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nos estágios como posteriormente no projeto de tese, ao Miguel Correia por todos os
bons momentos passados, ao Miguel Silva por todas as vezes que disse “Cansas-me a
beleza!”, “Gostei deste bocadinho” ou “Cafézinho?”, à Sara Anjo por toda a ajuda
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Resumo

Atualmente, os sinais e imagens biomédicas são fundamentais para o diagnóstico
cĺınico. No entanto, em alguns casos, para um cĺınico menos experiente a sua inter-
pretação poderá ser uma tarefa bastante dif́ıcil. Para algumas doenças, até médicos
com vasta experiência podem demonstrar dificuldades em quantificar e identificar
os vários estádios da doença em questão devido à sua natureza.

Desde os anos 1990’ e, de acordo com a teoria da informação, surgiram várias
medidas de entropia com o intuito de estudar a complexidade de sinais e imagens
biomédicas. Além disso, a análise de múltiplos fatores de escala foi introduzida
com o intuito de permitir uma visão detalhada dos dados em questão. Um valor de
entropia elevado num sinal, imagem, ou volume revela uma elevada irregularidade
do mesmo. Até agora, foram efetuados poucos avanços cient́ıficos no âmbito das
medidas de entropia para a análise de volumes.

Baseado no conceito de entropia difusa (“fuzzy entropy”), foram propostos três
novos algoritmos de medidas de entropia, todos revelando inovações. Antes da sua
aplicação em dados biomédicos, estes foram testados e validados em dados sintéticos,
de acordo com os métodos na literatura.

Em primeiro lugar, foi desenvolvida uma definição alternativa de de entropia
difusa unidimensional (FuzEn1D) bem como a sua versão multi-escala (MFE 1D),
por forma a analisar a complexidade de sinais áudio de roncos bem como os estádios
associados de śındrome de apneia-hipopneia do sono (SAHS). Este método revelou
ser uma ferramenta interessante, que uma vez aperfeiçoado, poderá vir a ser utilizado
no futuro para mais estudos.

Posteriormente, com o intuito de processar imagens dermoscópicas, foi intro-
duzida a entropia difusa bidimensional colorida (FuzEnC2D) para conduzir um es-
tudo de microcirculação sangúınea e, um estudo para identificação de lesões de pele.
Conseguiu-se provar que FuzEnC2D poderá ser de grande interesse para ambos os es-
tudos. No caso do estudo de microcirculação sangúınea, demonstrou-se que existem
diferenças estat́ısticas entre uma região da pele em repouso e, uma região vasodi-
latada do mesmo tamanho e no mesmo indiv́ıduo. Adicionalmente, provou-se que
são verificadas diferenças estat́ısticas entre as demais lesões da pele consideradas no
estudo (nevos comuns, nevos at́ıpicos e, melanoma).

Finalmente, é proposta ainda a entropia difusa tridimensional (FuzEn3D) e a
sua versão multi-escala (MFE 3D), para avaliar conjuntos de scans CT como um só
volume de modo a proceder à identificação e ao estudo da progressão da doença
Fibrose Pulmonar Idiopática (IPF). Neste último estudo, foi posśıvel identificar a
existência desta doença extremamente mortal entre dois grupos diferentes (um grupo
de indiv́ıduos saudáveis e, um grupo de indiv́ıduos que sofrem de IPF).

Palavras-chave: teoria da informação, medida de entropia, irregularidade,
análise multi-escala, dados multidimensionais
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Abstract

Nowadays, biomedical signals and images are of utmost importance for medical
diagnosis. Nevertheless, in some cases, for a less experienced doctor, their interpre-
tation can become a very hard task. For some diseases, even experienced doctors
can have difficulties in quantifying and identifying several stages due to the disease’s
nature.

Since the 1990s, based on information theory, several entropy measures emerged
to study biomedical signals and images’ complexity. Moreover, multiple scale anal-
ysis has been introduced to have a more detailed view of the studied data. A high
entropy value on a signal, image or volume reveals a high irregularity level. So
far, little scientific advances have been made in analyzing volumes with entropy
measures.

Based on fuzzy entropy, we propose three new entropy algorithms measures,
all with innovations in the field. Before applying them to biomedical data, all of
them were tested and validated on synthetic data, according to previous literature
approaches.

First, an alternative unidimensional fuzzy entropy (FuzEn1D) definition and the
multiscale version (MFE 1D) has been developed to analyze snoring audio signals’
complexity and Sleep Apnea-Hypoapnea Syndrome (SAHS) stages. This method
revealed to be an interesting tool, that with some improvements, might be used in
the future for further studies.

Moreover, to process dermoscopic images a bidimensional colored fuzzy en-
tropy (FuzEnC2D) algorithm was introduced to perform a cutaneous microcirculation
study and the identification of skin lesions. It has been proven that FuzEnC2D can
be of great interest to both microcirculatory assessment and melanoma identifica-
tion. For the microcirculation study, statistical differences have been found between
a relaxed skin region and vasodilated one of the same sizes for the same individual.
Additionally, statistical differences have also been verified between the skin lesions
considered (common nevi, atypical nevi, and melanoma).

Finally, a tridimensional fuzzy entropy (FuzEn3D) and its multiscale version
(MFE 3D) is proposed to evaluate sets of CT scans as volumetric data for identifica-
tion of idiopathic pulmonary fibrosis (IPF) and stage progression. In this study, the
existence of this deathly disease between two different groups (a group of healthy
subjects and one group of subjects diagnosed with IPF) was identified.

Key-Words: information theory, entropy measure, irregularity, multiscale anal-
ysis, multidimensional data
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1 Introduction
This chapter content reveals the main goals of this project and the motivations

behind it. Afterwards, the context of the project and the main topics regarding
the biological applications proposed in this work are discussed. Besides, the chap-
ter includes the project framework, calendar, the team involved, and the scientific
contribution. Finally, the thesis document structure will presented to the reader.

1.1 Goals and motivations

Nowadays, medical specialists look for the best resources and tools to make a
correct diagnosis based on valuable information. According to this, assisted medical
diagnosis by new technological tools has been developed throughout the years in sev-
eral medical fields. Many studies using entropy measure algorithms have been pro-
posed to reveal important information about biomedical signals. Those algorithms
can be used for the detection of a certain disease, including its characterization and
if possible identification of its stage. The applications can be many, either based on
unidimensional data or multidimensional data.

Based on bioinformatic knowledge and signal processing, and according to infor-
mation theory, entropy measures have been developed. They can help in classifying
the presence/absence of the approached diseases, having in consideration the impor-
tance of also quantifying the disease.

Entropy measures can offer detailed information on a biomedical signal or image,
helping the physician to make a decision based on both medical experience and
computer-based assistance. For young doctors, it can be even more essential because
it might prevent false diagnosis or missed ones.

1.2 Context

This dissertation has been developed during the last year of the Integrated Master
of Biomedical Engineering program of the University of Coimbra, Portugal, to obtain
the Master’s degree.

This project involved an inter university collaboration of two teams: Laboratório
de Instrumentação, Engenharia Biomédica e F́ısica da Radiação - UC (LIBPhys-
UC), University of Coimbra, Portugal and Laboratoire Angevin de Recherche en
Ingénierie des Systèmes (LARIS), University of Angers, France.

In coordination with the LARIS, the work involved one-dimensional and multi-
dimensional fuzzy entropy measures. The initial goal was to validate the developed
algorithms to be a posterior applied to biomedical data. Taking into account the
biomedical applications of this project, the next task involved the detection of some
diseases.

Snoring audio signals have been used to study sleep apnea-hypopnea syndrome,
as the application of the proposed unidimensional algorithm. These signals were
previously collected for the PhD project of a LIBPhys-UC member, MSc Tiago
Marçal.
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During an ERASMUS+ internship, the multidimensional algorithms have been
developed and tested on synthetic signals. A report containing some notes regarding
the tests performed during that time and some conclusions is presented in appendix
C.

Regarding the multidimensional data, dermoscopic images and high-resolution
CT scans have been provided in collaboration with the University Hospital of Angers,
France, and University Hospital of Rennes, France, respectively. Additionally, a
public database containing several dermoscopic images on skin lesions has been
tested.

1.3 Biomedical applications

Herein, the biomedical applications of this project for both uni-, bi-, and tridi-
mensional entropy measures are presented.

1.3.1 Snoring and sleep apnea-hypopnea syndrome

Snoring is a prevalent disorder among 20− 40% of general population [1] and is
one of the earliest and most consistent symptoms of Sleep Apnea-Hypopnea syndrome
(SAHS) [2, 3].

The snore results from the vibration in pharyngeal airway. Young et al. [4]
conducted a study on 4925 adults between 30 and 60 years old, concluding that at
least 80% of all moderate to severe cases of SAHS are most likely missed.

SAHS is characterized by several breath cessations. Snoring can be present in
the inhalation or trough the entire breathing cycle [2, 5].

Both snoring and obstructive sleep apnea-hypoapnea syndrome (OSAHS) can con-
sequently be associated with the existence of other diseases like heart related ones,
metabolic dysfunction, neurocognitive dysfunction and also, increased mortality [3,
6].

Respiratory sounds can be classified using the Apnea-Hypopnea Index (AHI)
or respiratory disturbance index (RDI) to reveal how severe are the snores. AHI
corresponds to the number of apneas and hypopneas per hour of sleep [2, 5, 7] and
RDI can be defined as the total number of apneas, hypoapneas and respiratory effort
related arousals (RERAs) per hour [7] .

OSAHS is present when AHI is superior to 5 apneas and hypopneas per hour of
sleep. Otherwise, if both apneas or hypopneas are not registered during the sleep
time of the subject, it is stated that only simple snoring is present [2].

Besides clinical information and symptoms, information from polysomnography
(PSG) must be analyzed by the medical doctor [3, 6, 7]. To treat the syndrome oral
appliances (OA) have been increasingly used [3, 6]. An additional PSG study or an
attended cardio-respiratory sleep study can be used to ensure that the treatment is
working [6].
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1.3.2 Melanoma

Melanoma is the deadliest skin cancer, with an increasing incidence [8]. Accord-
ing to Bray et al. [9], melanoma represents 1.6% of all new cases of cancer world
wide, and 0.6% global deaths by cancer, affecting mainly exposed skin regions like
face, neck, arms and legs [10]. When detected early, medical doctors are able to
increase the survival rate over 90% [11].

The European guideline for diagnosis and melanoma treatment [12] states that
melanoma can be defined as a malignant type of tumor, arousing from melanocytic
cells with location primarily in the skin [12]. Besides the high death rates, melanoma
holds a very high potential to metastasize even for small sized tumors [12].

The associated risk factors are family history, multiple benign lesions, atypical
nevi presence, previous melanoma, immunosuppression, sun skin sensitivity and
exposure to ultra-violet radiation [13].

Melanomas evolve in size, shape and color [14]. The colors black, red, white and
blue-gray are more frequent in these lesions than in non-malignant ones [15].

Currently, the best treatment is still early diagnosis and surgical excision [16].
Dermoscopy is the technique used by specialists to aid in skin lesions diagnosis [8,
16]. The first consensus Net meeting on Dermoscopy took place in Rome, 2001 [16].

Early detection can reduce the unnecessary and painful biopsies as well raise the
probability of preventing metastatic lesions [10].

1.3.3 Microcirculatory assessment

Microcirculation system participates in nutrient’s exchange and oxygenation [17,
18]. To guarantee hemodynamic coherence microcirculation should be monitored
[19]. Moreover, several pathologies need vascular assessment namely cardiovascular
diseases, diabetes and hypertension [18].

When resuscitation techniques are applied, if they only normalized the systemic
values but were not efficient in improving microcirculation and oxygenation this
means there is a loss of hemodynamic coherence [19].

One can conclude that it is of great importance to measure microcirculatory
activity. To evaluate microcirculation, morphological (ex: vessel density, rate of
perfused vessels and vessel diameter, ...) and functional parameters (ex: pharmaco-
logical tests, post occlusive reactive hyperemia, ...) can be measured [17]. Imaging
techniques can be used like video microscopy-based ones, laser Doppler flowmetry
(LDF), laser Doppler imaging (LDI) and laser Doppler contrast imaging (LSCI) [17,
18].

With the need to improve and establish new medical diagnosis using signal pro-
cessing tools that are safe, cheap and easy to use [18], like entropy measures, the
goal was to assess if entropy measures can distinguish two different microvascular
states.

1.3.4 Idiopathic pulmonary fibrosis

Pulmonary Fibrosis (PF) is a deathly disease, characterized by a “progressive
and irreversible destruction of the lung architecture caused by scar formation” [20].
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Idiopathic pulmonary fibrosis (IPF) is a very severe form of PF with a short life
expectancy [20] of 3 years average mortality [21]. Marshall et al. [21] reported that
both incidence and mortality rates are rising. IPF is the most common type of
idiopathic interstitial pneumonia among the group [22].

Based on the WHO database, within Europe, United Kingdom, Finland and
Portugal are the three countries with the highest death rates by that order and
France represents the 8th highest death rate country [21]. So far, the only effective
treatment is lung transplantation [20]. IPF prevails mainly in elderly male subjects
[21].

In order to determine the presence of a typical usual interstitial pneumonia
(UIP) pattern, honeycombing characteristic must be present, usually associated with
traction bronchiectasis, being localized essentially in the basal and peripheral region
of the lungs [23–26].

Since the current medical drugs and treatments still do not have the ability to
cure IPF [21], it would be interesting to develop a measure that determines the
existence of this disease and, more importantly, that is able to quantify it. Quan-
tification can be a great tool to monitor the drugs efficiency and disease evolution.

1.4 Project framework

Due to the large applicability of entropy measures, this project involved three
different applications: snoring events and SAHS disease, skin dermoscopic images
and CT scans to identify idiopathic pulmonary fibrosis (IPF). This was mainly based
on previous paper works but also contains innovations namely the bi-dimensional
algorithm being now applied in colored images and a new tri-dimensional approach
in 3D datasets of images.

Regarding one of the applications of this project, an entropy measure has been
applied on snore related signals. This dataset has been provided by MSc Tiago
Marçal, (LIBPhys-UC, University of Coimbra, Portugal) and collected during his
PhD program with the collaboration of Dr. José Moutinho from Centro de Medicina
do Sono, CHUC. The main goal using this type of one-dimensional signals was to
detect snoring events and possibly quantify the disease stage for different individuals.

Afterwards, in parallel with the previous work mentioned, during an internship
at LARIS, University of Angers, France, this project involved the development and
validation of two new multidimensional entropy measures.

The validation tests have been performed during an internship in LARIS, Univer-
sity of Angers, France. In addition, some initial tests with biomedical images have
also been performed. The description of the work developed during the internship
can be consulted in Appendix C.

These bi-dimensional and tri-dimensional measures have been developed in order
to assess the irregularity patterns of colored dermoscopic images and volumetric
CT scans, respectively. In the first case, the ultimate goal has been identifying
microcirculatory states and differentiating skin lesions, having the collaboration of
University Hospital of Angers, France, on the first application. On the other hand,
the tri-dimensional measure has been developed having in mind the identification
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of Idiopathic Pulmonary Fibrosis, a deathly lung’s disease, in high-resolution CT
scans, provided by the University Hospital of Rennes, France.

1.5 Calendar

The project developed applied entropy measures algorithms to assess irregularity
of biomedical signals and assist in medical diagnosis of snoring related diseases, skin
lesions and pulmonary fibrosis. Several tasks were performed these last months with
the collaboration of two universities and are presented in figure 1.1.
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Figure 1.1: Thesis time line and the corresponding tasks performed during the
project.

1.6 Team and partners

This project involved several partners during its development namely: LIBPhys-
UC, Portugal, LARIS, France, University Hospital of Angers (CHU Angers), France
and University Hospital of Rennes (CHU Rennes), France. The team members of
this project are represented in table 1.1.
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Table 1.1: Team members involved in the project.

Team members Function Institution
PhD Professor João Cardoso Supervisor LIBPhys-UC
PhD Professor Anne Humeau-Heurtier Supervisor LARIS
PhD Pedro Vaz Consultant/Junior Researcher LIBPhys-UC
MSc Mirvana Hilal Consultant/PhD student LARIS
Dr. Clémence Martin Dermatologist CHU Angers
Dr. Ludovic Martin Dermatologist CHU Angers
Dr. Mathieu Lederlin Radiologist CHU Rennes
Dr. Guillaume Mahé Vascular Medicine CHU Rennes
MSc Miguel Silva PhD student LIBPhys-UC
MSc Tiago Marçal PhD student LIBPhys-UC

1.7 Scientific contribution

In table 1.2, it is shown the scientific contribution of this project in an inter-
national conference paper, resulting from the collaboration of both investigation
groups involved.

Table 1.2: Reference of scientific contribution.

International conference proceeding paper Ref.
Mirvana Hilal, Andreia Sofia F. Gaudêncio, Clémence Berthin, Pedro G. Vaz, João Cardoso, Ludovic Martin,
and Anne Humeau-Heurtier. “Bidimensional Colored Fuzzy Entropy Measure: a Cutaneous Microcirculation
Study”. In: 5th International Conference on Advances in Biomedical Engineering (ICABME19), Lebanon.
2019 (accepted)

[75]

1.8 Thesis structure

The thesis document is divided into 6 main chapters and appendices.
The following chapter, State of the Art, presents entropy measures and the

biomedical applications in a more detailed view. Regarding biomedical applications,
it is described snoring, skin lesions including melanoma development, microcircula-
tion, and idiopathic pulmonary fibrosis.

In the chapter entitled Materials, the synthetic signals, images, and tridimen-
sional data that has been used for validation are presented. In addition, the goals
of using that data for the project are explained. Then, it is described the biomedi-
cal data used, revealing the goals of the biomedical tests performed. Audio signals
of snoring, dermoscopic images and volumetric CT scans have been used to assess
entropy and perform the final biomedical tests.

Thereupon, in chapter 4 entitled as Methods, the developed algorithms during
the Master thesis project are discussed as well as the methodology used to obtain
the final results.

Afterwards, a chapter is dedicated to the results. The final chapter, the Con-
clusion, mentions the main conclusions of this project, future work to develop and
final remarks regarding the thesis.

Attached to this document, the Appendices are also shown.
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2 State of the art
The current chapter will include some theoretical background regarding the

biomedical applications of this thesis project. Moreover, it will also describe the
existing entropy measure algorithms and their evolution in a more detailed view for
one-dimensional and multidimensional data and their multiscale versions.

2.1 Theoretical background

2.1.1 Snoring and snore related signals

Snoring, a prevalent disorder among 20− 40% of the general population, results
from the vibration in pharyngeal airway anatomical structures and can be influenced
by several factors such as body position, presence of sleeping disorders, sleep stage,
among others. Snoring and snore related signals (SRS) carries important information
like the obstructed site of the airway [1, 2, 6].

Sleep Apnea-Hypopnea syndrome (SAHS), a sleep disorder, is characterized by
several breath cessations, leading to hypoxemia and sleep disruption. One of the
earliest and most consistent symptoms in SAHS is snoring [2, 3]. Snoring can occur
during inhalation or be present during the entire respiratory cycle (inhalation and
exhalation) [2, 5].

This biological process occurs due to an airway obstruction and is an heteroge-
neous acoustic phenomena, i.e., there can be variations from night to night and even
in the same night these variations can occur [2]. Obstructive sleep apnea-hypoapnea
syndrome (OSAHS) is associated to upper airway obstruction due, for example, to
obesity or cranio-facial abnormalities [3]. Due to increased resistance in the upper
airway, the airflow becomes turbulent, producing vibrations in the pharyngeal tis-
sues. In the end, when snoring, a subject has oscillations in several locations like
the soft palate, pharyngeal walls, epiglottis, and tongue [2].

Snoring and OSAHS are, in most cases, associated with the existence of other
diseases like cardiac ones and increased mortality [3, 6].

There are two different types of snores [5]:

Regular: Snores happening successively and during consecutive breathing cycles.

Non-Regular: Snores that are separated by non-breathing cycles and/or apneas.

An apnea can be defined as the absence of breathing for at least 10 seconds and
an hypopnea is considered as a decreased breathing (not completely absent one) for
at least 10 seconds [2]. Additional information like for example different types of
apneas is included in table 2.1 based on information provided by Kushida et al. [7].

To classify the respiratory sounds there is an Apnea-Hypopnea Index (AHI),
revealing the severeness of snores. AHI corresponds to the number of apneas and
hypopneas per hour of sleep [2, 5, 7].

When AHI is superior to 5 and excessive daytime sleeping is verified, an obstruc-
tive sleep apnea (OSA) syndrome is present. Otherwise, the absence of apnea or
hypopnea during sleep time means the existence of simple snoring [2].
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Table 2.1: Breathing sleep events definitions. Adapted from [7].

Breathing Events Definition

Obstructive Apnea
Clinical Def.: Absence of airflow for at least 10 seconds. Considered obstructive if during the event
there is difficulty in breathing.
Research Def.: A decrease of at least 50% from baseline in amplitude of a valid measure of breathing,
for at least 10 seconds.

Central Apnea
Clinical Def.: Absence of airflow for at least 10 seconds (apnea) without difficulty in breathing.
Research Def.: Same definition as the obstructive but the lack of breathing difficulty must be verified
with an esophageal balloon.

Mixed Apnea
Clinical Def.: Absence of airflow for at least 10 seconds, starting as a central apnea.Presence of an
effort in breathing at the end.

Hypopnea

Clinical Def.: Abnormal respiratory event with a reduction of thoracoabdominal movement (or
airflow) of at least 30 % compared to the baseline, during 10 at least 10 seconds. An oxygen
desaturation higher than 4% must be verified.
Research Def.: Clear amplitude decrease (less than 50%) of breathing validated measure during
sleep. Oxygen desaturation is higher than 3% or arousal. Use of esophageal balloon to confirm
central or obstructive hypopnea.

Respiratory-Effort
Related Arousal

(RERA)

Clinical Def.: No agreement.
Research Def.: A sequence of breaths showing an increased difficulty in breathing. Associated with
higher negative esophageal pressure for at least 10 seconds.

Besides the previous index, the respiratory disturbance index (RDI) can be
defined as the total number of apneas, hypoapneas and respiratory effort related
arousals (RERAs) per hour [7]. Nevertheless, sometimes it is used synonymously
with AHI [7]. The severity criteria based on sleep related obstruction breathing
events is represented in table 2.2.

Table 2.2: Severity criteria according to the number of obstructive sleep breathing
events per hour. Adapted from [3].

Severity
Criteria

Sleep related obstruction
breathing events per hour

Snoring < 5
Mild/Light 5− 15
Moderate 15− 30

Severe > 30

For the diagnosis of apnea disease details like clinical information, symptoms
and polysomnography (PSG) findings must be included [3, 6, 7]. Kushida et al. [6]
suggests that the standard process of determining the correct treatment must include
“the severity of sleep related respiratory problems”. Nowadays, oral appliances (OA)
are being used as treatment for OSA increasingly [3, 6] and, to insure the medicine
is working, the patients should undergo polysomnography or an attended cardio-
respiratory sleep study [6]. This study can be very expensive and time-consuming
since multiple biosignals are recorded [5].

For an attended PSG setting, where an overnight study is performed, the stan-
dard recording montage includes the following multichannel monitoring [3]:

• Electroencephalogram (EEG)

• Electrooculogram (EOG)

• Chin Electromyography (EMG)
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• Electrocardiogram (ECG)

• Airflow

• Respiratory effort

• SpO2 (by oximeter)

• Anterior tibialis EMG

An analysis based on snoring acoustics can have a better potential to differentiate
individuals with ’simple snoring’ from OSAHS suffering individual [1].

