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Abstract

Breast cancer is one of the main causes of mortality in women worldwide. Diagnosing is

an important step that allows an early detection of the disease, which increases the chances of

survival and the efficiency of the treatment.

Staging Breast Cancer is a complex process in which several imaging modalities are funda-

mental, such as Echography, Mammography, MRI, Bone Scintigraphy, PET/CT and CAT scan.

Although PET/CT and MRI are not considered conventional methods for staging breast cancer,

they provide essential information to evaluate this disease.

The main objective of this thesis is to develop an approach that can semi-automatically

detect the primary site of breast cancer using two imaging modalities: whole-body PET/CT

and breast MRI. To achieve this goal, a multi-step approach for each modality was developed

based on image processing techniques, tested over a database of 143 breast cancer patients

collected from IPO-Porto. The developed algorithms are divided into breast tissue identification

and lesion detection, in which image processing techniques such as thresholding, co-registration,

superpixels and clustering were applied.

The best approach was achieved through the tumor detection in PET/CT images, achieving

an intersection over union of 0.308, a precision of 0.371, a recall of 0.568 and 2.766 false positives

per patient. These results seem promising, however, future work must be implemented to increase

the accuracy of the algorithm and improve the overall performance.

Keywords: Breast Cancer, Breast Cancer Diagnosis, Breast Cancer Staging, Image Processing,

Imaging Techniques, PET/CT, MRI
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Resumo

O cancro da mama é uma das principais causas de morte de mulheres no mundo. O

diagnóstico é um passo importante que permite uma deteção precoce da doença, o que aumenta

as probabilidades de sobrevivência e a eficácia do tratamento.

O estadiamento do cancro da mama é um processo complexo no qual várias modalidades de

imagiologia são fundamentais, como por exemplo a Ecografia, a Mamografia, a RMI, a Cintigrafia

Óssea, a PET/CT e o TAC. Apesar da PET/CT e da RMI não serem considerados métodos

convencionais para o estadiamento do cancro da mama, estes providenciam informação essencial

para avaliar a doença.

O principal objetivo desta tese é o desenvolvimento de uma abordagem que consegue semi-

automaticamente detetar a localização primário do cancro da mama usando duas modalidades

de imagiologia: PET/CT de corpo inteiro e RMI da mama. Para atingir esta meta, uma

abordagem de vários passos para cada modalidade foi desenvolvida baseando se em técnicas de

processamento de imagem, testada numa base de dados de 143 pacientes de cancro da mama

recolhidos no IPO do Porto. O desenvolvimento do algoritmo é dividido na identificação do

tecido mamário e na deteção da lesão, no qual técnicas de processamento de imagem como

thresholding, co-registo, superpixels e clustering foram aplicadas.

A melhor abordagem foi obtida pela deteção do tumor em imagens PET/CT, obtendo um

valor de 0.308 de interseção sobre união, de 0.371 de precisão, de 0.568 de recall e de 2.766 falsos

positivos por paciente. Estes resultados são promissores, no entanto, trabalho futuro deve de ser

implementado para aumentar a acurácia do algoritmo e melhorar a performance.

Palavras-Chave: Cancro da mama, Diagnóstico do cancro da mama, Estadiamento do cancro

da mama, Processamento de imagem, Técnicas de imagiologia, PET/CT, MRI
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Chapter 1

Introduction

Breast Cancer (BC) was the second cancer with the highest incidence and the fifth cancer

with the highest mortality rate in the year 2018 worldwide [1]. In the United States, BC is

considered one of the most common cancers in women, representing 30% of all new diagnoses,

and is estimated that in 2019, 268,600 new cases and 41,760 new deaths in the female population

will occur [2].

With the evolution of technology and the development of new treatments, the mortality rate

of BC has been decreasing but the incidence rate is still increasing worldwide [1]. To attenuate

this phenomenon, a continuous development of new diagnosis methods and treatment techniques

is required.

Medical imaging is a method used to diagnose and stage cancer. This thesis is focused on

the development of a Computer-aided Diagnosis (CAD) system that detects the primary site of

the BC in different types of imagiology based on image processing techniques.

1.1 Contextualization

BC affects mainly women older than 50 years. Screening campaigns and physical examination

are essential prevention measures that increase the possibility of early detection and improve

treatment efficiency [3]. BC treatment is mainly composed of the following steps: Diagnosis,

Staging and Treatment with Evaluation of Response [4].

The diagnosis is commonly performed by mammography or physical examination. This is the

first step in the process and is important to detect the tumor in an early stage of development.

In the staging phase, the physician evaluates the full extension of the disease and chooses

the most appropriate treatment for each patient. To perform the staging, it is required to gather

all the information associated with the state of the disease divided into three parts: Primary

Site, Loco-regional and Distant (Systemic) [4]. The first part requires a full study of the breast

tissue and the detection of all the lesions present in the mammary gland. This process allows
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Chapter 1. Introduction

the identification and characterization of the primary site. The second part is Loco-regional

Staging, corresponding to a full study of the regional lymph nodes. The breast tissue is located

in close contact with the lymphatic system through regional lymph nodes located in the axilla,

internal mammary, supraclavicular and intramammary areas. These are the main routes for

the lymphatics drain from the breast and are the most likely primary metastization sites. The

third part is Distant or Systematic Metastases Staging. The dissemination of tumour cells might

happen through blood or lymphatic vascular systems. Due to the proximity of the breast tissue

to a lymphatic drain, BC has a high probability to generate distant metastases. The main sites

of metastization are bone, lungs, and liver [5]. After the staging process, a treatment approach is

chosen and further evaluation of the response of the treatment is necessary. The correct staging

leads to a better choice of treatment and an increase in the survival probability.

Imaging plays an important role in all the steps described above. Different imaging modalities

provide different types of information and play distinct roles in each of these steps:

• Mammography - Essential for the examination of the breast tissue and very useful in

the diagnosis phase due to its low price and easy acquisition protocols. However, even

though this imaging method is commonly used, it might not be able to identify all lesions

and in case of a positive result (suspicious or malignant mass is detected) other imaging

modalities need to be performed;

• Echography - This method is further used in the staging phase and is a complementary

imaging method to characterize the primary site and the regional lymph nodes;

• CT Scan - Thorax Computer Tomography (CT) Scan is used to identify possible metastases

in the bone and lung tissue;

• Bone Scintigraphy - Since bone is one of the main metastization sites for BC, this

modality allows a full body analysis of all skeletal system;

• PET/CT - Even though the format of lesions and their localization is essential, with

full body PET/CT it is possible to anatomically identify the lesions and analyze how

they behave metabolically as well. This image is a result of the co-registration between

two modalities: Positron Emission Tomography (PET) and Computer Tomography (CT),

integrating functional imaging from PET with anatomical imaging from CT;

• MRI - Breast Magnetic Resonance Imaging (MRI) allows the study of breast lesions and

regional lymph nodes with more detail due to its high spatial resolution.

PET/CT and MRI are not considered conventional methods used for staging BC, however,

those modalities have shown to provide crucial information to evaluate the disease [6]. PET/CT

allows the physician to visualize the metabolic information through PET complemented by the

morphology and the localization of the lesion through CT. Besides providing this dual information,

2
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since it is a full-body image, it can also provide information about distant metastases that

do not show in other types of modalities. MRI has a high spatial definition, ideal to detect

smaller tumors and illustrate the morphology of a lesion which is essential to determinate its

malignancy. This propriety is necessary when considering regional lymph nodes and tumors of

small dimensions.

The main challenges in staging BC is the localization of a lesion in each image and the

differentiation of the lesions between three categories: the primary site, regional lymph nodes,

and distance metastases. This process is very time consuming and requires a physicians to

manually annotate each lesion. Besides the identification of the lesions, due to the high cost of

each exam, it is necessary to study the efficiency of each exam to verify if only one or all are

necessary to perform the staging of the disease.

Due to these problems, new solutions must be found to decrease time and costs. Over the

years, machine learning techniques have been used alleviate this issue [7, 8, 9, 10]. However,

there is the need to improve medical imaging segmentation and the accuracy of detection and

classification in BC patients.

1.2 Objectives

The main goal of this thesis is to develop an approach that can semi-automatically detect the

primary site of the BC and analyze the effectiveness of each modality for staging the Primary

Site.

The development of algorithms will be primarily focused on the study of PET/CT images, due

to the versatility of the metabolic information provided by PET, which makes the information

of these images different from all the other modalities. Afterwards, the detection in PET/CT

is going to be compared with the detection in another modality, MRI. Bone Scintigraphy was

considered for this comparison, however due to time restrictions and the number of patients that

performed the imaging modality (representation of the modality in the collected data), MRI was

selected.

In order to accomplish this main goal, a set of sub-tasks were defined:

1. Collection of the data: For this work, during a period of four months, real BC Patients

data was collected from IPO-Porto. The patient information was composed by all imaging

modalities (Mammography, Echography, CT Scan, Bone Scintigraphy, PET/CT and MRI)

used during the staging process and corresponding medical reports;

2. Selection of the modality to compare with PET/CT: In an initial phase, several

modalities were considered such as MRI and Bone Scintigraphy. MRI was chosen due

to the representation of the modality in the collected Data (full justification is given in

Section 4.1.2);

3
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3. Development of an approach to detect the primary site: For each modality it is

necessary the identification of the breast tissue and detection of existing lesions. The

approach was implemented in MATLAB code;

4. Evaluation of the detections: After obtaining the detection of the lesions, a comparison

is performed using the Ground Truth (full details are given in Section 4.1.3.3) and other

metrics such as Intersection over Union, Precision, Recall and Distance between the

centroids.

1.3 Document Structure

The structure of the document is organized as follows: in Chapter 2, Background Knowledge

that helps the comprehension of the components of this work is presented; in Chapter 3, a

Literature Review is performed to analyze the state-of-art methods used in the field of medical

imaging; in Chapter 4, the applied methodology is described and the obtained results are

presented; and finally, in Chapter 5, the conclusions and future work are summarized.
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Chapter 2

Background Knowledge

In this chapter, theoretical background knowledge is presented in order to understand

important concepts discussed throughout the document. The main topics reviewed correspond

to the description of the imagiology modalities, imaging processing methods and the metrics

used to evaluate the developed methods.

