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Resumo

As Perturbações do Espetro do Autismo (PEA) são uma desordem do neurodesen-

volvimento, caracterizadas, entre outros sintomas, por déficits no comportamento

social, como a comunicação e a interação. Estes sintomas podem estar associados a

falhas na compreensão e uso de linguagem corporal e gestos, e com dificuldades em

fazer e manter contacto visual e seguir pistas visuais.

Devido à sua heterogeneidade de sintomas e aos seus diferentes ńıveis de mani-

festação, o diagnóstico das PEA torna-se muito desafiante e subjetivo, requerendo

sempre a presença de um cĺınico com treino na área e de uma equipa interdisci-

plinar, responsável por avaliar tanto o desenvolvimento como o comportamento do

indiv́ıduo.

Com os avanços da tecnologia, têm sido usadas novas ferramentas no estudo das

PEA. Um destes exemplos são os eye trackers, usados para estudar e compreender o

comportamento do olhar, do qual está provado existirem diferenças entre indiv́ıduos

com Desenvolvimento T́ıpico (DT) e indiv́ıduos com PEA. Entre outras diferenças

no olhar, a população autista tem tendência a realizar mais sacadas, fixações mais

longas e menos fixações na cara. Para além disso, apresenta também falhas em

fenómenos de atenção conjunta.

Neste projeto, estas caracteŕısticas foram calculadas a partir dos dados recolhidos

durante experimentos de realidade virtual, com dois dispositivos de eyetracking, que

diferiam no seu ńıvel de imersividade, o RED (ecrã com eye tracker) e os Oculus

Rift (óculos de eyetracking).

Para analisar e treinar os algoritmos com os dados obtidos, utilizámos técnicas de

Machine Learning (ML). Isto permitiu-nos, não só, perceber se estas caracteŕısticas

são ou não capazes de distinguir as duas classes de indiv́ıduos (PEA e DT), mas

também se existem diferenças significativas na aquisição com diferentes dispositivos.
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Abstract

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized,

among others by deficits in social behaviour, like communication and interaction.

These symptoms can be associated with impairments in understanding and using

body language and gestures, in making eye contact and in following gaze cues.

Due to its heterogeneity of symptoms and different levels of manifestation, the diag-

nostic of ASD becomes very challenging and subjective, and requires the presence of

a trained clinician, and an associated interdisciplinary team, in charge of evaluating

both development and behaviour.

With technology advances, different tools have been used in the study of ASD. One

of these examples is eye trackers, used to study and understand gaze behaviour,

which is proved to show differences between Typically Developing (TD) and ASD

individuals. Among other gaze differences, the autistic population show more sac-

cadic movements, longer fixations, lesser fixations in faces and impairments in Joint

Attention (JA) phenomena.

In this project we calculated these features from the data obtained from virtual

reality experiments with two eyetracking devices, which differ on their levels of

immersivity, RED (screen-based eye tracker) and Oculus Rift (eye tracking glasses).

We used Machine Learning (ML) techniques to analyse and train the algorithms

with the obtained data. This allowed us, not only to understand if these features

were able to distinguish between the two classes of individuals (ASD and TD), but

also if there was significant differences in the acquisition with different setups.

Keywords: Autism Spectrum Disorder (ASD), eye-tracking, Machine Learning

(ML)
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Introduction

Autism Spectrum Disorder (ASD), its definition, symptoms and causes, have been

largely debated since its discovery, in the early 40s [1]. Its current definition can

be found, in the Diagnostic and Statistical Manual of Mental Disorders (DSM-V)

by the American Psychiatric Association [2]. Many theories are still discussed, con-

cerning the variety of symptoms that are believed to be a part of this heterogeneous

syndrome [3]. Those are included in a wide range of manifestations, including com-

munication, social cognition deficits and repetitive behaviour [2]. Despite all the

evolution in the understanding of this spectrum there is still a lot of ground to

break, in particular from the point of view of eyetracking technologies, which brings

us to the work of Klin and his studies with visual fixation patterns in autistic in-

dividuals, using eye tracking data [4][5] or the work of Wall, who applies Machine

Learning to ”shorten observation-based screening and diagnosis of autism” [6]. Both

of their works, and several others, make use of new tools and technologies, that can

be useful when it comes to diagnose or understand neurodevelopmental disorders.

1.1 Contextualization

ASD is a neurodevelopmental disorder characterized by deficits in social behaviour,

which symptoms are usually difficul to detect before 36 months of age, and with no

certain cause nor cure, even though some treatments can improve symptoms and

ability to function [2]. Diagnosing this pathology can be challenging, since it takes

the presence of a trained clinician, and an associated interdisciplinary team, respon-

sible to evaluate both development and behaviour in a subjective way [3]. One of the

symptoms that can characterize ASD, is deficits in communication and interaction,

which can be associated with difficulties in making eye contact and an impairment

in understanding and using body language and gestures [2]. Considering this we

can introduce the importance of human eyes as mean to express our motives and

1



1. Introduction

interests, and to give information about the attentional focus of a social interaction

partner. They can also help us connect with other people and sometimes under-

stand the course of their actions [7], playing an important role in our daily lives.

According to Baron Cohen one of the core impairments in ASD is Gaze-Monitoring,

which is the ability to look to the same direction as the adult [8] and Joint Attention

behavior, which includes not only gaze-monitoring but also pointing or showing, in

order to direct someone’s attention towards an object or an event [9][10][11].

With this information, it is important to investigate how individuals with ASD show

social behaviour differences, when compared to typically development subjects. By

making use of virtual reality experiments, that can mimic real life situations, we can

acquire eye tracking data, which enables the quantification of eye gaze behaviour,

and obtain and analyse features that could possible work as a biomarker for ASD.

These tools can potentially also be explored, as biofeedback therapeutic tool in

disorders such ASD [4] and to understand impairments in gaze behaviour.

1.2 Motivation

Due to its prevalence, heterogeneity and lack of precise diagnostic tools, and largely

unknown underlying neurobiology, ASD is a disorder definitely worth being studied.

It is proven that social interaction and JA are impaired in people with ASD. These

two phenomena can be studied and evaluated through eye movements analysis, by

means of eye tracking methodologies.

1.3 Goals

The main goal of this project is to analyse eyetracking data obtained during virtual

reality experiments with people with and without ASD, and identify a potential

biomarker for this pathology. Following this, we can divide the work into 3 main

questions:

• Which features can we obtain from data containing eye positions and their

respective time stamps?

– To answer this question we searched for metrics obtained from eyetracking

data, and which are used to analyse people’s behaviour or intentions.

2



1. Introduction

Also, we investigated eye gaze and joint attention, as an indicator for

differences between participants with and without ASD.

• Is any of those features “good” enough to define a potential biomarker for

ASD?

– Here we tested the presence of features that could be extracted from eye

tracking data, and that could be used to distinguish both classes.

• Can we predict or confirm the disorder, by analysing eyetracking data with a

machine learning approach?

– We used machine learning algorithms to predict the correspondent class

of the eyetracking features, that we could eventually extract from the

data.

1.4 Structure

Starting with this chapter, Chapter 1 - Introduction, the document is organised as

follows: Chapter 2 focus on the background knowledge that supports this work. In

chapter 3 we present the methods used to approach our problem. Then, in chapter

4, we show the obtained results, which are then discussed in chapter 5. Finally, this

document ends with chapter 6, where we present the final conclusions of our work,

with some possibilities for future work.

3
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2

Background Knowledge

2.1 Autism Spectrum Disorder (ASD)

Being an early neurodevelopmental disorder, ASD is manifest during the first years

of life, but is often difficult to diagnose before the 36 months of age [2] and its

symptoms can change during development. It is characterized by deficits in social

communication and interaction, accompanied by restrictive interests and repetitive

behaviours, which can co-occur with other neurodevelopmental disorders [2].

As mentioned before, ASD individuals, among other impairments, have severe diffi-

culties in dealing with the social parts of their lives, which includes understanding

and maintaining relationships, understanding and reciprocating nonverbal commu-

nication, abnormalities in making eye contact, and impairments in understanding

body language or gestures [2]. Despite these symptoms they can not give a viable

diagnosis for ASD, when considered alone[2]. This way it is important to consider

several sources of information, to search for specific parameters that can possibly

give more objective diagnosis criteria. We will add them importance for analysis

purposes.

2.1.1 Prevalence

According to Oliveira et al. [12] and her study about prevalence of ASD in Portugal,

its value is around 0.1% but the current prevalence seems nowadays to be much

larger, which can be seen in figure 2.1.

1% is also the average percentage worldwide, both in children and in adults [2][13],

which means that, 1 in every 100 people has this disorder, making it an important

condition and societal challenge.