As Mesquita et al. [5] mention, there is a current need of simplifying the diagnosis
method namely, the process of PSG, since it requires monitoring several biosignals.
This can imply reducing the number of signals screened or even analyze only one
like breath and snore sounds.

As an heterogeneous and turbulent phenomena, snoring has a variable range of
sound spectrum. Moreover, there is also the need of quantifying objectively snoring
[2]. Having that in mind, the project of this thesis included a study of snoring
sounds. The audio signals containing snoring events, i.e., snoring related signals
have been studied with the proposed entropy measurement algorithm with the goal
of revealing the intrinsic irregularity of this biological event.

2.1.2 Dermoscopy study: melanoma and microcirculation
assessment

2.1.2.1 Melanoma

Melanoma is a malignant type of tumor, arousing from melanocytic cells with
location primarily in the skin [12]. It is also the deadliest skin cancer, with an
increasing incidence [8]. If detected early the survival rate can be increased over 90%
[11]. The main risk factors are family history, multiple benign lesions or atypical
nevi and previous melanomas [13]. Additionally, immunosuppression, sun sensitivity
and exposure to UV light can represent a higher risk of developing melanoma [13].

Melanomas usually present asymmetry, irregular borders, uneven color distribu-
tions and a diameter wider than 6 mm evolving therefore, in size, shape and color
[14]. Usually, malignant lesions are associated with more than three different colors
[15] and the best treatment is early diagnosis and surgical excision [16].

Figure 2.1 shows melanoma progression from normal melanocytes to malignant
lesion according to the Clark model [13]. The stage one is characterized by the devel-
opment of benign nevi, composed by neval melanocytes. Although these cells growth
is uncontrolled, the nevus growth is limited. When the dysplastic nevi is present,
the existent abnormalities will affect cell growth, DNA repair and susceptibility to
cell death [13].

The gene CDK2NA (cyclin-dependent kinase inhibitor 2A) is inactive in 25 −
40% of familial melanoma cases due to genetic defect. This gene is responsible for
encoding two tumor suppressor proteins (p16 and p19). On the other hand, for
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non-familial cases, PTEN gene (Phosphatase and Tensin Homologue), also a tumor
suppressor, is inactivated due to genetic mutations [13].

In radial-growth phase, a decreased differentiation is observed as well as un-
limited hyperplasia. Upcoming, in the vertical-growth stage, cells cross the basal
membrane and form the tumor. Finally, in a metastatic stage, the cancer can spread
to the lungs, liver or even to the brain [13].

Nested melanocytes along the basal area. 
Development of benign nevus due to melanocytes
proliferation. Flat or slightly elevated regions.
Uniform coloration or regular pattern present. 

1

Random atypia. 
Aberrant growth, within existent benign lesion or in
a new location. Assymetry, irregular format,
multiple colors or increasing size present. 

Continuous atypia. 
Cell intraepidermal growth with cytomorphological
cancer in the lesion. 

Dermal invasion. 
Ability to invade the dermis layer to form an
expansible nodule. 

Metastasis. 
Spreading to other areas and organs to proliferate
and establish metastasis. 

Benign
Nevus

Dysplatic
Nevi

Radial
Growth

Vertical
Growth

Metastatic
Melanoma

2

3

4

5

Figure 2.1: Clark model explaining the progression model of melanoma, based on
Miller and Mihm [13] representation.

According to Garbe et al. [12], the melanoma can be identified, clinically and
histologically, in four subtypes and other rare forms (see table 2.3).

Melanoma’s death is associated with increased number of nevi in patients [27].
Small pigmented skin lesions are still difficult to distinguish between non-melanoma
and melanoma [28]. Typical common moles (pigmented lesions), i.e., common nevi
are clinically and histologically different from atypical moles, i.e., atypical nevi 1

[29]. Atypical nevi can have different sizes but are usually larger than common nevi.
Initially, the diagnosis depended only on medical doctor’s visual inspection of

lesions [8, 14, 16, 30, 31]. This unaided procedure lacked in accuracy [8, 16, 30] and
identifying early stages of the disease was a difficult task, leading to unnecessary

1In 1992, it was given the recommendation by NHI Consensus Conference to abandon the term
dysplastic nevus.
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Table 2.3: Melanoma subtypes according to the European guideline for Melanoma
diagnosis and treatment [12].

Melanoma subtype Main features and characteristics

Superficial spreading melanoma

Starts with an intraepidermal growth (horizontal or ra-
dial) and evolves to a plaque shape. Malignant melano-
cytes spread throughout the epidermis. Presents multi-
ple colors and pale areas of regression.

Nodular melanoma

Mainly nodular with brown-black color, often eroded
or bleeding tumor. It presents a vertical aggressive
growth phase (little or no horizontal growth phase).
Early identification is almost impossible.

Lentigo maligna melanoma
Located predominantly on sun damaged areas of el-
der people. Lentiginous proliferation of atypical mela-
nocytes.

Acral lentiginous melanoma
Tipically, palmoplantar and subungual. Irregular pig-
mentation is present. Nodular region can be visible
due to invasive growth.

Rare forms: desmoplastic, amenalotic and polypoid melanomas (less than 5% of the cases).

biopsies [8].
In 1663, skin surface microscopy was used to study small vessels and later on, this

technique started to use immersion oil and glass spatulas [16]. Already in the 20th

century, Saphier [32] introduced the term “Dermatoscopy”. Further on, to evaluate
pigmented skin lesions for the first time Goldman [33] introduced “Dermoscopy”.

Nowadays, the trained specialists use dermoscopic images to assist skin lesions
diagnosis. Dermoscopy or Epiluminescence Microscopy 2 (ELM) is a high-resolution,
in vivo method and non invasive technique. It allows the visualization of deeper skin
structures with improved accuracy compared to clinical visual inspection [8, 14–16].
Hence, dermoscopy allows to look into the visual and morphological characterization
of skin pigmented lesions [30].

If this technique is not performed by trained dermatologists there can be limi-
tations in the accuracy levels [8, 12, 30]. Even for the specialists, diagnosis remains
subjective [8, 30] and with an estimated accuracy of 70% [12].

This field still have space to improve in aided diagnosis since there is a need for
an automated system to differentiate melanoma, non-melanoma, and benign skin
lesions [14].

Follow-up of skin lesions with dermoscopy can be also a major task to identify
early melanoma. Both early detection and treatment are very important for a good
prognosis of patients showing primary cutaneous melanoma [28].

One common task involving dermoscopy is color identification [15, 31]. However,
this can be subjective, representing a huge challenge on the field [34].

Some studies focus on CAD systems to detect automatically melanoma. These
studies require defining a region of interest (ROI) for the melanoma classification
[10]. Segmentation can be difficult due to the different melanoma’s characteristics
like shape, size and color. Moreover, hair and small vessels can interfere both in
melanoma detection and segmentation [10].

2Also known as Dermatoscopy and Amplified Surface Microscopy [16]
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The goal of using entropy techniques is to reveal new information about the
dermoscopic images and hopefully, in the future, aid in the diagnosis of skin lesions
and cancer, improving the accuracy of diagnosis.

2.1.2.2 Microcirculatory assessment

The microcirculatory system is defined by small arteries (also resistance arter-
ies and with diameter less than < 150 µm), capillaries, arterioles and venules [17].
It is involved in nutrient’s supply as well as oxygenation [17, 18]. Monitoring mi-
crocirculation can be of great importance to determine for example, hemodynamic
coherence after resuscitation procedures being applied [19]. On the other hand,
several pathologies need vascular assessment like cardiovascular diseases, diabetes,
hypertension, foot ulcers, atherosclerosis, among others [18].

One can conclude that it is of great importance to quantify the microvascular
activity. To evaluate microcirculation, morphological (ex: vessel density, rate of
perfused vessels and vessel diameter, ...) and functional parameters (ex: pharmaco-
logical tests, post occlusive reactive hyperemia, ...) can be measured [17]. Imaging
techniques can be used like video microscopy based ones, laser Doppler flowmetry
(LDF), laser Doppler imaging (LDI) and laser Doppler contrast imaging (LSCI) [17,
18].

Video microscopy allows direct visualization. However, pressure artifacts are
associated [17]. LDF and LDI are techniques that provide interesting information
but with a difficult usage in some particular clinical situations [18]. LSCI overcomes
some of the previous techniques disadvantages [18].

Humeau-Heurtier et al. [18] pointed out two important aspects: to improve and
establish new medical diagnosis, signal processing tools following safety require-
ments, that are cheap and easy to use, can be a future option; the second aspect is
that determining values for microvascular tests is a demand.

According to this, entropy measures can be image processing tools of great in-
terest in the future to determine and quantify microcirculation states. The goal
of the project was to use entropy measures to differentiate dermoscopic images for
subjects at rest and after applying heat to their skin, i.e., differentiating regular
microcirculatory states and vasodilated microcirculations, respectively.

2.1.3 Idiopathic pulmonary fibrosis

Pulmonary Fibrosis (PF) is a deathly disease, with the only effective treatment
being the lung transplantation [20]. This disease is characterized by a “progressive
and irreversible destruction of the lung architecture caused by scar formation” [20].

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, specific type of
PF, defined by the patterns existence of usual interstitial pneumonia (UIP) [23–26].
This very severe disease of unknown cause [24, 25] has a short life expectancy [20]
of 3 years average mortality [21]. Therefore, an early diagnosis is imperative as well
as an assessment of the disease stage. Recently, new antifibrotic agents have been
developed, slowing down the disease progression. However, these medicines are not
a cure and have poor outcomes [21].
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IPF has an incidence mainly in male subjects, with advancing age [21, 24, 25]
and smoking history [24, 25]. The potential risk factors are smoking habits, gas-
troesophageal reflux, chronic viral infections, hepatitis C and family history of other
interstitial lung disease (ILD) [24, 25]. Marshall et al. [21] reported that both inci-
dence and mortality rates are rising.

Pires et al. [22] verified, among their patients, a reduced lung diffusion and
exercise capacity impairment.

Diagnosing IPF must fulfill the following three requirements [24, 25]:

1. Exclude other known ILD causes like environmental exposures (metal dusts,
wood dust, farming, drug toxicity, ...);

2. Identification of UIP pattern on high-resolution computerized tomography
(HRCT) scans;

3. Specific combinations of HRCT and histological patterns in patients that were
subjected to lung’s biopsy.

The fibrotic scar can be developed after a wound healing response getting out
of control, leading to extracellular matrix (ECM) components accumulation at the
injury site [20]. Such components can be hyaluronic acid, fibronectin, proteoglycans,
collagen, among others [20].

There are four main stages regarding the wound healing repair process and they
are [20, 21]:

1. Coagulation

2. Migration of inflammatory cells

3. Migration, proliferation and activation of fibroblasts

4. Tissue remodeling

If instead of having wound repair as expected, a deregulation of one of those
stages, wound severeness or, persistent damaged tissue is observed, consequently,
fibrosis is being developed [20, 21].

Once there is damaged tissue, an anti-fibronolytic coagulation cascade is initi-
ated, caused by the release of inflammatory mediators from epithelial and/or en-
dothelial cells and triggering clotting as well as the development of provisional ECM
(stage 1) [20].

As a consequence of platelet aggregation and degranulation, vasodilation occurs
and increased permeability is verified, allowing recruitment of inflammatory cells
like neutrophils, macrophages, lymphocytes and eosinophils (stage 2) [20].

Firstly, neutrophils are the most abundant cells in wound repair early stages,
being shortly after substituted by macrophages once the neutrophil’s degranulation
occurs. Any invading organisms are eliminated by both activated macrophages and
neutrophils (stage 2). Afterwards, these cells produce cytokines and chemokines
that will not only amplify this inflammatory response but also trigger proliferation
and recruitment of fibroblasts. The activated fibroblasts transform themselves into
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myofibroblasts capable of secreting ECM components. During the wound remodeling
phase, in a completely normal process, wound contraction is promoted by these
myofibroblasts. Otherwise, fibrosis is developed contributing to the excess of ECM
deposition [20].

Many stages of the wound repair process can go wrong, which can explain the
complex nature of PF [20].

Since the active inflammatory response is not a prerequisite, the most common
therapies, like anti-inflammatory ones, have shown little effect on the idiopathic
form of this disease. This explains the absence of detectable inflammation signs like
other types of the disease [20].

In the case of IPF, the possible explanation for fibrosis progression is intrinsic
defects in the wound healing response IPF.

To diagnose IPF, HRCT are taken from the patient’s chest region through vol-
umetric scanning [23–25]. According to the most recent guideline of Raghu et al.
[25], the scanning protocol should follow the following technical requirements:

• Non-contrast acquisition;

• Thinnest collimation, shortest rotation time and highest pitch to guarantee
motion-free images;

• Both potential and current of the tube must be appropriate to the patient’s size
(usually 120 kVp and ≤ 240 mA) and avoid unnecessary radiation exposure.

• Thin (≤ 1.5 mm) CT sections (contiguous or overlapping reconstruction);

• 3 different acquisitions with the last being optional: supine - inspiratory (volu-
metric), supine - expiratory (volumetric or sequential) and prone - inspiratory
(sequential or volumetric);

• The inspiratory volumetric acquisition should have a reduced radiation dose
of 1− 3 mSv but, avoiding ultra-low CT doses.

As said before, the radiologist needs to identify a probable UIP pattern [23–26].
This can exclude the need of a surgical lung biopsy [23]. The pattern identified can
be classified into one of four categories: typical UIP CT pattern, probable UIP CT
pattern, CT pattern indeterminate for UIP, and CT features most consistent with
non-IPF diagnosis [23].

Honeycombing is a key characteristic to identify the UIP pattern. This clustered
and thick-wall cystic spaces have usually 3 to 5 mm [23–26]. Other markers of lung
fibrosis are traction bronchiectasis and bronchiolectasis. These markers are impor-
tant in the identification of UIP [23–26]. The first marker, is specially predominant
in the peripheral area and presents an irregular appearance, reticulation, and ground
glass opacity [23].

In order to determine the presence of a typical UIP pattern, honeycombing char-
acteristic must be present, usually associated with traction bronchiectasis, being
localized essentially in the basal and peripheral region of the lungs [23, 25, 26].
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2.1.4 Evolution of entropy measures

Entropy can be seen as a “rate of information production” [35]. When applying
entropy as a measure, the main goal must be to quantify the irregularity of a sig-
nal, translating the inherent complexity [35–37]. Based on statistics, entropy is a
system’s disorder translation [38].

If the entropy value is close to zero, this leads to the conclusion that this system
is predictable regular [35–38]. On the other hand, as the signals get more complex
(i.e. the irregularities increase) the entropy is higher [35–38]. Basically, a signal
tend to have an higher entropy value, when both high variability and data’s random
nature is verified [39].

This measurement is both intuitive and independent of absolute scales. Visually,
a signal can be recognized as periodic or not. It can even be compared with a second
signal. One can say if it is more complex than the first one or very similar. In
addition, the entropy is not influenced by the amplitude or frequency of the signal
[38].

Allied to the power of entropy, the concept of image texture and its classifica-
tion through entropy can be introduced. An image can have several types of tonal
primitives with a certain spatial organization that will determine its texture. So,
there will be some properties associated such as fineness, smoothness, granulations
and obviously irregularity, among others [40].

2.2 Entropy measures and algorithms

Since 1990’s, many entropy measures have been developed based on information
theory [41]. Entropy algorithms can quantify a signal’s regularity based on its
entropy values. Entropy can be defined as “the rate of information production”
[35].

As Tsallis [42] suggested, entropy deals with the probabilities associated to the
systems’ energies. Approximate entropy (ApEn1D) [36] emerged with the purpose of
quantifying the regularity of a system. Richman and Moorman [35] compared then,
approximate entropy with a new measure, sample entropy (SampEn1D), to apply to
physiological signals.

Since then, many studies have emerged with different kind of applications namely
in the cardiovascular area [35, 39, 43, 44], EMG signals [45, 46], genetic area [39],
bearing vibration data [47, 48], image segmentation [49], among others.

Moreover, several applications involved multiscale versions of these entropy mea-
sures. Zhang [50] performed the first approach using multiscale in physical systems
based on Shannon’s entropy [51] but only with the study of Costa et al. [39, 43],
the coarse-graining procedure started to gain attention due to its applicability to
biological systems.

Entropy assessment analysis revealed itself so promising for one dimensional
signals that the logical upcoming analysis was to study images’ complexity. Silva
et al. [52] applied the concept of sample entropy to images, comparing patterns of
the image itself and defining the presence or absence of similarity between them.
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Since those advancements, some of these measures have been extended to bi-
dimensional or tri-dimensional (or both) definitions [52–58]. Moreover, several al-
terations on the coarse-graining procedure have been published [47, 48, 59–61].

Herein, in section 2.2, the main already-existing entropy measures are mentioned
and fuzzy entropy, on which the thesis work is based, is also explained . First, the
entropy measures developed to be applied into unidimensional data through single
scale analysis are discussed. Then, the multiscale algorithms for signals are also
approached. Afterwards, entropy measure algorithms to apply on multidimensional
data are approached and in case of existence, their multiscale versions are mentioned.

All the algorithms used in this dissertation, that allowed to obtain the shown
results, in chapter 5, are in full detail, including the mathematical definitions, in
chapter 4.

2.2.1 Entropy measures for one dimensional signals

Initially, entropy measures focused only on single scale’s entropy value of the
signal to analyze the system [35–38, 44–46, 52, 56].

Considering information theory [51] knowledge, many entropy measures have
been developed like Shannon’s entropy [38, 51, 62], approximate entropy [36], per-
mutation entropy [63], sample entropy [35, 37], fuzzy entropy [44–46, 57, 60, 64],
among others. These entropy measures can compare and classify the data as regular,
chaotic or random [65].

Multiscale versions of these algorithms only started to appear later, involving
a coarse-graining procedure with many applications namely, synthetic signals [39,
43, 47, 48, 59, 60, 66], ECG signals [39, 43, 59], bearing vibration signals [47, 48,
57], MEG signals [60] and EEG signals [60]. In the end, multiple values of entropy
for the same signal are considered, quantifying entropy over several temporal scales
[61].

2.2.1.1 Single scale analysis

According to information theory, Shannon’s entropy (SE) [51] was defined and
established as an intuitive parameter that is able to relate the amount of disorder
in data [38]. SE measures an average uncertainty [67] and depends on a set of
probabilities, pi (see equation (2.1)) [51].

SE = H(x) = −
∑

pi log(pi) (2.1)

In the 1990’s, approximate entropy (ApEn1D) [36], a process of entropy determi-
nation based on similarities within the studied signals. However, ApEn1D presented
inconsistent behavior at some points [35]. This algorithm defines templates of m
points (embedded dimension) and m+ 1 points [36].

Consider a signal [u(i) : 1 ≤ i ≤ N ] of N points. For ApEn1D, a template of m
points is defined according to equation 2.2. A template of m + 1 points is defined
similarly.

xm(i) = u(i+ k) with 0 ≤ k ≤ m− 1 (2.2)
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To determine the existence of similarity, two templates of the same size are
compared [35, 36], based on the Heaviside function (see equation (2.3)) [45]. This
comparison is done considering the distance of the two vectors.

The distance, dij, between two templates is defined as the maximum absolute
difference of their corresponding scalar components and it is represented by equation
2.4.

θ(i, j) =

{
0 if dij > r (templates not similar)

1 if dij ≤ r (similar templates)
(2.3)

dij = d[xm(i), xm(j)] = max |xm(i)− xm(j)| (2.4)

If this distance is within the considered tolerance value, r, the two vectors are
similar. Otherwise, those vectors are not similar (see equation (2.3)) [35, 36]. Since
there is no restriction to i being equal to j, when this situation happens it is defined
as a self-match, i.e., the vector is compared with itself giving a positive match.

The following calculations include definingBi(r) as the number of positive matches
for m points and Ai(r) as the number of positive matches for m+ 1 points. There-
fore, Bm

i (r) will be the probability of any vector xm(i) being within r of xm(j).
Similarly, Ami (r) defines the probability for any vector xm+1(i) being within r of
xm+1(j), considering the same concepts of distance and the same tolerance value.
Finally, Bm(r) is defined as the probability of two m-sized templates matching each
other. Am(r) is the probability of two m-points templates [35].

In the end, Lake et al. [37] defines ApEn1D as being approximately “the negative
natural logarithm of the conditional probability that a dataset of length N, having
repeated itself within a tolerance r for m points, will also repeat itself for m+1
points”.

Since ApEn1D [36] considers self-matches, this results in a biased analysis and
associated errors [35]. Richman and Moorman [35] studied Cross-ApEn1D, a version
that did not admit self-comparisons within the time series. Despite that, lack of
relative consistency is revealed [35]. On top of this, a directional dependence exists
and sometimes cross-ApEn1D reveals the existence of undefined values [35].

For these reasons, sample entropy (SampEn1D) [35] emerged as a solution. This
measure has similar calculations to ApEn1D [36] but, excludes self-matches (bias
removal) [35, 37, 52] and does not perform a template-wise approach [37]. This
translates in defining the equation (2.4) with the restriction i 6= j to exclude self-
matches. In this way, the templates are no longer compared with themselves. The
following steps are similar to ApEn1D and the distance value is evaluated once more
with the Heaviside function (see equation (2.3)) [35, 37].

Therefore, the entropy definition of SampEn1D [35] can be considered as exactly
“the negative natural logarithm of the conditional probability that a dataset of
length N, having repeated itself within a tolerance r for m points, will also repeat
itself for m+1 points, without allowing self-matches” 3 [37]. Besides the consistency
improvement, the computational time was also reduced by half when compared to
ApEn1D. In addition, this new approach to assess entropy is no longer so dependent
on data length [35, 37, 52].

3For further detail on SampEn1D [35], please see chapter 4.

17



2. State of the art

SampEn1D [35] is considered as an “unbiased estimator” [48]. Nevertheless,
having very short signals will affect the SampEn1D’s relative consistency [45, 46].
On the other hand, studying larger signals will be more time consuming due to the
cycles involved [45, 46].

Costa et al. [39, 43] introduced a multiple scale approach for entropy measure-
ment over multiple scale factors of the signal, after a coarse-graining procedure being
applied to the signals. The authors used SampEn1D [35] to measure the entropy val-
ues but other entropy measures can be chosen as entropy measures. Once introduced,
afterwards, several algorithms were developed using differently the coarse-graining
procedure, later on discussed.

Viertio-Oja et al. [38] considered a combination of frequency-domain and time-
domain entropy techniques. This concept is called “Time-frequency balanced spec-
tral entropy” [38]. In the frequency domain, the spectral entropy concept is applied,
using the signal’s power spectrum to be applied in the Shannon’s [51] function.
The main advantage of spectral entropy is the separation of any contribution from
different range frequencies.

Another alternative is permutation entropy (PerEn1D) [63] an algorithm based
on permutation patterns. Consider a time series {xt} for 1 ≤ t ≤ T of length
T . For each n! permutation, π, of order n possible the relative frequency, p(π), is
determined as in equation (2.5) [63].

p(π) =
#{t|t ≤ T − n, (xt+1, . . . , xt+n) has type π}

T − n+ 1
(2.5)

The exact p(π) is determined by assuming an infinite time series and consider
the limit T → ∞. So, permutation entropy, H(n), of order n ≥ 2 is defined
as in equation (2.6) and the permutation entropy per symbol of order n as hn =
H(n)/(n− 1) [63].

H(n) = −
∑

p(π) log(p(π)) (2.6)

Bandt and Pompe [63] compares PerEn1D to zero-crossing rate, suggesting PerEn1D

as complexity parameter for short-time speech analysis. PerEn1D is assumed as a
better indicator than zero-crossing rate. Besides being very fast, this algorithm is
highly sensitive to noise which can be a problem for biomedical applications [63].