2.1 Medical Imaging Modalities

A Medical Imaging Modality is an imaging technique that uses a physical phenomenon

to study the anatomical structure and/or the metabolic features of the human body. These

techniques are noninvasive methods and are essential in a clinical setting. The imaging modalities

used in this work, PET/CT and MRI are described below and illustrated in Figure 2.1.

2.1.1 PET/CT

Positron Emission Tomography (PET) is a nuclear functional imaging technique developed to

use radio-pharmaceuticals as molecular probes to image and measure biochemical processes [11].

This technique measures the distribution of compounds by counting the annihilation photons

emitted by the positron emission.

Positrons, which are antimatter equal in mass but opposite in charge to an electron, are

emitted from proton-rich nuclei. Depending on their energy, positrons travel an average distance

before interacting with an electron. The electron and positron annihilate each other and produce

two antiparallel 511-keV photons. Detector crystals are mounted in a stationary ring, and only

the photons with energy equal to 511-keV reaching opposing crystals coincidentally are counted

[12].

The radiopharmaceuticals used are compounds labeled with positron-emitting radioisotopes.

Some of the most common radioisotopes are cyclotron-produced 11-C, 13-N, 15-O, and 18-F as

well as generator-produced 68-Ga and 82-Rb [13]. Since tumour tissue consumes more glucose

5
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than healthy tissue, a radiopharmaceutical that is a glicose analogue is able to be located in

higher glucose consumption areas. Fluorodeoxyglucose (FDG) is one the most common tracers

and is often labeled with 18F. FDG has a similar cellular uptake to glucose and can pass through

the cellular membrane through the facilitated transport activated by the glucose transporters.

Computer Tomography (CT) is a structural imaging technique that uses an X-ray beam

through the body and measures its attenuation. This technique uses a scanner that rotates the

source and the detector around the patient acquiring images planes and reconstructing the data

into a 3D image.

Positron Emission Tomography/Computer Tomography (PET/CT) is a full-body image that

results from the co-registration between two modalities, PET and CT, in which CT provides

additional anatomical resolution for the functional imaging provided by PET [14].

2.1.2 MRI

Magnetic Resonance Imaging (MRI) is an imaging technique that uses a strong magnetic field

and radio waves to generate images of parts of the body. This method relies on the properties of

spin of Hydrogen atoms present in water molecules to obtain images.

Balanced nucleus (same number of protons and neutrons) have zero spin, however nuclei,

like Hydrogen, create a small magnetic field known as magnetic moment, that can be influenced

by an external field. The application of an external magnetic field to an area of the body, causes

the hydrogen atoms to precess around the direction of the field. If an eletromagnetic radiation

(radiofrequency signal) is applied to the precessing nuclei at a particular frequency (the Larmor

frequency), the nuclei will shift to align in a different direction. Instead of the random precession

seen with an external field, the nuclei will spin in harmony. Once the eletromagnetic radiation is

removed, the nuclei will realign to their magnetic moment in a process called relaxation. During

relaxation, the nuclei loses energy by emitting eletromagnetic radiation. This response signal is

measured and reconstructed to obtain a 3D image.

There are two processes of relaxation:

• T1 relaxation - the time required for the magnetic moment of the displaced nuclei to return

to equilibrium;

• T2 relaxation - the time required for the response signal from a given tissue type to decay.

Each tissue has a different response and consequently, a different value in T1 and T2. To

understand the constitution of each tissue, the images between T1 and T2 have to be compared.

Parameters of the MRI technique can be adjusted to change the weighting of the T1 and

T2 relaxation times, thus allowing image contrast to be manipulated. A contrast is often used

to detect malignant lesions that cannot be identified by T1 and T2, as well as fat suppression

techniques [15].
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Figure 2.1: Illustration of the imaging modalities used in this work: PET, CT and MRI.

Other techniques that have been used to increase the resolution and the description of

tumor characteristics of MRI are Dynamic Contrast-Enhanced (DCE)-Magnetic Resonance

Imaging (MRI) and Diffusion-Weighted Imaging (DWI) [6]. acrshortdce-MRI is an exogenous

contrast-based method that uses rapid and repeated T1-Weighted images to measure the signal

changes induced by the paramagnetic tracer in the tissue as a function of time [16]. DWI is a

MRI technique that is sensitive to the Brownian molecular motion of spins. Since the extent

and orientation of molecular motion is influenced by the microscopic structure and organization

of biological tissues, DWI can depict various pathological changes in organs or tissues [17].

2.2 Image Processing

Image Processing is an area of research that treats and analyses images. Two of the main

fields in image processing are image segmentation and image detection.

Image Segmentation is the process of dividing an image into several Regions of Interest

(ROI). Applied to Medical Imaging, image segmentation allows, for instance, the delimitation of

different tissues and consequentially a more targeted analysis. The process of identification of

the target tissue was not the main focus of this project, however its identification is the first

step to perform the detection and thus, is important for better results in the detection phase.

Image Detection is the process of identifying certain structures in an image, considered ROI

(for instance, abnormal structures in the tissue, such as lesions).

Due to the variability of the medical modalities studied, a few techniques of image processing

were explored, such as [18]:

• Threshold Techniques - These techniques segment images by creating a binary par-

titioning of the image intensities using an intensity value, called threshold [18]. This

approach is the simplest approach in imaging processing, however, is very effective to

segment images with high contrasting intensities between ROI;

• Detection of Peaks and Valleys - This technique is based on the search of certain

7
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characteristic areas, through lateral screening, such as maximum or minimum intensities,

in order to detect points of interest;

• Co-registration - This technique is used to study different modality images and allows

the alignment between the images. To apply this method, one of the images is considered

fixed and the other suffers transformations (such as translations, rotations and scale

modifications) in order to be aligned with the fixed image;

• Template-based/Atlas-Guided Approach - This approach uses a pre-existing tem-

plate and treats the problem as a registration problem, in which the template is co-registered

with the target image that requires segmentation;

• Superpixels - This method groups pixels into regions accordingly to pixels intensity using

an algorithm called Simple Linear Iterative Clustering (SLIC) [19]. The application of this

method reduces the complexity of subsequent image processing tasks. If this method is

applied in a 3D approach, the regions originated are called Supervoxels;

• Clustering - This technique is used, in the present context, to reduce the number of

Supervoxels originated by the SLIC algorithm. The Clustering method used is K-means, a

type of unsupervised learning in which the volume is divided into k clusters of Supervoxels

based on feature similarity [20].

• False Positives Reduction - This technique is applied to reduce the number of false

detections obtained after the detection phase. To perform this technique, several methods

can be used such as filters.

2.3 Evaluation Metrics

The evaluation of automatic techniques for detection depends on the type of problem and

the type of data. In this work, the Ground Truth is composed by manually extracted bounding

boxes surrounding the lesions in each modality.

The comparison between bounding boxes of the Detection and the Ground Truth is different

from the attribution of a class to each pixel in an image. The evaluation of the detection using

bounding boxes has no consensus in the best choice of metrics to use and there are several

possible approaches to evaluate these types of problems. The metrics chosen for this work were

selected due to the versatility of the results and their adaptation to a lesion detection problem.

In this section, we describe the metrics that were used to evaluate this problem.
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2.3.1 Intersection over Union

Intersection over Union (IOU) evaluates the overlap between two bounding boxes, A and B.

IOU = V olume o f Inter sect i on

V olume o f Uni on
= V olume(A

⋂
B)

V olume(A
⋃

B)
(2.1)

This metric has a value between 0 and 1, where 0 corresponds to a mismatch and 1 corresponds

to a perfect match.

For evaluating IOU, two approaches were studied (Figure 2.2):

• Approach 1 - the value of IOU including all the bounding boxes from the Ground Truth

and the Detection was calculated;

• Approach 2 - the average of the maximum values of IOU for the best match for each

bounding box of the Ground Truth was calculated.

Figure 2.2: Diagram of the two approaches for IOU calculation in 2D. In the top image, the red bounding
boxes correspond to the Ground Truth and the blue bounding boxes correspond to the Detection.
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2.3.2 True Positives, True Negatives and False Positives

These metrics are usually defined based on a confusion matrix, by comparing the real versus

the predicted classes (Table 2.1). However, in this case, since bounding boxes are compared, a

few adaptations were performed. To define these parameters, the values of IOU between the

Ground Truth and the Detection bounding box were considered, using the conditions:

• True Positive (TP) - True detection, is defined if IOU >= threshold;

• False Positive (FP) - False detection, is defined if IOU < threshold;

• False Negative (FN) - a ground truth bounding box that was not detected;

• True Negative (TN) - is not applied in this context.

Table 2.1: Representation of a Confusion Matrix for a binary class problem.

Predicted Class

P N

Actual

Class

P
True

Positives (TP)

False

Negatives (FN)

N
False

Positives (FP)

True

Negatives (TN)

The threshold used is important in the definition of the match considered a TP. Since we

are working in 3D, the threshold considered should be different from the threshold used in 2D,

which is typically 0.5. In order to produce similar results between the 2D and 3D approaches,

similar precision-recall curves have to be defined. To achieve this condition, a threshold of 0.25

is chosen for the 3D approach [21].

2.3.3 Precision and Recall

Based on the values obtained in Section 2.3.2, a few evaluation metrics can be defined.

Precision measures the ability to identify the correct detections of relevant objects and can

be calculated using:

Pr eci si on = T P

T P + F P
(2.2)

Recall measures the ability to identify all the correct detections of Ground Truth objects

and can be calculated using:

Recal l = T P

T P + F N
(2.3)
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2.3.4 Distance between the centroids of the Bounding Boxes

The distance between the centroids of two bounding boxes, (xA , y A , zA) and (xB , yB , zB ), is

defined as the euclidean distance between a Ground Truth bounding box and a Detection

bounding box, expressed in millimeters (mm).