5



2. Background Knowledge

Figure 2.1: Number of people with Autism Spectrum Disorder in Portugal, divided
by gender. Retrieved from Our World in Data[13]

2.1.1.1 Variability in Worldwide Prevalence

In figure 2.2 we can observe that, the percentage of individuals with ASD, is higher in

developed countries, like the United States of America or European countries, which

includes Portugal. Nevertheless, this does not necessarily mean that these countries,

have a higher percentage of ASD individuals, could only mean that, there is larger

public awareness, more diagnostic instruments are available so that the disorder goes

unrecognized in underdeveloped countries. It is important to consider that, cultural

differences also mean different norms for social interaction and communication and

different ways of assessing differences in spite of standardization efforts.

2.1.1.2 Gender-Related Prevalence

When it comes to prevalence related to gender, ASD is diagnosed in more males than

females. Epidemiological evidence shows that, ASD is diagnosed four times more

often in males [2]. In figure 2.3, we can see the difference between male and female

individuals, in the autistic population, which confirms the data from the Diagnostic

and Statistical Manual of Mental Disorders.

6



2. Background Knowledge

Figure 2.2: Prevalence of Autism Spectrum Disorder in 2017. Retrieved from Our
World in Data[13]

2.1.2 Causes

Despite not having a known cause, ASD can be associated with some risk factors,

like advanced parental age or low birth weight [2]. The literature relates this disorder

with high heritability, ranging from 37% to above 90%, and, according to the DSM-

V, up to 15% of the cases are associated with a well known mutation in specific

genes, related to the disorder in specific families [2].

2.1.3 Diagnosis

ASD is often not diagnosed before the 36 months of age. In some cases, it can be

diagnosed earlier, if the symptoms are too severe, or after, if they are more subtle

[2]. The first symptoms are associated with lack of social interaction, or with loss

of social and language skills. These symptoms are normally based on information

given by the parents, or other relatives.

7



2. Background Knowledge

Figure 2.3: Number of people with Autism Spectrum Disorder Worldwide, gender-
separated. Retrieved from Our World in Data[13]

2.1.3.1 Diagnostic Tools

ASD diagnosis is mostly based on direct or indirect observation, of the individual

behaviour [2][14]. The most common diagnostic instruments include the Autism

Diagnostic Interview (ADI), the Diagnostic Interview for Social and Communication

Disorders (DISCO), the Autism Diagnostic Observation Schedule (ADOS), and their

variants [14]. Due to the subjectivity of the diagnosis, a trained specialist is always

needed, and a combination of the different tools is recommended [14].

2.2 Visual Attention

The ability to attend to and interpret our surroundings and different stimuli, plays

an important role in our daily lives. Without it, we would not be able to detect

danger, perceive people’s emotions and intentions, or even their actions. But not all

we see reaches awareness, and neither can we focus on many objects simultaneously

[15], although divided attention is viable for a few objects.

Our brains have the ability to select relevant sensory information, and filter the

remaining. This operation refers to ”attention” [16]. Attention may be exogenous,

resulting from stimuli, not necessarily visual, or endogenous, as a mean to express

our interest or curiosity [15] [17]. This concept and its implications represent a

8



2. Background Knowledge

large field of study [18]. Many studies include the relation between visual attention,

human cognitive neuroscience and infant neurodevelopment [19], important in the

study of ASD.

Despite showing development throughout the lifespan, it is during the childhood

and adolescence, that attentional processing has its major changes. Around the 2 or

3 years of age, the attention system starts being highly engaged in cognitive, social

and emotional tasks [20]. In typical development, basic attentional processes may

be a critical foundation for sociocommunicative abilities [21].

Attention can be divided into overt attention and covert attention. The former hap-

pens when a person looks directly to what caught his/her attention, which implies

eye movements. An example of overt attention is joint attention, a non-verbal co-

ordination of attention of two individuals toward a third object or event [22]. On

the other hand, covert attention does not imply eye movement, and therefore not a

direct look [16]. A good example of covert attention is what happens when we are

driving. Our attention is on the road, but if a pedestrian approaches, we perceive

and react without the need to look directly to him/her [16].

2.2.1 Joint Attention

As mentioned in the beginning of this section (section 2.2), Joint Attention (JA) is

a non-verbal coordination of attention of two individuals toward a third object or

event. It is associated with the development of social communication skills [22], and

with the perceiving of people’s intentions [23].

It is normal to attend the location in space that is being looked at by another person.

This JA phenomena appears during the first months of life. In the work of Bayliss et

al., they found that objects that are looked at by other people, have more attention

focus than other objects. They also state that this, underlines the importance of

other people’s relation with objects, in a way that this social interaction, impacts

our own impressions, and our own perceiving of the world [24]. JA is also in the

basis of learning through imitation [25].

Both communication and the perceiving of people’s intentions, are impaired in peo-

ple with ASD. More specifically, they show deficits in JA abilities, which can be

associated with their lack of social interaction skills [10] [11] [25] [26].
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2.2.2 The study of attention in ASD individuals

Attention has been a subject largely studied in individuals with ASD, and gaze met-

rics can be considered markers of this disorder [27][26]. Early attentional dysfunction

in ASD, may be related with atypical development of social communication.

In TD children, basic attentional processes may be highly related with the founda-

tion of sociocommunicative abilities. Therefore, the dysfunction in these processes

in ASD, may be the cause of the atypical development of social communication

[21][28].

Besides this conclusions, it has been shown a preference for objects or other non-

social stimuli over faces, other people’s actions, and speech, in people with ASD

[28][29]. Problems with re-directing attention in these individuals, in both social

and nonsocial domains have also been identified [28].

In 1998 Dawson et al. [30], implemented a social orienting task, with both social and

non-social sounds. They concluded that, children with ASD oriented less frequently

to both stimuli, when compared to the control children. Later, in 2004, Dawson

et al. [31] replicated these findings, revealing impaired social orienting and JA

phenomenon in children with ASD. These results were confirmed with several other

studies, in the following years, and a lot is yet to be understood concerning the

underlying mechanisms [32]. This lack of overt social orienting, is considered one

of the most important and relevant features, when it comes to differentiate TD and

ASD individuals [33][32].

Features with social context have been studied, and the findings suggest that people

living with ASD tend to look less at the eyes, in faces that are expressing emotions,

than TD individuals [34][32] or, at least, they look and perceive them differently

[35].

Some of these studies were made by simply analysing home videotapes of children’s

behaviour, where social attention could be studied in real-life situations [32].

2.3 Eye Tracking

Eye tracking allow us to record eye movements, and its ability to function both as

a therapy and as a diagnostic tool, has been investigated. Klin has been using this

tool to study ASD [4][28], and several articles can be found including this technology
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and the study of this neurodevelopmental disorder.

By measuring eye movements, eye tracking can be used as a mean to understand

and study abilities related with vision, social cognition, interaction and empathy

between people and their expression of interests. It can also help us understand the

focus of someone’s attention and their intentions[7].

An eye tracker records the position of the eyes and their movements. It generally

works with near-infrared light, directed to the pupils, which will cause detectable

reflections in both the pupil and the cornea. An infrared camera will then track

these reflections and return the position of the eyeball.

We can divide these devices in two categories, screen-based eye tracking and eye

tracking glasses. The former are the most common among studies with ASD, and

require respondents to sit in front of the screen, where the experiment is happening.

This allows the recording of data from observations with screen-based stimuli, but

its limitations regarding the size of the screen, make these devices seem less like a

real life scenario.

On the other hand, the latter, are mobile devices, which are placed near the eyes,

just like glasses, allowing complete free movement. This eases the study of eye

behaviour in more natural scenarios, without space constraints.

2.3.1 Importance

As mentioned above, human eyes can be a mean to express our interests, and can

give information about the main focus of someone’s attention. They can also help

us connect with other people, and sometimes understand the course of their actions

[7]. Eye-tracking allow us to measure eye movements, and it can help us understand

social relevant events.

Eye-tracking devices have several advantages, making them an appealing new tool,

with a lot of information to explore. They are non-invasive, practical to use and not

too expensive.

2.3.2 Eye Movement Analysis

Eye movements are relatively well understood from the neurophysiological point of

view [36]. This make them a good candidate to differentiate people, more specifically

ASD individuals from TD individuals [26].
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When someone intends to study and analyse eye movements, there are some impor-

tant concepts to consider, and which compose the scanpath over time. Those are,

among others, fixations and saccades.

Fixations refer to a relatively stable eye position. The fovea is centered on an object

or region of interest. This type of eye movement provides visual acuity [36].

On the other hand, saccades represent the movements between points of fixation.

These movements are quite fast, and do not have high visual acuity [36].

