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Abstract

Point clouds are sets of points which represent a 3D object/scene by their coordinates and optional
attributes such as color, reflectance or other. Point clouds are being used in several application areas such
as entertainment, terrain representation, medical imaging and, more recently, autonomous vehicle guidance
systems. Due to the large size of point clouds, these applications would require a huge power processing and,
in some cases, tasks may not be able to be performed in real time. Thus, compression is used to tackle the

challenges of storage and real-time transmission.

It is known that lossy compression introduces geometric distortions to the point clouds which are
usually dependent on the compression rate. Due to being necessary to segment the component objects of the
reconstructed/decompressed point cloud, it is important to understand and characterize the effect of the type

and degree of compression on the performance of the segmentation and classification tasks.

In this dissertation, two sets of experiments are described: one with general use point clouds and the
other using a particular type of point clouds, more precisely LiDAR. This division was made because it is likely
that the results are different for these two types due to the amount of precision and uses of each point cloud
type. These experiments are designed to empirically evaluate the effect of different point cloud compression
methods, employed at different compression rates, on the performance of several point cloud segmentation and
classification algorithms. For that, several performance measures are used to evaluate the behavior of each

case.

Keywords

Point cloud, Compression, Segmentation, Classification



Resumo

Nuvens de pontos sdo conjuntos de pontos que representam um objeto ou cena 3D, em que os
pontos sdo representados pelas respetivas coordenadas 3D e atributos opcionais tais como cor, reflectincia,
entre outros. Estas sdo usadas em vdrias dreas de aplicagdo como, por exemplo, entretenimento, representacao
de terrenos, imagens médicas e, mais recentemente, sistemas de conducdo auténoma de veiculos. No entanto,
devido ao grande volume de dados necessdrios para representar as nuvens de pontos, essas aplicacdes iriam
precisar de um grande poder de processamento e, em alguns casos, poderia ndo ser possivel realizar as tarefas
em tempo real. Portanto, a compressao é usada para combater o problema de armazenamento e transmissao em

tempo real.

Sabe-se que a compressdo com perdas introduz distor¢cdes geométricas que, geralmente, dependem
do grau de compressdo. Dado que em algumas aplicacdes € necessario segmentar os objectos que compdem a
nuvem de pontos reconstruida/descomprimida, € importante perceber e caracterizar o efeito do tipo e grau de

compressdo na performance das tarefas de segmentacio e classificacdo.

Nesta dissertaclo, sdo descritos dois tipos de experiéncias: uma com nuvens de pontos de uso geral
e a outra usando um caso particular das nuvens de pontos, mais precisamente, o LiDAR. Esta divisdo foi
feita, pois é provavel que os resultados destas duas experi€ncias sejam diferentes devido as aplicacdes distintas
destas classes de nuvens de pontos, assim como respetivos requisitos de precisdo. Estas experiéncias foram
criadas para avaliar empiricamente o efeito de diferentes métodos de compressdo de nuvens de pontos usando
diferentes graus de compressao na performance de varios algoritmos de segmentacdo e classificacdo. Para isso,

varias medidas de performance sdo usadas para avaliar o comportamento de cada caso.

Palavras-Chave

Nuvem de pontos, Compressao, Segmentacdo, Classificacdo
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Chapter 1

Introduction

1.1 Contextualization

The need of more realistic models and 3D representations has become a concern over the last years,
so several approaches emerged. Formerly, meshes [5] were widely used to represent 3D objects/scenes. In fact,
points were converted into polygonal meshes which required large memory and had a high computational cost.
Most of the time, meshes could not be processed due to their huge size and without a costly simplification.
Point Clouds (PC) emerged as an alternative to meshes since they simplify the representation and allow a faster
reconstitution of the surface than meshes without having to worry about simplification. This process requires
less memory since data structures are not necessary and it tends to be more efficient computationally which

saves computation time.

PC are sets of values that contain information about the location (represented by its Cartesian co-
ordinates) and optionally attributes, such as color, reflectance, temperature of points that represent samples of
the surfaces of simple objects or complex scenes. According to Moving Picture Experts Group (MPEG), they

can be classified as [6]:

e Category 1: high-detail static PC objects such as buildings;
e Category 2: time-varying PC objects such as people performing tasks;

e Category 3: dynamically acquired PC such as the ones captured from Light detection and ranging

(LiDAR) devices on vehicles/drones.
PC can be obtained [7]:

e directly: imaging systems that are projected to collect this kind of information which can consist in sparse
points or dense clouds on a surface. These points are directly detected and determined with certain types

of hardware. Some examples are LiDAR, time-of-flight cameras and contact technologies;
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e indirectly: algorithms that can extract this kind of information from imaging systems that are not de-

signed to deal with 3D data. Some examples are photogrammetry, depth maps and light fields.

A LiDAR sensor [7-10] is an optical remote sensor which produces a PC representation of the
surrounding environment that is utilized to detect and classify objects. This sensor spins around its axis while
collecting data using laser beams. The reflection of each one is used to measure the light intensity and the
distance to each reflection origin. In the end, a PC image is obtained for each rotation of the sensor, having
the location and shape of 3D objects. This technology can be terrestrial, i.e, sitting on the ground, or aerial,
i.e., put a laser scanning sensor in the air. Terrestrial LiDAR is more accurate than the aerial one and that can
be justified by the fact that in the air it is not possible to know precisely where the laser is pointing and since
it can move, there can be discrepancies while scanning causing results’ distortion. However, with airborne
LiDAR, it is easier to collect data related to the terrain elevation. One of LiDAR disadvantages is the fact that
it does not collect color or texture information. One way to avoid that problem is overlaying the information
from LiDAR onto the color information captured using photographic techniques. However, this method can be
imprecise. These sensors are usually used in active safety systems in order to reduce the number of accidents

by implementing collision avoidance systems which are independent of the driver’s control.

That said, the usage of PC has increased along the years so there is a need to research them. Since
PC contain data that can occupy several gigabytes, there is a need to compress them efficiently in order to
have accurate information occupying as little space as possible [4, 6]. However, the number of points can have
an impact on how realistic a rendered scene/object is [6]. When talking about compressing images, the main
goal is to reduce its size without compromising its quality which is why it is also important to calculate errors
between PC in order to quantify any possible quality degradation that may occur [4, 11]. Compression can be

classified as [11]:

e Lossy: when it is possible to reconstruct data from the original image but with some slight differences
and can even introduce artifacts due to its low bitrates. It is usually used in situations that allow a minor

loss of fidelity.

e Lossless: when is possible to reconstruct the original image exactly. It is used in situations that do not

allow a loss of fidelity such as medical applications of image.

PCs can be used in virtual-, augmented-, and mixed-reality applications, in 3D content creation, in
3D printing, in medical applications such as imaging and body parts manufacturing, in autonomous vehicles,
and drone guidance [12]. As expected, the requirements of PC representation formats and compression methods
will vary according to the use case. For example, medical applications will need a more accurate reconstruction
of a compressed PC than 3D printing for rapid prototyping. Therefore, there is a need for efficient compression
methods for PCs enabling accurate PC representation with few bits per point. In some applications, PCs are
processed to identify constituent objects, for example pedestrians and cars in automotive applications, through
the use of PC segmentation algorithms. There is a significant difference between the types of data and the levels

of compression required which is why there are two sets of experiments in this dissertation: one considering
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general use data and the other considering a particular case, LiDAR data. This last part was a collaboration

with the laboratory Human Centered Mobile Robotics (HCMR) from Institute of Systems and Robotics (ISR).

1.2 Objectives

The main goal of this work is to study how compression affects the performance of processing
operations such as segmentation and classification. It is important to know how compressed can the data be
while still achieving good results when those processing operations are performed on the compressed data. In
order to do that, several datasets are going to be compressed using different methods and parameters and, later,

tested using different segmentation/classification methods.

1.3 Contributions

One contribution of this work is the paper ”An Empirical Study of the Effect of Point Cloud Com-
pression on the Performance of Segmentation” for the 8th European Workshop on Visual Information Pro-
cessing (EUVIP). However, the main contribution is the performed study and quantitive analysis of the effect

of PC (generic and LiDAR) compression on the performance of some segmentation algorithms.

1.4 Acknowledgments

The work developed in this dissertation was partially carried out within the framework of the project

PTDC/EEI-COM/31527/2017 and supported by the IT infrastructure facilities.

1.5 Document Structure

The remainder of this dissertation is organized in the following structure: in chapter 2 the theoretical
foundations of this work are presented, in chapter 3 is presented the work done in the context of this disser-
tation, in chapter 4 the results of this work and their analysis are presented, and, finally, in chapter 5 the final

conclusions and proposals for future works are presented.
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Chapter 2

Background information

The following two sections provide a brief review of the Point Cloud Compression (PCC) methods
used in this work as well as the PC segmentation algorithms analyzed. The third section of this chapter describes

some metrics used in PCC quality assessment.

2.1 Point Cloud Compression Algorithms

PCC methods can be loosely classified into the following three classes [7]:

e Based on 3D encoding: point information encoding exploits spatial relationships between points. Octree-
based methods, mesh encoding, graph-based and voxel-based representations are some examples that fit
into this category. In octree-based methods, the bounding box of the PC is recursively subdivided into
eight sub-units of cubic shape. Only the sub-cubes that are flagged as occupied (contain at least one point)
are again subdivided as shown in Figure 2.1. This process stops when there are no more points left or
until a certain level of precision is attained. MPEG recently proposed a method based on these principles,

the MPEG Geometry-based Point Cloud Compression (G-PCC) encoder [1] which is described in 2.1.1.

cCCe © 6 6 6 0 O

1000 0000

0101 0001

O O e ® O Y
1100 0000 0100 0000

Serial Code: 10000000 01010001 11000000 01000000

Figure 2.1: Representation of an octree decomposition and partitioning byte codes (1 means sub-block will be
subpartitioned, 0 otherwise).
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e Based on 2D Projections: the points in the PC are projected onto several planes and then encoded using

existing 2D image/video compression methods. Methods of this type can be used to encode geometry

and attribute information. MPEG Video-based Point Cloud Compression (V-PCC) [2] which is described

in 2.1.2 was designed for encoding dynamic PCs based on projections.

e Hybrid and Other: methods that use combinations of the previous approaches and methods that do not fit

into any other category. Two methods that belong to this category are Fast Resampling on Point clouds

via Graphs (FRPC) [3] which is described in section 2.1.3 and LASzip [9] described in section 2.1.4.

2.1.1 MPEG Geometry-based Point Cloud Compression Encoder

MPEG G-PCC [1] is an algorithm that was designed to compress PCs of Category 1 and 3. Figure

or no attributes at all.
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attributes
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|
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|

2.2 presents an overview of the encoder and decoder. The modules presented as green are usually used with

Category 1 PCs and orange modules with Category 3 PCs. It also supports color and/or reflectance attributes
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| |
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geometry
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coordinates : colors
| ]
v !
positions attributes

Figure 2.2: Overview of the MPEG G-PCC encoder (left) and decoder (right) from [1].

Before compression, point positions are represented by non-negative integers which where obtained
by rounding the floating point positions in the internal coordinate system. It is possible that some points may
have the same position (duplicated points) but they can be removed. Points having the same position but
different attributes are merged into one and average attributes are computed. This whole process is called

voxelization, i.e., grouping several points into one voxel. Within the voxel, points location are quantized to the

voxel center and the attributes are averaged.

Then the PC geometry data is encoded using an octree-based codec, following a procedure analog
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to that described in section 2.1. The color attributes can be encoded using the Region-adaptive Hierarchical
Transform (RAHT) method [13] based on a hierarchical sub-band transform and an arithmetic encoder. The
main idea of RAHT is to group colors in a lower level to predict colors in the next level until reaching the root

leaving unoccupied nodes out.