Di st ance =
√

(xA −xB )2 + (y A − yB )2 + (zA − zB )2 (2.4)

The value considered to evaluate this metric is the average of the minimum values of distance

between the centroids for each bounding box of the Ground Truth compared with all the

Detection bounding boxes.
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Chapter 3

Literature Review

In this chapter, a review of research work using machine learning techniques to perform

image segmentation, detection and classification in PET/CT, PET, CT and MRI is presented.

3.1 Segmentation, Detection and Classification of

Breast Cancer

BC segmentation, detection and classification are essential tasks to aid clinical professionals

to evaluate the disease. These tasks are difficult to perform due to the localization of the disease,

the variability of the imaging protocols and the composition of the tissues. For the past decades,

Machine Learning techniques have been used to perform such tasks. Next, a list of BC works

using such techniques will be described.

To help the reader follow the related work, a summary of the main topics related to works

focused on BC is presented in Table 3.1.

Liu et al. [22] proposed a fully automated algorithm to segment the whole breast in Low-dose

Chest CT (LDCT). This algorithm was developed based on an anatomy directed rule-based

method. The evaluation of the algorithm was performed on 20 LDCT images from the LIDC

public dataset. The ground truth for the breast region was manually annotated by a radiologist

on one axial slice (at the axial level intersecting nipples) and two sagittal slices (at the median

level of left and right breast). An analysis containing axial and sagittal slices, achieved an overall

mean Dice Similarity Coefficient (DSC) of 0.880 with standard deviation of 0.058. However, the

evaluation of the types of slices separately reports a mean DSC of 0.930 for axial slices and a

mean of 0.830 for sagittal slices. As conclusion, the algorithm has a satisfactory determination of

lateral, anterior, and posterior extents but suggests that the automatically determined vertical

extents generally differ from the manually annotated extents.

Men et al. [23] aimed to train and evaluate a deep dilated residual network (DD-ResNet-101)

for auto segmentation of the Clinical Target Volume (CTV) for BC radiotherapy with big data.
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The method developed is a deep learning-based segmentation method, end-to-end segmentation

framework that could predict pixel-wise class labels in CT images. The data used was extracted

from early-stage BC patients who underwent breast-conserving therapy from January 2013 to

December 2016 in the Department of radiation oncology from Cancer Hospital, Chinese Academy

of Medical Sciences. In total, 57 878 CT slices were collected from 800 patients, in which 400

patients have right-sided BC and the other 400 have left-sided BC. Ground Truth segmentations

were defined as the reference segmentation and cross-checked by experienced radiation oncologists.

The original 2D CT images were the inputs and the corresponding CTV segmentation probability

maps were the outputs. The performance of the proposed model was evaluated against two

different deep learning models: Deep Dilated Convolutional Neural Network (DDCNN) and

Deep Deconvolutional Neural Network (DDNN). Mean DSC values of DD-ResNet (0.91 and

0.91) were higher than the other two networks (DDCNN: 0.85 and 0.85; DDNN: 0.88 and 0.87)

for both right-sided and left-sided BC. It also has smaller mean Hausdorff distance (HD) values

of 10.5mm and 10.7mm compared with DDCNN (15.1mm and 15.6mm) and DDNN (13.5mm

and 14.1 mm). Mean segmentation time was 4s, 21s and 15s per patient with DDCNN, DDNN

and DD-ResNet, respectively. The proposed method could segment the CTV accurately with

acceptable time consumption.

Liu et al. [24] proposed an approach for breast lesion segmentation from DCE-MRI using a

level set-based active contour model. The model used the same principle as Selective Binary and

Gaussian Filtering Regularized Level Set (SBGFRLS), controlled by a specially designed Signed

Pressure Function (SPF) that only accounts for the distribution of image background intensity.

The dataset used has a total of 38 breast DCE-MRI studies (29 malignant and 9 benign) acquired

using the VIBRANT sequence in First Affiliated Hospital of Dalian Medical University. The

ground truth to evaluate the accuracy of the proposed approach for each data was given by two

medical experts. To confirm the proposed approach, a comparison is performed with C-V model,

SBGFRLS and Maximum Likelihood Active Contour Model using Level Set (MLACMLS). The

method has a Mean Absolute Difference (MAD) and Jaccard index of 7.256±12.454 pixels and

0.86±0.049 compared to the manual ground truth, while SBGFRLS has MAD and Jaccard of

19.341±30.699 and 0.817±0.128 and MLACLS 8.931±15.964 and 0.856±0.056. Compared with

SBGFRLS, C-V and MLACMLS methods, this approach has a higher Jaccard index and lower

MAD than the former two, which corresponds to a higher similarity between detection and

ground truth .

Gubern-Mérida et al. [25] aimed to develop a method to automatically compute breast

density in breast MRI. The framework is a combination of image processing techniques to

segment breast and fibroglandular tissue. Three pre-processing algorithms are initially applied:

correction of image inhomogeneities using the N3 bias field correction algorithm [26], sternum

detection and the normalization of the intensities of the MRI to compensate for inter-patient

signal intensity variability. In the breast segmentation step, the breasts are identified as the
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region delimited by the breast-body surface determined by segmenting body structures using

an atlas-based voxel classification algorithm and the air-breast boundary defined by a region

growing algorithm applied slice by slice. In the breast density segmentation step, the breast

volume is first defined for each breast independently and the dense tissue is segmented using

the Expectation-maximization (EM) algorithm independently on each breast. The algorithm is

tested in a dataset composed by a random subset of 50 pre-contrast coronal T1-W MRI breast

volumes from 50 patients, collected from 2003 to 2009. In order to evaluate the automatic

breast segmentation algorithm and construct the atlas, 27 cases were manually segmented by a

single experienced observer. For breast segmentation, the proposed approach obtained DSC,

total overlap, False Negative Fraction (FNF), and False Positive Fraction (FPF) values of 0.94,

0.96, 0.04, and 0.07, respectively. For fibroglandular tissue segmentation, the approach obtained

DSC, total overlap, FNF, and FPF values of 0.80, 0.85, 0.15, and 0.22, respectively. The results

achieved show that the method is able to segment both tissues with high values of overlap

associated with a low number of false detections.

Liang et al. [27] proposed an automated method to detect lesions to assist radiologists in

interpreting DCE-MRI of breast. In this approach, the localization of the suspicious regions is

obtained by applying thresholds on three features: subtraction intensity, enhancement integral

and Early Enhancement Rate (EER). Support Vector Machine (SVM) classifier is then applied

to exclude normal tissues from these regions, using both kinetic and morphological features

(cumulative histogram of mean values of integral, EER, subtraction intensity, mean values of

the regions and lesion volume). The dataset used is composed by 21 patients and a total of 50

lesions, that were segmented manually and then edited by a radiologist. A detected region is

identified as a true lesion if the overlap with the ground truth is greater than 40%, otherwise it

is considered a FP detection. In the initial detection phase, all 50 true lesions were detected,

and 550 other normal regions were signalized as lesions. After the reduction of FPs, only 298

FPs were eliminated. The final result achieved 100% sensitivity in both initial and after FP

reduction phases but with a cost of 5.04 FP per lesion.

Parekh and Jacobs [28] presented a radiomic feature mapping framework to generate radiomic

MRI texture image representations called the Radiomic Feature Maps (RFM) and correlate

the RFM with quantitative texture values, breast tissue biology using quantitative MRI and

classification of benign or malignant tumors. The algorithm was tested on a retrospective cohort

of 124 patients (26 benign and 98 malignant) who underwent multiparametric breast MRI at 3

T. The MRI parameters used were T1-W imaging, T2-W imaging, DCE-MRI and DWI. The

RFM were computed by convolving MRI images with statistical filters based on first order

statistic and gray level co-occurrence matrix features. A multi-view feature embedding method

is implemented using the RFM and IsoSVM model [29] is trained using leave-one-out cross

validation which resulted in sensitivity and specificity of 93 and 85%, with an Area Under the

Curve (AUC) of 0.91 in classifying benign from malignant lesions.
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Antropova et al. [30] proposed the use of Maximum Intensity Projection (MIP) images

of subtraction MRI into lesion classification using convolutional neural networks (CNN). The

dataset used was collected at the University of Chicago, from 2006 until 2016, and includes

690 breast cases, with 212 benign and 478 malignant cases based on pathology and radiology

reports. The ROI were defined around each lesion on three MRI presentations: (i) the MIP

image generated on the second post-contrast subtraction MRI, (ii) the central slice of the second

postcontrast MRI, and (iii) the central slice of the second postcontrast subtraction MRI. CNN

features were extracted from the ROI using pre-trained VGGNet. The features were utilized

in the training of three SVM classifiers (one for each MRI presentation) to characterize lesions

as malignant or benign. The approach using MIPs (AUC = 0.88) outperformed those using

central slice of the second postcontrast MRI (AUC = 0.80) and using central slice of second

postcontrast subtraction MRI (AUC = 0.84).

Hassanien and Kim [31] introduced an hybrid approach that combines fuzzy sets, Pulse Cou-

pled Neural Networks (PCNN), and SVM, in conjunction with wavelet-based feature extraction,

to classify BC images into two classes: normal or abnormal. The algorithm is composed by

three fundamental phases: pre-processing (enhancement of the contrast of the whole image using

fuzzy type-II algorithm, detection of the boundary of the breast region and enhancement of the

edges surrounding the ROI using PCNN-based segmentation); feature extraction-based wavelet

transform; and classification using SVM. The approach is tested in a dataset, acquired from

patients with abnormal pathologies, containing 120 images, in which 70 are normal images and

50 are considered abnormal. The SVM technique was compared with other machine learning

techniques including decision trees, rough sets, neural networks, and fuzzy artmap. The ex-

perimental results show that SVM (98% accuracy) was superior to the other machine learning

techniques: rough sets (92%), decision tree (89.7%), Neural networks (91%) and fuzzy artmap

(88%).