The autistic population show unusual fixation trajectories during social scenes, with

a high level of complexity [4]. They also show a higher saccade frequency, despite the

complexity of the visual task [37] or, at least, abnormalities in saccadic movement

[38].

Robert M. Joseph et al. found that fixation duration in autistic children were

shorter than the ones in TD children. But the number of fixations and their spatial

distribution were similar to both groups [39].

When it comes to saccades, the most common saccadic movement metrics include

amplitude (size), velocity and duration (time until the target is reached). The

relationship between these metrics, is well known in TD individuals. For example,

the relationship between amplitude and duration is linear in those subjects [40].

2.3.3 Eye tracking methodologies in individuals with Autism

Spectrum Disorder

Eye-tracking can be very useful as a possible new tool to study and understand

better ASD.

Recent studies using eye-tracking technologies, examined orienting behaviour during

visual attention tasks, which included both social and non-social stimuli, in people

with ASD[4][28].

More specifically, Klin et al., used videos representing both social and non-social

scenes, to study the looking patterns of children with ASD. They found that, young

adults spend more time looking to objects than to faces, when compared to con-

trols. They also related longer fixation times on objects with a higher level of social

impairment [4][28].

Other studies looked upon action perception in ASD, founding that people with
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this disorder, have deficits in understanding the intention of other people’s actions

[41]. Vivanti [42] found that children with ASD have an impairment in interpreting

JA phenomena. These children had difficulties in relating action and intention,

when another person turned his head to an object, as demonstration of interest and

intention.

In the following year, Falck-Ytter and his colleagues [43], used eye-tracking to record

children’s eye movements, while they were watching videos with JA actions, which

included looking and pointing to a toy. With this study, they found that the ASD

group, looked less to the toy than the control group.

These studies with eye-tracking and the study of attention, prove the existence of

impairments in JA and in the understanding of intention.

2.4 Data Science Approaches

Data science, as its name indicates, is the science that studies data. It combines sev-

eral techniques and skills, like feature selection, feature extraction, machine learning,

statistics, among others. All these techniques have the purpose to retrieve, and to

make us understand the value of and from data, by means of classification.

When approaching a problem using data science there are several general steps we

need to consider:

1. Categorize the problem, define its input and its output.

2. Understand the nature of data, and how it can be assessed using visualization

techniques and statistical tests, for example.

3. Process and transform the data.

4. Choosing algorithms for the different processing steps and classification.

5. Implement the chosen algorithm or algorithms.

6. Optimize model hyperparameters.

All of the previously mentioned steps, will lead us to the choice of, at least, one

algorithm, that might fit better the classification problem. After choosing, the next

step is to implement the algorithm or algorithms. Finally, in order to obtain the

best possible results we can optimize the hyperparameters of the algorithm.
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2.4.1 Feature Engineering

Sometimes, the raw data, are not well suited to the classification problem. When this

happens, which is most often the case, it is necessary to transform it into features

that could give meaning to the studied subject[44].

In this particular subject, an eye tracking acquisition retrieves the position of the

eye, which by itself does not give meaningful information about the problem we want

to study. We must then contextualize the position of the eye with the scenario, or the

problem the person’s eyes were facing. According to information from iMOTIONS,

a platform that studies human behavior, with eye tracking methodology, there are

several metrics that can be calculated from the eye positions [45]:

1. Fixations and gaze points

2. Heatmaps

3. Areas of Interest (AOI)

4. Time to First Fixation

5. Time Spent (looking at a particular AOI)

6. Ratio of times a AOI is looked at

7. Fixation Sequences

8. Revisits

9. First Fixation Duration

10. Average Fixation Duration

These, along with the information about saccades, help to contextualize the data

from the eyes and its study.

2.4.2 Visualization

Visualization techniques exist to ease the interpretation of the data. They also allow

the comparison between features and the analyses of their distribution.

These techniques have to convert the data values into logical and systematic ele-

ments, which will be plotted into the final graphic. Those graphics should contain

all the information, without misleading the viewer and his interpretation.
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Some common visualization techniques are Boxplots, Swarm plots, Violin plots and

Heatmaps.

The former is a well known technique, based on simplicity and without loss of infor-

mation. Boxplots work well when plotted next to each other, easing the comparison

between distributions, in particular when they are non parametric [46].

Figure 2.4: Anatomy of a boxplot. Shown are a cloud of points (left) and the cor-
responding boxplot (right). Retrieved from Fundamentals of Data Visualization[46]

The second mentioned plots, violin plots (figure 2.5), are similar to boxplots, because

they can also represent data density. These plots can accurately display bimodal

data, unlike boxplots.

Other way of looking at data, without the appearance that the data is very dense,

when it can be very sparse, or the other way around, is swarm plots. Similar to

violin plots but with the representation of single and non-overlapping points.

2.4.3 Data Preprocessing

When building a ML model, one has to consider that, some feature might not

give valuable information to the output, and might even influence negatively the

model. To solve this problem, one can use feature extraction and feature selection

techniques, which will ”clean”, filter and rebuild the dataset, making the overall

method less computationally expensive and more accurate.

The key difference between these methods is that feature selection maintains a subset
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Figure 2.5: Anatomy of a violin plot. Shown are a cloud of points (left) and the
corresponding violin plot (right). Retrieved from Fundamentals of Data Visualiza-
tion[46]

of the original features, while feature extraction creates new ones from the original

features [47].

2.4.3.1 Feature Selection

Feature selection aims to select the set of information from the data, considered

to be more relevant and informative, by removing the redundant and irrelevant

information.

Normally, there are two reasons for using feature selection. Or it is because we

want to reduce the number of features, to reduce overfitting and obtain a better

generalized model. Or to have more insights about the features and their relation

with the output [48].

There are several feature selection methods that can be grouped into three cate-

gories: filter methods, wrapper methods and embedded methods [49].

• Filter methods: Features are ranked according to their relevance. This

works by giving them a score and removing the ones below a certain chosen

threshold [49].

• Wrapped methods: Usually, these methods need a higher computational

power, because they also use ML algorithms to estimate the accuracy of
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adding, or removing, certain features. Their aim is to find the best opti-

mization for the model by doing it so [50].

• Embedded methods: They are similar to wrapped methods. Nevertheless,

there is a major difference, because these methods do not separate feature

selection from the learning phase. Feature selection is performed during the

training of the data, without the splitting into training and testing datasets

[51].

The most commonly used methods are the first two, filter methods and wrapped

methods. Normally, filters do not resort to ML algorithms, e.g. statistical tests,

whereas the latter have on their basis those same algorithms.

• Correlation Coefficients

Correlation coefficients, by definition, measure the relationship between two

variables, to see how similar, or not, they are. The highest the positive similar-

ity between features, the more information they have in common. This means

that, choosing one of these features does not only affect the information given

to the model, but also reduces the dimensionality of the data.

– Pearson’s Correlation Coefficient or Linear Correlation

Pearson correlation coefficient measures the linear correlation between

two variables.

Assuming var as the feature variance, cov as the covariance and Y as the

output (class labels), then the equation is as follows:

R(i) =
cov(Xi,Y )√

var(Xi) · var(Y )

The results from this equation lie in the interval [-1;1]. If the result is -1

than the correlation is perfectly negative, if the result is 0, it means that

there is no linear correlation and, finally, if the correlation is +1 than the

correlation is perfectly positive [48]. Any other value is approximately

one of the three above and classifies the relation accordingly.

– Spearman’s Correlation Coefficient

On the other hand, Spearman’s rank correlation coefficient is a nonpara-

metric rank statistic. It is normally used when the distribution or the re-

lation between the variables is unknown or likely non-parametric. Spear-
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man’s correlation coefficient assesses how well an arbitrary monotonic

function describes the relation between two variables, normally a feature

and the output, without making assumptions about the real distribution

of each variable [52].

The coefficient respects the following equation:

ρ = 1− 6
∑
d2i

n (n2 − 1)

Where:

ρ = Spearman rank correlation

di = the difference between the ranks of corresponding variables

n = number of observations

• Linear Regression

Linear regression can work as a feature selection method, by finding the rela-

tionship between two continuous variables, like one feature and the problem

output. It looks for a statistical relationship, obtaining a line that best fits

the data and their relation, minimizing the error and the distance between the

point and the regression line [53].

• Regularized Models

Regularization works by adding an additional penalty to the model. Its goal

is to both prevent overfitting and improve the generalization capacity of the

model. So, instead of minimizing a loss function E(X,Y), these methods add

a parcel to the equation, becoming: E(X,Y)+α ‖w‖, where w is the vector of

model coefficients, either L1 or L2, and α is a tunable free parameter, which

specifies the amount of regularization [54].

The most used regularization methods are L1 and L2 regularization.