2.1.2 MPEG Video-based Point Cloud Compression Encoder

MPEG V-PCC [2, 6] is an algorithm based on 2D projections that was designed to compress Category
2 PCs. It leverages existing video codecs, such as MPEG-4 Advanced Video Coding (MPEG-4 AVC), High
Efficiency Video Codingx (HEVC), to compress the projected geometry and texture. The individual PCs of
the dynamic PC are projected generating two video sequences, one with geometry information and the other
with attribute information. The patches generated by the projection are packed into a 2D pixel array forming
the 2D (pseudo) video frames. Additional data such as occupancy maps and auxiliary patch information are
also encoded and added to the bitstream to be used in the PC reconstruction. Figure 2.3 presents a diagram
showing the major signal processing operations involved and bellow it is presented a short explanation of how

this method works.

e Patch generation and packing processes: The main goal is to determine the best way to decompose the

PC into patches and to efficiently fit them into a 2D grid through a simple orthogonal projection.

e Image generation and padding processes: The main goal is to transform the PC geometry and texture

into 2D images temporally correlated in order to be ready for 2D video encoding.

e Auxiliary patch information and occupancy map generation: As referred before, there is a need to store
patch/block metadata information such as the index of each patch projection plane, its 3D location, its
2D bounding box and the indexes of the patches that belong to each block in order to interpret the video
sequences and allow correct reconstruction of the PC. This information is predicted and arithmetically

encoded.

An occupancy map is a binary map that indicates which grid cells are filled and which are empty. Empty

blocks are detected and the remaining blocks are encoded with a certain user-defined precision.

e Smoothing module and reconstruction process: The main goal of the smoothing process is to smooth
patch boundaries in order to minimize any possible discontinuity. For that, boundary points are moved

to the centroid of their nearest neighbors.

The reconstruction process is based on the occupancy map information in order to detect full pixels and

compute their associated points using the auxiliary patch/block information.
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Figure 2.3: Overview of the MPEG V-PCC encoder and decoder from [2].

2.1.3 Fast Resampling on Point Clouds via Graphs

FRPC [3] is a graph-based method that selects a subset of points while keeping the contour inform-
ation of the PC with a fidelity criterion set by the user as illustrated in Figure 2.4. This method takes advantage

of the interaction between signals and graph structures. The graph captures local dependencies between points
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along with global ones and represents their surface.The point selection follows a non-uniform sampling that
takes into account point utility estimates computed via specific features. The number of points is reduced by
discarding less important ones but the positions and attributes of the remaining points do not change since there

are no interpolations involved, only a simplification of the PC.

(a) Uniform resampling. (b) Contour-enhanced resampling.

Figure 2.4: Comparison between uniform and contour-enhanced resample from [3].

2.1.4 LASzip

Since the size of the LiDAR files increases with the sampling density of the sensor, compressing
them without loss using LASzip [9] is a good choice because the size of the output files is usually less than one
quarter of the original size. Its main goal is to turn LiDAR PC into more compact ones in order to enable faster

transmission and have an easier management.

The LASzip compressor has the following characteristics [9]:

e lossless: compress the coordinates of the points without information loss;

e non-progressive: decompress data with the maximum details possible at a certain rate of resolution;
e streaming: compress chunks of data and outputs them when they are ready;

e order-preserving: preserve the original order of the points in the file;

e random-access: possible to decompress subsets of the points.

This compressor encodes the PC by chunks of points in order to allow random access. Since each
chunk can have a different size, there is a chunk table, usually at the end of the file, which lists the starting
byte of each chunk. For each new chunk, the first point is stored which is going to be used as the initial point
of subsequent prediction schemes, and the entropy coder initialized. An entropy coder turns symbols into a
stream of bits knowing about the distribution of symbols. At the beginning, it assumes the symbol distribution
as uniform but then learns the symbol probability distribution. LASzip is based on an adaptive, context-base

arithmetic coder. Also, a small chunk size means less compression because the adaptive entropy coder is reset
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at the start of each chunk and relearns all symbol distributions that negatively affect the compression. Below

are the steps this compressor follows, for each chunk:

e Encodes a bit-mask of 6 bits that has information about whether certain attributes have changed when

compared to the point before.

o All the attributes that have changed are encoded.

e Cartesian coordinates are then encoded. However they are not directly encoded, they are predicted from

the previous points and the difference between them is entropy coded.

2.2 Point Cloud Segmentation Algorithms

The PC segmentation algorithms chosen for this dissertation are all based on point clustering in

order to use some older methods. The methods chosen were selected according to criteria of computational

complexity simplicity and clustering performance as well as availability of ready-to-use implementations.

2.2.1 K-Means

K-means [14] [15] segments the given data into an user-defined number of cluster, K. The steps of

this algorithm are the following according [16]:

Algorithm 1: K-Means algorithm

B W N -

R=2E- R B WY ]

11
12

Input: k (the number of clusters), D (a set of points)

Output: a set of k clusters

A cluster center (centroid) is chosen uniformly at random;

The distance from each point to the chosen centroid is computed;

repeat

The next centroid is chosen at random however with a distance-based probability which is
proportional to its distance to the closest chosen centroid, i.e., farthest points have higher
probability of being chosen;

The distance from each point to the new centroid is computed;

Points are assigned to the cluster that has the closest centroid;

until k centroids are selected;

repeat

The distance from each point to the centroid is computed using a squared Euclidean distance metric;

Points are assigned to the cluster that minimizes the distance from that point to the centroid;

The new centroid location is recalculated as the mean of the points in the cluster;

until the maximum number of iterations is reached or the clusters compositions do not change
significantly;

Initializing centroids with the K-means++ algorithm [17] (step 1 to 7) improves the running time

and the quality of the solutions. It was also demonstrated in [17] that K-means converges faster when centroids

are initialized with this method.

10
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2.2.2 Fuzzy C-Means

This algorithm [18] [19] partitions data into clusters with different levels of membership, i.e., each

point belongs to all the clusters but with different membership weights. The algorithm follows the steps bellow:

Algorithm 2: Fuzzy C-Means algorithm

Input: k (the number of clusters), D (a set of points)
Output: a set of k clusters
Initialize D with a random membership level;
repeat
Compute the cluster centers(centroids);
Update membership grades based on the centroid distance to each point;
Compute the objective function which is meant to be as small as possible since it represents the
weighted distance from any point to the centroid;
6 until the objective function reduction is smaller than a predefined threshold or until the maximum
number of iterations is reached,

n A W N -

This process is repeated because most likely the first computed centroid is incorrect and, updating

them as well as the membership values, will move them to the correct location.

2.2.3 K-Medoids

This algorithm [20] partitions data into K clusters, where K is predefined. Its goal is the same as
in K-means, i.e., minimize the sum of distances from the center to each point within each cluster. However,
unlike the K-means case, the centers of the clusters are PC points. Points are assigned to a cluster by picking
the cluster with the closest cluster center (medoid). As in the other methods used, this process is repeated until

medoids do not change or until predefined conditions are met.

The algorithm used to find the medoids is the Clustering LARge Applications (CLARA) which
applies the Partitioning Around Medoids (PAM) algorithm on random subsets and assigns each point to a

cluster by picking the closest medoids. The steps of PAM algorithm are:

Algorithm 3: PAM algorithm

Input: k (the number of clusters), D (a set of points)
Output: a set of k clusters
1 Initial medoids positions are chosen;
2 Each cluster is associated to a medoid following the k-means ++ initialization algorithm explained in
2.2.1;
3 Each point within each cluster is tested as a possible medoid by choosing the point with the lowest sum
of distances within its cluster;
4 All points are assigned to the cluster that has the closest medoid;

2.2.4 Mean Shift

This method [21] partitions data into an algorithm-defined number of clusters. The steps of Mean

Shift algorithm are the following:

11
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Algorithm 4: Mean Shift algorithm

N R W N -

e e 3

—
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1

Input: D (a set of points), B (bandwith)
Output: a set of k clusters
repeat
A random seed point is chosen which is used as the starting mean point;
repeat
Compute squared distances from the mean point to each point;
Points which squared distance is within a given bandwidth will be assigned a vote, added to the
cluster and flagged as visited;
A new mean point is computed and the old one is saved;
until distance between the new and the old mean point is smaller than a defined threshold,
if distance between the mean points of new cluster and existing ones is within half of B then
Merge clusters;
until all points flagged as visited,
Each point belongs to the cluster for it which has the most votes;

2.2.5 Clustering based on Euclidean Distance

PC data is segmented into clusters based on a minimum Euclidean distance [22] which represents

the minimum distance between points from different clusters. Points with a smaller distance than this threshold

belong to the same cluster. The algorithm does the following:

Algorithm 5: Clustering based on Euclidean Distance algorithm

R R B Y N L

-
—

Input: D (a set of points), R (user-defined range)
Output: a set of k clusters
repeat
if point not valid then
‘ Point is removed;
The neighbors within R of each point are computed, including the point itself;
These points are assigned as belonging to the same cluster;
if any of these neighbors already belongs to a cluster then
‘ The remaining neighbors will be assigned to that cluster;
else
‘ A new cluster is created;
end
until repeating N times, being N the number of points in the PC;

2.2.6 Clustering based on subtractive clustering

In subtractive clustering [23], each point is a potential cluster center. The process of this algorithm

is the following:

12
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Algorithm 6: Subtractive clustering algorithm

Input: D (a set of points), R (cluster influence range)
Output: a set of k clusters’ centers
Based on the point neighbors, its probability of being a cluster center is computed;
The point with the highest potential to be the first cluster center is chosen ;
repeat
The points near the first cluster center are removed and the vicinity is computed using the influence
range;
5 The remaining point with the highest potential as the next cluster center is chosen;
6 until all the data is within R of a cluster center,

W N -

2.3 Point Cloud Compression Quality Assessment

Errors between original and compressed PCs, i.e., the geometry distortion of the compressed point

cloud when compared to the original one can be measured using :

e Point-to-point (P2Point) distance [4, 24]: every point in the original PC has a match in the compressed
PC which is its closest neighbor. So it is necessary to find a point in the compressed PC (A) for each
original PC (B) point. Then, their distance is computed as shown in Figure 2.5. These global distortion

can be measured using:

N . B2
— Mean Squared Error (MSE) [11]: M, being N the number of points in the compressed PC.

- Hausdorff distance: max(d(A;, B;)). It is the maximum of all distances.

— Peak Signal-to-Noise Ratio (PSNR) [11]: represents the ratio between the highest possible value
of a signal and the value of the degrading noise that affects it. It was computed using MSE and

Hausdorff.

e Point-to-plane (P2Plane) distance [4, 24]: This approach is more complex than the P2Point metric be-
cause, after finding the original PC (A) point correspondence in the compressed PC (B) point, the error
vector is computed and projected in the normal direction as shown in Figure 2.5. It can be obtained
using:

N . a2 .
— MSE: W being N the number of points in the compressed PC.
— Hausdorff distance: max(d(A;,B;)), being B; the closest point.

— PSNR: It was computed using MSE and Hausdorff.

13
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Normal vector N.

I N

A given point b, in the
( point cloud to be
evaluated

Corresponding point a; in
reference point cloud

Plane

Figure 2.5: Difference between P2Point and P2Plane metrics from [4].
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Chapter 3

Methodology

To perform the desired evaluations of the segmentation algorithms, three main tasks were done. First
an uncompressed test point cloud was prepared based on some well known PCs presented in section 3.1.1. Then
that PC was encoded using the encoders described in section 2.1 at different compression rates. Afterwards all
the PCs, original and compressed, were processed with the segmentation/classification methods chosen and the

results analyzed. The following sections describe all these steps in detail.

Also, as mentioned in Section 1, there is a need to divide these experiments into two sets of exper-
iments: one related to general use PC data and the other involving a particular case of PCs, LiDAR data. The
level of detail of the data is related to its use case which is likely to have different levels of compression without

losing information, thus requiring two separate experiments with different requirements.

3.1 General use PC dataset

This section is divided into four subsections that describe which data was used, how it was prepared,
which segmentation tests were performed and under what conditions, and which performance measures were

used to evaluate the results obtained.

3.1.1 Point Cloud Test Data

Half of these experiments were based on the four dynamic PCs longdress, loot, red and black, and
soldier taken from the 8i Voxelized Full Bodies (8iVFB) dataset [25]. The individual PCs in these dynamic
PCs have been voxelized, having a 10 bit depth spatial resolution. These PCs, besides geometry information,
contain color attributes. From these four PCs, frame 1300 of the longdress PC, frame 1200 of loot, frame 1550
of red and black and frame 690 of longdress were chosen to be our static PCs because these are the ones most

used on the MPEG tests using static PCs.

