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Abstract

Since the dawn of humankind, security is an essential asset for human beings. With the

latest advances in technology, it is possible to automate security tasks by using patrolling

and surveillance robots, therefore improving the overall well-being of people.

In order to perform advanced and useful tasks in everyday environments, such as patrolling,

search and rescue, interaction with humans to provide assistance, or object manipulation,

robots need to know where they are, what is around them, and which is the arrangement

and category of objects next to them. A solution to this problem is based on semantic

robotic mapping, which involves building an enhanced representation of the environment

that entails not only geometrical information but also semantic information of the objects

populating the environment, including their categorisation, location, orientation, descrip-

tion, etc. The application of semantic mapping to mobile robots enables a more qualitative

and richer description of the robots surroundings, aiming to improve navigation, task plan-

ning, and human-robot interaction.

This dissertation addresses the problem of endowing a mobile robot with the ability to

detect and classify objects in indoor structured environments and register their complete

pose in a semantic map of the environment. The robot perception system was developed

within the STOP project 1, which aims at developing technology based on several scientific

contributions on distributed multi-robot patrolling, and developing innovative technical

features in order to adapt surveillance robots to real-world scenarios, namely the automatic

perception of abnormal situations, as well as resilient operation during long periods of time.

In this dissertation, raw sensor data provided by a RGB-D camera, which collects inform-

ation of the robot’s workspace, is used to build a semantic map.

1http://stop.ingeniarius.pt
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Abstract

The most important contribution of this work, concerning the state of the art, is the ability

to estimate the complete pose of the objects, i.e. not only their position but also their

orientation.

This dissertation work encompassed three major milestones. The first one was to attain

an object detection and classification system based on a centralised architecture using an

artificial neural network. The second major milestone consisted in to develop an object

classification system based on a distributed architecture. In order to achieve a distributed

architecture, a novel heuristic method for object classification using point clouds and

occupancy grids, without resorting to deep learning techniques, was developed. For the

experimental validation of the system, which represents the last milestone, a long-term

test and a benchmarking were carried out.

Keywords: Mobile Robotics, Object Detection and Classification, Object Complete Pose,

Patrolling Robots, Semantic Mapping.
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Resumo

A segurança afigura-se, desde o alvorecer da humanidade, como uma questão primordial

para o ser humano. Graças aos mais recentes avanços tecnológicos, é possível automatizar

tarefas de segurança utilizando robôs de patrulhamento e vigilância, melhorando, deste

modo, o bem-estar geral da população.

Com o objetivo de desempenhar tarefas úteis e avançadas em ambientes do dia a dia, tais

como patrulhamento de edifícios, busca e salvamento, interação com humanos de forma

a garantir assistência ou manuseamento de objetos, os robôs necessitam de saber a sua

localização, o que se encontra em seu redor e qual a distribução espacial e a categoria dos

objetos que se encontram junto deles. A solução para este problema reside no mapeamento

semântico robótico, o qual pressupõe uma construção melhorada da representação do am-

biente, o que implica não só informação geométrica, mas também informação semântica

relativamente aos objetos existentes no ambiente, incluindo a sua classe, posição, ori-

entação, descrição, estado, etc. A aplicação do mapa semântico aos robots móveis propor-

ciona uma melhor e mais rica descrição do meio envolvente, visando melhorar a navegação,

planeamento de tarefas, bem como a interação do homem-robô.

Esta dissertação aborda, fundamentalmente, a questão de como dotar um robot móvel da

capacidade de detetar e classificar objetos em ambientes internos e estruturados, registando

a pose completa dos mesmos num mapa semântico do ambiente. O sistema de perceção do

robô foi desenvolvido no contexto do projeto STOP2, o qual visa desenvolver tecnologia

baseada em vários contributos científicos na área do patrulhamento multi-robô distribuído,

e o desenvolvimento de características técnicas inovadoras com o objetivo de adaptar robôs

de vigilância a cenários de mundo real, nomeadamente a perceção automática de situações

anómalas, bem como a capacidade de operação resiliente durante longos períodos de tempo.

2http://stop.ingeniarius.pt
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Abstract

Nesta dissertação, dados provenientes da câmera RGB, os quais contém informação do

ambiente onde o robô se encontra, são utilizados na construção do mapa semântico.

A contribuição mais importante deste trabalho, em relação ao estado da arte, é a capa-

cidade de estimar a pose completa dos objetos, ou seja, não apenas a sua posição, mas

também a sua orientação.

Este trabalho de dissertação englobou três objetivos principais. O primeiro objetivo con-

sistiu em alcançar um sistema de detecção e classificação de objectos baseado numa arqui-

tectura centralizada utilizando uma rede neuronal artificial. O segundo grande objetivo

consistiu em desenvolver um sistema de classificação de objeto baseado numa arquitectura

distribuída. De forma se conseguir uma arquitetura distribuída foi desenvolvido um novo

método heurístico de classificação de objetos usando nuvens de pontos e grades de ocu-

pação, sem recorrer a técnicas de aprendizagem profunda. Para a validação experimental

dos sistemas, a qual representa o último objectivo, foi realizado um teste de longa duração

e um estudo de comparativo.

Palavras-chave: Robôs Móveis, Deteção e Classificação de Objetos, Pose Completa de

Objetos, Robôs de Patrulhamento, Mapeamento Semântico.
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1
Introduction

“If every tool, when ordered, or even of its own accord, could do the work that befits it

(...) then there would be no need either of apprentices for the master workers or of slaves

for the lords.” - Aristotle, 322 BC. The human curiosity for machines capable of replacing

human labour at performing repetitive tasks, dangerous and heavy work and an increased

manufacturing efficiency is not recent. Over the past centuries, through automation and

robotics, humans have simplified and improved mankind’s overall quality of life by repla-

cing human labour with specialised machines to perform potentially dangerous tasks, thus

helping humans in their daily tasks and improving manufacturing performance as well as

reducing costs.

Robots are becoming increasingly present in our lives and they are here to stay. At

the beginning of the Industrial Age, early robots were simple machines, limited to perform

repetitive and tedious manufacturing tasks in a much more efficient and accurate way than

humans. These simple machines are becoming highly capable robots, with the ability to

perform different and more complex tasks in uncertain and dynamic environments.

Perception is an essential skill of mobile robots which empowers them to move autonom-

ously in the workspace and make decisions based on the information that they extract from

the environment, such as nearby objects and occupation of the space. The ability to per-

ceive allows robots to expand the range of complex tasks they can perform. Some examples

of complex tasks that perception enables robots to complete are: patrolling, search and

rescue, interaction with humans to provide assistance and object manipulation.

Figure 1.1 represents several robots capable of performing differentiated tasks that

contribute to the improvement of the quality of life of human beings and, in general, to

the progress of mankind.

1



Object Detection and Pose Registration on a Semantic Map

(a) Manufacturing robots. (b) Cargo transport robots.

(c) Atlas advanced humanoid robot. (d) da Vinci Surgical System.

Figure 1.1: Example of highly capable robots of performing differentiated and complex
tasks.

1.1 Relevance of Study

Safety and security have always been a top priority for all living beings. From the

smallest ant to the largest mammals, all animals seek to be safe and, therefore, are con-

tinuously on the alert for situations of possible danger. The same happens with humans,

as the feeling of safety and security is essential so that it is possible to live peacefully,

without the feeling of imminent danger. This dissertation is framed in one of the many

important fields of contemporary security, security in facilities.

The major research topic of this dissertation addresses the problem of endowing a

team of mobile robots with the ability to detect and classify objects in indoor structured

environments and register their pose in a semantic map of the environment. More specific-

ally, this work aims at developing an efficient and precise robot perception system capable

2



1. Introduction

of detecting and classifying objects of interest in the robots planar workspace, as well as

registering the pose of these objects with reference to a global frame of the environment

that the robot is patrolling. The registration of the information of the objects in the se-

mantic map consists of storing information regarding the three degrees of freedom (DoF),

X, Y and Z, for the objects’ position, three DoF, Roll, Pitch and Y aw, for the objects’

orientation and the state of the recognised object.

Benefiting from the knowledge of objects position and orientation, it is possible to

assess the state of relevant objects in the context of facilities security. Hence, the system

can verify if relevant objects, such as fire extinguishers, are in their correct position, are

missing or if they are obstructed. It is also possible to infer the state, open or closed, of

doors and windows, as well as exploiting the known orientation of objects to evaluate how

open the doors and windows are.

1.2 Main Objectives

This dissertation encompasses several important challenges. Developing an efficient

and precise robot perception system capable of detecting and classifying objects of interest

in the robot’s planar workspace is one of the major objectives of this work, as well as a

main challenge. Besides identifying and classifying objects, assessing the objects’ pose,

which is composed of objects’ position and orientation, is also one of the main goals of

this dissertation.

In order to keep the acquired information in a model of the environment, it is neces-

sary to create a semantic map of it, which consists of an enhanced representation of the

environment that entails not only geometrical information but also semantic information

of the objects populating the environment, including their categorisation, position, orient-

ation and description. Although the creation of the semantic map was not the main focus

in this dissertation, it is also one of its goals.

Another challenge of this dissertation consists of endowing the system with the ability

to, through the analysis of the position and orientation of objects, detect anomalies in the

environment and alerting the user in case an object is not in the place where it is supposed

to be or if its orientation has changed during a restricted time of the day.

3
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1.3 Outline of the dissertation

This document is divided into several chapters. It starts by presenting in detail the

framework of this dissertation, explaining exactly the main objectives, the resources, and

requirements, as well as its limitations. The document continues with the description of

the implemented architectures, explaining in detail all the modules that compose them.

