

The HADDOC2 framework [1] has a tool chain that performs
direct hardware mapping (DHM) CNN to VHDL. As shown in fig.
1a, the framework uses Caffe CNN models as input and generates
the corresponding VHDL code to be synthetized and then deployed
in the FPGA.

In fig. 1b we have a schematic of our high level architecture. A
Terasic DE1 SoC development board device containing the FPGA
and HPS will be used. The HPS running linux will be used to imple-
ment the IoT component, receive local external data, namely image
or video, perform the communication with the outside and maintain
the synchronisation of the data between the HPS and the FPGA.
The FPGA will be used to implement previously synthesized CNN.

(a) HADDOC2 operation.

(b) High level architecture.

Fig. 1: General Architecture
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CNNs tend to have multiple layers to obtain a precise result, and
the more complex the problem to solve, the more layers the network
will have. This increase in size leads to more operations and is a
problem when implementing on FPGAs.

1.1 Related Work

Some frameworks to convert CNN models to hardware design lan-
guage have been and continue to be developed. CONDOR [6] is an
automated framework to accelerate CNN on FPGA. This framework
is under development and the objective is to map CNN computation
in hardware and take advantage of the parallelism of the CNN. An-
other framework is fpgaConvNet [7] that even automates the gather-
ing of the target platform specifications, perform a custom mapping.
However neither of the above are open-source, and since we want a
base upon which to improve and customise, they were not used in this
work. Also this program is not available to be changed. HADDOC2
is a framework that has the ability to convert CNN caffe models to
VHDL code. Using DHM, HADDOC2 is taking maximum advantage
of network parallelism by implementing it without any pipeline. So
it takes full advantage of the FPGA. It is also not limited by the
platform and the source code is open-source. This creates an advan-
tage to developers to modify and improve the current HADDOC2
work.

Several works have explored FPGA implementations of neural
networks (NN). CNN implementations have distinct aspects, but also
a lot in common with NN. Simple NNs can be fully implemented on
FPGAs with minor changes. As reported in [4] a NN is implemented
and for the activation function 2 methods were tested. The first is
a full implementation of the sigmoid function which uses multipliers
and divisions, taking up a lot of resources. So in a second attempt a
look up table (LUT) is used to replace the sigmoid function. With
this technique some precision is lost, the memory access is slower,
but a much more compact design is achieved.

Fully implementing a large NN on an FPGA can occupy all the
reconfigurable logic. To overcome this situation a multiplexing ap-
proach is studied in [3]. This technique uses the large layer to create
a control block that imports, at each layer, the respective neurons
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and weights. Using this method the FPGA is unimpeded to receive
large networks, but the whole network will be slower because of the
time multiplexing.

To explore in depth this technique, CNN are the main candidate
as a consequence of its large size. As presented in [2] a CNN is
implemented using a pipeline technique to implement the layers. The
goal of the project was testing against common platforms used to
execute neural networks, and the results are impressive. The FPGA
got the same performance per watt as a 16 thread CPU Intel Xeon
E5-2430. Comparing with the hardware used in embedded systems,
a mobile GPU got substantial less performance then the FPGA.

2 Proposed Work

This work makes the use of the HADDOC2 framework to map to
hardware a complete CNN on the FPGA. However this process is
limited by the number of logic elements in the FPGA, so we will tar-
get smaller CNNs. The HADDOC2 has implemented some methods
to optimise the final code. The number of multiplications is reduced
by detecting redundant operations, multiplications by 0 removed, by
1 replaced by a single connection and by a power of 2 are transformed
into shift registers. Although code created by HADDOC2 is DHM,
this means that all neurons in a layer are mapped on the device to
take advantage of inter-neuron parallelism, and each convolution is
mapped separately and finally, each multiplier is instantiated sep-
arately. This method occupy a lot of hardware design. The CNN
specification is given to HADDOC2 to obtain the VHDL code, that
is synthetized for the specific hardware device. This is done offline,
and only the final circuit is sent to the SoC hardware, along with
the software for the IoT running on the HPS.