The works discussed above consider a wide range of algorithms possible to apply in BC

context. In most of these research works, the dataset used was not available to the public and was

collected from a Hospital where the images were acquired with the same imaging protocol. This

approach allows the reduction of the errors associated with the variability of imaging protocols

and types of acquisition machines.

The most commonly used imaging modality is MRI for the context of BC. This happens

due to the fact that only in the recent years, PET/CT has been become an important tool in

staging BC and consequently new machine learning approaches are appearing to aid the process.

Even though PET/CT is not yet commonly used in the context of BC, it is already applied for

other diseases.

All of theses article mention pixel-by-pixel detection or segmentation methods, in which the

most common metric used is DSC. In a context of comparing bounding boxes, the metrics are

different and adapted to the type of evaluation required.
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Table 3.1: Main topics of the research projects related to BC revised in Section 3.1.

Authors Objective Dataset Evaluation Metrics Results

Liu et al. [22] Segmentation
20 Low-Dose

Chest CT
DSC 0.880 ± 0.058

Men et al. [23] Segmentation
57 878

CT slices
DSC,
HD

0.91 and 0.91,
10.5 and 10.7mm

(for right and left)

Liu et al. [24] Segmentation 39 DCE-MRI
MAD,

Jaccard index
7.256±12.454,
0.856±0.049

Gubern-Mérida et al. [25] Segmentation

50 pre-contrast
coronal

T1-W MRI

DSC,
total overlap,

FNF,
FPF

Breast: 0.94,
0.96, 0.04, 0.07

Fibroglandular: 0.80,
0.85, 0.15, and 0.22

Liang et al. [27] Detection
21 breast
DCE-MRI

Sensitivity,
FPs

100%, 5.04 per lesion

Parekh and Jacobs [28] Classification

124 breast MRI
(T1-W, T2-W,

DCE-MRI and DWI)

Sensitivity,
Specificity,

AUC
93%, 85%, 0.91

Antropova et al. [30] Classification
690 subtration

breast MRI
AUC 0.88

Hassanien and Kim [31] Classification 120 breast MRI Accuracy 98%

Breast tissue segmentation is commonly performed using an atlas-based approach, however

it is not considered the best method because it depends on the accuracy of the atlas. Liu et al.

[22] developed a new approach based on anatomy based rules implemented in CT images. This

method was able to segment the tissue in 2D and 3D, however, the evaluation performed shows

that in 2D the results are satisfactory but not ideal for this problem, requiring a more complex

analysis and a 3D evaluation.

Detection problems are often associated with a high number of FPs, which cause a low

accuracy. To increase the efficiency of the algorithm, a posterior step to reduce the number of

FPs is required [27].

Classifiers, in particular Neural Networks and Deep Learning techniques, are often used for

the classification of lesions. So far, these methods focus in differentiating malignant from benign

lesions [28, 30], however for each pathology other characteristics can be taken into consideration.

3.2 Image Processing for medical image analysis: PET/CT and

MRI

In this section, new approaches applied in PET/CT and MRI to different pathologies are

explored.
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3.2.1 PET/CT images

Tumor Segmentation

To segment a tumor in PET, it is required to identify the normal active organs and to

segment the tumor accordingly to its characteristics.

Berthon et al. [32] aimed to develop a segmentation model, trained to automatically select

and apply the best PET Automatic Segmentation (PET-AS) method, according to the tumour

characteristics. ATLAAS is an automatic decision tree-based learning algorithm for advanced

segmentation. The model developed included nine PET-AS methods and was trained on a

dataset generated using the PETSTEP simulator (CERR) based on existing PET/CT data of a

fillable phantom. In total, 100 PET scans were generated with known true contours. A decision

tree was built for each PET-AS algorithm to predict its accuracy, quantified using the DSC,

according to the tumour volume, tumour peak to background SUV ratio and a regional texture

metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and

printed subresolution sandwich Head and Neck (H&N) phantoms. ATLAAS showed excellent

accuracy across a wide range of phantom data and predicted the best or near-best segmentation

algorithm in 93% of cases. It outperformed all single PET Automatic Segmentation (PET-AS)

methods on fillable phantom data with a DSC of 0.881 and on H&N phantom data with a DSC

of 0.819, while the best performing PET-AS method achieved a DSC of 0.831.

Afshari et al. [33] proposed a deep learning method to localize and detect normal active

organs visible in a 3D PET scan field-of-view. It is based on an adaption of the deep network

architecture YOLO to detect multiple organs in 2D slices and aggregate the results to produce

semantically labeled 3D bounding boxes. The architecture is modified to take as input coronal

2D PET slices and to detect up to 5 different organ classes: brain, heart, bladder, and left and

right kidneys. The dataset used is composed by 479 18F-FDG PET scans of 156 patients from

the public collection of head and neck cancer from the Quantitative Imaging Network of the

US National Cancer Institutes. The 479 scans were split as follows: 79 patients were used for

training; and the other 77 patients were used for testing. The results show that the approach

achieved an average organ detection precision of 75-98%, recall of 94-100%, average bounding

box centroid localization error of less than 14 mm, wall localization error of less than 24 mm

and a mean IOU of up to 72%.

In Table 3.2, a summary of the main topics of the described works on PET/CT Segmentation

are presented.

Image Detection

Image Detection in PET/CT deals with problems characteristic to the modalities incorporated,

such as the comprehension of FDG uptake in PET and the integration between the information

collected from PET and CT.

Bi et al. [34] aimed to solve the problem correlated with the incorrect identification of Sites
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Table 3.2: Main topics of the research projects related to PET/CT Segmentation.

Authors Target Tissue Dataset Evaluation Metrics Results

Berthon et al. [32] Pulmonary Nodules

100 PET scans generated
for training and

85 PET scans obtained for
evaluation from

phantoms

DSC 0.881

Afshari et al. [33]

5 organs: brain, heart,
blandder, and

left and right kidneys

479 18F-FDG PET/CT
from 156 patients:

79 for training
and 77 for testing

Precision, Bounding box
centroid localization error,

Wall localization error and IOU

75-98%, 14mm,
24mm and 72%

of normal FDG excretion and physiologic uptake (sFEPU), that happens in organs as kidneys,

bladder, brain and heart. The proposed algorithm uses a Multi-scale Superpixel-based Encoding

(MSE) to group the individual sFEPU fragments into large regions, a Class-driven Feature

Selection and a Classification Model (CFSC) for sFEPU classification. The different sFEPU

fragments are classified into Brain (BR), Bladder (BL), Heart (HE), Left Kidney (LK), Right

Kidney (RK), and Other Hypermetabolic (HY). The algorithm was tested in a dataset consisting

of 40 whole-body PET/CT from 11 lymphoma patients provided by the Department of Molecular

Imaging, Royal Prince Alfred Hospital, Sydney. The experiments performed using this method

achieved an average F-score of 91.73%, compared to the algorithms: SP-SD - sFEPU classification

via multi-scale superpixels with sparse and dense representations (F-score of 90.10%); Grouping

- a clustering based classification method (F-score of 82.36%); and Patch-SVM - multi-scale

sliding window with SVM (F-score of 85.34%).

Zhao et al. [35] proposes a method that combines the features of PET and CT to detect and

classify Solitary Pulmonary Nodules (SPNs) with few FPs. Initially, the algorithm uses a dynamic

threshold segmentation method to identify lung parenchyma in CT images and suspicious areas

in PET images. Then, an improved watershed method was used to mark suspicious areas on

the CT image. Next, the SVM method was used to classify SPNs based on textural features

of CT images and metabolic features of PET images to validate the proposed method. The

dataset used is composed by 219 patients, 120 patients with SPNs and the remaining 99 patients

had inflammation, collected from January 2010 to January 2013 at the Coal Center Hospital in

Shanxi. This method was more efficient than traditional methods and methods based on the CT

or PET features alone, achieving sensitivity of 95.6% and an average of 2.9 FPs per scan.

In Table 3.3, a summary of the main topics of the described works on PET/CT Detection

are presented.

Reduction of False Positives

Besides detecting possible candidates as lesions, one of the main concerns for the developed

algorithms is the high percentage of originated FPs.

Teramoto et al. [36] proposed an improved FP-reduction method to detect pulmonary nodules
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Table 3.3: Main topics of the research projects related to PET/CT detection.

Authors Target Tissue Dataset Evaluation Metrics Results

Bi et al. [34]

6 fragments: brain,
bladder, heart, left and
right kidneys and other

hypermetabolic

40 whole-body
PET/CT

from 11 patients
F-score 91.73%

Zhao et al. [35]
Solitary Pulmonary

Nodules (SPNs)

219 whole-body PET/CT
collected from 2011

to 2013

Sensitivity,
FPs

95.6%
2.9 per scan

in PET/CT images using Convolutional Neural Networks (CNN). First, initial nodule candidates

were identified separately on the PET and CT images using the algorithm specific to each image

type, in PET a threshold method and in CT an active contour filter. Subsequently, candidate

regions obtained from the two images were combined. FPs contained in the initial candidates

were eliminated by an ensemble method using multistep classifiers on characteristic features

obtained by a shape/metabolic analysis and a CNN. The method was evaluated using 104

PET/CT images collected during cancer screening programs from 2009 to 2012. The sensitivity

in detecting candidates at an initial stage was 97.2%, with 72.8 FPs/case. After performing the

FP-reduction method, the sensitivity of detection was 90.1%, with 4.9 FPs/case; the proposed

method eliminated approximately half the FPs existing in the previous study.

Setio et al. [37] developed a novel Computer-aided Diagnosis (CAD) system for pulmonary

nodules using Multi-view Convolutional Networks (ConvNets). The network is fed with nodule

candidates obtained by combining three candidate detectors specifically designed for solid,

subsolid, and large nodules. For each candidate, a set of 2D patches from differently oriented

planes is extracted. The proposed architecture comprises multiple streams of 2D ConvNets,

for which the outputs are combined using a dedicated fusion method. Data augmentation

and dropout are applied to avoid overfitting. The method was trained using the available

dataset, Lung Image Database Consortium (LIDC-IDRI) that contains 1 018 CT scans. The

candidate detection algorithm detects 93.1% nodules at 269.2 FPs/scan, while the method

proposed combined with candidate detection achieves a sensitivity of 85.4% and 90.1% at 1 and

4 FPs/scan, respectively.

In Table 3.4, a summary of the FP reduction works are presented.