The document ends with the presentation and discussion of the obtained results, as well

as the conclusion.

The subsequent chapter presents, in detail, the specific problem that this dissertation

proposes to solve, explaining its framework and main objectives.

4



2
Problem Definition

This dissertation was developed within the Seguranças robóTicos coOPerativos (STOP)

project1, which has the objective of deploying autonomous mobile robot teams in large

indoor spaces frequented by people or inhabited, such as shopping malls, stores, open

office spaces and services, museums, large warehouses, military facilities, etc., to carry

out patrolling and surveillance missions. The developed technology is intended to help

humans in monotonous, tedious or repetitive tasks associated with the supervision, mon-

itoring and surveillance of infrastructures, framed in the concept of multi-robot patrolling

for the security of buildings and facilities.

In addition to detecting the presence of unauthorised persons in restricted areas, one

of the many abilities that surveillance robots must have is to detect anomalies, i.e. security

issues, related to relevant objects.

It is essential for facilities’ safety to ensure that there are no anomalies related to

relevant objects, such as doors, fire extinguishers, and windows. At specific times, such as

night time, doors and windows should be properly closed. Fire extinguishers must always

be in the position where they are supposed to be, ready for any emergency, and, as the

fire escape doors, they must be properly unobstructed.

In order to detect anomalies, a surveillance robot must be capable of recognising and

assessing the state of the surrounding objects, classifying them and registering their pose

and state in a map of the environment.

Fig. 2.1 gives a general overview of the problem definition, illustrating the main

challenge of this dissertation: obtaining the position of objects of interest as well as their

orientation.
1http://stop.ingeniarius.pt
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Figure 2.1: Representative illustration of the main challenge of this dissertation and
the described problem.

The main challenge of this dissertation work is to detect and identify relevant objects

for the security, surveillance and patrolling of facilities in the robots workspace (e.g. a

chair, as depicted in the figure) and, for each of those objects, estimate the transformation
STO in order to be able to register its pose in the global reference frame, {W}.

After the computation of transformation STO, the object registration w.r.t. to the

robot base {R} and w.r.t. the global reference frame {W} is straightforward, assuming

that the transformation between the base of the mobile robot and the RGB-D sensor is

fixed and the robot is assumed to be localised2 w.r.t. global reference frame {W}. The

registered objects are used in building and updating a semantic map of the environment

to be used by the robot in the surveillance task.

Although the objectives of this dissertation were already summarised in sec. 1.2, they can

be more systematically defined as follows:

• Develop an efficient and precise robot perception system capable of detecting and

classifying objects of interest in the robots planar workspace;

• Estimation of the pose of detected objects, three DoF for the objects’ position, X,

Y , and Z and three DoF for the objects’ orientation, Roll, Pitch and yaw;

2The robot’s localization problem is not within the scope of this dissertation.
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• Build a semantic map of the indoor environment with information regarding the

position and orientation of objects of interest.

• Create a detector of anomalies capable of alerting the user in case an object is not

in the place where it is supposed to be, is obstructed, or in case its orientation has

been changed during a restricted time of the day.

2.1 Resources, Requirements and Limitations

The system herein presented includes its own limitations, requirements and con-

straints. Consequently, the architectures developed throughout this dissertation inherited

and took into consideration requirements and restrictions of the STOP project.

The STOP project architecture is based on multi-robot perception, where a team

of mobile robots performs cooperative monitoring and surveillance tasks. The patrolling

team comprises essentially one central server computer and three mobile robots, which are

connected through a wireless network. The three mobile robots are assumed to be homo-

geneous and provide a given degree of redundancy and spatial distribution to make the

robotic team capable of patrolling effectively a fairly large indoor structured environment3.

The patrolling test area of the STOP project is well defined and known from the

outset. Consequently, the classes of objects that are relevant to be detected and have their

status inferred, in the context of security and patrolling of the facility, are also defined

from the beginning and the position where each one of these object is supposed to be is

known. Knowing the location of relevant objects at the outset is a valuable asset, since it

opens the possibility of implementing tailored methods to solve the problem. Within the

scope of the STOP project, the main relevant objects that require their condition to be

assessed are: fire extinguishers, doors and windows.

Figures 2.2a and 2.2b depict, respectively, a fire extinguisher and a door, which can

be found in the test facility. Figure 2.2c depicts a typical window that can be found in

the test facilities.

The server computer stands out as the only computation node of the system endowed

with a dedicated graphics processing unit (GPU), NVIDIA GTX 1070 Ti, an essential piece
3Experiments have been carried out in an environment whose size is 60 x 10 meters.
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(a) Fire extinguisher (b) Door

(c) Window

Figure 2.2: Examples of objects relevant to the safety of the facility that can be found
in the test area.

of hardware to run software modules that require large amounts of parallel processing,

such as running Convolutional Neural networks. It also contains a Intel core I7 central

processing unit (CPU).

Patrolling robots have the purpose of moving along indoor environments of interest,

acquiring useful information in the format of colour and depth images, to gauge the state

of objects relevant to the safety of facilities. These mobile robots do not have a powerful

graphics card, such as the one found on the server computer, possessing only an Intel

core i5 6th generation CPU, powerful enough to perform lighter tasks. All three patrolling

robots contain, among other sensors, a RGB-D camera. This camera sensor is the main

8
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sensor in this dissertation work, as it is used to collect data, colour and depth images of

the environment in the neighbourhood of the mobile robots. Figures 2.3 and 2.4 depict,

respectively, one of the patrolling robots and the server computer.

Figure 2.3: Illustration of one of the
patrolling robots.

Figure 2.4: Server computer of the
patrolling team

One of the main requirements of the STOP project system is scalability. This require-

ment is essential so that, in the future, it will be possible to increase the number of mobile

patrolling robots without major hardware and software design changes. This requirement

impacts two fundamental parts of the system: bandwidth usage so that robots can com-

municate among each other and with the server; and the use of server processing resources

that, due to the fact that the server computer is the only computational node endowed

with a powerful GPU, it limits the use of deep learning to perform object recognition and

classification.

Another major asset for the STOP project system is the Wi-Fi communication net-

work, which supports wireless communication in real time among the server and mobile

robots. Although this is a very important asset, it is something that cannot be entirely re-

liable due to its limitations in the testing facility. It has been found that robots lose access

to network frequently due to a few dead zones. Also, in certain areas of the testing facility,

wireless connection reaches high latency peaks, causing a delay in data transmission and

a decrease in the connection’s bandwidth, thus restricting the system from harnessing the

full potential of the wireless network.

The lighting conditions of the test facility are poor. This condition causes less contrast

in the colours of the environment, impairing the collection of accurate colour information

9
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by the patrolling robots. Figure 2.5 depicts the area where the tests took place.

Figure 2.5: Photo of the area where the tests took place.

2.2 Base Software and Middleware

All computation nodes of the system, i.e. the three mobile robots and the server

computer, run the Ubuntu operating system, a free and open-source Linux distribution.

On top of Ubuntu, the Robot Operating System4 is used. ROS is a flexible framework for

developing robot software. It consists of a collection of tools, libraries, and conventions

that aim to simplify the task of creating complex and robust robot behaviour across a wide

variety of robotic platforms. ROS was built from the ground up to encourage collaborative

robotics software development, such as the one developed throughout the STOP research

project. It was designed specifically for groups to collaborate and build upon each other’s

work. ROS has several versions. The one used in this work was ROS Kinetic due to the

fact that ROS kinetic is the most advanced version at the start date of the STOP project.

4http://www.ros.org/
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2.3 Data Acquisition

The RGB-D camera is the main sensor used throughout the development of this

work. It provides data from the robot’s workspace, namely colour and depth information,

in order to be further processed. This type of camera captures a fairly good resolution

colour image and depth estimation per-pixel, at a low cost, making it a good asset for

research with mobile robots and computer vision applications. Each of the three patrolling

robots are equipped with an Orbbec Astra RGB-D5 camera. This camera provides high-

end responsiveness, depth measurement, smooth gradients and precise contours, as well as

the ability to filter out low-quality depth pixels. Table 2.1 presents its main specifications

according with information provided by its manufacturer.

Parameter Value
Range 0.6m - 8m
FOV 60°H x 49.5°V x 73°D
RGB Image Resolution 640 x 480 @30fps
Depth Image Resolution 640 x 480 @30fps
Size 165mm x 30mm x 40mm
Temperature 0°C 40°C
Connection and Power Supply USB 2.0
Power Consumption <2.4W
Operating Systems Android/Linux/Windows 7/8/10
SDK Astra SDK or OpenNI
Microphones 2 (built in)

Table 2.1: Orbbec Astra technical specifications.

Figure 2.6 shows the Orbbec Astra RGB-D sensor installed on top of each one of the

mobile patrolling robots. The RGB-D camera collects data from the environment and the

camera’s driver publishes it in ROS topics. Among the different published topics there

are, for example, colour and depth images, camera parameters, point clouds as well as

images in compressed format.

Figure 2.6: Orbecc Astra RGB-D sensor (reproduced from the Orbbec website).

5https://orbbec3d.com/product-astra-pro/
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Fig. 2.7 depicts the covered patrolling robot. Fig. 2.8 depicts the uncovered patrolling

robot and highlights its Orbecc Astra RGB-D sensor.

Figure 2.7: Covered patrolling robot. Figure 2.8: Uncovered patrolling robot.