To feed the CNN an external camera connected to the DE1 board
is used. This connection will be processed on the HPS side, running
a program that will send the data from the camera to the FPGA.
The communication between the HPS and the FPGA is an complex
task. One way is the use a HPS to FPGA bridge, a high performance
bus with 32, 64 or 128 bit. The other way is to make use of direct
memory access (DMA). The later does not have a limit of bus width,
and could easily transfer information between the HPS and FPGA
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system. The program running on HPS will also serve to maintain
data consistency between the HPS and the FPGA.

The HPS program also includes the IoT communication to the
web. The protocol used is the MQTT that relies on the TCP pro-
tocol for data transmission and includes an SSL certificate for secu-
rity. This IoT protocol works in a publish-subscribe pattern, where
publishers send a message to a topic, and external devices must sub-
scribe to this topic if they want to receive the message. This enables
a lightweight implementation, but secure and reliable. A broker is re-
quired on which to publish the messages. The HPS program is able
to receive information too, by subscribing topics in the broker.

The HADDOC2 framework is limited by the strict DHM ap-
proach, but we want to go beyond and explore optimisations using
the open-source framework. CNN processing goes through several
layers. Image processing layers such as convolution, activation, and
pooling are the most frequent in CNN processing. These require a
large number of multiplications, which may limit implementations
on FPGAs. These multiplications can be done using specific blocks
or by creating the block with logic elements. Thus we could imple-
ment only one layer, and this be repeated in a cycle, multiplexing in
time and maximise the space available on the FPGA. The network
is no longer fully implemented, and may slow down processing, but
it enables implementation of larger and more complex networks.

3 Expected Results and Conclusion

We intend to obtain an IoT device that combines high processing
characteristics, keeping within a small size, and is energy efficient.
For this we make use of a SoC that contains an FPGA and an ARM
processor. The HADDOC2 framework converts the CNN model to
VHDL and will be explored and modified to achieve the implementa-
tion of larger and more complex networks. IoT will be implemented
on the ARM side of the processor using linux as the operating sys-
tem. Thus a program will manage the communication with the out-
side, the connection to peripherals and the communication with CNN
in FPGA.
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Abstract. This demonstration showcases the use of reconfigurable logic
to implement edge computing for IoT devices able to provide specific in-
formation from raw data produced from some sensor, e.g. a camera or
microphone, instead of the raw data itself. In what concerns the embed-
ded processing capabilities, the focus is image processing using convolu-
tional neuronal networks (CNN). This approach is clearly distinct from
the current trends in IoT devices of using cloud computing to process the
collected data. We intend a twist on the established paradigm and pursue
an edge computing approach. Since we are targeting small and simple
devices, we need some low power solution for the CNN computation.
The demonstration will be made on a Terasic DE1 (SoC) reconfigurable
system, with a field programmable gate array (FPGA), and hardwired
ARM processor to build the IoT device. The collected data from the
CNN computation, is transmitted using an IoT protocol to a broker.

Keywords: Edge Computing, FPGA, IoT, CNN, ARM, HPS, Intelli-
gent Devices

1 Introduction

The world is becoming increasingly intelligent as a result of techno-
logical developments and the expansion of the internet. In this way
local devices as well as IoT devices are increasingly used to gather
information but end up not performing any kind of data processing,
leaving that task to cloud computing. Embedding AI capabilities on
devices can be an interesting solution for improving their sensing ca-
pabilities (human-like) or performing in situation pattern recognition
for producing e.g. semantic interpretations of the raw data, instead of
the raw data itself. This leads to devices with a wide range of appli-
cations including monitoring, event detection, security systems, with
the ability to interpret data locally, facilitating installation and com-
munication. Among the AI techniques available neural networks and
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in particular convolutional neural networks have demonstrated very
interesting capabilities in performing pattern recognition in images.
These networks are currently running on computers with large pro-
cessing capacity, which are bulky and consume a lot of energy, which
is a problem for remote and resource-constrained solutions. When
creating an IoT device it needs to fulfil some requirements such as
low energy, connectivity, reduced size [6]. Therefore, an FPGA will
be used because it is reconfigurable with the possibility of rapid pro-
totyping, but also adequate for final products.