Afterwards,Chen et al. [45, 46] proposed the fuzzy entropy, FuzzyEn1D, an algo-
rithm based on Zadeh’s [68] fuzzy sets 4 [45].

As mentioned before, both SampEn1D [35] and ApEn1D [36] consider two tem-
plates similar or not, i.e, sets the condition to zero or one and are therefore, influ-
enced by Heaviside function (a two-state classifier) [46]. Consequently, the points
within the considered boundary (tolerance level) have the same weight and the points
outside it are excluded [46]. As a result, the tolerance, r, will strongly influence the
Heaviside function contribution [45, 46].

In fuzzy entropy, the Heaviside function is replaced by a smooth continuous func-
tion, fuzzy function, µ, that gives a similarity degree for two template vectors xm(i)

4Zadeh [68] considers that, in the physical world, membership criteria might not be that precise.
FuzzyEn1D [45, 46] emerged taking into account the definition of a fuzzy set, i.e, “a class with a
continuum of grades of membership” [68].
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and xm(j). The fuzzy function has no rigid boundaries compared to the Heaviside
function, leading to smoother results and defined values for entropy analysis [46].

In the original definition by Chen et al. [45, 46], the template vector, xm(i), is
defined considering a baseline vector removal (see equation (2.7)), i.e, removing the
local mean (see equation (2.8)) [45, 46].

Meanwhile, new publications emerged justifying that this baseline removal will
change the system’s perception since it no longer takes into account both global
and local views [44, 58]. For example, Liu et al. [44] had chosen to analyze the
signal without local mean and global means. The final entropy is the sum of both
signal’s entropy. On the other hand, Hilal et al. [58] simply chose not to remove any
mean. Consequently, the template vectors are represented by equation (2.2), i.e.,
the template vectors definition is the same as ApEn1D [36] and SampEn1D [35].

xm(i) = u(i+ k)− u0(i) with 0 ≤ k ≤ m− 1 (2.7)

u0(i) =
1

m

m−1∑
k=0

u(i+ k) (2.8)

As mentioned previously, FuzzyEn1D [45, 46] is able to measure a similarity
degree between two vectors through a fuzzy function, using the distance, dij, that is
defined by the maximum absolute difference between the vector i and j in equation
(2.4) but, with i 6= j.

The function chosen by Chen et al. [45, 46] was an exponential (see equation
(2.9)) owing to the fact that it is well understood and shows a good performance as
“fuzzy membership function”. This function takes into account the tolerance, r, and
the fuzzy power, n. Afterwards, instead of considering the probabilities Bm(r) and
Am(r) as ApEn1D [36] and SampEn1D [35] do, it is obtained the similarity degree
(Dij) average for m and m+ 1 points, φmi and φmi , excluding self-matches (i 6= j).

Finally, Φm is defined as the average of all φmi , and Φm+1 as the average of all
φm+1
i , for 1 ≤ i ≤ N −m. In the end, FuzzyEn1D can be defined as the “negative

natural logarithm of the deviation of Φm from Φm+1” 5 [45, 46].

µ = exp(−(dij/r)
n) (2.9)

The ultimate goal of FuzzyEn1D was to obtain an unbiased algorithm, able to
characterize more complex systems like non-dynamical ones and have consistent
results for both short and long time series. Following methods considering fuzzy
entropy [45, 46] should consider improving the computational time [45, 46].

Chen et al. [46] studied the change of some algorithm parameters and analyzed
entropy on synthetic signals. The fuzzy function depends on two parameters, the
fuzzy power and the tolerance, and if their values are small, it shows soft and
continuous boundaries.

This algorithm presents strong points such as [46]:

• Accuracy

5Please note that the both fuzzy entropy algorithms, the original one and the proposed version
in this dissertation, are described in full detail in chapter 4.
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• Exclusion of self-matches

• Relative Consistency

• Low dependence on time series length

• Less Bias

• Continuity

• Freedom in parameters’ selection

• Robust to noise

In the end, FuzzyEn1D [45, 46] tried to solve the previous algorithms flaws.
As it will be shown later, many studies have been using sample entropy [35] to
measure signal’s irregularity. Regardless, recently, fuzzy entropy [45, 46] is becoming
more known due to its proven advantages (over other algorithms) as well as its
consistent results. For example, Girault and Humeau-Heurtier [69] also proposed a
new strategy to improve the original FuzzyEn1D.

2.2.1.2 Multiscale analysis

The concept of analysis in multiple scales was introduced and involved the proce-
dure called coarse-graining [39, 43]. The study over multiple scale factors allows to
find out the complexity inherent to biomedical signals, namely the ability to adapt
and fit to different environments [60].

Through this procedure of Costa et al. [39, 43] an entropy profile over scale
factors, τ ’s, ia obtained, having the following steps done:

1. A coarse-graining procedure applied on the initial signal, where the system’s
dynamics is represented in multiple scales.

2. By using SampEn1D [35], the signals’ irregularities are quantified.

Based on this, multiscale sample entropy (MSE1D) [39, 43] used SampEn1D [35]
to measure entropy through several scale factors in order to quantify complexity
[61].

Consider a signal u of N points. The coarse-graining procedure down-samples
the original signal, u, into smaller versions of N/τ , y(τ), considering τ a scale factor.
The equation (2.10) represents the original method proposed by Costa et al. [39,
43].

yj
(τ) =

1

τ

jτ∑
i=(j−1)τ+1

ui, 1 ≤ j ≤ N

τ
(2.10)

Basically, the equation (2.10) translates in averaging the data within a τ -sized
window first, and then, the average is down-sampled by a factor of τ (see figure 2.2)
[61].
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Figure 2.2: Flow chart of MSE1D [39, 43]. Adapted from [48].

These coarse-grained time series, down-sampled versions of the original signal,
are used to understand the entropic behavior of the signal besides analyzing the
entropy value through the classical method. MSE1D [39, 43] is used to evaluate
complexity efficiently even though there is some issues with short-lengthened data,
since the smallest coarse-grained series will be very short [47].

In the coarse-graining step, the data’s down-sampling is independent of the en-
tropy measure. Hence, another entropy measure besides SampEn1D [35] can be
chosen in the second step, allowing to obtain a new multiscale approach and study
if it outperforms the already existing MSE1D [39, 43]. The first step, as it will be
explained later, can also be modified.

Multiscale entropy analysis can be useful for different systems characterization,
namely biological ones. Characterizing pathologic systems and their main differences
from healthy ones, combined with their intrinsic complexity can lead to interesting
results for many diseases applications [43].

The previous entropy definitions mentioned would only consider entropy on a
single scale which could lead to false results [43]. An analysis based on single scale
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considers that a higher entropy value corresponds to a more irregular system [35–39,
43].

A system is considered more entropic when there is high variability and more
randomness, with the entropy value depending on these two factors [39, 43].

Zhang [50] applied the multiscale approach in physical systems, for the first time,
based on Shannon’s entropy [51]. Nonetheless, with that approach the data must be
noise-free. Hence, making it difficult to analyze and characterize biological systems
[43].

MSE1D [39, 43] is intended to be applied on biological systems. A biomedical
(or biological) signal can be studied using classical methods for time series: either
by deterministic processes or stochastic ones [39]. Since MSE1D only quantifies the
different complexity degrees [39, 61], it does not assume such classical definitions
[39].

This procedure to quantify the complexity can have some drawbacks. For ex-
ample, since the averaged data becomes smaller as the scale factor, τ , increases,
for short data, the entropy’s variance values rises rapidly, reducing reliability [61].
Consequently, SampEn1D [35] can translate imprecise entropy values and determin-
ing a short signal’s entropy can be a very hard task [61]. For large scale factors,
MSE1D [39, 43] besides inaccurate results, undefined values can be existent due to
absence of template’s matches [48]. The lack of accuracy and validity will reflect on
reliability reduction [66].

Moreover, the equation behind coarse-graining in MSE1D has been reported as
similar to a FIR filter, a low pass filter [70]. These filters have a poor response and
aliasing is not prevented upon down-sampling. In consequence, the down-sampled
time-series will be biased [61].

As mentioned previously, alterations in the coarse-graining procedure can be
introduced and these developments emerged with the necessity of correcting the
SampEn1D’s [35] imprecision and lack of reliability in the multiscale procedure [47].

Costa and Goldberger [59] introduces multiscale sample entropy based on vari-
ance, MSE1Dσ2 . MSE1D [39, 43] uses the mean value for coarse-graining time series
whereas MSE1Dσ2 uses variance to quantify the system’s dynamics. The family of
MSEn is introduced using different n moments such as the mean (first moment),
µ. Variance (second moment), σ2, is the one chosen to study cardiac interbeat
interval time series, trying to enhance underlying processes with important infor-
mation probably missed using just MSE1D. Once the coarse-graining procedure is
performed, the SampEn1D [35] is applied for each scale factor [59].

Later on, Wu et al. [47] suggested the use of another algorithm: the modified
multiscale sample entropy (ModMSE1D

6) [47], which is also applied to bidimensional
data [55]. This technique involved an overlapping moving-average [55]. ModMSE1D

uses a time delay, increasing the number of templates implying therefore, a much
higher computational cost. On the other hand, having more templates decreases the
probability of having undefined values. The precision is improved, being therefore,
more reliable than MSE1D [39, 43] for short time series [47]. For long time-series,
the accuracy is similar between the two methods so, the ModMSE1D computational
cost is not justified. Therefore, MSE1D is usually the standard choice for those cases

6MMSE1D can also be used to mention modified multiscale sample entropy.
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[47].
Furthermore, composite multiscale entropy (CMSE1D) [48] was also developed to

overcome MSE1D’s [39, 43] problems [48]. The CMSE1D’s coarse-graining procedure
defines τ coarse-grained time series, {yτ1 , yτ2 , . . . , yτk} with 1 ≤ k ≤ τ , in opposition
to MSE1D that only has one for each scale factor, yτ1 (please see figures 2.2 and 2.3)
[48, 61].

CMSE1D

Data

Coarse-graining  
procedure

SampEn

k = τ

SampEn's  
Average of  

y
(τ)
k

y
(τ)
k

k < τ

k = k+ 1

τ = τmax

CMSE

τ < τmax

τ = τ + 1

Figure 2.3: Flow chart of CMSE1D [48]. Adapted from [48].

SampEn1D [35] is applied to each coarse-grained time series. The entropy’s
final value for each scale factor must be the mean of the entropy values calculated
previously [48]. Wu et al. [48] work achieved higher reliability for larger τ ’s although
showing only slightly better results for the smaller ones. Moreover, accuracy was
also improved. In addition, for feature extraction, for the given application (bearing
vibration signals), the results obtained with CMSE1D were better [48].

Despite the mentioned advantages, the composite version was not able to solve
the issue of having undefined entropy values when considering large scale factors.
Since CMSE1D [48] has more logarithmic calculations for each scale factor associated
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to a posterior average procedure, the probability of having undefined values is in
fact higher than for MSE1D [39, 43] [66].

As a solution for the previous problem, Refined Composite Multiscale Entropy
[66], RCMSE1D, was developed, being able to improve accuracy. Similarly to CMSE1D

[48], for each scale factor there are τ coarse-grained time series, y
(τ)
k (please compare

figures 2.3 and 2.4). In order to reduce the probability of having undefined values,
the authors suggested obtaining first the mean value of the number of matches for
m and m+ 1-points for every τ coarse-grained series within each scale factor [66].

Figure 2.4 shows that for every y
(τ)
k the number of matches for templates of m

and m+1 points, nmk,τ and nm+1
k,τ , respectively, is calculated [66]. Then, it is obtained

the mean value of nmk,τ and nm+1
k,τ between 1 ≤ k ≤ τ , n̄mk,τ and n̄m+1

k,τ . Afterwards, the
logarithm operation involved in SampEn1D [35] is performed on those values (see
figure 2.4) [66].
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 and nm
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Figure 2.4: Flow chart of RCMSE1D [66].
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RCMSE1D [66] have not shown undefined values in opposition to the previous
versions. Hence, it was proven to be superior in terms of validity. Besides being
more accurate, RCMSE1D seems to be less dependent on data length, showing more
consistency than MSE1D [39, 43] and CMSE1D [48]. Moreover, RCMSE1D showed
slightly better computational time than CMSE1D since it only requires a logarithm
operation instead of τ times as CMSE1D does. However, MSE1D still outperforms
this last two in terms of computational cost (only has one coarse-grained time series
per scale factor) [61, 66]. Since for large signals, RCMSE1D’s improvements have
not been very significant when compared to MSE1D, for this situations the standard
choice is MSE1D [60].

Taking into account the fuzzy entropy [45, 46] advantages, like a smaller stan-
dard deviation and best entropy characterization, multiscale versions have been de-
veloped. Multiscale fuzzy entropy (MFE1D) [64] uses the first step of coarse-graining
the data, as explained for MSE1D [39, 43] with only changing the entropy measure
applied in the second step. Therefore, when measuring entropy with FuzzyEn1D [45,
46], better accuracy, more relative consistency, freedom in parameter selection, and
higher computational cost are expected [45, 46].

Liu et al. [44] and Xiong et al. [57] also proposed a multiscale version of fuzzy
entropy with some changes in the original fuzzy entropy definition [45, 46]. In both
articles, the multiscale procedure remains similar to Costa et al.’s [39, 43] definition.

Furthermore, Azami et al. [60] introduced Refined Composite Multiscale Fuzzy
Entropy, RCMFE1D, and Refined Composite Multiscale Fuzzy Entropy based on
standard deviation, RCMFE1Dσ. These algorithms establish coarse-graining pro-
cedures similar to RCMSE1D [66] and MSE1Dσ2 [59], respectively. The difference
between the two refined algorithms is in the definition of the coarse-grained series
that can involve either a mean definition based procedure or a variance definition
based procedure [60]. Both RCMFE1D algorithms were shown to be the most stable
entropy evaluators among the 12 algorithms tested by Azami et al. [60] and mul-
tiscale methods based on SD may have better performances for short scale factors
than those based on variance [60].

Although better computational time is achieved with SampEn1D [35], entropy
based on fuzzy sets allows stronger relative consistency and less dependence on the
data’s length [46, 60]. Herein, the proposed fuzzy entropy, FuzEn1D, and multiscale
version will be shown in section 4.1.2, where a detailed mathematical view and main
characteristics are presented.

2.2.2 Entropy measures for multidimensional data

In order to analyze images and volumes, the need to apply entropy evaluators
in multidimensional data emerged, based on previously presented concepts of ap-
proximate [36], sample [35] and fuzzy entropy [45, 46] as well as their multiscale
versions [39, 43, 44, 57, 64]. Bioinformatic imaging can be able to extract important
information from images [71].

Entropy measures extended to bidimensional definitions extracts information
for the studying images’ irregularity, using similarity patterns concept [58]. Some
bidimensional entropy measures have been proposed with many applications in the
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biomedical area. Recently, the concern to study sets of images, composing 3D
volumes, has emerged with the goal of assisting on medical diagnosis [53, 54] or to
characterize cell structure [71].

2.2.2.1 Single scale analysis

Entropy measurement algorithms rapidly became tools of great interest for mul-
tidimensional area, especially for application on images. Later on, towards a deeper
analysis, multiscale studies emerged to reveal the complexity behavior of images.

Bidimensional data can be classified using bidimensional permutation entropy
(PerEn2D) [65], a simple method that uses the distribution of permutation probabil-
ity in order to obtain the entropy. The final entropy definition is based on Shannon’s
entropy [51]. Even though this method is very fast, like the one-dimensional version,
PerEn2D is very sensitive to noise [65].

Sample entropy’s concept was extended to be analyze texture of images [52].
Bidimensional sample entropy (SampEn2D) [52] aims at separating different sets
of images and to discriminating those groups. Even though robustness is verified,
the computational cost increases as the image’s size increases [52]. Silva et al.
[52] present this irregularity measure as a better image classifier when compared to
Haralick and wavelet descriptors. Presented as an extension of SampEn1D [35], the
templates are squared windows classified by the Heaviside function. If the templates’
distance is within the tolerance value, r, then a match occurs. Otherwise, the
existence of a match is not considered [35, 52]. Additionally, SampEn2D is expected
to have higher entropy (higher irregularity) for more random images. Moreover,
increasing the number of pixels will allow to increase accuracy as a result of increased
matched patterns [52].

As mentioned before, for very small N length time series, SampEn1D [35] could
present undefined and inaccurate values. Consequently, being an extension of sample
entropy’s definition, SampEn2D [52] can also present undefined and/or inaccurate
results [56].

Bidimensional distribution entropy [56], DistrEn2D, was developed to be used in
both real and synthetic textures. In addition, DistrEn2D presents a similar advantage
to FuzzyEn1D [45, 46]: more independent choice of parameters and less affected
results by size with good performance even for small patterns [56]. The templates
are also squared. Upcoming, the entropy is based on a histogram with M bins.
Afterwards, empirical probability density function, ePDF, can be estimated and the
probabilities of each bin, pt, can be known (with 1 ≤ t ≤ M). In the end, entropy
measurement is based on the Shannon’s [51] entropy definition [56]. DistrEn2D is
faster, less dependent on image’s size, without undefined values and detects noise
signals and periodical textures [56]. Despite that, this measure is applied to small
textures [72].

Recently, Azami et al. [72] proposed the dispersion entropy 2D, DispEn2D, with
some main advantages over SampEn2D [52] like the absence of undefined values,
faster method and more stable results. This technique maps the pixels in different
classes and assign the possible dispersion patterns to the template. Once that step
is performed, the relative frequencies of patterns are obtained and used to obtain
Shannon’s entropy [51].
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Due to the advantages shown in uni-dimensional data, the bidimensional version
of FuzzyEn1D [45, 46] could be of great use in multidimensional data. In order to as-
sist in medical diagnosis of Pseudoxanthoma Elasticum, PXE, a skin condition,Hilal
et al. [58] proposed bidimensional fuzzy entropy, FuzEn2D

7, and its multiscale ver-
sion. The goal of FuzEn2D is similar to the 1D version so, maintaining its main
characteristics is imperative [58]. The templates are once more defined as squared
windows. The authors of FuzEn2D were able to prove, by opposition to SampEn2D

[52], FuzEn2D does not depend on the m parameter to have defined values. In
addition, the profiles maintained very consistent behavior even for smaller images.

Moreover, in another study, also about bidimensional fuzzy entropy, Hilal and
Humeau-Heurtier [73] studied the behavior upon rotation and translation, performed
validation on synthetic signals, a common procedure among entropy measures. In
addition, presented as biomedical application dermoscopic images for evaluation of
melanoma and melanocytic nevi, malignant and benign skin lesions, respectively.

Hilal and Humeau-Heurtier [73] concluded that the low sensitivity to change in
parameters is maintained from the one-dimensional version. Also, the algorithm
is both invariant upon translation or rotation, and finally, that it is more reliable
than SampEn2D [52]. Furthermore, the authors indicate that FuzEn2D is suitable
to apply on dermoscopic images [58].

Unfortunately, FuzEn2D [58, 73] and the previous bidimensional entropy mea-
sures do not deal with colored images. Consideration of Red (R), Green (G) and
Blue (B) color channels in images to evaluate their complexity could reveal interest-
ing and important results. Recently, Santos et al. [74] introduced multidimensional
and fuzzy sample entropy (SampEnMF ) to evaluate colorectal cancer colored his-
tological images. Nonetheless, this measure does not account for particular color
channels.

Furthermore, entropy approaches using approximate entropy 2D [71], ApEn2D

and approximate entropy 3D [53, 54], ApEn3D were published. Marchant et al. [71]
stated that, so far, little applications of ApEn2D in images was done. The authors
presented a version of ApEn1D [36] applied to a region of interest surrounding a
certain point [53, 54, 71]. ApEn2D and ApEn3D definitions are proposed as tools
for quantifying orderness of structures, for example, distinguishing cancer cells from
normal ones [71].

Since these new definitions modified the concept of distance between templates
8, it needed validation from the authors [53, 71]. Moore and Marchant [54] claimed
that the associated unreliability to ApEn1D [36] is reduced in ApEn3D. However,
previous works mentioned several times the lack of accuracy inherent to the use fo
approximate entropy [35, 37, 39, 43, 45, 46, 52, 59]. In addition, the authors state
that the ApEn3D’s lack of accuracy does not represent an important flaw since it
can have high applicability as a regularity indicator [54].

One can say that the future work on biomedical 3D applications can be based on
three-dimensional fuzzy entropy, including the multiscale version. Hence, due to the

7It was chosen to represent as FuzEn2D and not FuzzyEn2D due to the similar modification
performed in our proposed algorithms. Hilal et al. [58] chose not to perform a baseline removal
upon the templates in opposition to the original definition, FuzzyEn [45, 46].

8Considering the mean of absolute differences of corresponding pairs instead of their maximum.
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need of a colored bidimensional fuzzy entropy [75] (specifying RGB color channels)
and of three-dimensional fuzzy entropy measures, on sections 4.2.1.2 and 4.1.2 are
shown respectively, the proposed and developed algorithms during this project.

2.2.2.2 Multiscale analysis

In light of the multiscale analysis of signals, with their complexity being revealed,
this approach was adapted to bidimensional data for a more detailed analysis on
images. Thus, considering definitions of MSE1D [39, 43] and ModMSE1D [47], the
coarse-graining procedure suffered an adaptation so SampEn2D [52] could be used
in a multiscale approach [55]. Therefore, multiscale sample entropy 2D (MSE2D)
[55] and modified multiscale sample entropy 2D ModMSE2D [55] emerged.

Silva et al. [55] decides to compare both two-dimensional coarse-graining proce-
dures, MSE2D and ModMSE2D. Due to the time delay introduction of ModMSE2D,
there are more pattern to calculate the entropy in ModMSE2D. Therefore, this al-
gorithm is slower than MSE2D but shows a much better accuracy, as expected. For
MSE2D, increasing the number of scale factors into the analysis can mean increasing
the probability of having undefined values, diminishing the accuracy even more [55],
specially for small images.

As consequence, bidimensional multiscale fuzzy entropy based approaches are
more reasonable options. Hilal et al. [58] and Hilal and Humeau-Heurtier [73] con-
sidered the advantageous fuzzy entropy in their studies. The main characteristics to
point out are the insensitivity to rotation and translation, synthetic images discrim-
ination, ability to differentiate complexity levels and insensitivity for parameters
change [58, 73].

In the future, many studies focused on three-dimensional multiscale analysis,
besides the one proposed in this project, are expected to be proposed.
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3 Materials
The following chapter describes the one-dimensional and multidimensional data

used to test the entropy algorithms developed during this project. First, the syn-
thetic data is presented and afterwards, the biomedical data.

3.1 Synthetic signals

For the validation tests performed on the 3 versions of fuzzy entropy, FuzEn1D,
FuzEnC2D, and FuzEn3D, synthetic data was used namely, Mix(p) processes-based
signals, images, or volumes, respectively. Moreover, colored noise signals have been
used to evaluate FuzEn1D and FuzEn3D. The Colored Brodatz database [76, 77]
allowed to validate FuzEnC2D. Finally, pattern-based cubes were used to test the
ability of FuzEn3D irregularity identification.

3.1.1 MIX(p) processes

Mix(p) processes [36] corresponds to signals with two different components: a
deterministic and a stochastic one [46]. When the deterministic component prevails
the entropy value become lower but, if the stochastic component prevails then, the
entropy value increases [36].

In the studies including Mix(p) processes-based signals, it is expected to observe
increasing entropy for an increasing p-value, as it will be explained afterwards. This
will prove the ability of fuzzy entropy to discriminate different levels of irregularity.