2.4 Summary

This chapter began by introducing the reader to the STOP project, in which this dis-

sertation is tailored from. Then it presented the major research topics of this dissertation

as well as its goals. In the next section, the available resources, requirements, limitations of

the STOP project, and the characteristics of the test facility are described. Afterwards, the

software and middleware that underpins the entire system was introduced. This chapter

concluded with a detailed presentation of the main sensor used in this dissertation.

The following chapters, chapters 3 and 4, present two different architectures which

were designed to fulfil the requirements of the object detection module of the STOP

project, taking into account the restrictions and limitations of the system, not disregarding

the latest state-of-the-art methods, and aiming to achieve an efficient and precise robot

perception system.
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3
Centralised Architecture based on

Deep Learning

Object classification, Semantic Segmentation and Object Detection are frequently

misinterpreted terms. In object classification, a certain class is usually assigned to an

image or point cloud. In opposition, with Semantic Segmentation, labelling is performed

for each individual pixel or point. Qi [10] proposed PointNet Deep Learning on Point

Sets for 3D Classification and Segmentation, which is divided in classification and semantic

segmentation. The PointNet Classification method assigns one and only one label to the

point cloud being classified. In opposition, PointNet Semantic Segmentation assigns a

label to each element, i.e point, of the point cloud. In the case of object detection, the

classification is accomplished by placing bounding boxes around the objects, assigning

them a label. Redmon [13] proposed YOLO You Only Look Once, which is a perfect

example of an object detection system.

This chapter presents one of the two architectures developed throughout this disser-

tation work: the centralised architecture. Both architectures were designed to address the

problem defined in chapter 2.

The centralised architecture uses deep learning techniques. Deep learning techniques

involve large amounts of processing, thus requiring a powerful GPU, something that is

only available on the server computer, according to the assumptions presented in section

2.1 of the system. As a result, most of the software modules comprising this architecture

run on the server computer, centralising therein the objects’ perception relative to every

robot in the patrolling team. Therefore, the use of deep learning approaches requires the

system architecture to be centralised.
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This chapter starts by presenting the diagram of the developed centralised architec-

ture. The architecture is divided into several modules and, as a result, this chapter has

different sections for each one of the modules comprising the architecture. Each of these

subsequent sections starts by presenting, individually and in detail, the specific subprob-

lem that led to the need for the implementation of that module, followed by a review

of the state-of-the-art methods for solving that subproblem and, finally, the procedure

implemented to solve it.

3.1 System Architecture

Fig. 3.1 represents a diagram of the centralised system architecture developed in this

dissertation. It was designed to meet the requirements of the object detection module

of the STOP project, taking into account the restrictions and limitations of the system

described in sec. 2.1, not disregarding the latest state-of-the-art methods. As can be seen

in the diagram, the raw data collected by the patrolling robots is transmitted through

a wireless connection to the server, where it is subsequently processed, thus making this

software system centralized. The diagram presented below intends to give the reader an

overview of the centralized architecture. It will be referred multiple times throughout this

chapter to be explained in detail.

In order to better understand the decisions taken during the development of this

centralised architecture, it is necessary to understand the core of it. Hence, the following

section explains the core of this architecture, i.e. the object detection method implemen-

ted.

3.2 Object Detection and Classification

Nowadays, object detection is widely used, whether to perform surveillance and

patrolling tasks, assist in the autonomous driving of vehicles, object recognition, detection

of anomalies in a restricted environment or to endow the robots with more sophisticated

capabilities.

There are several algorithms to perform real-time object recognition and classification
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Figure 3.1: Diagram of the centralised architecture based on deep learning.

based on colour images. Most of them are based on computer vision and deep learning

techniques that require a powerful GPU. Consequently, the amount of processing power

required to run deep learning algorithms usually surpasses the computational power avail-

able in a mobile robot, making it necessary to rely on the resources available on the server

computer, as shown in Fig. 3.1.

Object detection, object classification, semantic segmentation and object detection are

frequently misinterpreted terms. Object detection classification is accomplished by pla-

cing bounding boxers around the objects, assigning them a label. Redmon [13] proposed

(YOLO – You Only Look Once: Unified, Real-Time Object Detection, which is a state-of-

the-art, real-time object detection system. This technique applies a single neural network

to a single RGB image. The image is divided into regions, predicting probabilities and
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bounding boxes related to each region. The predicted probabilities weigh the bounding

boxes. YOLO has been in constant improvement, and it is currently in its third version,

YOLOv3, which is extremely fast and accurate.

Object classification consists of labelling an image or point cloud with just one label.

In opposition, with semantic segmentation labelling, each individual pixel of an image

or element, i.e point, of a point cloud gets labelled. Qi [10] proposed PointNet – Deep

Learning on Point Sets for 3D Classification and Segmentation. PointNet is composed

of a classification technique, which takes as input a point cloud and outputs a label for

the entire input, and semantic segmentation, which takes as input a colored point cloud

and outputs a label per point for each point of the input. PointNet is a unified deep

learning architecture that directly takes colour and depth information in the format of

colour point clouds as input. It outputs either class labels for the entire input or per point

segment/part labels for each point of the input. This method stands out for its good

test results achieved on the Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) 1.

This technique, as other aforementioned, also had improvements. Qi [11] also proposed

PointNet++ – Deep Hierarchical Feature Learning on Point Sets in a Metric Space, which

significantly improves the classification and segmentation achieved by the first version of

PointNet in exchange for higher processing power requirements, i.e. a significantly higher

GPU resource usage. Due to the higher processing power requirements, this technique

was not implemented.

Girshick [4] proposed R-CNN: Region-based Convolutional Networks for Accurate Ob-

ject Detection and Segmentation, a state-of-the-art Convolutional Neural Network (CNN)

-based deep learning object detection technique that uses selective search to extract from

images 2000 regions, calling it regions proposals. These regions are fed into a CNN in order

to extract features, which are subsequently evaluated by a Support Vector Machine (SVM)

in order to assess the object classification. This method cannot be executed in real-time

as it takes a large amount of time to evaluate each test image. Girshick also proposed

a technique based on R-CNN with several improvements, Fast R-CNN [3], which allows

to perform object detection and classification in a shorter period of time than R-CNN.

This technique’s improvement advanced farther than Girshick’s work with the proposal of

Ren, Faster R-CNN, [14], a state-of-the-art method capable of performing real-time object

1http://buildingparser.stanford.edu/method.html
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detection.

Recently, Park [9] proposed Multi-Task Template Matching for Object Detection,

Segmentation and Pose Estimation Using Depth Images. This method stands out for not

requiring a further CNN training so that the system can infer the 6D pose and segmentation

of new objects, as well as for outperforming baseline methods that use colour and depth

information.

Qin [12] proposed ThunderNet: Towards Real-time Generic Object Detection, a light-

weight two-stage generic object detector focused on efficiency but still capable of achieving

good accuracy. This method is based on RGB images and uses the input resolution of

320*320 pixels. On PASCAL VOC and COCObenchmarks, when compared with light-

weight one-stage detectors, ThunderNet achieves superior performance with only 40% of

the computational cost.

Amongst the object detection methods presented above, PointNet was the one that

stood out the most due to its good results, relative low GPU resources consumption as well

as for using colour and depth information captured by the RGB-D camera. The Point-

Net method is divided into three parts: Classification, Part segmentation, and Semantic

Segmentation. The PointNet Semantic Segmentation algorithm was the method adopted

in this work to perform the task of detecting and classifying objects of interest. It takes

as input a coloured point cloud and outputs a properly labelled point cloud per point.

Figure 3.2 uses an image reproduced from the PoinNet paper 2 to show an example of the

output of the PointNet Semantic Segmentation method for different input point clouds.

PointNet Semantic Segmentation method requires as input a numpy array with seven

columns and an undefined number of rows. Table 3.1 shows the input format of this

method. The first three columns contain information about the spatial position of points,

the following three columns contain colour information and the last column contains

ground truth information about the label of the points, where the integer numbers repres-

ent a specific class. The information in the last column is only used to evaluate PointNet

Semantic Segmentation performance in the case of a test with a suitable data set, such as

the Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS).

The output of the PointNet Semantic Segmentation method is a numpy array with
2https://arxiv.org/pdf/1612.00593.pdf
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Figure 3.2: Example of PointNet semantic segmentation input and output, extracted
from the authors’ paper.

Coordinates Colour
X Y Z R G B Ground Truth

Points

1.42 2.32 2.12 100 100 100 10
1.23 2.53 2.09 244 122 121 12
1.44 2.42 2.11 255 0 0 12
... ... ... ... ... ... ...

Table 3.1: PointNet semantic segmentation input numpy array.

six columns and an undefined number of rows. Table 3.2 shows the output format of the

this method. The first three columns contain information about the spatial position of

points and the last three columns contain the label of the points in a colour codification.

Each colour represents a different label. For example, the colour red (255, 0, 0) means that

PointNet Semantic Segmentation assessed that the point belongs to the class of chairs.

3.3 Preprocessing

This section explains in detail all the necessary steps between the acquisition of data

through the RGB-D sensor and the input of data in the object detection presented in the

previous section, i.e. the PointNet Semantic Segmentation. The process begins with the

data acquisition through the RGB-D sensor presented in sec. 2.3. Through the Orbbec
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Coordinates Colour
X Y Z R G B

Points

1.42 2.32 2.12 255 0 0
1.23 2.53 2.09 0 255 0
1.44 2.42 2.11 0 0 255
... ... ... ... ... ...

Table 3.2: PointNet semantic segmentation output numpy array.

