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Master Lúıs Carlos Artur da Silva Garrote

Jury:

Prof. Dr. Urbano José Carreira Nunes
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Abstract

Over the years, there has been a massive development in robotic systems. One of the

main features of autonomy is the ability of the mobile robot to move without limitations in

the environment, without risking collisions. The autonomous behaviour of a mobile robot

can be described by the connection between three modules: mapping, localization and path

planning. Mapping builds a map of the environment, localization consists of estimating the

robot pose in a map, and path planning computes safe paths. The localization and map-

ping can be used together, resulting in a Simultaneous Localization and Mapping (SLAM)

technique. In this dissertation, the focus was on the mapping and localization modules.

The objective of this dissertation was to develop a localization and mapping approach in

indoor environments for the platform “InterBot-Social Robot”. This approach included the

fusion of 2D and 3D sensory data applied to a particle filter to estimate the position of the

robot and the construction/update of a 3D map using a 3D point cloud. The development

of this approach resulted in two more approaches (2.5D Mapping and Localization, and 3D

Simultaneous Localization and Mapping).

Experimental tests were conducted to evaluate the performance of the developed ap-

proaches. The tests consisted in verifying the influence of the number of particles on the

filter: on pose estimation, the generated map and the localization score. Test results were

analyzed, with the final outcomes meeting the expectations set for the approaches.

Keywords: Mobile Robot, Mapping, Localization, SLAM, Particle filter.
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Resumo

Ao longo dos anos, tem havido um enorme desenvolvimento em sistemas robóticos. Uma

das principais caracteŕısticas da autonomia é a capacidade do robô se mover sem limitações

no meio ambiente, sem risco de colisão. O comportamento autónomo de um robô móvel

pode ser descrito pela relação entre três módulos: mapeamento, localização e planeador de

caminhos. O mapeamento constrói um mapa do ambiente, a localização consiste em estimar

a pose do robô no mapa e o planeador para determinar caminhos seguros. A localização e o

mapeamento quando usados de forma conjunta, resulta numa técnica de Simultaneous Local-

ization and Mapping (SLAM). Nesta dissertação, o foco foram os módulos de mapeamento

e localização.

O objectivo desta dissertação foi desenvolver uma abordagem de localização e mapea-

mento em ambientes indoor para a plataforma “InterBot-Social Robot”. Esta abordagem

incluiu a fusão de informação sensorial 2D e 3D aplicados a um filtro de part́ıculas para

estimar a posição do robô e a construção/actualização de um mapa 3D usando uma nuvem

de pontos 3D. O desenvolvimento desta abordagem levou a que mais duas abordagens fos-

sem desenvolvidas (Mapeamento e Localização 2.5D, e 3D Simultaneous Localization and

Mapping).

Foram realizados testes no sentido de avaliar o desempenho das abordagens propostas. Os

testes consistiram em verificar a influência do número máximo de part́ıculas no filtro: na

estimação da pose, no mapa gerado e numa pontuação de localização. Os resultados dos

testes foram analisados, sendo que os resultados finais atenderam às expectativas estabele-

cidas para as abordagens.

Palavras Chave: Robô movel, Mapeamento, Localização, SLAM, Filtro de part́ıculas.
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“Persistence is the shortest path to success.”

Charles Chaplin
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Chapter 1

Introduction

1.1 Context and motivation

For a mobile robot to move autonomously, it is important to have the knowledge of the en-

vironment map and have the ability to locate itself on that map. To date, several approaches

have been developed for the environment representation, in which we can differentiate two

types of representation: topological maps and metric maps (grids) [1]. The map can represent

the environment in 2D, 2.5D, and 3D. One of the first implementations of 2.5D representa-

tions, proposed by Herbert et al. [2], was designed for a mission to the planet Mars, where

a vehicle could collect samples of materials as well as represent the environment. Another

approach was proposed by Premebida et al. [3], based on a 2.5D polar grid and Kriging to

generate denser representations. The information on 2D and 2.5D maps does not provide

a good overview of the environment and to overcome it, 3D maps have been developed.

Recently an approach to a 3D representation was presented by Garrote et al. [4], which

combines features from 2D and 3D representations. Localization of mobile robots is one of

the most important factors to perform autonomous behavior, where the robot must know its

position while moving on a map. Several approaches have been proposed and the PF-based

approach is appealing because of its simple implementation. Recently, the Particle Filter has

been applied in multi-sensor localization applications [5, 6, 7]. Another approach is described

in [8], where data from multiple sensors is fused into a Particle Filter to estimate the robot

pose. In scenarios that mapping and localization are solved simultaneously, this is known

as Simultaneous Localization and Mapping (SLAM). There are several SLAM applications,

including indoor [9, 10, 11], outdoor [12, 13] and sub-sea [14, 15].
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1.2 Main objective

The main objective of this dissertation was to develop and test a system for a mobile robot

that allows localization and mapping in indoor environments using 2D and 3D maps. Figure

1.1 presents the proposed system.

Local
Representation3D Point Cloud

Particle FilterOnboard 
Sensors

3D Global
Map

Map
Update

Estimated 
Pose

3D voxels

a priori 2D
Map

2D Laser Scanner

3D Global 
Map

PF-based mapping and localization architecture (PFML)

Figure 1.1: Block diagram of the proposed system.

Two main data processing modules compose the proposed PFML architecture:

• Map Update: Generates an updated 3D map of the environment. The update is

based on the local representation obtained from the 3D point cloud and the estimated

pose by the PF.

• Particle Filter: The implemented filter estimates the robot pose (x, y, θ) integrating

2D/3D sensory data and 2D/3D maps.

1.3 Main contributions

The goal was to study more complex representations than 2D to provide more faithful

representations of the environment, taking advantage of 3D representations and 3D sensors.

The development of the approach led initially to the implementation of different approaches,

all in Robot Operating System (ROS) middleware. As a final result, three approaches were

implemented:

1) 2.5D Mapping and Localization

• Development of the ROS package “PFML1”, in which the particle filter uses 2.5D

maps to estimate the robot pose. A global map of the environment is updated

using the estimated pose and a local map built from a 3D point cloud. The 2D

2



map given a priori is transformed into a 2.5D map which along with the data from

the local and global representations are used in the particles’ weight computation

(update step of PF).

2) 3D Localization and Mapping (SLAM)

• Development of the ROS package “PFML2” allowing a 3D map to be built from

a 3D point cloud and from the estimated pose by the PF, and locate itself on

that map simultaneously. As in the previous approach, the particle’s weights are

adjusted based on data from the local and global representations.

• An optimization step has been implemented to minimize the pose error by consid-

ering the overlap of the local and the global representations. This stage is based

on gradient descent optimization.

3) 3D Mapping and 2D/3D Localization

• Implementation of a ROS package “PFML3”, where the PF merges 2D/3D sen-

sory data and 2D/3D maps to estimate the robot pose.

1.4 Dissertation Outline

This Master Dissertation has seven chapters structured as follows:

• Chapter 2: Introduction of the existing methods of environment representation, lo-

calization and SLAM approaches.

• Chapter 3: Provides an overview of some essential algorithms for the proposed ap-

proaches in this work.

• Chapter 4: Presents in detail the solutions proposed in this dissertation and the

changes that are made in the PF according to the proposed approach.

• Chapter 5: Gives an overview of the hardware and software used and developed to

accomplish the proposed objective.

• Chapter 6: Presents and discusses the experimental results of the implemented ap-

proaches.

• Chapter 7: Contains the conclusions of this work and provides suggestions for future

work.
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Chapter 2

State of the art

In this chapter, an overview of the existing techniques for mapping will be presented,

giving strengths and weaknesses for each case. Most used approaches are also presented in

mobile robot localization systems, with the main features being highlighted. Finally, some

solutions for the SLAM problem, are presented as well.

2.1 Mapping

Topological approaches produce maps that represent places (nodes) in the environment

and how these places are connected (arcs). Regarding the metric approaches, in the most

common ones, the environment is represented by a grid. The 2D occupancy grid maps have

been introduced by Moravec and Elfes [16], where the map is divided into cells, in which each

cell contains an occupancy probability. This representation cannot represent 3D objects, and

to overcome this problem the 2.5D and 3D representations have been proposed. The 2.5D

representations are known as elevation maps, where each cell contains ”height” information

about the highest object [2]. The main shortcoming of 2.5D maps is the representation of

vertical overlapping objects (e.g. the free space between the ground and the deck of a bridge

will be considered as an obstacle). The 3D representations have been proposed to provide a

more detailed environment. A popular approach to 3D representation was proposed by Roth-

Tabak and Jain [17], in which the occupancy grid is composed of equal size cubic volumes

designated voxels, to discretize the mapped area. Work with Voxel grids has been presented

in [18, 19] where 2D grid maps store a list of voxels in each cell. Another approach to 3D

representation is described in [4], called Height-Voxel Map (HMAP), a 2D grid-map with

several Height-Voxels aligned vertically, where free and occupied space is shaped by these

voxels. A major shortcoming of fixed size voxels grids is their large memory requirement

in large-scale outdoor environments or when there is the need for high resolutions. The
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OctoMap approach has been proposed by Hournung et al. [20] where the environment

representation is based on octrees. OctoMap supports multi-resolution map queries and

the probabilistic representation of occupancy also includes free and undiscovered areas [20].

However, the tree structure of the octrees makes access to data more complex than other

3D representations listed above. This approach is widely used in robotics projects and is

available as open-source in ROS.

Figure 2.1 shows the mapping approaches obtained from a 3D point cloud. Table 2.1

illustrates the strengths and weaknesses of three mapping approaches.

(a) (d)(b) (c)

Figure 2.1: Representation of a corner with a table from a 3D point cloud: (a) 3D point

cloud; (b) 2D occupancy grid map; (c) Elevation maps (2.5D) and (d) 3D voxel grid map.

Table 2.1: Advantages and disadvantages of mapping approaches (adapted from [20, 21]).