To obtain a well defined entropy curve as function of the probability, several p-
values were considered. For each p-value, 10 signals/images1/volumes have been gen-
erated, presenting, afterwards, the mean entropy value of those signals/images/vol-
umes. Moreover, the curves of original Mix(p) processes based signals, images or
volumes, have been compared with their shuffled versions.

Further on, one-, bi-, and tri-dimensional definitions of Mix(p) processes are
shown and described.

3.1.1.1 Unidimensional definition

Pincus [36] introduces the definition of these synthetic signals and considers a
“family of independent identically distributed (i.i.d.) real random variables”, yj.
The stochastic signal yj is composed by random numbers uniformly distributed
between [−

√
3,+
√

3]. The deterministic component, xj, is defined as a sinusoidal
signal in equation 3.1.

xj = sin(
2πj

12
) (3.1)

MIX(p) = (1− zj)xj + zjyj (3.2)

1As we will explain later on, we added the Mix(p) based images to a checkerboard background.
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According to the choice of parametric probability p (0 ≤ p ≥ 1), the resultant
synthetic signal will be more dominated by the random dynamics or by the sine
periodic function [52]. For a higher p-value the signal becomes more random and
for a p-value close to zero the signal is ruled by order. The expression for MIX1D(p)
processes is defined as in equation 3.2.

Therefore, zj, a random variable, assume the value 0 with probability of 1 − p
and is 1 with probability p [46].

The signals generated using this definition and further used in validation tests
have a size of N = 3× 104 points each. The first test involving MIX1D(p) intended
to verify if for an increase of p, an increase of entropy is observed. Moreover, it also
intended to analyze the sensitivity upon the m (embedding dimension) parameter.
Then, these type of signals have been used to verify if FuzEn1D can identify the
process of shuffling data. At last, the curves of FuzEn1D and FuzzyEn1D [45, 46] are
compared.

3.1.1.2 Bidimensional definition

Based on the one dimensional process, MIX2D(p) [52] can be defined as:

MIX2D(p) = (1− Zi,j)Xi,j + Zi,jYi,j (3.3)

The signal Xi,j is defined as a sinusoidal image (equation 3.4) and Yi,j is an image
composed by random number uniformly distributed with a range of [−

√
3,+
√

3]. Zi,j
is a random variable which can assume the value 0 with probability 1 − p or the
value 1 with p probability [52].

Xi,j = sin(
2πi

12
) + sin(

2πj

12
) (3.4)

Once more, when the p-value increases, an increase on entropy is expected [52].
As it will be discussed in section 3.1.4, each image tested that contained Mix2D(p)

processes had a size of 256 × 256 pixels. These images have been used to test the
bidimensional Mix(p) data theory and the sensitivity to m parameter. Following
that, it has been verified if, as expected, the entropy increases with shuffling data.

3.1.1.3 Tridimensional definition

In order to study the performance and behavior of tri-dimensional entropy mea-
sures, the Mix(p) processes 3D definition is proposed as in equation 3.5:

MIX3D(p) = (1− Zi,j,k)Xi,j,k + Zi,j,kYi,j,k (3.5)

Xi,j,k = sin(
2πi

12
) + sin(

2πj

12
) + sin(

2πk

12
) (3.6)

Similarly to the previous versions, Mix1D(p) and Mix2D(p), for Mix3D(p) there
are two components behind this synthetic volume: a stochastic and deterministic
component. The first, Yi,j,k, is a volume constituted by random numbers following
an uniform distribution within the interval [−

√
3,+
√

3]. The second one, Xi,j,k, is
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a volume with sinusoidal behavior (see equation 3.6). Defining Zi,j,k as a random
variable assuming the value 0 with 1−p probability and the value 1 for p probability,
for a higher p-value the entropy is expected to be higher.

Further on, the Mix3D (p) volumes used in validation tests have a size of 50 ×
50 × 50 voxels. For these volumes generated with Mix3D(p), the entropy values
were obtained through tridimensional fuzzy entropy algorithm (FuzEn3D) proposed
in this dissertation. Their behavior upon change in the m parameter has been also
analysed. Following that, it has been verified if, as expected, the entropy increases
when shuffling data.

3.1.2 Colored noise signals

The colored noise signals were generated by MATLAB R© function randnd [78].
The noise signals used on this project were white, pink, brown, and blue noise.
Based on previous analyze [39, 43], colored noise signals/volumes characterization
has been done as a validation method of multiscale entropy measures.

3.1.2.1 Unidimensional data

As said before, a MATLAB R© function was used to generate several types of
noises. These signals had a mean value of µ = 0 and standard deviation equal to
SD = 1.

These signals present a power spectral density (PSD) dependence with 1/|f |β:
β = 0 for white noise, β = −1 for pink noise, β = +1 for blue noise, and β = −2
for brown noise. Figure 3.1 shows the PSD of each studied signal and the linear fit
performed. The estimated β values are shown in table 3.1.

Table 3.1: β values for colored noise signals with a power spectral density (PSD)
dependence of 1/|f |β. The estimated β value was obtained doing a linear fit to the
noise’s PSD.

Noise
Theoretical

β
Estimated

β
White 0 0.0098
Pink −1 −0.9950
Blue +1 +1.0008

Brown −2 −2.0143

Typically, the tested noise signals had a length of N = 30000 points. However,
to compare the length dependence of sample entropy with the low dependence of
fuzzy entropy, we used short pink noise signals of N = 100 points. In every analysis,
we always consider 10 signals for each noise type and the final value is the mean
entropy of those signals.

Moreover, white noise signal has been used to test the fuzzy entropy algorithm’s
sensitivity to the tolerance parameter. Later on, using the same 10 white noise
signals for both algorithms, we compared the SampEn1D and FuzEn1D regarding
the tolerance sensitivity of the algorithms. Although the tests have been done with
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Figure 3.1: Power spectral density (PSD) and respective linear fit of white noise
(gray), blue noise (blue), pink noise (pink) and brown noise (brown).

white noise, β = 0, other colored noise or known signal could have been tested. The
goal was to simply analyze entropy behavior upon change of tolerance rather than
entropy values.

Regarding multiscale analysis, we used white, pink, blue, and brown noise. These
signals have been submitted to a multiscale analysis for further algorithm validation,
comparing the results with literature. This included a comparison of the entropy
curves obtained with SampEn1D [35] and FuzEn1D. In addition, by extending the
analysis to blue and brown noise besides white and pink noise, a complexity char-
acterization of these noises was possible.

As mentioned before, in addition, pink noise signals have been used to compare
the length dependence of SampEn1D with FuzEn1D.

3.1.2.2 Tridimensional data

The tri-dimensional colored noise data, i.e., colored noise volumes, were gener-
ated with the same function as for the unidimensional data. Statistically, the data
had a mean value of µ = 0 and standard deviation of SD = 1. We considered 10
cubes for each noise, presenting the mean entropy value as the final one. In addition,
these synthetic volumes have a size of 50× 50× 50 voxels.

Similarly to the 1D case, these colored noise volumes show a PSD dependence
of 1/|f |β with β = 0 for white noise, β = −1 for pink noise, β = +1 for blue noise,
and β = −2 for brown noise, as shown in figure 3.1.

These volumes have been used to test the sensitivity of FuzEn3D to change of
r and m values. In order to do that, we used the same 10 white noise volumes
to calculate the entropy for each tolerance and embedding dimension. Similarly to
FuzEn1D analysis, the choice of noise is not that important. The goal is once more
to analyze the algorithm’s behavior and not the values per say.

We tested these signals at a multidimensional level, including brown and blue
noise, through a multiscale analysis.
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3.1.3 Colored Brodatz images

Abdelmounaime and Dong-Chen [76] presented the Colored Brodatz (CB) dataset
as an extension of the Brodatz gray-scaled database, used in several other studies for
validation. These images are reported to be rich in textural and chromatic content
[76]. We chose seven of these images for validation purposes as well (see figure 3.2)
[76, 77]. The figure 3.2 (a) of 256× 256 pixels has been used to test the sensitivity
of FuzEnC2D algorithm to change of tolerance values and m-values. The remaining
figures, figures 3.2 (b)-3.2 (g), were posteriorly sub-divided into 4 smaller images of
320× 320 pixels to test if a smaller portion of a certain image would be recognized
as having a similar textural behavior as the original one.

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.2: Colored Brodatz image used for FuzEnC2D tolerance sensitivity study
(a) and textural behavior of sub-images test (b-g) of 256×256 and 640×640 pixels,
respectively.

3.1.4 MIX2D(p) processes-based image with checkerboard
background

We mentioned that Mix(p) processes can help in the evaluation of an algorithm’s
ability to differentiate different irregularity levels. Therefore, we generated images
composed by Mix2D(p) processes but, in order to have colored images, we added a
background in each channel. Consequently, each image’s channel, UC , is constituted
by a checker board background.

In figure 3.3 (c), representing the blue channel, UB, we can observe that UB is
actually a version of UR and UG checkerboard, figures 3.3 (a) and 3.3 (b), respec-
tively, but rotated by 90 degrees. In the end, we obtained a colored image (see figure
3.3 (d)).

The checkerboard pattern is known for having an entropy equal to zero due to its
highly regular structure. By choosing this background, thee entropy behavior would
only depend on Mix2D(p) processes-based images and therefore, we could expect
that an increase of p should also increase entropy in order to validate the algorithm.
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(a) Red Channel - UR (b) Green Channel - UG

(c) Blue Channel - UB (d) Final checkerboard image,U.

Figure 3.3: Representation of the colored image background used for Mix2D(p)
processes with a size of 256× 256 pixels

We represented 3 examples of images with 3 different p-values, figures 3.4 (a)-3.4
(c), containing a checker board background with Mix2D(p)-based images. The final
images have a size of 256× 256 pixels.

(a) p = 0.1 (b) p = 0.5 (c) p = 0.9

Figure 3.4: Mix2D(p) processes-based images with a checker board background
with 256× 256 pixels.
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3.1.5 Tridimensional patterns

Similarly to what can be performed on bidimensional data, Moore and Marchant
[54] identified the most irregular patterns in a volumes group composed by different
pattern structures. Based on this analysis, as a validation method and to prove the
choice of the embedding dimension parameter, m, we tested six different cubes of
50 × 50 × 50 voxels and identified the most irregular cube using FuzEn3D. These
cubes are represented in figure 3.5.

The first cube, figure 3.5 (a), has only 1 value very close to zero (1×10−9). This
value choice is to prove that for a cube constituted by zeros (or close to) the entropy
is zero. We did not define each voxel with an exact zero value because that would
lead to an undefined entropy value (the only exception on the algorithm). Besides,
no real data would have exact zero values but more likely approximately zero values.

In figure 3.5 (b), we represent a cube pattern with an half composed by zeros
and the other one by ones. The third cube, figure 3.5 (c), shows a checkerboard
pattern. Additionally, the fourth cube, figure 3.5 (d), has diagonal stripes. These
first 4 cubes are expected to be more regular than the last 3 due to their pattern
nature.

Finally, the cube 5, figure 3.5 (e), follows a Gaussian distribution with a mean
µ = 10 and standard deviation of SD = 1 and cube 6 is constituted integer values
following a uniform random distribution between 1 and 10.

(a) Cube 1. (b) Cube 2. (c) Cube 3.

(d) Cube 4. (e) Cube 5. (f) Cube 6.

Figure 3.5: Tri-dimensional patterns used in 50 × 50 × 50 voxels sized cubes, for
validation purposes.

This analysis allowed besides validating the algorithm, to quantify the irregular-
ity of different patterns.

35



3. Materials

3.2 Biomedical signals

The following sections are dedicated to explain the details behind signals, images
or volumes used in the biomedical applications in this project. First, are mentioned
the audio signals containing snoring events provided by MSc Tiago Marçal and that
previously involved the collaboration of Dr. José Moutinho from Centro de Medicina
do Sono, CHUC (article of reference [62]); secondly, are mentioned the dermoscopic
images collected by Dr. Clémence Berthin of University Hospital of Angers, France,
for the microcirculatory study included in this thesis document and in the article of
reference [75], and the dermoscopic images used from a public database [79, 80] to
identify melanoma; finally, it is mentioned the volumes (lung’s portions) obtained
from CT scans data provided by University Hospital of Rennes, France, to identify
IPF.

3.2.1 Audio snore related signals

We conducted a study on snore related audio signals to find out their entropic
behavior. The study involved 25 subjects: 5 of them suffered from severe SAHS, 5
suffered from moderate SAHS, 5 suffered light SAHS, another 5 had simple snoring
condition and finally, the last 5 represented group control. As said before, these
signals have been provided and collected by MSc Tiago Marçal, during his Ph.D.
project.

For each subject, we manually selected 50 snores from the corresponding audio
file with the original sampling rate of fs = 44.1 kHz. Each snoring signal has been
selected to have N = 6.5 × 104 points. After recognizing where the snoring event
starts, we defined the initial point and consider the N − 1 points that follow.

Even though we chose N = 6.5 × 104 points, snoring does not always have the
same duration. For example, some snores are longer and having 6.5 × 104 points
only includes a snore portion. However, when the snore event is shorter we may
include other respiratory sounds. This size allows to have both short and long
snoring events without discarding relevant information or including non-relevant
additional one. Our goal is towards analysis of the first moments where clearly
the air obstruction affects the breathing. Considering that a normal adult has
between 12 to 18 breathing events per minute, with this snoring signal size we will
be analyzing the equivalent to 30− 45% of a breathing event.

These signals were tested using a multiscale approach and with the intention
of differentiating the complexity associated to each SAHS disease. We obtained
the MFE1D values for each snore of each subject. Afterwards, we conducted the
mean of the 50 curves corresponding to the 50 snores, obtaining only one curve
for each subject. In the end, we decided to represent the mean values of MFE1D

corresponding for each SAHS stage (including the group control and simple snoring
group).

3.2.2 Dermoscopic images

FuzEnC2D testing involved two different biomedical applications: a Cutaneous
Microcirculation study and a Melanoma study. We will approach first the cuta-
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neous microcirculation images and their ROI selection. Later on, we refer the ROI
of dermoscopic images from a public database containing skin lesions, including
melanoma.

3.2.2.1 Cutaneous microcirculation study

In order to discriminate two different microcirculatory states, dermoscopic im-
ages were taken before (at rest) and after applying a warmed water bottle (heat)
of nine volunteers (8 women and 1 man) with 36.5 ± 11 years. The dermoscopic
systems uses a Medicam 800 HD with a resolution of 1920 × 1080 full HD and 2
mega pixels. The dermoscopic images were all taken 3 cm from the antecubital fossa
in the left arm of each volunteer (see appendix A).

In figure 3.6, we show an example of one image at rest (figure 3.6 (a)) and one
after applying heat (figure 3.6 (b)), for the same subject. The region of interest for
each image was defined from the central point of the original image, with a size of
256× 256 pixels.

In addition, in figure 3.7, we show a box plot with the mean values of each image
at rest and after applying heat (vasodilation) for the nine subjects.

(a) Rest. (b) Vasodilation.

Figure 3.6: Dermoscopic images examples for two microcirculatory conditions, at
rest and when vasodilation occurs, for the same subject, with a region of interest of
256× 256 pixels.

Each dermoscopic image has been tested with Haralick features which are very
common to evaluate an image’s texture. The goal is to compare these descriptors
with FuzEnC2D in terms of microcirculatory conditions discrimination. Based on
previous studies [52, 55], we considered 6 Haralick features to extract information
on each RGB channel (UR, UG and UB) of the dermoscopic images tested and verify
if they differentiate the two microcirculation states. The Haralick features used are
shown in table 3.2.

Similarly to Silva et al. [52, 55] work to study SampEn2D, we used four angles
(0, 45, 90 and 135 degrees) to extract the co-occurrence matrices and ten inter
pixel distances (1 ≤ D ≤ 10) to cover a variety of images. After obtaining the co-
occurrence matrices for each descriptor, we calculated the mean value taking into
account all matrices. For each channel, we obtain therefore, six descriptor values.
We also performed a Wilcoxon signed rank test on the extracted features.

Moreover, the dermoscopic images have been tested using FuzEnC2D. After-
wards, a Wilcoxon signed rank test has been performed to assess if there is statistical
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Rest Heat
0.5

0.55

0.6

0.65

Figure 3.7: Mean values of the 9 tested subjects for the two microcirculatory
conditions: at rest and after applying heat on skin (vasodilation).

Table 3.2: Haralick features used to evaluate the dermoscopic images of the cu-
taneous microcirculatory study, with P(i,j) being an estimation of the probability
for each value in the co-occurrence matrix (P (i, j) =

gi,j
n

; gi,j- number of times that
pixel (i,j) pairs with the intensity of i and j occur in the image U ; n-sum of the
elements of the co-occurrence matrix).

Haralick Features Definition
Variance (contrast)

∑
i

∑
j(i− j)2P (i, j)

Entropy (suavity)
∑

i

∑
j P (i, j) logP (i, j)

Uniformity (energy)
∑

i

∑
j P (i, j)2

Homogeneity
∑

i

∑
j P (i, j)/(1 + |i− j|)

3rd order moment (distortion)
∑

i

∑
j(i− j)3P (i, j)

Inverse variance
∑

i

∑
j P (i, j)/(1− j)2

significance between the entropy values of the two microcirculation states: relaxed
microcirculation (at rest) and for vasodilation (when heat is applied). Finally, we
compared with the Haralick features results.

3.2.2.2 Melanoma study

In order to test the ability of FuzEnC2D to detect and discriminate images con-
taining melanoma skin lesions or not, we used a public melanoma database [79, 80].
This dataset contained the original dermoscopic images and the lesion segmentation
as well as the diagnostic information about each patient.

These images were collected at the Hospital Pedro Hispano, Matosinhos, Portu-
gal, using the same conditions and a Tuebinger Mole Analyzer System. The collected
images have a size of 768× 520 pixels. The database includes 200 dermoscopic im-
ages of melanocytic lesions: 80 common nevi, 80 atypical nevi and 40 melanoma [79,
80].
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We represent in figure 3.8 the method used in this project for selecting the region
of interest (ROI) of the dermoscopic images tested with FuzEnC2D. Basically, with
the original image and the segmented lesion, we exclude the skin region that does
not contain any portion of the lesion and only test the rectangular area containing
the defined lesion by Mendonca et al. [79]. Figure 3.8 shows an example of a final
ROI for a certain dermoscopic image. These images, due to the ROI’s selection
procedure, do not necessarily have the same size between each other.

Final ROI

Original Dermoscopic Image

Mask – Image Segmentation

Selecting the smallest region 
that includes the Segmented

Lesion

Figure 3.8: Schematic view of how the ROI was selected from the public melanoma
database [79, 80] used.

It is relevant to mention that we are aware the ROI’s can vary a lot in size.
However, skin lesions are known for varying in size and shape. If we considered
for example, a centered ROI with a specific size, probably some lesions would be
completely included in that size or some not. Moreover, on the lesions that were not
completely included, this could lead to the exclusion of relevant pixels that might
reveal information about the lesion in study. Since by doing an entropy analysis we
compare several pixels with each other this could be a problem.

3.2.3 Idiopathic pulmonary fibrosis disease study using CT
scans

Herein we propose to apply an entropy measure to a tridimensional dataset.
Consequently, knowing the advantages of fuzzy entropy, FuzEn3D has been devel-
oped to apply on volumetric CT scans to differentiate subjects suffering idiopathic
pulmonary fibrosis from healthy individuals. Figure 3.9 show a CT scan example of
a healthy individual (figure 3.9 (a)) and of a patient diagnosed with IPF (figure 3.9
(b)).

Each group, one with healthy individuals and another one with subjects suffering
IPF, had 26 individuals so, we tested 52 volumes in total. The CT scans, composing
the volumetric data, have been provided by University Hospital of Rennes.

Each subject has a certain number of scans (Nz) which can be different for each
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(a) Healthy subject. (b) IPF patient.

Figure 3.9: CT scan example of the tested dataset of a healthy individual and a
patient diagnosed with IPF.

subject. However, each xy-slice has 512× 512 points and in the end, the number of
voxels is 512× 512×Nz.

First, we proceeded to the lung’s volume segmentation and selected, arbitrarily,
the right lung. After that, we eliminated the exceeding zeros outside the lung’s
boundaries (non-relevant information). Since the individuals that suffer IPF are
mostly affected in the basal and peripheral regions of the lung’s [23, 25], our ROI
selection depended on that.

The final data for each individual had 50×50×50 voxels and has been extracted
from the segmented volume of the right lung. The ROI was set to this size in
order to have a relatively big portion of the lung, without compromising much
the computational cost. In order to obtain this cube, the segmented volume was
analysed, voxel-by-voxel, bottom up, from the most peripheral position to its central
region, verifying if the cube having that voxel as a corner contained only 5% of zeros
(see figure 3.10). This threshold was defined to avoid that the final volume contained
a considerable portion from an exterior region to the lung’s volume (non-relevant
information).

In case of the condition being verified, we then obtain the most relevant cube in
the most peripheral and basal region possible. Otherwise, we continue to go through
the data to find the final data volume to be analyzed with FuzEn3D.

Finally, we tested these 52 cubes of 50 × 50 × 50 (26 from each group) with
FuzEn3D and performed a Wilcoxon rank sum test (equivalent to the Mann-Whitney
U test) or the t-test, according to normality assessment performed with Shapiro-Wilk
test. This allowed to verify if statistical differences exist between the two sets of
data. If statistical differences are found, this means that the algorithm has the
ability to differentiate patients from healthy subjects.
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Figure 3.10: Schematic representation of CT scans ROI’s selection for each subject.
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4 Methods
This chapter presents the developed entropy algorithms based on fuzzy entropy

during the master thesis project. These algorithms allowed the evaluation of entropy
and complexity of the tested data. Mathematical expressions of sample entropy are
also shown since it was used to compare with fuzzy entropy for one-dimensional
signals on validation tests regarding sensitivity to parameters, multiscale analysis
on noise signals, and length dependence of a signal to have defined entropy values
for multiple scale factors.

4.1 One dimensional algorithms

This section is fully dedicated to one dimensional entropy algorithms namely
sample entropy and fuzzy entropy, including multiscale versions.

4.1.1 Sample entropy and its multiscale version

4.1.1.1 Sample entropy (SampEn1D)

Sample entropy (SampEn1D) [35] was proposed as an improvement from previous
entropy measures, namely, approximate entropy [36], ApEn1D. The main focus
was to obtain an unbiased entropy measure and remove the inconsistency usually
associated to approximate measures [35].

SampEn1D [35] is a method able to determine the existence of matching templates
within the signal, excluding self-matches and reducing bias and inconsistency from
previous measures [35, 37]. Furthermore, this entropy algorithm does not perform
template-wise iterations and presents a reduced computational cost (compared to
other measures) [35, 37].

Herein, having in mind the main characteristics, the mathematical expressions
of sample entropy [35] are described.

Consider a signal, u(i), of length N . A template, xm(i), is defined for m points
as it follows in equation (4.1) [35, 37]:

xm(i) = u(i+ k) (4.1)

with 0 ≤ k ≤ m− 1, and 1 ≤ i ≤ N −m+ 1.
The templates should be defined according to the length of the signal, N, i.e.,

if the templates have m-points (the embedding dimension of templates) then, the
position i must be 1 ≤ i ≤ N − m + 1 points, avoiding missing data. Moreover,
templates of [m+ 1]-points, xm+1(i), are also considered with a similar definition to
xm(i) but with i not being higher than N −m [35, 37].

Figure 4.1 represents how m-points templates are defined according to equation
(4.1) and, also, how they are compared.