Astra’s drivers, the data recorded is published in different ROS topics. Among the various

types of information published are colour and depth images, camera parameters, point

clouds, as well as colour and depth images in compressed format.

Considering that the server computer is the only element of the system endowed with

the required hardware to run algorithms based on deep learning, like the PointNet, it is

necessary to transmit the captured data to the server computer through the Wi-Fi connec-

tion. PointNet Semantic Segmentation takes as input a coloured point cloud, which is pub-

lished by the RGB-D camera’s driver in the ROS topics camera/depth_registered/points

(point cloud containing RGB data).

Other ROS topics are published by the RGB-D camera’s driver:

• /camera/rgb/image_ rect_color for the rectified RGB image;

• /camera/depth_registered/hw_registered/image_rect/compressedDepth for the depth

image registered w.r.t RGB camera;

• /camera/depth/image_rect for the rectified depth image;

• /camera/rgb/image_rect_color/compressed for the RGB image compressed through

the 32FC1 format.

Bearing in mind that one of the main requirements of the STOP project system

is scalability, and given that transmitting point clouds through the wireless connection

consumes prohibitive amounts of bandwidth, doing this is unfeasible. The solution adopted

was to take advantage of the colour and depth compressed images provided by the camera

driver, as the transmission of compressed images requires a much lower bandwidth.

Table 3.3 presents the required bandwidth to transmit coloured point clouds, colour

and depth images and compressed colour and depth images. Comparing the original,

provided by the RGB-D camera driver, against the reconstructed point cloud, it was also
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found that the images compression does not have a significant impact on the quality of

the reconstructed point clouds.

Tipe of data Average Bandwidth Required Average Frequency
Colour

Point Cloud 290.49MB/s 30Hz
Colour Images 36.85MB/s 64,78MB/s 30HzDepth Images 27.93MB/s

Compressed Colour
Images 743.73KB/s 1.15MB/s 30Hz

Compressed Depth
Images 410.75KB/s

Table 3.3: Comparison of bandwidth requirements for the transmission of images
acquired by the Orbbec Astra RGB-D sensor.

However, transmitting compressed images leads to another problem because PointNet

Semantic Segmentation only accepts as input coloured point clouds. The preprocessing

module depicted in figure 3.1 presents the adopted approach to transform compressed

colour and depth images into coloured point clouds. As it is possible to observe, the

preprocessing module on the server computer starts with the decompression of the re-

ceived images. In order to decompress colour and depth images, the ROS package im-

age_transport3 was used, which provides helpful tools for image and video transmission

in low-bandwidth conditions.

Then, the decompressed images enter the next module, Point Cloud Reconstruction,

which uses colour and depth images, along with camera parameters, to build a coloured

point cloud. This module is based on the ROS package depth_image_proc 4 which

contains nodelets that help in the processing of depth images.

The next module, Transform PCL2 to Global Reference Frame, as its name suggests,

transforms the point clouds from the RGB camera frame to the global reference frame.

This module is of great importance because, after the point cloud is processed by PointNet

Semantic Segmentation, the objects are immediately referenced w.r.t. the global reference

frame. There is an intermediate step in transforming point clouds from the sensor reference

frame to the global reference frame: the transformation to the robot base. Since the robot

is assumed to be localised w.r.t. the global reference frame {W}, and the transformation

between the sensor reference frame {S} and the robot base {R} is fixed, calculating the
3http://wiki.ros.org/image_transport
4http://wiki.ros.org/depth_image_proc
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transformation WTS is straightforward.

Equation 3.1 shows the transformation that occurs in the Point Cloud PCL2 to Numpy

Array Converter module. This last module of preprocessing transforms a point cloud that

is in PCL2 format to a numpy array with seven columns and arbitrary high number of

rows. The first three columns contain information about the spatial position of points,

the following three columns contain points colour information and, the last column is

filled with zeros as the objective is not to evaluate the performance of the Point semantic

segmentation. Table 3.4 shows the output format of the preprocessing module.

WTS =W TR.
RTS (3.1)

Coordinates Colour
X Y Z R G B Ground Truth

Points

1.42 2.32 2.12 100 100 100 0
1.23 2.53 2.09 244 122 121 0
1.44 2.42 2.11 255 0 0 0
... ... ... ... ... ... ...

Table 3.4: Output of Preprocessing Module.

3.4 Perception Module

This section presents in detail the submodules that comprise the Perception Module

represented in the diagram of the centralised architecture based on deep learning (see Fig.

3.1), besides the Object Detection submodule which was described in sec. 3.2.

Figure 3.3 exhibits the input and output of the PointNet Semantic Segmentation

for a colour point cloud acquired at Mobile Robotics Lab (MRL), at ISR Coimbra. The

PointNet Semantic Segmentation considers that each of the different colours belonging to

the points corresponds to a different class of objects, i.e the red points belongs to chairs,

the turquoise points belong to walls, etc. With the information provided by PointNet

Semantic Segmentation, it is possible to assess the output label for each one of the points.

However, it is impossible to know how many objects are in the area or the localisation of

them.
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Looking closely at the input and output images in Fig. 3.3, it is possible to observe

that PointNet Semantic Segmentation is far from being perfect. However, it is still capable

of correctly identifying the points that belong to the chair.

(a) Input (b) Output

Figure 3.3: PointNet Semantic Segmentation at MRL, ISR Coimbra.

3.4.1 PointNet Semantic Segmentation - Training

After analysing an example provided by the authors of PointNet based on the S3DIS –

Stanford Large-Scale 3D Indoor Spaces Dataset (see the footnote in sec. 3.1) which input

data is required by Pointnet to segment a point cloud, PointNet was trained with a dataset

acquired in the test facility (see Fig. 2.5). The meshlab5 tool was used to trim raw point

clouds points that are irrelevant w.r.t. the objects of interest.

3.4.2 Point Clouds’ Clustering

The submodule Point Cloud Cluster was implemented to solve the aforemetioned

problem. Point Cloud Cluster takes as input a point cloud in which all the points belong

to just one class of objects. Figure 3.4 gives an example of the input of this method, in

which it is only visible red points, i.e. all the points that PointNet Semantic Segmentation

considers that belong to the class of chairs.

In this real environment case scenario, PointNet Semantic Segmentation is disappointing

as the vast majority of points are wrongly classified as belonging to a chair.

5http://www.meshlab.net/
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Figure 3.4: Output of PointNet Semantic Segmentation.

Clustering techniques, in addition to allowing us to determine how many objects of

the same class are in a given space, also have the ability to improve the overall results of

the perception system.

The assortment of techniques to perform clustering is vast as several distinct cluster-

ing algorithms have been proposed in the last few years. Ester [2] presented DBSCAN –

Density-Based Spatial Clustering of Applications with Noise, which became a widely used

clustering technique. This technique defines clusters by iteratively computing the distance

of each point to its neighbourhood points, given a minimum number of points and a min-

imum distance threshold. Ng [8] proposed Spectral Clustering, a easy way to implement

a clustering algorithm with good experimental results on distinct challenging clustering

problems. Ankerst [1] presented OPTICS: Ordering Points To Identify the Clustering

Structure, a versatile clustering technique able to identify clusters with varying densities

and requiring very little parameter tuning. Müllner [6] presented Modern hierarchical,

agglomerative clustering algorithms, where efficient hierarchical agglomerative clustering

algorithms, from a practical point of view, are presented. Fig. 3.5 presents a comparison

between the clustering algorithms that best fit the problem aforementioned.

Among all the clustering techniques methods presented above, DBSCAN – Density-

Based Spatial Clustering of Applications with Noise was the one that stood out the most

due to its good clustering results and fast performance. Therefore, this was the algorithm

adopted in this work to cluster the output of PointNet Semantic Segmentation. By defining

the DBSCAN parameters per class of object, such as the maximum distance between two
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Figure 3.5: Performance comparison of different clustering methods. Adapted from:
Scikit-Learn Plot Cluster Comparison.

points for one to be considered as in the neighbourhood of the other and number of points

in a neighbourhood for a group of points to be considered as a cluster, it is possible to

discard the clusters that clearly do not correspond to the object we are analysing.

The results of the implementation of the clustering algorithm, DBSCAN, are shown

in Fig. 3.6. The figure shows a marker placed exactly where the chair is located. Thus,

it is concluded that the DBSCAN is capable of dealing with the vast majority of false

positives given by the PointNet Semantic Segmentation.

Figure 3.6: Chair localised after the implementation of DBSCAN clustering method.

24

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html


3. Centralised Architecture based on Deep Learning

3.5 Preliminary tests of the centralised architecture.

In order to ensure the correct operation of the system, preliminary tests were conducted

in a real-world environment, at the 3rd floor of the "Centro Tecnológico da Cerâmica e do

Vidro (CTCV)" facilities.

Unfortunately, under these conditions, besides the fact that PointNet Semantic Seg-

mentation provides a lot of false positives, it is also not capable of providing some true

positives, as is the case in the laboratory testing environment. Therefore, the DBSCAN

cannot operate under these circumstances and the results are below expectations.

The only factor that changes between the test environment in the laboratory and the

real-world environment, at the 3rd floor of the "Centro Tecnológico da Cerâmica e do Vidro

(CTCV)" facilities, is the lighting conditions of the environment, which is poor at the test

facilities. Therefore, it is concluded that good lighting of the environment is a crucial

factor for the proper functioning of the PointNet Semantic Segmentation of PointNet.

3.6 Summary

This chapter presents the centralised architecture and the modules that compose it. Rel-

evant techniques for detecting and classifying objects are mentioned, as well as clustering

methods. Preliminary test results performed in the laboratory environment and in the

real-world environment were presented.