Approaches Advantages Disadvantages

2D Occupancy Map - Simpler and faster representations

- Memory efficient

- Constant time access

- Impossible to represent 3D objects,

only planar environments

2.5D Map - Simpler and faster representations

- Memory efficient

- Constant time access

- Non-probabilistic

- No distinction between free and un-

known space

3D Occupancy Map - Volumetric representation

- Tree data structures allow multi- resolu-

tion

- More detailed representation

- Memory requirement

- Discretization errors
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2.2 Localization

The mobile robot should have the ability to determine its position on the environment

map. Given this map, the mobile robot analyses the data from its sensors and estimates its

position (see Fig. 2.2).

Encoder

Map

Pose 
Prediction

Pose 
Update

Scan 
Matching Observation

Laser observations

pose

predicted pose

Figure 2.2: Diagram for mobile robot localization.

The concept of Scan Matching for localization, proposed by Feng Lu and Milios [22], is

described as a geometric approach, where through lasers scans a rigid transformation between

consecutive matching scans is obtained. The Scan Matching aims to obtain the translation

and rotation between the current position and a reference robot position. Methods based on

scan matching present high speeds and satisfactory accuracies. However, they can fail and

may not recover.

Localization has been subject to intense research over the years and different methods

have been proposed, based on Extended Kalman Filter (EKF)[21], Unscented Kalman Filter

(UKF)[23] and Particle Filter (PF)[24]. The EKF and UKF are variants of Kalman Filter

(KF), which can handle nonlinear functions. In the PF method, a set of particles is used to

represent the belief of the robot pose. If a region is denser (higher concentration of particles),

then the probability of the robot being in that pose is high. PF-based localization is one

of the most interesting methods due to its low computational complexity and it does not

require much memory or resources [24]. In mobile robot localization, this method is more

recognized as Monte Carlo Localization (MCL) and can represent multi-modal distributions

and globally localize a robot [24]. A variant of MCL, Adaptive Monte Carlo Localization

(AMCL) or also known as KLD-sampling is described in [25], where an adaptive approach

to MCL is implemented. This method adjusts the number of particles in each iteration, thus

increasing the PF efficiency.
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2.3 Simultaneous localization and mapping (SLAM)

SLAM is one of the main challenges of robotics. Without prior knowledge of the surround-

ing space, SLAM allows the robot to navigate in unknown environments, building its map

and determining its position on the map.

A pioneer approach of SLAM is based on EKF, known as EKF-SLAM [26]. This solution

is computationally heavy, and the space required increases squarely with the number of

landmarks [27]. There are several open-source SLAM approaches in ROS. Reviews of the

most commonly used approaches was done in [28, 29], in particular GMapping [30], Hector

SLAM [31], Google Cartographer [32], Real-Time Appearance-Based Mapping (RTAB-Map)

[33], and Laser Odometry and Mapping (LOAM) [34]. Google Cartographer is a LiDAR

graph-based SLAM approach, that generate a 2D occupancy grid and supports 3D LiDARs.

This approach uses sub-maps and has a graph optimization module for loop closure detection,

that minimizes the pose error. Loop closure detection occurs when the robot recognizes a

place already visited, allowing it to update a map and reduce the error of the pose estimate.

RTAB-Map is a Graph-Based SLAM that also implements loop closure detection. This

approach can be used with multiple sensors such as a stereo camera, RGB-D, Kinect, 3D

LiDAR and 2D Laser Scan, and generate 3D point clouds of the environment to build a 2D or

3D occupancy grid maps. LOAM is an approach that uses data from a 3D LiDAR and runs

two algorithms in parallel with different frame rates. The lowest frame rate is responsible for

the odometry to estimate the velocity of the LiDAR and fixes the blurring in the 3D point

cloud, and the second algorithm updates a map with the registration of the 3D point cloud

using scan-matching [34]. This approach does not include loop closure detection.

Table 2.2 presents a categorization of the above mentioned SLAM approaches, stating the

inputs, the methods employed and the outputs.

Table 2.2: Summary of popular ROS-SLAM approaches with their supported inputs, meth-

ods and outputs (adapted from [29]).

Inputs

Methods

Outputs

Odom
LiDAR Point

Pose
Ocuppancy

2D 3D Cloud 2D 3D

GMapping [30] * * Particle Filter * *

Hector SLAM [31] * Gauss-Newton * *

Cartographer [32] * * * Loop closure detection and submaps * * *

RTAB-Map [33] * * *
Loop closure detection and graph

optimization
* * *

LOAM [34] * * Two threads for odometry and mapping * * *
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Chapter 3

Background material

3.1 Environment representation

The localization of a mobile robot can only be achieved if an environment map is available.

Multiple sensors provide data to build or update the map. As mentioned in Section 2.1,

there are two types of maps being our focus on the grid-based (metric) maps, in which the

environment can be represented by 2D, 2.5D and 3D grids.

3.1.1 Occupancy grid map

The most common 2D grid-based map is the occupancy grid map, in which each cell

contains the probability of that cell being occupied. For each sensor measurement (sensor

beam), is computed an occupied cell and a set of cells is updated based on Bresenham’s

algorithm [35], which determines the cells that are crossed by a line (see Fig. 3.1).

Figure 3.1: Illustration of the 2D line tracing from the robot pose (A) to the occupied cell

(B) (grid coordinates). The robot cell is in red, the computed cells are in light blue, and the

occupied cell is in purple.

Once the line is defined by two cells, one cell from the robot pose (A) and the other from

the occupied cell (B) (both coordinates are transformed into grid coordinates), all cells on

the line are set empty and the hit cell as occupied. All cells beyond the hit cell have no
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influence. The cell probability is updated by the equation described in [21]:

l(x|z1:t) = log
p(x|z1:t−1)

1− p(x|z1:t−1)
+ log

p(x|zt)
1− p(x|zt)

− log p(x)

1− p(x)︸ ︷︷ ︸
=0, if p(x)=0.5

(3.1)

with p(x) the prior probability, p(x|z1:t−1) the previous estimate and p(x|zt) denotes the

probability that cell x be occupied given the measurement zt. The conversion of log odds to

probabilities of a cell is given by:

p(x|z1:t) = 1− 1

1 + exp(l(x|z1:t))
(3.2)

3.1.2 Incremental Map

A different mapping approach for 2D maps is presented in [36], designated the reflection

maps. In such maps, each cell contains two counters of hits and misses, and based on a ratio

between them defines the reflection probability of the cell [36]. The hits correspond to the

number of cases a sensor beam was reflected in the cell (endpoint) and the misses represent

the number of cases a sensor beam crossed through the cell. The reflection probability in

the cell (x, y) is given by:

pref (x, y) =
hitsx,y

hitsx,y +missesx,y
(3.3)

The cells between the sensor and the measured point are selected by using the Bresenham’s

algorithm [35].

3.2 Particle filter

The particle filter represents the belief of the system state by a set of random particles.

Initially, the particles are randomly distributed over the environment, and at each iteration,

they converge to the real system state. The set of random particles is denote by:

Xt = [x
[1]
t , x

[2]
t , ...., x

[N ]
t ] (3.4)

where each particle x
[n]
t (with 1 ≤ n ≤ N) is associated with a hypothesis of the state of

the system at the instant t, with their respective weight (w
[n]
t ). N denotes the number of

particles in the set Xt, which is usually a fixed value but can be adaptive when implementing

the KLD-sampling method [25]. This filter has as input a set of particles that represents the

belief of the system state at the instant t− 1, Xt−1, the control ut and the measurements zt

at the instant t. PF consists in 3 steps: prediction, update and resampling (see Fig. 3.2).
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Predict
Update

zt

Resampling
Xt

Delay

ut

Xt-1 Particle Filter

wt

Figure 3.2: Particle filter diagram with: zt the observation; ut the control; wt denotes the

particles weight; Xt and Xt−1 being the actual and the previous particle sets.

In the Prediction step, the next state of the particles is predicted using the motion model

of the system. In the next step Update, the observation model adjusts the particles weights.

Finally, the Resampling step has the purpose of generating a set of new particles with more

particles around the previous ones with higher weights.

The initial belief bel(x0) is defined by a set of N particles randomly generated according

to a priori distribution p(x0), where each particle is assigned an importance factor (weight)

1
N

[21]. Each step mentioned above is detailed below.

3.2.1 Prediction

The PF predicts a possible state for the platform, x
[n]
t , based on the previous particle

x
[n]
t−1 and the motion model ut. The platform motion over time is calculated based on

odometry, i.e., integrating wheel encoders information. The platform moves from a pose

xt−1 = [xt−1 yt−1 θt−1]T to a pose xt = [xt yt θt]
T , with ut = [x̄t−1 x̄t]

T obtained from the

robot odometry. As it is presented in [21] this movement is transformed into a sequence of

steps: a rotation (δrot1), followed by a translation (δtrans) and a second rotation (δrot2).

Algorithm 1: Sample motion model adapted from [21].

Data: Particles x
[n]
t−1 =

[
x
[n]
t−1 y

[n]
t−1 θ

[n]
t−1

]T
and ut = [x̄t−1 x̄t]T

1 δrot1 ← atan2(ȳt − ȳt−1, x̄t − x̄t−1)− θ̄t−1;

2 δtrans ←
√

(x̄t − x̄t−1)2 + (ȳt − ȳt−1)2;

3 δrot2 ← θ̄t − θ̄t−1 − δrot1;

4

5 δ̂rot1 ← δrot1 − sample(α1δ2rot1 + α2δ2trans);

6 δ̂trans ← δtrans − sample(α3δ2trans + α4δ2rot1 + α4δ2rot2);

7 δ̂rot2 ← δrot2 − sample(α1δ2rot1 + α2δ2trans);

8

9 x
[n]
t ← x

[n]
t−1 + δ̂trans cos(θ

[n]
t−1 + δ̂rot1);

10 y
[n]
t ← y

[n]
t−1 + δ̂trans sin(θ

[n]
t−1 + δ̂rot1);

11 θ
[n]
t ← θ

[n]
t−1 + δ̂rot1 + δ̂rot2;

12 return x
[n]
t ←

[
x
[n]
t y

[n]
t θ

[n]
t

]T

In Algorithm 1, the relative motion parameters are calculated in lines 1 to 3 (δrot1, δtrans, δrot2).
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The corresponding relative motion parameters (δ̂rot1, δ̂trans, δ̂rot2) are calculated in lines 5 to

7 by subtracting sampled error to each motion parameter, with (α1, α2, α3, α4) being the

error parameters. Finally, in lines 9 to 11 the relative motion parameters are added to the

previous states obtaining the new states (x
[n]
t , y

[n]
t , θ

[n]
t ).