3.2.2 MRI

Image Segmentation

MRI Segmentation is required to separate all the different organs and tissues present in the

image. The methods developed must consider the type of MRI used as T1-W, T2-W, DCE-MRI,

since that for each image a different processing approach may be applied.

Tian et al. [38] developed a supervoxel based segmentation method for prostate MRI. The
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Table 3.4: Main topics of the research projects related to FP reduction.

Authors Target Tissue Dataset Evaluation Metrics Results

Teramoto et al. [36]
Pulmonary

Nodules

140
PET/CT
collected

from 2009
to 2012

Sensitivity,
FPs

97.2%, 72.8 FPs/case
decreased to

90.1%, 4.9 FPs/case

Setio et al. [37]
Pulmonary

Nodules

1.018 CT
scans from
acrshortlidc

Sensitivity,
FPs

93.1%, 269.2 FPs/scan
decreased to

85.4%, 90.1% to 1, 4 FPs/case

prostate segmentation problem was considered a binary problem with two classes: prostate and

background. The proposed approach consists of three parts: supervoxel generation, graph cuts

and 3D active contour model. After obtaining the supervoxel using SLIC, a neighborhood system

is built by connecting supervoxel to each. The supervoxel labeling problem is considered as a

minimization of an energy function by using graph cuts. A supervoxel-based shape data term

and a supervoxel-based smoothness term are computed to construct the energy function. Lastly,

a 3D active contour model is introduced to refine the segmentation obtained from graph cuts. To

evaluate this approach, two databases are used: a DB acquired in-house composed of 30 prostate

MRI volumes and the PROMISE12 challenge dataset, which has 50 training images and 30

testing images. All these images are T2-W MRI volumes. The proposed method was evaluated

based on four quantitative metrics, which are DSC, Relative Volume Difference (RVD), HD,

and Average Surface Distance (ASD). The proposed method achieves for the in-house dataset

87.19±2.34% of DSC, -4.58% of RVD, 9.92±1.84 mm of HD and 2.07±0.35 mm of ASD and for

the PROMISE12 challenge dataset 88.15±2.80% of DSC, 2.82 of RVD, 5.81±2.01 mm of HD

and 2.72±0.77 mm of ASD. These values show that the proposed method has a high accuracy

and robustness and can segment the prostate with a small error.

Pereira et al. [39] proposed an automatic segmentation method based on CNN, exploring

small 3x3 kernels. The method was validated in the Brain Tumor Segmentation Challenge

2013 Database (BRATS). For each patient in BRATS, there are four MRI sequences available:

T1-W, T1 with gadolinium enhancing contrast, T2-W and FLAIR. The training set of BRATS

2013 contains 20 High Grade Gliomas (HGG) and 10 Low Grade Gliomas (LGG), with manual

segmentations available. Two testing sets are available in this DB: Leaderboard composed by 21

HGG and 4 LGG and the Challenge set that includes 10 HGG. This problem was considered as

a multi-class classification problem with 5 classes (normal tissue, necrosis, edema, non-enhancing,

and enhancing tumor). This method achieved for the Leaderboard data set for the classes

complete, core and enhancing regions the values of 0.84, 0.72 and 0.62 in DSC, 0.85, 0.82 and

0.60 in PPV and 0.86, 0.76 and 0.68 in Sensitivity and for the Challenge dataset the value of

0.88, 0.83 and 0.77 in DSC, 0.88, 0.87 and 0.74 in PPV and 0.89, 0.83 and 0.81 in Sensitivity,
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respectively.

In Table 3.5, a summary of the topics of the works of MRI segmentation are presented.

Table 3.5: Main topics of the research projects related to MRI Segmentation.

Authors Target Tissue Dataset Evaluation Metrics Results

Tian et al. [38]

6 fragments: brain,
bladder, heart, left and
right kidneys and other

hypermetabolic

BRATS 2013 dataset:
training 20 HGG and 10 LGG;

Leaderboard 21 HGG and 4 LGG;
Challenge 10 HGG

DSC,
PPV, Sensitivity

Leaderboard: 0.62-0.84,0.60-0.85,0.68-0.86
Challenge:0.77-0.88,0.74-0.88,0.81-0.89

Pereira et al. [39] Prostate

30 prostate MRI volumes
and the PROMISE12

challenge dataset
(50 training and

30 testing images)

DSC,
RVD,
HD,
ASD

For first dataset: 87.19±2.34%,-4.58%
9.92±1.84 mm and 2.07±0.35 mm

For PROMISE12 dataset: 88.15±2.80%,
2.82%,5.81±2.01 mm and 2.72±0.77 mm
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Experimental Setup

In this chapter, the several steps of the adopted approach are described, from the data

collection, the analysis of PET/CT to the analysis of MRI. A diagram of these steps is represented

in Figure 4.1.

Figure 4.1: Diagram of the various steps constituting the methodology.

4.1 Data Collection

The first step developed was the data collection at IPO Porto. This phase was a very time

consuming lasting 4 months, which required a lot of time reviewing clinical cases and collecting

images as well as medical reports.

A list of 593 patients was selected from the period between the years 2013 and 2018 that
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performed PET/CT and were diagnosed with BC. This list was filtered by the Director of the

Nuclear Medicine Service, eliminating all the cases in which BC was not the primary tumor

and the PET/CT imaging exam was not used for staging purposes. In total, 342 patients were

included in this study.

After patient selection, the imaging exams performed for each patient during the staging

phase were collected with the corresponding medical report.

To access this data, three information systems had to be manually accessed for each patient:

one system contains the clinical information, other system stores the medical images in DICOM

format and the last system organizes the medical reports.

Each patient is associated with a patient ID, however in the data processing phase, this value

was masked for data protection reasons.

4.1.1 Data Organization

The collected Data is composed by several imaging modalities, such as: PET/CT, MRI,

Bone Scintigraphies, Breast or Axillary Echographies/Ultrasound Scans, Mammographies and

Thorax CT Scans.

During the staging process, not all mentioned modalities are performed for all patients because

the resulting imaging might not be necessary to acquire the clinical information necessary to

define the stage of the disease and choose the treatment. Due to this fact, not all modalities

defined to constitute this Database (DB) exist for each patient and a few modalities may have

been repeated. This required a revision of the exams and a selection of the exam to include.

The final representation of each modality in the collected DB is presented in Table 4.1.

Table 4.1: Representation of each Modality in the collected Database.

Modality Number of patients

PET/CT 342

MRI 155

Bone Scintigraphy 195

Ecography 268

Mammography 230

Thorax CT Scan 106

4.1.2 Subset of Data Selected

In the development of this work, two modalities were considered to compare with PET/CT:

MRI and Bone Scintigraphy. Both modalities were highlighted because MRI can diagnose local

and regional nodules and Bone Scintigraphy can diagnose bone metastases, while the other

modalities can detect lesions in only one area. However, due to time restrictions, only a modality
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could be chosen. This decision took in consideration the representation of each modality in the

DB, as well as the relevance of the results obtained through the imaging analysis.

In order to compare the detection between PET/CT and Bone Scintigraphy, it was required

that most of the patients had to be positive for bone metastases. However this does not happen,

because most of the Bone Scintigraphy collected are negative to metastases (70%). Due to this

fact, we decided to compare PET/CT and MRI.

To perform that comparison, the patients selected for this study had to follow a few inclusion

criteria, such as:

1. Patients performed PET/CT and MRI;

2. Cases where images were acquired in an interval smaller than 6 months apart, the limit

time interval in which the imaging modalities are viable to be compared.

Following these criteria, 143 patients were enrolled in this study. Further detail is presented

in what follows.

4.1.3 Subset Characterization

This section presents the conclusions obtained after studying the data and the structure of

the images of each modality that are going to be processed in the next phase.

4.1.3.1 PET/CT Components

In PET/CT imagiology protocol, several DICOM files are obtained, which include:

• CT - Computer Tomography;

• PET (AC) - Attenuation Corrected Positron Emission Tomography images;

• PET (NAC) - Non-Attenuation Corrected Positron Emission Tomography images;

• AC CT - Computer Tomography based Attenuation Correction for PET images;

• Patient Protocol;

• PET Statistics - Statistics of the counting of emission, scattering and transmission;

• Topogram - Full body CT Scan.

CT, PET (AC) and PET (NAC) are 3D images, while Topogram is a 2D scan. AC CT

and PET Statistics are images describing the Attenuation Process and the Statistics of the

acquisition of the PET, respectively, while Patient Protocol is a DICOM file with information

describing all the protocol of the acquisition of the image.

For each exam, if one of these components is repeated, a manual selection was applied and

only the best image or the full body image was selected.
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4.1.3.2 MRI Components

Each patient in the DB performs different types of MRI protocols. A MRI protocol is defined

by a sequence of specific sequences defined for each patient. Due to this fact, specific MRI

sequences that are the most useful and most common in the DB must be selected.

Following the recommendations of a BC clinical expert, the best sequences to analyze and

process are:

• T1-Weighted (T1-W) Images;

• T2-Weighted (T2-W) Images;

• T2-W Images with Fat Saturation (FATSAT);

• Diffusion Images;

• Dynamic Images;

• Sagittal Slices.

Most of these sequences are volumes (3D), except for Dynamic Images that are composed by

a series of volumes over time (4D) and Sagittal Slices that are slices of a volume (2D).

Even though these sequences are common, not all are performed in all MRI protocols. Due

to this fact, the presence of each type of sequence in each exam was analysed, to find which are

the most common. The representation of each type of sequence is represented in Table 4.2.

Table 4.2: Components present in each MRI exam in the Subset Database.

