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Abstract

Radiotherapy planning plays a decisive role in cancer’s treatment management. Many
side effects come from the exposure of normal tissue to radiation during therapy, all the
way from small acute side effects such as tiredness, to long term sequelae, like another
type of cancer. To minimize this exposure, it is necessary to contour the organs at risk.
However, this task is typically performed manually on a slice-by-slice basis, being conse-
quently very time-consuming and susceptible to high intra and inter-subject variance and
human errors.

In this way, this line of work aims to help the clinicians in this difficult and repetitive task by
implementing algorithms that delineate non-pathological lungs. In this project, two lung
segmentation algorithms are presented for Computed Tomography scans: the Iterative
Region Growing algorithm and a U-Net Convolutional Neural Network model. One relies
on image processing techniques, as intensity projection and region growing. This pipeline
starts by isolating each lung. Then, three techniques for seed placement are explored.
Lastly, an update on the traditional region growing algorithm is developed, allowing it to
automatically discover the best threshold parameter value for each case. The other algo-
rithm is a U-Net deep learning architecture model, that takes advantage of the distinctive
ability of Convolutional Neural Networks to find hidden patterns present in the lungs with-
out requiring feature extraction and selection.

The results obtained for the three different techniques for seed placement were, respec-
tively, 74%, 74% and 92% of DICE with the Iterative Region Growing algorithm. The
results for the U-Net model were 91% for the same metric.

Future work includes more tests on bigger and more diverse databases, analyzing the
effect of morphology operations on the results and the effect of the hyperparameter opti-
mization techniques on the network.

Key-words: Automatic Segmentation, Radiotherapy Planning, Organs at Risk, Lungs,
3D, Computerized Tomography.
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Resumo

O planeamento da radioterapia desempenha um papel decisivo na gestão do tratamento
do cancro. Múltiplos efeitos secundários advêm da exposição de tecido normal à radi-
ação durante a terapia, desde cansaço a outros tipos de cancro. De modo a minimizar
esta exposição, é necessário fazer o contorno dos órgãos em risco. No entanto, esta é
uma tarefa tipicamente executada manualmente, fatia a fatia, e, portanto, demorada e
suscetível a erros humanos e grandes variações intra e inter-individuais.

Deste modo, este estudo tem como objetivo ajudar os clínicos numa tarefa tão difícil e
repetitiva como esta, através da implementação de algoritmos para a delimitação de pul-
mões não-patológicos. Neste projeto, dois algoritmos de segmentação para pulmões são
apresentados para exames de Tomografia Computorizada: o algoritmo iterativo de region
growing e uma Rede Neuronal Convolucional U-Net. Um deles é baseado em técnicas
de processamento de imagem, como a projeção de intensidades e o region growing.
Esta pipeline começa por isolar cada pulmão. Depois, três técnicas para colocação da
semente são exploradas. Por último, uma alteração no algoritmo standard de region
growing é criada, permitindo que este descubra automaticamente o valor do parâmetro
de threshold mais adequado para cada caso. O outro algoritmo é um modelo de deep
learning com uma arquitetura em U-Net, que explora as capacidades das Redes Neu-
ronais Convolucionais para encontrar padrões escondidos presentes nos pulmões sem
exigir a extração e seleção de features.

Os resultados obtidos para as três técnicas de posicionamento da semente foram, re-
spetivamente, 74%, 74% e 92% de DICE para o algoritmo Iterativo de Region Growing.
Os resultados para o modelo U-Net foram 91% para a mesma métrica.

No futuro, mais testes poderiam ser feitos em bases de dados maiores e mais diversas,
estudando o efeito de operações morfológicas nos resultados e de técnicas de optimiza-
ção de hiperparâmetros da rede neuronal.

Palavras-Chave: Segmentação Automática, Planeamento de Radioterapia, Órgãos em
Risco, Pulmões, 3D, Tomografia Computorizada.
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1
Introduction

Medical imaging is the process of representing the human body, at a microscopic level
(the cells and tissue) or macroscopic level (the organs and its disposition in the body), in
an anatomical (body disposition) or functional (body metabolism) way. The images can be
captioned by different means: by light (p.e.: endoscopy, OCT), sound (p.e.:ultrasound),
magnetism (p.e.:MRI), radioactive pharmaceuticals (p.e.:PET, SPECT) or X-rays (p.e.:CT).
With the goal of obtaining more accurate diagnostics or therapeutic assessments, image
processing techniques can be applied to these representations, like segmentation [1].

Segmentation is the process of partitioning an image into its constituent regions or objects,
or, the other way around, to group individual elements present in an image by similar
properties, like texture or context. Generally speaking, segmentation can be a difficult,
labour-intensive, error-prone and time-consuming procedure [1].

1.1 Contextualization

Radiation therapy has a dominant role in cancer treatment and has always been a major
part of the effort to cure cancer patients. The main goal of radiotherapy is to deliver a
prescribed dose to the target volume while sparing normal tissue [2]. Since radiotherapy
is a personalized and localized treatment, not only the definition of the tumour and target
volumes are vital to its successful execution, but also the definition of Organs at Risk
(OAR), in order to minimize its exposure [3]. Contouring these regions is, however, a time-
consuming part of radiotherapy treatment planning [4] since in current clinical practice,
this important task is typically performed visually on a slice-by-slice basis with very limited
support of automated segmentation tools, thus being prone to high intra and inter-subject
variance and other human errors.

Diagnostic imaging is crucial in Radiotherapy Planning (RP) [5]. Computed Tomogra-
phy (CT) is usually used as the basis for radiotherapy for two main reasons: (1) since it
includes density information, it enables the improvement of dosimetry calculations accu-
racy, and (2) allows to locate the patient in relation to the treatment machine, as it is more
reliable on illustrating the shape and position when compared with other image modali-
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1. Introduction

ties. Besides, as opposed to other imaging procedures, the patient can be scanned in
the treatment position, which can be an advantage [5]. Therefore, this modality can play
an important role in the early detection and treatment management of different types of
cancer, such as lung cancer [5].

1.2 Motivation

In 2019, 1,762,450 new cancer cases and 606,880 cancer deaths are projected to occur
in the United States [6]. Cancer is one of the deadliest diseases in Europe, the second-
largest cause of death [6]. There have been significant advances in the treatment against
this group of diseases over time [6, 7]. However, assuming the absence of competing
causes of death, the cumulative risk of developing cancer before the age of 75 years is
still 21.4% and, for dying, 17.7%, globally, thus representing such a concern in public
health and an enormous burden in developed societies [7]. Thus, early diagnosis and
treatment would help to minimize such a burden and concern.

At least half of the cancer patients require radiotherapy at some time in their condition and,
according to the Cancer Services Collaborative, radiotherapy alone is responsible for 78%
of non-surgical cancer cures [3]. When in treatment of cancer with radiotherapy, tumour
and normal tissue are intricately linked, so when a radiation dose is applied to the tumour,
some normal tissue will be inevitable irradiated [5]. If radiation in this tissue is lowered,
whether in volume or dose, then a reduction in number and severity of complications will
result from the therapy. Therefore, detail in RP is vital to the effectiveness and outcome
of therapy. To decrease the level of radiation in normal tissue, in some circumstances a
margin of uncertainty around an OAR is added, creating a Planning Organ at Risk Volume
(PRV), such as the case of the spinal cord.

Although this project uses private data acquired from CT scans of patients with Hodgkin
lymphoma, provided by the Institute of Oncology of Porto (IPO), our focus was on the
segmentation of lungs tissue. Sensitivity to toxicities of the lungs and heart limits the ra-
diation dose escalation in some tumours, like the oesophagal or gastroesophageal ones.
Excessive radiation on lungs tissue enhances the risk of severe pneumonitis [8]. How-
ever, no guideline or atlas is available, and there is a big variation in electron density and
the corresponding CT number. Lung segmentation can reveal itself as a difficult task:
trachea, bronchus and small size vessels often appear on segmentation results and the
respiratory motion affects the proper delineation. Delineating the normal lung used for
dose computation was not yet standardized, according to [9], who proposed a guideline
for OAR’s contouring. The underestimation of this volume due to inappropriate segmen-
tation may have two outcomes: the participation exclusion of a patient from a clinical trial
when he(she) would otherwise be eligible to or overestimation of the lung toxicity and, as
a result, the unnecessary limitation of the dose prescribed [9].

2



1. Introduction

1.3 Objectives

The main goal of this thesis is to develop algorithms to help the specialists in the delimi-
tation of the lungs for radiotherapy planning purposes, using information from CT scans.
The identification of OAR is crucial for minimizing their exposure to radiation. To achieve
this goal, there are 3 major objectives to be fulfilled:

• Verify the efficiency of traditional approaches on lung segmentation for Radiotherapy
Planning

• Explore the use of a Deep Learning architecture in this segmentation task

• Compare the differences of the results from deep learning models over traditional
models in this particular problem

1.4 Research Contributions

Part of the work of this project resulted in the publication of the paper:

Ana Catarina Oliveira, Inês Domingues, Hugo Duarte, João Santos, and Pedro H. Abreu.
”Going back to basics on volumetric segmentation of the lungs in CT: a fully image pro-
cessing based technique”. IbPRIA 2019: 9th Iberian Conference on Pattern Recognition
and Image Analysis (Submitted on April 30th, 2019; accepted on May 24th, 2019; pre-
sented on July 4th, 2019).

1.5 Document Structure

This document is organized as follows:

In Chapter 2 some useful knowledge that is going to be the basis for the understanding
of this work is explained.

Chapter 3 presents a quick showdown of the state of the art research on lung segmenta-
tion in CT. It also refers to some machine learning models that are currently being used
with great success in segmentation tasks in other types of medical images, and how they
are being implemented.

Then, Chapter 4 describes the data used for the development of this work, as well as
the adopted methods in the two segmentation approaches. More precisely, Section 4.2
describes the proposed Region Growing method in all its components: separation of right
and left body volumes in Section 4.2.1; threemethods for seed placement in Section 4.2.2;

3



1. Introduction

and the new, iterative, region growing technique in Section 4.2.3. Successively, in Sec-
tion 4.3 the U-Net pipeline is presented.

Chapter 5 discusses the most meaningful achieved results for each method and presents
a comparison of both techniques.

The document finishes in Section 6 with some conclusions and directions for future work.
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2
Background Knowledge

In this section some useful concepts and techniques are explained for the understanding
of the state of art review (Chapter 3) and the methods developed (Chapter 4).

2.1 Medical Image modalities

There are several imaging modalities that try to represent the human body, and each one
is defined taking into account the means by which it is captured: light, sound, magnetism,
radioactive pharmaceuticals or X-rays. Medical modalities can be divided into two major
groups: the anatomical or the functional modalities. The first ones are used to examine
anatomical abnormalities, while the latter gives information about the cellular activity and
molecular information on the biology of many pathologies [10]. In this project, CT scans
will be analyzed, due to its anatomical representation and because it is one of the most
used diagnostic imaging devices in radiotherapy planning.

In a CT procedure, an x-ray tube is rotated around the body to produce cross-sectional
images, while on the opposite location of the tube a detector array collects the projected
data. Then all the x-ray projections are integrated together, in conformity with the principle
that the density of the tissue passed through by the x-ray beam can be quantified by the
estimation of the attenuation coefficient. Therefore, the grey levels of a CT slice image
match the x-ray attenuation, which reflects the proportion of x-rays scattered or absorbed
as passing through each voxel. X-ray attenuation is correlated with the composition of
the tissue being imaged and the x-ray energy [11].

2.2 Preprocessing techniques

Just like any other imaging process, CT scans contain noise and other image artefacts
that can affect the quality of the segmentation and hamper the extraction of features.
Therefore, segmentation pipelines can include preprocessing steps to remove unwanted

5



2. Background Knowledge

elements, for visual enhancement of certain features, isolation of individual elements or
for joining disparate elements [1].

A good image should have pixels that are bright and dark in the same proportion. In other
words, the intensity values of an image should have an uniform distribution, so that the
image is not too bright or too dark [12]. Using an image like this, with low contrast, makes
the separation of regions based on differences in intensity values more difficult [13]. His-
togram equalization, and other methods such as contrast stretching or adaptive histogram
stretching, among many others, can help to make these differences more significant, in-
creasing the contrast.

2.2.1 Contrast stretching or Normalization

In this operation, quite similar to the histogram equalization, the image is rescaled to in-
clude all the intensities values that fall within the range specified by the user, using a
linear transformation. Typically, there is very little weight at the ends of the whole value
range of the input image, so the chosen range is usually between the 2nd and 98th per-
centiles, which will lead to an improvement in the global contrast but may saturate some
pixels [14, 15].

2.2.2 Histogram equalization

Another option would be the histogram equalization. Considering a bright image, an his-
togram of the intensity values will show a distribution where most of the pixels are confined
to high values. Histogram equalization will stretch the histogram to either ends, in order
to uniform the distribution. This transformation function involves mapping the input pixels
from the brighter region to output pixels in full region, spreading as evenly as possible in
the new distribution and ensuring that all parts of the value range are equally represented.
This operation can be an advantage in images whose histogram is confined to a particular
region, improving the global contrast, but it fails in images with large intensity variations,
having both bright and dark pixels, which may lead to an over-enhancement of noise or
artefacts [12, 14].