3.2.2 Update

In the update stage, the particle weights are updated based on the observation model.

The measurement model is described as a conditional probability distribution p(zt|xt,M),

with zt the measurement at instant t, xt a particle, and M the map of the environment.

Algorithm 2 illustrates an example that can be implemented in the upgrade step using the

range beam model [21].

Algorithm 2: Range beam model algorithm adapted from [21].

Data: Particle xt = {xt, yt, θt}, beam range measurements zt = {z1, ..., zK} and occupancy grid map M

1 w ← 0 ; // Initialize

2 for all K do

3 z∗k ← bresenham algorithm(xt, zk,M) ; // Find the first occupied cell

4 w ← w +Nz(0, z∗k − zk);

5 end

6 return w

In Algorithm 2, for each distance measured by the sensor, a distance (z∗k) to the first

occupied cell is obtained by applying the Bresenham’s algorithm [35]. This line drawing

algorithm is illustrated in Fig. 3.1, and these obtained cells are analyzed to determine the

first occupied cell (see Fig. 3.3). In line 4, the weight of the particle is calculated by making

the difference between z∗k and zk (measured distance).

Figure 3.3: Illustration of the line tracing algorithm and the search for the first occupied

cell. The robot state xt is in red, the computed cells crossed by a line are in light blue, the

measurement zk is in purple, and the occupied cell is in green, with z∗k corresponding to the

first detected occupied cell.
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3.2.3 Resampling

In the resampling step, a new set of particles (X̂t) is generated from the initial set (Xt)

based on the particles’ weight. The result of the resampling depends on the resampling

method applied, but the idea of this step is to give more emphasis to particles with larger

weights than particles with small weights [37, 38]. One method for resampling is the Multino-

mial Resampling (MR) [37], in which the new set of particles can contain replicated particles

from the initial set once the sample is arbitrary and the same particle can be chosen several

times. The MR generates N ordered random numbers from the uniform distribution

ai ∼ U [0, 1), i = 1, 2, ..., N , (3.5)

and a particle x
[i]
t is chosen based on these numbers as follows:

x̂
[i]
t = x

[j]
t , j = F−1(ai) and ai ∈

[
j−1∑
s=1

w
[s]
t ,

j∑
s=1

w
[s]
t

)
(3.6)

with x
[j]
t the particle from the set Xt and F−1 the inverse cumulative probability distribution

of the normalized particle weight.

3.2.4 KLD-sampling

Kullback-Leibler Distance (KLD) sampling is a variant of PF that stands out for adjust-

ing the number of particles over time [25]. The KLD-sampling is illustrated in Algorithm 3.

Each particle goes through three steps: resampling (line 4), prediction (line 5), and update

(lines 6). After each particle sample, the number of desired samples nχ is updated based

on current k occupied bins. On the grid map, each cell contains an angle histogram with b

sections (bins). The computation of k is done by the verification of the particle if it falls into

an empty bin or not (line 9). If the particle falls into an occupied bin nothing happens, but

if it falls into an empty bin, the number k is incremented and bin b takes the occupied state.

In line 12, the number nχ is calculated, with z1−δ the upper 1 − δ quantile of the standard

normal distribution [25]. The variable n increases for each new sample and when n is equal

to nχ, the particles are not sampled anymore in this iteration of the filter (line 15). The

difference between this method and the common particle filter (Section 3.2) is in lines 9 to 13.
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Algorithm 3: KLD-sampling algorithm adapted from [25].

Data: Posterior particle set Xt−1 = {(x[n]
t−1, w

[n]
t−1)| n = 1, ..., N}, representing belief bel(xt−1), control ut,

observation zt, bounds ε and δ, and minimum number of samples nmin

1 Xt=∅, n ← 1, nχ ← 0, k ← 0, α ← 0; ; // Initialize

2 Xt−1 ← Resample(Xt−1); ; // Rearranges the previous particle set

3 do

4 x
[j]
t−1 ← Draw(Xt−1); // Samples a particle with index j from Xt−1

5 x
[n]
t ← Predict(x

[j]
t−1, ut−1); // Predicts next state

6 w
[n]
t ← Update(zt, x

[n]
t ); // Computes Importance weight

7 α ← α+ w
[n]
t ; // Updates normalization factor

8 Xt ← Xt ∪ {x[n]
t , w

[n]
t }; // Inserts new particle in the new particle set

9 if x
[n]
t falls into empty bin b then

10 k ← k + 1; // Updates number of non-empty bins

11 b ← occupied; // Marks bin as non-empty

12 nχ ← k−1
2ε

(
1− 2

9(k−1)
+
√

2
9(k−1)

z1−δ

)3
; // Updates bin size

13 end

14 n ← n+ 1;

15 while (n < nχ and n < nmin);

16 for i = 1, ..., n do

17 w
[i]
t ← w

[i]
t /α; // Normalizes the weight of each particle

18 end

19 return Xt
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Chapter 4

Developed work

This chapter describes in detail the mapping and localization approaches implemented in

the dissertation. The PFML system was developed in response to the proposed approaches,

receiving as input odometry data from the wheel encoders, a set of measurements obtained

from scanning by the Hokuyo Laser Scanner, and a 3D point cloud obtained by the Velodyne

LiDAR. The result of processing this data is the estimation of the pose and an updated map

of the environment. Fig. 4.1 shows the developed PFML system.

Sensor
Accumulator

KLD-based
Particle Filter

Map using
3D Point
Cloud 

Local
Representation

Sensors

Odometry 2D Laser Scan 3D Point Cloud

Local Map

Global Map

Local Map

Pose

Global MapPose
PFML

a priori 2D
Map

Figure 4.1: Pipeline of the PFML system, including the main steps.

4.1 Sensor Accumulator

In order to guarantee the stability of the PFML approach, an iteration of the filter is

subject to thresholds applied to the local angular (∆θ) and linear (∆d) displacements of the

pose data. The platform motion is calculated based on the current (ut) and previous (ut−1)

odometry measurements that are transformed into two rotations (δrot1 and δrot2) and one
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translation (δtrans) using lines 1 to 3 from Algorithm 1. As long as condition δrot1+δrot2 > ∆θ

or δtrans > ∆d is not verified, the transformed data is accumulated each a new measurement

is received. When one of these displacements is reached, the sensor data is sent to the PF,

and the accumulator data is reset (see Fig. 4.2).

(�, �,�)

( , , )����1 ������ ����2

to

Odometry
Data

Accumulate

( , , )����1 ������ ����2

No

Send data to 
Particle Filter Reset accumulators 

> Δ�������

> Δ�����

or
Yes

Figure 4.2: Diagram of sensor accumulator, where δrot=δrot1 + δrot2.

4.2 Mapping using 3D Point Clouds

The Velodyne LiDAR provides a 3D point cloud and this data is processed to obtain an

environment representation. The block diagram, displaying the data flow from the input to

the final representation is illustrated in Fig. 4.3.

3D Data Input Data Indexing

Representation

2.5D

3D

Figure 4.3: Data flow diagram from the point cloud to the desired representation.

The data indexing is done differently for each representation (2.5D and 3D) and is de-

scribed below for each representation.

4.2.1 2.5D Representation

This representation is based on a 2D grid of square cells (Cij, i,j ∈ N). Each point in the

3D point cloud is converted into the robot coordinates system and projected into the XY-

plane, overlapping with a grid cell Cij. Considering a local grid map of Nrows×Ncolumns, with

a resolution of scell per cell and coordinates of the center of the map given by pom = (xom, y
o
m).

Converting between Cartesian coordinates (x, y) and grid coordinates (i, j) is given by:

(i, j)←
(

(x−xom+
scell

2
)

scell
+ Ncols

2
,

(y−yom+
scell

2
)

scell
+ Nrows

2

)
(4.1)
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Converting grid coordinates (i, j) to Cartesian coordinates (x, y) is given by:

(x, y)←
(
scell(i− Ncols

2
) + xom, scell(j − Nrows

2
) + yom

)
(4.2)

Each cell in the grid contains two possible values: empty if no point is in that cell or with

the lowest and highest z coordinate of the points belonging to that cell. A height-voxel is

obtained based on the cell height values and an example is illustrated in Fig. 4.4.

Z

3D point cloud 2.5D representation

Figure 4.4: Illustration of the 2.5D representation.

In order to get the coordinates of the local map in the world coordinates a rigid transfor-

mation is applied.

For this representation, a priori 2D global map is provided and being converted into a 2.5D

map, assigning a minimum and maximum height to each cell. This map is updated by the

height-voxels obtained from the local map. A 3D line tracing algorithm for height-voxels was

developed to compute the free-space between the sensor and each height-voxel. Sensor and

each height-voxel Cartesian coordinates are projected into a 2D grid map plane. The cells on

the line 2D from the 3D Sensor to the height-voxel are computed using the Bresenham’s line

algorithm [35]. For each height-voxel, the minimum and maximum height values are known,

and two-line models are defined from the sensor providing a free height-voxel for each cell

(see Fig. 4.5).

Figure 4.5: Illustration of the line tracing for one height-voxel measured. The sensor is in

red, the free height-voxels are in light blue, the measured height-voxel is in purple, and the

lines connecting the minimum and maximum values of z are in green and yellow respectively.
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The representation generated from the 3D point cloud provides an update of the map

given a priori, changing the minimum and maximum height values of each cell through the

mentioned algorithm. All cells identified by the Bresenham’s algorithm that contain data are

overlapped with the corresponding free height voxel. Considering the minimum and maxi-

mum height values of the height-voxel (hmin, hmax) and the free height-voxel (fhmin,fhmax)

the following observations will occur according to the rules listed below:

(a) If the free-height voxel overlap at the bottom of the height-voxel, it will update the

minimum height value to fhmax (Fig. 4.6a).

(b) If the free-height voxel overlaps at the top of the height-voxel, it will update the

maximum height value to fhmin (Fig. 4.6b).