The other half, which was chosen due to its simplicity, was based on static PCs from:

15
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e two taken from the Stanford 3D scanning repository [26] (bunny and dragon) which were captured using

a laser triangulation range scanner, more precisely Cyberware 3030 MS scanner.
e one from the activities of the MPEG standardization committee [27] (egyptian_mask).
e one from [28] (vase) which was captured by Intel RealSense R200.
e one from MeshLab being artificially produced [29] (torus)

e two synthesized using mathematical formulas [29] (sphere and cube).

Since a PC with multiple objects was needed to properly test the clustering algorithms, composite
PCs were created by assembling PCs from the first four static ones while the remaining ones are assembled in

others composite PCs and then voxelized using a 10 bit depth.

In Figure 3.1 are illustrated two examples of such assembling.

AU

Figure 3.1: Representation of two composite PCs.

3.1.2 Data Preparation

Each tested PC was compressed using MPEG V-PCC, MPEG G-PCC, and FRPC with the encoding
parameters listed in Table 3.1. The values to each parameter were chosen in order to cover as many cases as

possible. In MPEG G-PCC and FRPC, - means that the quality level does not exist.

16



3.1 General use PC dataset

Table 3.1: Configurations used in MPEG V-PCC, MPEG G-PCC, and FRPC

MPEG V-PCC MPEG G-PCC | FRPC
Quality level | GeometryQP LosslessGeo | PosQuantScale | Density
q01 51 0 0.125 10
q02 48 0 0.25 20
q03 44 0 0.375 30
q04 40 0 0.4375 40
q05 36 0 0.5 50
q06 32 0 0.5625 60
q07 28 0 0.625 70
q08 24 0 0.6875 80
q09 20 0 0.75 90
ql0 16 0 0.875 100
qll 12 0 0.9375 -
ql2 8 0 1 -
ql3 4 0 - -
ql4 0 0 - -
ql5 - 1 - -

The parameters listed have the following meanings and characteristics:

e MPEG V-PCC

— GeometryQP: geometry information quantization stepsize. It has a range from O to 51.

— LosslessGeo: binary flag indicating that geometry is encoded without loss.
e MPEG G-PCC

— PosQuantScale: position quantization scale parameter, larger values mean finer encoding. It has a

range from O to 1.
e FRPC

— Density: FRPC subsampling ratio. It has a range from 0 to 100.

3.1.3 Segmentation Tests

The uncompressed and compressed PCs were segmented using the segmentation algorithms listed
in section 2.2. Their already existent MATLAB implementations were used with configuration parameters set
according Table 3.2. Some of these parameters were set as default by the algorithms, however others were
adjusted in order to correctly identify the objects in each original PC. This adjustment was made by trial and
error aided by visual confirmation of the segmentation of PCs. However, this was only made for the original

PCs because the compressed ones use the same values as their reference PC.

17
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Table 3.2: Configuration parameters used in segmentation tests.

Method Parameter Value
Distance metric Squared Euclidean distance
Maximum number of iterations 100

K-Means

Number of times to repeat clustering using new initial cluster centroid positions
Centroid initialization method

1
K-means++ algorithm

Maximum number of iterations

100 or 200

Fuzzy C-means Minimum improvement in objective function between consecutive iterations 1E-05
Amount of fuzzy overlap between clusters 2
Algorithm to find medoids CLARA

Distance metric
Maximum number of iterations

Squared Euclidean distance
100 or 285

K-medoids Number of times to repeat clustering using new initial cluster centroid positions 5
Number of samples to take from data 40+2*number of clusters
Medoid initialization method k-means++ algorithm
Mean Shift Bandwith parameter 26 or 50 or 300
Pcsegdist Minimum Euclidean distance 10 or 25 or 100
Subclust Range of influence of the cluster center 0.6 or 0.65 or 0.8

3.1.4 Performance Measures

To evaluate the compression results, the measures presented in section 2.3 are used. Besides that,

other measures such as bitrate and scaling ratio are used. The bitrate represents the number of bits per pixel in

the compressed frame. To obtain it, it is necessary to divide the number of bits in the compressed frame by the

number of points in the original one. However, for FRPC, bitrate information is not available as this method

only provides a PC simplification, reducing the number of points according certain defined parameters. The

scaling ratio represents the relationship between the input and the output file.

To assess the results of the segmentations performed, each cluster of the segmented PC was pro-

cessed to compute some key indicators listed in Table 3.3.

Value | Definition
C Cluster Center
Corig | Corresponding Original PC Cluster
DC distance(C,Cyyig)
CH Cluster Convex Hull
CH,,i; | Corresponding Original PC CH
DCH | Distance from CH to CH,yig
\" CH Volume
Vorig | Corresponding Original PC CH
AVD | |V =V, |
PAVD | §%2 x 100
P Cluster Number of Points
Porig Corresponding Original PC Cluster
NP | P—Pyrig |
PNP | 3l x 100

Table 3.3: Clustering performance measures.

The accuracy of the clustering is measured by several values. The first is the agreement in the number

of clusters in the original (uncompressed) PC and the number of clusters obtained on each of the reconstructed

PCs. When the number of clusters in the original and compressed PC match, one can measure the degradation

18
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of the clustering by the values indicated in Table 3.3, namely the distance between the centers (DC) of the
matching clusters in the original and compressed PC, as well as the absolute difference of volumes (AVD)
and percentage of absolute difference of volumes (PAVD) of the convex hull of the matching clusters, the
percentage of absolute difference of number of points (PNP) of the matching clusters and the distance between

the convex hulls (DCH) of the matching clusters.

The algorithm which clustering is based on Euclidean distance, Pcsegdist, does not give any inform-
ation related to the clusters’ center, however, as the information of the points of each cluster is available, it was
possible to compute the mean of each cluster and use it as cluster center. On the other hand, Subclust, which is

based on subtractive clustering, only returns centers of clusters and DC as presented in Table 3.4.

Table 3.4: Performance measures used in the segmentation algorithms.

C PNP AVD PAVD DCH DC

K-Means Yes  Yes Yes Yes Yes Yes
K-Medoids Yes  Yes Yes Yes Yes Yes
Fuzzy C-Means Yes Yes Yes Yes Yes  Yes
Mean Shift Yes  Yes Yes Yes Yes Yes
Pcsegdist Yes  Yes Yes Yes Yes  Yes
Subclust Yes No No No No Yes

3.2 LiDAR Dataset

This section is divided into four subsections that describe which data was used, how it was prepared,
which segmentation/classification tests were performed and under what conditions, and which performance

measures were used to evaluate the results obtained.

3.2.1 Point Cloud Test Data

The KITTI dataset [30] was recorded in Germany using a moving plataform. The PCs used in this
dissertation were obtained from a Velodyne 3D laser scanner that continuously rotates around its axis at 10Hz
using 64 beams. Each scan is stored as a floating point binary and each point is stored as a cartesian coordinate
together with a reflectance value which was not used in this dissertation. Each PC has a different number of

points. An example of a projection of a frame of this dataset is presented in Figure 3.2.

Since voxelization was needed, several tests were performed in order to realize the most effective bit
depth. The first tests used a 10, 15, and 20 bit depth while the second ones used a 11, 12, 13, 14, 15, and 20 bit
depth. As MPEG V-PCC does not allow input PCs with a bit depth higher than 10, this method was not used in

the majority of the cases.
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Figure 3.2: Projection of a frame from the KITTI dataset.

3.2.2 Data Preparation

In a first approach, three bit depths (10, 15, and 20) were used and each tested PC was compressed
using MPEG V-PCC (only for a 10 bit depth), MPEG G-PCC, and FRPC and LASzip using the encoding

parameters listed in Table 3.1.

Later, for purposes of segmentation and classification, it was decided to use 11, 12, 13, 14, 15 and
20 bit depth with the quality levels presented in Table 3.5. The range of the compression rates was reduced to
a low, two medium and a high level due to the complexity of the segmentation methods that were going to be

used.

Table 3.5: Configurations used with MPEG G-PCC and FRPC for purposes of segmentation and classification

Quality level PosQuantScale Density

q01 0.25 30
q02 0.375 50
q03 0.5625 70
q04 0.75 90

The parameters listed have the same meaning and characteristics as in Section 3.1.2.
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3.2.3 Segmentation and Classification Tests

Before any other operation, it was necessary to train the feedforward neural network using some
already implemented MATLAB functions. After that, the network was ready to perform the segmentation/classification

tests needed.

First, three objects were identified in each original PC (Van, Pedestrian and Bicycle) and their bound-
ing box features taken. Then, to create a cluster for each object in the compressed PCs, it was necessary to use
that bounding box features to identify the objects and extract their points and real features. In the final step,

each cluster is assigned a label, i.e., is classified. In Figure 3.3 is illustrated an overview of theses processes.

Ground removal Segmentation Feature extraction Classification

Figure 3.3: Flowchart of the approach followed.

3.2.4 Performance Measures

Another possible approach to evaluate the original and compressed PC is to overlap them in order
to know the percentage of equality they have. For this, it is used a 2.5D grid map where each cell represents
a height [31]. So the information is upsampled because it can also use information from the neighbor cells in

order to make the surface smoother.

To assess the results of the segmentations and classifications performed, each original cluster and
its label is compared to the predicted one and a confusion matrix is constructed which is evaluated using three

parameters [32]:

e Error: ratio between the total of incorrect predictions and the total number of the dataset.
e Specificity: ratio between the total of correct negative predictions and the total of negatives in the dataset.

e Precision: ratio between the total of correct positive predictions and the total number of positive predic-

tions.

21



3. Methodology

22



Chapter 4

Results and Analysis

This chapter will be divided into two sections. One related to compression results and the other one

focused on the segmentation results.

4.1 Compression Results

As mentioned before, this section will be divided into two subsections which correspond to the two

different datasets used.

4.1.1 General use PC dataset

All the results expressed use the performance measures referred in Section 3.1.4. Three experiments
are presented in this subsection: one was performed with a composite PC using the 8iVFB dataset which
is called from now on experiment 1, experiments 2 and 3 are a composite PC using the remaining PCs as
explained in Section 3.1.1. The main difference between experiment 2 and 3 is that 3 was a bigger distance

between objects. In this case, the main goal is to study whether distance influences compression or not.

In Tables A.1, A.2, and A.3 are represented the values related to bitrate and scaling ratio. From that
and from Figure 4.1, it is possible to conclude that, as expected because the quality levels were defined like that,
the bitrate increases along with the quality level in most of the cases. However, in the experiment where objects
are too close to each other, this did not happen which can be explained by geometry distortions introduced by
the PCC due to the proximity of the objects. This rise is exponential in MPEG V-PCC and linear in MPEG
G-PCC due to the algorithms’ characteristics. Bitrate results for FRPC are not available as not proper coding

is performed, only a PC simplification as explained in Section 2.1.3.
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Figure 4.1: Representation of the bitrate results.

The scaling ratio is constant for MPEG V-PCC and rises linearly for MPEG G-PCC and FRPC as
shown in Figure 4.2. This happens because, in MPEG G-PCC, the number of points increases along with the

quality level as well as in FRPC while in MPEG V-PCC, the number of points is the same in every quality level
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except in the lossless case which decreasees due to the algorithm characteristics.
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Figure 4.2: Representation of the scaling ratio results.

In Tables A.4, A5, A.6, A.7, A.8,A.9, A.10, A.11 and A.12 are represented values related to P2Point
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and P2Plane metrics which results are discussed bellow.

The lossless cases which are q12 for MPEG G-PCC, q10 for FRPC, and q15 for MPEG V-PCC are

not discussed here because their values are usually zero or infinite.