(a) High level architecture.

(b) Toolchain operation.

Fig. 1: General Architecture

2 Overview

2.1 Current Technologies

A conventional image processing system requires powerful proces-
sors, and typically data is obtained from one place, but processing
is done elsewhere. Thus, by installing an intelligent system of video
surveillance, monitoring, detection of events, etc. which makes use
of a set of cameras, is quickly limited by the large bandwidth of
the acquired data. In addition, the processing unit must respond to
the amount of data to be processed, having high energy costs and
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Fig. 2: Diagram of the steps to get the system working.

consumption. This system is also not flexible, requires a custom in-
stallation and configuration, and if cloud computing is used we may
have problems of limited control, security and data privacy.

2.2 Advantages over Existing Technologies

Our system shows an IoT edge device where the data collected by the
camera is processed locally using the hard processor system (HPS)
and the FPGA. The intended CNN is converted using our toolchain
and synthesized to the FPGA. The HPS runs a linux operating sys-
tem with a dedicated program to collect camera data and maintains
good communication between the HPS and the FPGA and the out-
side world using the MQTT protocol for IoT devices. Only the fi-
nal result of CNN’s image processing is sent, occupying a minimum
bandwidth compared to the image or video transfer. In this way we
have a system with local processing, safe, modular and low power.

3 System Operation

As seen in figure 1a this system collects images, processes them and
sends the final result. Both HPS and FPGA can be used to pro-
cess CNN. To perform the processing on the FPGA the chosen CNN
needs to be converted to VHDL code. The HPS being a low-power
ARM processor, it can only run simple CNNs, yet getting results
locally. But for better efficiency and performance, a custom circuit
is used on the FPGA to accelerate the CNN, achieving faster pro-
cessing.
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This process is simplified using an of the shelf toolchain rep-
resented in 1b where a CNN Caffe model provides the input and
outputs the corresponding VHDL code. After this process the CNN
code is integrated in our project, that wraps up the communication
modules in linux on the HPS and implements the interface on the
synthesised circuit placed on the FPGA. On the HPS side there is a
program that manages the system, sending the image to the FPGA
using the memory of the board and communicating with the FPGA
using direct acess memory and a small bridge of direct communica-
tion (figure 3). Finally the HPS receives the data processed in the
FPGA and finalises the calculus of the CNN.

Fig. 3: Terasic DE1-SoC diagram.

Since the board has internet communication, the MQTT protocol
is used. This protocol works in a publish-subscribe pattern, where
publishers send a message to a topic, and external devices must
subscribe to this topic if they want to receive the message. Thus only
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Fig. 4: Terasic DE1-SoC development board.

a message is sent using a very low bandwidth. This data process is
shown in greater detail on the diagram in figure 2.

3.1 Demonstration

A Terasic DE1-SoC development board (figure 4) containing both
the HPS and the FPGA is used in the demonstration of this project.
A CNN trained on caffe is previously converted to VHDL code. This
CNN is accelerated using the FPGA. Linux on the board supports
the CNN running on the FPGA by sending and receiving the data.

The board behaves always as an IoT device, performing the local
processing and sending the results to the internet. Converting the
CNN Caffe model to the circuit requires a powerful computer sys-
tem with the the toolchain installed, but this is done offline in the
development stage. Synthesis of the VHDL code is performed using
Quartus II. This is a program that needs some processing power,
but since this process only happens once, it does not have a negative
effect if it takes more time.

4 Conclusion

We intend to demonstrate an IoT device that combines high pro-
cessing characteristics, keeping within a small size, and is energy
efficient. For this we make use of a SoC that contains an FPGA
to perform image processing using CNN and the ARM processor to
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run a software that will feed the FPGA with data and keep the syn-
chronism of the tasks and communicate with the internet. With this
approach we have a modular edge computing device with the ability
to adapt to various uses, based on CNNs, with a performance equiv-
alent to a computer, but with the characteristics and limitations of
an embedded system IoT device.

References
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