– L1 regularization or Lasso

For this method, a penalty of α
∑n

i
| wi |, with i starting at 1, is added

to the equation.

Since each non-zero coefficient adds value to the penalty, weaker features

have zero as coefficients. Thus, this method inherently performs feature
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selection [54]. The final equation is as follows:

E(X,Y ) + α
∑n

i
|wi|

However, L1 regularization can be unstable, since coefficients can vary

significantly when there are correlated features in the data [54].

– L2 regularization or Ridge Regression

On the other hand, L2 regularization or Ridge Regression adds a different

penalty to the loss function: α
∑n

i
w2
i . In this method, the coefficients

are now squared, causing a different effect. Contrarily to what happens in

Lasso, coefficient values spread more equally [54], meaning that correlated

features get similar coefficients. For this method, the final equation is:

E(X,Y ) + α
∑n

i
w2
i

All of the above information, makes the model more stable than L1,

allowing a better understanding of the features and a not so good feature

selection, when compared to L1 regularization.

• Random Forest

The random forest method is considered an embedded method and it consists

of several decision trees, each one built randomly. Besides this, random forests

also guarantee that not every tree sees the same set of features, reducing the

probability of overfitting [55].

Since it is built by decision trees, each tree works as a sequence of questions,

and each node of the tree represents one question. At this node, the dataset

is splitted in two according to their resemblances and differences [55]. The

importance of each feature is then defined by the purity of each part of the

dataset. We can see an example of a decision tree in figure 2.6.

Normally, since the top of the tree leads with higher amounts of information,

features selected in this part of the tree, generally have more importance than

the ones selected in the nodes. Besides this, correlated features will have

similar importance, but less importance than the ones retrieved from a tree

built without correlated features [55].

Random forests are not very useful at interpretability of the features, but work
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Figure 2.6: Example of a decision tree. Retrieved from [56]

is robust to outliers and to non-linear data [57]

• Recursive Feature Elimination (RFE)

RFE is considered a wrapper method, since it performs a reduction of the

dimensions, given an algorithm. This method assigns weights and rankings to

each feature, while the algorithm is trained. After each step, the feature with

the lowest weight is removed [50]. RFE is applied until the features are ex-

hausted and later features are ranked according to when they were eliminated

[58].

Each one of these methods work differently, and can be used depending on the

problem’s purpose. Either we want to have a better understanding of the data or

we want to reduce the number of features to obtain a better classification model with

less overfitting. Either way, all of them can be used, one just has to be cautious

about the conclusions that can be retrieved.

2.4.3.2 Feature Extraction

• Principal Component Analysis (PCA)

PCA is a feature extraction and reduction technique, which can be used in

both visualization and data processing. During this approach, a new set of

features is made, based on the old ones, with orthogonalization. This linear

transformation, happens without the loss of the majority of the information

[55].
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Since PCA does not use the classification value, it can be considered an unsu-

pervised method, able to ”shrink” data’s dimension, focusing on the differences

between the data points for each feature.

By definition, PCA is based on the existence of a principal component for each

data dimension. The first component is the one with the highest variance, the

second component contains the second maximum variance, and so on. PCA

intent is to find the lowest number of dimensions (meaning features), that

could hold the most important information [55].

2.4.4 Machine Learning Algorithms

Nowadays, with the dissemination of data science approaches, it is easier to deal

with a large amount of data. The analysis and treatment of data by humans has

been largely replaced by machines and algorithms, responsible to ease this challenges

by doing new and complicated tasks.

Other huge advantage of technology advances is Machine Learning (ML). Machine

Learning is based on algorithms, an instruction or sequence of instructions to solve

a classification problem. But the difference is that these algorithms are learning

algorithms, and, by themselves, they apply or sometimes create the rules, based

on their specificities. These instructions allow the machine to learn from the given

data.

The data given are called training data and the rules are generated based on infer-

ences from the dataset itself. This generates a new algorithm, which we can call

machine learning model. The model depends not only on the set of instructions but

also on the data. The same learning algorithm can be used in different sets of data,

making different ML models.

A high amount of data is also important if it represents different possibilities and

situations. This will allow the model to generalize and to be able to solve the

problem when new information is given.

There are three general types of ML methods [59]:

• Supervised learning: the given data are labeled with the desired output;

• Unsupervised learning: the given data are unlabeled and the algorithm

needs to search for patterns that could give answer to the problem and define

categorization boundaries;
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• Reinforcement learning: works in a dynamic environment that gives re-

wards and punishments according to the direction of the output.

Nevertheless, one of the biggest challenges in ML is its ”interpretability” or the

ability to interpret the output and the logic of the model. These may be the cause

of some skepticism regarding this subject and its advantages, specially in the health

and medicine fields. To better understand, it would be relevant to know what is

happening and why is happening, in every step of the way. ML can be seen as ”new

eyes” looking at the same data, seeing what hasn’t been seen yet, and we might not

”grasp” what these ”eyes” are really ”seeing”.

Then again, when training a model to answer a problem, one of the most important

aspects is the given data. If a set of data is biased then the output will also be

biased, and the confidence in the result will automatically decrease. It is important

to filter and understand the data before it can be trained, which justifies the analysis

explained in the previous section (section 2.4).

On the other hand, the variability of the data is as double-sword issue, because it

will help generalization but also provide challenges.

In biomedicine, the literature mentions different approaches. Both supervised and

unsupervised techniques are implemented. For example, the automated interpreta-

tion of the ECG signal, or the automated identification of a lung nodule from a x-ray

exam, are considered supervised learning, since we know the output boundaries. On

the other hand, unsupervised learning, is used, for example, to study the patterns

found between data, and not to confirm results. This approach is also useful, since

sometimes we can not see the possible patterns in heterogeneous data.

Since we know the type of output of our data, we will only focus on supervised

learning. According to a Towards Data Science article [44], when choosing a model

we should consider:

• Its accuracy;

• Its interpretability;

• Its complexity;

• Its scalability;

• How long does it take to build, test and train it;

• How long does it take to make predictions using it;
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• If it meets the goal.

In supervised learning we can divide the methods in regression methods and classi-

fication methods.

The former, models and predicts continuous and numeric variables, like student

test scores and stock price movements. With these methods the output has to

be numeric. On the other hand, the latter represents a set of methods that models

and predicts categorical variables, like financial fraud or student letter grades. These

algorithms are used to predict a class, and not a real number like regression methods

[60].

Since our problem has two categorical classes, we will present some of the most

common classification methods, which will later on justify our choice.

• Logistic Regression

Logistic regression is for classification methods, what linear regression is for

regression methods.

This method predicts between 0 and 1, by using the logistic function. Since

the model is linear, it works better with linearly separable classes. Never-

theless, logistic regression can use penalizing coefficients to obtain the final

classification [60]. Logistic regression then follows the next equation:

h(x) =
1

1 + e−b0+b1x

Where b0 + b1x is the linear equation.

Some of its strengths are its probabilistic interpretations, and the ability to

avoid overfitting by regularizing the method. Despite having these advan-

tages, logistic regression tends to underperform when the decision boundaries

are non-linear, because its lack of flexibility does not capture more complex

relationships [60].

• Classification Trees

Classification trees are the equivalent to regression trees, and they learn in a

hierarchical way. The dataset is progressively split into branches that maxi-

mize the information gain of each split [60]. An example was already presented

in the previous subsection Data Preprocessing (subsection 2.4.3).

These classification models perform very well in practice. They are scalable,
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robust to outliers and perform well with non-linear decision boundaries. But

like everything else, they also have some weaknesses. They are unconstrained

and, sometimes, individual trees tend to overfit [60].

• Support Vector Machine (SVM)

A Support Vector Machine is a mechanism to calculate distance between two

observations. The main goal of the algorithm is to find a decision boundary

that maximizes the distance between the closest members of the two classes

[60], called support vectors.

SVM’s are quite robust against overfitting, and are able to model non-linear

data. Nevertheless, they require more memory and are tricky to tune [60].

ASD research provides datasets prone to be studied with SVMs.

In clinical medical research SVMs have been used to develop prediction models for

both disease diagnosis, and prognosis after given a specific diagnosis [61].

Continuing the above information for Support Vector Machine (SVM)’s, these mod-

els are based on the construction of a hyperplane, which separates both cases and

controls. In a problem with only two classes, the best fit hyperplane works as a

separation line. The optimal hyperplane is built following the equation w ·z−b = 0.

So, if we want to maximize the distance between those members of the two classes,

we need first to minimize w, this will give us the next equation:

min
1

2
‖w‖2 + C

∑
i=1

ξi

s.t. yi(w · zi − b) ≥ 1− ξi, ξi ≥ 0∀i

Where:

yi− class labels, and yi ∈ {+1,− 1}

ξi− error variable, i = 1, ... , no of training examples

C− margin regularization constant or the penalty parameter of the error term. It

is responsible for the trade between a smooth decision boundary and the correct

classification of the training points, which is related with the model’s complexity.