Unfortunately, improving lighting conditions was not an option. Therefore, to handle

the problem of the lack of light in the test environment, a new architecture based only on

PointClouds without colour information was developed. This architecture is presented in

detail in chapter 4.

-
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4
Distributed Architecture based on

Spatial Template Matching

Unlike the system implemented in the centralised architecture, in which the data pro-

cessing is carried out on the server computer, the architecture presented in this chapter

is based on the concept that the data processing necessary for the correct operation of

the system is carried out individually by each of the patrolling robots. Since the data

processing is carried out on the patrolling robots, the developed system is a distributed

data processing system.

In order to be possible to implement a distributed architecture, the system cannot

rely on deep learning techniques that require a discrete GPU, since the robots do not

possess one. Therefore, the architecture presented in this chapter consists of an alternative

heuristic approach to perform object recognition and classification without resorting to

deep learning based techniques.

The distributed architecture takes advantage of the fact that the map of the test

facility, as well as the location of the objects of interest relating to the security of the

building, are known from the outset.

At the core of the distributed architecture is a Classifier based on Spatial Template

Matching (CboSTM), which was developed throughout this dissertation and stands out

for not relying on any deep learning techniques. The CboSTM infers the label of objects

through the analysis of three-dimensional point clouds.
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4.1 Architecture

Fig. 4.1 presents the distributed system architecture diagram developed throughout

this dissertation, which stands on the CboSTM. As it is possible to perceive in the diagram,

this architecture relies on a distributed system approach in which each one of the patrolling

robots processes its own data.

Robot	3

Robot	2

Depth	Image
RGB	Image

Point	Cloud

Robot	1

Data	Acquisition

Preprocessing

Point	Cloud	in	Numpy	
Array	Format
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Boundaries

Boundaries	of	the
Areas	of	Interest

Server
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Objects'	Pose

Objects'	State
Objects'	Label
Anomaly	State
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Object	Label

Spatial	Template
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Anomaly	Detector

Object	State	
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Templates

Trimmed
Point	Cloud
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Figure 4.1: Diagram of the distributed architecture which has at its core the Classifier
based on Spacial Template Matching.

The distributed architecture consists of two main modules. The CboSTM is composed of

a set of submodules that, as a whole, are able to infer the label of the object that is present

in a three-dimensional point clouds. The Anomaly Detector checks whether the inferred

class represents an anomaly. Last but not least, the Semantic Map stores all extracted

information, such as the status and pose of objects and detected anomalies.
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4.1.1 Classifier based on Spatial Template Matching

The Classifier based on Spatial Template Matching is the core of the distributed archi-

tecture. Essentially, CboSTM consists of three main submodules. The Preprocessing has

the purpose of processing the three-dimensional point clouds according to the Classifier

requirements. The Classifier receives the preprocessed point cloud and infers the object

label. The Object Data, has the purpose of storing the data related to the objects of

interest, such as templates and the boundaries of the areas of interest, which are known

at the outset.

4.1.1.1 Preprocessing

The object classification process begins when the patrolling robot is in a position

close to an object of interest. The robot positions itself in an appropriate pose to inspect

the object and, using the RGB-D camera, starts collecting data, three-dimensional point

clouds without colour information.

Fig. 4.2 presents an image of the type of information collected by the patrolling robot,

a raw three-dimensional point cloud. In it, it is possible to perceive a fire extinguisher,

which corresponds to an object of interest, and a box, which is not an object of interest.

Figure 4.2: Example of raw point cloud captured by the patrolling robots.
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After being collected by the RGB-D camera, the raw three-dimensional point cloud

goes through the preprocessing stage, as represented in the diagram of Fig. 4.1, being

the input of the PCL2 to Global Reference Frame Transformer submodule. The input

point cloud is in PCL2 message type and spatial reference w.r.t the RGB-D sensor base

link. The first stage of the Preprocessing module transforms the input point cloud from

its RGB-D sensor base link, {S}, to the global reference frame, {W}. Since the robots’

position on the map is known, as well as the transformation between the camera link

and the robot base link, the point cloud registration w.r.t. the global reference frame is

straightforward.

Equation 4.1 represents the transformation, per point, of the point cloud from RGB-D

sensor base link to the global reference frame.

WTP =W TR ∗R TS ∗S TP (4.1)

In order to be easier to manipulate the point cloud data attached to PointCloud2

message, the second stage of the preprocessing extracts all the points contained in the

PointCloud2 message and saves them in a Numpy Array.

By taking advantage of the knowledge of the location of the objects of interest, it

is possible to trim point clouds and to discard the points that are irrelevant to inferring

the state of objects. Therefore, the remaining points only contain the information that is

indispensable for inferring the state of the object to be inspected. The selection of relevant

points is conducted based on the information provided by the user, which defines a set of

boundaries delimiting the areas of interest. Using the limits defined by the user, the point

cloud is trimmed, discarding all the points outside of the boundaries and keeping only the

points considered relevant to assess the objects’ position and orientation.

Fig. 4.3 presents an image of the point cloud after it has been preprocessed. As it

is possible to observe, all the points that do not add relevant information to inferring the

state of the object were trimmed.
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Figure 4.3: Fire extinguisher point cloud after being preprocessed.

4.1.1.2 Classifier

After preprocessed, the trimmed point cloud is transferred to the Classifier module,

which has the purpose of recognising the object that is present in the point cloud.

The classifier is based on the analysis of the spatial arrangement of the point cloud

elements, i.e. points. It is composed of three distinct modules, which are equally crucial

for the system correct operation.

The diagram of Fig. 4.4 presents, in detail, the architecture behind the classifier used

in this section. As it is possible to observe in this figure, the classifier receives as input

a properly trimmed point cloud, which is in a Numpy Array with three columns and an

undefined number of rows. Each row represents one point of the point cloud. The three

columns correspond to the coordinates (X, Y, Z) in which the points are located.

4.1.1.3 Build 3D Voxel Grid

To easily comprehend the idea behind the CboSTM it is necessary to imagine a point

cloud overlapped on a voxel grid. The first submodule of the Classifier creates a three-

dimensional voxel grid according to the dimensions of the trimmed point cloud. Fig. 4.5

depicts a preprocessed point cloud, the input of the CboSTM, in which is possible to
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Figure 4.4: Diagram of Classifier based on Spatial Template Matching.

recognise a chair. On the right, Fig. 4.6, which is merely illustrative, depicts a three-

dimensional voxel grid. The voxel grid parameters, number of voxels per axis and size

of the voxels, are automatically adjusted according to the dimensions of the preprocessed

point cloud and the parameters defined by the user.

Figure 4.5: Point cloud of a chair
trimmed by the preprocessing

module.

Figure 4.6: Empty voxel grid created
according to the dimensions of the

preprocessed point cloud.

Figure 4.7 intends to illustrate the method above described, presenting a 3D voxel

grid with points inside that belongs to an area where it is possible do recognise a chair.
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Figure 4.7: Voxel grid filled with a chair point cloud.

4.1.1.4 Build Binary Array

The second module of the classifier, Build Binary Array, receives as input the three-

dimensional voxel grid containing points inside. The voxel status, i.e. either filled with

points or empty, is the information that the classifier parses in order to infer the label of

object present in the point cloud. In order for the method to be simpler and computation-

ally lighter to parse the information, voxels are arranged by indexes and the voxels’ status

information of the occupation grid is stored in an indexed binary one-dimensional array.

Each element of the binary array corresponds to the voxel state. If the voxel contains

points, the element contains the value 1. Otherwise, in case the voxel does not contain

any point inside, the element contains the value 0. Therefore, the generated binary array

is no more than a template, a signature, of the characteristic spatial arrangement of the

points, which is different for each class of objects. Fig. 4.8 presents, in an illustrative way,

the method used to store occupation grid data.
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Figure 4.8: Occupation grid storing information method.

4.1.1.5 Template Matching

The last module of the classifier, Template Matching, is intended to compare the

template created by the previous module in the classifier pipeline, Build Binary Array, with

the templates of different objects and parse the similarities between them. The classifier

infers the point cloud label according to the template label with the most matches.

Table 4.1 helps to understand how the label is selected by the classifier. In this table,

the template matching results are presented for the following template: 0111000111. The

table is just representative, in real scenario, each template has, at least, 250 elements.

Binary Array: 0111000111

Label Template Number of Matches

Window_Open_45 0101100000 5

Window_Open_25 1010011001 3

Laptop 0111001111 9

Table 4.1: Example of how the template is selected using template matching.

As the laptop is the label with the higher number of matches, the classifier outputs that
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the parsed template corresponds to the laptop label with 90% of certainty.

4.1.1.6 Object State Estimator

The Object State Estimator module receives the output from the classifier and, taking into

account the user-defined parameters, is able to assess whether the inferred label represents

an anomaly in the system. Information about the objects’ pose and its state are then stored

in the semantic map of the environment.

4.1.1.7 Template Recording

The capture of the templates of each object works in a similar way to the system archi-

tecture presented. However, instead of being the classifier to infer the label, it is the user

who manually introduces the label corresponding to the template.

4.2 Centralised vs Distributed Architecture

The distributed and centralised architectures developed throughout this dissertation

are quite different, each having strengths and weaknesses. The main differences between

the two architectures are presented below.

• The possibility of the system operating in a distributed way allows to increase the

number of patrolling robots without having to increase the number of server com-

puters to process the information coming from the robots. Therefore, it is possible to

reduce the hardware and electricity costs. It also increases significantly the system

scalability, allowing larger patrol robot teams.