At the end, there will be N−m+1 m-points vectors as templates. The distance,
d, between two vectors, xm(i) and xm(j) with i 6= j, is defined as the maximum
absolute difference between the two (see equation (4.2)) [35, 37].
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N-points

… i i + m − 1 i + m… … … N − m N − m + 1 N……

 

u(i + k)

0 ≤ k ≤ m − 1

 

u((i + 1) + k)

0 ≤ k ≤ m − 1

Figure 4.1: Definition of a m-points template xm(i) (black box) for a signal of N
points to be compared with a succeeding template (gray box), xm(i+1), considering
m = 2 [35, 37].

d[xm(i), xm(j)] = max(|xm(i)− xm(j)|) (4.2)

The tolerance, r, is a threshold defined to determine when two template vectors
are similar or not. Usually, r is established as a percentage value of the signal’s
standard deviation [35]. According to that, the next step is to verify if the distance
is within the tolerance, i.e, verifying the condition d[xm(i), xm(j)] ≤ r [35, 37] as a
two state classifier (see equation (4.3)) [46].

Bi(r) represents the number of templates’ matches for m points. Therefore, when
d[xm(i), xm(j)] ≤ r is verified to true, then the templates are said to be similar, and
one unity is added to Bi(r) [35, 37].

θ(i, j) =

{
0 if d[xm(i), xm(j)] > r (templates not similar)

1 if d[xm(i), xm(j)] ≤ r (similar templates)
(4.3)

Similarly to Bi(r), Ai(r) corresponds to the number of vectors that matched each
other for m+ 1 points, considering the same definition of distance and r value.

Consider Bm
i (r) the probability of any xm(i) template being within r of xm(j)

(see equation (4.4)). In addition, for m + 1 points, Ami (r) is considered as the
probability of any xm+1(i) template being within r of xm+1(j) (see equation (4.5))
[35].

Bm
i (r) = (N −m+ 1)−1

N−m∑
i=1

Bi(r) (4.4)

Ami (r) = (N −m+ 1)−1

N−m∑
i=1

Ai(r) (4.5)

Then, Bm(r) can be described as the probability of matching two templates with
m points and Am(r) the probability of matching two templates, for m + 1 points
[35] (see equations (4.6) and (4.7)).
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Bm(r) = (N −m)−1

N−m∑
i=1

Bm
i (r) (4.6)

Am(r) = (N −m)−1

N−m∑
i=1

Ami (r) (4.7)

Sample entropy [35], SampEn(m, r,N) , can now be defined by equation (4.8):

SampEn(m, r, u) = − ln
Am(r)

Bm(r)
(4.8)

for m points as the embedding dimension, an established tolerance value r as a
percentage of the signal’s SD.

4.1.1.2 Multiscale sample entropy (MSE1D)

Costa et al. [39, 43] suggested a multiple scale entropy analysis to obtain ad-
ditional and important information compared to the classical method that only
considers a single scale.

This approach involves applying a coarse-graining procedure that down-samples
the original signal x of N points into several smaller signals, yτ , according to the
scale factor, τ . The coarse-graining procedure can be defined as it follows in (4.9)
[39, 43]:

yj
(τ) =

1

τ

jτ∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ N

τ
(4.9)

Figure 4.2 shows an example of a coarse-grained series for τ = 2 and τ = 3 for
a signal with N -points.

For MSE1D [39, 43], each coarse-grained series of length N/τ leads to an entropy
value given by SampEn1D [35]. Finally, these entropy values are usually represented
as a function of the scale factors. A scheme of how the multiscale analysis works is
shown in figure 4.3.

This type of multiscale analysis can be very useful and does not depend on the
entropy measure. The entropy can be assessed by other entropy measures like fuzzy
entropy as it will be explained hereafter.

4.1.2 Fuzzy entropy and its multiscale version

4.1.2.1 Fuzzy entropy (FuzEn1D)

Both ApEn1D [36] and SampEn1D [35] algorithms use the Heaviside function,
classifying the distance in two states (see the section 4.1.1.1). One of the fuzzy
entropy algorithm’s great advantages is the use of a continuous function [45, 46].

According to Chen et al. [46], when considering the Heaviside function the points
in question are treated equally when inside the considered boundary established by
the tolerance value (d[xm(i), xm(j)] ≤ r). The parameter r will strongly influence
the Heaviside function contribution [46].
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Figure 4.2: Representation of the coarse-graining procedure, considering the scale
factors τ = 2, and τ = 3. Adapted from [64].

Fuzzy entropy (FuzzyEn1D
1) [45, 46] uses the concept of Zadeh [68].

Based on the concept of Chen et al. [45, 46], an alternative definition of a fuzzy
entropy measure, FuzEn1D is proposed.

Fuzzy entropy has the ability to measure the similarity degree between two tem-
plate vectors. The fuzzy function, µ, is responsible to measure that similarity and
is represented in equation (4.10):

µ = exp(−(dij/r)
n) (4.10)

being dij the distance of two templates i and j, i.e., xm(i) and xm(ij), n is the
exponential boundary gradient or fuzzy power and r the tolerance value. The chosen
fuzzy function, µ, must be continuous (avoiding abrupt changes in similarities) and
convex (the self-similarity is maximum), and in this case is an exponential function
[46].

This function was also chosen by Chen et al. [45, 46] owing to the fact that it is
well understood and shows a good performance as “fuzzy membership function”.

Henceforth, fuzzy entropy is described, including the difference between FuzzyEn1D

[45, 46] and FuzEn1D.

Considering a time series u(i) of length N (1 6 i 6 N), for an embedding
dimension m, the templates xm(i) and xm+1(i) are defined by equations (4.11) and
(4.12) [45, 46]. Note that the first expression is equivalent to equation 4.1.

xmi = {u(i), u(i+ 1), ..., u(i+m− 1)} (4.11)

1FuzzyEn1D is the notation adopted for Chen et al. [45, 46] definition and FuzEn1Dis used for
the proposed algorithm in this project.
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Figure 4.3: Representation of the basic steps through multiscale entropy measure
algorithms.

xm+1
i = {u(i), u(i+ 1), ..., u(i+m)} (4.12)

The original FuzzyEn1D [45, 46] algorithm considered the removal of a baseline
vector (see equation 4.13), i.e., a local mean from the data represented by equation
4.14.

u0(i) =
1

m

m−1∑
k=0

u(i+ k) (4.13)

xmi = {u(i), u(i+ 1), ..., u(i+m− 1)} − u0(i) (4.14)

By removing the baseline vector the algorithm only considers local characteristics
and it is relevant to consider both local and global characteristics [44, 58].

Liu et al. [44] defined, besides the local entropy (equivalent to the fuzzy entropy
of Chen et al. [45, 46]), a global entropy. The global entropy considers templates
similar to the ones represented by equation (4.14) but, instead of removing the
signal’s local mean, the authors removed the global mean. The final entropy value
is the sum of the local and global entropy values [44].

On the other hand, Hilal et al. [58] introduced another approach for fuzzy en-
tropy. The templates were defined similar to the definition represented in equation
(4.11) however, applied to bidimensional data. The authors did not remove any type
of mean values in order to consider both local and global characteristics [58].

SampEn1D [35] and ApEn1D [36] also included the global and local characteristics
of the signal in question. Therefore, figure 4.1 can represent the template’s definition
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for SampEn1D, and also for FuzEn1D’s templates. The mathematical definition is
shown in equation (4.11). Consequently, the only difference between FuzzyEn1D [45,
46] and FuzEn1D is simply having the local mean removal or not.

Once we define the templates, the similarity degree is also defined, in equation
(4.15), based on the template’s distance, i.e., maximum difference of the templates,
dij = max(

∣∣xmi − xmj ∣∣) with i 6= j [45, 46].

Dm
ij = µ(dmij , r) = exp(−(dij/r)

n) (4.15)

Then, the similarity degree average is done for both m points, equation 4.16,
and m+ 1 points, equation 4.17, considering i 6= j [45, 46]:

φmi (n, r) =
1

N −m− 1

N−m∑
i=1,j=1

Dm
ij (4.16)

φm+1
i (n, r) =

1

N −m− 1

N−m∑
j=1

Dm+1
ij (4.17)

Later on, the Φm(n, r) for m points and Φm+1(n, r) for m+ 1 points are defined
by equations 4.18 and 4.19, respectively, in order to calculate the entropy.

Φm(n, r) =
1

N −m
N−m∑
i=1

φmi (n, r) (4.18)

Φm+1(n, r) =
1

N −m
N−m∑
i=1

φm+1
i (n, r) (4.19)

At last, FuzEn1D can be defined as the natural logarithm of the Φm(n, r) and
Φm+1(n, r) ratio as represented by equation 4.20 [45, 46].

FuzEn1D(m,n, r, u) = ln
Φm(n, r)

Φm+1(n, r)
(4.20)

In figure 4.4, the main characteristics of the two entropy algorithms described
in this section are summarized. Regarding fuzzy entropy, the main advantages over
sample entropy are the absence of undefined values, consistency, flexible parameter
selection, and similarity degree measure [45, 46].

4.1.2.2 Multiscale fuzzy entropy (MFE1D)

The multiscale coarse-graining procedure is the same as the one mentioned in
section 4.1.1.2 and defined by equation (4.9). The coarse-grained series are obtained
with size of N

τ
for an original signal of length N . These down-sampled versions of

the original signal are constituted by averaged values.
According to the schematic of figure 4.3, after applying the coarse-graining pro-

cedure of equation 4.9, the entropy of each coarse-grained signal is determined by
using an entropy measure, in this case FuzEn1D. At the end, the only difference
between MSE1D and MFE1D is the entropy measure chosen.
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(a) SampEn1D [35].
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(b) FuzEn1D.

Figure 4.4: Sample entropy, SampEn1D [35], and fuzzy entropy, FuzEn1D, main
characteristics.

Through the coarse-graining technique developed by Costa et al. [39, 43], mul-
tiscale time series analysis allow us to have efficient and goal-motivated tests on
signals:

• Determine the difference between a patient’s MFE1D curve from an healthy
subject one. Hence, identifying the disease’s curve behavior.

• Assessing the pathology’s stage through a complexity study. For example,
the biologic aging process is being associated with loss of complexity on some
signals, resulting in a decrease of entropy.

4.2 Bidimensional algorithms

This project involves the development of a new colored-based bidimensional en-
tropy measure. First, the already existing gray-scaled version FuzEn2D [58, 73] is
approached, and posteriorly, FuzEnC2D [75] is defined.

4.2.1 Bidimensional fuzzy entropy

4.2.1.1 Bidimensional fuzzy entropy (FuzEn2D)

Fuzzy Entropy can also be used to determine the irregularity of an image. By
taking advantage of fuzzy entropy’s characteristics, the bidimensional version will
also show consistency, a more flexible selection of parameters, and others features
(please see figure 4.4 (b)) [45, 46].

In section 4.1.2.1, it is referred that the chosen fuzzy function is able to measure
the similarity degree trough an exponential function, exp(−(dij/r)

n)), with dij being
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the distance between two templates i and j, r is the tolerance, and n is the fuzzy
power [46].

Consider an image U(i, j) for 1 6 i 6 H and 1 6 j 6 W , with H being the
height and W the width of U [58, 73].

Since bidimensional data is being considered, the templates will no longer be
vectors. The templates are now defined as squared-windows. A template of [m]×[m]
pixels, Xm

i,j, is defined by equation (4.21). For [m+ 1]× [m+ 1] pixels, the template

Xm+1
i,j is defined by equation (4.22). The total number of squared-windows will be

Nm = (W −m)(H −m), for m and m+ 1 points [58, 73].

Figure 4.5 shows an example of a comparison between two templates, Xm
i,j and

Xm
a,b, considering an embedding dimension of m = 2. Moreover, it also shows a

comparison between Xm+1
i,j and Xm+1

a,b , for m+ 1-points, i.e., m = 3.

As mentioned in section 4.1.2.1, original fuzzy entropy definition included a base-
line removal (local mean extraction). However, due to literature recommendations
[44, 58, 73], in this bidimensional definition of fuzzy entropy, it was decided to ac-
count for local and global characteristics, as it has been done for the unidimensional
definition.

Xm
i,j =


Ui,j . . . Ui,j+m−1

Ui+1,j . . . Ui+1,j+m−1

. . . . . . . . .
Ui+m−1,j . . . Ui+m−1,j+m−1

 (4.21)

Xm+1
i,j =


Ui,j . . . Ui,j+m

Ui+1,j . . . Ui+1,j+m

. . . . . . . . .
Ui+m,j . . . Ui+m,j+m

 (4.22)

Each Xm
i,j squared window can be compared with the succeeding windows, Xm

a,b,
excluding previous template comparisons (absence of template-wise approach), and
self-matches ((i, j) 6= (a, b)). The same happens for [m+ 1]× [m+ 1] pixels [58, 73].

The similarity degree for [m] × [m] pixels is defined in equation (4.23) [58, 73]
and depends on the distance between templates, dmij,ab = d[Xm

i,j, X
m
a,b], and on the

tolerance value, r. In addition, it also depends on the fuzzy function, µ, that should
be continuous (avoid abrupt similarity changes) and convex (self-similarity is maxi-
mum) [46].

The value r is commonly established as a percentage of the signal’s SD [35] and
represents the threshold level [58].

Dm
ij,ab = µ(dmij,ab, n, r) = exp(−(dmij,ab)

n/r) (4.23)

with dmij,ab being distance between the templates Xm
i,j and Xm

a,b (for i 6= a and j 6= b),
i.e., the maximum difference of the templates, dmij,ab = d[Xm

i,j, X
m
a,b] = max(|u(i +

s, j + t) − u(a + s, b + t)|) with (i, j) 6= (a, b) and s, t ∈ (0,m − 1). According to
this, the exponential function boundary will be determined by both the tolerance
and fuzzy power [58, 73].

Then, the similarity degree is averaged, for (i, j) 6= (a, b) [58, 73]:
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ui,j ui,j+1 ui,j+m

ui+1,j ui+1,j+1 ui+1,j+m

ui+m,j ui+m,j+1 ui+m,j+m

ua,b ua,b+1 ua,b+m

ua+1,b ua+1,b+1 ua+1,b+m

ua+m,b ua+m,b+1ua+m,b+m

Figure 4.5: Scheme of an image U, representing an example of comparison between
the [m] × [m] squared templates Xm

i,j and Xm
a,b (dark blue dashed line) and the

[m+1]× [m+1] squared templates Xm+1
i,j and Xm+1

a,b (light blue dashed line), in this
case considering an embedding dimension of m = 2. Adapted from [52].

φmi,j(n, r) =
1

Nm − 1

a=H−m,b=W−m∑
a=1,b=1

Dm
ij,ab (4.24)

Similarly, for m+ 1 points, the average similarity degree is:

φm+1
i,j (n, r) =

1

Nm − 1

a=H−m,b=W−m∑
a=1,b=1

Dm+1
ij,ab (4.25)

with (i, j) 6= (a, b) to exclude self-matches.

Afterwards, the Φ for [m]× [m] pixels and [m]× [m] pixels is defined in order to
calculate the entropy, shown in equations (4.26) and (4.27) [58, 73].

Φm
i,j(n, r) =

1

Nm

i=H−m,j=W−m∑
i=1,j=1

φmi,j(n, r) (4.26)

Φm+1
i,j (n, r) =

1

Nm

i=H−m,j=W−m∑
i=1,j=1

φm+1
i,j (n, r) (4.27)

51



4. Methods

.

.

.

.

.

.

.

.

.

.

.

.

BLUE CHANNELRED CHANNEL

ORIGINAL IMAGE

������2� ������2�

.

.

GREEN CHANNEL

������2�

���� =��2�

[���� , ���� , ���� ]��2� ��2� ��2�

Figure 4.6: FuzEnC2D analysis representation showing the color division of the
original colored image.

At last, FuzzyEn1D can be defined as the natural logarithm of the Φm
i,j(n, r) and

Φm+1
i,j (n, r) ratio (equation (4.28)) [58].

FuzEn2D(m,n, r, u) = ln
Φm
i,j(n, r)

Φm+1
i,j (n, r)

(4.28)

4.2.1.2 Bidimensional colored fuzzy entropy (FuzEnC2D)

Since the goal was to analyze the colored versions of dermoscopic images, the
previous algorithm suffered some modifications and resulted in FuzEnC2D definition.
Colored images have 3 color channels: red (R), green (G) and blue (B). Each channel
is analyzed separately hence, the difference between FuzEnC2D and Santos et al. [74]
entropy definition (see figure 4.6).

Consider an image U decomposed in its 3 corresponding RGB (Red, R, Green,
G, and Blue, B) channels, UR, UG, and UB, respectively. Once more, the tem-
plates will be squared-windows. For each channel, considering m as the template’s
embedding dimension, there will be Nm = (H − m)(W − m) squared windows.
The templates, Xm

i,j,K , are defined as in equation (4.29), considering the channels
K = R,G,B. Similarly, the definition for [m+ 1]× [m+ 1] pixels is equivalent [75].
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Xm
i,j,K =


Ui,j,K . . . Ui,j+m−1,K

Ui+1,j,K . . . Ui+1,j+m−1,K

. . . . . . . . .
Ui+m−1,j,K . . . Ui+m−1,j+m−1,K

 (4.29)

for 1 ≤ i ≤ H −m and 1 ≤ j ≤ W −m, H being the image’s height, and W its
width [75].

Afterwards, the similarity degree is calculated as demonstrated previously, shown
in equation (4.30). The distance, dmij,ab,K , for a K channel and a squared [m] ×
[m] template is defined as the maximum difference of the templates: dmij,ab,K =
d[Xm

i,j,K , X
m
a,b,K ] = max(|UK(i+ s, j + t)−UK(a+ s, b+ t)|), with (i, j) 6= (a, b), and

s, t ∈ (0,m− 1) [75].

Dm
ij,ab,K = µ(dmij,ab,K , n, r) = exp(−(dmij,ab,K)n/r) (4.30)

with dmij,ab,K being the distance, n is the fuzzy power, and finally, r is the tolerance
value [75].

The similarity degree is then averaged [75]:

φmi,j,K(n, r) =
1

Nm − 1

a=H−m,b=W−m∑
a=1,b=1

Dm
ij,ab,K (4.31)

with (i, j) 6= (a, b). Similarly, for m+ 1 points, the average similarity degree is:

φm+1
i,j,K(n, r) =

1

Nm − 1

a=H−m,b=W−m∑
a=1,b=1

Dm+1
ij,ab,K (4.32)

As a result, it is obtained [75]:

Φm
i,j,K(n, r) =

1

Nm

i=H−m,j=W−m∑
i=1,j=1

φmi,j,K(n, r) (4.33)

Φm+1
i,j,K(n, r) =

1

Nm

i=H−m,j=W−m∑
i=1,j=1

φm+1
i,j,K(n, r) (4.34)

The colored bidimensional fuzzy entropy can now be defined for each channel
like in equations (4.35), (4.36), and (4.37) [75].

FuzEnR2D(m,n, r, uR) = ln
Φm
i,j,R(n, r)

Φm+1
i,j,R (n, r)

(4.35)

FuzEnR2D(m,n, r, uG) = ln
Φm
i,j,G(n, r)

Φm+1
i,j,G(n, r)

(4.36)

FuzEnR2D(m,n, r, uB) = ln
Φm
i,j,B(n, r)

Φm+1
i,j,B (n, r)

(4.37)

53



4. Methods

The final entropy is presented as having 3 values, one for each RGB channel, as
represented in equation (4.38) [75].

FuzEnC2D(m,n, r, u) = [FuzEnR2D, FuzEnG2D, FuzEnB2D]; (4.38)

In a biomedical point of view, this technique can be used to identify different
structures on biomedical images, having the advantage of no longer discarding col-
ors.The main goal is to reveal new information. This can be used to identify and
quantify different skin and microcirculatory conditions.

4.3 Tridimensional algorithm

The following sections are dedicated to a tridimensional version of FuzEn1D and
its multiscale version, having in mind 3D applications.

4.3.1 Tridimensional fuzzy entropy and multiscale version

First, it is approached the fuzzy entropy 3D, FuzEn3D, definition and afterwards,
the multiscale version.

4.3.1.1 Tridimensional fuzzy entropy (FuzEn3D)

FuzEn3D is an adaption of the proposed original FuzEn1D and therefore, the
approach to obtain the entropy is similar but with a tri-dimensional extension.
Consider a volume U(i, j, k) of dimensions W × L × H (W-width, L-length, H-
height), for 1 ≤ i ≤ W , 1 ≤ j ≤ L, and 1 ≤ k ≤ H.

Firstly, the cuboid templates are defined, extending the squared-windows into
cubes. The cuboid template is composed by a group of voxels from the volume U .
A tri-dimensional template, Xm

i,j,k, with origin at a point (i, j, k), can be defined by
equation (4.39), with an edge of m voxels.

The parameter m is the embedding dimension of the template. Since the tem-
plate is a cube, the dimensions of it are [m×m×m] voxels.

Similarly, we define Xm+1
i,j,k , a tri-dimensional template of [m+1]×[m+1]×[m+1]

voxels. In the end, it is obtained a total number of cuboid templates Nm = (W −
m)(H −m)(L−m), that can be generated for m and m+ 1 size.

Xm
i,j,k =

Ui,j,k
. . .

Ui,j+m−1,k

Ui+1,j,k
. . .

Ui+1,j+m−1,k

. . . . . . . . .

Ui+m−1,j,k
. . .

Ui+m−1,j+m−1,k
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .Ui,j,k+m−1

. . .
Ui,j+m−1,k+m−1

Ui+1,j,k+m−1
. . .

Ui+1,j+m−1,k+m−1

. . . . . . . . .

Ui+m−1,j,k+m−1
. . .

Ui+m−1,j+m−1,k+m−1

(4.39)
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A template Xm
i,j,k can be compared with their neighbors, Xm

a,b,c, for 1 ≤ a ≤
W−m, 1 ≤ b ≤ L−m and 1 ≤ c ≤ H−m, excluding previous template comparisons
(absence of template-wise approach) and self-matches ((i, j, k) 6= (a, b, c)) (see an
example for m = 3 in figure 4.7).
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Figure 4.7: Representation of how two templates to be compared with each other,
Xm
i,j,k and Xm

a,b,c, are constituted from the voxels (i, j, k) and (a, b, c), respectively,
considering m = 3.

Afterwards, the distance between two templates, dmijk,abc, is obtained and defined
as the maximum absolute difference of the templates Xm

i,j,k and Xm
a,b,c (see equation

(4.40)).

dmijk,abc = d[Xm
i,j,k, X

m
a,b,c] = max(|U(i+s, j+t, k+q)−U(a+s, b+t, c+q)|) (4.40)

for (i, j, k) 6= (a, b, c) and s, t, q ∈ (0,m− 1).
After that, the similarity degree is defined for a [m×m×m] sized cube, Dm

ijk,abc,
considering the exponential fuzzy function, µ(dmijk,abc, n, r) (continuous and convex
[46]), in equation 4.41. The similarity degree depends on the fuzzy power, n, and in
the tolerance value, r, a threshold level defined by a percentage of the data’s SD.

Dm
ijk,abc = µ(dmijk,abc, n, r) = exp(−(dmijk,abc)

n/r) (4.41)

with for (i, j, k) 6= (a, b, c).
Following that, the similarity degree average is done:

φmi,j,k(n, r) =
1

Nm − 1

a=W−m,b=L−m,c=H−m∑
a=1,b=1,c=1

Dm
ijk,abc (4.42)
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Similarly, for [m + 1]× [m + 1]× [m + 1] sized template, the average similarity
degree is:

φm+1
i,j,k (n, r) =

1

Nm − 1

a=W−m,b=L−m,c=H−m∑
a=1,b=1,c=1

Dm+1
ijk,abc (4.43)

Afterwards, the Φ for m and m+1 size are defined in equations (4.44) and (4.45),
for (i, j, k) 6= (a, b, c).