(c) If no free-height voxel overlap height-voxel then, no changes will be made (Fig. 4.6c).

(d) If the free height-voxel completely overlaps the height-voxel, the information is removed

(Fig. 4.6d).

(e) If the free height-voxel is part of the height-voxel the Jaccard index is used, also known

as Intersection over Union (IoU ). The score is defined as the area of overlap divided by

the area of union. If the score is greater than 0.5 then it removes the data, otherwise

nothing is applied (Fig. 4.6e).

IoU > 0.5

or

IoU < 0.5

a) b)

d)

c)

e)

Figure 4.6: Illustration of the overlap method for 2.5D map update. The height-voxel in

white and the free height-voxel in light blue.

4.2.2 3D Representation

The 3D representation is based on a 3D voxel grid map and composed by a set of voxels

Vijk with row i, column j and layer k. Starting from the formulation in (4.1) and (4.2) is
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possible to obtain the equations for three-dimensional space. Converting between Cartesian

coordinates (x, y, z) and grid coordinates (i, j, k) is given by:

(i, j, k)←
(

(x−xom+
scell

2
)

scell
+ Ncols

2
,

(y−yom+
scell

2
)

scell
+ Nrows

2
,

(z−zom+
scell

2
)

scell
+

Nlayers
2

)
(4.3)

Converting grid coordinates (i, j, k) to Cartesian coordinates (x, y, z) is given by:

(x, y, z)←
(
scell(i− Ncols

2
) + xom, scell(j − Nrows

2
) + yom, scell(k −

Nlayers
2

) + zom

)
(4.4)

The map is built based on the reflective maps but only uses one counter per cell (voxel) to

estimate the occupation value. The counter is incremented each time the voxel is observed by

the sensor. The voxel is considered occupied if its counter is greater than a defined threshold.

Figure 4.7 shows an example of how the voxels are extracted through the 3D point cloud.

Z

3D point cloud 3D voxel representation

Figure 4.7: Illustration of the 3D voxel representation.

As in 2.5D data indexing, all voxels from the local map are converted in world coordinates

using a rigid transformation.

Figure 4.8: Illustration of the 3D line tracing algorithm from the sensor to measured voxel.

The sensor is in red, the free computed voxels are in light blue, and the measured voxel is

in purple.

Similar to the OctoMap approach [20], a 3D variant of the Bresenham’s algorithm is used

to compute the voxels that are updated along a beam (see Fig. 4.8). In the measured voxel,

the counter is incremented and in the voxels that are crossed by the beam, the counter is
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decreased. The algorithm developed to determine which voxels are updated is presented in

the Algorithm 10. The voxelUpdate procedure updates the counter for a given voxel, adding

val value (line 9, 21 and 33). The 3D map update is presented in Algorithm 4.

Algorithm 4: Generation of 3D map grid.
Data: Robot position (pw), set of voxels from the local map (V ) and 3D grid Map (M).

1

2 V w ← transform(pw, V ); // Transform the coordinates of voxels into world coordinates.

3 v ← convertToMapIndex(V w) ; // Convert the world coordinates into grid coordinates

4 p ← convertToMapIndex(pw); // Convert pose into grid coordinates

5 for all v do

6 M ← voxelUpdate(vi, vj , vk, count); // Increments the counter in that grid coordinates

7 M ← 3DLineTracing(pi, pj , pk, vi, vj , vk, −count); // Tracing algorithm

8 end

9 return M

Algorithm 4 receives as input the robot pose, a vector with the voxels coordinates from

the local map and a 3D global map. Initially, the voxels coordinates correspondent to the

local map (robot coordinates system) are transformed into world coordinates (line 2). In

lines 3 and 4, the robot position (px, py, pz) and the vector of voxels are converted into grid

coordinates. In lines 5 to 8, the map update is done by using the voxelUpdate and the

3DLineTracing procedures.

4.3 KLD-based particle filter algorithm

The PF used in this dissertation was based on the methods presented in [21, 25], which

follows the KLD-sampling method. This algorithm differs from the one described in Section

3.2, the first step is the resampling, followed by the prediction step and the last step is the

update. During the initialization process of the filter, the particles are generated in an initial

pose set by the user instead of being randomly distributed over the environment. The initial

number of particles is equal to the maximum number of particles (Nmax), and the weight

given to each particle is 1
Nmax

. At each iteration of the filter the number of desired particles

is computed between a defined minimum and maximum. The KLD-sampling algorithm

developed is shown in Algorithm 5.
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Algorithm 5: KLD-based particle filter algorithm with sensor fusion.

Data: Posterior particle set Xt−1 = {(x[n]
t−1, w

[n]
t−1)| n = 1, ..., N}, representing belief bel(xt−1), control measurement

ut, observation zt , bounds ε and δ, bin size, minimum and maximum number of samples Nmin,Nmax

1 Xt ← ∅, k ← 0, n ← 1, nχ ← 0, α ← 0; // Initialize

2 X∗
t−1 ← sort(Xt−1); // Orders the particles from the lowest to the biggest weight

3 X∗
t−1 ← prepare(X∗

t−1); // Gives the particle set the weight counter

4 do

5 x
[n]
t−1 ← pick(X∗

t−1); // Samples a particle from the previous set

6 x
[n]
t ← Prediction(x

[n]
t−1, ut); // Predicts next state

7 w
[n]
t ← Update(x

[n]
t , zt, M); // Computes importance weight

8 α ← α+ w
[n]
t ; // Updates normalization factor

9 if (inEmptyBin(x
[n]
t )) then

10 k ← k + 1; // Updates number of non-empty bins

11 setBin(x
[n]
t ); // Marks bin as non-empty

12 nχ ← k−1
2ε

(1− 2
9(k−1)

+
√

2
9(k−1)

z1−δ)
3; // Updates number of samples

13 end

14 n ← n+ 1;

15 if (n >= Nmax) then

16 break;

17 end

18 while (n < nχ and n < Nmin);

19 for n := 1, ..., N do

20 w
[n]
t ← w

[n]
t /α; // Normalizes the weight of each particle

21 end

22 return Xt ← {(x[n]
t , w

[n]
t )| n = 1, ..., N}

4.3.1 Resampling

The approach used is based on the multinomial resampling, described in Subsection 3.2.3.

Initially, the particles are sorted from the lowest to the highest weight. In line 2 from

Algorithm 5, a new ordered particle set (X∗t−1) is obtained from the previous particle set

(Xt−1). In line 3, each ordered particles receives a number containing the sum of all the

weights up to the respective particle. The attribution of this number is made by the following

equation:

f(x
∗[n]
t−1) =

n∑
i=1

w
[i]
t−1, with 0 < f(x

∗[n]
t−1) ≤ 1 (4.5)

In this step, a new point mass distribution is created. In line 5, the algorithm finds the

first number in the point mass distribution with the value greater than the sampled number

obtained from the uniform distribution (a ∼ U(0, 1)). The particle is chosen based on the

correspondent number and is prepared to advance through the prediction and update steps

until the number of desired samples was reached. After all the process, the particle’s weights

are normalized (
N∑
n=1

w[n] = 1).

Figure 4.9 shows graphically an example of the resampling step.
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Figure 4.9: Graphics showing an example of the resampling step: (a) Particle set, Xt−1; (b)

Sorted particle set, X∗t−1; (c) Point mass distribution, f(x
∗[n]
t−1) =

n∑
i=1

w
[i]
t−1, used to sample a

particle for the new particle set. N denotes the number of particles in a set.

4.3.2 Prediction

As described in Subsection 3.2.1, the robot predicts its new state based on the previous

state (X∗t−1) and motion parameters (δrot1, δtrans, δrot2), applying the motion model to each

particle. The process of the prediction step is described in Algorithm 6.

Algorithm 6: Motion model algorithm adapted from [21].

Data: Particle x
[n]
t−1 = {x[n]t−1, y

[n]
t−1, θ

[n]
t−1} and motion parameters {δrot1, δtrans, δrot2}

1

2 δ̂rot1 ← 0, δ̂trans ← 0, δ̂rot2 ← 0; // Initialize

3 δ̂rot1 ← δrot1 − δ ∼ N (0, (α1 · δ2rot1 + α2 · δ2trans));
4 δ̂trans ← δtans − δ ∼ N (0, (α4 · (δ2rot2 + δ2rot1) + α3 · δ2trans));
5 δ̂rot2 ← δrot2 − δ ∼ N (0, (α1 · δ2rot2 + α2 · δ2trans));
6 x

[n]
t ← x

[n]
t−1 + δ̂trans cos(θ

[n]
t−1 + δ̂rot1);

7 y
[n]
t ← y

[n]
t−1 + δ̂trans sin(θ

[n]
t−1 + δ̂rot1);

8 θ
[n]
t ← θ

[n]
t−1 + δ̂rot1 + δ̂rot2;

9 return x
[n]
t ← {x[n]t , y

[n]
t , θ

[n]
t }

4.3.3 Update

The update step computes the particles’ weight based on the global map and the obser-

vations given by the sensors. The system receives a 2D laser scan and a 3D point cloud, and

this data is used according to the intended approach. The operation of each approach and

the update step of the PF will be described in Sections 4.4, 4.5 and 4.6.
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4.3.4 Pose estimation

Finally, after computing the particle weights, a pose estimate (x̂t) is obtained by the

following equations:

x̂t =



x̂t =
N∑
n=1

x
[n]
t · w

[n]
t

ŷt =
N∑
n=1

y
[n]
t · w

[n]
t

θ̂t = arctan 2(
N∑
n=1

sin(θ
[n]
t ) · w[n]

t ,
N∑
n=1

cos(θ
[n]
t ) · w[n]

t )

(4.6)

with N being the number of particles (the number is adjusted by the KLD-sampling ap-

proach) and x̂t the estimated robot’s pose.

4.4 2.5D Mapping and Localization

In this approach, the KLD-based filter estimates the robot’s pose using odometry data,

an a priori 2D map and 3D point cloud, and generates an updated 2.5D map. Receives

a 3D point cloud, which is processed to obtain a 2.5D local representation. Initially, an

a priori 2D map is given, which is converted into a 2.5D map as discussed in Subsection

4.2.1. The 2.5D map is regularly updated using the pose estimated by the filter and the

local representation. Both the global and local maps are also described in Subsection 4.2.1.