MRI sequences Number of Patients

T1 sequences 143

Diffusion sequences 75

T2 - fatsat 36

T2 sequences 143

Dynamic Studies 5

Sagittal Slices 135

The most common sequences are T1-W and T2-W images. These ponderations will be the

ones used in this project.

4.1.3.3 Ground Truth Acquisition

The definition of the Ground Truth for PET/CT was performed manually, by comparing

the medical reports with the PET images, as described in what follows. Bounding Boxes were

defined, isolating areas of hipercaptation and foci detected, as illustrated in Figure 4.2.
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Figure 4.2: Illustration of the PET Ground Truth Acquisitions.

A similar process is applied to MRI. The definition of the Ground Truth for MRI was also

performed manually, comparing the written medical reports with the MRI. Bounding Boxes

were defined, isolating areas of interest mentioned in the medical reports such as masses and

non-mass like enhancements, as illustrated in Figure 4.3. The Ground Truth was defined in

T1-W images, considering the reports and images of all T1-W, T2-W and Contrast-Enhanced

images. It was necessary to analyse all these images due to the different tissue characteristics of

the various lesions, as illustrated in Figure 4.4. To compare the Ground Truth to T2-W images,

T2-W is co-registered (full details are given in Section 4.3.1).

Figure 4.3: Illustration of the MRI Ground Truth Acquisitions.
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Figure 4.4: Illustration of different tissue signal characteristics in T1-Weighted, T2-Weighted and
Contrast-Enhanced MRI: in a), the lesion presents hyposignal on T1-W, hypersignal on T2-W and is
enhanced by contrast; in b), the lesion presents isossignal on T1-W, hypersignal on T2-W and is not
enhanced by contrast; and in c), the lesion presents isossignal on T1-W and T2-W and is enhanced by
contrast.

Since the imaging modalities were acquired within some time difference, the Ground Truth

is not the same. From the 143 patients, 132 patients present a Tumor in PET/CT and 140

patients present a Tumor in MRI.

4.2 Analysis of PET/CT

In this section, the steps to analyze the PET/CT images are described. This process is

mainly divided into: Pre-processing, Identification of the Breast and Lesion Detection. The

complete process is illustrated in Figure 4.5.

4.2.1 Pre-Processing

The pre-processing step reads each DICOM file, builds the PET (AC) volume and the

corresponding DICOM header for each slice.

Firstly, all the files in the directory given as input are enumerated. Each file is considered a

slice and will be read and placed in the final matrix one at a time.
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Figure 4.5: Diagram of the Analysis of PET/CT.

Before reading the image from the DICOM file, the information is read and stored in a

structure. This information is required to understand how the image is formatted and how

the volume should be constructed. After the information is read, each slice is placed in the

volume accordingly to the InstanceNumber parameter. When the image is stored in the matrix

of the volume, a conversion from the stored units to image units is required. The units stored in

the DICOM format do not correspond to the PET units, in this case, Becquerels/Millimeter

(BQML), because the meaningful units are not necessarily the most convenient or efficient to

use in a storing format. The conversion is applied according to equation 4.1.

V alue PET (AC ) vol ume = Raw V alue ∗ Rescal eSlope + Rescal eInter cept (4.1)
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During the creation of the PET volume, a specific position was chosen for all patients, which

is illustrated in Figures 4.6 and 4.7, that corresponds to a standing position where the patients

are looking forward.

Figure 4.6: Illustration of the final 3D volume in PET.

Figure 4.7: Illustration of the right and left side of the body of the patient in PET.

In order to obtain this position, it is required to transpose each slice so that the head of the

patient is on the left side of the image. After that rotation, there are a few cases where the

patient is not standing up and to verify that condition and invert it if needed, a few parameters

must be considered.

The PatientPosition specifies the body position of the patient in relation to the PET scanner.

For the data in the DB, there are two possible values: Head First-Supine (HFS) and Feet

First-Supine (FFS).

30



Chapter 4. Experimental Setup

After obtaining the position of the body of the patient, it is required to consider the position

of each slice accordingly to the reference axis system, which is obtained by the SliceLocation.

After all these adjustments, the volume of PET (AC) is ready to be used.

4.2.2 Identification of the breasts

The segmentation of the target volume is the first step to accomplish before applying any

type of detection on the image. This process is composed by several segments, each one solving

a specific area and using several approaches, which will be explained in what follows. The final

result is illustrated in Figure 4.8.

Figure 4.8: Results of the Identification of the breast tissue: a) Top MIP of the full body; b) Frontal
MIP of the full body; c) Lateral MIP of the full body; d) Top MIP of the breast tissue; e) Frontal MIP of
the breast tissue; and f) Lateral MIP of the breast tissue.

4.2.2.1 Representation of the full volume

To identify the volume, a representation of the image in three 2D planes is used to reduce

the complexity of the methods developed. This representation allows the identification of several

features common in all images that are essential in the tissue identification phase. Considering

the objective of representing the full volume using the projection planes, the MIPs were chosen

to represent the body.
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4.2.2.2 Background Elimination

The next step is to eliminate the background and identify the contour of the body. In this

approach, a fixed threshold was defined to eliminate the background.

After applying the threshold, morphological operations are applied to eliminate small regions

and holes in the masks that are going to be used to segment the body, which are the frontal and

lateral projections as illustrated in Figure 4.9.

Figure 4.9: Binary Masks obtained from the Frontal and Lateral MIP: a) and d) Applying Threshold;
b) and e) Elimination of small regions; and c) and f) Filling Holes.

4.2.2.3 Dividing the different parts of the body

After obtaining the projections, the contour of the body is obtained and that provides enough

information for further segmentation. The steps performed were:

• Identifying Arms Position: Arms Up or Arms Down

The arms position can be either with the arms up or with the arms down, as illustrated in

Figure 4.10. In order to accomplish this step, the mask originated from the background

removal in the frontal projection is used and the values of a line intersecting the head are

evaluated.

32



Chapter 4. Experimental Setup

Figure 4.10: Maximum Intensity Projection and Binary Mask obtained from the Frontal Perspective:
a) and c) Patient with the arms down; and b) and d) Patient with the arms up.

• Segment Upper Limit: Neck Limitation

To eliminate the head and most of the shoulders’ area, the curve of the neck is identified

using the contour of the body in the lateral projection, as illustrated in Figure 4.11. The

minimum value of the curve corresponding to the neck is identified and this value is

considered the upper limitation of the breast volume.

• Segment Lower Limit: Breast Curve Limitation

To define the lower limit, the nipple is identified using the contour of the body in the

lateral projection and the fold under the nipple is considered the minimum value after the

nipple. The position of the fold under the nipple is defined as the lower limit, as illustrated

in Figure 4.12.

33



Chapter 4. Experimental Setup

Figure 4.11: Defining the upper limit: green line corresponds to the contour of the body and the red
line corresponds to the obtained upper limit.

Figure 4.12: Defining the lower limit: green line corresponds to the contour of the body, the pink line
corresponds to the nipple level and the black line corresponds to the obtained lower limit.

• Segment Posterior Limit: Ribs Limitation / Template Matching

After defining the volume where the breast tissue is located, it is necessary to eliminate

the rib cage volume so that the activity from other organs in that area, such as heart, liver

and lungs, does not affect the detection process.
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To perform this task, a template matching approach is defined, described in Figure 4.13.

First, two templates of the contour of the breast tissue are created, one for a patient

with the arms positioned upwards and another for a patient with the arms positioned

downwards. The patients selected to create these templates are chosen from the original

DB and do not belong to the subset used in this study. This choice is made in order to

preserve the number of patients in the analysis. The templates are obtained using the

Computational Environment for Radiological Research (CERR) software and the .mat

structures originated are implemented into the code, requiring a few transformations and

adaptations [40].

Secondly, for each patient in the subset of the study, a template is chosen according

to the patients arms position. After choosing the template, a homogenization of the

pixel size and a normalization of the pixel value is performed [9]. The co-registration

transformation between the volumes is applied with the source of binary masks and the

resulting transformation is applied to the template of the breast volume originating the

mask to be applied in the original volume of the Patient.

Finally, the mask is defined and applied to the original volume. In this process, a resizing

of the template is required and a MIP of the template is applied into the volume of the

breast, isolating the breast tissue from all the rest of the rib cage tissues.

4.2.2.4 Normalization between PET images

In order to compare the images, a normalization of the values is required, due to variability

between the images caused by the heterogeneity of the quantity of radiopharmaceutical injected,

the weight of the patient and others. To accomplish this step, the most common parameter for

PET quantification, Standardized Uptake Value (SUV), was applied.

Even with the applicability that SUV presents for PET interpretation, these values cannot

be calculated without the manufacturers’ software. In order to obtain the SUV values from PET

values, an approach was applied using the most important factors, but ignoring the variability of

reconstruction parameters, attenuation parameters, partial volume effect, plasma glucose level in

patient blood and the format in which each manufacturer saves the data in DICOM files [41, 42].

The calculation of the value of SUV was based on the equations 4.2, 4.3, 4.4 and 4.5.

SUV = Acti vi t y Concentr ati on (B q/ml )
In j ected Dose (B q)
Bod y W ei g ht (kg )

(4.2)

Acti vi t y Concentr ati on = V alue PET (AC ) vol ume (4.3)

In j ected Dose = Radi onucl i de Tot al Dose ∗ Decay (4.4)
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Figure 4.13: Diagram of the Template Matching Method.

Decay = e−log (2) ∗ T i me o f Acqui si t i on − T i me o f In j ect i on
Radi onucl i de H al f Li f e (4.5)

Even though most of parameters were included in all patients, weight and the time difference

between the injection of the dose and the acquisition of the image were absent in a few cases. For

these cases, weight was defined as 75 kg and the time difference was considered to be composed

by 90 minutes of waiting time and 15 minutes of preparation, which corresponds to the average

weight of a woman and the time corresponds to the average time of preparation for acquiring

PET/CT images [42].

4.2.3 Lesion Detection

Lesion detection in PET images is based in the implementation of the detection of local

maximums that might represent higher values of SUV than the considered metabolically normal.