The following formulation helps to achieve the computational solution for the pre-

vious equation:
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max
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjk(xixi)

s.t. 0 ≤ αi ≤ C ∀i,
∑
i

yiαi = 0

Where:

k(xixj) = ϕ(xi) · ϕ(xj)− kernel function

αi− Lagrange multiplier or each training point

SVMs are often used with problems which are not linearly separable, and this is

only possible by transforming the data, with the use of Kernel functions [61]. The

kernel trick maps the non-linear data into a higher dimensional space, so we can

find a hyperplane that separates both classes [62].

So, the effectiveness of this algorithm depends not only on the data, but also on

kernel functions and parameters. These parameters include C and σ values, that

need to be optimized, in order to obtain the best fitting model, without the danger

of overfitting [61].

A lot of work as been done with different kernels [63], but the most common are the

linear kernel, the Radial Basis Function (RBF), and the polynomial kernel [62].

• Polynomial kernel: k(xixj) = (1 + xi · xj)d,

• Radial Basis Function (RBF) kernel: k(xixj) = exp
(
‖xi−xj‖2

2σ2

)
.
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Methods

In this chapter, we will give insights about the approach we used to analyse the eye

tracking data. The general scheme of the data analysis can be seen in figure 3.1,

and starts with the extraction of features from the raw files, based on cognitive and

biological knowledge we addressed in chapter 2. We were then able to generate the

dataset where we implemented feature selection and feature extraction methods and

classification algorithms, followed by the calculation of metrics for model evaluation.

Figure 3.1: General scheme of the approach for the data analysis.

The experimental procedure was implemented using Python 2.7 with Spyder IDE,

due to its accessibility, and overall suitability to the different phases of this project.

We will then focus on the information eventually retrieved with it, which include

data from both ASD and TD classes.

3.1 Dataset

In this subsection, we will describe the different phases we went through in the

analysis of the raw eye tracking data. Let us start by the acquisition procedure,
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previous to this project, but nevertheless important to understand the data structure

and the information we could extract from it for both classes.

3.1.1 Acquisition procedure

The data acquisition was done by Carlos Amaral et al. in the study A Feasibility

Clinical Trial to Improve Social Attention in Autistic Spectrum Disorder (ASD)

Using a Brain Computer Interface [64].

3.1.1.1 Participants

Carlos Amaral et al. collected data from 30 participants, divided in two groups:

ASD group:

• 15 high-functioning ASD patients without intellectual disability;

• mean age: 23 years and 4 months;

• age range: 16 years to 38 years;

• mean full-scale IQ: 103;

TD group:

• 15 typically developing participants;

• mean age: 24 years and 10 months;

• age range: 14 years to 42 years;

• mean full-scale IQ: 117;

3.1.1.2 Apparatus

The task was performed using two setups, which differ in their degree of immersivity:

• FLAT SCREEN: participants sat at 70 cm from the screen in a chair in front

of a 22-inch flat screen with a resolution of 1680 x 1050 pixels. Eye movements

were measured using a SMI RED 500 remote eye tracker (SensoMotoric In-

struments GmbH, Germany), with a sampling rate of 500 Hz, an accuracy of

0.4 and a spatial resolution of 0.03. A built in 5-point validation method was

used, to ensure the precision of the data collection. In this setup, the viewing
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perspective is limited to what is shown in the flat screen, since no movement

is allowed during the experiment with the Flat Screen.

• OCULUS RIFT: participants sat in the same chair and position used in

the screen based setup, but with Oculus Rift DK 2 on. Eye movements were

recorded with Eye Tracking HMD package from SMI embedded in the Oculus

itself, with sampling rate of 60 Hz, and accuracy of 0.5-1. The same 5-point

validation method was used. In this setup, the scene had a 360 perspective

and a real-time fully immersive experience.

3.1.1.3 Stimuli / Task

The experiment comprised four virtual scenarios. Each scenario was modelled with

the help of 3ds Max 2014 (from Autodesk Inc.). The environment texture rendering

was done in 3ds Max with a scanline algorithm. The stimulation structure was

written using Unity v4.

A depiction of the four scenarios can be found in figure 3.2, and they are as follows:

• Cafe: interior of a cafe with a maid (avatar) on the other side of the balcony.

The viewer’s position is in front of the balcony. Several common objects in a

cafe, described in table 3.1, can be found around the avatar. The scenario also

has tables and chairs, only visible in the fully immersive experience (Figure

3.2 A);

• Classroom: interior of a classroom. The participant finds himself standing

in front of a table with a professor (avatar) behind it, with several objects

displayed in the table between them. These objects are also described in table

3.1. The scenario has a set of tables and chairs, common to a classroom, visible

with the fully immersive experience (Figure 3.2 B);

• Kiosk: the participant finds himself standing in front of a street kiosk with

an employee (avatar) inside. Around the employee and dispersed on the kiosk,

there are several newspapers and magazines, described considering their posi-

tion, in table 3.1 (Figure 3.2 C);

• Zebra Crossing: the participant finds himself standing in one side of a street,

waiting to cross the zebra crossing. On the other side of the street, he can find

a person surrounded by the objects referred in table 3.1 (Figure 3.2 D).
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Table 3.1: List of animations performed by the avatar in each scenario.

Scenario Joint Attention Animations Control Animations

Cafe

Avatar turns the head to:

pack of ’Doritos’
pack of ’Lays’
pack of ’Lays Bake’
bottles, in the back wall
shelf with chewing gum
left glass in the balcony
middle glass in the balcony
right glass in the balcony

Classroom

Avatar turns the head to:

book
notebook
pencil and eraser Avatar:

Avatar points to: Coughs
Rolls the head

ruler Scratches the head
set-square Yawns

Kiosk

Avatar turns the head to:

magazine above the head
magazine in front
magazine in left-above
magazine in left-middle
magazine in left-below
magazine in right-above
magazine in right-middle
magazine in right-below

Zebra Crossing

Avatar turns the head to:

dustbin
traffic sign
traffic light
traffic light button
city map
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Figure 3.2: Virtual Reality Experiment Scenarios from the work of Carlos Amaral
et al. [64].

3.1.1.4 Procedure

Each participant performed the task with both apparatuses. The order of the ap-

paratus was alternated from subject to subject, in a balanced manner, and both

procedures started with the eye- tracker calibration and validation. Next, the pre-

sentation of each scenario was done. The order by which each scenario was presented

to every participant was pseudo-randomly defined a priori to ensure that every sce-

nario was presented for the first time the same number of times. This order was

maintained in both apparatus for each subject. In all the scenarios, the task started

with a 30 seconds free-viewing period, followed by a series of avatar animations

spaced by between 2 and 2.5 s. The animations are divided in joint attention ani-

mations and control animations. The joint attention animations comprise both the

avatar’s head turning or him pointing to one object of interest. The animations in

each scene can be found in table 3.1.

For each experiment, the animations were repeated 2 times in a random order. Since

the number of ROIs varies in each scenario, the number of JA animations will also

vary. The number of control animations is the same for each scenario, there are 4

different actions, which makes a total of 8 control animations.
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Considering each scenario particularly, we have 18 JA animations in the cafe sce-

nario, 10 in the classroom, 16 in the kiosk and 10 in the zebra crossing scenario.

The overall animations were 180 with JA and 32 without JA, per setup.

The only instruction given to the participants was to act naturally and they were

not aware that their eye movements were being recorded. The goal was to keep the

experiment as similar to a real situation as possible.

3.1.2 Data

The raw data was in the form of txt files, composed by the starting and ending date

and hour (first and last rows), the acquired 3D positions, in the format x, y, z, for the

eye projection in the screen, and the record of the trigger for the avatar animations.

According to the Cartesian coordinate system, x is the coordinate parallel to the

ground, and is seen as the length of the scenario, y is the coordinate perpendicular

to the ground, along the height of the scenario, and z gives the 3rd dimension and

depth of the scenario(figure 3.3). The default unit in Unity is 1 meter. In this

project, a scale of 0.1 was used, but for referring to the distance between the center

of the scenario (0,0,0) and a certain position we will use units, since this is only used

to check to where the subject is looking at.

Figure 3.3: Depiction of the used Cartesian coordinate system.

Since this was a temporal acquisition, we could retrieve the procedure duration in

milliseconds from the difference between the first and the last lines. An example of

the files is shown in table 3.2.