• The distributed system allows robots to continue patrolling and to perform surveil-

lance and inspection tasks even when they temporarily lose the wireless connection

to the server, making the system more resilient to network failures;

• Unlike the centralised architecture, the distributed architecture does not rely on

deep learning techniques, the patrolling robots have the means for processing the

information acquired by themselves, avoiding the need to transfer large amounts

of data to the server in order to be processed. The only data that needs to be
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transmitted throughout the network is the information regarding objects’ states.

Therefore, it is possible to use a connection with lower bandwidth or to increase the

number of robots without the necessity to improve the wireless network;

• The object classification technique based on spatial template matching implemented

in distributed architecture is capable of executing using only a small percentage of

the robots’ CPU. The processing power used by this technique is equivalent to the

amount of processing power used by the function that comprises colour and depth

images. Therefore, this architecture does not require greater use of the robots’ CPU;

• The object classification technique based on spatial template matching implemen-

ted in distributed architecture does not use colour information to classify objects.

This characteristic makes the system much more resilient to the low light conditions

present in the test facilities, as well as to the illumination changes during night and

day;

• The centralised architecture has the advantage of being more versatile and does not

depend on information provided at the outset, such as the location of objects of

interest.

4.3 Summary

In this chapter, the distributed architecture and all the modules that compose it were

presented in detail. The basis of the distributed architecture, Classification based on

Spatial Template Matching, and the theory behind the operation of the technique are

presented. It was also presented a comparison between the distributed architecture and

the centralised architecture, highlighting their differences and the advantages of each one

of the architectures.

Chapter 5 describes the experiences carried out in order to experimentally validate

the performance of the system.
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Experimental Validation

Similar to every other classification method, in order to validate and evaluate the perform-

ance of the developed system, it needs to be tested. Hence, three very distinct tests were

conducted. The first test consisted of a long-term experiment in which the system ran for

a total of one hundred hours. The second test consisted of a benchmark between the clas-

sifier developed throughout this dissertation work, Classifier based on Spatial Template

Matching, and a state-of-the-art object classification technique based on point clouds,

PointNet Classification. During the 100h test, due to the inherent characteristics of the

analysed objects, it was not possible to validate the system functionality to infer the ob-

jects’ complete pose. Therefore, the last test validates the system’s functioning for the

detection of objects’ complete pose.

5.1 One Hundred Hour Test

System’s tests were inlaid in the test period of the STOP project, which was conducted

in a real-world environment, at the 3rd floor of the "Centro Tecnológico da Cerâmica e

do Vidro (CTCV)" facilities, between 15th and 19th July, totalling a testing period of one

hundred hours, continuously.

5.1.1 Methodology

During one hundred hours, a team of three mobile patrolling robots and one server com-

puter performed surveillance, inspection and patrolling tasks in a large pre-selected indoor

environment. In this area there were six crucial objects to the security of the facility: three

fire extinguishers, two doors, and one window. The object classification system ran for a
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total of three hundred hours, one hundred hours per patrolling robot, non-stop, without

any critical flaw.

Due to previous knowledge of the test environment structure, some assumptions were

made. It is known, at the outset, the location of objects of interest. Consequently, the

robots only need to verify the areas of interest, such as the areas where fire extinguishers

should be present. This knowledge limits the range of classes among which the object

classification system has to distinguish, e.g. when a robot is inspecting a place where a

window can be found, there are only two possible outcomes: the window is open or the

window is closed. The same logic applies to other objects of interest.

One of the features of the developed system is the possibility of this being tuned while

it is in operation. Therefore, during the one hundred hours test, the system underwent

several adjustments. At the beginning of the test, all three robots had the same labels’

templates, which were created by robot number two. While the robots were patrolling,

new templates were recorded by each of the three mobile robots. Therefore, the new labels’

templates were composed of the templates recorded by each of the robots and the initial

templates that were recorded by robot number two. By the test’s end, all three mobile

robots were using only the templates recorded by themselves. The constant templates’

modifications allow us to understand how the system behaves in different circumstances.

To successfully validate the functionality of the developed system, it must be capable

of assessing, with high accuracy, the state of the three different classes of objects afore-

mentioned. The system’s validation requirements, according to the different objects, are

mentioned below:

• Fire extinguisher: When a mobile robot is inspecting the position where a fire ex-

tinguisher is supposed to be, it should be capable to infer the state of the fire

extinguisher, assessing if it is present, missing or obstructed. If the fire extinguisher

is recognised, it means that the fire extinguisher is present. If instead of a fire extin-

guisher, the system recognises a wall, it means that the fire extinguisher is missing.

In case the robot doesn’t recognise neither a wall or a fire extinguisher, it means

that there is an unrecognised object in the position where the fire extinguisher is

supposed to be and the system reports that the fire extinguisher is obstructed.

• Doors: When a mobile robot is inspecting the position where a relevant door is, the
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system should be capable to infer the state of it, assessing if the door is open or

closed. In case the door is open, the system should also be capable to estimate, with

high accuracy and a resolution of 22.5°, how open the door is.

• Windows: The large window, (Fig. 2.2c), present in the test environment is divided

into two smaller windows. When the mobile robot is inspecting the window’s state,

the system should infer both windows’ orientation, assessing if they are closed or

open.

From the analysis of the classifier predictions and true conditions of the test, several

confusion matrices were built. Those matrices contain enough information to calculate

a variety of performance metrics, which allows for a richer performance analysis of the

developed system. In order to evaluate the system predictions, four evaluation metrics

were used. The applied metrics were: Accuracy, Precision, Recall and F1-Score.

When robots are inspecting fire extinguishers and doors, the object recognition system

has to distinguish among more than two classes. Therefore, in order to evaluate the

system’s performance for those objects, a multi-class classification was used. Unlike doors

and extinguishers, in the case of windows, the system only needs to distinguish between

two states: open window or closed window. Therefore, in this case, a binary classification

system was used.

The accuracy formula for multi-class classification is defined in equation 5.1.

Accuracy =

∑
Correct Predictions∑
Total population

(5.1)

The accuracy formula for binary classification is defined in equation 5.2.

Accuracy =

∑
True Positive +

∑
True Negative∑

Total Number of Examples
(5.2)

The precision formula is defined in equation 5.3.

Precision =

∑
True Positives∑

True Positives+
∑

False Positives
(5.3)
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The recall formula is defined in equation 5.4.

Recall =

∑
True Positive∑

True Positive+ False Negative
(5.4)

The F1-Score formula is defined in equation 5.5.

F1− Score = 2 ∗ Precision ∗Recall

Precision+Recall
(5.5)

The aforementioned evaluation metrics are based on the following concepts:

• True positive - The classification system correctly predict a class.

• True negative - The classification system correctly predict a different class.

• False positive - The classification system mistakenly predicted a class.

• False negative - The classification system mistakenly predicted a different class.

During the one hundred hour test, the three robots inspected a large number of objects,

thus performing a large number of classifications. Thus, in order to simplify the evaluation

of the system’s performance, the data analysis followed the following structure:

• During the last twelve operating hours, all classifications made by the three mobile

robots were evaluated.

• For the rest of the time, for every four hours of operation, one hour was evaluated.

5.1.2 Results

In the one hundred hours test it was impossible to have balanced conditions across

all labels due to the fact that test was conducted in a real life environment. F1-score is a

good metric to evaluate the performance of classifiers when data is unbalanced.

In order for the results to be easily understood, evaluated and explained, they are

presented in the form of confusion matrices, tables of results and bar charts. Due to

space limitations, bar charts can be found in the appendix. The following tables present

the confusion matrices for each of the three distinct models. These matrices were built

through the analysis of classifier predictions during the hundred hour test.
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Table 5.1: Confusion matrix obtained through the analysis of the classifier predictions
and true conditions of the windows’ states, during the one hundred hour test.

Table 5.2: Confusion matrix obtained through the analysis of the classifier predictions
and true conditions of the fire extinguishers’ states, during the one hundred hours test.

Table 5.3: Confusion matrix obtained through the analysis of the classifier predictions
and true conditions of the doors’ states, during the one hundred hour test.

The following tables present the results according to Accuracy, Precision, Recall and F1-

score metrics, per class, of the classifier predictions for all the three models, during the

one hundred hours test.

Table 5.4: Results according to Accuracy, Precision, Recall and F1-score metrics, per
class, of the classifier predictions for the window’s model, during the one hundred hours

test.
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Table 5.5: Results according to Accuracy, Precision, Recall and F1-score metrics, per
class, of the classifier predictions for the extinguisher’s model, during the one hundred

hours test.

Table 5.6: Results according to Accuracy, Precision, Recall and F1-score metrics, per
class, of the classifier predictions for the door model, during the one hundred hour test.

As referred before, there were some template modifications during the test. Due

to high accuracy prediction rates related to doors during the first hours of the test, the

template modifications occurred only on templates related to fire extinguishers and win-

dows. Therefore, the analysis of the last twelve hours of the test provides a more accurate

evaluation of the system’s performance. The confusion matrices are presented below.

Table 5.7: Confusion matrix obtained through the analysis of the classifier predictions
and true conditions of the windows’ states, during the last twelve hours of test.
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Table 5.8: Confusion matrix obtained through the analysis of the classifier predictions
and true conditions of the extinguishers’ states, during the last twelve hours of test.

The following tables present the results according to Accuracy, Precision, Recall and F1-

score metrics, per class, of the classifier predictions for all the three models, for the last

twelve hours of the test.