2.2.3 Adaptive Histogram equalization

Alternatively, in cases where both bright and dark pixels are present, the adaptive his-
togram equalization may be used. In this transformation, the image is divided into small
blocks (tiles) and subsequently each of these tiles is histogram equalized, improving the
local contrast of each block. In a small area, the histogram distribution is confined to a
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small region, unless there is noise. In this case, to avoid its amplification, some algorithms
apply contrast limiting [12].

2.2.4 Resize

As the name suggests, resize is the process of converting an image from its original size
to another size, without changing the number of pixels. This process can be helpful to
uniform the size of every picture of a dataset or to zoom in a specific part of an image,
for example. The operation is based on an interpolation method, which defines how the
values in the final image are computed from pixels that do not correspond directly [16].

2.2.5 Resampling

An image is a sampling of a continuous signal. Resampling is the process of changing the
original sampling using geometrical transformations and it can be applied with numerous
goals [17, 18]:

• the adaptation of an image to a new set of coordinates (for example, when rotating
an image);

• the application of texture to surfaces in computer-generated imagery without explicit
modelling the texture;

• in medical and remotely sensed imagery, the registration of an image with a coordi-
nate system such as another image, a map or any other reference;

• the reconstruction of a continuous image from a discrete one and a transformation
matrix;

• the registration of images from different sources with one another, e.g. from different
CT scans using different spacing;

• the registration of images acquired at different times, to analyze the temporal evo-
lution, such as the evaluation of injuries healing process over weeks or months;

• the geographical mapping, e.g. changing from one projection to another;

• the photomosaicing: creating an image from many smaller images;

• the geometrical normalization for image analysis, e.g. normalization to an isotropic
resolution.

This operation can be decomposed in three simpler sub-processes: reconstruction of a
continuous intensity surface using a discrete image, transformation of the resultant sur-
face, and sampling of that transformed surface to produce a new discrete image [17].
Simplifying, resampling is the process of estimating the most appropriate intensity value
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for each pixel in the final image, based upon one or more pixels in an initial image and a
transformation matrix [17]. Using the right interpolating function to perform this transfor-
mation between pixels will ultimately determine the image quality of the new image [18].

2.2.6 Morphology operations

In some cases, images may have small imperfections based on the shape, such as noise,
artefacts, small holes. In other cases, there are small individual elements one would like
to join, or the opposite, isolating. Morphology operations are intended to remove such
imperfections by applying a structuring element (a kernel) to an input image.

2.2.6.1 Dilation

Dilation is a process of convolution of an image with a kernel, usually a small solid square.
As the kernel is passed through the image, a pixel (i,j) (the centre of the kernel) is set to the
maximum over all pixels in the neighbourhood. This leads to a brightening of the image,
enlarging bright regions and shrinking dark ones. In general, dilation tends to smooth
concavities [16].

2.2.6.2 Erosion

Erosion is the converse operation of dilation. The eroded image is the result of a convo-
lution of a kernel through the image, but in this case, the pixel at (i,j) is set to the minimum
over all pixels on the neighbourhood. This leads to a shrinking of bright regions and the
enlarging of dark ones, having a tendency to smooth away protrusions [16].

2.2.6.3 Opening & Closing

The opening and closing operations are combinations of erosion and dilation operators.
In the first, it erodes first and then dilates. As the name implies, opening operation leads
to a bigger separation between objects, e.g. cells in a microscope image, allowing easier
counting. Its more prominent effect is to attenuate isolated outliers that are higher than
their neighbours. In closing operation, the dilation happens first and then the erosion. This
is usually performed in connected-component algorithms aiming at reducing artefacts or
noise. Generally in medical image algorithms is performed an erosion or closing opera-
tion to eliminate elements from noise and subsequently an opening operation to connect
nearby large regions [16].
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From all these preprocessing techniques, resampling was performed many times in the
taken approaches. Although not implemented in both pipelines, initial studies were per-
formed comparing histogram and adaptive histogram equalization techniques, as well as
contrast stretching.

2.3 Segmentation algorithms

There exist many different ways of segmenting objects, each one encompassing a par-
ticular type of knowledge (statistics, anatomical, machine learning, etc.). Multiple re-
ports [19, 20, 21] make use of various approaches in simultaneous, which can reveal
an advantage in overcoming specific limitations.

Segmentation algorithms can be applied in different ways regarding dimensionality. Usu-
ally, 2D methods are applied in 2D images and 3D methods in 3D volumes, but in some
cases, 2D methods are applied to slices of 3D volumes, sequentially [22]. This allows
to reduce the computational complexity and memory requirements that 3D approaches
demand, but can lead to inconsistent final results. There is also studies made on patches
of 2D images, using them as 3D volumes.

According to Dzung Pham et al. [22], there are eight categories of segmentation algo-
rithms: thresholding, region growing, classifiers, clustering, Markov random field models,
neural networks, deformable models and atlas-guided approaches. Of all approaches, a
Region Growing algorithm and an Artificial Neural Network were implemented and for that
reason, these ones will be reviewed in more detail.

2.3.1 Thresholding approaches

Thresholding is the most basic technique for segmenting an image. It works by taking one
or more values as a reference, creating a condition (membership function) and defining a
binary image according to it.These values or thresholds can be defined using tools like the
histogram of intensity values and cumulative distribution function, where, in some cases,
it is possible to notice a division between classes. Therefore, thresholding does not take
into account the spatial characteristics of an image, only its intensities. This method can
also be used as an initial step in a sequence of image-processing operations.

2.3.2 Deformable models

Deformable models are a very used approach to delineate region boundaries. In a simple
definition, deformable models start to expand/adjust an initial contour or model to the
image under the influence of internal and external forces [22]. These methods combine
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geometry, physics and approximation theory. The geometry is used to represent the initial
object shape, the physics restrains the adjustment of the shape over space and time, and
optimal approximation theory describes the underlying formal mechanisms on which the
model is fitted to the measured data [23].

First, a closed curve or surface is placed near the desired boundary. Subsequently, the
initial boundary suffers an iterative relaxation process, through internal forces that are
computed from within the curve or surface and allow it to expand smoothly during de-
formation. These forces are defined according to the elasticity theory at the physical
level [23] and comprise elastic energy and bending energy, responsible for shrinking and
bending the contour, respectively [24].

As the model expands, the energy grows, and frequently include terms that constrain the
smoothness or symmetry of the surface [23]. Using the classical optimal approximation
theory, external potential energy functions are derived from the image to drive the model
to fit the data, defining its contours along the boundaries [24] and generating external
forces [2, 22, 23].

Active Contour Models (ACMs) are a type of deformable models [22, 24], whose primary
goal is to define an initial contour around the boundaries of the object as a parametric
curve, and distort it toward the desired boundaries by minimizing the functional energy [2].
ACMs can be distributed in two main types: Edge-based Active Contour Models (EACMs)
and Region-Based Active Contour Models (RACMs). EACMs creates small variations in
segmentation [24] by working with edge information, which is generated using gradient
or edge extraction methods [25]. This approach can be, however, sensitive to noise,
weak edges and intensity inhomogeneity [25]. On the other hand, RACMs uses statistical
information for controlling the contour near the object boundary throughout the evolution.
For this reason, RACMs are more robust to the disadvantages of EACMs [24, 25].

This approach can be advantageous due to their ability to create closed parametric curves
or surfaces from images and their robustness to noise or spurious edges. However,
they require manual interaction to define appropriate parameters and place the initial
model [22].

2.3.3 Atlas-guided approaches

When a standard atlas or template of the object to segment is available, atlas-guided
approaches can be a powerful tool. The reasoning behind it is based on the creation of
a reference atlas, and successive segmentation of new ones using this reference-frame.
The atlas can be created by manually segmenting an image or through the compilation
of anatomic information from multiple previously segmented images. To segment new
images, a standard atlas-guided approach treats segmentation as a registration process,
an “atlas warping”. Thismeans discovering a one-to-one transformation that describes the
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mapping of the pre-segmented atlas to the new image requiring segmentation, maximizing
the similarity. Due to anatomical variability, linear transformations may not be adequate,
which leads to the use of sequential application of linear and nonlinear transformations
to overcome this issue [22]. If more than one training image/map is used, for each voxel
there will be a set of possible labels, which are combined by decision fusion in order to
define the label.

This type of approach can face limitations when segmenting complex structures with vari-
able size, shape and properties. Also, it requires expert knowledge to build the database [26]

2.3.4 Markov Random Field models

These models are not segmentation methods per se, but statistical models, being used
within segmentation algorithms for that purpose [22]. Considering the set of all the possi-
ble labellings for each voxel and for each image, Markov RandomField (MRF)models take
a probability measure on this set and select the most likely one. The goal is to maximize
the probability of picking the most correct labelling. Images usually have homogeneous
regions, that share similar properties (like intensity). These models are able to capture
such constraints. By calculating and minimizing the energy of all potential configurations
between pixels, it is able to separate regions in spatial clusters according to similar prop-
erties [27]. Therefore, structures that consist of a few voxels have a low probability of
occurring and consequently be segmented under an MRF assumption [22].

2.3.5 Clustering approaches

Clustering models are machine learning models that are used to agglomerate data with-
out labels based on their similarity, reducing variance. Since they do not require training
data, the algorithm iteratively alternates between segmenting the image and adapting the
properties of each class [22]. Clustering methods do not directly incorporate spatial mod-
elling, hence being more sensitive to noise and intensity inhomogeneities. Regardless,
the lack of spatial modelling can reveal itself more advantageous for fast computation.
Although there is no need of labelled data, it requires an initial segmentation or initial
parameters, such as the number of classes. Examples: k-means, the fuzzy c-means
algorithm, expectation-maximization algorithm.

2.3.6 Region Growing

Region growing (RG) algorithms try to group pixels in larger regions based on connectivity
criteria, like the intensity or texture present in the images. The standard procedure in
RG algorithm (Algorithm 1) is to take a pixel as seed point and, following a criterion of
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connectivity, e.g. the intensity, it cluster pixels by expanding the seed and the segmented
region. In this way, different regions start to appear and to be identified as one [1]. The
selection of the seed pixel can be performed in many ways, but usually, this is done by
manual input. Next, themethod adds a neighbour to the segmented region if the difference
between the value of the neighbour pixel and the average value of the pixels already in
the region does not exceed a threshold. This threshold needs to be manually set, case by
case, as it often depends not only on the problem but also on the image in question [28].

Algorithm 1 Traditional Region Growing Algorithm for the segmentation of a 3D CT scan.
Inputs:
Seed vector, s = [sx,sy,sz]
Volume to be segmented, CT
Tolerance threshold, Th
Output:
Volumetric mask, Mask, with the same size as CT

Initialise Mask as a volume with the same size as CT , filled with zeros
Initialise Checked as a volume with the same size as Mask, filled as false
Initialise NeedsCheck as an empty stack

Set Mask at s to one
Set Checked at s to true
Add neighbour coordinates of s to NeedsCheck.

while NeedsCheck is not empty do
Pop a point p from NeedsCheck
Set Checked at p to true

Calculate ms, the average of CT grey values in the points where Mask = 1
Retrieve mp, the grey value of CT in p

if |ms −mp| < Th then
Set Mask at p to one
Add neighbour coordinates of p to NeedsCheck

end if

end while

This method can be expensive in terms of computation, yet it is capable of taking advan-
tage of several image properties such as spatial and intensity information directly from
the image to detect its different boundaries [1].

2.3.7 Classifiers

Classifiers are pattern recognition algorithms that are used to predict the class of a given
pixel (pixel-classification). As pattern recognition methods, they extract rules and pat-
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terns from data with labels and seek the better partition of a feature space derived from
the image. A feature space is the range of space where all features can be represented.
In images, the most common feature space are the intensities themselves. By analyzing
training data with known labels, the model adjusts weights, thresholds and other parame-
ters in order to maximize performance [22, 16]. The Support Vector Machine and Artificial
Neural Networkss (ANNs) are some of the most known classifiers.

Artificial Neural Networks

From the first steps, the computer was designed to be able to imitate the reasoning from
human brain efficiently, performing all different types of functions and to retrieve conclu-
sions, as Turing wrote in Computing Machinery and Intelligence in 1950. As the brain
is composed of complex networks of linking neurons that communicate with each other
through synapses, transferring information from a location to another, interconnecting it
and assimilating new knowledge, so does an ANN. In biology, each neuron assigns a pri-
ority to some synapses, reinforcing the size and support to the stronger ones. In ANNs,
this selection is performed through weights. Plus, a bias can be added, that will shift the
activation function away from the origin to grant a better representation of the data. The
similarities can be seen in Figure 2.1, that represents a neural network.

Figure 2.1: Biological Neuron (A), Artificial Neuron (B) and Neural Network (C). Figure
from [29].

Each network can bemade of one or more layers of interconnected neurons, who simulate
biological learning by performing elementary computations when a signal is propagated.
An ANN architecture is frequently constituted by an input layer, an output layer and one
or more intermediate layers, also known as hidden layers. The first will be the layer that
will receive the data, while the output one is going to return the result of the network. The
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hidden layers are in charge of processing and adapting the input data through transfor-
mations that will lead to a particular outcome that can be interpreted by the output layer.

In traditional ANNs, feature vectors are first given to the input layer of the network. A
weigh is assigned to each feature of the signal, and then the weighted sum of all the
features is passed through an activation function (plus an optional bias). Then the output
is fed to another neuron, if there is an additional layer, or can be the result of the network,
if it is in the final layer. This activation function applies a transformation or a limit to the
weighted sum, and according to the result, it defines the activation or not of that neuron.