For this stage, it is considered that the values that are higher than 40% are important to be

detected, which is the most common value in a clinical setting [43].

SUV values may vary depending on the disease and patient. However, the cut-off value for

malignant lesions is 2.5 [41]. Nevertheless, lower values might also be able to detect anomalies

36



Chapter 4. Experimental Setup

and may be annotated in medical reports. As this work is based in the medical interpretation of

the lesions detected, we defined as a minimum SUV value for lesion detection the value of 2.

4.2.4 FP Reduction

The final step of the process consists of the elimination of false detections. After the Lesion

Detection phase, there are small detections that cannot be considered a tumor detection due to

their dimension. To accomplish this step, a filter was implemented to discard all detections with

at least one dimension with only one pixel of length.

4.3 Analysis of MRI

In this section, the steps to analyze the MRI images are described. This process is mainly

divided into: Pre-processing, Identification of the Breasts and Lesion Detection (Figure 4.14).

4.3.1 Pre-Processing

The pre-processing phase of MRI reads both T1-W and T2-W DICOM files, builds the

MRI volumes, reads the DICOM header for each slice, adjusts the image intensity values and

co-registers the T2-W volume considering T1-W volume as the reference.

Firstly, the directory of the files from each volume is given as an input, and the DICOM

files are read and placed in the final matrix one by one, accordingly to the InstanceNumber

parameter. The DICOM header associated to each slice is read and stored into a structure. This

information is essential to understand the resolution and dimensions of the image.

The final volumes created respect a specific position chosen for all patients, that corresponds

to a standing position where the patients are looking forward, the same position defined for PET

images. A illustration of the positioning of the breast tissue is presented in Figures 4.15 and

4.16. The process described to obtain this position in PET images is applied to MRI.

After positioning the body of the patient, the volume is normalized and a transformation is

applied to adjust the image intensity values. This transformation saturates the bottom 1% and

top 1% of all pixel values, which increases the contrast of the image. This step is performed to

reduce inhomogeneities in the voxels intensities across the image and small movement artefacts.

The final step is the co-registration of T2-W volume considering T1-W volume as reference to

correct misalignment between the two images. The applied co-registration uses the co-registration

of two binary mask and the final result is a T2-W image with the same orientation and size as

the T1-W image. The co-registration allows the comparison between the two images as well as

the Ground Truth.
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Figure 4.14: Diagram of the Analysis of MRI.

Figure 4.15: Illustration of the final 3D volume in T1-W MRI.
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Figure 4.16: Illustration of the right and left side of the body of the patient in T1-W MRI.

4.3.2 Identification of the breasts

The process of the identification of the breast tissue is only performed on T1-W volumes

resulting in a binary mask. This step is not repeated on T2-W volumes because the same binary

mask can be applied in both volumes. The chosen approach is based on the detection of several

anatomical features, performed slice by slice and was inspired by the work of Sehrawat et al.

[44]. An illustration of the results of the process is represented in Figure 4.17.

Figure 4.17: Illustration of the results of the identification of the breast tissue. The images on the left
are 3D representations of the full image and on the right are a 3D representation of the breast tissue.
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4.3.2.1 Background Elimination

The first step consists on the elimination of the background. To perform this step, a fixed

threshold is defined and morphological operations are applied to eliminate small regions and

holes in the final mask, as illustrated in Figure 4.18.

Figure 4.18: Illustration of the Background Elimination in MRI: a) Original Slice; and b) Binary Mask
without background.

4.3.2.2 Obtaining Landmark Points

After obtaining the mask without the background, the contour of the body is defined and

certain points are identified: the left and right nipples and the middle point between the breasts,

as illustrated in Figure 4.19.

The nipples are considered the maximum values of the contour and the middle point is a

point in the contour of the body centered between the nipples.

Figure 4.19: Illustration of the Landmark Points Positioning: a) Contour of the body; b) Definition of
both nipple positions; and c) Definition of the middle point.

4.3.2.3 Elimination of the organs on the lower part of the breast image

The determination of the localization of the middle point allows the definition of the border

between the breast tissue and the inner organs. The area of the organs is separated and is
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applied an Otsu’s Threshold. Both images are then connected. The steps of this process are

illustrated in Figure 4.20

Figure 4.20: Illustration of the elimination of the organs on the lower part of the image: a) Division of
the image; b) Mask resulting from the Otsu’s Thresholding step; and c) Final segmented image.

4.3.2.4 Creating the breast mask

The final binary mask is a reconstruction of the 2D slices following the process described

previously. From the matrix of the binary slices, the biggest connecting volume is selected

(eliminating smaller parts outside of the breast volume) and the holes inside the mask are filled.

The result is a 3D mask representing the breast volume.

4.3.3 Lesion Detection

Lesion detection in MRI requires primarily a separation of the different breast tissues: Fatty

and Fibroglandular Tissue.

To identify the tumor, first it is required to separate these tissues and obtain the Fibrog-

landular Tissue. Next, segments of tissue that are considered abnormal (tumors) are identified

within the Fibroglandular Tissue.

This step is performed separately in the two MRI images (T1-W and T2-W), since the tumor

presents different characteristics in each image. Two main image processing techniques are

applied: supervoxels and k-means Clustering.

4.3.3.1 Separation of the various tissues in the breast

The first phase of the separation of the various tissues is the extraction of the supervoxels.

The binary mask calculated during the identification of the breasts is then applied in order to

eliminate the supervoxels that do not belong to the breast.

A matrix of the average values for each supervoxel is calculated, in order to represent the

volume. From this step on, this matrix will be used rather than the original volume itself, to

take advantage of the supervoxels computation.
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After this, K-means Clustering is applied to the average matrix to create three main clusters:

Background, Fibroglandular Tissue and Fatty Tissue.

All the described process is illustrated in Figure 4.21.

Figure 4.21: Illustration of the separation between the tissues in the breast. Images in the top are
from T1-W images and images in the bottom are from T2-W images: a) and e) Original Slice; b) and f)
Supervoxels; c) and g) Average Matrix; and d) and h) Clusters from the K-means Clustering.

The selection of the Fibroglandular Tissue cluster is performed by elimination, because the

Background cluster is the cluster with the lowest average and the Fatty Tissue cluster is the

cluster with the highest average, illustrated in Figure 4.22.

4.3.3.2 Identification of the tumor in the breast and FP reduction

The identification of the tumor is a step that implements the same image processing techniques

presented previously but with a different approach.

Using the Fibroglandular Tissue obtained from the cluster and the Average Matrix, a K-

means Clustering is performed again and four clusters are defined: Background, Normal Tissue,

Tumor and a remaining part from the Fatty Tissue. This division is implemented in order to

eliminate the remaining Fatty Tissue in T1-W. In T2-W, the separation of the tissues eliminates

all the remaining tissue.

To select the Tumor cluster in T1-W images, the cluster chosen is the second cluster with

lowest average overall. This is due to the fact that the tumor in T1-W presents hyposignal and

that corresponds to the second cluster with lowest average overall, since the first corresponds

to the Background. To select the Tumor cluster in T2-W images, the clusters chosen are the
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Figure 4.22: Illustration of the separation between the Clusters. Images in the top are from T1-W images
and images in the bottom are from T2-W images: a) and d) Average Matrix; b) and e) Fibroglandular
Tissue; and c) and f) Fatty Tissue.

second and third with the lowest average overall. This assumption is defined due to the fact that

the cluster with lowest is the Background and that in T2-W there is no remaining Fatty Tissue

and the tumor is composed by these two clusters. A illustration of this process is represented in

Figure 4.23.

The method applied to MRI to reduce the number of FP is the same as described in Section

4.2.4.

4.4 Challenges in the Development of the Algorithms

Throughout the development of this work, several challenges arised due to the imaging

modalities used, the resolution and the information obtained from the images and how the

chosen algorithms performed for all patients. During this process, all these factors were taken

into account and the algorithms presented in Sections 4.2 and 4.3 are the culmination of the

best approaches found for each of the problems.

4.4.1 Main Challenges in PET

PET images have very low spatial resolution which increases the difficulty to identify

anatomical structures. Even though that process is complex per se, a few other problems must

be addressed due to the lack of standardization in the imaging acquisition protocol.

The image used in this project is PET (AC) image, extracted from a PET/CT image. During
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Figure 4.23: Illustration of the identification of the Tumor Cluster. Images in the top are from
T1-W images and images in the bottom are from T2-W images: a) and d) Average Matrix; b) and e)
Fibroglandular Tissue; and c) and f) Tumor Tissue.

the development of the segmentation algorithm, the CT image was not used to ease this task

that requires higher spatial, because the PET used is already corrected accordingly to the CT.

To work with PET images, the 3D image was transformed into 2D projections to ease the

extraction of the contour of the body and reduce the complexity of the developed methods. The

projection used was the MIP, however other approaches were studied such as average projection

and a slice of the volume. These other approaches were useful to detect the upper limit of the

volume but failed in the detection of the lower limit, so the MIP was chosen to represent the

volume.

Since these images were acquired with different machines and under different conditions, a

visual analysis was performed previously to any type of processing, to better understand the

types of images obtained and to plan the best methodologies. One of the problems was the

position of the arms of each patient caused by the lack of standardization of the position of the

patient. To solve this problem, the first step is dedicated to identifying the position of the arms.

The identification of the tissue phase required the definition of the volume in 4 main

components: background removal, upper limit, lower limit and rib limitations. The first three

steps were performed with simple methods, however the last step was difficult to achieve. The

correct delimitation of this area allows the elimination of the contamination from organs that

may present high 18F-FDG uptake, such as heart, lungs and liver. To perform this step a few

approaches were studied, such as dividing the torso into two parts, interpolating a straight line

or a curve between the center of the breast and the axilla, and the template matching approach.
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After testing all these methods, the template matching approach achieved the best results.

The detection of the tumor required an additional effort to define the best threshold values to

use as well as the cut-off value for malignant lesions. Before considering the implementation of a

threshold to identify the peaks of SUV values, a local maximum method was tested. Comparing

the values between these methods, the threshold approach was chosen.