Table 5.9: Results according to Accuracy, Precision, Recall and F1-score metrics, per
class, of the classifier predictions for the window’s model, during the last twelve hours

test.

Table 5.10: Results according to Accuracy, Precision, Recall and F1-score metrics, per
class, of the classifier predictions for the extinguisher’s model, during the twelve hours

test.

The following table presents the global results, per model, according to the Accuracy,

Precision, Recall and F1-Score evaluation metrics for the window, extinguisher and door

models.
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Table 5.11: Global results, per model, according to the Accuracy, Precision, Recall and
F1-Score evaluation metrics for the window, extinguisher and door models.

Tabel 5.11 summarises the performance of the classifier during the one hundred hour test.

5.1.3 Discussion

Analysing the results presented in tables 5.4 and 5.5, which contain the results according to

the Accuracy, Precision, Recall and F1-score metrics, per class, of the classifier predictions

for the window and extinguisher models, during the one hundred hours test, and comparing

them against the results presented in tables 5.9 and 5.10, it is possible to verify that the

modifications made on templates during the test contributed to the slight improvement of

the systems results. Thus, it is concluded that capturing the templates with each of the

robots increases the classifier performance.

Although the robots are very similar, there are minor differences between them, which

means that the transformation between the RGB-D camera sensor and the robot base link

is different for each one of the three patrolling robots. An adjustment on the robots’

transforms would avoid the necessity to record templates for each of the robots. However,

contrary to the modifications made on templates, robots’ TFs adjustments cannot be

executed while the system is running.

Table 5.11 illustrates the global results, per model, according to the Accuracy, Preci-

sion, Recall and F1-Score evaluation metrics for the window, extinguisher and door models,

during the last twelve hours of test. As it is possible to observe, the system’s performance

varies according to the different models. In the case of the window model, the system

is capable of inferring the state of the window with high accuracy, recall, precision, and

f1-score. The graph also demonstrates that the classifier has a better performance for the

extinguisher model when compared to the window model. In this case, evaluation results

prove that the system is capable of inferring the state of fire extinguishers with very high
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accuracy and recall. The evaluations results, according to precision and F1-score, are

lower but still very respectful. In the case of the door model, the classifier is able to infer,

with a high level across all four evaluation metrics used, the doors’ state, being able to

assess the orientation in which the door is. The results shown in the bar chart of figure

6.2 can be consulted in detail in table 5.11.

Analysing the table 5.10, it becomes clear that the class with the worst results is the

obstructed class. The inferring of this class is executed by an elimination process. It is

known, at the outset, that when a robot is inspecting the position where a fire extinguisher

is supposed to be, there are only three possible outcomes: the fire extinguisher is detected

by the classifier and it is considered to be present; the classifier detects a wall and considers

that the extinguisher is missing; the classifier does not detect a fire extinguisher or a wall

and, therefore, considers that the fire extinguisher is obstructed. The elimination process

used to infer if the fire extinguisher is obstructed is far from being perfect, however, this

technique ensures that the system is able to infer if the fire extinguisher is being clogged

without knowing exactly which object is obstructing it.

Analysing the state of a window using only depth information is a complex challenge

due to the fact that it is impossible to extract the depth information for the glass of the

window. The developed classifier infers the state of the windows based only on the depth

information of the window’s structure. The results obtained by the classifier for the model

of the windows, which can be consulted in the table 5.9, although acceptable, are not

perfect. These results can be improved with a different approach to the problem. Instead

of inspecting both windows at the same time, the system can parse one small window at

a time. In this way it is possible to increase the useful information from each window and

to avoid capturing irrelevant points such as the points that are in the middle of the two

small windows.

Given the results obtained during the long and exhaustive test, in which the object

classification system correctly operated for one hundred hours on each of the patrolling

robots, totalling three hundred hours of operation without any critical failure and with

high performance on the four evaluation metrics used, I believe that the expectations and

objectives have been successfully met.
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5.2 Benchmarking of the Developed Technique

A benchmark based on real patrolling situations occurred in the test environment was

planned to assess the performance of the developed technique, regarding the latest state-

of-the-art methods for object classification.

5.2.1 Methodology

Due to similarities between the heuristic technique developed throughout this dissertation

and the PointNet Classification method, a state-of-the-art method for object classification

based on deep learning, was the chosen technique to perform the benchmarking against

the developed heuristic method. Both are based on point clouds, having the same type of

input - a point without colour, and they also share the same type of output - a label per

point cloud.

In oposition to the one hundred hour test, in which the robot freely patrolled through

the environment and randomly inspected the objects of interest, the benchmarking test

was carried out in a controlled environment. In order to attain a fair benchmarking, the

techniques shared both the training and testing dataset. The datasets were composed

of three models: window, extinguisher and door. Due to limitations of the Pointnet

Classification system, the obstructed class was not evaluated in the fire extinguisher model.

The training dataset contained ten distinct point clouds per class while the testing dataset

contained twenty distinct point clouds per class. Having exactly the same number of point

clouds per class makes the test dataset more homogeneous, allowing for an accurate system

benchmark.

The datasets used in the benchmarking were captured for four hours, at the CTCV

test environment, through the RGB-D camera of one of the patrolling robots. In training

and testing, PointNet Classification settings were at default. The developed technique was

also in its default parameters, with a 7x5x10 voxel grid.

The evaluation of the performance of the two techniques was performed using the four

evaluation metrics, accuracy, precision, recall and F1-Score, mentioned in section 5.1.1.
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5.2.2 Results

In order for the results to be easily understood, evaluated and explained, these are presen-

ted in the form of confusion matrices, tables of results and bar charts. Due to space

limitations, bar charts can be found in the appendix. The following tables present con-

fusion matrix obtained through the analysis of the CboTM classifier predictions and true

conditions of the objects’ states for the benchmarking test dataset.

(a) Confusion matrix obtained through the analysis of the CboTM classifier predictions
and true conditions of the windows’ states for the benchmarking test dataset.

(b) Confusion matrix obtained through the analysis of the CboTM classifier predictions
and true conditions of the extinguishers’ states for the benchmarking test dataset.

(c) Confusion matrix obtained through the analysis of the CboTM classifier predictions
and true conditions of the doors’ states for the benchmarking test dataset.

Table 5.12: Confusion matrices obtained through the analysis of the CboTM classifier
predictions and true conditions of objects states for the benchmarking test dataset.

The following tables present the results, per label, according to Accuracy, Precision, Recall

and, F1-score metrics for CboTM classifier predictions for benchmarking test dataset.
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(a) Results, per label, according to Accuracy, Precision, Recall and F1-score metrics of
the CboTM classifier predictions for the window model of the benchmarking test dataset.

(b) Results, per label, according to Accuracy, Precision, Recall and, F1-score metrics of
the CboTM classifier predictions for the extinguisher model of the benchmarking test

dataset.

(c) Results, per label, according to Accuracy, Precision, Recall and, F1-score metrics of
the CboTM classifier predictions for the door model of the benchmarking test dataset.

Table 5.13: Results, per label, according to Accuracy, Precision, Recall and, F1-score
evaluation metrics of the CboTM classifier predictions for the benchmarking test dataset.

The following tables present confusion matrix obtained through the analysis of the Point-

Net Classification predictions and true conditions of the objects’ states for the benchmark-

ing test dataset.
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(a) Confusion matrix obtained through the analysis of the PointNet classifier predictions
and true conditions of the windows states for the benchmarking test dataset.

(b) Confusion matrix obtained through the analysis of the PointNet classifier predictions
and true conditions of the extinguishers states for the benchmarking test dataset.

(c) Confusion matrix obtained through the analysis of the PointNet classifier predictions
and true conditions of the doors states for the benchmarking test dataset.

Table 5.14: Confusion matrices obtained through the analysis of the PointNet classifier
predictions and true conditions of objects states for the benchmarking test dataset.

The following tables present the results, per label, according to Accuracy, Precision, Re-

call and, F1-score metrics for PointNet Classification predictions for benchmarking test

dataset.
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(a) Results, per label, according to Accuracy, Precision, Recall and F1-score metrics of
the PointNet classifier predictions for the window model of the benchmarking test

dataset.

(b) Results, per label, according to Accuracy, Precision, Recall and F1-score metrics of
the PointNet classifier predictions for the extinguisher model of the benchmarking test

dataset.

(c) Results, per label, according to Accuracy, Precision, Recall and F1-score metrics of
the PointNet classifier predictions for the door model of the benchmarking test dataset.

Table 5.15: Results, per label, according to Accuracy, Precision, Recall and F1-score
evaluation metrics for PointNet classifier predictions for the benchmarking test dataset.

The following tables present the results, per model, according to Accuracy, Precision, Re-

call and F1-score evaluation metrics of the CboTM and PointNet Classification predictions

for the benchmarking test dataset.
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(a) Results, per model, according to Accuracy, Precision, Recall and F1-score evaluation
metrics of the CboTM classifier predictions for the benchmarking test dataset.

(b) Results, per model, according to Accuracy, Precision, Recall and F1-score evaluation
metrics of the PointNet classifier predictions for the benchmarking test dataset.

Table 5.16: Results, per model, according to the Accuracy, Precision, Recall and
F1-Score evaluation metrics of the CboTM and PointNet classifier predictions for the

benchmarking test dataset.