As shown in Fig. 4.10, the computation of the particles’ weight is based on an a priori

2.5D map, local and global map.
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��−1
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�
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KLD-based
particle filter

a priori 2.5D 
Map

3D Point Cloud

�0

�̂ �

2.5D
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Update
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Local Map

Global Map

�0

Local Map

Figure 4.10: KLD-based particle filter diagram with: X0 the initial set of particles; Xt−1 and

Xt being the previous and the actual particle sets; X∗t−1 the rearranged previous particle set;

X̄t the actual predicted set; x̂t the actual estimated pose; M0 the 2.5D prior map; LocalMap

and GlobalMap denotes the local and global map obtained from the mapping module.
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The update step of the KLD-based filter is described in Algorithm 7 and has as inputs:

the particle, data from the local and global map. The computation of the particle’s weight

is made in lines 2 to 7, and some voxels of the 2.5D local map are skipped (by ignoring

C voxels for each voxel processed) in order to decrease the processing time. Each selected

voxel is transformed to the world frame applying a rigid transformation (line 3) and then

used in the nearest procedure. This procedure searches in the global 2.5D map the nearest

voxel to the selected voxel (from the local 2.5D map), and returns the voxel coordinates that

gets the highest overlap (IoU) with the selected voxel. In line 5, the weight is computed by

making the difference between the selected voxel and the voxel (obtained from the nearest

procedure) into the normal distributions Nx and Ny.

Algorithm 7: Update stage algorithm.

Data: Particle x
[n]
t = {x[n]t y

[n]
t θ

[n]
t }, set of voxels from the local map (LM), set of voxels from the global map (GM)

and C a constant.

1 w
[n]
t ← 0, j ← 0;

2 for i = 1; i < size(LM); i = i+ C do

3 pti ← transform(x
[n]
t , LM i

x, LM
i
y , LM

i
zmin, LM

i
zmax) ; // Transforms the selected voxel to the world

frame

4 (xic, y
i
c) ← nearest(pti, GM) ; // Checks neighborhood

5 w
[n]
t ← w

[n]
t +Nx(0, ptix − xic) · Ny(0, ptiy − yic);

6 j ← j + 1;

7 end

8 w
[n]
t ← w

[n]
t
j

;

9 return w
[n]
t ;

4.5 3D Localization and Mapping (SLAM)

A SLAM approach from a KLD-based filter is presented here, where the robot builds a

3D map and estimates its position simultaneously. The estimation of the pose is determined

based on the odometry data and the 3D point cloud. The 3D map is updated using the

estimated pose and data from the 3D local map, provided by a 3D point cloud as described

in Subsection 4.2.2. After the pose estimate obtained by the update stage of the KLD-

based filter, an optimization procedure is used, in which minimizes the pose error based on

gradient descent (Optimization bock). The description of this block will be presented in the

Subsection 4.5.1. Local and global map data is used to calculate the particles’ weight in the

update step of the KLD-based filter (see Fig. 4.11).

24



�̂ ∗
�Resampling Prediction Update Pose

Estimation

Delay

Particles
Initialization

��−1

��

Odometry

�
∗

�−1

KLD-based
particle filter

3D Point Cloud

�0

�̂ �

3D
Representation

Map
Update

�¯ �

Local Map

Global Map
Local Map

Optimization

Figure 4.11: KLD-based particle filter diagram with: X0 the initial set of particles; Xt−1 and

Xt being the previous and the actual particle sets; X∗t−1 the rearranged previous particle set;

X̄t the actual predicted set; x̂t the actual estimated pose; x̂∗t the optimized estimated pose;

LocalMap and GlobalMap denotes the local and global map obtained from the mapping

module.

Algorithm 8 describes the update step of KLD-based filter and has as inputs: the particle

and data from the local and global map. As in the 2.5D Mapping and Localization approach,

only a few voxels are used to compute the particle weight. In line 3, each voxel is transformed

from the robot frame to the world frame and used in the nearest procedure, which searches

in the neighborhood of the selected voxel for occupied voxels in the global map, and returns

the coordinates of the nearest voxel. The particle’s weight is obtained by computing the

difference between the selected voxel and the nearest occupied voxel, and applying normal

distributions for each difference (Nx, Ny and Nz).

Algorithm 8: Update stage algorithm.

Data: Particle x
[n]
t = {x[n]t y

[n]
t θ

[n]
t }, set of voxels from the local map (LM), set of voxels from the global map (GM)

and C a constant.

1 w
[n]
t ← 0, j ← 0;

2 for i = 1; i < size(LM); i = i+ C do

3 pi ← transform(x
[n]
t , y

[n]
t , θ

[n]
t , LM i

x, LM
i
y , LM

i
z) ; // Transforms the selected voxel to the to the world

frame

4 (xioccu, y
i
occu, z

i
occu) ← nearest( pix, p

i
y , p

i
z , GM) ; // Checks neighborhood

5 w
[n]
t ← w

[n]
t +Nx(0, pix − xiocc) · Ny(0, piy − yiocc) · Nz(0, piz − ziocc);

6 j ← j + 1;

7 end

8 w
[n]
t ← w

[n]
t
j

;

9 return w
[n]
t ;
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4.5.1 Optimization

This block was implemented based on [39], it uses a gradient descent to minimize the error

between the 3D map and the map obtained from the 3D point cloud. The main aim is to

improve the pose estimate (x̂t) from the PF. The cost function to minimize is defined as

follows:

F =
N∑
i=1

∣∣vi −M(vi))
∣∣2 (4.7)

with M(vi) the occupied voxel of the 3D map inside a R radius of the voxel measured vi.

The update step of the gradient descent is done by A.5 with n the current iteration and

x0 = x̂t. A number nI defines the number of iterations that the descending gradient is

applied. ∇F (xn) is given by the approximation of the partial derivatives of F:

∑nl
i=1(x−xi)
nl∑nl

i=1(y−yi)
nl ∑nl

i=1(sx cos(θ)−sy sin(θ))(y−yi+sy cos(θ)+sx sin(θ))

nl

−
∑nl
i=1(sy cos(θ)+sx sin(θ))(x−xi+sx cos(θ)−sy sin(θ))

nl



 (4.8)

with M(vi) = (xi, yi) and xn = (x, y, θ).

Approaches using Gauss-Newton or Levenberg-Marquardt optimization were considered

but not implemented. These optimization methods would significantly increase the compu-

tational cost (e.g. Jacobian matrix products and computing an inverse matrix). Gradient

descent optimization has a lower computational cost and for the intended approach, it can

successfully minimize the estimated pose error.

In Fig. 4.11, the prediction step receives the estimated pose from the optimization block

and some particles (stratified approach) use that pose to predict the new state.

4.6 3D Mapping and 2D/3D Localization

In this proposed approach, the robot pose is estimated by the KLD-based filter and gen-

erates an updated 3D map. Odometry data, an a priori 2D map, 2D scan measurements,

and 3D point cloud are used to estimate the pose. The 3D map is updated using data from

the 3D local map obtained from a 3D point cloud, and the estimated pose from the filter.

The particle weight is obtained by merging the data from 2D and 3D sensors. In compar-

ison to the 3D SLAM approach, an a priori 2D map (M) and the laser scan measure (zt)

are added to compute the particle weight (see Fig. 4.12).
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Figure 4.12: KLD-based particle filter diagram with: X0 the initial set of particles; Xt−1 and

Xt being the previous and the actual particle sets; X∗t−1 the rearranged previous particle set;

X̄t the actual predicted set; x̂t the actual estimated pose; M0 the 2D prior map; Laser Scan

the observations (zt); LocalMap and GlobalMap denotes the local and global map obtained

from the mapping module.

The calculation of the weight is divided into two parts, where the first part is related

to the 2D data given by the laser scanner and the second part with 3D data given by the

Velodyne sensor. Each part is associated with a weight factor (K2D and K3D), which allows

setting the importance given to 2D or 3D data.

The process of the update step of the KLD-based filter is presented in Algorithm 9.

Considering the particles state, the measure zt is transformed to the world frame using a

rigid transformation (line 5). As in the previous approaches, only some scanned points

are used. In lines 7 and 8, the coordinates of the measured point (xihit, y
i
hit) are computed

and used in a 2D Bresenham’s algorithm (nearest2D). The nearest2D procedure returns the

coordinates of the first occupied cell (xoccu, yoccu) along the beam between the particle and

the measured point. The first part of the weight calculation is obtained in line 10, making

the difference between the point selected and the first occupied cell, and applying normal

distributions for each difference (Nx and Ny). The second part of the calculation is done as

in the 3D SLAM approach, obtaining the total weight of the particle by the sum of the two

weights computed in lines 10 and 17.
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Algorithm 9: Update stage algorithm.

Data: Particle x
[n]
t = {x[n]t y

[n]
t θ

[n]
t }, laser scan zt = {z1, ..., zK} with K being the number of ranges of the laser

scan, set of voxels from the local map (LM), set of voxels from the global map (GM), M the 2D occupancy

grid map and C a constant.

1

2 α ← αmin; // Minimum angle of the laser scan range

3 Inc ← αinc; // Angle increment between measurements, zk

4 w
[n]
2D ← 0, w

[n]
3D ← 0, xhit ← 0, yhit ← 0, j ← 0;

5 d = transform(x
[n]
t , y

[n]
t , θ

[n]
t , zt) ; // Transforms the scan points to the world frame

6 for i = 1; i < K; i = i+ C do

7 xihit ← x
[n]
t + di · cos(α);

8 yihit ← y
[n]
t + di · sin(α);

9 (xiocc, y
i
occ) ← nearest2D(x

[n]
t , y

[n]
t , xihit, y

i
hit, M) ; // 2D Tracing algorithm

10 w
[n]
2D ← w

[n]
2D +Nx(0, xihit − x

i
occ) · Ny(0, yihit − y

i
occ);

11 α← α+ C · Inc;
12 j ← j + 1;

13 end

14 for i = 1; i < size(LM); i = i+ C do

15 pi ← transform(x
[n]
t , y

[n]
t , θ

[n]
t , LM i

x, LM
i
y , LM

i
z); // Transforms the voxel to the world frame

16 (xioccu, y
i
occu, z

i
occu) ← nearest( pix, p

i
y , p

i
z , GM) ; // Checks neighborhood

17 w
[n]
3D ← w

[n]
3D + ·Nx(0, pix − xiocc) · Ny(0, piy − yiocc) · Ny(0, piz − ziocc);

18 j ← j + 1;

19 end

20 w
[n]
t ← K2Dw

[n]
2D

+K3Dw
[n]
3D

j
;

21 return w
[n]
t ;
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Chapter 5

Validation platform

The mobile robot shown in Fig. 5.1, known as InterBot [40], was developed in ISR-UC and

can currently navigate with a high degree of autonomy. This chapter presents an overview

of the physical setup of the InterBot platform and describes its hardware and software

architectures.