Φm
i,j,k(n, r) =

1

Nm

i=W−m,j=L−m,k=H−m∑
i=1,j=1,k=1

φmi,j,k(n, r) (4.44)

Φm+1
i,j,k (n, r) =

1

Nm

i=W−m,j=L−m,k=H−m∑
i=1,j=1,k=1

φm+1
i,j,k (n, r) (4.45)

Finally, the FuzEn3D can be defined as the natural logarithm ratio between
Φm
i,j,k(n, r) and Φm+1

i,j,k (n, r), represented in equation (4.46).

FuzEn3D(m,n, r, u) = ln
Φm
i,j,k(n, r)

Φm+1
i,j,k (n, r)

(4.46)

4.3.1.2 Multiscale fuzzy entropy 3D (MFE3D)

The first step of tridimensional multiscale analysis involves applying the coarse-
graining procedure, similar to the original multiscale definition (see equation (4.47)).

From the original volume, U, τ coarse-grained volumes are obtained, with τ
being the scale factor. Each coarse-grained volume obtained, Yi,j,k

(τ), has a size of
[W
τ
× L

τ
× H

τ
] and can be considered a down-sampled version of the original one. This

Yi,j,k
(τ) volume is constituted by averaged-values.

Yi,j,k
(τ) =

1

τ 3

kτ
jτ
iτ∑

l=(i−1)τ+1

m=(j−1)τ+1

n=(k−1)τ+1

Ul,m,n (4.47)

for 1 ≤ i ≤ W
τ

, 1 ≤ j ≤ L
τ

and 1 ≤ k ≤ H
τ

.
Following that, FuzEn3D is applied as the entropy measure chosen to determine

the irregularity of the volume, on each coarse-grained volume obtained.
Figure 4.8 represents how the procedure in equation (4.47) works. It shows an

example how the volume’s first voxels are averaged for a τ = 2. As represented,
Y

(τ)
1,1,1 and Y

(τ)
1,2,1 will be the first two elements of the coarse-grained volume for τ = 2,

which has W
2
× L

2
× H

2
voxels.

Finally, each τ -volume has an associated fuzzy entropy values and therefore,
obtaining a curve of entropic values as function of τ . Every step can be easily
compared with the unidimensional version since this definition is an extension of
the original one.
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U1,4,1U1,3,1U1,2,1U1,1,1

U2,4,1U2,3,1U2,2,1U2,1,1
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H

L

W

U1,4,2U1,3,2U1,2,2U1,1,2

U2,4,2U2,3,2U2,2,2U2,1,2

Y
(τ=2)

1,1,1
Y

(τ=2)
1,2,1

τ = 2

Figure 4.8: Representation of the multiscale procedure for the first voxels of a
certain volume U , considering τ = 2.

Since the analysis on volumetric data depends on this multiscale technique, the
goals are similar to the ones mentioned in section 4.1.2.2. Firstly, it must be possible
to differentiate a patient from a healthy subject using the MFE3D curves. Moreover,
establishing the entropy behavior of the disease according to stage progression is of
utmost interest.
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5 Results and discussion
This chapter includes the tests performed in order to validate the algorithms

for uni-, and multidimensional data. These validation tests are based on tests done
previously in literature, and their results are discussed according to that. In addi-
tion, it also includes the results regarding the biomedical applications of FuzEn1D,
FuzEn2D, and FuzEn3D.

5.1 Unidimensional fuzzy entropy - FuzEn1D

First, the several validation tests performed on FuzEn1D are approached. Earlier
on, it was mentioned that the parameters fuzzy entropy depends on, namely: the
fuzzy power, n, the tolerance, r, and the embedding dimension of the templates,
m. According to that, it will be shown several tests demonstrating FuzEn1D be-
havior, including a multiscale analysis of noise signals. Afterwards, the biomedical
application, signals of snoring events, is presented and discussed:.

5.1.1 Tolerance and fuzzy power variation

Thanks to Zadeh’s [68] notion of fuzzy sets, Chen et al. [45, 46] proposed to
measure the degree of a certain pattern belonging to a class. In theory, when the
similarity degree, Dij, is close to one, the membership for that class is high [45].

In figure 5.1, to introduce the first two parameters, the behavior of the fuzzy
exponential function, µ = exp(−dn/r), is shown. One can observe the parameters
influence on the similarity degree 1, µ.
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(a) n variation, for r = 0.2.
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(b) r variation, for n = 2.

Figure 5.1: Similarity values as function of the distance, d, varying the exponential
boundary gradients (a) and tolerance values (b).

Based on the mentioned family of exponential functions, it is possible to obtain
continuous values of the similarity degree (see figure 5.1). In figure 5.2, the Heaviside

1Since it is used the same exponential function for all three fuzzy entropy versions, FuzEn1D,
FuzEnC2D, and FuzEn3D, the influence of r and n is the same regarding the fuzzy function.
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Figure 5.2: Heaviside function for a tolerance value of r = 0.5.

function clearly shows an abrupt similarity change due to the only two possible
states. However, the exponential provides smoother changes in similarity and allows
to define self-similarity condition as the maximum [45].

Nevertheless, by fixing the tolerance to r = 0.2, in figure 5.1 (a), and by fixing
the fuzzy power to n = 2, in figure 5.1 (b), we observe as the n-value and the r-value
increase, the similarity degree is less smooth. This means a more flexible parameter
selection [45, 46] is possible with fuzzy function than with the Heaviside function,
as expected. Regardless, choosing the parameters accordingly is still an important
task.

According to Chen et al. [45, 46], the n-value must be a small integer value.
When n is lower than 1, distant templates are weighted instead of close ones. On
the other hand, for large n-values information can be loss [45].

Hence, having in mind the previous considerations and cased on previous works
[44–46, 57, 64], the parameter n was established with the value n = 2. In figure 5.1
(a), it can be verified that for n = 2 (orange) the similarity degree has a smoother
variation compared with higher n-values.

5.1.2 Tolerance and embedding dimension sensitivity

The tolerance value must be a constant value multiplied by standard deviation
value of the data. According to this, the following test was performed on white noise
signals with the goal of revealing the sensitivity to changes in tolerance, considering
the variation of 0.06 × SDdata ≤ r ≤ 0.48 × SDdata with a step of 0.06 (see figure
5.3). In this test, the type of signal chosen is not relevant since the goal is evaluating
the FuzEn1D behavior towards the change of r -values rather the entropy values.

For each tolerance value, in figure 5.3, the entropy was calculated on 10 white
noise signals (see section 3.1.2.1) and the mean entropy value is displayed for each tol-
erance. Besides the change of tolerance values, the change of embedding dimension,
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Figure 5.3: FuzEn1D sensitivity to change of tolerance, r, for k × SDdata with
0.06 ≤ k ≤ 0.48 (step of 0.06), and different embedding dimension values, 1 ≤ m ≤
3, using white noise signals.

m, is also analysed to show behavior of the algorithm upon different parameters.
Comparing the 3 curves for m = 1 (red), m = 2 (blue) and m = 3 (purple), in

figure 5.3, the behavior is very similar between each other, with the entropy dropping
along with the increase of r value. For a large tolerance value, the boundary becomes
broad [45, 46], therefore, more patterns will have the same similarity degree value,
and an information loss can be verified. This could explain this decrease.

5.1.2.1 Fuzzy entropy VS sample entropy

In figure 5.4, we observe that fuzzy entropy is less sensitive to tolerance variation
than sample entropy, as expected due to previous works [45, 46]. For this compar-
ison, the entropy with SampEn1D [35] and FuzEn1D have been determined in the
same ten white noise signals for 8 tolerance levels.

In figure 5.4, it can be verified how fuzzy entropy does not decrease so fast with
the change of tolerance values as sample entropy does. Also, for smaller r -values,
sample entropy is higher due to more strict matching criteria.

Even though FuzEn1D does not have so strict boundaries, an entropy rise for
smaller r -values can be observed as well. However, these values are smaller compared
to the ones obtained by SampEn1D. These observations are in line with previous
works [35, 44–46].

For FuzEn1D, a change of 54.6% is verified between the entropy for the first
r-value and the last, outstanding the 60.9% of SampEn1D.

Regardless the smoother variation of FuzEn1D, the goal is to define a fixed value
multiplied by data’s SD, as said before. Fixing this value for all tests, allows us to
compare the results without having to consider possible fluctuations due to different
tolerance values.
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Figure 5.4: Sample (red) and fuzzy (blue) entropy sensitivity to change of toler-
ance, r, with m = 2, using white noise signals.

Since it is convenient to choose the entropy value between 0.10 × SDdata and
0.25 × SDdata [64], in the following validation tests and for the biomedical data as
well, the chosen tolerance value was r = 0.20× SDdata.

5.1.3 MIX1D(p) processes and the embedding dimension be-
havior

As it can observed in figure 5.5, accordingly with the Mix(p) processes definition,
an increase on entropy with an increase of p-value (parametric probability) [36, 52]
can also be verified. Moreover, a well-behaved curves for all m-values is observed.

In order to avoid a single-point comparison (when considering a template size
of m = 1), the choice is towards the value m = 2. Choosing an higher value like
m = 3, implies increasing the computational cost. Furthermore, the entropy value
discrimination is similar for both m-values, according to figure 5.5.

Commonly, the m parameter is set to m = 2 [35, 36, 39, 43, 45, 46, 57, 60, 64].
This allows us to have a results precise enough and with more information than just
using m = 1 [57]. The table 5.1 shows parameters values chosen for the further
validation tests and upcoming biomedical application.

Table 5.1: Parameters values chosen for upcoming tests of FuzEn1D.

Parameters Chosen Values
n 2
m 2
r 0.2× SDdata
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Figure 5.5: Fuzzy entropy of Mix1D(p) processes-based signals.

5.1.3.1 Shuffling data

The following test, presented in figure 5.6, takes into consideration that shuffling
data increases the irregularity due to random data reorganization [73]. For that rea-
son, we have two curves: one for the signals based on Mix1D(p) processes definition
(red curve) and one for the shuffled versions of them (blue curve).
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Figure 5.6: Fuzzy entropy of Mix1D(p) processes-based signals and their shuffled
versions.

For both cases, due to the Mix1D(p) processes definition, is expected an increase
on entropy values for an increase of p-value. However, for the shuffled signals is
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expected an even higher entropy rise than the corresponding original signals. Even
though this is verified, for p ≥ 0.7 the values between original and shuffled data
become closer which can be explained by the fact that for these probabilities values,
Mix1D(p) processes-based signals are dominated by random processes. Therefore,
the shuffling does not affect as much as it does for lower p values. It can be es-
tablished that FuzEn1D is able to determine irregularity and can distinguish a more
irregular signal from a less irregular one.

5.1.3.2 No baseline removal VS Baseline removal

As mentioned before, the baseline removal has not been done to account both
local and global characteristics. Hence, the figure 5.7 shows the two curves for both
algorithm versions: fuzzy entropy with baseline removal (blue curve) and without
baseline removal (red curve). Both algorithms used the same Mix1D(p) processes-
based signals to determine entropy as function of the probability. When opting to
consider both local and global characteristics, it can be observed that the curve has
a steeper slope. In addition, a better discrimination is verified with the p-value
increase without baseline removal.
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Figure 5.7: Fuzzy entropy with (blue curve) and without baseline removal (red
curve) of Mix1D(p) processes-based signals.

5.1.4 Multiscale analysis on noise signals

The upcoming analysis is based on evaluating the different behavior of colored
noise signals (white, pink, blue and brown noise) that present a power spectral
density (PSD) dependence of 1/|f |β with β = 0, β = −1, β = +1 and β = −2,
respectively.

Costa et al. [39, 43] analysis approached the complexity of simulated white and
pink noise.
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It is reported that for τ = 1, i.e., considering the original signal (without down-
sampling) the entropy is higher for white noise. Despite that, pink noise remains
constant for all scale factors and white noise suffers a monotonic decrease for τ ≥ 5
[39, 43]. In fact, in figure 5.8, it is shown that the MFE1D behavior is also very
similar to the results shown by Azami et al. [60].
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Figure 5.8: MFE1D behavior for white noise (gray), for pink noise (pink), blue
noise (blue) and brown noise (brown) for τmax = 20.

Besides, it is verified that white noise has in fact higher entropy than pink noise
for the first scale factor as reported by Costa et al. [39, 43].

Pink noise is constituted by complex structures throughout scale factors, leading
to a constant multiscale profile (pink curve in figure 5.8) [39, 43]. Accordingly to
Costa et al. [39], both entropy curves of white noise and pink noise should cross
around τ = 4, which can be observed in figures 5.8 and 5.9.

Another characteristic reported is that typically, the SD is higher for pink noise
due to non-stationarity [39]. The table 5.2 shows the entropy’s SD mean value of
the studied signals.

Table 5.2: Mean value of the entropy’s standard deviation for colored noises (white,
pink, blue and brown) of all scale factors.

Noise
Mean SDNoise

of all scale factors
White 0.0056
Pink 0.0280
Blue 0.0024

Brown 0.0235

As a result, when considering a multiscale analysis, there are two main guidelines
to characterize signals’ complexity [39]:
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1. If a certain signal presents higher entropy for the majority of τ ’s compared to
a second signal (example: pink noise over white noise) then, the first one is
more complex;

2. A monotonic decreases indicates that the signals’ information is only in the
smallest scales.

Moreover, as shown in figure 5.8, other colored noises like blue noise and brown
noise have been studied, extending the analysis on noise signals of Costa et al. [39,
43]. Taking into consideration the previous guidelines, the noise signals can be
compared in terms of complexity.

Based on the first guideline, pink noise is more complex than blue, white noise
and brown noise. In addition, blue noise curve is very similar to white noise, only
containing the main information in the smallest scales (existence of a monotonic de-
crease - guideline 2) and brown noise has new information revealed in all scales.
Therefore, one can conclude that brown noise can be considered as more com-
plex than blue noise. Consequently, the decreasing order of noises’ complexity is
pink>white>brown>blue. Nonetheless, this order can be discussed since the behav-
ior of brown noise is more similar to pink noise, showing the absence of a monotonic
decrease. So, one could justify that the order of complexity is as in matter of a fact
pink>brown>white>blue or even brown>pink>white>blue since the brown noise
curve seems to be rising in stead of staying constant.

The monotonic decreases verified in white and blue noise are explained by the
averaging process associated to the coarse-graining procedure. In each window of
the procedure, the values are averaged and tend to become closer to a constant value
and the signals gets “smoothed out”. On the other hand, signals like pink noise do
not show this behavior due to fluctuations of the signal, with new information being
revealed in each scale factor [39].

5.1.4.1 MFE1D behavior VS MSE1D behavior

Furthermore, MFE1D can be compared with MSE1D in figure 5.9. It can be
observed that the curves behavior is similar. Even though the entropy values are
not the same, an entropy measure is evaluated according to its differentiation ability,
sensitivity to change in parameters, ability to quantify, among other characteristics
rather the exact given values. According to this, one can conclude that FuzEn1D

as an entropy measure overcomes SampEn1D, as stated by previous works [44–46,
60, 64]. In figure 5.9, it can be observed how FuzEn1D is more accurate, since
the SD values are clearly larger for SampEn1D, being more visible for pink noise.
Nevertheless, due to the nature of pink noise for both entropy measures the SD is
higher than for white noise.

5.1.4.2 MFE1D length dependence VS MSE1D dependence

An interesting feature of fuzzy entropy is that shows less dependence on the
data’s length when compared to SampEn1D, revealing more consistency [45, 46].
FuzEn1D is able to obtain defined values of entropy even when is not possible for
sample entropy.
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Figure 5.9: MFE1D and MSE1D behavior for white and pink noise signals of N =
30000 points with τmax = 20.

If a very short signal of N = 100 points is considered, as shown in figure 5.10,
FuzEn1D is able to define the entropy value for 20 scale factors but, SampEn1D can
only determine entropy for 2 scale factors. This reveals the lack of consistency of
SampEn1D compared to FuzEn1D.

Nonetheless, when considering data as small as the pink signals tested (N = 100
points) it should not be taken into account that many scale factors. For τmax = 20,
for a pink signal of N = 100 points, the smallest coarse-grained time series will
have 5 points. Consequently, the smallest coarse-grained time series will have more
inconsistent results and with high SD values, shown in figure 5.10, for τ > 7. This
indicates that FuzEn1D is superior to SampEn1D but, for a short signal the maximum
scale factor must be lower.
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Figure 5.10: MFE1D and MSE1D behavior of white and pink noise signals with a
length of N = 100 points and τmax = 20.

5.1.5 Biomedical application: signals of snoring events

This section is dedicated to FuzEn1D biomedical application. The parameters
herein used are shown in table 5.1.

As mentioned before, for each subject, 50 snores have been selected (from data
collected previously [62]) and through multiscale analysis entropy values have been
obtained for τmax = 40. Then, for each subject, the mean MFE1D curve of the
previous 50 curves corresponding to each snore was obtained.

For example, Costa et al. [39, 43] proposed a maximum scale factor of τmax = 20
for a time series of N = 3 × 104 points. So, the smallest coarse-grained series has
Nτmax = N/τmax = 1500 points. Knowing that each signal had N = 6.5 × 104

points, the smallest coarse-grained signal will have Nτmax = N/τmax = 3250 points.
Moreover, since a fuzzy entropy measure is being used, which was verified to have
a more consistent behavior, one can say that consistent behavior is still verified for
this amount of points.

In figure 5.11, for each group is represented a curve corresponding to the mean
values of MFE1D subjects’ curves belonging to that group.

It can be observed, in figure 5.11 (a), that the severe group (in dark blue) shows
an higher entropy rise with the scale factor compared to the remaining groups.
Furthermore, for τ ≥ 20 it is verified that the entropy profile stabilizes.

Moreover, it can be concluded according to Costa et al. [39, 43] analysis, that
the severe and medium groups are the most complex ones. In addition, the control
group is clearly the least complex one, showing the lower entropy values. However,
differentiating the light SAHS stage’s complexity from the simple snoring group is
more difficult. Figure 5.11 (b) reveals that the profiles of these two groups cross
each other twice and are easier to distinguish for higher scale factors.

Since the light SAHS group shows lower entropy values than the snoring group
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Figure 5.11: Mean MFE1D values for the control group, simple snoring group and
light, moderate and severe stages of SAHS.

for a higher number of τ , this leads to the conclusion that simple snoring group has,
in fact, more complex structures behind the signal. This interesting feature might
have the need to be explored in the future, since it is expected that, similarly to
other stages, the simple snoring group would be less complex than the light SAHS
group. If this was verified, the order of complexity would depend directly on the
stage progression.

One rather important aspect, visible in figure 5.11, is the huge SD values of these
MFE3D curves. As a matter of fact, these errors does not allow us to take extensive
conclusions. So, within each group, a high variability of entropy values is existing.
This might indicate the need of including more than 50 snores for each subject and
more subjects as well to increase the amount of data in the study. Additionally, this
could explain why we observe that simple snoring individuals, when considering the
mean, are more complex than subjects suffering light SAHS. This situation must be
confirmed with a more extensive analysis that leads to a smaller SD.

Nevertheless, this study leads to the conclusion that an entropy study for these
signals can be promising in differentiating the several groups. For example, Qian
et al. [1] indicates that an analysis based on snoring acoustics can reveal a better
method to distinguish snoring subjects from OSAHS suffering ones. Furthermore, if
considering that some moderate to severe cases can be missed according to Young
et al. [4], the entropy analysis could allow in the future a simple and first conclusion
to assist in diagnosis.

5.2 Bidimensional colored fuzzy entropy - FuzEnC2D

Based on previous considerations, for further bidimensional and tridimensional
analysis it can be taken into account the following considerations:

1. In opposition to Heaviside function, smoother changes are obtained in simi-
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larity through the fuzzy function [45];

2. The fuzzy power, n, must be a small integer value and, based on literature
regarding bidimensional measures [58, 73], n = 2 is esyablished;

3. The tolerance must be a constant value multiplied by the data standard devi-
ation.

According to this, first, validation of FuzEnC2D is discussed, and finally, the two
biomedical applications: the cutaneous microcirculatory study and the melanoma
study.

5.2.1 Tolerance and embedding dimension sensitivity

Herein, an algorithm to determine the entropy on colored images is proposed.
Therefore, validation is necessary. Similarly to the unidimensional version, the sen-
sitivity of FuzEnC2D has been tested upon change of tolerance values between 0.06
and 0.48 (step of 0.06) times the color channel SD. Additionally, it has also been
considered different embedding dimensions (1 ≤ m ≤ 3) and analyzed the algorithm
behavior upon its change. Since FuzEnC2D considers three different values regarding
the color channels, each RGB channel’s entropy values can be displayed: FuzEnR2D,
FuzEnG2D, and FuzEnB2D in figures 5.12, 5.13, and 5.14, respectively.
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Figure 5.12: Tolerance sensitivity of FuzEnR2D, considering different embedding
dimensions, 1 ≤ m ≤ 3, for the red channel, UR, of the image represented in figure
3.2 (a).
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Figure 5.13: Tolerance sensitivity of FuzEnG2D, considering different embedding
dimensions, 1 ≤ m ≤ 3, for the green channel, UG, of the image represented in
figure 3.2 (a).
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Figure 5.14: Tolerance sensitivity of FuzEnB2D, considering different embedding
dimensions, 1 ≤ m ≤ 3, for the blue channel, UB, of the image represented in figure
3.2 (a).

FuzEnC2D shows low sensitivity upon change of m and r value, proving the
reliability of this algorithm for different initial parameters [75]. Obviously, since each
channel is characterized by different values, for a specific tolerance value, the entropy
is not the same for all channels. Nevertheless, every channel shows a decreasing
entropy behavior with r-value increase. In addition, for m = 2 and m = 3, a slower
decrease rate of entropy values is observed for r ≥ 0.2.
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A fixed value of tolerance must be defined in order to avoid possible result fluc-
tuations. Considering the interval of tolerance values given by Zheng et al. [64],
[0.10, 0.25] × SDK

data, once more r = 0.2 × SDK
data, with K = R,G,B [75] has been

chosen.

5.2.2 MIX2D(p) processes and the embedding dimension be-
havior

Furthermore, in figure 5.15, the entropy behavior can be observed upon change
of the m parameter. Besides, it can also be verified the FuzEnC2D’s ability to
distinguish different irregularity levels since the entropy increases with the p-value
increase. For this analysis, Mix2D(p) processes-based images have been used with a
checkerboard background. It has been chosen to show only the red channel of these
images since the results are similar for all the channels. This was expected due to
the nature of these images. The entropy value of the background is zero and the
values of pixels regarding Mix2D(p) processes are the same for the three channels.
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Figure 5.15: FuzEnR2D for the red component of MIX2D (p) processes-based im-
ages with a checkerboard background.

Apart from differentiating added randomness levels, figure 5.15 reveals FuzEnC2D

relatively low sensitivity of m-values variation. For the three channels, is visible that
the values m = 2 and m = 3 reveal a closer entropy behavior between each other.
Moreover, the increase of entropy is better discriminated.

According with previous considerations on the m-value, computational cost and
literature [52, 55, 58, 73], for further tests the embedding dimension was established
to m = 2 [75].

In table 5.3, the established parameters for further validation tests and biomed-
ical applications are shown.
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5.2.2.1 Shuffling data

Shuffling data means to rearrange the data’s components randomly [73]. Since
this rearrangement increases irregularity [73], an increase on the entropy value can
be expected for the shuffled data when compared to the original data. Therefore,
similarly to the one-dimensional analysis, in figure 5.16, it can be observed the
entropy values of the red channel of Mix2D(p) processes-based images (with a checker
board background) and the their shuffled versions, for several p-values (0 ≤ p ≤ 1).
In figure 5.16 can be observed that shuffling in fact increases the entropy of the
channel of an image.