Learning is achieved in each iteration through the adjustment of weights attributed to the
connections and the bias that minimize the error between the obtained and the expected
output of the training samples. This process is known as backpropagation and relies on
the optimizer function, which is responsible for defining the type of update, and on the
loss function, that measures the error between the predicted and the true values. These
functions are selected based on the type of data and problem context. Later, the network
is tested using new samples. Due to the high number of interconnections of ANNs, spatial
information can be effortlessly integrated into its classification procedures [11, 22].

Deep Learning

A network can have many architectures that reflect the connections between the neu-
rons in the multiple layers. models are ANNs with three or more layers, each with many
neurons. Over the last decade, Deep Learning (DL) has been exponentially increasing
popularity and being considered the future of image processing, from landmark detection
and tissue segmentation to diagnosis and prognosis [30], and other data processing ar-
eas such as Natural Language Processing, Speech Recognition, Social Network filtering,
Drug Discovery or Genomics [31].

With the increase of the computational power and available data, due to the increasing
modernization and use of imaging devices, this type of models can be now used and
achieve state of art performances, once impossible [30]. These algorithms are able of ex-
ploiting large amounts of data, identifying hidden and complex patterns and representing
it into high-level features based on the low-level ones [30, 32]. In comparison with other
methods, they have the ability to discover discriminant and important features without hu-
man intervention (feature engineering) and learn the optimal attributes from the available
images [33]. Moreover, DL models are more robust to variations in position, rotation,
scale, perspective, among others [30]. Such high-level features are, however, hard to
explain. ANNs and DL, in particular, are known to be black-box models and their lack of
interpretability is a critical concern in the area, with doctors discarding these models on
their work for their lack of transparency, explaining the hard acceptance and adopting in
medicine of DL methods [30]. They require large amounts of labelled data, increasing
its performance as more data is fed to the network. However, when not available, there
is the risk of overfitting and hard parametrization, which will lead to bad performances in
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new non-trained data. Data augmentation techniques can be a possible solution when
this is the case [30].

Convolutional Neural Networks

In image analysis, the most used DL method used is a Convolutional Neural Network
(CNN) [30]. In fact, CNNs represent a breakthrough approach in the analysis of medical
image, in areas such as organ/tumour detection and classification [34]. After being in-
vented in 1980 [35], the architecture was brought back to life by Krizhevsky et al. [36], in
2012, with the AlexNet architecture, when the team won the ImageNet challenge. Their
work used a network of 8 layers and millions of parameters, trained with 1 million training
images.

CNNs are typically used for classification tasks, where the model determines to which
single class the input image belongs. However, in certain tasks such as biomedical image
processing, the desired output should include localization, which means that for each
pixel should be assigned a classed label [37]. Despite that, thousands of labelled training
images are often an unattainable prerequisite/requirement in biomedical tasks.

CNNs also have multiple architectures, such as AlexNet, LeNet, VGG19, GoogLeNet,
ResNet, FCN [33]. The name comes from convolutional layers, which detect local features
at different positions in the input image and apply a series of convolution filters or kernels.
By analyzing small portions of the input image at a time, each of them is able to explore
different patterns, encoding more abstract features gradually over layers, from low-level
to high-level structures [11]. The result will be the generation of multiple feature maps,
one for each layer. The kernel size reflects the size of the receptive field of the image that
is being read and extends along the entire depth of the volume.

Figure 2.2: A typical Convolutional Neural Network. Figure from [38].

A typical CNN architecture is constituted of three types of layers, convolution, pooling and
fully connected layers (Figure 2.2). At the end of each convolutional layer, an activation
function, such as sigmoid, tanh or ReLu, is applied to the resulting feature map, introduc-
ing the non-linearity property to uncover nonlinear features. Pooling layers are respon-
sible for non-linearly down-sampling the result of the previous layer. The most common
function used is the max-pooling: it divides the input into multiple non-overlapping rect-
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angles, and then outputs the maximum value of each sub-region. The key reason for
this operation is the idea that the precise location of the feature is less important than
the coarse location.Indeed, taking advantage of pooling layers will reduce the spatial size
of the representation, parameters, the memory footprint and amount of computation re-
quired for implementing the network and will help manage overfitting. On the other hand,
fully connected layers have neurons connected to all activations from the previous layer,
which allows them to combine the resulting feature maps into a feature vector, creating
global semantic information. Usually, a softmax function is frequently used in the output
layer in classification problems to determine the final output. In general, a CNN is com-
posed of series of convolution filters separated by pooling layers and completed by one
or more fully connected layers [11].

The structure of CNNs allows them to learn effective hierarchical feature representations
that are commonly present in image data, but they still generate coarse inference, low-
resolution outputs and robustness issues [34]. For dealing with the coarse inference
and low-resolution problem, Fully Convolutional Networkss (FCNs) arose. FCN are up-
sampling networks, in which the fully connected layers are replaced by convolutions and
deconvolutional layers are added to perform up-sampling. In other words, upconvolutional
models are able of transforming an abstract low-resolution input into a high-resolution
output [34]. This idea led Ronneberger et al. [37] to create the widely known U-Net archi-
tecture, further evolved to a 3D version, 3D U-Net [11]

U-Net Convolutional Network

The U-Net architecture (Figure 2.3) allows the network to intrinsically recombine different
scales throughout the entire network.

In short, it combines a context aggregation pathway, responsible for encoding increas-
ingly abstract representations of the input (high-resolution feature maps), with a symmet-
ric localization pathway, obtained throughout multiple upsamplings of the low-resolution
maps [37, 32]. Moreover, it recombines both representations by using multi-path connec-
tions, ending up with high dimensional features precisely localized on a feature map. The
network can be divided into two parts:

• In the contracting path, a typical convolutional network architecture is applied to an-
alyze the whole image. As mentioned earlier, this consists of multiple convolutional
layers interspersed by max-pooling layers;

• The expansion part is responsible for providing high-resolution localized accuracy [34],
allowing the network to make a pixel-wise classification. For each step in this path,
seven operators are applied: 1) an upsampling operator is used instead of a pool-
ing one, followed by 2) convolution (”up-convolution”), that decreases the number
of feature channels to half, 3) a concatenation with the equivalent feature map from
the contracting path and finally with 4) two convolution layers, each followed by a
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Figure 2.3: U Net architecture, aggregating high-level information from the context path-
way (left) with the precise location from the localization pathway (right). Figure from [37].
”Each blue box corresponds to a multi-channel feature map. The number of channels
is denoted on top of the box. The x-y-size is provided at the lower-left edge of the box.
White boxes represent copied feature maps. The arrows denote the different operations.”

ReLU.

It is important to notice the effect of the concatenation step: it allows the network to local-
ize the most relevant features, by allowing the next convolution layer to learn to compile a
more precise output based on the information from both the contracting and the expand-
ing path (high-resolution features and upsampled output, respectively) [39]. Such con-
nections are usually complex coarse-to-fine pathways, able to connect activations from
earlier stages with later ones [40]. The resultant architecture reveals to be more or less
symmetric, conceding a U-shape to the network. No fully connected layer is used in the
original structure of Ronneberget et al., but a 1x1 layer convolution layer is placed in the
end, to map the final feature vector to the number of possible labels. Due to their ability to
achieve good performances in pixel-classification and the efficient use of GPU memory,
U-Nets are adequate for image segmentation tasks [41].

2.4 Data augmentation techniques

Due to the reduced number of training datasets in the medical field, and especially in
medical imaging, it has become a necessity to create techniques that allowed the use of
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the data available to a greater extent, particularly in DL models. To this end, many data
transformations can be applied to provide more training examples [34]: scaling; shift;
rotation; flipping; colour; cropping; random elastic deformations; drop-out layers [37, 42],
amongst others.

As such operations allow the network to learn invariance to these deformations, the cho-
sen methods should take into account the context and type of data being used, since the
resultant images may not be biologically plausible. Moreover, deformation is the most
common variation in real tissue, and for that reason is important to train the network to
predict its effect [37].

2.5 Performance metrics

Many different metrics can be used to evaluate the result of segmentation tasks, that
reflect different qualities of the segmented result.

Four metrics were chosen, in the present work, to evaluate the results: Dice coefficient,
Jaccard index, True Positive rate, and Volumetric Similarity. While the first three are
overlap based, the last one is volume based [43]. These metrics were chosen due to their
complementarity. Dice coefficient and Jacquard index are suitable when in the presence
of outliers; True Positive Rate for when recall is important; and Volumetric Similarity is
appropriate both in scenarios with outliers and when the volume is important [43].

All of these metrics can be derived from the four basic cardinalities of the confusion matrix:

• TP: Voxels correctly considered to belong to the lung;

• FP: Voxels incorrectly considered to belong to the lung;

• TN: Voxels correctly considered not to belong to the lung;

• FN: Voxels incorrectly considered not to belong to the lung.

The Dice coefficient (DICE), also called the Overlap Index or F-score/F1-measure, is the
most frequently used metric. It can be defined as:

DICE =
2TP

2TP + FP + FN
(2.1)

The Jaccard index (JAC) or Intersection Over Union (IOU) is defined as the intersection
divided by the union:

JAC =
TP

TP + FP + FN
(2.2)

True Positive rate (TPr), also called Sensitivity or Recall, measures the portion of positive
voxels in the ground truth that are also identified as positive by the segmentation being
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evaluated:
TPr =

TP

TP + FN
(2.3)

This metric is sensible to segments size, and it penalises errors in small segments more
than in large segments. Volumetric Similarity (VS) is a measure that considers the vol-
umes of the segments to indicate similarity:

V S = 1− |FN − FP |
2TP + FP + FN

(2.4)

Although the following metrics were not used in the present work, they are used to eval-
uate the results presented on the State of Art (Section 3), and for this reason, a brief
description of each metric will be provided:

• Percentage of VolumeOverlap (PVO), index showing segmentation accuracy, equiv-
alent to DICE;

• Percentage Absolute Volumetric Difference (AVD) and Percentage of Volume Dif-
ference (PVD), metrics showing segmentation dissimilarity;

• Warping Error, boundary metric, designed to tolerate discrepancies over boundary
location, penalize topological errors, and can also be applied directly as a cost func-
tion for learning boundary detection [44];

• Rand-error, a measure of disagreement between two clusters or segmentations, it
evaluates whether the overall cluster of pixels into different segmentations is correct.
It is robust to small variations in boundaries, but merging two objects or splitting of
an object will increase significantly the error [44];

• Oversegmentation Rate (OR), as the name implies, represents the rate of voxels
that are present as truth in the segmented result but not on the ground truth [19] ;

• Undersegmentation Rate (UR), indicates the relative amount of tissue that is con-
sidered as true in ground truth but is not present in the segmentation result [19];

• Absolute Border Distance (ABD), indicates the spatial similarity between segmen-
tation boundaries;

• Specificity (Sp), also called True Negative Rate, indicates the portion of negative
voxels that are correctly identified as such;

• Matthews Correlation Coefficient, balanced measure to analyze the correlation be-
tween two segmentations;

• Spearman Correlation Coefficient, a non-parametric metric to assess a possible lin-
ear association between two continuous variables;

• Accuracy, the proportion of voxels that are correctly identified among the total num-
ber of cases examined;
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• Hausdorff Distance (HD), the largest minimum distance between two sets of points,
that gives a better evaluation of the local behaviour [45, 2];

• Mean Absolute Distance (MAD), the average of the absolute distance between two
contours, most suited for the evaluation of the global correspondence between two
contours [45, 2];

• Convergence time, time required for a model to get closer to a certain metric value,
over iterations.

2.6 Statistical tests

Statistics allows one to critically assess the quality of the results of a method, considering
external factors to the model, such as different datasets or randomness. In this project,
the following statistical tests were performed:

• Shapiro-Wilk test, evaluates the normality of the distribution;

• Friedman’s ANOVA, non-parametric test to evaluate differences in multiple distribu-
tions with dependent samples;

• Wilcoxon Signed-Rank test, non-parametric test to evaluate if two distributions with
dependent samples have statistical differences.

Since pair-wised tests were also performed to evaluate the performances in more than
two models, the Bonferroni correction was applied to the Wilcoxon Signed-Rank test.
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3
State of the Art

A search was performed for works from different approaches on lung segmentation in CT
volumes published in the past 15 years that used approaches such as the ones described
in the previous chapter. Additionally, some segmentation works on other areas of study
were reviewed due to the relevance of their techniques and the results on the problem
they tried to resolve.