In P2Point using MPEG V-PCC, as shown in Figure 4.3, MSE usually decreases along with the
quality level. However, there are no conclusions for what happens in experiment 2 because usually a small
value means higher quality and lower error which doesn’t correspond to what was suppose to happen since the
higher quality levels are the ones with higher MSE. As expected after the analysis of MSE, its PSNR increases
along with the quality level except for experiment 2. Hausdorff has a higher range in comparison with the other

values, but it does not show a pattern as each experiment does something different. This also happens for its

PSNR.
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Figure 4.3: Representation of the P2Point metric results using MPEG V-PCC.

In P2Point using MPEG G-PCC and FRPC, MSE decreases with the quality level and its PSNR

increases, as shown in Figure 4.4. Hausdorff also decreases and its PSNR also increases. This values are

expected because a higher PSNR value usually means higher quality. It is also important to refer that PSNR of

lossless cases is infinity however in the graphics bellow is represented by zero.
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Figure 4.4: Representation of the P2Point metric results using MPEG G-PCC.
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Figure 4.5: Representation of the P2Point metric results using FRPC.

The behavior of P2Plane is similar to P2Point behavior as shown in Figures 4.7, 4.6 and 4.8. So

what was explained before, can also be applied in this case.

29



4. Results and Analysis

40
30
20
10

-10 A

-20
-30
-40

20

15

10

-10

-15

15

10

| __/\

S~

-
S~
bt e XX T PGP Y Y PR AP APy S Sy Y

esebosssscsbessccscpesssspesssee > Y Y 14 14 T -

g0l q02 03 q04 qO5 q06 qO7 qO08 q09 ql0 qll ql2 13 ql4 15

Quality level
e SE +ccecce PSNR based on MSE

PSNR based on Hausdor ff

(a) Experiment 1

.--._-__‘_,,.---.-.-.- =

-
-
-

50
45
40
35
30
25
20
15
10

Hausdorff

q0l | 02 q03 q04 gO5 q06 qO7 qO08
—

T S —

Quality level

cessses MSE = = = = PSNR based on MSE (dB)

(b) Experiment 2

cccessesssscccce
esscsscsese

q06  q07 q08 q09 ql0 qll ql2  qi3 q%lS'

Quality level

= emoSE ceeeeee PSNR based on MSE (dB)

(c) Experiment 3

Figure 4.6: Representation of the P2Plane metric results using MPEG V-PCC.
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Figure 4.7: Representation of the P2Plane metric results using MPEG G-PCC.
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Figure 4.8: Representation of the P2Plane metric results using FRPC.

It is possible to conclude that distance between objects does influence compression specially when

using MPEG V-PCC, since the results of experiment 2 sometimes have fluctuations and erratic behavior.
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4.1.2 LiDAR dataset

All the results are expressed using the performance measures referred in Section 3.2.4. Three exper-
iments are presented in this subsection: one using a 10 bit depth, other using a 15 bit depth and the remaining
one using a 20 bit depth. In this case, the main goal is to study whether bit depth influences compression or

not.

For MPEG V-PCC, only some compression ratios were tested and for the remaining, the overlap was
assumed to be zero in order to build a proper graphic. As it can be inferred from Figure 4.9 and Table 4.1, a 10
bit depth has a 2.5D overlap close to zero which means that this configuration has lost almost all the information
that represents the frame used in this work. However, when using a 2.5D overlap with neighborhood, results
improved although not surpassing the 25%. It is possible to conclude that is not worthy to segment this PC

since the most part of the information was lost meaning that a 10 bit depth is low for this specific PC.

Table 4.1: Overlap results using a 10 bit depth PC.

overlap 2.5D overlap 2.5D with neighborhood

q01 0.01% 3.94%

q02 0.04% 9.89%

q03 0.04% 6.49%

q04 0.10% 11.68%

q05 0.10% 10.45%

q06 0.09% 8.94%

MPEG G-PCC 497 0.21% 14.09%
q08 0.18% 11.38%

q09 0.17% 11.16%

ql10 0.24% 12.56%

qll 0.44% 19.10%

ql2 0.45% 17.53%

q06 0.53% 12.83%

q07 0.49% 11.86%

q08 0.44% 10.97%

MPEG V-PCC 99 0.43% 10.33%
ql10 0.41% 9.84%

ql5 0.45% 17.52%

q01 0.10% 23.23%

q02 0.14% 21.50%

q03 0.19% 20.72%

q04 0.20% 19.88%

q05 0.26% 18.12%

FRPC q06 0.28% 17.65%
q07 0.31% 17.01%

q08 0.33% 16.78%

q09 0.37% 16.90%

ql10 0.45% 17.53%
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Figure 4.9: Representation of the overlap between the original and decompressed PC using a 10 bit depth.

As mentioned before, MPEG V-PCC does not support a bit depth higher than 10, so for higher bit

depths, information related to this method is not available.

As it can be inferred from the Table 4.2, a 15 bit depth has a 2.5D overlap lower than 50%. As
expected, this configuration has more information than the 10 bit depth dataset. When using a 2.5D overlap
with neighborhood, results improved although not surpassing the 80%. Despite the fluctuations in MPEG G-
PCC which can be due to geometric distortions introduced by the compression, this PC is a good example to
segment because, as shown in Figure 4.10, along with the increasing compression ratio, there is a 2.5D overlap

rise which although not being the ideal scenario, it is close.
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Table 4.2: Overlap results using a 15 bit depth PC.

Overlap 2.5D  Overlap 2.5D with neighborhood

q01 411% 40.21%
q02 23.24% 63.40%
q03 37.41% 72.09%
q04 38.95% 73.39%
q05 48.06% 79.55%
q06 41.58% 75.54%
MPEG G-PCC g7 54.78% 78.12%
q08 42.56% 77.11%
q09 52.53% 80.51%
q10 48.83% 78.64%
ql1 39.40% 78.43%
q12 48.55% 79.02%
q01 8.39% 7791%
q02 15.24% 78.29%
q03 20.87% 78.32%
q04 25.62% 78.31%
q05 29.81% 78.35%
FRPC q06 33.56% 78.33%
q07 37.15% 78.29%
q08 40.58% 78.23%
q09 44.20% 78.26%
q10 47.81% 78.27%
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Figure 4.10: Representation of the overlap between the original and decompressed PC using a 15 bit depth.

As it can be inferred from Figure 4.11 and from Table 4.3, a 20 bit depth has a 2.5D overlap close
to 90 for MPEG G-PCC which means that this configuration has almost all the information that represents
the frame used in this work for all the compression rates. For FRPC, the ideal scenario was found due to the
10% growth of the overlap from each compression ratio to the next one. When using a 2.5D overlap with
neighborhood, is possible to improve results. It is not worthy to segment the MPEG G-PCC PCs since the

overlap is similar for all compression ratios.
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Table 4.3: Overlap results using a 20 bit depth PC.

Overlap 2.5D Overlap 2.5D with neighborhood

q01 89.76% 95.73%
q02 93.83% 96.97%
q03 94.42% 97.31%
q04 93.21% 97.33%
q05 93.92% 97.61%
q06 93.91% 97.44%
MPEG G-PCC g7 93.46% 97.47%
q08 93.42% 97.48%
q09 94.02% 97.62%
q10 94.09% 97.60%
qll 93.43% 97.53%
q12 93.39% 97.53%
q01 12.53% 91.28%
q02 24.39% 92.58%
q03 35.23% 93.53%
q04 45.41% 94.31%
q05 54.66% 94.81%
FRPC q06 63.40% 95.37%
q07 71.25% 95.88%
q08 78.98% 96.22%
q09 86.02% 96.64%
q10 92.74% 97.05%
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Figure 4.11: Representation of the overlap between the original and decompressed PC using a 20 bit depth.

4.2 Segmentation Results

As mentioned before, this section will be divided into two subsections which correspond to the two

different datasets used.
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4.2 Segmentation Results

4.2.1 General use PC dataset

Tables in Section B list the results of experiment 1 for the different compression rates and different
clustering algorithms and encoder methods as explained in Section 3.1. All the results are expressed using
the performance measures defined in Chapter 3. The experiments presented in this Section are the ones also
presented in Section 4.1.1. The Figures presented are from cluster 1, however the remaining clusters usually

present the same behavior.

For the K-Means algorithm, there are usually cases that failed to converge in the number of iterations
defined or cases for which the clusters were not properly compared due to different cluster centers. For the
Mean Shift algorithm, the number of clusters for the PC compressed usually using MPEG V-PCC sometimes is
different from the original. The same happened with Pcsegdist and subclust. This means that the segmentation
algorithm failed due to the distortions introduced by the compression. One way to obtain better results is to

distance objects from each other, which is analyzed by comparing experiment 2 and 3.

The center of each cluster is computed except for Subclust as referred in Table 3.4. K-medoids’

centers vary the most which can induce errors in these performance measures.

Sometimes, even though centers seem to be well computed, visually, objects are wrongly segmented
which can explain some inconclusive behavior in the performance measures used. Table 4.4 represents the

number of PC with visual differences when compared to the original one.

Table 4.4: Number of PC with visual differences to the original one

K-Means K-Medoids Fuzzy C-Means Mean Shift Pcsegdist
MPEG VPCC 2 9 0 14 1
Experiment 1 | MPEG GPCC 3 7 0 2 0
FRPC 6 3 0 1 0
MPEG VPCC 12 15 15 13 0
Experiment 2 | MPEG GPCC 4 12 0 6 1
FRPC 5 10 0 4 0
MPEG VPCC 1 0 6 0 0
Experiment 3 | MPEG GPCC 1 0 0 0 0
FRPC 0 0 0 0 0

For the Fuzzy C-Means, it was observed according Figure 4.12a that, in experiment 1, PAVD de-
creases with increasing quality level for MPEG G-PCC, as it happens for the other two PCC methods although
for a smaller range. However, for experiments 2 and 3 using MPEG V-PCC, PAVD fluctuates as shown in
Figures 4.12b and 4.12c. Observing Figures 4.12e and 4.12f, it is possible to conclude that something similar
happened for Pcsegdist algorithm although experiment 1 is constant for FRPC and MPEG G-PCC and de-
creases for MPEG V-PCC as shown in Figure 4.12d. However, it was not possible to conclude the same for the
other methods for which was not possible to find any consistent relationship as shown in Figures 4.12g, 4.12h,
4.12i, 4.12j, 4.12k, 4.121, 4.12m and 4.12n although, K-medoids for experiment 3, seems to behave just like

Fuzzy C-Means, as shown in Figure 4.120.
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Figure 4.12: PAVD results.

The DCH illustrated in Figure 4.13 decreases with increasing quality level for FRPC and MPEG

G-PCC, however for MPEG V-PCC it fluctuates. This happened for the rest of the cases which are represented
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in Figure B.1. This behavior is expected because as the quality level increases, the convex hull becomes
more similar to the original one, so it makes sense that the distance between them is reduced along with the

COl’IlpI'eSSiOH rate.
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Figure 4.13: DCH result for experiment 1 using Fuzzy C-Means

Concerning the DC, it was not found any consistent relationship with the quality level as illustrated
in Figure 4.14 for the case of K-Means algorithm. Similar behavior was shown by Mean Shift, K-Medoids,
Pcsegdist, Fuzzy C-Means and Subclust algorithms as illustrated in Figure B.2. This means that correctly

finding the coordinates of each center is not directly related to the quality level of each PC.

1200
1000
800

600

DC

400

200 \j
0
q0l q02 qO03 q04 05 q06 qO07 q08 qg09 ql0 ql1 ql2 13 ql4 ql5

Quality level

= MPEG GPCC ====MPEGVPCC FRPC

(a) K-Means - Experiment 1

43



4. Results and Analysis

350
300
250

200
150
100
50
0

q0l q02 q05 q06 q07 q09 ql0 911 ql2 913 ql4 qi15
Quallty level

DC

== MPEG GPCC ====MPEGVPCC FRPC

(b) K-Means - Experiment 2

500
450
400
350
300
250
200
150

100
50
0

g0l q02 903 q04 q05 906 qO07 908 q09 ql0 qgl1 ql2 q13 qgl4 ql5
Quality level

DC

=== MPEG GPCC ====MPEGVPCC FRPC

(c) K-Means - Experiment 3

Figure 4.14: DC results for K-Means algorithm.