As explained before, the three channels are similar between each other for the
Mix2D(p)-based images. This can be explained by the fact the background does not
interfere with the entropy values (since its value is zero) and that the entropy from
Mix2D(p) processes is same for the 3 channels. Regarding the shuffled versions of
each channel, obviously, due to the random process of rearranging the pixels the
shuffled versions of each channel will be different between each other. Nonetheless,
the figures are very similar so, it was chosen to only to arbitrarily show the red
channel in this document.
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Figure 5.16: FuzEnR2D for the red component of MIX2D (p) processes-based im-
ages with a checkerboard background and their shuffled versions, for 0.0 ≤ p ≤ 1.0
(step of 0.1).

Table 5.3: Parameters values chosen for upcoming tests of FuzEnC2D.

Parameters Chosen Values
n 2
m 2
r 0.2× SDK

data
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5.2.3 Textural behavior of images from Colored Brodatz
dataset

Upcoming, 6 textures from the CB database [76, 77] have been tested (see figure
3.2). The FuzEnC2D values obtained for the original images (640 × 640 pixels),
shown in table 5.4, have been compared with the mean value of 4 equal sub-images
(320× 320 pixels each), shown in table 5.5.

The reliability of FuzEnC2D is proven due to the small SD values shown in table
5.5, with the values being inferior to 0.04 [75]. Moreover, comparing the two tables
(5.4 and 5.5), it can be observed that the mean value obtained for each texture is
very similar to the original one, with the value not differing more than around 2.52%.
One can conclude that the algorithm has the ability to recognize these sub-images
as having the same textural behavior [75].

Table 5.4: FuzEnC2D for CB textures represented in figures 3.2(b)-(g) of 640×640
pixels.

Texture FuzEnR2D FuzEnG2D FuzEnB2D

b) 0.1972 0.2256 0.2461
c) 0.5554 0.7832 0.5262
d) 0.3400 0.6153 0.5235
e) 0.2605 0.3074 0.2438
f) 0.3520 0.3496 0.4152
g) 0.8255 0.7867 0.5643

Table 5.5: Mean and SD of FuzEnC2D for the 4 equal sub-images obtained through
CB textures represented in figures 3.2(b)-(g) with 320× 320 pixels each.

Texture FuzEnR2D FuzEnG2D FuzEnB2D

b) 0.1934± 0.0221 0.2206± 0.0289 0.2399± 0.0324
c) 0.5558± 0.0172 0.7836± 0.0252 0.5265± 0.0162
d) 0.3399± 0.0074 0.6147± 0.0125 0.5231± 0.0111
e) 0.2601± 0.0242 0.3068± 0.0297 0.2434± 0.0233
f) 0.3548± 0.0344 0.3522± 0.0337 0.4189± 0.0433
g) 0.8244± 0.0226 0.7856± 0.0206 0.5638± 0.0132

5.2.4 Biomedical application: dermoscopic images

As biomedical applications for FuzEnC2D [75], it is shown the analysis of mi-
crocirculation and melanoma dermoscopic images. The parameters herein used are
shown in table 5.3.

5.2.4.1 Microcirculatory study

Upcoming, is the entropy evaluation of dermoscopic images to perform a cu-
taneous microcirculation study [75]. To prove that this measure is efficient and
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a better choice than previous texture evaluators, the Haralick features upon these
images are also shown to be compared with the FuzEnC2D.

As mentioned, we started by calculating the considered texture descriptors, the
Haralick features [40], which definitions are in table 3.2. Considering the RGB
channels of an image, U, it is shown the average value of the nine subjects for each
descriptor to compare with FuzEnC2D in tables 5.6 and 5.7, at rest and vasodilation
presence, respectively. The symbol “-” represents an undefined value.

Moreover, the p-values have been obtained considering a statistical significance of
p ≤ 0.05 through the Wilcoxon signed rank test on these descriptors for each channel
(table 5.8). The results reveal that the Haralick features are not able to identify
statistical differences between the two microcirculatory states, having a minimum
p-value of 0.0977 .

Table 5.6: Average values for each texture descriptor of the nine subjects when at
rest.

Haralick Features (UR ± σ)× 10−01 (UG ± σ)× 10−01 (UB ± σ)× 10−01

Variance 1.85± 1.43 1.45± 0.99 2.62± 1.06
Entropy - - -

Uniformity 6.66± 2.39 7.28± 1.70 4.67± 1.90
Homogeneity 9.08± 0.71 9.28± 0.50 8.70± 0.54

3rd order moment 0.01± 0.01 0.01± 0.01 0.00± 0.05
Inverse variance - - -

Table 5.7: Average values for each texture descriptor of the nine subjects when
heat is applied and vasodilation is verified.

Haralick Features (UR ± σ)× 10−01 (UG ± σ)× 10−01 (UB ± σ)× 10−01

Variance 1.60± 1.28 1.94± 1.12 2.32± 1.06
Entropy - - -

Uniformity 7.09± 2.23 5.98± 2.26 5.22± 2.06
Homogeneity 9.20± 0.64 9.03± 0.56 8.85± 0.53

3rd order moment 0.00± 0.01 0.01± 0.03 0.00± 0.02
Inverse variance - - -

Table 5.8: p-values of the Wilcoxon signed rank test performed on the Haralick
features extracted from the nine subjects’ dermoscopic images considering the two
microcirculatory states for the images’ red (UR), green (UG) and blue (UB) channels.

Haralick Features UR UG UB

Variance 0.8203 0.1289 0.4258
Entropy - - -

Uniformity 0.8203 0.0977 0.4258
Homogeneity 0.8203 0.1289 0.4961

3rd order moment 0.9102 1.0000 0.7344
Inverse variance - - -
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Table 5.9: FuzEnC2D average values for the nine subjects of the dermoscopic images
at rest and after heat applied (vasodilation).

FuzEnC2D (UR ± σ)× 10−1 (UG ± σ)× 10−1 (UB ± σ)× 10−1

Rest 2.07± 0.07 2.05± 0.07 2.03± 0.09
Vasodilation 1.97± 0.10 1.95± 0.12 1.93± 0.12

Hereafter, the obtained values of FuzEnC2D for the dermoscopic images of the
same nine subjects are shown. The table 5.9 shows fuzzy entropy average values
obtained for the UR, UG, and UB image components, when the subject is at rest
and when heat is applied on the skin, causing blood vessels to dilate. One can
verify that when at rest, the entropy of these images tends to be higher than when
vasodilation occurs.

Finally, the p-values were obtained through a Wilcoxon signed rank test for a
statistical significance of p ≤ 0.05. The microcirculatory states being tested can be
differentiated through red and green channel, in which FuzEnR2D and FuzEnG2D

p-values are lower than 0.05 (see table 5.10). Also, the p-value obtained for the blue
channel is very close to the considered statistical significance level.

This analysis allowed to conclude that FuzEnC2D is a promising feature to eval-
uate this type of images, having the advantage of considering the colors of those
images. This study can be improved by increasing the number of subjects being
analyzing. In addition, a method to reproduce vasoconstriction could be included
in the protocol to study an additional microcirculatory condition. This might be
useful to extend the analysis on microcirculation.

Table 5.10: p-values obtained using a Wilcoxon signed rank test performed on the
fuzzy entropy values for both conditions, rest and heat, of the 9 subjects dermoscopic
colored images, considering the corresponding channels of the image.

FuzEnC2D p-value
FuzEnR2D 0.0117
FuzEnG2D 0.0391
FuzEnB2D 0.0742

5.2.4.2 Melanoma study

Herein, dermoscopic image dataset from [79, 80] are tested. This dataset is
constituted by images clinically diagnosed as common nevus (80 images), atypical
nevus (80 images), and melanoma (40 images).

FuzEnC2D has been used to evaluate the entropy associated with each group. The
results from FuzEnC2D applied to this colored dermoscopic images are represented
in figures 5.17 (a), 5.17 (b), and 5.17 (c), for the red (UR), green (UG) and blue
(UB) channels, respectively.

In figure 5.17 (a), the entropy values of the red channel reveal that the high-
est median entropy value belongs to common nevi group (CNG), then, the second
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highest one is for the atypical nevi group (ANG), and finally, the melanoma group
(MG) presents the lowest median value. The same happens in figure 5.17 (b) and
5.17 (c).

Within the red channel, ANG is the group with more outliers (4). CNG repre-
sents the group with the highest number of outliers for green channel (9) and blue
channel (4).
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Figure 5.17: Box plots with FuzEnC2D values of common nevi, atypical nevi, and
melanoma skin lesions.

The following analysis was preceded by a normality test. In appendix B, it is
shown the results obtained with Shapiro-Wilk test to assess if the sampled popula-
tion of FuzEnC2D values, for each channel, of each group followed a normal distribu-
tion or not. As shown, even though the sample’s size is large enough (N > 15) for
a parametric test, not all data follows a normal distribution so, the Kruskal-Wallis
non-parametric test has been performed to compare the three groups.

Table 5.11 reveal the p-values obtained with Kruskal-Wallis test to differentiate
common nevi, atypical nevi, and melanoma, for a statistical significance of p < 0.05.
The null hypothesis is that the dataset groups come from the same distribution,
which is rejected for the three channels. Therefore, one can conclude that, inde-
pendently of the channel, FuzEnC2D values of each group are not from the same
distribution.
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Table 5.11: Kruskal-Wallis test: mean rank for the different skin lesions for each
RGB channel of the images being tested. p-values obtained for the three channels
to test if within each channel the three groups (common nevi, atypical nevi, and
melanoma) come from different distributions (for p < 0.05).

FuzEnC2D Mean Rank p-value

FuzEnR2D

Common Nevi 123.2± 6.5
2.5E-06Atypical Nevi 94± 6.5

Melanoma 68.1± 9.2

FuzEnG2D

Common Nevi 116.6± 6.5
3.0E-04Atypical Nevi 99.1± 6.5

Melanoma 91.2± 9.2

FuzEnB2D

Common Nevi 110.5± 6.5
1.2E-02Atypical Nevi 102.2± 6.5

Melanoma 77.3± 9.2

Moreover, it can be verified in table 5.12 that it is possible to differentiate the
common nevi lesion from the atypical one through entropy of red channels with
statistical significance of 5%. On the other hand, entropy of all three channels
allows to differentiate common nevi from melanoma for p < 0.05. Finally, the
entropy values of the green channel can differentiate atypical nevi from melanoma
skin lesions, considering a statistical significance of 5%.

This leads to the conclusion that this discrimination of entropy values for each
color channel allows us to differentiate one lesion from another. Having that said,
it has been shown that, at least for one color channel, the entropy values are statis-
tically different between two groups of skin lesions.

Table 5.12: Kruskal-Wallis p-values obtained for the three channels to test if the
three groups (common nevi, atypical nevi, and melanoma) are statistically different
(for p < 0.05) between each other.

FuzEnC2D p-value

FuzEnR2D

CNG vs. ANG 0.004
CNG vs. MG 0.000
ANG vs. MG 0.054

FuzEnG2D

CNG vs. ANG 0.136
CNG vs. MG 0.000
ANG vs. MG 0.034

FuzEnB2D

CNG vs. ANG 0.637
CNG vs. MG 0.009
ANG vs. MG 0.068
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5.3 Tridimensional fuzzy entropy - FuzEn3D

Further on, the FuzEn3D response to change in parameters and to different tex-
tural behaviors is shown. Moreover, a multiscale approach has been performed on
volumes composed by different types of noise.

As mentioned previously, according to figure 5.1, the n-value must be a small
integer value and the tolerance must be a constant multiplied by the data’s SD,
r = k × SDdata.

The fuzzy power parameter was set to n = 2. Even though there is still no
reference to tridimensional fuzzy entropy measures, this value was chosen according
to other studies on fuzzy entropy [45, 46, 58, 60, 64, 73, 75].

Furthermore, considering the fuzzy function behavior upon n-values variation,
shown previously in figure 5.1 (a), this value allows us to verify smooth changes in
similarity between templates.

Finally, our analysis will include the study of a dataset composed by healthy
subjects and individuals suffering IPF.

5.3.1 Tolerance and embedding dimension sensitivity

First, the sensitivity to parameters of FuzEn3D was tested. Figure 5.18 shows
the FuzEn3D sensitivity to tolerance variation, considering 0.06 × SDvol ≤ r ≤
0.48× SDvol (step of 0.06). In addition, several values of embedding dimension, m,
have also been considered to evaluate the behavior of the algorithm.
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Figure 5.18: FuzEn3D sensitivity to change of tolerance, r, between the values
0.06 × SDdata and 0.48 × SDdata, using white noise cubes for m = 1, m = 2 and
m = 3.

A relatively low sensitivity to change of tolerance can be observed. Besides, the
behavior of FuzEn3D for m = 2 and m = 3 is similar. Moreover, as observed before
for uni-, and bi-dimensionless versions, it is verified the absence of undefined values.
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For r ≥ 0.2× SDvolume, the rate of entropy decrease is smaller. The algorithm’s
shows consistency, allowing to select with freedom the r parameter [45, 46].

When choosing a larger r -value, the SD of entropy will be smaller. However, if
this value is too large it might result in information lost [45].

Based on the tolerance interval of [0.10, 0.25] × SDdata defined by Zheng et al.
[64], we have chosen r = 0.2 × SDdata for the remaining validation and biomedical
tests. By fixing the tolerance value, we are able to compare the results easily.

5.3.2 MIX3D(p) processes and embedding dimension behav-
ior

Regarding the choice of embedding dimension, in figure 5.19, the entropy of
Mix3D(p) processes-based volumes are shown for different m-values. The FuzEn3D’s
ability to determine different irregularity levels can be verified. In addition, an
increase of entropy with the increase of p is observed. Besides that, as the m
increases the slope of the curve also increases. Therefore, for a higher m is easier
to observe that for a higher level of randomness (higher p-value) the volume has a
higher level of irregularity.
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Figure 5.19: MIX3D (p) processes volumes for m = 1, m = 2 and m = 3.

The embedding dimension parameter was established to m = 3 for the upcoming
tests due to a higher consistency. The goal is to avoid voxel-by-voxel comparison but,
still have a reasonable computational time. Moreover, for tridimensional entropy
measures has been suggested to use an odd number so the template cube would
have a central point [54, 71]. The table 5.13 contains the established parameters to
be used in further tests.
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5.3.2.1 Shuffling data

Similarly to FuzEn1D and FuzEnC2D, it was verified if, by shuffling the voxels,
the entropy increases compared to the entropy of the original volume. In figure
5.20, for each p-value, FuzEn3D values are indeed higher for the shuffled versions,
as expected. As mentioned previously, shuffling data increases the randomness level
leading to higher irregularity levels therefore, the entropy values are expected to be
higher.

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

Original
Shuffled

Figure 5.20: FuzEn3D of 10 cubes defined by MIX3D (p) processes and their
shuffled versions for 0.1 ≤ p ≤ 1.0.

5.3.3 Pattern-based volumes analysis

A pattern analysis has also been done, guided by a similar analysis done by Moore
and Marchant [54]. As mentioned in the chapter Materials, 6 cubes composed by
different patterns have been tested. The table 5.14 shows FuzEn3D values for those
pattern-based volumes.

Knowing that the first four volume are composed by regular patterns, the table
5.14 reveals FuzEn3D ability to identify that orderness. For example, cube 1 and 3,
are extremely regular and the entropy value reveals that (FuzEn3D = 0). In section
3.1.5, it is mentioned that cube 1 is composed by near-zero values and that cube 3
is a checkerboard-based pattern.

Table 5.13: Parameters values chosen for upcoming tests of FuzEn3D.

Parameters Chosen Values
n 2
m 3
r 0.2× SDdata
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Table 5.14: FuzEn3D values for the six pattern volumes considered.

Cubes FuzEn3D

1 0.0000
2 0.0443
3 0.0000
4 0.1404
5 10.1504
6 26.6905

In addition, cube 2, constituted in one-half by zeros and in the another half by
ones, also shows a low entropy value, as expected. Finally, cube 4, showing diagonal
stripes, and therefore, more irregular than cube 2, shows a higher entropy value but,
still smaller than the more irregular volumes (cube 5 and 6).

Both cube 5 and 6, due to their irregular behavior (see figures 3.5 (e) and 3.5
(f)), are expected to show higher entropy values, which is in fact verified. Besides,
this measure reveals that the last volume, cube 6, is the most irregular from the 6
volumes tested.

5.3.4 Multiscale analysis on noise signals

Furthermore, the characterization of colored noise in terms of complexity has
been performed. This study on noise volumes was based on Costa et al.’s [39, 43]
work and is similar to the study performed in section 5.1.4. The entropy values were
obtained for 10 scale factors (τmax = 10) in a multiscale analysis for white, pink,
blue, and brown noise.
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Figure 5.21: MFE3D values for white, pink, blue and brown noise, considering
τmax = 10.

As it is shown in figure 5.21, the MFE3D curves have been obtained and white
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noise reveals a higher entropy value for τ = 1 than pink noise, as expected. Besides,
pink noise after τ ≥ 2 does not decrease as much as white noise, and the two
entropy curves cross each other. Therefore, one can conclude that pink noise is
more complex than white noise, since the pink noise volume has higher entropy
values for the majority of scale factors, according to Costa et al. [39] analysis.

Additionally, all the volumes show a monotonic decrease of the entropy, estab-
lishing therefore, that these volumes contain a higher amount of information in the
smaller scales [39].

Concluding, for τ = 1 the entropy is lower for noise with a β ≤ 0. Although,
blue noise has β ≥ 0, the entropy value is lower than white noise which at first sight
would indicate less complexity. However, these values are very similar. Nevertheless,
when taking into account the multiscale analysis, considering the highest entropy
values for majority of scale factors, the more complex noise (by decreasing order)
are: brown, pink, white, and finally, blue noise.

5.3.5 Biomedical application: volumetric CT scans of pa-
tients suffering idiopathic pulmonary fibrosis

Finally, the last test involves establishing if there is a statistical difference be-
tween two different groups of individuals: healthy subjects and individuals suffering
idiopathic pulmonary fibrosis. For each subject, a ROI of 50 × 50 × 50 voxels has
been established, with the first point being the most peripheral and basal point
possible, considering the condition mentioned before in section 3.2.3.

An multiscale approach was applied, using a τmax = 10, and therefore, the
smallest coarse-grained volume has 5 × 5 × 5 voxels. Figure 5.22 show the MFE3D

mean values for each scale factor for both groups: healthy group and IPF-suffering
individuals.

In figure 5.22, it can be observed that the mean MFE3D values are higher for the
patients group than for healthy people (except for τ = 10). For τ ≤ 4, a decrease
is verified on the entropy of both groups. Then, for τ = 5 a small rise on entropy
is experienced. Nevertheless, for the higher scale factors the entropy decreases once
more for both groups. For τ = 10, the behavior is reverted once more, and the
entropy increases, having th healthy group the highest entropy value.

Considering the number of samples (N > 15), the normality of each group
has been inferred, for each scale factor. Within each scale factor, the goal is to
differentiate both groups. In appendix B.2, we show the p-values obtained through
a Shapiro-Wilk test to verify if the datasets follow a normal distribution or not.
According to that, for each scale factor, if at least one group is not normal then,
the test performed to verify the existence of statistical significance between the two
groups is the Wilcoxon rank sum test. Otherwise, the parametric t-test has been
used. As shown, only τ = 2 entropy values have been tested with the t-test and the
remaining ones were tested with Wilcoxon rank sum.

For both statistical tests, a statistical significance for a p < 0.05 has been con-
sidered. The results are shown in table 5.15.

Table 5.15 proves that the ability of FuzEn3D to identify statistical differences
between the two groups for 5 out of 10 scale factors (τ = 3, 4, 6, 7, 8) for p < 0.05.
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Figure 5.22: MFE3D mean values for 1 ≤ τ ≤ 10 for the healthy individuals and
subjects suffering IPF (patients).

So, the first goal for this biomedical application was achieved. Nonetheless, knowing
the importance of quantification, there is a demand of amplifying this analysis to
include more ROI’s volumes with similar selection methods (eventually, volumes
from both lungs), or considering the lung as a whole for processing purposes, which
will necessarily consume an huge amount of time.
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Table 5.15: p-values for each scale factor considering a statistical significance for a
p inferior to 0.05 (corresponding to the symbol ∗) between the two groups: subjects
suffering IPF and healthy ones.

Scale Factor
τ

p-value

1 2.1E-01
2 1.2E-01
3 2.9E-05∗

4 7.0E-06∗

5 1.4E-01
6 1.9E-05∗

7 3.9E-05∗

8 2.5E-05∗

9 5.3E-01
10 7.4E-01
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6 Conclusion and final remarks
During the development of this Master thesis project, the applicability of fuzzy

entropy as an entropy measurement algorithm to uni-, bi-, and tridimensional data
has been studied. For the three cases, the algorithms required validation before being
applied in biomedical datasets. Through simulated data the proposed algorithms
based on fuzzy entropy were validated. Moreover, real data has been tested to
demonstrate these algorithms applicability in the biomedical field.

6.1 Main conclusions

Regarding the unidimensional analysis, fuzzy entropy was proven to outstand
sample entropy in several aspects. First, FuzEn1D showed only a decrease of 54.6%
within an tolerance interval of [0.06; 0.48] in opposition to the 60.9% decrease of
SampEn1D. Therefore, being clearly less sensitive to tolerance change than the
sample entropy. When considering the multiscale approach, more accurate values
of MFE1D were achieved regarding pink and white noise than for MSE1D. In addi-
tion, for short signals, the choice of FuzEn1D to determine entropy can reveal to be
decisive in order to avoid undefined values. Having pink signals of N = 100 points,
MFE1D is still able to determine entropy values for all 20 scale factors (even if with
less consistency than considering larger signals). The lack of baseline removal of
FuzEn1D was shown to translate in a steeper slope than the original definition (with
a baseline removal), for an increase of p-value on Mix1D(p) processes-based signals.
In addition, through Mix1D(p) processes-based signals testing, shuffling data was
proven to increase the entropy. Finally, regarding validation of FuzEn1D, through
MFE1D it is possible to establish a complexity order of several noise signals, with
pink noise being the most complex noise compared to white, brown, and blue noise.

As a biomedical application, a study on audio snore related signals was con-
ducted. This analysis revealed the importance of determining complexity of each
stage of SAHS. Nevertheless, the identification of statistical significance between
different sleep disorder SAHS stages is not yet possible. However, the study once
it includes more patients and snores might reveal to be promising, and have, in the
future, that goal achieved.

In the multidimensional field, dermoscopy allied to fuzzy entropy measures color-
based can become a strong and helpful medical tool. During the validation tests,
low sensitivity to tolerance and embedding dimension parameter for FuzEnC2D was
verified. Similar behavior for all RGB channels was verified when testing Mix2D(p)
processes-based images (with checkerboard background), as expected. Moreover,
FuzEnC2D was able to successfully differentiating different randomness levels, either
when the p-value associated to Mix2D(p) is increased or, when shuffling is applied to
the image being tested. Further on, FuzEnC2D was proven to be a reliable measure.
When comparing original textural images from the Colored Brodatz database [76,
77] and the mean value of their sub-images, the SD value was never higher than
0.04.