In 2006, Sun et al. [21] developed a tool to reconstruct volume throughout CT slices, for
segmentation and visualization of the lung volume. First, a preprocessing step was per-
formed, in which CT slices were filtered by an anisotropic filter algorithm, which allowed to
enhance the signal-to-noise ratio and eliminate noise. To allow the visualization 3D of the
volume data thought entire CT slices, a interpolation method combined with volume ren-
dering was used. After the preprocessing phase, a lungmask was generated with base on
3D RG algorithm, using three growing criteria, mainly based on region homogeneity and
region aggregation by using either data values or gradient magnitudes. The threshold for
the execution of the criteria was selected based on intensity and gradient magnitudes as
well. To start the segmentation, they developed two algorithms for seed initialization, one
manual and one automatic. For the manual seed, the user had two options: the interface
allowed the user to extract any slice from the volume and select the seed interactively,
or, alternatively, the user could draw a circle or rectangle to specify a region, inside of
which all pixels would be marked as seeds. For the automatic seed method, a cluster-
ing algorithm was used: a fuzzy C-means, that divided the image into three labels: lung,
background and other tissues. The seeds would be later validated regarding a Hounsfield
Units (HU) interval, automatically obtained from valley points of the volumetric histogram.
After the verification, the algorithms checked the 26 closest voxels (8 for the seed slice
and 9 for the adjacent slices). If it was valid accordingly to the three criteria defined, the
voxel was assigned to the segmentation result. Finally, a 3D morphological closing oper-
ation was performed on the lung mask, resulting in a complete cavity-free lung volume.
To view the 3D segmented lung volume at any angle, a 3D visualization tool was also
designed, with Visualization Toolkit (VTK). Using a dataset of 20 (single-detector) CT im-
ages, the results obtained were 88.5% of Volume overlap (PVO) and 11.5% of Volumetric
Difference (PVD), when compared with the golden standard (ground truth).
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Then in 2014, aiming to adjust a statistical shape model on the lung, especially on a lung
with several pathologies, Birkbeck et al. [46] suggested the use of landmarks or contex-
tual constraints from neighbouring anatomies, such as the curvature of nearby ribs or
the distance to spine. The team proposed a learning-based algorithm using statistical
classifiers. The algorithm detected adjacent organs and rib segments, using them as ge-
ometric constraints and appearance cues for the lung mesh segmentation. The pipeline
had 5 steps: organ detection, rib points extraction, pathological lung surface refinement,
identification of pathological lungs and final refinement. On the first step, the method
detected surfaces and corresponded them with a template surface (a statistical shape
model), previously trained with data. As explained before, some pathologies change dra-
matically the appearance of the lungs. To overcome the issue, the algorithm estimated
the shape on a contrast adjusted input image. Later on, to extract the rib points, discrim-
inative classifiers were applied, by creating a per-voxel rib probability map and obtaining
the connected components of the thresholded mask. Next, an area filter was applied,
and components out of the range [2000,9000] mm3 were excluded. The segments that
were not excluded would be like bent cylinders, but if they were not, a final test on the
sizes of the segment along its principal directions was applied. A combination of image
appearance cues with spatially anatomical constraints discovered from ribs and organs
was used for the detection of pathological boundaries. The mesh initialized in the first step
(and in correspondence with a known atlas) was refined by projecting it onto the shape
subspace and then performing deformations on its vertexes. The proposed method used
a discriminative model as a classifier so that the appearance term could be learned from
training data. On the 4th step, for the determination of pathological lungs, the algorithm
checked if the anatomical limits between the lung/rib surface and lung/bottom organ sur-
face satisfied the following conditions: for the lung/rib surface, the lungs were identified
as pathological if the lung regions adjacent to the rib surface were too far from the ribs;
in the case of lung/bottom organ surface constraint, if the surface was not close enough
from the adjacent organ, then it would be considered pathological. Finally, on a 5th step
the mesh previously defined was refined so that it could be used to obtain voxel-level
fine-scale detail. The pipeline was trained on a total of 381 lungs dataset (185 right and
196 left), the majority of them healthy (only 9 of them had between 25%-50% of unhealthy
tissue). For testing, 50 lungs with pathologies were used. The results showed that the
mean and median errors decreased after using the pathological pipeline, while the DICE
increased. For the basic pipeline, the results showed an average DICE of 84.5%, while
the lung pathological pipeline achieved a 90% and the full pipeline achieved an average
of 92.5%.

Another well-known approach for lung segmentation is the thresholding technique. Due
to the high percentage of air and low density, the lungs appear as dark regions in CT
scans. However, in case of pathology, a part of the lung may be more dense, due to
masses or nodules, and contrast with the lung background [11]. Based on the correlation
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between radiographic density and the atomic number of a given material, it is possible
to associate different ranges of radio densities for each tissue and pathology. For exam-
ple, hyperinflated lungs ([−1000,−900] HU), normally aerated ([−900,−500] HU), poorly
aerated ([−500,−100] HU) and nonaerated ([−100,50] HU) [47].

In light of this, Zhou et al. [48] proposed an automated method consisting of a combina-
tion of an enhanced grey-level thresholding algorithm with a refinement scheme, the latter
based on an ACM. The system was trained on a dataset of 25 patients of the H. Lee Moffitt
Cancer Center and Research Institute in Tampa, USA, with a total of 2342 slices. With the
purpose of comparison, a traditional thresholding tool, Definiens (a commercial software),
was also applied to the dataset, followed by morphology operations and contour analysis.
The threshold interval used for the mask was [-1000,-400] HU. Instead of searching for
the optimal threshold that would better fit the segmentation, the team applied a histogram-
based image stretch processing, distributing uniformly the value intensities of the image
slice.For this purpose, as prior-mentioned (Chapter 2), the range limits for the stretching
were determined by the maximum and minimum intensity value of the bands visible on the
histogram. The results showed enhanced images contrasts, leading to better results of
the threshold method. In their approach, there was no need to initialize the threshold, as
the Otsu algorithm automatically determined the best one, by separating the two classes
visible on the histogram and minimizing its intra-class variation. In the end, although the
threshold approach allowed the separation of lung area from non-lung areas, to obtain the
lungs was necessary to apply a contour analysis. This analysis searched for the exterior
contour, separating the body from the background, by looking for the region with maxi-
mal exterior contour. Afterwards, by checking the pixels inside this contour (the body), it
searched for regions with intensities lower than the optimal threshold and with an external
contour big enough (when compared, e.g. with the trachea size). At the end of this pro-
cess, the lung region was segmented. Thresholding based segmentation still presents
difficulties on boundaries and the areas with vessels, causing holes and inaccurate bor-
ders of segmentation. However, hilar vessels and other structures may be necessary for
the detection of diseases. These areas are usually fine structures, that can be viewed as
textures, which were detected by a texture-aware ACM, incorporating texture information,
intensity properties and structural features of lungs. The textural descriptor was used to
smooth the intensity variations in the texture region. Next, both the textures detected and
the results from the segmentation were incorporated in a convex active contour. To as-
sess the results and compare them with the ground truth, DICE was used to evaluate the
overlapping results. The DICE of the 10 CT scans evaluated was 84.6% for the reference
method and 90.59% for the proposed method.

Having in count the advantages and disadvantages of multiple simple techniques above
described in Section 2, Shi et al. [19] proposed a pipeline that is the combination of sim-
ple (in part) effective approaches. The team proposed a three-phase approach, based on
image processing (filtering and threshold approach), lung region initial segmentation (tho-
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rax extraction with RG and random walk for lung extraction) and lung region refinement
(rolling-ball algorithm for hole filling and lung contour correction with iterative weighted
averaging and adaptive curvature threshold). The pipeline was tested on a dataset of 23
lung CT scans with 883 2D slices. The preprocessing phase aimed to reduce the noise,
reduce (smoothing) the intra-region variance while preserving inter-region edges of the
images. Using an improved anisotropic diffusion filtering method, such as a guided filter or
bilateral filters, allowed to overcome the risk of blurring edges and losing details, that often
occur in Gaussian filter, mean filter or median filter. The filtering process applied an edge
detection step, to encourage intra-region smoothing while preserving inter-region edges.
A comparison with other filtering methods such as the Gauss filter was made, achieving
a peak signal-to-noise ratio of 63.1342, (contrasting with the 61.4568 of the Gauss filter).
Next, a binarization of the image was made using an Otsu’s adaptive threshold method.
The segmentation phase started with the segmentation of the thorax versus background,
that could include external artefacts to the patient bodies, such as the treatment couch.
To overcome this issue, a RG algorithm was used, and the background image was sub-
tracted from the binarized image. For lungs extraction and delineation, a random walk
algorithm was used, due to the distribution of density of thorax tissues. At the end of the
second phase, the extracted lungs still had a severe amount of holes and parts of regions
were also excluded. A rolling-ball algorithm was used to fill the holes. Lastly, to redefine
the contours of the segmented lungs, a curvature-based correction method was used on
the preliminary contours. The results were evaluated according to the Oversegmenta-
tion Rate, the Undersegmentation Rate and the Absolute Border Distance. Comparing
the results with RG and ACM alone, the proposed method achieved a OR of 1.87%, UR
of 2.36% and 0.62% of ABD, contrasting with 2.1%, 2.71% and 0.72 % from the RG al-
gorithm and 1.9%, 2.38% and 0.64% from the ACM. Evaluating the OR, results showed
that the proposed method achieved 98.4%, whereas that obtained using the threshold-
based method was 94.1%, the RG OR was 95.3%, the ACM was 94.4%, the ACM with a
curvature-based correction method was 95.8%, and the random-walk-based method was
only 93.8%.

Also using simple approaches, in 2017, Nobrega et al. [47] aimed to develop a 3D lung
RG segmentation method based on several tools available with ITK and VTK modules,
using a dataset composed of 30 full Chest CT exams. First, a Gaussian filter was used
to attenuate noise and small discontinuities on the first slice of the CT scan. Then the au-
thors assure that the seed used for the RG algorithm was inside/connected to the lungs
by comparing with the HU values theoretically associated. For this purpose, the image
was filtered with a Binary Threshold Image Filter, using a [-1000,-500] HU range. In this
way, only the structures with these values would be considered. After this step, a 2D RG
algorithm was applied, using the local minimums as seeds. In a fourth phase, an area
filter was performed, discarding structures with less than 80 or more than 700 pixels. If
at the end of this step there were no more structures left, the filtering restarted and the
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interval range was adjusted. Finally, the only remaining structures could be or the lungs
or the trachea. However, the latter and other respiratory airways (such as the bronchi)
are usually analyzed separately from the lung parenchyma [46]. To exclude this organ,
two RG algorithms were performed. Firstly, by finding the closest remaining structure to
the centre of the image, the team was able to detect the trachea. Using the trachea cen-
troid as a seed, a 3D RG algorithm segmentation was applied. The process stopped after
not finding any more voxels inside the [-1000,-500] HU interval. After this step, a second
3D region algorithm was performed, but with an additional condition: when the RG rate
exceeded twice of its mean value, the algorithm stopped the segmentation. This limit
was empirically defined after realizing that the rate maintained constant in the trachea
segmentation, but suddenly increased when it reached the lungs. Finally, the trachea
was removed by subtracting the trachea volume (second segmentation result) from the
lungs+trachea volume (first segmentation result). The proposed algorithm detected all the
30 trachea’s successfully, and results were evaluated using the TPr, Sp, F-Score (F) and
Matthews Correlation Coefficient (MCC). Compared with two OsiriX software algorithms,
AOSP (Automatic Segmentation with Osirix Software plugin) and SOST (Semi-Automatic
segmentation with Osirix toolbox), the proposed 3D RGmethod achieved average perfor-
mance rates of TPr = 98.09%, Sp = 99.87%, F = 98.62% and MCC = 98.44%; while the
AOSP method presented: TPr = 98.97%, Sp = 99.17%, F = 95.98% and MCC = 95.65%
and the SOST method: TPr = 98.66%, Sp = 99.30%, F = 97.17% and MCC = 96.82%.

It is also possible to combine machine learning techniques with ACM to segment the
lungs efficiently. Filho et al. [49] proposed a 3D Adaptive Crisp Active Contour Model (3D
ACACM) for the segmentation of 3D CT lung volumes, using ITK and VTK functions. Un-
like other parametric ACMs, the proposed method was able to segment complex objects
in 3D, by moving the points of the model with base on the information from the voxels
and model shape. By calculating the internal energy using 3D model information, like dis-
tances, they were able to prevent the points frommoving uncoordinatedly in relation to the
neighbouring voxels, which lead to an improvement in stability. For the external energy,
the authors used the 3D Adaptive Crisp method, which detected the origin of the edges
obtained with the 3D traditional external energy. When the volume did not increased after
two successive iterations, the algorithm stopped and the model was considered stable.
The dataset used was composed of 40 chest CT scans of healthy volunteers and patients
with various pathologies. The efficiency of the model was evaluated by comparing the
presented method with a 2D method previously proposed by their team [50], and was
tested using F-score. The obtained results with the F-measure were 99.14% ±0.18 (with
a processing time of 3.20 ±0.38 minutes), while the 2D model achieved 96.33% ±0.42 in
12.52 ±2.10 minutes. The algorithm presented an increase in the stability and an accel-
eration on the convergence of the 3D model. The authors also compared the model with
three other methods: automatic 3D RG method (3D RG), semi-automatic segmentation
using 3D OsiriX toolbox (EUOT) and Level-Set Algorithm based on the Coherent Propa-
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gation Method, of MIA plugin for OsiriX (LSCPM). The developed algorithm obtained an
f-measure of 99.22%, and the other methods achieved, respectively, 98.57%, 98.53%
and 98.73%.

More recently, due to the success of machine learning algorithms, and particularly in deep
learning-based approaches such as CNNs, an increasing number of works in this area
have been proposed.