For Pcsegdist, the PNP decreases with increasing quality level for FRPC and MPEG G-PCC, for

MPEG V-PCC it is constant or fluctuates as show in Figures 4.15. The same happened for K-Means, Fuzzy

C-Means, K-Medoids and Mean Shift as illustrated in Figure B.3. This behavior is expected because as the

quality level increases, it becomes more similar to the original one, so it makes sense that the difference of the

number of points of each clusters is reduced along with the compression rate.
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Figure 4.15: PNP results for Pcsegdist algorithm.

The running time for MPEG V-PCC half of the times is higher than the original and lower using the

other methods as shown in Figure 4.16 for K-Medoids. For FRPC, in most cases the running times rises along
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the increasing compression ratio and MPEG G-PCC also shows some tendency to increase. The running times
of the remaining algorithms is represented in Figure B.4. This can help to prove that compression does have
some advantages such as running faster than an uncompressed PC for certain methods and running faster for

lower compression ratios, also depending on the used methods.
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Figure 4.16: Representation of the running time according the quality level for K-Medoids algorithm

As it can be inferred, there is a pattern in most cases especially for the experiments which objects
are apart from each other which means that this results are independent of the used dataset. What matters the
most are the compression rates used which for good visual quality and better results, should use quality levels

higher than g5.

4.2.2 LiDAR dataset

Tables 4.5, 4.6, 4.7, 4.8, and 4.9 represent the confusion matrices obtained after segmentation and
classification performed on each used frame. Each original PC has three clusters and each cluster has a label
(Pedestrian, Cyclist, Van). However, if no object is found where it was supposed to exist an object, it is
classified as empty. To obtain these matrices, each one of the originals clusters’ labels are compared to the ones

from the compressed PC.
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Table 4.5: Confusion matrix obtained after the classification performed on frame 000000

Predicted object

Empty Cyclist Pedestrian Van
0

(e}
(e}

Empty
Cyclist
11 bits | pedestrian
Van

Empty
Cyclist
12 bits | pegestrian
Van
Empty
Cyclist
13 bits | pedestrian
Van

Observed object Empty

. Cyclist
14 bits | pedestrian
Van

Empty
Cyclist
15 bits | pedestrian
Van

Empty
Cyclist
Pedestrian
Van

20 bits
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Table 4.6: Confusion matrix obtained after the classification performed on frame 000001

Predicted object

Empty Cyclist

Pedestrian

Van

Observed object

11 bits

Empty
Cyclist
Pedestrian
Van

0

(=)

(e}

12 bits

Empty
Cyclist
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13 bits
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Cyclist
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Van

14 bits

Empty
Cyclist
Pedestrian
Van

15 bits

Empty
Cyclist
Pedestrian
Van

20 bits

Empty
Cyclist
Pedestrian
Van

eoNoloNolNoBol-R-li-NeloNolloNoloNol NoBlo ol =N S =X=]

SO VO | DOV DOV DO NO| DO | OO

0OV OO | XWXV IODO | IOV ODOD| LNNLOVWDODO| VOO OO
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Table 4.7: Confusion matrix obtained after the classification performed on frame 000002

Predicted object

Empty Cyclist Pedestrian Van

Empty
Cyclist
11 bits | pedestrian
Van

7 0
0 9

o
DO N

Empty
Cyclist
12 bits | pegestrian
Van
Empty
Cyclist
13 bits | pedestrian
Van

Observed object Empty

. Cyclist
14 bits | pedestrian
Van

Empty
Cyclist
15 bits | pedestrian
Van

— 0 OO |WWOWOoOOoO| VOO

Empty
Cyclist
Pedestrian
Van

20 bits

eNoloNolNoBo=Rol oo ool =ReRoNol Neliel ool e lo o Nl

SO RO DO  OCOXO| OO NIO |~ O
L OUNO| O~ O 0O~ O  NODNDO | O

SO OO |~ 0 OoOO
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Table 4.8: Confusion matrix obtained after the classification performed on frame 000003

Predicted object
Empty Cyclist Pedestrian Van
Empty 0 0 0 0
Cyclist 0 7 1 1
11 bits | pegestrian 1 0 8 0
Van 0 0 7 2
Empty 0 0 0 0
Cyclist 0 8 0 1
12 bits | pedestrian 0 0 9 0
Van 0 0 8 1
Empty 0 0 0 0
Cyclist 0 9 0 0
13 bits | pedestrian | 0 0 9 0
Van 0 0 2 7
Observed object Empty 0 0 0 0
Cyclist 0 9 0 0
14 bits | pedestrian | 0 0 9 0
Van 0 0 0 9
Empty 0 0 0 0
Cyclist 0 8 0 1
15 bits | pegestrian 0 0 9 0
Van 0 0 0 9
Empty 0 0 0 0
. Cyclist 0 8 0 1
20 bits Pedestrian 0 0 9 0
Van 0 0 0 9
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Table 4.9: Confusion matrix obtained after the classification performed on frame 000004

Predicted object

Empty Cyclist Pedestrian Van

Empty
Cyclist
11 bits | pedestrian
Van

Empty
Cyclist
12 bits | pegestrian
Van
Empty
Cyclist
13 bits | pedestrian
Van

Observed object Empty

. Cyclist
14 bits | pedestrian
Van

Empty
Cyclist
15 bits | pedestrian
Van

Empty
Cyclist
Pedestrian
Van

20 bits

eNoloNolNoBo=Rol oo ool =ReRoNol Neliel ool e lo o Nl

OO VOV | VOR O XD | PO | = O W

O VO | ODWIO| DO | O~ VLO|O—=VOLO| OO W
SR OO | DN | DV OO | R XODOD| N O | O —

As it can be inferred from Tables 4.5,4.6,4.7,4.8, and 4.9, results are slightly better for bit depths

above 13. This happens due to the information loss that was suffered during the voxelization process.

With 14 bit depth, in q1 and q3 from MPEG G-PCC was found a van instead of a pedestrian. For
example, for a 15 bit depth, in q1 from FRPC was found a van instead of a pedestrian and in q1 from MPEG
G-PCC was found a pedestrian instead of a van. Another example is in q1 and in g4 from FRPC from 20 bit
depth was found a van instead of a pedestrian. In the second example, these mistakes were made in lower
compression rates which can prove that compression does have an influence on processes such as segmentation
and classification. However, in the first and last example, this theory does not apply which can be due to any

geometric distortions introduced by the voxelization or the compression.

Table 4.10 presents three parameters related to the classification performed. According Figure 4.17,
it is possible to conclude that the error rate decreases along with the increasing bit depth while specificity and
precision increases. This behavior is expected because as the bit depth increases, there is more information in

each PC, so there is supposed to have less errors in the classification process.
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Table 4.10: Parameters from each confusion matrix

Error Precision Specificity
11 bits | 0.41 0.82 0.80
12 bits | 0.37 0.62 0.81
13 bits | 0.26 0.78 0.87
Frame 000000 14 36 [ 0,07 0.94 0.96
15 bits | 0.07 0.93 0.96
20 bits | 0.07 0.94 0.96
11 bits | 0.44 0.37 0.84
12 bits | 0.37 0.50 0.81
13 bits | 0.26 0.77 0.87
Frame 000001 14 pits | 0.26 0.85 0.87
15 bits | 0.33 0.67 0.83
20 bits | 0.30 0.84 0.85
11 bits | 0.33 0.69 0.83
12 bits | 0.26 0.74 0.87
13 bits | 0.19 0.83 0.91
Frame 000002 14 pits | 0.07 0.93 0.96
15 bits | 0.07 0.93 0.96
20 bits | 0.19 0.88 0.91
11 bits | 0.37 0.54 0.87
12 bits | 0.33 0.68 0.83
13 bits | 0.07 0.94 0.96
Frame 000003 14 pits | 0.00 1.00 1.00
15 bits | 0.04 0.97 0.98
20 bits | 0.04 0.97 0.98
11 bits | 0.44 0.58 0.78
12 bits | 0.22 0.84 0.89
13 bits | 0.07 0.93 0.96
Frame 000004 14 pits | 0.04 0.97 0.98
15 bits | 0.19 0.84 0.91
20 bits | 0.04 0.97 0.98

—

11 bits 12 bits

13 bits

e Error

Bit depth

Specificity

14 bits

Precision

(a) Frame 000000

15 bits

20 bits
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11 bits 12 bits 13 bits 14 bits 15 bits 20 bits
Bit depth
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(e) Frame 000004

Figure 4.17: Representation of each confusion matrix parameters.

As it can be inferred, there is a pattern in most cases for these three parameters and also for the
bit depths that achieved better results which is also an important matter. However, there is not a clear pattern

related to the compression rates since there are misidentified objects in lower and higher quality levels.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This dissertation intended to research whether compression influences segmentation by clustering
algorithms performance, uncovering performance trends and cutoff points after which the segmentation fails
entirely. A secondary goal was to understand if some clustering algorithms are more robust to information loss

due to PCC.

The first part of this work consisted in creating the general use dataset used by joining different
objects in the same PC and in voxelizing the PCs from the LiDAR dataset. Then, they are compressed with

different compression rates and encoder methods.

For the general use dataset, compression results show that, under certain conditions, bitrate increases
along with the increasing compression ratio and the scaling ration is constant for MPEG V-PCC and it increases

along with the quality level for the remaining methods. The remaining metrics behave according the PCC used.

For the lidar dataset, compression results show that in FRPC for higher bit depths, the overlap rises
along with the increasing quality level and the same happens for MPEG G-PCC although for a 20 bit depth, the
overlap remains constant which can mean that compression at lower rates was not very effective due to having
too much information. For MPEG V-PCC, it was not possible to have conclusions because this method only

allows PCs with a bit depth lower than 10.

The second part consists in applying several segmentation methods to the general use dataset and

remove the ground, segment, and classify the LiDAR dataset.

For the general use dataset, it was possible to conclude that PAVD decreases with increasing com-
pression rate for Fuzzy C-Means and Pcsegdist and has inconclusive behavior for the remaining methods. DC
also has inconclusive behavior for all methods and DCH as well as PNP decrease along the rise of the quality
level except for MPEG V-PCC which is usually constant or fluctuates. The running time is usually higher

than the original when using MPEG V-PCC and lower when using the remaining methods which also show a
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tendency for increasing time along with the increasing compression rate. From these metrics, DC and PAVD
are probably the ones not to use due to the lack of results with a pattern, although PAVD results had a pattern
for Fuzzy C-Means and Pcsegdist. It is also possible to conclude that Fuzzy C-Means is the most robust al-
gorithm and that all algorithms showed a cliff effect for MPEG G-PCC and FRPC but seemed insensitive to
compression with MPEG V-PCC, for the performance measures that are conclusive. This means that MPEG

G-PCC and FRPC are the obvious choices to compress PCs.

For LiDAR dataset, results show that the error rate decreases along with the increasing bit depth
while specificity and precision increase. This behaviors were expected because with the bit depth increase,

there is more information in the PC.

From compression and segmentation/classification results, it is possible to conclude, without sur-
prise, that compression does influence the working of the tested algorithms and therefore their outputs. For the
general use PC dataset, according the analyzed results, all compression rates show promising results although
higher quality levels tend to have better results. However, if it necessary to have a good visual quality, it is
a good idea to use compression rates higher than q5. For the LiDAR dataset, it was difficult to identify the
compression rates than should not be used due to the diminished list of compression rate which can lead to
uncertain patterns, but, most of the times, q1 should not be used as it has misidentified objects. However, as for
voxelization, it was possible to find a pattern and a bit depth bellow 13 should not be used. It was not possible
to choose one of the PCC as the one with best results because the two methods used with this dataset showed

similar results.

5.2 Future work

Further work is needed to fully investigate the effects uncovered here. For example, perform sim-
ilar tests but with different PCC methods and/or different segmentation methods. Moreover, the comparison
between PCs may be improved by optimizing the process of comparison which sometimes fails due to different
number of clusters or due to the misidentified clusters’ centers. These experiments can also be performed using

different datasets and new performance metrics.
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Table A.1: Bitrate and scaling ratio results of experiment 1.