4

3

2

1

Figure 5.1: InterBot Platform is composed by: (1) Hokuyo Laser Scanner; (2) RoboteQ

Motor Controller; (3) Processing Unit laptop and (4) Velodyne LiDAR.

5.1 Hardware Architecture

The InterBot system contains a low-level part for power and mechanical components,

and a hight-level part related to processing. Hardware architecture of Interbot platform is

illustrate in Fig. 5.2.
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Figure 5.2: InterBot’s Architecture.

5.1.1 Base station

The base station is comprised of a remote computer that allows control of the InterBot

platform through a joystick controller connected via Bluetooth. This base only publishes and

subscribes to ROS, not being directly connected to the lower levels of InterBot Architecture.

The base station allows to observe several data that is being processed in Interbot, such

as: laser scan points from the Hokuyo Laser Scanner, 3D point cloud from the Velodyne,

odometry data, mapping and localization data, among others.

5.1.2 Processing unit

A laptop located on the InterBot platform executes the ROS package developed for the

respective approach. Receives as inputs the 3D point cloud from the Velodyne LiDAR, laser

scan data from the Hokuyo laser scanner, odometry data, and the linear and angular speed

from the Base Station.

5.1.3 RoboteQ Motor Controller

The RoboteQ Motor Controller transforms speed commands into voltage and current

outputs to move one or two DC motors. The platform odometry is estimated based on the

wheel encoder information. This module receives speed commands from the Processing Unit

and returns the odometry data. This data exchange is made through USB communication.

5.1.4 Velodyne LiDAR and Hokuyo Laser Scanner

The Velodyne sensor and the Hokuyo laser scanner provide data about the surrounding

space of the platform, through a 3D point cloud and scan measurements, respectively. These

sensors are connected to the Processing Unit through an USB connection. The sensors are

not aligned with the base of the platform and a rigid transformation is applied to the sensors,

in order to use the data correctly.
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RobotTLiDAR =


1 0 0 −0.13
0 1 0 0
0 0 1 1.06
0 0 0 1

 RobotTHokuyo =


1 0 0 0.09
0 1 0 0
0 0 1 0.17
0 0 0 1



Table 5.1 and 5.2 show the main specifications of the Velodyne sensor and Hokuyo laser

scanner, respectively.

Table 5.1: Velodyne LiDAR VLP-16 main specifications [41].

Supply Voltage 12 V (DC) W No Channels 16 (∼300,000 points/sec)

Power Consumption 8 W Range Accuracy Up to ±3 cm

Measurement Range 100 m Rotation Rate 5 Hz – 20 Hz

Field of View (Vertical) +15.0◦ to −15.0◦ (30◦) Angular Resolution (Vertical) 2.0◦

Field of View (Horizontal) 360◦ Angular Resolution (Horizontal) 0.1◦

Table 5.2: Hokuyo’s UTM-30LX laser main specifications [42].

Supply Voltage 12 V (DC) Scan Speed 25 ms

Guaranteed Range 0.1 ∼ 30 m Maximum Range 0.1 ∼ 60 m

Scan Angle 270◦ Angular Resolution 0.25◦

Measurement Step 1080 Measurement Resolution 1 mm

5.2 Software Architecture

The high-level part is the Processing Unit, so it has to perform all the computation con-

cerning mapping, localization, receive speed commands from the Base Station, send relevant

information and communicate with the low-level parts. The software in the Processing Unit

was all developed in the C++ language and runs inside the ROS environment [43], a frame-

work widely used in the robotics field. Fig. 5.3 shows how the Base Station and the InterBot

Processing Unit are related to each other.
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Figure 5.3: Overview of the InterBot software architecture.

5.2.1 Base Station

The Base Station functions as a remote control station, which is responsible for running

the software required to control the InterBot’s movements and visualization information

about mapping and localization (see Fig. 5.4). For the visualization of the results obtained

in this dissertation, as well as the data acquired by the sensors, the Base Station uses the

RVIZ program, which is a tool afforded by ROS to visualize the available topics published

by the online nodes.

User DisplayUser Inputs
Velodyne Points

Laser Scan
Map 2.5D or 3D

Pose

Interbot State
Base Station

Speed 
Commands

Figure 5.4: Overview of the Base Station software architecture, showing the inputs and the

outputs.

5.2.2 Processing Unit

As stated in 5.2, the Processing Unit is the most important module of the platform, and

the software architecture is illustrated in Fig. 5.5.
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Figure 5.5: Processing Unit software architecture, displaying the nodes and their inputs/out-

puts.

5.2.2.1 Mapping and Localization

As stated in Section 1.3, three different mapping and/or localization approaches were

addressed in this dissertation and the Processing Unit executes the required ROS package.

The outputs are the robot pose (x, y, θ) and an updated map of the environment (2.5D or

3D depending on the evaluated approach).

5.2.2.2 Joystick Package

The Joystick package is a module able to send speed commands to the platform. This

module receives as input the current state of each of the joystick’s axes and buttons and

converts them into speed commands.

5.3 Software Design

In order to ensure the correct operation of the InterBot, it is required to establish a

connection between the Base Station and the Processing Unit, i.e. use the ROS system on

both machines. The master node is running on the Base Station along with the joystick node

and the remaining remote nodes are running on the Processing unit. It is necessary to use

export ROS MASTER URI on the Processing unit to enable the nodes to use the master

node executed on the other machine. The Processing unit runs several nodes required for

the platform’s operation, as well as for the mapping and localization approaches.

5.3.1 Physical Layer

Fig. 5.6 represents the Physical Layer module of the Base Station and Processing Unit. The

ROS community provides the software drivers for Velodyne LiDAR, Hokuyo Laser Scanner

and Joystick controller. The cloud node reads data from the /velodyne packets topic,
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converts to the sensor msgs/PointCloud2 format, and publishes to the /velodyne points

topic. The hokuyo node publishes a /scan topic message of the obtained laser scanner

data. The joy node allows to interface with a generic joystick (e.g., PS3-like gamepad),

publishing a /joy topic containing information about the axes and buttons. Each time

a /joy topic message is published, it is converted into a speed message (/cmd vel). The

RoboteQ node subscribes the /cmd vel topic to move the InterBot and this motion is

expressed through the odometry data that is published in the/odom topic.

Base Station (Ros Master)

joy_node /joy /cmd_vel

Speed 
Commands

/velodyne_points

Processing Unit (export ROS_MASTER_URI)

/scan

cloud_node

hokuyo_node

RoboteQ_node Actuators

resolution 
pulses information

/odom

voltage 
and current

Ros System

Figure 5.6: Physical Layer nodes, along with the subscribed and published topics.

Figures 5.7, 5.8 and 5.9, show the messages that are used in each of the proposed ap-

proaches.
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a priori Occupancy grid map 
2D gridmap (nav_msgs/OccupancyGrid)

Base Station (Ros Master)

joy_node

Processing Unit (export ROS_MASTER_URI)

cloud_node

RoboteQ_node
Odometry (nav_msgs/Odometry)

Point Cloud (sensor_msgs/PointCloud2)
PFML1 Map 

(visualization_msgs/MarkerArray)

Linear and angular velocities 
(geometry_msgs/Twist)

Actuators

Figure 5.7: ROS schematic for the 2.5D Mapping and Localization approach, which contains

the ROS nodes used and the messages type.

Pose 
(geometry_msgs/PoseStamped)

Base Station (Ros Master)

joy_node

Processing Unit (export ROS_MASTER_URI)

cloud_node

RoboteQ_node
Odometry (nav_msgs/Odometry)

Point Cloud (sensor_msgs/PointCloud2)
PFML2 Map 

(visualization_msgs/MarkerArray)

Linear and angular velocities 
(geometry_msgs/Twist)

Actuators

Figure 5.8: ROS schematic for the 3D Localization and Mapping (SLAM) approach, which

contains the ROS nodes used and the messages type.

Pose 
(geometry_msgs/PoseStamped)

Base Station (Ros Master)

joy_node

Processing Unit (export ROS_MASTER_URI)

cloud_node

RoboteQ_node
Odometry (nav_msgs/Odometry)

Point Cloud (sensor_msgs/PointCloud2)
PFML3 Map 

(visualization_msgs/MarkerArray)

Linear and angular velocities 
(geometry_msgs/Twist)

Actuators

hokuyo_node

Laser range-finder scan 
(sensor_msgs/LaserScan)

a priori Occupancy grid map 
2D gridmap (nav_msgs/OccupancyGrid)

Figure 5.9: ROS schematic for the 3D Mapping and 2D/3D Localization approach, which

contains the ROS nodes used and the messages type.
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Chapter 6

Experimental Results

In this chapter the experimental results of each approach in two different scenarios and

the correspondent analysis are presented. The scenarios selected for the validation results

were the ISR Shared Experimental Area (scenario 1) and the floor 0 of the ISR-UC building

(scenario 2). The experiments include:

1. 2.5D Mapping and Localization:

(a) Without map update: geometric path and 2.5D score;

(b) With map update: geometric path and 2.5D map;

2. 3D Localization and Mapping (SLAM):

(a) Without optimization: geometric path and 3D map;

(b) With optimization: geometric path and 3D map;

3. 3D Mapping and 2D/3D Localization:

(a) With map update: geometric path, 2D score and 3D map.

(b) Without map update: geometric path and 3D score.