Using a U-Net architecture, Brahim Skourt et al. [51] proposed an end-to-end lung CT
segmentation in pathological lungs. An effective lung segmentation method can be quite
challenging, especially if the lung parenchyma presents an irregular structure or appear-
ance. Is these cases, the nodules and blood vessels need to be segmented with the lung
parenchyma, while the bronchus regions need to be separated from the lung tissue [51].
The dataset used consisted of diagnostic and lung cancer screening thoracic CT scans
with marked-up annotated lesions as ground truth. As a preprocessing step, the images
were cropped, removing any information that didn’t belong to the area of study. After-
wards, the images were used to train a U-Net network. The group achieved results of
0.9502 of DICE index. The segmentations obtained do not contain parts of trachea or
bronchus regions while maintaining the lesions and blood vessels, showing the efficiency
of the method.

With the purpose of assessing the generalization of a segmentation method for different
OAR, Astaraki et al. [2] exploited the reliability of segmenting OARs using three 2D local
region-based semi-automatic segmentation algorithms (Localizing Region-Based Active
Contour (LRBAC), Local Chan–Vese (LCV) and local Gaussian distribution fitting (Local
Gaussian Distribution Fitting (LGDF))). Using a dataset of 20 CT scans of patients diag-
nosed with different types of cancer, including prostate, esophagus, lung and pancreatic
cancer, in a total of 1340 slices, the team focused on the segmentation of eight OAR
throughout the whole body (the bladder, rectum, kidney, clavicle, humeral head, femoral
head, spinal cord, and lungs). Manual segmentation of the OAR volumes was also per-
formed to be used as a reference, except for the lung delineation, for which the oncologists
employed automatic segmentation tools. Firstly, the user selected three to four points
around the desired organ in each slice. Later on, the initial contour was automatically
interpolated and fitted between these points, reaching the boundary by minimizing the
energy functional (LRBAC, LCV or LGDF). With the purpose of evaluating the applicabil-
ity and accuracy of these functionals, all three models were tested against the eight OARs.
An important feature of these models was their ability to segment cancer-related images
with non-uniform intensity distributions, which usually restricts the algorithms usage on
organs whose pixel intensities are distinguishable from adjacent organs. To evaluate the
results, the DICE, the Hausdorff distance (HD), the mean absolute distance (MAD), the
percentage absolute volumetric difference (AVD) and the PVD were chosen as metric
measurements. Due to poor results, the femur and rectum were not considered further.
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The results showed that the highest inter-observer DICE similarity criteria were obtained
for the lung (0.94 ± 0.04) and bladder (0.93 ± 0.03), while the lowest agreements were
observed for the spinal cord (0.81 ± 0.04) and clavicle (0.87 ± 0.02). For each OAR, the
most accurate results were: the mean ± standard deviation of the DICE 0.9 ± 0.04 for
the bladder (LGDF), 0.92 ± 0.12 for the humeral head (LRBAC), 0.81 ± 0.04 for the spinal
cord (LCV), 0.84 ± 0.04 for the clavicle (LCV), 0.90 ± 0.04 for the kidney (LGDF), and 0.94
± 0.02 for the lung (LGDF). According to the results, LGDF could achieve more precise
segmentations, in OARs where high-intensity gradient and intense inhomogeneity were
present. When comparing with other active contours techniques, particularly edge-based
models, these three functionals tended to be less sensitive to initialization, being how-
ever sensitive to initial contours. They appeared to achieve good deformability and to
have significant ability to delineate OARs when adequate intensity information exists.

It is common for a segmentation algorithm to oversegment when the boundaries of an
organ are blurry. In 2018, Nithila et al. [24] developed a technique named Selective Bi-
nary and Gaussian filtering-new Signed Pressure Force (SBGF-new SPF) to overcome
this issue in CT lung images. This technique was able to detect the external boundary
of the lung and effectively stop contours, even at blurry boundaries, therefore preserving
the boundary of the lung lobe. As explained in Chapter 2, there are two types of ACM:
edge-based and region-based. The latter uses statistical information to control the con-
tour inside and outside of the object boundary throughout the evolution, requiring two
forces, the internal and external one. The authors of this study exploited the usage of
different contouring models, such as Distance Regularized Level Set Evolution (DRLSE),
Local Binary Fitting (LBF), Local Gaussian Distribution Fitting (LGDF), Local Image Fitting
(LIF) and the proposed Selective Binary and Gaussian Filtering with new Signed Pressure
Force (SBGF-new SPF). This method automatically placed the initial contour on the CT.
Initially, it penalized level set function to be binary, and regularized it, making the evo-
lutionary stable. However, it did not change the functionality of evolution, just reduced
the number of iterations. The author compared the proposed model with four other ACM
(DRLSE, LBF, LGDF and LIF). The results showed that the model converged at 150 it-
erations, taking 17 s, while DRLSE converged after 1018 iterations and 490s, the LBF
at 100 iterations and 454s, LGDF at 1000 iterations and 811s, and finally LIF taked 150
iterations and 762s. The SBGF-new SPF method obtained an accuracy of 98.95% when
compared with the ground truth.

The training phase of most of the supervised machine learning algorithms requires a large
dataset of labelled/annotated data. This data is usually produced manually, and there-
fore demands a lot of time from the user to delineate it, and increases the variance and
the risk of errors. This year, Mingjie Xu et al. [20] developed a workflow to reduce the
workload of manually preparing the dataset for training a classification algorithm. The
pipeline started with a dual unsupervised k-means clustering, whose results suffered an
intersection operation, a connected component analysis and a patch expansion, that was
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subsequently used to train an AlexNet network, applying cross-validation. Firstly, CT
slices were split into image patches and next, a k-means clustering algorithm was per-
formed twice in order to segment the lungs, using the mean and minimum intensity of
the image patch, respectively. Hence the intersection of the volumes was obtained and
submitted to a connected component analysis algorithm to extract the lung parenchyma.
In this way, Xu proposed a faster, automatic, semi-supervised method to generate a la-
belled dataset of lung parenchyma and non-lung parenchyma. Then, a simplified AlexNet
structure of a CNN model was trained with the resulting patches, together with non-lung
parenchyma patches randomly selected. The results were evaluated using the average
value of F-score (F_avg) and the computational time of training, achieving a 0.9917 F_avg
on 1609.34 s. A dataset of 121.728 image patches was divided into training and valida-
tion, and cross-validation was performed (with a ratio of 7:1, so that the 8-fold is carried
out). The results showed a training accuracy and loss of 99.08% and 0.0294, respec-
tively. Also, they tested the performance using a separate dataset of 201 patients with
different diseases (COPD or lung cancer), acquired by PET/CT scanner or CT scanner
only. The results achieved an DICE of 0.968, HD 1.40, TPr 0.909 and Sp 0.999.

3.1 Other segmented areas

Occasionally, studies made on other segmentation areas may prove to be of interest due
to the novelty of the techniques and the relevance of their results in the context they are
inserted to. Such studies can inspire and be applied in other areas of study, leading
to a better understanding and to the evolution of the state of the art. One of the major
difficulties of DL algorithms regarding medical data is the number of training samples
required [37, 32, 30]. However, large labelled databases may prove sparse in medical
research, making it harder for the network to learn enough and perform well, leading to
overfitting and hard parametrization [37, 32, 30]. It may, therefore, be advantageous to
make use of current solutions as data augmentation techniques, drop-out layers, transfer
learning and fine-tuning.

In 2015, on the University of Freiburg, in Germany, Ronneberger et al. [37] proposed an
end-to-end network for the segmentation of neuronal structures in electron microscopic
stacks. The network had a convolutional network architecture consisting of a contracting
path, responsible to capture the context and increasingly abstract representations of the
input, followed by a symmetric expanding path enabling the capture of the precise loca-
tion. Concatenating several features (high-resolution feature maps) from the contracting
path to the expanding path makes possible to obtain a pixel-classification. Data augmen-
tation techniques were also performed. In the case of their dataset, training shift and
rotation invariance, along with robustness to deformations and grey value variations were
fundamental. For this purpose, random elastic deformations seemed to be the key proce-
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dure to train such a network with such a small dataset. Despite the reduced number, the
dataset had images of touching objects of the same class, hindering the separation be-
tween segments. To overcome this issue, they proposed to adopt a weighted loss, giving
more weight in the loss function to the separating background labels between touching
cells. This lead to a bigger penalization when the network was not able to correctly sep-
arate the segments. To test the experiment, three different segmentation tasks were per-
formed. First, the segmentation of neuronal structures in electron microscopic recordings,
on a dataset composed of 30 images (512x512), achieving a warping error of 0.0003529
and a rand-error of 0.0382. Second, a cell segmentation task in light microscopic images
on two different datasets. The first set was composed of 35 partially annotated training
images, for which was achieved an average IOU (“intersection over union”) of 92% (be-
ing significantly better than the second-best algorithm). Lastly, they tested on a second
dataset composed of 20 partially annotated training images of HeLa cells recorded by
differential interference contrast microscopy. In this dataset, they achieved an average
IOU of 77.5%, also being significantly better than the second-best solution.

Brain Tumour Segmentation (BraTS) challenge aims at the evolution of state-of-art meth-
ods for the segmentation of brain tumours in multimodal Magnetic Ressonance Imaging
(MRI) scans.The 2017 edition’s dataset was composed of annotated Low-Grade Gliomas
(LGG) and High-Grade Glioblastomas (HGG), in a total of 210 HGG and 75 LGG cases.
All the data was manually annotated, each one containing a T1 weighted, a post-contrast
T1-weighted, a T2-weighted and a FLAIR MRI. The classification task had 3 labels, corre-
spondent to each part of the tumour: edema (label 2), necrosis and non-enhancing tumour
(label 1) and active/enhancing tumour (label 4). Besides the segmentation challenge, the
participants were also asked to develop an algorithm for survival prediction, for which an
additional dataset of 163 training cases was provided. Just like Ronneberger [37] in 2015,
Isensee et al. [32] proposed in 2017 a U-Net architecture. However, the team adopted
different design choices, such as the exact architecture of the context pathway, the nor-
malization schemes, number of feature maps throughout the network, nonlinearity and
the structure of the upsampling pathway. For the survival prediction challenge, several
features were computed from the segmentation mask of the tumour subregions, such as
intensity, shape and texture features, and added to other handcrafted measures such as
the distance of the tumour to the ventricles and critical structures in the brain. The authors
based their resolution on a simple radiomics based approach, combined with a random
forest regressor and a multilayer perceptron ensemble for survival prediction. In order to
reduce the patient and modalities variability of the data, it was needed a normalization,
ensuring that all the value ranges match and avoiding initial biases of the network. For
this purpose, they normalized each modality of each patient independently. The process
consisted on the following steps: subtraction of the mean and division by the standard
deviation of the brain region; clipping of the resulting images at [-5,5] to remove outliers;
rescaling to [0,1], with the non-brain region being set to 0. To deal with class imbalances,
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a multiclass adaptation of the DICE loss function was used. Just like Ronneberger, to
avoid overfitting, Isensee used data augmentation techniques such as random rotations,
random scaling, random elastic deformations, gamma correction augmentation and mir-
roring. The network has shown to be able to accurately segment large tumour regions
as well as fine-grained details, obtaining results that had beaten the current state of the
art on BraTS 2015 and was one of the leading methods on the BraTS 2017 validation
set. The results for the validation set were DICE scores of 0.896, 0.797 and 0.732 for
the whole tumour, tumour core and enhancing tumour, respectively. For the test set, they
achieved DICE scores of 0.858 for whole, 0.775 for core and 0.647 for enhancing tumour.
However, the survival prediction proposed method obtained an accuracy of 52.6% and a
Spearman correlation coefficient of 0.496.

3.2 Conclusions

Table 3.1 resumes the main characteristics of the analyzed works on segmentation ap-
proaches.

Several works [20, 32, 37, 46, 51] use classifiers in their pipelines. This has, however,
the disadvantage of the need of a training phase.

In the papers [2, 48], segmentation is performed in 2D and 3D connectivity is performed
afterwards. This may lead to “jagged” and inconsistent final results.

Other proposals like [32, 37] have shown success in other segmentation objects, even in
small datasets, representing a possible approach.

Perhaps themost similar works to the 3D Iterative Region Growingmethod here described
are the ones presented in [21, 47], where 3D RG models were also used. Their works,
however, use “of the shelf tools” belonging to ITK.

As can be seen, several different algorithms have already been proposed. They are char-
acterized by their complexity, high running time or segmentation in 2D. This complexity
is, in some cases, justified by the application on pathological lungs.

A new, tridimensional, simple method, based solely on image processing, 3D Iterative
Region Growing Algorithm, is described in Section 4.2. Not recurring to classification
algorithms makes our proposal simpler, faster and does not require a large training set,
requiring only some basic anatomic knowledge. ´ On the other hand, besides this method,
a CNN 3D U-Net segmentation algorithm is also analyzed on Section 4.3, using the work
of [32] as a basis. As a classifier, it is robust, designed to process large 3D input blocks,
does not need a large dataset to train and is able to process simultaneously high di-
mensional feature representations with high spatial resolution, achieving good results in
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pixel-classification tasks. A comparison of both algorithms will be described in the next
Chapters.
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Table 3.1: Overview of the works presented.