Model

0,00

25,00

50,00

75,00

100,00

Window Extinguisher Door

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

global_results_CboTM

(a) Representative bar chart of the results, per model, according to the Accuracy,
Precision, Recall and F1-Score evaluation metrics of the CboTM classifier predictions for

the benchmarking test dataset.
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Model

0,00

25,00

50,00

75,00

100,00

Window Extinguisher Door

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

global_results_pointnet

(b) Representative bar chart of the results, per model, according to the Accuracy,
Precision, Recall and F1-Score evaluation metrics of the PointNet classifier predictions

for the benchmarking test dataset.

Figure 5.6: Representative bar charts of the results, per model, according to the
Accuracy, Precision, Recall and F1-Score evaluation metrics of the CboTM and PointNet

classifier predictions for the benchmarking test dataset.

5.2.3 Discussion

Analysing tables 5.2a, 5.2b and 5.2c, which present the results, per label, according to

Accuracy, Precision, Recall and, F1-score evaluation metrics of the CboSTM classifier

predictions for the window, extinguisher and door model, respectively, of the benchmarking

test dataset, it is possible to infer that the CboSTM kept, approximately, the same level

of results presented in the one hundred hours, as expected.

Tables 5.4a, 5.4b and 5.4c, present the results, per label, according to Accuracy, Preci-

sion, Recall and, F1-score evaluation metrics of the PointNet Classification predictions for

the window, extinguisher and door model, respectively, of the benchmarking test dataset.

It is possible to infer that the PointNet Classification for the fire extinguisher model are

very good, however, the results for the window and door model are less impressive.

Regarding the comparison between CboSTM e o PointNet Classification, table 5.5a

and 5.5b present the results per model, according to the Accuracy, Precision, Recall and

F1-score evaluation metrics of the CboSTM and the PointNet Classification predictions,

respectively, for the benchmarking test dataset. According to the results presented, it is

possible to infer that CboSTM clearly outperforms PointNet Classification in the window

and door model. In the fire extinguisher model, the classification results of CboSTM

and PointNet Classification are good. Both techniques present the same result, 100% for
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accuracy, precision, recall and F1-Score.

Figures 5.6a and 5.6 present, respectively, bar charts of the results, per model, accord-

ing to the Accuracy, Precision, Recall and F1-Score evaluation metrics of the CboSTM

and PointNet Classification predictions for the benchmarking test dataset.

In the overall picture, in this real environment comparison, CboSTM shows better

results.

5.3 System validation for the estimation of objects’ com-

plete pose

In order to validate the functionality of the system for the estimation of the six degrees

of freedom, a test with two distinct objects was planned. The objects chosen were a

rectangular box and a chair.

It was found that the system correctly works for the rectangular box. It is capable

of accurately estimating, with a resolution of 20°, the three degrees of freedom for the

orientation of the box. The three degrees of freedom for the position of both objects are

estimated by averaging the coordinates of the points that constitute the object.

For the estimation of the three degrees of freedom of orientation of the chair the

results are less satisfactory. It was found that the point clouds obtained through the RGB-

D sensor for the legs of the chair are of very poor quality, which impairs the functioning of

the system. Even so, the system was able to estimate, with a resolution of 20°, the chair’s

orientation around the roll, pitch and yaw axis.

Although the results for the estimation of chair’s complete pose are not very impress-

ive, it is possible to confirm that the system is able to estimate the complete pose of

objects.

53



54



6
Conclusion

This document starts by introducing the framework of this dissertation, presenting and

explaining the main goals, the available resources, and requirements.

To accomplish the defined objectives, a centralised architecture for the estimation of

objects’ 6 DoF based on point clouds was developed. The development of this architecture

consisted of the integration of several techniques, having in its core a method for semantic

segmentation of point clouds, based on deep learning. In the preliminary tests, the system

was found to be unreliable due to the very inaccurate semantic segmentation results.

In order to have a more reliable system, a distributed architecture based on point

clouds was developed. The system based on a distributed architecture takes advantage of

previous knowledge of the location of objects of interest and applies a classification method

based on the analysis of three-dimensional point clouds using template matching. This

system proved to be very accurate, providing very impressive object classification results

without resorting to any kind of deep learning technique.

Chapter 5 presents the results for the experimental validation of the system, which

consisted of three different tests. The first test was a long-term one, in which the system

ran for one hundred hours without any critical flaw and with impressive performance. The

second test consisted of a benchmarking between the developed classifier, Classification

based on Spatial Template Matching, and a state-of-the-art object classification system

based on deep learning techniques, PointNet Classification. The results of the bench-

marking are intriguing as the Classification based on Spatial Template Matching method

outperformed PointNet Classification in two of the three models and, in the third model,

the performances were equal. The last test aimed to validate the functioning of the system

for the estimation of the objects complete pose, which was successfully achieved.
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6.1 Future Work

This section presents some improvements that could be introduced in both developed

systems that, due to calendar-related constraints, were not implemented.

The centralised system was unable to achieve satisfactory results. It would be in-

teresting to improve the results of it by integrating a more promising object detection

and classification method, capable to operate in real environments and with poor light

conditions.

The distributed system presented in this dissertation constitutes a solid basis, how-

ever, it has the potential to be upgraded. The implementation of an accurate and efficient

point clouds clustering technique, such as the ones presented by Klasing [5] and Nakagawa

[7], would be a major improvement as it has the potential to make the system more resi-

lient and able to operate without any information of the environment where the robot is

patrolling acquired at the start.

One of the skills with which the system could also be endowed is the ability to do a

reconstruction in three dimensions of the recognised objects, integrating, for example, the

work presented by Schreiberhuber [15].

It also would be interesting to evaluate the performance of the technique using a

RGB-D sensor such as the Kinect V2, which produces point clouds with a much better

quality than the Astra sensor used throughout this work.
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Appendix

The following bar charts illustrate the classifier prediction results for the accuracy,

precision, recall and F1-Score metrics, per class, throughout the last twelve hours of the

one hundred hours test. In this period, the system worked in its perfect conditions, which

improved the overall results obtained.

Label

0,0%

25,0%

50,0%

75,0%

100,0%

Open Closed

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Accuracy, Precision, Recall e F1-Score

(a) Bar chart representative of the results, per class, according to the Accuracy,
Precision, Recall and F1-Score evaluation metrics for the window model.

Label

0,0%

25,0%

50,0%

75,0%

100,0%

Present Missing Obstructed

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Accuracy, Precision, Recall e F1-Score

(b) Bar chart representative of the results, per class, according to the Accuracy,
Precision, Recall and F1-Score evaluation metrics for the extinguisher model.
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Label

0,0%

25,0%

50,0%

75,0%

100,0%

Closed Open 22.5 Open 45 Open 67.5 Open 90

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Accuracy, Precision, Recall e F1-Score

(c) Bar chart representative of the results, per class, according to the Accuracy,
Precision, Recall and F1-Score evaluation metrics for the door model.

Figure 6.1: Bar charts representative of the results, per label, according to the
Accuracy, Precision, Recall and F1-Score evaluation metrics for the window, extinguisher

and door models, during the last twelve hours of test.

Model

0,0%

25,0%

50,0%

75,0%

100,0%

Window Extinguisher Door

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Accuracy, Precision, Recall e F1-Score

Figure 6.2: Bar charts representative of the global results, per model, according to the
Accuracy, Precision, Recall and F1-Score evaluation metrics for the window, extinguisher

and door models, during the last twelve hours of test.
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Label

0,0%

25,0%

50,0%

75,0%

100,0%

Open Closed

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

window_CboTM

(a) Representative bar chart of the results, per label, according to the Accuracy,
Precision, Recall and F1-Score evaluation metrics of the CboTM classifier predictions for

the window model of the benchmarking test dataset.

Label

0,0%

25,0%

50,0%

75,0%

100,0%

Present Missing

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

extinguisher_CboTM

(b) Representative bar chart of the results, per label, according to the Accuracy,
Precision, Recall and F1-Score evaluation metrics of the CboTM classifier predictions for

the extinguisher model of the benchmarking test dataset.
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Label

0,0%

25,0%

50,0%

75,0%

100,0%

Closed Open 22.5 Open 45 Open 67.5 Open 90

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

door_CboTM

(c) Representative bar chart of the results, per label, according to the Accuracy,
Precision, Recall and F1-Score evaluation metrics of the CboTM classifier predictions for

the door model of the benchmarking test dataset.

Figure 6.3: Representative bar charts of the results, per label, according to the
Accuracy, Precision, Recall and F1-Score evaluation metrics of the CboTM classifier
predictions for the window, extinguisher and door models of the benchmarking test

dataset.

Label

0,0%

25,0%

50,0%

75,0%

100,0%

Open Closed

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

window_pointnet

(a) Representative bar chart of the results, per label, according to the Accuracy,
Precision, Recall and F1-Score evaluation metrics of the PointNet classifier predictions

for the window model of the benchmarking test dataset.
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Label

0,0%

25,0%

50,0%

75,0%

100,0%

Present Missing

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

extinguisher_pointnet

(b) Representative bar chart of the results, per label, according to the Accuracy,
Precision, Recall and F1-Score evaluation metrics of the PointNet classifier predictions

for the extinguisher model of the benchmarking test dataset.

Label

0,0%

25,0%

50,0%

75,0%

100,0%

Closed Open 22.5 Open 45 Open 67.5 Open 90

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

door_pointnet

(c) Representative bar chart of the results, per label, according to the Accuracy,
Precision, Recall and F1-Score evaluation metrics of the PointNet classifier predictions

for the door model of the benchmarking test dataset.

Figure 6.4: Representative bar charts of the results, per label, according to the
Accuracy, Precision, Recall and F1-Score evaluation metrics of the PointNet classifier
predictions for the window, extinguisher and door models of the benchmarking test

dataset.
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