As mentioned before in subsection 3.1.1, the data were acquired from 15 ASD indi-

viduals and from 15 TD individuals, for both setups and for the 4 scenarios, which
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Table 3.2: Raw Data - txt file example from Clinical Trial data with Oculus Rift
and Kiosk scenario.

Beginning:2016-2-4-11-45-41-288
(1.2, 3.8, 6.5)
(0.9, 3.9, 6.5)
(1.0, 3.9, 6.5)
(1.0, 3.9, 6.5)
(1.0, 3.9, 6.5)
(1.0, 3.9, 6.5)
(1.1, 4.0, 6.5)
(1.1, 4.0, 6.5)
(1.1, 4.0, 6.5)
...
(0.9, 1.7, 6.5)
A: female@lookleftdown i
(0.8, 1.6, 6.5)
(0.8, 1.6, 6.5)
(0.8, 1.7, 6.5)
(0.9, 1.6, 6.5)
...
(-7.7, 0.1, 38.3)
(-7.7, 0.1, 38.3)
(-6.3, 0.1, 29.5)
(-2.3, 4.2, 6.5)
(1.6, 3.9, 39.5)
(-0.5, 3.9, 6.5)
(1.7, 4.1, 39.5)
(0.3, 3.1, 6.5)
(0.4, 3.0, 6.5)
End:2016-2-4-11-48-4-768
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makes a total of 240 files used in this project, 120 for each setup, divided into 60

files per class.

3.1.3 Feature engineering

We investigated features in eye tracking data that could have cognitive and biological

meaning for the distinction of ASD and TD groups. We searched for information that

might represent social cognitive processes, not focusing only on the ones promoted

by the social interactions in the task. These features with potential cognitive and

biological meaning were chosen based on the information found in the literature for

eye tracking analysis with and without ASD subjects, mentioned in chapter 2.4.1.

Tables 3.3 and 3.4 sum up the final set of features. These tables represent the

features calculated for different parts of the acquisition, since these parts can depict

different levels of interpretation of the situation.

So, table 3.3 contains the set of features obtained during the free viewing part of

the acquisition. This part corresponds to the first 30 seconds of the acquisition,

where there was no animation (the avatar was just ‘breathing’). Here, the level

of complexity of the situation can be compared to a visual search [65], where the

subject inspects the scenario.

Table 3.3: Features for the acquisition during free viewing.

Code Name Explanation

fv gen gen n fixations
Number of fixations regardless

of position

fv gen gen avg time
Average fixation time regardless

of position

fv gen n roi

Number of fixations in the

pre-established regions of

interest

fv gen avg time roi

Average fixation time in the

pre-established regions of

interest

fv gen n face
Number of fixations in the

avatar’s face
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Table 3.3 continued from previous page

Code Name Explanation

fv gen avg time face
Average fixation time in the

avatar’s face

fv gen max time face
Maximum duration of fixation

in the avatar’s face

fv total sac time Total time during saccades

fv n sac Number of saccades

fv avg sac time Average saccade time

fv sac velocity Average saccade velocity

fv sac density

Average number of

coordinates variation during saccadic

movement

fv avg sac size Average saccadic length

fv dist sac max
Total length of

saccadic movement

fv time first fix Duration of the first fixation

On the other hand, table 3.4 contains the set of features obtained after the occurrence

of the first animation. We considered a higher level of complexity in this part,

similar to scene perception in reading [65], since the subject had more information

to process. The animations started without the subject knowing they were going

to happen, and this, added to the expectation of what was going to happen next,

increased the complexity.

Table 3.4: Features for the acquisition starting after the 1st animation.

Code Name Explanation

gen max fix time Maximum duration of fixation

num 1500 fix
Number of fixations, regardless

of position

avg 1500 fix time
Average fixation time, regardless

of position
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Table 3.4 continued from previous page

Code Name Explanation

num 1500 roi fix

Number of fixations in the

pre-established regions of

interest

avg 1500 roi fix time

Average fixation time in the

pre-established regions of

interest

num 1500 face fix
Number of fixations in the

avatar’s face

avg 1500 face fix time
Average fixation time in the

avatar’s face

num 1500 out fix
Number of fixations in the

positions outside of the scenario limits

avg 1500 out fix time
Average fixation time in the

positions outside of the scenario limits

num 1500 other fix

Number of fixations in other

positions (that are not considered

above)

avg 1500 other fix time

Average fixation time in other

positions (that are not considered

above)

avg reaction time

Average reaction time, starting after

an animation and ending in the

beginning of a fixation

avg reaction time look

Average reaction time, starting after

a social animation and ending in the

beginning of a fixation

avg reaction time anim

Average reaction time, starting after

a nonsocial animation and ending

in the beginning of a fixation

total sac time Total time during saccades

n sac Number of saccades

avg sac time Average saccade time

sac velocity Average saccade velocity
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Table 3.4 continued from previous page

Code Name Explanation

sac density

Average number of

coordinates variation during

saccadic movement

avg sac size Average saccadic length

dist sac max
Total length of saccadic

movement

dens look

Average number of

coordinates variation during

saccadic movement within the reaction

time after a social animation

dens anim

Average number of

coordinates variation during

saccadic movement within the reaction

time after a nonsocial animation

vel look

Average saccade velocity during

the reaction time after a social

animation

vel anim

Average saccade velocity during

the reaction time after a nonsocial

animation

dist look

Total length of saccadic

movement during the reaction

time after a social animation

dist anim

Total length of saccadic

movement during the reaction

time after a nonsocial animation

match roi fix
Number of fixations when a JA

phenomenon occurs

match mean time roi fix

Average fixation time in the region

of interest when a JA phenomenon

occurs

match react time roi

Average reaction time, starting after

a social animation and ending in the

beginning of a fixation when a JA

phenomenon exists
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Table 3.4 continued from previous page

Code Name Explanation

match nonsocial face fix
Number of fixations in the avatar’s

face after a nonsocial animation

match nonsocial mean time face fix
Average fixation time in the avatar’s

face after a nonsocial animation

match react time face

Average reaction time, starting after

a nonsocial animation and ending in

the beginning of a fixation in the

avatar’s face

match nonsocial other fix
Number of fixations in other

positions after a nonsocial animation

match nonsocial mean time other fix
Average fixation time in other

positions after a nonsocial animation

match react time other

Average reaction time, starting after

a nonsocial animation and ending in

the beginning of a fixation in

other positions

per out 1500

Percentage of fixations outside the

scenario limits - Number of fixations

outside the scenario limits divided

by the number of fixations,

regardless of position

spatial density

Ratio between the number of

regions of interest where a JA

phenomenon occured and the

total number of regions of interest

To differentiate both parts, we did not only use some different features, to accord-

ingly fit to the situation, but we also varied the minimum time needed to look at a

position to be able to consider it a fixation. We call this the fixation time threshold

and, after trying several different values, based on the information in table 3.5 from

Rayner [65], we chose 180 ms for the fixation time threshold during free viewing and

260 ms for the fixation time threshold during the part after the occurrence of the

1st animation.

Other considerations were used to calculate the features, and we will first mention

the ones common to both parts of the acquisition.
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Table 3.5: Intervals for fixation duration [65].

Fixation duration (ms)
Visual Search 180 - 275
Scene Perception 260 - 330

We approached the data using only x and y positions, since we could obtain our

features with only these two coordinates, z did not add any meaningful information.

To calculate fixations, we established a margin of 0.2 units for each side, meaning

that if the acquired coordinates were in the interval [x-0.2; x+0.2] [y-0.2; y+0.2],

they would be considered as the same point, reducing some lack of precision in the

eye position acquisition. The same principle was followed to calculate saccades, in

which we would only consider different points if they were separated by, at least, 0.3

units in any direction.

We then inspected fixations by obtaining their total number and duration. On the

other hand, to study saccades we calculated their total number, duration, velocity

and density of transition. All of the features are associated with variations, according

to the situation or the reaction intended to study.

To check if the subject looked to the areas where the avatar was going to point or

look, we needed to delimit them. The x and y values used to delimit the Area of

Interest (AI) were taken manually and were based on the pre-established limits in

Unity, made during the work of Carlos Amaral et al. [64] (figure 3.4). Some of the

areas were enlarged and others were shortened, to better distinguish the AI. The

values used for the new limits are shown in table 3.6.

The next considerations were only used in the second part of the acquisition, where

we can assume a social context.

First, we chose a limit of 1500 ms, which started after each animation. We only

considered fixations to be relevant for the context when they started before the end

of these 1500 ms. The goal here was to give time to the subject to process the

animation, search for the object, and fixate it, if he wanted to inspect it. Since the

time between animations ranged from 2000 ms and 2500 ms, this threshold allowed

us to discard fixations that were not a direct result of the avatar’s animation.