Concerning the microcirculation study, statistical differences were encountered
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between a relaxed and vasodilated skin state with FuzEnC2D. On the other hand,
classical textural evaluators, like Haralick features [40], revealed a minimum p-value
of 0.098 regarding the same dataset. Moreover, even though differentiating common
nevi lesions from atypical ones is still a difficult task, the study of PH2 dataset
[79, 80], FuzEnR2D can differentiate both. Furthermore, FuzEnC2D can determine
statistical differences, independently of the channel, between melanoma lesions and
common ones. At last, through the green channel differentiating melanoma and
atypical nevi is possible.

Besides relatively low sensitivity to change in parameters, FuzEn3D has proven
to be a helpful tool in discriminating different irregularity levels. Further on, sev-
eral textural-based volumes were analysed according to their inherent regularity (or
irregularity). The most regular volumes were shown to have an entropy of zero (vol-
ume composed by close values to zero and checkerboard-based volume). In addition,
the most irregular one (composed by an uniform random distribution) revealed to
have the highest entropy. On the subject of multiscale analysis, the brown noise
volume was found out to be the most complex compared to the remaining noise
types (white, pink, and blue noise).

As for the tridimensional biomedical application, the study can already reveal
that this entropy measure is able to detect the existence of the studied deathly
pulmonary disease for 5 out of 10 scale factors.

6.2 Future work and developments

According to the previous results, regarding the application of unidimensional
fuzzy entropy to snoring signals, promising results were obtained on the stage pro-
gression of obstructive SAHS. Increasing both the amount of snores for each patient,
and gathering more subjects for each stage could allow us to have a more accurate
analysis.

In addition, the snoring analysis with fuzzy entropy could be extended for dif-
ferent types of snoring, discriminating the results of regular and non-regular snore.
Moreover, in the future, detection and snore selection could be done with a proto-
col procedure and already verified in literature in order to improve these primary
results.

In the imaging field, using a colored bidimensional entropy measure could lead
to several applications in the biomedical area. Even though only applied on dermo-
scopic images, it could be a relevant tool in other imaging fields like on histological
images, for example.

Furthermore, implying this analysis to assist in microcirculatory assessment can
be medical relevant since the tools to do so are still limited. In a further study,
continuing the research and increase the number of volunteers is essential towards a
proper validation of this measure by the medical community.

Regarding textural behavior, since most comparisons between several methods
only concerned gray-scaled versions of images, this can be an opportunity to extend
this type of studies to colored textures.

Since melanoma and related skin lesions are still difficult to evaluate, quantify in
terms of progression, and in dubious cases difficult to diagnose by a less-experienced
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dermatologist, having an entropy-based measure able to do this can be of the utmost
importance in the medical and imaging field. Besides extending the database used,
interconnecting this assessment method with verified classification and segmentation
tools can have a great importance.

In the tridimensional field, some barriers were already broken in terms of using
entropy to assess the regularity of volumetric data. Nonetheless, since it is very time-
consuming, a code optimization might be needed or modifications in the definition
of the algorithm without interfering the consistency expected of a fuzzy entropy
measure. Additionally, another imperative goal to be fulfilled is to extend the IPF
analysis to a more global view to guarantee that FuzEn3D is able to quantify this
disease, a medical challenge of great importance in the medical field. Including more
subjects and therefore, more data will also be a very important task to perform in
the future.

This new fuzzy entropy measure in other types of 3D data can be performed and
reveal other important results in several other biomedical imaging applications.

To conclude, these entropy determination-based tools can be of utmost impor-
tance to establish a bridge between biomedical engineering and medical doctors,
allowing a simple, cheap, and efficient analysis.
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A Vascularisation dermoscopy pro-
tocol

Authors: Andreia Gaudêncio1 and Dr. Clémence Berthin2

Based on a french version of Dr. Clémence Berthin

1 LIBPhys-UC, Physics Department, University of Coimbra, Portugal

2 Dermatology Department, University Hospital Center of Angers,France

A.1 Task

The dermoscopic images were collected to be used in a study of differentiating
two micro circulation states. For more detailed information on the results of this
study, please consult the work of Hilal et al. [75] and the Results chapter of this
document. The collection conditions are specified in this protocol, along with other
important informations.

A.2 Introduction

Dermoscopy or Epiluminescence Microscopy (ELM) is non invasive technique of
high-resolution that allows the visualization of deeper skin structures [8, 14]. This
technique can characterize visual and morphologically skin lesions [30].

A.3 Experiment procedure

The dermoscopic images were collected by Dr. Clémence Berthin, at the Der-
matology department of Angers Hospital, France, showing skin regions at rest and
upon heating with the goal of differentiating two different micro circulation states.
These images were taken from nine healthy volunteers with an average of 36.5± 11
years, including eight women and one man, using a Medicam 800 HD system with
a resolution of 1920× 1080 full HD and 2 megapixels.

All nine volunteers provided written consents to participate and the aim study
was done according to Declaration of Helsinki.

The collecting region was at 3 cm from the antecubital fossa on the left arm
of every volunteer. The heat in that region was locally applied to dilate the blood
vessels and increase blood flow. One image was taken at rest, one microcirculation
state, and another one was taken after the local application during 2 minutes of a
warmed bottle water, the second microcirculation state.

The condition to be fulfilled by all volunteers was the absence of inflammatory
dermatitis in the collection skin area.

In addition, several informations about the volunteers were also collected, namely:

• Gender
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• Age

• Contraception/THS

• Existence/Absence of Skin Pathologies

• Smoking routine (if existent)

• Phototype

• Medical Treatments (medicines)
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B Normality assessment tests
B.1 PH2 dataset

The PH2 dataset [79, 80] is composed by 80 dermoscopic images of common
nevus skin lesions, 80 dermoscopic images of atypical nevus skin lesions and 40
dermoscopic images of melanoma skin lesions, making a total of 200 dermoscopic
images.

In case of having small number of samples, we could have done a non-parametric
test right away. Since we had the groups had considerable number of samples (N¿15),
we needed to infer what statistical test would be more correct to perform.

In order to identify statistical differences upon the results obtained with FuzEnC2D

for these 200 colored dermoscopic images, we first applied the Shapiro-Wilk normal-
ity test. This statistical test allowed us to find out for each group and channel,
considering an α = 0.05, if the obtained entropy values followed a normal distribu-
tion or not [81]. We used the Matlab R© function developed by Öner and Deveci
Kocakoç [82].

Within each channel, considering the FuzEnC2D values for three groups (common
nevus, atypical nevus and melanoma), we represented in table B.1 the statistical pa-
rameters of the Shapiro-Wilk test, including the p-value for a statistical significance
of α < 0.05. Through this test, we were able to assess the normality or not of these
groups for each image’s channel entropy values.

According to the table B.1, only the atypical nevi group for the blue channel
follows a normal distribution. The reaming data are not normal- Therefore, in order
to differentiate the groups, we should apply a non-parametric test. Knowing we have
three groups to compare we should apply the Kruskal-Wallis test, an extension of
the Wilcoxon rank sum test for more than two groups (non-parametric version of
ANOVA test).

Table B.1: Normality distribution assessment through the Shapiro-Wilk normality
test on the PH2 dataset composed by 200 colored dermoscopic images of common
nevi, atypical nevi, and melanoma lesions.

Channel
UK

Skin Condition W (test statistic) p-value
Normality
(1-normal;

0-not normal)

UR

Common Nevi 0.941 0.001 0
Atypical Nevi 0.967 0.039 0
Melanoma 0.924 0.010 0

UG

Common Nevi 0.885 0.000 0
Atypical Nevi 0.937 0.001 0
Melanoma 0.910 0.004 0

UB

Common Nevi 0.899 0.000 0
Atypical Nevi 0.987 0.570 1
Melanoma 0.901 0.002 0

The final statistical test (Kruskal-Wallis analysis) is presented in chapter 5 to
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B. Normality assessment tests

identify the statistical differences between the three groups, within entropy of each
channel.

B.2 Volumetric CT scans data

For the study of idiopathic pulmonary fibrosis, we conducted a multiscale analysis
on a volumetric dataset composed by two groups of subjects: 26 healthy individuals
and 26 patients.

For similar reasons to the PH2 dataset, we evaluated the normality of each group
for each scale factor through the Shapiro-Wilk test, using a Matlab R© function [82].

In table B.2, we show the values obtained with the Shapiro-Wilk normality test,
including the p-value considering a statistical significance of α < 0.05. Moreover,
we display which statistical test was chosen to evaluate the significant statistical
differences between the two groups considering their distributions. As we can verify,
only for τ = 2 both groups are identified as following normal distributions and
therefore, we use a t-test further on. For the remaining scale factors, we use a
Wilcoxon rank sum test, equivalent to Mann-Whitney U test, and a non-parametric
version of the t-test.

The final results regarding the volumetric dataset tested are shown and discussed
in chapter 5.

Table B.2: Normality distribution assessment through the Shapiro-Wilk normality
test of the volumetric CT scans dataset.

Scale
Factor

τ

Healthy Patients
Statistical test

W (test statistic) p-value
Normality
(1-normal;

0-not normal)
W p-value

Normality
(1-normal;

0-not normal)
1 0,7008 0 0 0,9501 0,2332 1 Wilcoxon rank sum
2 0,9387 0,1249 1 0,9692 0,6014 1 t-test (unpaired)
3 0,7993 0,0002 0 0,8621 0,0025 0 Wilcoxon rank sum
4 0,7172 0 0 0,8467 0,0012 0 Wilcoxon rank sum
5 0,8363 0,0008 0 0,9457 0,1838 1 Wilcoxon rank sum
6 0,6653 0 0 0,8325 0,0007 0 Wilcoxon rank sum
7 0,6309 0 0 0,6957 0 0 Wilcoxon rank sum
8 0,7931 0,0001 0 0,7944 0,0001 0 Wilcoxon rank sum
9 0,9306 0,08 1 0,8637 0,0027 0 Wilcoxon rank sum
10 0,921 0,0475 0 0,9394 0,1299 1 Wilcoxon rank sum
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C Internship Report
The following appendix will be dedicated to present the Internship Report that

includes the work developed in LARIS, University of Angers, France inserted in
the ERASMUS+ program. Although the entire project involved the collaboration
between two laboratories, LIBPhys-UC and LARIS, the internship period was fully
dedicated to approach the fuzzy entropy algorithm in the multidimensional data
field. This work allowed to later on make corrections and choose more accurate
approaches for the biomedical applications involved.
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1 Introduction

New entropy measures have been developed these last few years, based on in-
formation theory [1]. The goal has been acquiring consistency and removing bias,
towards the understanding of signals or images complexity [2]. In addition, a new
method to analyze data in multiple scales was proposed [3, 4], collecting more infor-
mation about the data’s complexity. These entropy measures and their multiscale
versions can be studied, either in one, two or even three dimensions.

The main goal of the internship was to develop an entropy measure based on
Fuzzy Entropy to analyze images and sets of images (3D visualization), using for
example, dermoscopic images (microscopic images from the skin) and CT (com-
puterized tomography) scans. In this work, therefore, we developed two main al-
gorithms: a bi-dimensional fuzzy entropy measure dedicated to the processing of
colored images, FuzEnC2D, and a tri-dimensional fuzzy entropy measure dedicated
to processing of 3D data (volumes), FuzEn3D.

In the next chapters, the theoretical background will be presented, including the
algorithm’s equations and mathematical background for both 2D and 3D versions.
This section will include the new FuzEn2D applied to colored images, FuzEnC2D,
that we also developed, based on a previous work by Santos et al. [5]. In the end,
the multiscale procedure applied to these entropy measures will be explained.

Afterwards, also included in theoretical background, some synthetic signals no-
tions will be explained, including the mathematical definition of Mix(p) processes.

Taking into account the main biomedical applications in our work, both will be
introduced with some medical notes on the topic. First, Dermoscopy and its appli-
cability to skin lesions diagnosis will be introduced and then, Pulmonary Fibrosis
and the use of CT scans for its diagnosis will be approached too.

In the end, results obtained will be shown and discussed, ending this report with
the main conclusions for both biomedical applications.

2 Theoretical background

2.1 Entropy algorithms

Based on information theory, many algorithms to determine data’s irregularity
have been developed. Chen et al. [6, 7] developed a new entropy measure based on
Zadeh’s fuzzy sets [8] with the objective of improving consistency for short amounts
of data.

Several studies proposed to use Sample entropy [2] (SampEn1D), and its mul-
tiscale version, Multiscale Sample Entropy [9] (MSE1D) to determine biomedical
signals’ entropy. For short time series, SampEn1D starts to show less consistency,
leading to some undefined values [6, 7, 9].

SampEn1D was an improvement from Approximate entropy [10] (ApEn1D). ApEn1D

allowed self-matches to occur which lead to biased results [2, 10]. SampEn1D re-
moved those self-matches in order to prevent this. In addition, templates compar-
isons already tested are not taken into account in the other iterations [2].

1
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Shortly after, SampEn2D [11] came along to analyze texture in small images
[11]. Afterwards, the multiscale version [9], MSE2D, has also been developed, with
a coarse-graining procedure being performed [9]. It revealed itself as a promising
algorithm to assess irregularities on images’ patterns. The issue of consistency, as it
was shown for short time series, was also a drawback for small images/textures [11].

Currently FuzzyEn1D [6, 7], a more consistent entropy measure, has several re-
lated studies that developed many versions: with and without local mean removal,
or even removal of both local and global mean [6, 7, 12–14].

As all of these FuzzyEn1D-based measures have presented better results with
higher relative consistency, continuity, flexibility in parameter selection and lower
dependence on time series length [7]. The next step was to apply this measure on
bidimensional data [14] and the associated multiscale versions [5, 12–14]. For EMG
(electromyography) signals, FuzzyEn1D have already revealed to be a measure with
best characterization and smaller standard deviations for the results [6].

Bidimensional fuzzy entropy, in a global view, is very similar to unidimensional
fuzzy entropy but, with the remaining challenge of reducing the computational cost
[14].

FuzEn2D and FuzEn3D, are extensions from the original algorithm, FuzzyEn1D,
defined by Chen et al. [6, 7]. However, neither of the algorithms have a baseline
removal 1.

2.2 Synthetic Signals

2.2.1 Mix 2D processes

Based on the one dimensional process, MIX2D(p) can be defined as [11]:

MIX2D(p) = (1− Zi,j)Xi,j + Zi,jYi,j (1)

The signal Xi,j = sin(
2πi

12
) + sin(

2πj

12
) is a sinusoidal image and Yi,j =

[−
√

3,+
√

3] is a white noise image. Zi,j is a random variable which can assume the
value 0 with probability 1− p and p probability of assuming the value 1[11].

2.2.2 Mix 3D processes

Based on the one dimensional process, MIX2D(p) can be defined as:

MIX3D(p) = (1− Zi,j,k)Xi,j,k + Zi,j,kYi,j,k (2)

The volume Xi,j,k can be defined as a deterministic sinusoidal cube Xi,j,k =

sin(
2πi

12
) + sin(

2πj

12
) + sin(

2πk

12
).

The second volume, Yi,j,k can be defined as random cube following normal dis-
tribution between two values, i.e, Yi,j,k = [−

√
3,+
√

3].
Finally, Zi,j,k is a random variable which can assume the value Zi,j,k = 0 with

probability 1− p and Zi,j,k = 1 for p probability.

1Since we chose not to perform a baseline removal, the nomenclature for both is FuzEn2D and
FuzEn3D instead of FuzzyEn2D and FuzzyEn3D

2
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3 Biomedical applications

3.1 Dermoscopy applied to skin lesions

Melanoma is the deadliest skin cancer, with an increasing incidence [15]. Accord-
ing to Bray et al. [16], the non-melanoma represents 5.8% of all new cancer cases
appearing globally and 0.7% number of deaths for 36 types of cancer. In addition,
the melanoma represents 1.6% of all new cases world wide and 0.6% global deaths
by cancer [16].

Melanoma usually present certain characteristics like asymmetry, irregular bor-
ders, uneven color distributions and a diameter wider than 6 mm. These lesions also
evolve in size, shape and color [17].

Initially, the medical doctor’s opinion was only based in naked eye visualization
of the lesions. This procedure was unaided and lacked in accuracy [15, 18]. Also,
this process tended to be difficult in identifying early stages of the disease, leading
to unnecessary biopsies [15].

Nowadays, the trained specialists use dermoscopic images in order to assist the
diagnosis of skin lesions. Dermoscopy or Epiluminescence Microscopy (ELM) is a
high-resolution and non invasive technique that allows the visualization of deeper
skin structures [15, 17].

Dermoscopy allows to look into the visual and morphological characterization of
skin pigmented lesions [18].

Once dermoscopic images were taken into account for the patient’s diagnosis,
the accuracy improved. Still, if not performed by trained dermatologists there can
be limitations. However, even for the specialists, the diagnosis remains subjective
[15, 18].

This field still have space to improve in aided diagnosis. The entropy techniques
can reveal new information about the dermoscopic images and hopefully, in the
future, aid in the diagnosis of skin lesions and cancer, improving the accuracy of
diagnosis.

3.2 CT scans and pulmonary fibrosis

As Wynn [19] mentioned, Pulmonary Fibrosis (PF) is a disease with high mor-
tality rate, with the only effective treatment being the lung transplantation. This
disease is characterized by a “progressive and irreversible destruction of the lung
architecture caused by scar formation” [19]. The fibrotic scar can be developed af-
ter a wound healing response getting out of control, leading to extracellular matrix
(ECM) components accumulation at the injury site [19]. Such components can be
hyaluronic acid, fibronectin, proteoglycans, collagen, among others [19].

The fibrosis is developed if the wound is severe, if there is persistent damaged
tissue and deregulation of the repair processes. Since the active inflammatory re-
sponse is not a prerequisite, this explains why the most common therapies like
anti-inflammatory ones, have shown little effect in the idiopathic form of this dis-
ease, that does not present signs of detectable inflammation like other types of the
disease [19].

3
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Idiopathic pulmonary fibrosis (IPF) is a very severe form of PF with a short life
expectancy [19]. Therefore, an early diagnosis is imperative as well as an assessment
of the disease stage. To diagnose IPF, high-resolution CT scans are performed in the
patient’s chest region. The radiologist needs to identify a probable usual interstitial
pneumonia (UIP) pattern [20]. This can exclude the need of a surgical lung biopsy
[20]. The CT pattern identified by the radiologist can then be classified into one
of four categories: typical UIP CT pattern, probable UIP CT pattern, CT pattern
indeterminate for UIP and CT features most consistent with non-IPF diagnosis [20].

Honeycombing is a key characteristic to identify the UIP pattern and can be
defined as “clustered, thick-walle cystic spaces of similar diameters, generally mea-
suring between 3 and 5 mm” [20].

The analysis of these CT scans with entropy-based algorithms might help in the
future in an early diagnosis and in stage disease classification.

4 Tests

4.1 Validation tests

The validation tests were performed to assess their validity with parameters
selection, computational time, relative consistency, among other factors.

These algorithms require some parameters definition. Both FuzEnC2D and FuzEn3D

depend on the embedding dimension, m, on tolerance, r, and on the exponential
function boundary gradient or fuzzy power, n, besides the image or volume.

Usually the tolerance, r, is defined as a percentage of the standard deviation, SD,
of the considered signal, image, or volume. The tolerance was set to r = 0.2×SDdata.
This value (i.e. 0.2) was based on literature [2, 4]. When testing the sensitivity to
change in r value, the entropy was determined tolerance values between 0.06×SDdata

and 0.48× SDdata.
The n value was established as n = 2, for both bi-, and tridimensional algorithms.

This value should be a small integer, maintaining the continuous exponential be-
havior [6].

The used embedded dimension for FuzEnC2D was m = 2 and for FuzEn3D we
used m = 3.

When the analysis involved Mix(p) processes, the probability, p, was varied
between 0 and 1 (step of 0.1).

These validation tests will allow to choose wisely the fixed parameters to perform
the tests on medical images.

4.1.1 Bidimensional fuzzy entropy applied to colored images

The entropy determination through FuzEnC2D included the values for three color
channels, measuring separately the entropy for each one. In this way, we can specify
the most predominant color irregularity, without missing any information given by
other color channels. If considering only the maximum distance from the three, dur-
ing entropy calculations, as performed by Santos et al. [5], the specific information
for each channel is lost.

4
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The following tests were performed during the internship:

1. Sensitivity to change of tolerance and embedding dimension values on noise-
based images (to establish the r-, and m-value);

2. Entropy verification of a textural image with a checkerboard pattern (for fur-
ther tests);

3. Analysis of Mix2D (p) processes (to establish the m-parameter; to determine
the ability of differentiating different levels of irregularity);

4. Analysis of shuffled versions of Mix2D (p) processes-based images (to recognize
increased randomness).

4.1.2 Tridimensional fuzzy entropy

This algorithm was validated on several volumetric synthetic data for further use
on volumetric CT scans as biomedival application.

The following tests were performed during the internship:

1. Sensitivity to change of tolerance and embedding dimension values on noise-
based volumes (to establish the r-, and m-value);

2. Analysis of Mix3D (p) processes-based volumes (to establish the m-parameter;
to determine the ability of differentiating different levels of irregularity);

3. Analysis of shuffled versions of Mix3D (p) processes-based volumes (to recog-
nize increased randomness);

4. Analysis of texture-based volumes (to compare different regularity levels of
textures);

4.2 Medical Images Tests

The first tests performed with FuzEn3D on CT scans started during the intern-
ship. The goal was to select a relevant region of interest for the medical problem
in question: idiopathic pulmonary fibrosis that is mainly found on peripheral and
basal areas of the lungs. One of the main issues was that a large volume to analyze
from each subject would translate in very consuming computational time.

This study included a dataset of 12 individuals: 6 healthy individuals and 6
patients suffering idiopathic pulmonary fibrosis.

• m =

• n = 2

• r = 0.2× SDvolume

• Each subject had a ROI of 256 × 256 pixels, with two studied conditions (at
rest and heat), for the subject being studied.

5
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Afterwards, regarding the FuzEnC2D algorithm, dermoscopic images were stud-
ied. These images, obtained using a microscope to record an image from the skin,
are usually very helpful to study the evolution of skin related diseases. In this case,
the goal was to differentiate two states of microcirculatory conditions: at rest and
in presence of vasodilation. The common visual effect of this is the redness of the
skin when there is vasodilation.

The parameters used for FuzEnC2D algorithm, based on the validation tests, were
the following ones:

• m = 2

• n = 2

• r = 0.2× SDK
ROI with K=R, G,and B.

• Each subject had a ROI of 256 × 256 pixels, with two studied conditions (at
rest and heat), for the subject being studied.

5 Conclusion

The internship was mainly focused on the study of fuzzy entropy measures in the
imaging field. Having in mind biomedical bi- and tridimensional applications, the
first weeks were dedicated to bibliographic study and development of the algorithms.
Once the development phase for each algorithm here studied was concluded, several
validation tests were performed, considering previous tests referred in literature.
Both algorithms, FuzEn3D and FuzEnC2D, suffered some adjustments along the way
but their final versions here mentioned, were successfully validated for future medical
tests.

For the fuzzy entropy in a 3D level, several CT scans were tested, showing
promising results. In the future, the guidance of radiologists in choosing the vol-
umes being tested can lead to a improvement of the initial results. In addition,
increasing the number of subjects in each group can improve the results and might
allow a classification study based on this entropy measure. Ultimately, the goal
is to identify subjects that suffer from Idiopathic Pulmonary Fibrosis with enough
statistical relevance. In a more advanced study, identifying different stages can also
be a goal.

FuzEnC2D as an entropy measure might reveal itself as a powerful tool to assess
the presence of skin lesions besides microcirculation conditions. The goal is that this
algorithm can distinguish the vasodilation from a relaxed state. This might reveal
the ability to detect different situations, associated with the skin morphological and
visual characteristics. Further on, tests with dermoscopic images of different skin
lesions can also be an interesting study.

6
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