Author Dataset Preprocess Methods Post-Process Results
Zhou
et al.
[48]

25 CT scans,
2 342 slices

Histogram
equalization

Otsu thresholding,
Contour analysis

Texture-aware active
contour model DICE = 90.59%

Nobrega
et al.
[47]

30 CT scans
Gaussian
Filter,

Threshold

2D RG
+

area filter

Subtraction of 3D Region
Growing for trachea

TPr = 98.09
Sp =99.87

F-score = 95.98
Matthrews Correlation
Coefficient = 95.65

Sun
et al.
[21]

20 CT scans Anisotropic
filter

3D RG
with 3 criteria and
2 methods for

seed initialization

3D closing PVO = 88.5%
PVD = 11.5%

Mingjie
Xu
et al.
[20]

121 728
patches + 201
CT scans of

pathological lungs

AlexNet CNN

F-score = 99.17
Time (training) = 1609.34 s

DICE = 96.8
HD = 1.40 mm
TPr = 90.9
Sp = 99.9

Brahim
Skourt
et al.
[51]

1018 CT scans of
pathological lungs

(LIDC-IDRI)
Cropping U-Net CNN DICE = 95.02%

Astaraki
et al.
[2]

20 CT scans of
pathological lungs

(1340 slices)

3 semi-automatic
active contour
models, 2D

LGDF: DICE = 94
LCV: DICE = 83%

LRBAC: DICE = 76%

Nithila
et al.
[24]

1018 CT scans of
pathological lungs

(LIDC-IDRI)

Active contour
models

Convergency bet.
100-1018 iter. and

17s-811s
Accuracy = 98.95%

Birkbeck
et al.
[46]

CT scans with
218 right lung and

213 left lung
annotated g.t.

Organ detection,
rib points extraction,
contrast adjustment

Statistical Shape model
using statistical classifier

+
Area filter

Area filter + Lung
pathology detection

+ Fine-scale refinement

Basic pipeline:
DICE = 84.5%

Lung pathological pipeline:
DICE = 92.5%

Filho
et al.
[50]

40 CT scans,
healthy and
pathological

3D active contour
model (2D and 3D) F-Score = 96.33%-99.14%

Shi
et al.
[19]

23 CT scans,
883 slices,
healthy and
pathological

Anisotropic
Diffusion Filter
(guided filter) +
Otsu thresholding

Region growing
+

Random Walk

Rolling-ball +
curvature-based

correction

OR= 1.87%
UR = 2.36%
PVO = 98.4%
ABD= 0.62%

Ronneberger
et al.
[37]

30 EMR
55 part. annotated
training images

U-Net CNN
warping error = 0.0003529

rand-error = 0.0382
IOU = 92% / 77.5%

Isensee
et al.
[32]

285 MRI (210
glioblastomas and

75 gliomas)

Normalization,
rescaling and
cropping

U-Net CNN

Multiclass DICE = 85.8%,
77.5% and 64.7%
for whole tumour,
tumour core and
enhancing tumour
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4
Material and Methods

The main goal is to help specialists in the task of radiotherapy planning, by providing
algorithms that help in the delimitation of the lungs. Such delimitation is crucial to minimize
their exposure to radiation. With this goal in mind, two algorithms were evaluated, an
Iterative Region Growing (IRG) algorithm and an U-Net Neural Network.

Therefore, this section will be divided in two approaches, with a brief description of the
dataset used to develop and train both algorithms.

4.1 Dataset Description

The private dataset of 145 patients with Hodgkin Lymphoma used for this project was
provided by the Institute of Oncology of Porto. For each patient, pre-treatment PET and
CT scans, post-treatment PET scans, radiotherapy planning CT (acquired after the front-
line chemotherapy treatment) and contours manually delimited by experts were available.
However, from these 145 cases, 2 did not include CT and 3 were corrupted. The resulting
number of manually annotated Regions of Interests (ROIs) are given in Table 4.1.

Table 4.1: Number of manually annotated regions of interest of the dataset.

Name Quantity
Patients 145
CTV 198
PTV 248
GTV 42
Lungs 93

Esophagus 121
Heart 97
Liver 20

The CT volumes were acquired with a patient position between adjacent slices of 2.0, 2.5
or 5.0 mm and a pixel spacing of 1.0, 1.1, 1.2 or 1.3 mm, all in the DICOM format1

1For further details on the dataset, see [11]. Other projects done with the same dataset can be consulted
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4. Material and Methods

From the 93 patients with lungs contours, 63 had a separate ground truth for each of
the lungs and 7 for only one of the lungs. These 70 patients will be called group A for
easy understanding of the following steps. The remaining 23 patients had a ground truth
involving both lungs. Some patients had both ground truths identified simultaneously.
Group B will comprise patients with only “both lungs” ground truth.

(a) (b)

Figure 4.1: Example of variety of lung ground truths: (a) individual ground truths and (b)
“both lungs” ground truth

To compare and evaluate the results, the manual contours of the lung’s ROIs were ex-
tracted and used to create binary masks, using the software computation environment for
radiotherapy research (CERR) [55] for MATLAB.

4.2 Region Growing

The RGmethod can be divided in three major steps, as represented in Figure 4.2: in “Lat-
erality separation”, two copies of the original volume are made, each of them containing
only one of the lungs; in “Seed definition”, three automatic methods for the placement of
the seed are proposed, needed to initialize the segmentation method; in “Segmentation”,
the lung volumes are defined, with a new and iterative region-growing-based method.

Figure 4.2: Lung Segmentation pipeline - Region Growing technique.

on [52, 53, 54].
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4. Material and Methods

By working with 3D volumes, it is intended to take advantage of volumetric features, typ-
ically not used in other works, that allow physicians to see and understand more easily
the shapes and connections of the tissues represented in the volume and can, therefore,
be relevant to the segmentation itself.

Firstly, gray intensity levels are converted to HU, a measure of radiodensity. This trans-
formation is possible due to the information contained in the DICOM header, namely the
Rescale Slope and Intercept.

As the pixel size variates from scan to scan, it is also important to reduce the variance
in scanner resolution between systems. For this purpose, voxels are resampled to an
isomorphic resolution of [5,5,5] mm, making use of the Slice Thickness and Pixel Spacing
information for the transformation.

After reducing the invariance of the intensity values of each scan, it is now possible to find
the seed from which the segmentation will grow.

4.2.1 Separation between right and left lungs

For the division of the lungs, the pipeline starts by thresholding the volume in such a way
that only the lungs are present. However, not all authors agree on the HU values of the
lung: in studies [47, 48, 56], the intervals suggested are [−1000,−500], [−1000,−400] and
[−700,−400], respectively. Although the method is quite robust to this selection,the inter-
val [−800,−500] seemed to produce the best results in this dataset. Using this interval, a
maskMHU is generated with ones in the voxels whose intensity belong inside this range,
and zeros in the remaining parts.

(a) (b)

Figure 4.3: Exemplification of HU Mask and corresponding application: plot (a) is the
mask HU, obtained with the values belonging to the interval [−800,−500]; plot (b) is the
result of the application of the same mask to the CT volume

Subsequently, a sum projection of this mask is made, creating a “cumulative transverse
plane”, as illustrated in the left part of Figure 4.4. Then, a new sum projection of this plane
is performed, originating a line profile (right part of Figure 4.4). Using the local minimum,
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4. Material and Methods

a plane can be defined in the original image that separates both lungs and subsequently
create two different volumes with only one lung each.

Figure 4.4: Separation between right and left lungs. On the left, a cumulative transverse
plane with separation line superimposed in dashed green; On the right, cumulative profile,
with local minimum as a green star and the separation line in dashed green.

Figure 4.5: Resulting volumes after the separation

4.2.2 Placement of the seed

Three different techniques were developed for the choice of the seed. These are de-
scribed next.

4.2.2.1 Method 1

This technique takes advantage of anatomic and image acquisition knowledge.When con-
sidering the lungs, one can identify them as being on the top of the thorax. As most of
the scans showed images from the thoracic cavity, the methods starts by placing the
seed in the position [13 ,

2
3 ] for the right lung and [23 ,

2
3 ] for the left lung, of the central

coronal plane. On the next step, a vertical search is performed, by looking for an in-
tensity inside the theoretical range of HU values of the lungs considered ([−800,−500]),
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4. Material and Methods

as shown on the left side of Figure 4.6. If by the end of the search, no seed is found,
then a tolerance is added to the interval, iteratively, until a value belonging to the range
[−800− tolerance,−500 + tolerance] is detected.

4.2.2.2 Method 2

This method represents a variation from the previous method. As before, the seeds are
initialized in the positions [13 ,

2
3 ] and [23 ,

2
3 ], for left and right lungs, respectively. However,

the search is made radially, based on the distance from the initial point. In this way, the
closest point to each of the initial seeds in the mask MHU is chosen as the new seed, as
shown on the right side of Figure 4.6.

(a) (b)

Figure 4.6: Seed location by Methods 1 (a) and 2 (b). The first method consists on
the search of an intensity value in the interval [−800 − tolerance,−500 + tolerance] on
the vertical axis, whereas the second method searches for the voxel in the interval that
corresponds to the minimal distance to the initial seed.

4.2.2.3 Method 3

The third method is based upon the reasoning applied on Section 4.2.1, and is performed
for each lung separately. Considering the coronal plane (plot (a) from Figure 4.7), the y

position of the seed is determined according to the local maximum closest to the plane
defined to separate the lungs (see right part of Figure 4.4). Next, the sagittal plane (plot
(b) from Figure 4.7) of MHU is obtained, represented on the top-left plot of Figure 4.8.
The z coordinate will correspond to the local maximum of the sum projection of the biggest
connected component ofMHU (yellow structure in the top-left plot of Figure 4.8), as visible
on the right plot of Figure 4.8. Lastly, the x coordinate is chosen in a similar way: the sum
profile of this direction is computed and the local maximum position is chosen, as shown
in the bottom plot of Figure 4.8.
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(a) (b) (c)

Figure 4.7: Planes of the volume: coronal on the left (a), sagital on the middle (b) and
transversal on the right (c)

Figure 4.8: Seed location by Method 3 (illustration for one of the lungs, only).

4.2.3 Iterative Region Growing

As mentioned in the Background Chapter (Section 2), in the standard RG algorithm, a
threshold is manually chosen, that determines which voxels belong to the segmented
region. Moreover, this parameter depends not only on the problem but also on the CT
scan in question, as it depends on either the pathological condition of the lungs or the
machine in which the patient was scanned. The method here proposed allows to update
this threshold, Th, automatically and iteratively, as represented on the Algorithm 2. This
procedure uses three parameters: the Tolerance Threshold Initialization Th0, Maximum
Area Threshold ThH , and Minimum Area Threshold ThL. The ThH and ThL parameters
are defined according to previous biomedical knowledge on maximum and minimum lung
volumes. Firstly, Th is initialized (Th0). Then, just like the standard Algorithm 1, the
segmented region expands from the seed, following a connectivity criteria, retrieving the
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resulting segmented volume. If this volume is superior/inferior to ThH /ThL, then Th is
decreased/increased, respectively. This step allows to adjust the threshold parameter
iteratively and to make the algorithm more robust to the initial parameter Th0.

Algorithm 2 Iterative Region Growing Algorithm.
Inputs:
Seed vector, s = [sx,sy,sz]
Volume to be segmented, CT
Tolerance threshold initialisation, Th0
Maximum area threshold, ThH
Minimum area threshold, ThL
Output:
Volumetric mask, Mask, with the same size as CT

Th initialisation, Th = Th0
while Algorithm 1 is iterating do

if Count(Mask == 1) > ThH then
Stop Algorithm 1
Update Th, Th = Th− 10
Restart Algorithm 1

end if
if Count(Mask == 1) < ThL then

Update Th, Th = Th+ 10
Restart Algorithm 1

end if
end while

In this version of the algorithm, there are more parameters to define (Th0, ThH and ThL)
when comparing with the standard version (Th,Algorithm 1), which could suggest that it
would be even more difficult to establish all these values. The original algorithm can be
quite sensitive to the value of Th, which usually is manually introduced and not gener-
alizable to all patients. In this version, the values of the parameters were predefined as
follows: Th0 = 225 HU, ThL = 3000 voxels and ThH = 40000 voxels. These limits were
empirically found, taking into account the maximum and minimum lung sizes in voxels.

A resume of all the processes can be observed on Figure 4.9, representing all the steps
explained above. In the end, the results were evaluated by comparison with the ground
truth manually delineated.

A comparison method was also implemented, using a DL approach. Such models have
been increasing popularity and are considered the future of image processing. They do
not require (a manual) selection and extraction of features, they are able to identify hidden
and complex patterns and to learn the optimal attributes from the available images. A
U-Net method was chosen due to its capacity to deal with coarse inference and low-
resolution problems present in other CNN architectures (see Chapter 2).
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Figure 4.9: Lung Segmentation methodology - Region Growing technique.

4.3 U-Net

This model was adapted from the original work of Fabian Isensee et al. [32] for BraTS,
a Brain Tumor segmentation challenge. The team achieved DICE scores of 0.858 for
whole brain tumour, 0.775 for core tumour and 0.647 for enhancing tumour. Their work,
inspired by [37], presents some novelty aspects: normalization techniques, nonlinearity
of the model, the number of feature maps throughout the network, the architecture of
the contracting pathway and the structure of the upsampling pathway [32]. Besides, to
deal with a small and imbalanced dataset, a variety of data augmentation techniques and
multiclass adaptation of the dice loss was implemented by the team.