4.4.2 Main Challenges in MRI

In MRI, the main challenges found was the understanding of the information provided by

the image and the development of the methods to detect the lesions.

As described in Section 4.1.3.3 and illustrated in Figure 4.4, different lesions have different

tissue signal characteristics in each image. To separate the tumor from normal tissues, the

images were taken into consideration and a few characteristics were noticed:

• The tumor presents hyposignal in T1-W;

• The tumor presents hypersignal in T2-W;

• If the tumor presents isossignal in both T1-W and T2-W, the lesion is only visible in other

MRI sequences.

After analysing the images and defining the corresponding Ground Truth, it was possible to

verify that only a small percentage of lesions were visually identifiable through T1-W and T2-W

images. This is due to the diverse types of existing lesions and can cause a poor detection rate

of the lesions.

The identification of the characteristics presented above allowed the establishment of rules

to detect the tumor: in T1-W, the detection of hyposignal and in T2-W, the detection of

hypersignal.

Before applying the method described to identify the Tumor Tissue in the Fibroglandular

Tissue, a threshold technique was performed. However, this method failed due to the value

chosen and the presence of Fatty Tissue contaminating the Fibroglandular Tissue. An alternative

method using Clustering of supervoxels was implemented and presented better results, and as a

result was the approach defined to perform the task.

4.5 Experimental Results

This section is divided into PET and MRI, and an analysis is performed to compare the

effects of the FP reduction method.

In order to analyse the efficiency of the algorithms, an evaluation of the matches between the

Ground Truth and the Detection is performed, comparing results without and with FP reduction.

A match is achieved if Ground Truth and Detection are positive (presence of a tumor) or if
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Ground Truth and Detection are negative (absence of a tumor), as explained in Section 2.3.2.

The match does not quantify the number of tumors that exist or were detect by the algorithm,

instead it verifies if the algorithm is capable to distinguish healthy patients. The calculation of

the metrics requires the comparison of bounding boxes. The non existence of a bounding box in

Detection or in the Ground Truth makes the calculation of those values impossible. Due to this

fact, the metrics are only calculated for cases in which there is a Positive Ground Truth and a

Positive Detection.

4.5.1 PET Results

The analysis of the matches presented in Table 4.3, suggests that the method before FP

reduction is capable of identifying the cases with positive Ground Truth, only missing 1.4% of

the total cases. However, the same cannot be verified for negative cases of Ground Truth, since

5 of the patients without disease are considered FPs.

The application of the method to reduce FP achieves similar results, but the number of cases

with positive Ground Truth increase the detection error to 2.8% of the total cases.

Table 4.3: Representation of the Matches in the PET approach without/with FP reduction.

Detection

P N

Ground

Truth

P 130 / 128 2 / 4

N 5 / 5 6 / 6

Table 4.4: Evaluation Metrics Values in the PET approach without/with FP reduction.

Evaluation Metrics PET approach

IOU (Approach 1) 0.274/0.278

IOU (Approach 2) 0.303/0.308

TP per Patient 0.639/0.648

FP per Patient 4.285/2.766

FN per Patient 0.462/0.453

Precision Average 0.325/0.371

Recall Average 0.559/0.568

Minimal Distance Between
Centroids Average

31.592/32.982

The description of the metrics of PET approach are presented in Table 4.4. The overall

analysis of these values indicates that the approach associated with the FP reduction presents
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better results. This approach achieves a IOU of 0.308, a precision of 0.371, a recall of 0.568

and 2.766 FP per patient. Although the results are not ideal, the developed approach seems a

promising line for future research.

As a remark, Minimal Distance Between Centroids Average increases after FP reduction,

which is due to the fact that the elimination of certain FP bounding boxes increases the distance

metric, since the distance between centroids may consider centroids that are not a match.

4.5.2 MRI Results

Besides comparing the results from the approach for T1-W and T2-W images separately,

an evaluation is performed by joining the Detection bounding boxes of the two methods. This

approach has the objective of evaluating the benefits of aggregating the results of both images.

By analysing the matches described in Table 4.5, it is possible to verify that the application

of the FP reduction does not change the values. However, in all approaches, the method cannot

identify cases in which no tumour is present. This affirmation cannot be a global conclusion

because the DB has a small representation of cases in which the patients have no lesions (only 3

patients).

Table 4.5: Representation of the Matches in the MRI approach without/with FP reduction.

Detection

T1-W MRI T2-W MRI T1-W + T2-W

P N P N P N

Ground

Truth

P 139/139 1/1 140/140 0/0 140/140 0/0

N 3/3 0/0 3/3 0/0 3/3 0/0

The description of the metrics of MRI approach are presented in Table 4.6. Comparing

the values from the different MRI types, the best results are from T1-W combined with T2-W

MRI without FP-reduction, quantified by the high value of IOU, the highest values of Precision

and Recall and the lowest value of FP per patient. The best approach achieves IOU of 0.173,

Precision of 0.007, a recall of 0.394 and 22.458 FP per patient.

The same comment in PET related to the Minimal Distance Between Centroids Average, is

verified in MRI.

Considering the Table 4.6, it is possible to verify that even though the quantification of

matches is equal for the methods without/with FP reduction, the values of the metrics vary

between the methods. This conclusion is possible since the matches quantify the existence (or

not) of tumor in the Ground Truth or the possibility of the tumor being detected, however

they do not quantify the number of lesions. If the method with FP reduction eliminates certain

detections, it may not delete the detections that match the Ground Truth and this phenomenon

improves the values of metrics such as IOU, Precision, Recall and FP per patient. Overall, the
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Table 4.6: Evaluation Metrics Values for MRI without/with FP reduction.

Evaluation Metrics T1-W MRI T2-W MRI T1-W + T2-W

IOU (Approach 1) 0.099/0.137 0.062/0.083 0.074/0.117

IOU (Approach 2) 0.144/0.143 0.118/0.111 0.173/0.170

TP per Patient 0.374/0.374 0.250/0.236 0.443/0.436

FP per Patient 47.273/18.201 21.121/12.400 68.236/30.643

FN per Patient 0.684/0.684 0.800/0.814 0.643/0.650

Precision Average 0.009/0.032 0.012/0.021 0.007/0.016

Recall Average 0.343/0.343 0.223/0.208 0.394/0.387

Minimal Distance Between
Centroids Average

30.245/35.884 30.963/35.523 22.458/26.682

analyses of the matches is a global approach and is not enough to quantify if the developed

algorithm works in patient by patient approach.

4.5.3 Comparing PET with MRI

Comparing the matches and evaluation metrics from both modalities in a general evaluation,

it can be seen that the PET approach retrives the best results. However, to further explore this

evaluation, the results of the approach of PET with FP reduction and the combination of T1-W

and T2-W with FP reduction are going to be compared in more detail.

Focusing on the number of matches between the two approaches, the MRI approach presents

better results since it does not have any FN (all patients with disease are identified). However,

the same does not occur in PET, since four patients with the disease are considered healthy.

The analyses of the matches exemplifies the results between the two approaches, but cannot

be considered to achieve a conclusion, the DB is highly imbalanced with a bigger prevalence of

cancer cases.

To comprehend how the algorithms perform in a patient by patient approach, an analysis

focused on the metrics is required to evaluate the number of tumors correctly identified or the

quantity of tumors not detected. Since both algorithms identify different patients as cases of TP

for the existence of the disease, only the patients considered TP for the two imaging modalities

are considered for this analysis. In total, 127 patients are selected for this analysis. The number

of TP, FP and FN varies between modalities, as explained in Section 4.1.3.3, so the metrics of

precision and recall are the most appropriate to compare the modalities since they describe the

fraction of the numbers.

Based on Precision, the PET approach is able to identify relevant objects better than the
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MRI approach in 75 patients, while the MRI is only able to perform better in 18 patients. The

other 34 patients considered present the same value of Precision in both modalities (Precision

= 0) and correspond to the cases in which neither PET or MRI was capable of detecting any

tumor. Based on Recall, the PET approach is able to identify all the correct detections of

Ground Truth objects better than the MRI approach in 40 patients, while the MRI is only able

to perform better in 20 patients. The remaining 67 patients present the same value of Recall in

both modalities and are divided into two groups: 33 patients present maximum value of Recall

(Recall =1) and correspond to cases in which both algorithms were able to detect all the TP

lesions; 34 patients present minimum value of Recall (Recall = 0) and correspond to cases in

which both algorithms were unable to detect any lesions.

This patient by patient analysis allows to verify that in the 127 patients, both algorithms

detect correctly the number of tumors in 26.0% of the patients and fail the detection of any

tumor in 26.8% of the patients. The PET approach achieves better results in 50% more patients

in the detection of tumors and achieves lower percentage of FP than the MRI approach.
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Conclusions and Future Work

In this project, an approach that semi-automatically detects the primary lesion of BC in

PET/CT images and MRI is implemented. The motivation for the development of this approach

was to reduce the time consuming task that is the annotation of lesions in BC.

The lesion detection was applied in PET images and T1-W and T2-W MRI. The pipeline to

detect and localize the lesions is a multi-step method, using various image processing techniques

from thresholding to supervoxels.

The approach applied to PET with FP reduction achieved the best results of all approaches.

This approach achieved a IOU of 0.308, a precision of 0.371, a recall of 0.568 and 2.766 FP per

patient.

Even though these results seem promising, future work must be implemented to increase the

accuracy of the algorithm and improve the overall performance. In PET, some methods can

be explored such as the association of the PET image into the CT image, experimenting new

segmentation techniques and the implementation of other methods to detect abnormal uptakes.

In MRI, new types of MRI should be analysed to evaluate how these algorithms performed and

the implementation of other segmentation techniques in an 3D approximation, instead of a slice

by slice method.

Another method that has been implemented in recent years with an alternative approach

is the detection of tumors in the co-registered image PET/MRI. This modality connects the

benefits of the detection of abnormal FDG uptake values with MRI proprieties.
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