Besides those temporal limits, we also delimited the scenarios, like shown in table

3.7, based on the plots from all the points of the files. The examples of the outer

limits are shown in figure 3.5, for each one of the scenarios and for one person only.

Nevertheless, these limits were calculated for more than one individual, and the
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Table 3.6: Values for ROI Limiting

Scenario ROI x y

Cafe

Bottles [-3.5 ; -1.3] [5.1 ; 6.7]

Doritos [2.1 ; 3.5] [4.5 ; 5.4]

Face [-0.5 ; 0.4] [5.1 ; 6.3]

Glass Centre [0.5 ; 1.4] [3.2 ; 4.5]

Glass Left [-1.4 ; -0.5] [3.2 ; 4.4]

Glass Right [0.7 ; 1.7] [3.2 ; 4.4]

Gum [-2.5 ; -2.1] [3.4 ; 5.8]

Lays [2.1 ; 3.5] [5.4 ; 6.8]

Lays Bake [2.1 ; 3.5] [3.5 ; 4.4]

Light [-0.7 ; 0.9] [6.3 ; 7.0]

Classroom

Book [-9.7 ; -7.7] [2.1 ; 3.1]

Face [-9.0 ; -8.4] [4.1 ; 5.1]

Pencil & Eraser [-11.1 ; -9.9] [2.1 ; 3.2]

Set-square [-10.4 ; -9.2] [2.4 ; 2.7]

Ruler [-8.3 ; -6.7] [2.5 ; 2.7]

Notebook [-7.2 ; -6.2] [2.0 ; 3.2]

Kiosk

Front [-0.9 ; 0.8] [3.2 ; 4.0]

Face [-0.3 ; 0.3] [4.9 ; 5.8]

Left-middle [-2.7 ; -1.0] [4.6 ; 5.8]

Left-below [-2.7 ; -1.0] [3.3 ; 4.5]

Left-above [-2.7 ; -1.0] [5.9 ; 7.1]

Right-middle [1.0 ; 2.7] [4.6 ; 5.8]

Right-below [1.0 ; 2.7] [3.3 ; 4.5]

Right-above [1.0 ; 2.7] [5.9 ; 7.1]

Above [-0.9 ; 0.8] [7.0 ; 7.9]

Zebra Crossing

Dustbin [3.7 ; 8.2] [0.1 ; 5.7]

Face [-0.6 ; 0.7] [5.1 ; 6.3]

Hydrant [-8.7 ; -5.5] [0.0 ; 4.4]

City Map [9.1 ; 10.6] [0.6 ; 8.6]

Sign [4.2 ; 10.4] [6.4 ; 12.7]

Traffic Light [-7.8 ; -2.7] [6.6 ; 12.8]

Traffic Light Button [-6.9 ; -2.7] [3.1 ; 5.0]

40



3. Methods

Figure 3.4: Pre-defined ROI limits, based on the work of Carlos Amaral et al. [64].

same outer limits were obtained. The black contour, in figure 3.5, represents the

limits of each scenario, according to the values in table 3.7.

Figure 3.5: Representative heatmaps of each scenario. A - Cafe, B - Classroom,
C - Kiosk, D - Zebra Crossing. The black contour limits the scenario seen in figure
3.2.
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Table 3.7: Outer limits for each scenario.

Scenario x y

Cafe [-4.2 ; 6.0] [3.2 ; 8.6]
Classroom [-10.7 ; 0.9] [0.9 ; 10.7]

Kiosk [-10.7 ; 9.9] [0.2 ; 9.6]
Zebra Crossing [-5.2 ; 11.1] [0.5; 11.5]

Since this part considers animations, we first decided to see what kind of reaction

the animation produced. So, we focused on where the participant was looking at,

regardless of the animation type. We divided the total area into ROIs, avatar’s

face, positions outside of the scenario and other positions. Then, we divided the

animations into social and nonsocial animations. For the former, we considered

fixations and the related features, when a JA phenomenon occurred. For the latter,

we separated the areas and considered fixations in the avatar’s face, outside of

the scenario or in the remaining positions, that were neither the previous nor the

established ROI.

We also calculated the time it took for the subject to start fixating after each

animation, and called it reaction time. Furthermore, the animations were divided

again, and the reaction time was calculated for each animation type separately.

Ultimately, the saccadic distance, the velocity and the density of transition during

this interval were obtained.

3.1.4 Dataset

By the end of the feature generation, we were able to create our final datasets, the

matrices containing all the feature information for each participant. Two different

datasets were obtained, one for each setup, in order to compare them.

We calculated all 53 features shown in tables 3.3 and 3.4 for each one of the 4

scenarios, making a total of 212 features. The final datasets had 30 rows, one for

each individual, and 212 columns, with the information for each one of the 212

features and a column with the classification: 0 for TD and 1 for ASD.

Next, we divided both datasets into a new matrix, containing only the features, and

a vector, containing the classification. We will call the matrix and the vector X and

y, respectively, for simplification purposes, and this nomenclature will be used in

the next sections.
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3.2 An approach to feature extraction & selection

To improve our results, we used feature extraction and feature selection algorithms,

considering that feature selection selects features without changing them, and fea-

ture extraction builds new ones from the ones already existing. By doing this, we

could remove unnecessary and repeated information that could be negatively influ-

ence the classification algorithms, and create new features able to better distinguish

both classes. We divided our general approach in four steps, each one including the

implementation of different algorithms.

The first step, represented the first experimental approach, without any feature

processing (figure 3.6), used as a control of the experience.

In the second step, to evaluate the correlation between each feature and the target

vector, we performed the Spearman correlation test and the features with a p-value

below 0.05 were chosen, since they presented higher correlation with the target

vector. (figure 3.7).

The third step included the implementation of a set of feature selection methods,

not only to remove features highly correlated between each other, which would only

add unnecessary information, but also to understand which of those features played

a larger role in the classification (figure 3.8). So we used the following methods,

whose advantages and disadvantages were previously mentioned in subsection 2.4.3:

1. Linear Regression

2. Ridge Regression

3. Recursive Feature Elimination (RFE)

4. Lasso

5. Random Forest

6. Linear Correlation

We used RandomizedSearchCV, a function from the scikit-learn Machine Learning

Python library that estimates the best hyperparameters of a model by making ran-

dom hyperparameters combinations, to find the best solution for the model [66]

[67]. With this approach, we could find the best value of alpha for methods 2 and

4, according to the given features.

For each feature selection method, we selected the 3 most relevant features, and
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crossed the results in order to obtain the final set of features which were thought to

perform better.

Finally, in the 4th step, we took the data obtained in the third step, after feature

selection, for feature extraction and reduction, we used PCA for both visualization

with 2 components, and for the generation of new features to be introduced to our

classification model (figure 3.9).

3.3 Machine Learning algorithms

To classify our classes, we used Machine Learning algorithms in all the steps of our

approach. This allowed us to verify if our model was being improved according to

the feature extraction and selection done. In all of these steps, we used a Support

Vector Machine (SVM) with different kernels, addressed in subsection 2.4.4.

The first thing to do, common to all the steps, was to split our dataset into the

training data, the information used to train our model, and the testing data, used

to evaluate how well it behaved. With this, we were able to test our model with

”unseen” data and increase the reliability of our results.

We used the train test split function from Python library scikit-learn to split our

data randomly. We divided the data in 70% for our training data, and the remaining

30% for our testing data, which means that our model trained with 21 subjects and

classified the remaining 9.

3.4 Model evaluation

After testing our model with new data, we obtained a 2x2 matrix with the classi-

fication results, the confusion matrix (table 3.8), where we can assess how well our

model performed, or not, for both classes.

Table 3.8: General confusion matrix.

Predicted

ASD TD

Real
ASD TP FP
TD FN TN

44



3. Methods

In table 3.8, TP (True Positives) gives the number of well classified ASD individuals,

and TN (True Negatives) gives the number of well classified TD individuals. On

the other hand, FP (False Positives) represents the number of ASD individuals

classified as TD individuals and FN (False Negatives) the opposite, meaning the

value represents the number of TD individuals classified as having ASD.

We used these values to calculate the metrics mentioned below:

• True Positive Rate (TPR), or Hit Rate or Recall or Sensitivity

TPR =
TP

TP + FN

• False Positive Rate (FPR), or False Alarm Rate

FPR =
TN

TN + FP

• Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN

• Error Rate

ErrorRate = 1− accuracy =
FP + FN

TP + TN + FP + FN

• Precision

Precision =
TP

TP + FP

These metrics allowed us to evaluate the performance of our model differentiating

the classes TD and ASD

We did it using cross-validation, with a fifty-folds cross validation. The outcomes

shown are the mean of each fold obtained for each metric.