Due to the use of different machines and non-standardized intensity values, a normaliza-
tion process is crucial to allow data from different patients to be processed by one single
algorithm, especially in the implementation of neural networks. This could lead to initial bi-
ases of the network. With this goal, the following pre-processing steps were implemented,
as in the original work, for each patient:

1. Normalization - subtraction of the mean and division by the standard deviation;

2. Clipping - clip all the values inside the range [-5,5];

3. Rescaling - rescale the remaining values to [0,1], with background defined as 0.

Next, the dataset A was split into train and validation sets. It was defined 80% as the
percentage of data that should be held over to training, remaining 20% to be used for
validation, a common ratio in machine learning models [57]. In this way, it is maximized
the number of samples, giving the model more variance to learn, while leaving a fair part
for validation of the models, allowing the performance statistics to have more variance.

To prevent overfitting due to the limited size of the dataset, and like the original model,
a large variety of data augmentation techniques was performed on the fly during train-
ing: random scaling, random elastic deformations, random rotations, gamma correction
augmentation and mirroring.
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Just like Ronneberger et al. [37], Isensee architecture comprises a context/contracting
path, followed by a localization/expanding path with multiple connections between both
pathways. This allows the network to encode higher dimensional feature representations
and associate them with features from shallower layers to precisely locate the structures
of interest. Unlike [37], the author uses context modules following the convolution blocks
as a pre-activation residual block. Each block is composed of two convolutional layers
interspersed by a dropout layer. Each context block is connected to the following blocks
through a convolution layer, allowing the network to decrease the resolution of the feature
maps. On the other side, to achieve a higher spatial resolution, upsampling blocks are
employed. Each of these blocks is composed of an upscale layer, which repeats fea-
ture voxels twice in each spatial direction, succeeded by a convolution layer, responsible
for halving the number of feature maps. Then, a concatenation recombines the resulting
features with features from the corresponding level of the contraction pathway. This con-
catenation is followed by a localization module, responsible for recombining these feature
maps and for shortening their number, reducing the memory consumption. This localiza-
tion module comprises two convolution layers (3x3x3 and 1x1x1), reducing once again
to half the number of feature maps. Lastly, each convolution layer was followed by a
non-linear leaky ReLU with a negative slope of 10−2, defined by y = max(0.01x,x). The
architecture of the network was not changed in this project2.

Figure 4.10: U Net architecture, aggregating high level information from the context path-
way (left) with the precise location from the localization pathway (right). Figure adapted
from [32].

A common problem in medical image segmentation is the class imbalance in each im-
age, where, usually, the background is composed of much more voxels than the class
it is pretended to identify. Such imbalance can interfere with the training of the network,
depending on the used loss function [32]. In this dataset, lung voxels represent only 0.5%
to 3.5% of all the voxels in the image, depending on the patient. To properly deal with

2For more information on the network architecture, please check [32].

41



4. Material and Methods

class imbalance, a multiclass (weighted) DICE loss function is applied:

Ldc = − 2

|K|
∑
k∈K

∑
i ui,kvi,k∑

i ui,k +
∑

i vi,k
(4.1)

where u is the prediction of the network and v the true value, from the ground truth seg-
mentation map. Both u and v have the same shape, I by K, with i ∈ I representing the
voxels in the training patch and k ∈ K the classes. ui,k and vi,k represent the output of
the network and ground truth for class k at voxel i, respectively [32].

All results obtained for both approaches are presented in the next section - Chapter 5, as
well as a comparison of both algorithms in terms of performance.
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5
Results and Discussion

In this chapter, it will be presented the results obtained thought the two approaches de-
scribed in Chapter 4. The purpose is to analyze each of these techniques, and benchmark
the results. The explanation is divided into IRG (Section 5.1), U-Net network (Section 5.2),
and comparison of both (Section 5.3).

5.1 Region Growing

For the IRG algorithm, three different methods for seed placement were implemented on
CT scans of dataset A. To evaluate the performance of these methods, it was verified if
the resulting seeds fell inside the ground truth mask, and the distance to the centroid of
these masks was computed1. Although the seed being close to the centroid of the lung
is not mandatory, it is a good indicator of the proximity to the lung.

The results are illustrated in Table 5.1. It is possible to notice that all seeds defined by
method 3 fall inside the lung region and additionally, are the ones that are significantly
closer to the centroid when compared with the seeds resultant from the other techniques,
according to the Wilcoxon Signed-Rank test at the 5% level.

Table 5.1: Seed placement performance. Best results in bold and signalled with “*” if
statistically significant, according to the Wilcoxon Signed-Rank test at the 5% level.

Method 1 Method 2 Method 3
Percentage of valid seeds 78.03 78.03 100.00∗

Distance to centroid 21.47 18.61 6.41∗

To evaluate the segmentation performance, an HU threshold baseline technique was com-
puted, by selecting the biggest connected component of MHU (the yellow region on Fig-
ure 4.8). The results for each automatic seed placement method and for the centroid of
the ground truth mask are shown in Table 5.2, for all segmentation methods.

1However, it is important to notice that there are cases in which the centroid does not fall inside the ground
truth mask.
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Table 5.2: Segmentation performance. Best results are presented in bold.

Segmentation Seed DICE Jac TPr VS
HU threshold Method 1 0.661 0.576 0.605 0.703
HU threshold Method 2 0.656 0.571 0.600 0.691
HU threshold Method 3 0.812 0.707 0.740 0.858
HU threshold GT centroid 0.812 0.707 0.740 0.861

Standard Region Growing Method 1 0.736 0.703 0.716 0.779
Standard Region Growing Method 2 0.720 0.687 0.700 0.752
Standard Region Growing Method 3 0.894 0.853 0.871 0.926
Standard Region Growing GT centroid 0.872 0.833 0.850 0.916

Iterative Region Growing Method 1 0.736 0.703 0.716 0.836
Iterative Region Growing Method 2 0.741 0.707 0.721 0.841
Iterative Region Growing Method 3 0.923 0.882 0.900 0.956
Iterative Region Growing GT centroid 0.886 0.846 0.863 0.930

From Table 5.2, it can be confirmed that the proposed IRG outperforms the Standard RG.
As expected from the results on Table 5.1, seeds placed by method 3 generate the best
segmentation results, and the corresponding segmentation results with the IRG method
are statistically significant when compared to all other results, except for the one of Stan-
dard RG with Method 3, according to the Wilcoxon test with Bonferroni correction at the
5% level. Using the same test, the results shown a significant difference of Volume Simi-
larity between the Standard RG and the IRG results for methods 1 and 2.

In order to evaluate the performance of the segmentation algorithm, and minimizing the
effect of the placement of the seed on the results, it was studied the efficiency of the
technique solely on the cases where the seeds were placed inside the ground truth lungs.
The results are shown on Table 5.3. It can be seen that, when the seed is valid, method
1 originates seeds whose segmentation results are better, according to DICE, Jaccard
Index and True Positive Rate metrics. However, when looking at Volumetric Similarity,
method 3 still leads to better segmentations. Such results may indicate that the design
of an algorithm combining the ideas behind method 1 and method 3 is a possible future
direction.

The significance of these results was tested according to theWilcoxon Signed-Rank test at
the 5% level and revealed that the difference between iterative and non-iterative versions
are not significant, except against Iterative and Standard RG using the centroid (in terms
of TPr and VS for method 3, DICE and VS for method 2, and DICE, JAC and VS for
method 1). Both are significantly better than HU threshold, according to the same test.

The results also suggest that the IRG version leads the algorithm to be more robust to
the placement of the seed since the results are not significantly different between different
seed placement methods. In fact, as long as the seed is correctly placed inside the lung
surrounded by HU values belonging to the interval [−800,−500], the segmentation results
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Table 5.3: Segmentation performance, considering valid seeds only. Best results are
presented in bold.

Segmentation Seed DICE Jac TPr VS
HU threshold Method 1 0.639 0.559 0.587 0.671
HU threshold Method 2 0.634 0.554 0.580 0.663
HU threshold Method 3 0.812 0.707 0.740 0.858
HU threshold GT centroid 0.786 0.685 0.717 0.834

Region Growing Method 1 0.925 0.883 0.900 0.952
Region Growing Method 2 0.895 0.854 0.870 0.922
Region Growing Method 3 0.894 0.853 0.871 0.926
Region Growing GT centroid 0.892 0.852 0.870 0.931

Iterative Region Growing Method 1 0.925 0.883 0.900 0.952
Iterative Region Growing Method 2 0.914 0.872 0.888 0.945
Iterative Region Growing Method 3 0.923 0.882 0.900 0.956
Iterative Region Growing GT centroid 0.900 0.859 0.877 0.939

are quite similar, as it can seen from Figure 5.1, which demonstrates one of the patients
of this dataset. The first row represents the results from method 1, where the seed is
located near the bottom frontier of the lung, while in the second row are the results of
method 3, where the seed is close to the centre of the lung. As expected from the results
of Table 5.3, the final segmentations are alike.

Figure 5.1: Example of the results of lung segmentation for method 1 (top) and 3 (bottom).
Ground truth on the far left; CT with superimposed results (red) and seeds (blue) on
the middle left; segmentation results on the middle right; and representation of the four
cardinalities of the confusion matrix on the far right.

It is important to note that there were multiple cases in which the seeds were correctly
placed inside the lung, but too close to bronchi or vessels, and therefore close to HU
values outside the desired interval. In such cases, the algorithm cannot segment properly.
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5.2 U-Net

For the U-Net approach, multiple parameters were experimented (Table 5.4), mostly con-
cerning data structure, data augmentation techniques and learning parameters of the net-
work. Volume size corresponds to the size of the input and output volume (image). The
up-convolution operation is, as the name suggests, the operation used to augment the
volume size through layers. The batch size and validation size correspond to the number
of volumes that passes through the network at each time for each epoch for training and
validation sets, respectively. The number of epochs corresponds to the number of times
the dataset will pass through the network. Patience corresponds to the number of epochs
that the network will wait for to reduce the learning rate to half after the validation loss is
not improving. Early stop corresponds to the number of epochs that the network will wait
to stop the training after no improvement is made in validation loss. Flipping, Permutation
and Distortion are data augmentation techniques.

Table 5.4: Parameters tested in different configurations.

Parameter Experimented Values
Volume Size 643,1123

Up-convolution operation Deconvolution, Upsampling
Batch Size 1,5

Validation Size 2,5
Number of Epochs 250,300

Patience 6,70,107
Early Stop 30,129,150

Flip False, True
Permute False, True
Distort False, True

Due to limitations of computational resources and time required for each configuration of
the model, most of them were experimented using an input volume of 64x64x64 voxels.
However, using an additional computer, it was possible to verify the influence of the input
size on one of the configurations (Configuration 2, Table 5.5). The input size tested corre-
sponded to a volume of 112x112x112 voxels. To perform this decreases in shape, it was
required a resampling operation, which lead to a decrease on the input resolution and
perhaps the inability of the model to learn certain inherent features. To reduce the time
and memory required for each model to train, it was taken advantage of GPU capabilities.

From the 70 patients with ground truth for each lung (Group A), 1 had only ground truth
for one of the lungs. Therefore, only 69 CT scans were used, 80% of those were used for
training of the network (corresponding to 55 patients) and 20% for validation (14 patients).
Additionally, 22 volumes from Group B (with ground truth of “both lungs”) were used to
test overfitting.
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5. Results and Discussion

Table 5.6: Results for each model configuration. The multiclass DICE mean corresponds
to the symmetric of the loss function. Metrics mean corresponds to the average of the
metrics used in the last section, respectively DICE, JAC, TPr and VS. The best results
are indicated in bold.

Model Multiclass
Dice mean Metrics mean Multiclass

Dice median Metrics median

1 96.6± 0.6 96.5± 0.7 96.8± 0.6 96.7± 0.7

2 96.3± 1.9 96.1± 1.9 96.6± 1.9 96.6± 1.9

3 96.5± 0.6 96.4± 0.8 96.6± 0.6 96.6± 0.8

4 96.4± 0.6 96.2± 0.9 96.5± 0.6 96.3± 0.9

5 96.2± 0.8 96.1± 1.0 96.2± 0.8 96.0± 1.0

6 96.2± 0.9 95.9± 1.2 96.5± 0.9 96.2± 1.2

7 88.0± 17 88.5± 13.2 93.0± 17 91.3± 13.2

8 96.3± 0.6 96.2± 0.7 96.5± 0.6 96.5± 0.7

9 95.8± 1.3 95.3± 1.5 96.0± 1.3 95.2± 1.5

10 96.9± 0.7 96.7± 0.9 97.1± 0.9 97.0± 0.9

11 97.3± 0.5 97.1± 0.7 97.4± 0.5 97.2± 0.7

12 97.4± 0.7 97.3± 0.9 97.7± 0.7 97.6± 0.9

13 97.4± 0.6 97.2± 0.9 97.8± 0.6 97.4± 0.9

14 97.5±0.7 97.3±0.9 97.7±0.7 97.7±0.9

From Table 5.6, the results suggest that the effect of data augmentation may not always
be advantageous. Flipping, distorting and permutation are artificial ways to create data
and therefore, if not realistic, they may induce error in the model. However, another way
of explaining these results may be that the network has not had time to learn to ignore
such transformations. On Figure 5.2, it can be verified that there is still room for improve-
ment: the standard model, like others using data augmentation, has not yet converged,
despite all the spikes caused by a high learning rate. However, it was required more time
and memory to test these models through more epochs. In these cases, where no data
augmentation techniques are applied and there is less data for the model to learn, it can
start to memorize the training samples, and therefore it may not be able to generalize to
test samples (overfitting). To check if the model was overfitting, it was tested the model
in a test dataset with 22 samples. The results can be seen on Table 5.7 and Figure 5.3.
From the achieved results, it can be concluded that the model is able to generalize to new
samples.