MPEG V-PCC MPEG G-PCC FRPC
Bitrate (bits/point) Scaling ratio | Bitrate (bits/point) Scaling ratio | Scaling ratio
q01 0.01 1.50 0.03 0.02 0.10
q02 0.01 1.50 0.10 0.07 0.20
q03 0.01 1.50 0.22 0.16 0.30
q04 0.02 1.50 0.30 0.21 0.40
q05 0.03 1.50 0.38 0.28 0.50
q06 0.04 1.50 0.49 0.30 0.60
q07 0.05 1.50 0.60 0.42 0.70
q08 0.07 1.50 0.72 0.51 0.80
q09 0.11 1.50 0.85 0.59 0.90
ql0 0.16 1.50 1.12 0.79 -
qll 0.26 1.50 1.27 0.89 -
ql2 0.40 1.50 1.42 1.00 -
ql3 0.65 1.50 - - -
ql4 1.31 1.50 - - -
ql5 1.80 1.40 - - -




Table A.2: Bitrate and scaling ratio results of experiment 2.

MPEG V-PCC MPEG G-PCC FRPC
Bitrate (bits/point) Scaling ratio | Bitrate (bits/point) Scaling ratio | Scaling ratio

q01 0.11 1.76 0.05 0.02 0.10
q02 0.14 1.76 0.13 0.07 0.20
q03 0.17 1.76 0.40 0.26 0.30
q04 0.22 1.76 0.76 0.57 0.40
q05 0.32 1.76 1.05 0.78 0.50
q06 1.17 1.76 1.17 0.89 0.60
q07 0.76 1.76 0.30 0.20 0.70
q08 0.49 1.76 0.48 0.30 0.80
q09 0.10 1.76 0.69 0.49 0.90
ql0 0.10 1.76 0.24 0.15 -

qll 0.09 1.76 0.58 0.40 -
ql2 0.09 1.76 1.28 1.00 -
ql3 0.09 1.76 - - -
ql4 1.76 1.76 - - -
ql5 2.15 1.47 - - -

Table A.3: Bitrate and scaling ratio results of experiment 3.
MPEG V-PCC MPEG G-PCC FRPC
Bitrate (bits/point) Scaling ratio | Bitrate (bits/point) Scaling ratio | Scaling ratio

q01 0.09 1.78377 0.05 0.0166489 0.0999753
q02 0.09 1.78377 0.12 0.0665954 0.199992
q03 0.09 1.78377 0.23 0.146962 0.299967
q04 0.09 1.78377 0.29 0.196539 0.399984
q05 0.10 1.78377 0.40 0.258489 0.5
q06 0.11 1.78377 0.49 0.300223 0.599975
q07 0.13 1.78377 0.58 0.40023 0.699992
q08 0.17 1.78377 0.69 0.486969 0.799967
q09 0.22 1.78377 0.76 0.569144 0.899984
ql0 0.32 1.78377 1.01 0.774973 -
qll 0.49 1.78377 1.12 0.881608 -
ql2 0.74 1.78377 1.27 1.00 -
ql3 1.11 1.78377 - - -
ql4 1.76 1.78377 - - -
qls 2.18 1.47217 - - -

Table A.4: Results of MPEG V-PCC of experiment 1

P2Point P2Plane P2Point P2Plane
MSE PSNR based on MSE (dB) | MSE  PSNR based on MSE (dB) | Hausdorff PSNR based on Hausdorff (dB) | Hausdorff PSNR based on Hausdorff (dB)

qO01 | 33.09 -2.64 30.89 -2.30 48226 -34.28 44246 -33.91
q02 | 28.50 -1.99 26.53 -1.68 47195 -34.19 44699 -33.95
q03 | 27.31 -1.81 25.42 -1.50 48349 -34.29 46655 -34.14
q04 | 24.30 -1.30 22.62 -0.99 48208 -34.28 44740 -33.95
q05 | 23.50 -1.16 21.96 -0.86 48466 -34.30 45135 -33.99
q06 | 22.10 -0.89 20.66 -0.60 47963 -34.26 45716 -34.05
q07 | 21.59 -0.79 20.23 -0.51 48123 -34.27 45095 -33.99
q08 | 22.29 -0.93 20.95 -0.66 48113 -34.27 45453 -34.02
q09 | 21.76 -0.82 20.50 -0.56 47096 -34.18 44467 -33.93
ql0 | 21.84 -0.84 20.57 -0.58 46393 -34.11 44710 -33.95
qll | 22.20 -0.91 20.90 -0.65 48077 -34.27 45361 -34.01
ql2 | 22.21 -0.91 20.94 -0.66 48077 -34.27 46124 -34.09
ql3 | 22.20 -0.91 20.91 -0.65 48435 -34.30 45742 -34.05
ql4 | 22.21 -0.91 20.95 -0.66 46820 -34.15 45088 -33.99
ql5 | 0.00 inf 0.00 inf 0 inf 0 inf

63



A. Compression results

Table A.5: Results of MPEG G-PCC of experiment 1

P2Point P2Plane P2Point P2Plane
MSE PSNR based on MSE (dB) | MSE PSNR based on MSE (dB) | Hausdorff PSNR based on Hausdorff (dB) | Hausdorff PSNR based on Hausdorff (dB)
q01 | 16.47 0.38 8.55 3.23 48.00 -4.26 47.87 -4.25
q02 | 4.50 6.02 1.87 9.82 12.00 1.76 12.00 1.76
q03 | 1.83 9.92 0.68 14.23 5.30 5.28 5.30 5.28
q04 | 1.32 11.36 0.46 15.92 3.92 6.62 3.92 6.62
q05 | 1.50 10.79 0.45 16.02 3.00 7.78 3.00 7.78
q06 | 0.80 13.54 0.26 18.46 2.37 8.80 2.37 8.80
q07 | 0.66 14.36 0.21 19.30 1.92 9.72 1.92 9.72
q08 | 0.53 15.28 0.17 20.17 1.59 10.55 1.59 10.55
q09 | 0.50 15.56 0.16 20.58 1.30 11.30 1.30 11.30
ql0 | 0.34 17.29 0.11 22.17 0.98 12.64 0.98 12.64
qll | 0.29 17.96 0.10 2272 0.85 13.24 0.85 13.24
ql2 | 0.00 inf 0.00 inf 0.00 inf 0.00 inf
Table A.6: Results of FRPC of experiment 1
P2Point P2Plane P2Point P2Plane
MSE PSNR based on MSE (dB) | MSE PSNR based on MSE (dB) | Hausdorff PSNR based on Hausdorff (dB) | Hausdorff PSNR based on Hausdorff (dB)
q01 | 2.84 8.01 0.23 18.86 86 -6.79 2222 -0.92
q02 | 147 10.88 0.19 19.83 44 -3.88 15.48 0.66
q03 | 0.99 12.59 0.15 20.70 29 -2.07 11.88 1.80
q04 | 0.73 13.90 0.12 21.64 20 -0.46 10.24 2.45
q05 | 0.56 15.08 0.10 2271 20 -0.46 10.24 245
q06 | 0.42 16.28 0.07 24.00 10 2.55 5.85 4.88
q07 | 0.31 17.67 0.05 25.62 10 2.55 5.85 4.88
q08 | 0.20 19.50 0.03 27.85 10 2.55 5.85 4.88
q09 | 0.10 22.54 0.01 31.62 6 4.77 2.90 7.93
q10 | 0.00 inf 0.00 inf 0.00 inf 0.00 inf
Table A.7: Results of MPEG V-PCC of experiment 2
P2Point P2Plane P2Point P2Plane
MSE PSNR based on MSE (dB) | MSE  PSNR based on MSE (dB) | Hausdorff PSNR based on Hausdorff (dB) | Hausdorff PSNR based on Hausdorff (dB)
q01 | 0.949903 8.0047 0.4931 10.852 21 -5.441 16.772 -4.464
q02 | 0.596592 10.025 0.3091 12.23 22 -5.643 17.162 -4.564
q03 | 0.456115 11.191 0.2839 13.25 24 -6.021 24 -6.021
q04 | 0.380162 11.982 0.2273 14.215 19 -5.006 16.772 -4.464
q05 | 0.345572 12.396 0.203 14.707 21 -5.441 20.152 -5.262
q06 | 0.277583 13.348 0.1615 15.7 21 -5.441 20.152 -5.262
q07 | 0.296828 13.057 0.1711 15.448 21 -5.441 20.152 -5.262
q08 | 0.311893 12.842 0.1788 15.257 21 -5.441 20.152 -5.262
q09 | 1.88486 5.0287 1.0971 7.3791 65 -10.30 58.117 -9.862
ql0 | 2.56844 3.6848 1.278 6.7161 65 -10.30 58.117 -9.862
qll | 4.40028 1.3467 2233 4.2925 100 -12.22 90.808 -11.8
ql2 | 4.08904 1.6653 2.3089 4.0914 85 -11.51 75.98 -11.03
ql3 | 6.70736 -0.484 4.1439 1.6074 121 -13.05 118.52 -12.96
ql4 | 026719 13.513 0.158 15.796 21 -5.441 20.152 -5.262
ql5 0.00 inf 0.00 inf 0 inf 0 inf
Table A.8: Results of MPEG G-PCC of experiment 2
P2Point P2Plane P2Point P2Plane
MSE  PSNR based on MSE (dB) MSE PSNR based on MSE (dB) | Hausdorff PSNR based on Hausdorff (dB) | Hausdorff PSNR based on Hausdorff (dB)
q01 | 15.341 -4.07706 6.51663 -0.308718 48 -9.0309 46.7145 -8.913
q02 | 4.675 1.08369 1.84561 5.12011 12 -3.0103 11.6694 -2.889
q03 | 1.5569 5.85888 0.491231 10.8687 3 3.0103 2.99341 3.0199
q04 | 0.5194 10.6261 0.171261 15.4449 1.30341 6.53186 1.30915 6.6116
q05 | 0.3131 12.8249 0.0868314 18.3947 0.979637 7.87086 0.953299 7.9892
q06 | 0.2901 13.1561 0.0982125 17.8598 0.853307 8.47046 0.748182 9.0414
q07 | 1.298 6.64872 0.413574 11.616 3.91848 1.85034 3.43099 24273
q08 | 0.7852 8.8316 0.240134 13.977 2.37052 4.03308 2.04249 4.6799
q09 | 0.5372 10.4798 0.175212 15.3459 1.58687 5.77609 1.43501 6.213
q10 | 1.8701 5.06286 0.696284 9.30365 5.30341 0.511459 5.19034 0.6296
qll | 0.6732 9.49987 0.22304 14.2977 1.91994 4.94863 1.86852 5.0665
ql2 0.00 inf 0.00 inf 0.00 inf 0.00 inf
Table A.9: Results of FRPC of experiment 2
P2Point P2Plane P2Point P2Plane
MSE PSNR based on MSE (dB) | MSE  PSNR based on MSE (dB) | Hausdorff PSNR based on Hausdorff (dB) | Hausdorff PSNR based on Hausdorff (dB)
q01 | 3.099 2.86924 0.2289 14.1856 41 -8.346 4.8801 0.897217
q02 | 1.5959 5.75137 0.1618 15.6922 20 -5.229 3.9449 1.8212
q03 | 1.0569 7.54139 0.1203 16.9792 12 -3.01 3.1951 2.73672
q04 | 0.7711 8.91048 0.0915 18.166 10 -2.218 3.274 2.63073
q05 | 0.5786 10.158 0.0675 19.4886 9 -1.761 1.7842 5.26707
q06 | 0.4322 11.4244 0.047 21.0593 8 -1.249 1.3066 6.52154
q07 | 0.3096 12.8736 0.0291 23.1429 4 1.7609 1.3011 6.63831
q08 | 0.202 14.7273 0.0161 25.7036 4 1.7609 0.9986 7.78772
q09 | 0.1001 17.7767 0.0057 30.2403 2 4.7712 0.9771 7.88213
ql0 0.00 inf 0.00 inf 0.00 inf 0.00 inf
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Table A.10: Results of MPEG V-PCC of experiment 3