In order to test the different approaches, a dataset was recorded for each scenario using a

ROS tool (rosbag file, i.e ”.bag” file), which saves data from the sensors.

In both scenarios the algorithms were tested with the following parameters: ∆θ = 0.01

rad; ∆d = 0.05 m; Nmin = 100 and α1 = α2 = α3 = α4 = 0.2. The parameters ∆θ

and ∆d are used to control the execution of the KLD-based filter, while the error sampling

parameters (α1, α2, α3, α4) assign more or less error to the prediction step where the new

particles’ states are estimated. The size of the local and global maps was defined as 25x25

m and 125x125 m respectively, and a resolution of 0.05 m per cell.
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6.1 Scenario 1

Initially, a smaller and less complex environment was chosen to evaluate the performance

of the developed approaches. Figure 6.1a shows the environment where the tests were per-

formed. The executed trajectory is also represented in Fig. 6.1b by the green arrows.

(a)

(0,0)

13.1 m
5.

19
 m

(b)

Figure 6.1: Illustration of the ISR Shared Experimental Area: (a) Picture of the ISRsea; (b)

Occupancy grid map representing the ISRsea

The evaluation of the performance of each approach consisted in analyzing the influence of

the maximum number of particles in the KLD-based filter: on the pose estimation, the map

generated and the estimation of the localization score. The score is only valid for situations

where the map is not updated and its calculation for each approach will be explained.

6.1.1 2.5D Mapping and Localization

For this approach, it was observed the performance of the pose estimation with and without

map update. In the situation where the map is not updated, the score is determined based

on Algorithm 7. The score is given by:

s[i] = Nx(0, ptix − xic) · Ny(0, ptiy − yic), with 0 < i ≤ Nv (6.1)

where Nv is the number of voxels.

The 2.5D localization score is given by:

S =

∑Nv
i=1 s

[i]

Nv

× 100, with 0 ≤ S ≤ 100 (6.2)

Figure 6.2 shows the scores obtained according to the maximum number of particles. The

analysis shows that the best result is obtained using 1800 particles presenting the highest

mean value (70.27 %) and the lowest standard deviation value (11.78 %).
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Figure 6.2: Bar graph with the maximum, minimum, mean and standard deviation of the

2.5D localization score for each number of particles used.

The maps obtained when using the update for the respective maximum number of particles

are shown in Fig. 6.3.

Figure 6.3: Representation of the geometric paths and corresponding maps from the 2.5D

Mapping and Localization approach with map update, changing the maximum number of

particles defined for the KLD-based filter. From left to right and top to bottom: 600, 800,

1000, 1200, 1400, 1600, 1800 and 2000 particles.

As shown in Fig. 6.3, there are no considerable differences in the 2.5D maps obtained when

using different numbers of particles. In all the maps, it is possible to notice that the doorway

is marked as occupied due to one of the shortcoming of this representation. This could be

solved by defining a height threshold in the 3D point cloud, but the maps obtained would

have less definition. Taking into account the results obtained, it would be possible to obtain

a good estimation of the pose with only 600 particles.
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In this approach, an a priori 2D map was given, which does not contain height information,

neither obstacles with higher height (e.g., table, chairs). In Fig. 6.4, the geometrical paths

show some variations when the map is not updated. This is because the 2D map was

transformed into a 2.5D map, which does not contain height information from obstacles and

since the map is not updated, there is not a good matching between the local and global

map during the computation of the particles’ weight. In Fig. 6.4, it is also possible to see

that the geometrical paths obtained with map update better represent the path performed

by the robot. With an updated map, it leads to a better adjustment of the particles’ weights

on the KLD-based filter, and consequently a better estimation of the pose. In general, the

obtained results were satisfactory.

Figure 6.4: Representation of the geometric paths obtained without (in dashed red) and

with map update (in blue). Np denotes the maximum number of particles used.

6.1.2 3D Localization and Mapping (SLAM)

Since this approach contains an optimization block that corrects the estimated pose, the

performance of the algorithm without that block was tested. A score is not computed since

the map is constantly updated over time. The purpose of the test is to evaluate the pose

estimated by the filter according to the maximum number of particles, as well as the influence

of the optimization block in that estimation. The resulting geometric paths from these tests

can be seen in Fig. 6.5. The results from tests with the optimization block present better

pose estimates than the results without it.
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Figure 6.5: Representation of the geometric paths obtained without (in dashed red) and

with the optimization block (in blue). Np denotes the maximum number of particles used.

The environment representations and the respective geometric path are illustrated in

Figs. 6.6 and 6.7. As can be observed in Fig. 6.6, the best result was obtained for 1600

particles, although the maps obtained are quite similar.

Figure 6.6: Representation of the geometric paths and corresponding maps from the SLAM

approach without the optimization block, based on the maximum number of particles defined

for the KLD-based filter. From left to right and top to bottom: 600, 800, 1000, 1200, 1400,

1600, 1800 and 2000 particles.
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Figure 6.7: Representation of the geometric paths and corresponding maps from SLAM

approach with the optimization block, based on the maximum number of particles defined

for the KLD-based filter. From left to right and top to bottom: 600, 800, 1000, 1200, 1400,

1600, 1800 and 2000 particles.

Comparing Figs. 6.6 and 6.7, it is possible to observe that the best results were obtained

when using the optimization block. The resulting 3D maps present a better definition, as

it was expected once this block minimizes the alignment error between the map and the

local map obtained from the 3D point cloud. By the analysis of Fig. 6.7, the best result

was obtained when 1000 particles were used and a poorer one for 2000 particles. This may

be caused by the time spent in computing the particles’ weight and in the optimization

process, leading to the point cloud data being an instant later. Since the scenario is small

and not very complex, the contributions of the optimization block for the pose estimation

were minimal. Finally, without the optimization block, the best result obtained was for

1600 particles. This number can be reduced with the introduction of the optimization block,

reducing the computational complexity.

6.1.3 3D Mapping and 2D/3D Localization

As aforementioned, this approach uses 2D and 3D data to estimate the robot’s pose. Since

it requires an a priori 2D map and does not change over time, the laser scan data is used to

compute a 2D localization score. The score is determined based on the first part of Algorithm

9. The score is given by:

s[i] = Nx(0, xihit − xiocc) · Ny(0, yihit − yiocc), with 0 < i < Nm (6.3)

where Nm denotes the number of measurements from the laser.

The 2D localization score is computed as follows:

S =

∑Nm
i=1 s

[i]

Nm

× 100, with 0 ≤ S ≤ 100 (6.4)

Figure 6.8 presents the results obtained for the score according to the maximum number

of particles and Fig. 6.9 shows the correspondent maps.
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Figure 6.8: Bar graph with the maximum, minimum, mean and standard deviation of the

2D localization score for each number of particles used.

Figure 6.9: Representation of the geometric paths and corresponding 3D maps from 3D

Mapping and 2D/3D Localization approach, based on the maximum number of particles

defined for the KLD-based filter. From left to right and top to bottom: 600, 800, 1000, 1200,

1400, 1600, 1800 and 2000 particles.

In Fig. 6.9, it is possible to see that some maps have a small amount of noise, maybe by

misaligned scans. In general, the 3D maps obtained were good and the approach showed

stable results for a low number of particles.

The second part of the test was deployed using the 3D map from the previous test (with

map update) and evaluate without updating. A 3D localization score was determined based
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on the data from the 3D point cloud and the known 3D map. Considering the second part

of the Algorithm 9 and Nv the number of voxels, the score for each measurement is given

by:

s[i] = Nx(0, pix − xiocc) · Ny(0, piy − yiocc) · Nz(0, piz − ziocc), with 0 < i < Nv (6.5)

The 3D localization score is determined by the following equation:

S =

∑Nv
i=1 s

[i]

Nv

× 100, with 0 ≤ S ≤ 100 (6.6)

Figure 6.10 shows the scores for each variation in the number of particles. The best

result was obtained with 800 particles with the highest mean value (90.03%) and the lowest

standard deviation value (6.99%), but in general the proposed approach is stable even with

a low number of particles. For 1600 particles it was registered a break in the minimum score

value, perhaps due to a peak in the processing of the approach, however, the influence on

the final result was minimal.

Figure 6.10: Bar graph with maximum, minimum, mean and standard deviation of the 3D

localization score for each number of particles used.

Observing the Fig. 6.11, the geometric paths for the different number of particles were

identical, however the obtained environment representation in some cases presented slightly

differences due to orientation errors of the estimated pose.
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Figure 6.11: Representation of the geometric paths obtained without (in dashed red) and

with map update (in blue). Np denotes the maximum number of particles used.

6.2 Scenario 2

Once the tests were done in the ISR Shared Experimental Area, the next challenge was to

evaluate the performance of the algorithms in a more complex environment. For this scenario,

it was defined that the InterBot would make two laps, the first lap in a counterclockwise

direction (see arrow in Fig. 6.12) and the second lap in a clockwise direction.

54 m

20
 m

Figure 6.12: Occupancy grid map representing the floor 0 of the ISR-UC. The origin of the

axis marked as the point (0,0). Each corridor contains a number with the respective image

and the arrow indicates the direction of movement.
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In this scenario when the dataset was recorded, in some situations the robot crossed with

people, which added dynamic elements to the dataset.

In the following tests, the maximum number of particles in the KLD-based filter was not

changed, the number was selected from the best results achieved in Section 6.1.

6.2.1 2.5D Mapping and Localization

The best result for the tests performed in the room was achieved using 1800 particles in

the KLD-based filter, and therefore this was the value used to evaluate the behaviour of the

algorithm in this environment. Similar to the room test, the situations without and with

map update were analysed, and the score was calculated in the same way. As in the previous

scenario, an a priori 2D map was given, and then transformed into 2.5D. The first test was

without map update and a mean score value of 72.18% and a standard score deviation value

of 9.57% were obtained.

The second test was with map update and the map obtained is shown in Fig. 6.13. Observ-

ing the figure, the geometric path obtained with the map update closely represents the path

performed by the robot. Concerning the map, this one presents a accurate representation

and closes the loop well.

Text

Figure 6.13: Illustration of the 2.5D map generated using 1800 particles in the KLD-based

filter for the 2.5D Mapping and Localization approach. The curves have been zoomed for a

better visualization

The geometric paths obtained without and with map update are represented in Fig. 6.14.