Table 5.7: Results for the testing set.

Model Multiclass
Dice mean Metrics mean Multiclass

Dice median Metrics median

1 91.0±22.1 91.8±17.4 96.9±22.1 96.5±17.4
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Figure 5.2: Comparison of the convergence speed between three models (validation
loss). In red, it can be seen the standard model, configuration 1, with data augmentation
techniques. In grey, the model 12, without permutation and distortion. In blue, the model
13, with flipping but without permutation and distortion. In orange, the model 14, without
permutation and distortion and upsampling (instead of deconvolution).

Figure 5.3: Results quantification with the Mean of the Metrics previously chosen (Dice,
Jac, TPr, VS) and with the multiclass Dice function

5.3 Comparison

The two different approaches were compared according to the metrics previously defined
DICE, JAC, TPr and VS.

Using the dataset that included ground truth for each of the lungs (69 patients), 55 were
used to train the network (80%) and 14 for validation (20%) and comparison. The results
given by the IRG algorithm using the seed placement method (which demonstrated to
perform better, method 3) and by the U-Net model (which also performed better, model
14) were compared.

To compare in an unbiased way, the results of the latter model were resampled to the orig-
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inal shape and then resampled to an isometric resolution of [5,5,5] mm, like performed for
the first algorithm. This upsampling creates more resolution, using interpolation methods,
and therefore may negatively affect the results. The results are shown on Table 5.8 and
on Figure 5.5.

Table 5.8: Means, medians and respective standard deviation of each method. Statis-
tically significant results are marked with “∗”, according to Wilcoxon-Signed Rank test at
the 5% level.

Metric Iterative Region
Growing mean

Iterative Region
Growing median

U-Net CNN
mean

U-Net CNN
median

Dice 0.872±0.247 0.958±0.247 0.938±0.013 0.944±0.013
Jac 0.826±0.242 0.920±0.242 0.884±0.023 0.894+0.023
TPR 0.844±0.243 0.928±0.243 0.955±0.015∗ 0.958±0.015∗
VS 0.933±0.137 0.968±0.137 0.981±0.008∗ 0.981±0.008∗

Figure 5.4: Results quantification with the different metrics

The results suggest that the DL model outperforms significantly the IRG method in terms
of VS and TPr. For DICE and JAC, the results seem to suggest that the IRG method is
better, however there is no statistical difference between the two distributions according
to the Wilcoxon Signed-Rank test at the 5% level.
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Figure 5.5: Example of the results of lung segmentation for the Iterative Region Growing
algorithm (top) and U-Net CNN (bottom). Ground truth on the far left; CT with super-
imposed results (red) and seed (yellow) on the middle left; segmentation results on the
middle; representation of the four cardinalities of the confusion matrix on the middle right;
CT after application of the segmentation mask on the far right.

5.4 Overview

Overall, both algorithms achieved good segmentation results. All lungs were identified by
the U-Net model. However, the Iterative Region Growing method was not able to segment
properly 3 lungs, despite correct seed placement (near the bronchi, patient 2, 9 and 10
represented on Appendix C). Both models were able to accurately delineate the overall
shape of this organ, as well as fine-grained details such as the limitations with the trachea
and the bronchi. It is noticeable in Figure 5.5 that Iterative Region Growing creates tiny
holes, but in future work, these can easily be filled with a closing operation2.

Due to differences in the used databases, a fair comparison with other reported studies is
not possible. This database is composed of CT scans from both adults and infants, and
CT’s of full-body, abdominal and thoracic, increasing the difficulty of the segmentation. It
is also important to note that there are cases where the ground truth had small holes or
included part of other structures (bronchi). Generally, lung segmentation can reveal itself
as a challenging task because of the similar intensity values present in the pulmonary
structures and inhomogeneity of the lung region [58].

From Table 5.8 it is possible to conclude that the results from U-Net methods are signifi-
cantly better when comparing True Positive Rate and Volume Similarity, an overlap and
a volume-based metric, respectively. The results also suggest that the Iterative Region
Growing model performs better according to DICE and the Jaccard Index, however there
is no significant differences.

Different metrics were used to evaluate different quality aspects of the segmentation.
DICE, Jaccard Index and True Positive Rate are overlapping metrics. Dice is the most
used metric in this type of task, usually to perform direct comparisons between ground

2All the results can be seen in Appendix C

51



5. Results and Discussion

truth and automatic segmentations, but also as a measure of reproducibility [43]. Jac-
card index evaluates the intersection between two segmentations relatively to their union.
These measures tend to penalize bigger segmentations, that is, tend to penalize more
False Positives (purple on the Figure 5.5 than False Negatives (in red)) [43]. This may be
the case of these results.

True Positive Rate measures, as the name indicates, the portion of positive voxels that are
identified as true by both segmentations. Recall errors have two causes: missing regions
on the segmentation results or added regions that do not have correspondence in the
ground truth. In somemedical imaging tasks, it is preferable added regions in detriment of
missing regions, such as the delimitation of tumours. In this type of scenario, an algorithm
that maximizes recall instead of precision, avoiding missing regions, is preferable, even
if it requires to add false regions [43]. In such cases, the U-Net CNN algorithm will have
significantly better results than the Iterative Region Growing algorithm.

Volume Similarity compares the absolute volume of the ground truth with the correspond-
ing volume of the segmentation, not taking in count at all the overlap of the two sets. This
measure is recommended when the magnitude of the predicted volume is more important
than its boundary or alignment and therefore, in this cases, algorithms should perform
segmentations with volumes as more similar to the ground truth as possible. In such
cases, the U-Net CNN algorithm will have significantly better results than the Iterative
Region Growing algorithm.

Each of these metrics penalizes low density, and therefore, the presence of tiny holes in
the segmentations performed by the Iterative Region Growing algorithm may have de-
tracted the results.

It is important to refer that each case is different, and these results may not replicate in
other datasets. In fact, the dataset used to test this results has only 14 samples. Further
work would include tests in more samples to better generalize the results.

In conclusion, two algorithms were developed to segment the lungs using two very differ-
ent approaches. The Iterative Region Growing algorithm is able to achieve good perfor-
mances, and even surpass some of the recently proposed algorithms such as the ones
described in [46, 48]. Besides the advantages described in Chapter 3, is characterized
by its simplicity, no need of training phase, and low running time. Nevertheless, when
the placement of the seed occurs near other structures such as the bronchi, its expan-
sion may not satisfy the expectations. Deep learning models had been tested in many
approaches as it has seen in Chapter 3, achieving state-of-art results in many medical
imaging tasks. This model is a data-driven, end-to-end model trained from scratch us-
ing only 55 CT scans and it does not require feature extraction and selection. However,
interpreting the model is not easy, since it is a complex system and it requires time and
high computing power. A resume of the advantages and disadvantages of each model is
represented on Table 5.9.
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Table 5.9: Advantages and disadvantages of Iterative Region Growing and U-Net CNN
algorithms

Iterative Region Growing U-Net CNN
Complexity Simple Complex
Training No training Hours of training

Knowledge Uses previous
knowledge of the problem

Does not require
previous knowledge

Running time Low Low once it is
trained

Generalization Difficulties
with inhomogeneity Good

Computing
power Low High

Performance Good Good

Therefore, we conclude that both methods have good performances. In cases where the
alignment and position of the segmentations are important, both methods have similar
results, so perhaps the Iterative Region Growing would be a better choice, due to its
simplicity and low memory requirements. In cases where is preferable to keep track of
the true limits of the segmentation, perhaps in detriment of added false positives, or the
magnitude of the predicted volume is of major importance, then the U-Net CNN algorithm
outperforms the Iterative Region Growing.
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6
Conclusions and Future work

Segmentation is a problem present in many different domains, and of great importance
in the medical image field, such as in Radiotherapy Planning. This is a crucial task for
the management of cancer patients therapy, but it is still very time consuming, prone to
human errors and high intra and inter-subject variance. The identification and delimitation
of organs at risk is crucial to minimize its exposure to radiation, and therefore, an important
topic in treatment.

In this work, two different algorithms for lung segmentation in CT are presented and eval-
uated. While the Iterative Region Growing is simple, fast, does not need a training phase
and it is based on expert knowledge of the problem, the U-Net CNN is a data-driven,
end-to-end model, who does not require feature selection.

These two completely automatedmodels may help tominimize the time spent by clinicians
in the manual analysis of each CT scan, reducing the variability, and ultimately assist
in the clinical decisions making of the patient’s treatment plan and/or evaluation of its
effectiveness.

At the end, three intensity-based seed placement methods were tested, an improve-
ment of the Standard Region Growing model was proposed and a U-Net CNN model
was adapted to this problem. Seed placement methods reached 84%, 84% and 96%
of Volume Similarity for method 1, 2 and 3 with Iterative Region Growing, respectively.
When considering only the valid seeds, the Iterative Region Growing method registered
results of 95%, 94% and 96%, respectively. On the other hand, U-Net model achieved
91% of Weighted Dice mean and a mean of the other metrics (DICE, JAC, TPr and VS)
of 91.8%. After the comparison of both algorithms, our results suggested that the Deep
Learning approach leads to better segmentations in terms of recall and volume similarity.
The Iterative Region Growing model seems to perform better in terms of Dice and Jaccard
Index, but there is no statistical differences that confirm these results. It is of importance
to note how similar the overall results are and how far a standard model can be pushed.
It is also relevant to note that the size sample is small and therefore more tests should be
performed on more CT scans.

There is always room for improvement. Iterative Region Growing algorithm can be refined
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by the application of morphology operations, such as closing, or any other filter in order
to eliminate small holes present in the segmentation. Another type of threshold could
be also explored, as well as limitations to the placement of the seed outside the tho-
rax. On the U-Net algorithm, would also be worth to see the effect of data augmentation
techniques over an increased number of epochs, the implementation of hyperparameters
optimization techniques, therefore studying in more detail the non-linearity of the model.
It would also be interesting to verify the performance of a model who integrated the rea-
soning behind both methods, reducing the computational requirements of the U-Net and
improving the seed placement and limitations regarding other respiratory structures of
the Iterative Region Growing method. Future work should also include the validation of
these techniques on bigger and more diverse datasets that could include lung abnormali-
ties, such as pleural effusions, consolidations, and masses, considering that many image
segmentation approaches perform well only in lungs with normal or minimal pathological
conditions [59]. Another line of interest would be the development of interactive tools for
better visualization and manual adjustment of the results.
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A
Morphology operations

In this chapter, a brief demonstration of how much the morphological operations could
benefit the results from the Region Growing method. The images demonstrated corre-
spond to the results of patient 10, obtained with the third method of IRG before and after
dilation.

(a) (b)

Figure A.1: Example of the potencial of the morphological operations in the results. In
(a), the results obtained throught the IRG model. In (b), the same results after dilation.
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B
Equalization studies

In the first stages of this project, some pre-processing studies were performed to under-
stand how these could benefit the segmentation procedure.

Figure B.1: Results of lung segmentation for patient 2.
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C
Results of Comparison

In this chapter, it is possible to see the results of the comparison of the models for all the
patients. For all the images, the lung segmentation for the IRG algorithm is represented
on the top, and U-Net CNN at the bottom. On the far left, the ground truth; on the middle
left, the CT with superimposed results (red); on the middle, segmentation results; on the
middle right, the representation of the four cardinalities of the confusion matrix and finally,
on the far right, the CT after application of the segmentation mask.

Figure C.1: Results of lung segmentation for patient 1.

Figure C.2: Results of lung segmentation for patient 2.
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Figure C.3: Results of lung segmentation for patient 3.

Figure C.4: Results of lung segmentation for patient 4.

Figure C.5: Results of lung segmentation for patient 5.

Figure C.6: Results of lung segmentation for patient 6.
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Figure C.7: Results of lung segmentation for patient 7.

Figure C.8: Results of lung segmentation for patient 8.

Figure C.9: Results of lung segmentation for patient 9.

Figure C.10: Results of lung segmentation for patient 10.
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Figure C.11: Results of lung segmentation for patient 11.

Figure C.12: Results of lung segmentation for patient 12.

Figure C.13: Results of lung segmentation for patient 13.

Figure C.14: Results of lung segmentation for patient 14.
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Abstract. Radiotherapy planning is a crucial task in cancer patients
management. This task is, however, very time consuming and prone to
a high intra and inter subject variance and human errors.
In this way, the present line of work aims at developing a tool to help the
specialists in this task. The developed tool will consider the delimitation
of anatomical regions of interest, since it is crucial to identify the organs
at risk and minimize the exposure of these organs to the radiation.
This paper, in particular, presents a lung segmentation algorithm, based
on image processing techniques, such as intensity projection and region
growing, for Computed Tomography volumes. Our pipeline consists in
first separating two halves of the volume to isolate each lung. Then,
three techniques for seed placement are developed. Finally, a traditional
region growing algorithm has been changed in order to automatically
derive the value of the threshold parameter.
The results obtained for the three different techniques for seed placement
were, respectively, 74%, 74% and 92% of DICE with the Iterative Region
Growing algorithm.
Although the presented results have as use case the Hodgkin Lymphoma,
we believe that the developed method is generalizable to any other
pathology.
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