P2Point P2Plane P2Point P2Plane
MSE PSNR based on MSE (dB) | MSE PSNR based on MSE (dB) | Hausdorff PSNR based on Hausdorff (dB) | Hausdorff PSNR based on Hausdorff (dB)
q01 | 3.15 -0.21 1.74 2.36 131.00 -16.40 121.40 -16.07
q02 | 2.78 0.30 1.53 2.94 146.00 -16.87 145.61 -16.86
q03 | 324 -0.30 1.73 239 100.00 -15.23 5227 -12.41
q04 | 2.12 1.51 1.14 4.19 44.00 -11.66 37.28 -10.94
q05 | 1.85 2.11 1.13 4.26 25.00 -9.21 18.44 -7.89
q06 | 0.90 523 0.47 8.01 20.00 -8.24 16.00 =727
q07 | 0.56 7.29 0.30 9.27 21.00 -8.45 20.59 -8.37
q08 | 045 8.22 0.27 10.44 18.00 -7.78 16.43 -7.38
q09 | 0.41 8.69 0.24 10.95 18.00 -7.78 12.00 -6.02
ql0 | 037 9.07 0.22 11.39 18.00 -1.78 12.00 -6.02
qll | 0.34 9.42 0.20 11.87 18.00 =778 12.00 -6.02
ql2 | 032 9.69 0.18 12.12 18.00 -1.78 12.00 -6.02
q13 | 031 9.92 0.18 1231 18.00 -1.78 12.00 -6.02
ql4 | 0.29 10.14 0.17 12.47 18.00 -7.78 12.00 -6.02
ql5 | 0.00 inf 0.00 inf 0.00 inf 0.00 inf
Table A.11: Results of MPEG G-PCC of experiment 3
P2Point P2Plane P2Point P2Plane
MSE  PSNR based on MSE (dB) MSE PSNR based on MSE (dB) | Hausdorff PSNR based on Hausdorff (dB) | Hausdorff PSNR based on Hausdorff (dB)
q01 | 15.373 -7.09625 6.43349 -3.31325 48 -12.0412 46.3926 -11.89
q02 | 4.644 -1.89767 1.82109 2.1679 12 -6.0206 11.7782 -5.94
q03 | 1.8767 2.03728 0.690197 6.38148 5.30341 -2.49884 4.47053 -1.732
q04 | 1.3772 3.38116 0.474993 8.00434 3.91848 -1.15996 3.77658 -1
q05 | 1.5592 2.84221 0.481753 7.94297 3 0 3 HitHHHE
q06 | 0.8331 5.56405 0.290416 10.141 2.37046 1.02288 2.0258 1.7052
q07 | 0.6756 6.47429 0.224286 11.2632 1.91994 1.93833 1.79226 22372
q08 | 0.5484 7.3803 0.183707 12.1299 1.58683 2.76591 1.30333 3.5218
q09 | 0.516 7.64476 0.169385 12.4825 1.30341 3.52156 1.31768 3.5731
q10 | 0.3137 9.80572 0.087152 15.3684 0.979637 4.86056 0.914411 5.1598
qll | 0.2781 10.3291 0.0760619 15.9595 0.853307 5.46016 0.779832 5.8512
ql2 0.00 inf 0.00 inf 0.00 inf 0.00 inf
Table A.12: Results of FRPC of experiment 3
P2Point P2Plane P2Point P2Plane
MSE PSNR based on MSE (dB) | MSE  PSNR based on MSE (dB) | Hausdorff PSNR based on Hausdorff (dB) | Hausdorff PSNR based on Hausdorff (dB)
q01 | 2.9634 0.05335 0.2243 11.2627 33 -10.41 8.0542 -4.28903
q02 | 1.5523 2.8616 0.1576 12.7951 17 -7.533 2.8742 0.18603
q03 | 1.0421 4.59231 0.1203 13.9679 13 -6.368 2.307 1.14069
q04 | 0.7608 5.95856 0.0931 15.0829 10 -5.229 1.7762 2.2764
q05 | 0.5737 7.18462 0.0712 16.2455 8 -4.26 1.7688 2.29435
q06 | 0.4309 8.42748 0.0512 17.678 5 -2.218 1.623 2.66799
q07 | 0.3095 9.86455 0.0354 19.2836 5 -2.218 1.2211 3.90374
q08 | 0.2025 11.7079 0.0204 21.6643 4 -1.249 1 4.77122
q09 | 0.1001 14.7651 0.0079 25.7989 2 1.7609 0.9546 4.973
ql0 0.00 inf 0.00 inf 0.00 inf 0.00 inf
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Appendix B

Segmentation results
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B. Segmentation results
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B. Segmentation results
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B. Segmentation results
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B. Segmentation results
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B. Segmentation results
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B. Segmentation results
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Figure B.3: PNP results.
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B. Segmentation results
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B. Segmentation results
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B. Segmentation results
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B. Segmentation results

Table B.2: Results of the K-Medoids algorithm

Cluster 1 Cluster 2 Cluster 3 Cluster 4

C PNP AVD PAVD DCH DC C AVD PAVD DCH DC C AVD PAVD DCH DC C PNP AVD PAVD DCH DC

Original (782,573,262) 0 0 0 0 0 | (1946,586,244) 0 0 0 0 (119,465,236) 0 0 0 0 | (1409,641,255) 0O 0 0 0 0
q01 | (844,595237) 98 7381476 12 1371564 70 | (1820,595,277) 23328572 30 1851604 131 | (260,403,213) 98 23817450 63 1442814 156 | (1380,523,293) 98 538663 1 1287645 127
q02 | (856,407,249) 93 775314 1 1294015 182 | (1916,635,297) 22170577 29 1748607 78 | (280,503,301) 93 979381 3 1365976 178 | (1304,499,297) 93 1588807 3 1216690 182
q03 | (713,622,264) 84 20905748 33 1175530 84 | (1900,558,245) 18918314 24 1584001 54 (177,414317) 84 16799335 44 1232188 112 | (1273,550,114) 84 602120 1 1101343 216

q04 | (733,417,238) 78 17362241 27 1093411 165 | (1956,460,268) 758759 1 1480410 128 | (169,540,192) 79 885833 2 1156642 100 | (1350,625,261) 78 385967 1 1027903 61
q05 | (672,539,149) 72 13799155 22 1009141 161 | (1878,497,239) 17042859 22 1361337 112 | (270,601,267) 72 224713 1 1062697 206 | (1264,495,261) 72 747367 2 946634 206
MPEG G-PCC q06 | (738,536,266) 67 1729668 3 928916 57 | (1883,407,222) 527281 1 1233076 191 | (281,408,256) 64 18463002 49 940574 173 | (1328,577,129) 65 216104 0 861507 162
q07 | (681,537,242) 58 18560580 29 815925 109 | (1826,640,291) 33196210 43 1068843 139 | (265,393,219) 57 17039557 45 835523 163 | (1222,525,205) 59 5058136 11 779101 226

q08 | (689,492,254) 49 42542955 66 687098 124 | (1934,580,257) 428874 1 932881 18 (224,573,204) 50 553897 1 727011 154 | (1413,749,280) 49 95654 0 647411 111
q09 | (828,434,250) 41 216169 0 569136 147 | (1793,608,250) 33510279 43 728639 154 | (215424,313) 41 210401 1 591930 129 | (1223,526,246) 43 5417970 12 568392 219

ql0 | (727,499,255) 21 15211701 24 297210 92 | (1915,387,282) 212727 0 402244 205 | (260,604,272) 22 480791 1 307995 201 | (1433,482,168) 21 72431 0 278269 183

qll | (852,591,223) 14 1471251 2 193517 82 | (1911,447,267) 152827 0 232148 145 | (257,511,241) 8 18255426 48 209661 145 | (1333,677,152) 11 88098 0 217595 133
ql2 | (680,552,233) 1 762874 1 72982 108 | (1878,404,129) 0 0 182241 226 | (290,442,308) 1 14001235 37 162911 187 | (1303,612,254) 0 0 0 154469 110
q01 | (679,571,222) 52 69285838 108 413218 111 | (1870,444,248) 38027980 49 401631 161 | (198,433,321) 47 13183341 35 376639 120 | (1389,682,166) 52 57247797 125 341447 100

q02 | (860,598,172) 51 50753809 79 536903 122 | (1951,610,282) 20272797 26 483981 45 (234,624,238) 48 23004441 61 262520 196 | (1296,555,271) 52 58834409 129 341485 143

q03 | (775.430,214) 51 53782322 84 523430 151 | (1789,606,231) 56681617 73 503369 159 | (271,567,306) 47 17018313 45 306931 196 | (1353,413,237) 41 61361440 134 338032 235
q04 | (738,527,261) 51 60502642 94 474102 64 | (1849,458,241) 14446684 19 433512 161 | (165,478,349) 48 9608060 25 307064 123 | (1411,447,221) 52 51144840 112 291320 197
q05 | (721,379,233) 52 46675143 73 440921 205 | (1910,468,242) 32157871 41 365080 123 | (219,494,343) 46 10407507 27 299872 149 | (1289,381,246) 51 57775303 126 343590 286

q06 | (675,515,246) 54 61576036 96 481354 123 | (1846,371,236) 51592939 67 355585 237 | (131,580,263) 45 2019485 5 304155 119 | (1339,656,158) 51 48190453 105 281658 121

q07 | (824,390,249) 45 53885600 84 383588 188 | (1975,507,223) 14591155 19 278957 87 (197,503,339) 48 14672601 39 329461 135 | (1251,610,229) 59 51412740 113 320543 163

MPEG V-PCC q08 | (764,568,106) 40 30148819 47 263479 157 | (1961,615,249) 50 20795327 27 344766 33 (257,396,313) 58 25639175 68 324897 172 | (1269,526,108) 52 47818450 105 275043 233
q09 | (850,645,259) 47 49979683 78 322181 99 | (1851,492,241) 50 948741 1 355355 134 | (236,550,355) 52 25609560 68 272355 187 | (1417,532,241) 52 29426415 64 261918 110
q10 | (771,556,264) 50 49191601 77 425677 20 | (1865,608,298) 46 18282487 24 295153 100 | (281,485,281) 49 20209446 53 243155 169 | (1412,514,139) 57 67399940 148 318364 172

ql1 | (707,530,256) 51 55859826 87 411076 87 | (1770,526,177) 50 898026 1 298621 198 | (194,437,311) 48 9336103 25 246128 110 | (1421,556,217) 52 40870010 89 322885 94
ql2 | (790,632,271) 49 39004908 61 360366 60 | (1926,561,226) 50 23121931 30 274242 37 | (264,563,267) 50 22050595 58 257588 178 | (1287,521,99) 52 44379753 97 321587 232
ql3 | (685,661,171) 53 52243417 82 524807 159 | (1892,494,243) 50 34506920 45 385899 107 | (114,507,235) 46 8643051 23 267692 42 | (1335,727,265) 52 43293544 95 281491 114

ql4 | (1759,400,173) 82 70609210 110 236691 996 | (824,552,233) 30 78997393 102 351952 1123 | (282,377,248) 60 27081490 71 287670 186 | (1831,897,289) 33 11328573 25 126376 495

ql5 | (737,517,256) 42 0 0 271951 72 | (1992,478,209) 39 0 0 232629 122 | (216,531,361) 41 0 0 292400 171 | (1389,620,198) 39 0 0 182927 64
q01 | (761,440,154) 90 17116232 27 1254043 173 | (1825,566,235) 90 14930804 19 1697380 123 | (227,611,233) 90 1967006 5 1327966 182 | (1401,541,145) 90 610559 1 1178963 149

q02 | (733,443,253) 80 38675407 60 1114954 139 | (1919.430,286) 80 33359867 43 1514692 164 | (173,470,341) 80 106420 0 1179053 118 | (1387,724,274) 80 23115111 51 1043416 88
q03 | (705,483,258) 70 14326810 22 978140 119 | (1962,594,164) 70 139154 0 1318413 82 (194,536,364) 70 404548 1 1034060 164 | (1401,494,211) 70 22048850 48 914873 154

q04 | (762,516,257) 60 109915 0 840879 61 | (1794,525,215) 60 72222 0 1129529 166 | (298,463,343) 60 38316 0 884737 209 | (1343,658,260) 60 163590 0 783352 68
q05 | (835,514,245) 50 82364 0 701766 81 | (1955,647,275) 50 50032 0 940713 69 (158,403,327) 50 29912 0 737422 117 | (1288,593,253) 50 147476 0 652104 130