As can be seen, both paths are similar which demonstrates the stability of both approaches.

The zoomed part does not correspond to any pose estimation error, but to a failure in the

robot’s teleoperation, forcing it to move backwards.
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Figure 6.14: Representation of the geometric paths obtained without (in dashed red) and

with map update (in blue) for 2.5D Mapping and Localization approach.

6.2.2 3D Localization and Mapping (SLAM)

For this approach, in the previous scenario, the best result was achieved when 1000 parti-

cles were used in the KLD-based filter, and therefore that was the maximum number of par-

ticles used to evaluate the performance without and with the optimization block. Figs. 6.15

and 6.16 present the maps without and with the integration of this block respectively.

Figure 6.15: Illustration of the 3D map generated using 1000 particles in the KLD-based

filter without optimization block. The curves have been zoomed for visualization purposes.

Analyzing Figs. 6.15 and 6.16, it can be seen that without the optimization block, the

approach is unable to close the path correctly (loop closure) and consequently the map

obtained appears misaligned.
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Figure 6.16: Illustration of the 3D map generated using 1000 particles in the KLD-based

filter with optimization block. The curves have been zoomed for visualization purposes.

As can be seen in Figs. 6.16 and 6.17, a better estimation of the pose was obtained when

comparing with the pose obtained without the optimization block. This approach, even not

implementing loop closure detection, can reduce the estimation error of the pose enough to

successfully close the map. In the lower right corner of the map it is possible to notice some

noise in the corridor, but looking at Fig. 6.18 the corridor is well represented, only with a

small amount of noise on the ceiling by the fact that Velodyne sensor was only of 16 channels

and the approach was not able to update that part so well. Also, due to the fact that it has

only 16 channels, some gaps on the map may be visible (see Fig. 6.18).

Figure 6.17: Representation of the geometric paths obtained without (in dashed red) and

with optimization block (in blue).
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Figure 6.18: Illustration of the robot’s point of view in a corridor area.

6.2.3 3D Mapping and 2D/3D Localization

The maximum number of particles used in this scenario was 1200, since it was the best

result that was obtained in the previous scenario. The two situations were also tested, with

and without map update and determined the respective score. In the first test, with map

update, a mean score value of 95.77% and standard deviation value of 11.67% were obtained.

The environment representation obtained for this test is shown in Fig. 6.19. In general,

the generated map shows a satisfactory representation of the environment, containing a

small amount of noise in all curves. This may be related to abrupt changes in the robot’s

orientation, causing the PF to diverge slightly and the estimated pose to lose precision. One

solution would be to adjust the parameters (α) of the motion model.

Figure 6.19: Illustration of the 3D map generated using 1200 particles in the KLD-based

filter for the 3D Mapping and 2D/3D Localization approach. The curves have been zoomed

for visualization purposes.

The second test, as in scenario 1, consisted in not updating the map and using an a priori

3D map obtained in Fig. 6.19. The geometric paths presented in Fig. 6.20, closely represents

the path performed by the robot. The 3D score was determined and a mean value of 90.21%

and a standard deviation of 4.56% were obtained. Both scores (2D and 3D) show that a

good estimation of the robot’s pose was obtained.
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Figure 6.20: Representation of the geometric paths obtained without (in dashed red) and

with map update (in blue) for 3D Mapping and 2D/3D Localization approach.

The results obtained for these scenarios for each of the tested approaches show a very

similar geometrical path.
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Chapter 7

Conclusion and future work

7.1 Conclusion

The focus of this dissertation was to develop and study an indoor localization and mapping

approach using different sensory data (2D and 3D) on a PF for mobile robots (in this case,

the InterBot). To reach this goal two more approaches (2.5D Mapping and Localization,

and 3D SLAM) were developed, and all of them were tested in different scenarios. Some

conclusions can be drawn from the work developed in this dissertation.

All the proposed approaches have shown similar results. Despite not presenting the ex-

ecution times of the proposed approaches, the 2.5D Mapping and Localization approach

presents a lower computational burden due to the simplicity of its representation.

The results obtained for the 2.5D Mapping and Localization approach show that this

approach provides a good representation of the environment and successfully locates the

robot on the 2.5D map. Moreover, the results are consistent when considering the tests

with and without the update of the 2.5D map. In the 3D SLAM approach, the results

clearly show that only when the optimization block is used, a correct representation of the

environment, and therefore a better estimation of the pose, can be obtained. Regarding

the 3D Mapping and 2D/3D Localization approach, the results obtained show that a 3D

representation of the environment can be constructed (and used for the localization of the

robot) from a localization approach with an a priori 2D map. Moreover, a good estimation

of the robot’s pose is obtained when a laser scan and a 3D point cloud are used as inputs.

In this work, solutions with different characteristics were proposed, which can be chosen by

considering different constraints. The selection of the approach to be used will always depend

on the application/context. For scenarios where there is already previous knowledge of the

map (2D map) and a computationally lighter approach is needed, then the 2.5D Mapping

and Localization approach with map update can be used. When there is no processing power
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constraints, meaning that a more faithful representation of the environment can be explored,

the solution is to implement the 3D Mapping and 2D/3D Localization approach. If there is

no a priori knowledge of the environment, the 3D SLAM solution with optimization can be

used.

In light of the results achieved in this dissertation, it is concluded that the objectives were

achieved.

7.2 Future work

To increase the performance of this work, some topics could be further researched, for

example:

• 3D Mapping and 2D/3D Localization approach: making a smart switch between

2D and 3D data during the update step of PF. For areas such as corridors, the pose

estimation using 2D data may be enough to use while areas such as offices with a lot

of features, it may be better to use 3D data for the pose estimation.

• Map update: improve the map updating to deal with dynamic changes in the envi-

ronment (e.g. human beings, mobile robots, etc.)

• PF optimization: decrease the processing time on each iteration of the filter ('
200ms). Possible directions: smarter selection of selected voxels and multi-threading

(e.g. CUDA, OpenMP or OpenCL).

• Loop closure detection and place recognition: implement a loop closure detection

algorithm, to detect when the robot is in a previously visited location, and then update

the map improving the pose estimate.
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Appendix A

Extra content

A.1 Optimization algorithms

Optimization algorithms [44] are executed iteratively to find an optimal solution. When

applied to the localization module, it reduces the Scan Matching error, i.e., the alignment

of the laser scan points with the grid map. Some optimization algorithms such as Gauss-

Newton, Gradient descent, and Levenberg–Marquardt are described below.

• Gauss-Newton: implemented in HectorSlam [31] during the scan matching process

to find a rigid transformation ξ = (px, py, ψ) that minimizes

ξ∗ = argmin
ξ

n∑
i=1

[
1−M(Si(ξ))

]2
(A.1)

with Si(ξ) the coordinates (world reference system) of scan endpoints si = (si,x, s
T
i,y)

and M(Si(ξ)) denotes the map value for the coordinates Si(ξ). This minimization is

solved using the following Gauss-Newton equation:

ξs+1 = ξs −∆ξ (A.2)

∆ξ = H−1JT
[
1−M(Si(ξ))

]
, with H = JTJ (A.3)

ξs+1 = ξs − (JTJ)JT
[
1−M(Si(ξ))

]
(A.4)

• Gradient descent: a first-order iterative method that follows a direction given by

the decreasing function (F (x)), i.e., the direction of the negative gradient (−∇F (x))

to find a minimum. At each iteration is associated with the term designated step

(γ), which tends to be larger the further away the current point from the endpoint

(minimum). Then follows

xn+1 = xn − γn∇F (xn), n ≥ 0 (A.5)
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• Levenberg–Marquardt: method that can be obtained by replacing A.3 with:

∆ξ = [JTJ + λ diag(JTJ)]JT
[
1−M(Si(ξ))

]
(A.6)

[JTJ + λ diag(JTJ)︸ ︷︷ ︸
LM

]∆ξ = JT
[
1−M(Si(ξ))

]
(A.7)
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A.2 3D Line Tracing algorithm

Algorithm 10: 3D line tracing based on [45] to compute voxels between the sensor and the measured voxel.

Data: Grid coordinates of the robot pose (x0, y0, z0) and the measured voxel (x1, y1, z1).

1

2 dx ← abs(x1-x0); dy ← abs(y1-y0); dy ← abs(z1-z0);

3 if x0 < x1 then sx ← 1; else sx ← -1;

4 if y0 < y1 then sy ← 1; else sy ← -1;

5 if z0 < z1 then sz ← 1; else sz ← -1;

6 if dx >= dy && dx >= dy then

7 err1 ← dy - dx; err2 ← dz - dx;

8 for i = 0; i < dx - 1; i+ + do

9 M ← voxelUpdate(x0, y0, z0, val);

10 if err1 > 0 then

11 y0 ← y0 + sy; err1 ← err1 - dx;

12 end

13 if err2 > 0 then

14 z0 ← z0 + sz; err2 ← err2 - dx;

15 end

16 err1 ← err1 + dy; err2 ← err2 + dz; x0 ← x0 + sx;

17 end

18 else if dy >= dx && dy >= dz then

19 err1 ← dx - dy; err2 ← dz - dy;

20 for i = 0; i < dy - 1; i+ + do

21 M ← voxelUpdate(x0, y0, z0, val);

22 if err1 > 0 then

23 x0 ← x0 + sx; err1 ← err1 - dy;

24 end

25 if err2 > 0 then

26 z0 ← z0 + sz; err2 ← err2 - dy;

27 end

28 err1 ← err1 + dx; err2 ← err2 + dz; y0 = y0 + sy;

29 end

30 else

31 err1 ← dy - dz; err2 ← dx - dz;

32 for i = 0; i < dz - 1; i+ + do

33 M ← voxelUpdate(x0, y0, z0, val);

34 if err1 > 0 then

35 y0 ← y0 + sy; err1 ← err1 - dz;

36 end

37 if err2 > 0 then

38 x0 ← x0 + sx; err2 ← err2 - dz;

39 end

40 err1 ← err1 + dy; err2 ← err2 + dx; z0 ← z0 + sz;

41 end

42 end
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