FRPC q06 | (742,540,267) 40 74086 0 562541 52 | (1778.478,225) 40 38272 0 751685 201 | (259,521,220) 40 22941 0 590710 152 | (1408,521,226) 40 91953 0 520460 123
q07 | (702,619,238) 35 20878480 33 488979 95 | (1991.484.211) 30 20246 0 562294 116 | (286,373,250) 26 21098279 56 372080 191 | (1309,675,248) 30 75428 0 390842 106

q08 | (771,526,261) 22 958221 2 308342 48 | (1886,430,132) 20 11055 0 374568 201 | (285,429,266) 18 16939391 45 260815 172 | (1395,556,302) 20 65315 0 259134 98
q09 | (804,331,188) 11 186105 0 154238 254 | (1909,511,232) 9 20981047 27 324471 84 (271,423,244) 10 410 0 148904 158 | (1240,451,264) 10 27797238 61 182288 254
ql0 | (831,608,257) 11 11262601 18 157481 60 | (1893,520,227) 0 0 0 0 86 (293,401,302) 10 23160225 61 155522 197 | (1367,582,151) 0 0 0 0 127
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B. Segmentation results

Table B.4: Results of the Mean Shift algorithm

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
C AVD PAVD DCH DC C PNP AVD PAVD DCH DC C PNP AVD PAVD DCH DC C PNP AVD PAVD DCH DC C PNP AVD PAVD DCH DC
Original (771,614,232) 0 0 0.00 0 0 | (204,544.277) 0 0 0.00 0 0 | (1895,676,232) 0 0 0.00 0 0 | (1335,587.211) 0 0 0.00 0 0 0 0 0 0 0 0
q01 | (772,613,233) 98 1970375 3.08 1369342 1 | (205559,278) 98 11460330 30.22 1445020 14 | (1896,679,234) 98 2976999  3.84 1851760 4 | (1335583,212) 98 2041902 447 1287160 4 0 0 0 0 0 0
q02 | (771,615,233) 93 775314 121 1294015 1 | (205,552,278) 93 979381 258 1365976 7 | (1896,680,233) 93 1446151 1.87 1749359 4 | (1335588,211) 93 968547 2,12 1215964 1 0 0 0 0 0 0
q03 | (771,613,232) 84 541899 0.85 1173093 1 | (204,549.277) 84 590236 1.56 1234749 4 | (1896,678,233) 84 851242 1.10 1584578 3 | (1335,588211) 84 410249 090 1100734 2 0 0 0 0 0 0
q04 | (771,613232) 79 576630 0.90 1096864 0 | (204,549.277) 79 473647 1.25 1153188 5 (1896,678,233) 78 758759 098 1480410 2 | (1335,588211) 78 385967 0.84 1027903 2 0 0 0 0 0 0
q05 | (771,614232) 72 355192 0.55 1010204 1 (205,548,278) 72 9413632 24.83 1059057 3 (1896,678,233) 72 480823 0.62 1362115 3 (1336,590,211) 72 233091 0.51 945872 3 0 0 0 0 0 0
MPEG G-PCC q06 | (770,613,232) 65 434820 0.68 912708 0 | (204,547277) 65 288969 076 956782 2 | (1896,678232) 65 527281 0.68 1233076 2 | (1335,589,210) 65 216104 0.47 861507 2 0 0 0 0 0 0
q07 | (771,613,232) 58 343702 0.54 806200 0 | (204,548277) 58 247639 0.65 845248 3 | (1895,677,232) 58 504953 0.65 1093255 1 | (1336,590,210) 58 264816 0.58 754745 3 0 0 0 0 0 0
q08 | (771,613,232) 50 331783 0.52 691785 0 | (204,546,277) 49 231695 0.61 722603 2 | (1895,676,232) 49 428874 0.55 932881 0 | (1335,587.211) 49 156898 0.34 647039 1 0 0 0 0 0 0
q09 | (771,614232) 41 216169 0.34 569136 1 (204,547,277) 41 210401 0.55 591930 2 | (1895,677,232) 41 343950 0.44 765102 1 (1335,588,211) 41 214327 0.47 531094 1 0 0 0 0 0 0
ql0 | (771,613,232) 21 128970 020 302342 0 | (204,545.277) 21 110544 029 302867 1| (1895,675,232) 21 212727 027 402244 1 | (1335588211) 21 72431 0.16 278269 1 0 0 0 0 0 0
qll | (771,614.232) 11 153854 0.24 160156 0 | (204,545277) 11 65223 0.17 209661 1| (1895,676,232) 11 152827 020 232148 0 | (1335588211) 11 88098 0.19 217595 1 0 0 0 0 0 0
ql2 | (771,613,232) 0 0 0.00 113518 0 | (204,543.277) 0 0 0.00 112654 1 (1895,674,231) 0 0 0.00 182241 2 | (1335,586,211) 0 0 0.00 154469 1 0 0 0 0 0 0
qO01 | (771,616,234) 51 81184473 12673 513850 3 (204,540,277) 29 16240561  42.83 432421 5 (1895,678,233) 50 29435194 37.96 457084 2 | (1334,581,211) 52 57887335 126.71 344816 6 | (209,383.280) 0 0 0.00 0 0
q02 | (771,615234) 51 59085171 92.24 599804 3 (204,541,277) 8 6878743 18.14 176685 3 (1895,678,233) 50 28786937 37.13 484013 2 | (1334,582,211) 53 61484349 134.58 281785 5 | (209,382,280) 0 0 0.00 0 0
q03 | (771,616,234) 51 59300398 9257 514406 3 | (204,541,277) 11 1585096  4.18 190186 3 | (1895,678,233) 50 30248111 39.01 487542 2 | (I1334,582,211) 52 52294949 11447 271874 5 | (209,383,280) 0 0 0.00 0 0
q04 | (771,615234) 51 56747418 8859 426489 3 | (204541277) 11 2276917  6.00 199394 3 | (1895678,233) 50 27009674 34.83 4542890 2 | (1334,582,211) 52 52100550 114.04 325767 5 | (209,382,280) 0 0 0.00 0 0
q05 | (771,615,234) 51 62636503 97.78 524779 3 (204,541,277) 10 9454189  24.93 191158 3 (1895,678,233) 50 31796664 41.01 362959 2 | (1334,581,211) 52 46132792 10098 345246 5 | (209,382,280) 0 0 0.00 0 0
q06 | (771,615234) 51 51916421  81.04 514486 3 (204,541,277) 41 19855775 52.36 613579 3 (1895,677,233) 50 16439204 21.20 425270 2 | (1334,582,211) 52 43965167 96.24 275622 5 | (209,382,280) 0 0 0.00 0 0
q07 | (771,615,234) 51 56801104 88.67 537322 3 | (204,541,277) 55 23302265 6145 805550 3 | (1895,678,233) 50 4587181 592 353803 2 | (I1334,582,211) 52 45196025 9893 281865 5 | (209,383,280) 0 0 0.00 0 0
MPEG V-PCC  q08 | (771,615,234) 51 47306198 73.85 360755 3 | (204541,277) 12 2740225 7.23 168269 3 | (1895678,233) 50 7531506  9.71 ~ 357220 2 | (1334,582,211) 52 48633470 106.45 331476 5 | (209,382,280) 0 0 0.00 0 0
q09 | (771,615234) 51 43466683 67.85 452797 3 (204,542,277) 17 12727042 33.56 256333 3 (1895,678,233) 50 948741 122 355355 2 | (1334,582,211) 52 51549035 112.84 318367 5 | (209,382,280) 0 0 0.00 0 0
ql0 | (771,615234) 51 48068739 75.04 418553 3 (204,542,277) 55 23222096 61.24 805670 3 (1895,678,233) 50 970343 1.25 355722 2 | (1334,582,211) 52 44710265 97.87 282414 5 | (209,383.280) 0 0 0.00 0 0
qll | (771,615,234) 51 61076473 9534 472357 3 | (204,542,277) 28 16915350 44.61 420002 3 | (1895,678,233) 50 898026 1.16 298621 2 | (1334,582211) 52 42172626 9231 325509 5 | (209,382,280) 0 0 0.00 0 0
ql2 | (771,615234) 51 51606726  80.56 454691 3| (204,542277) 11 3180145 839 168529 3 | (1895,678,233) 50 956431 123 250187 2 | (1334,582,211) 52 42917647 93.94 281767 5 | (209,382,280) O 0 0.00 0 0
ql3 | (771,615,234) 51 55250272 86.25 535488 3 (204,542,277) 18 13432631 3543 271173 3 (1895,678,233) 50 945772 1.22 283254 2 | (1334,582.211) 52 41273671 90.34 197766 5 | (209,382,280) 0 0 0.00 0 0
ql4 | (771,615234) 53 61052360 95.31 530656 3 (204,542,277) 12 2769802 7.30 168672 3 (1895,678,233) 50 973840 1.26 282387 2 | (1334,582,211) 52 42558712 93.16 212398 5 | (209,382,280) 0 0 0.00 0 0
ql5 | (771,615,232) 42 0 0.00 271951 2 | (206,465279) 41 0 0.00 292400 80 | (1893,663,228) 39 0 0.00 232629 13 | (1333,579,211) 39 0 0.00 182927 8 0 0 0 0 0 0
q01 | (770,612,231) 90 314370 049 1256030 2 | (205,547,277) 90 225154 059 1325979 2 | (1896,678233) 90 339909 044 1697475 3 [ (1335,589,211) 90 443645 097 1178936 3 0 0 0 0 0 0
q02 | (770,612,232) 80 197730 031 1118252 2 | (205,549,277) 80 106420 028 1179053 4 | (1896,679,233) 80 183259 024 1507806 4 | (1335590,211) 80 266295 0.58 1046883 3 0 0 0 0 0 0
q03 | (770,613,232) 70 141963 0.22 979453 1 (204,548,277) 70 65203 0.17 1032747 4 | (1896,679,233) 70 138991 0.18 1318401 3 (1335,589.211) 70 232254 0.51 914898 3 0 0 0 0 0 0
q04 | (771,613,232) 60 109915 0.17 840879 0 | (204,549.277) 60 38316 0.10 884737 4 | (1896,679,233) 60 72222 0.09 1129529 4 | (1335,589.211) 60 163590 0.36 783352 2 0 0 0 0 0 0
q05 | (771,613,232) 50 15758960 24.60 697898 1| (204,549,277) 50 739942 195 741289 4 | (1896,679,233) 50 50032 006 940713 4 | (1335,589,211) 50 147476 032 652104 3 0 0 0 0 0 0
FRPC q06 | (770,613,232) 40 74086 0.12 562541 1| (204,548,277) 40 22941 006 590710 4 | (1896,679,233) 40 38272 005 751685 4 | (1335590211) 40 91953 020 520460 3 0 0 0 0 0 0
q07 | (770,613,232) 30 34314 0.05 423395 1| (204,548,277) 30 7777 0.02 443575 4 | (1896,679,233) 30 20246 0.03 562294 3 | (1335589,.211) 30 75428 0.17 390842 3 0 0 0 0 0 0
q08 | (771,613,232) 20 11934 0.02 283946 0 | (204,547.277) 20 4494 0.01 296128 3 (1896,678,233) 20 11055 0.01 374568 3 (1335,589.211) 20 65315 0.14 259134 2 0 0 0 0 0 0
q09 | (770,613,232) 10 2672 0.00 143750 0 | (204,547,277) 10 410 0.00 148904 2 | (1895,677,233) 10 2193 0.00 186630 2 | (1335588211) 10 32844 0.07 127473 2 0 0 0 0 0 0
ql0 | (771,614,232) 0 0 0.00 0 0 | (204544277) 0 0 0.00 0 0 | (1895674,232) 0 0 0.00 0 1 | (1335587.211) 0 0 0.00 0 0 0 0 0 0 0 0
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