Finally, and to summarize our work, figure 3.10 sums the general approach, speci-

fying, some of the methods and algorithms for the different phases, first shown in

figure 3.1 and described in this chapter (chapter 3).
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Results

In this chapter, we will report the results obtained with the approach proposed in

Chapter 3.

Considering the proposed goals for this project, in Chapter 1, we divided the work

in three main questions:

1. Which features can we obtain from data containing eye positions and their

respective time stamps?

2. Is any of those features “good” enough to define a potential biomarker for

ASD?

3. Can we predict or confirm the disorder, by analysing eyetracking data with a

machine learning approach?

The first question was already answered in Chapter 3, where the list of proposed

features can be found in table 3.3, for the free viewing part of the acquisition, and in

table 3.4 for the part of the acquisition with social interaction. The values obtained

for each individual, when those features were calculated, and depending on each

scenario, for both the RED setup and the Oculus Rift setup, compose the final

datasets for both feature analysis and classification.

4.1 Feature analysis and classification

To answer the third question Can we predict or confirm the disorder, by analysing

eyetracking data with a machine learning approach? we tested the dataset in four

different steps. Each step was incremented to the previous one, according to the

obtained results. In each step we tried to overcome the limitations of the data

analysis done during it. To evaluate the ”quality” of the resulting dataset in each

step, we used a Support Vector Machine with two different kernels, Linear kernel and
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Radial Basis Function kernel. In this section we will also try to answer the second

question Is any of those features “good” enough to define a potential biomarker for

ASD?, during the second step.

With GridSearchCV we obtained the best values for the hyperparameters of both

kernels of the SVMs.

In the first experimental step we did not perform any form of feature selection, it

worked mainly as control. In all the steps, the whole datasets were split into training

and testing data, according to what is mentioned in Chapter 3, 70% for training and

30% for testing, and given to the algorithm.

In the second step, we performed Spearman’s correlation test, obtaining datasets

with less features. Those datasets were then trained and tested according to the

same 1st step principles.

Not satisfied with the obtained results, we tried different feature selection methods,

which are described in the 3rd step. With smaller datasets we trained once more a

SVM with both kernels.

In the last step we did a PCA to the dataset obtained from the the previous step,

followed by training and testing with SVM.

4.1.1 1st step

The results for the first step are shown in table 4.1. Comparing both kernels we

see better results with the linear kernel, despite the setup. Where the accuracy is

around 50%, 15% higher than with RBF kernel. The percentage of well classified

autistic individuals is higher for RED setup, whereas for TD individuals we obtain

better results with Oculus rift.
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Table 4.1: Results before feature selection, for both linear and RBF kernels, where
ASD is the ratio of well classified autistic individuals, among the total number of
people within the correspondent class, and TD is the equivalent for the Typically
Developing individuals class.

Setup
SVM
Kernel

Evaluation Metrics

ASD TD TPR FPR Accuracy Error Rate Precision

Oculus
Linear 0.487 0.583 0.583 0.513 0.515 0.484 0.500

RBF 0.460 0.540 0.540 0.540 0.373 0.627 0.193

RED
Linear 0.556 0.473 0.473 0.444 0.511 0.489 0.517

RBF 0.440 0.560 0.560 0.560 0.369 0.631 0.209

4.1.2 2nd step

After this first step, we wanted to understand which were the features with more

relevant information for the decision making of the classification algorithm. Our first

thought was to train the SVM with the most correlated features with the classes in

the data. For this, we used Spearman’s correlation test. With it, we analyse the

relationship between each feature and the classes of the data, choosing the ones that

had a p-value below 0.05, meaning they were more correlated with those classes.

Separating both apparatus, in RED setup, from the 212 features, only 14 features

were selected. The chosen features can be seen in table 4.2.

Table 4.2: Features that passed Spearman’s correlation test, for RED setup.

RED

Features

n sac kiosk
avg sac time kiosk
avg reaction time anim kiosk
dens look kiosk
n sac classroom
num 1500 fix classroom
num 1500 roi fix classroom
dist anim classroom
fv gen n roi cafe
fv gen avg time roi cafe
fv gen gen n fixations zebra
fv gen n roi zebra
fv n sac zebra
fv avg sac size zebra
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On the other hand, with the values for the Oculus Rift features, we obtained different

results. From the same 212 features, 16 were selected as the most correlated with

the output. Table 4.3 shows this set of features.

Table 4.3: Features with significant correlation with the classes’ values, for the
Oculus Rift setup.

Oculus Rift

Features

total sac time kiosk
sac velocity kiosk
sac density kiosk
dist sac max kiosk
avg 1500 roi fix time kiosk
num 1500 face fix kiosk
dens look kiosk
avg sac size classroom
match roi fix classroom
match mean time roi fix classroom
match react time roi classroom
spatial density classroom
sac density zebra
avg sac size zebra
num 1500 roi fix zebra
num 1500 out fix zebra

After obtaining this set of features for both apparatus, we trained our SVM models,

following the same principles as the 1st step, for data division. We obtained higher

values of classification for both classes, than in the 1st step. These results can be

found in table 4.4.

Table 4.4: Results after Spearman’s correlation test, for both linear and RBF
kernels, where ASD is the ratio of well classified autistic individuals, among the
total number of people within the correspondent class, and TD is the equivalent for
the Typically Developing individuals class.

Setup
SVM
Kernel

Evaluation Metrics

ASD TD TPR FPR Accuracy Error Rate Precision

Oculus
Linear 0.709 0.743 0.743 0.291 0.702 0.298 0.736

RBF 0.520 0.480 0.480 0.480 0.389 0.611 0.175

RED
Linear 0.716 0.707 0.707 0.284 0.698 0.302 0.727

RBF 0.568 0.850 0.850 0.432 0.673 0.327 0.631

With a careful analysis, we notice that the results were significantly better with

54



4. Results

the linear kernel, despite the apparatus. Also, the results for classifying correctly

individuals with ASD, were very similar among both apparatus (0.709% with Ocu-

lus and 71.6% with RED), whereas for classifying TD individuals, the percentage

was slightly higher with the Oculus setup (74.3%) than with RED setup (70.7%).

Nevertheless, both accuracy and precision of the model were higher with Oculus.

In figures 4.1 and 4.2 we can have some visual information about the distribution

of the features in table 4.2, and give some meaning to the results obtained with the

SVM.

The former shows the boxplots of those features. Analysing this figure, we notice

slight differences in the distribution of the features and highlight num 1500 fix classroom

and fv gen n roi zebra, which are the number of fixations, regardless of position in

the classroom scenario, and the number of fixations in ROIs during the free viewing

part, in the zebra crossing scenario, respectively.

These differences between distributions in both classes might have contributed to

the improvement of the results in this step.

Figure 4.1: Boxplots of the features that passed Spearman’s correlation test, with
RED setup.
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Figure 4.2: Violin plots with swarm plot values distribution, of the features that
passed Spearman’s correlation test, with RED setup

Similarly to RED setup, with the features obtained with the data from the Oculus

Rift acquisition (figure 4.3) we can conclude that these features, from the data

obtained with this setup, also show differences in the distribution, that might also

be related with the better results in this step, for this setup. Here we highlight the

differences in distribution of sac density kiosk, which represents the average number

of coordinates variation during saccadic movement in the kiosk scenario.
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Figure 4.3: Boxplots of the features that passed Spearman’s correlation test, with
Oculus setup

If we compare both resulting sets of features, we notice that only dens look kiosk,

was correlated with the classes in both systems. Which means that, the average

number of coordinates’ variation during the saccadic movement within the reaction

time, after a social animation, have a high correlation with the classes of the data

in both setups.
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Figure 4.4: Violin plots with swarm plot values distribution, of the features that
passed Spearman’s correlation test, with Oculus setup

4.1.3 3rd step

The third phase of evaluation is composed by the implementation of different feature

selection algorithms, mentioned in chapter 3. Those were linear regression, ridge

regression, RFE, lasso, random forest and linear correlation, which we fed with the

datasets with the features obtained after Spearman’s correlation test.

After trying to combine different numbers of relevant features, we ended up choosing

the 3 most relevant features for each method. Their combination resulted in the set

of features mentioned in table 4.5 for RED setup, and in table 4.6 for Oculus setup.

In the data from RED setup we see a reduction from 14 to 9, and from 16 to 10 in

the data from Oculus setup. We can see that the common feature, dens look kiosk

is also present in both setups.
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Table 4.5: Final set of features, after feature selection, for RED setup.

RED

Features

avg reaction time anim kiosk
dens look kiosk
n sac classroom
num 1500 fix classroom
dist anim classroom
fv gen n roi cafe
fv gen avg time roi cafe
fv gen gen n fixations zebra
fv gen n roi zebra
fv n sac zebra

Table 4.6: Final set of features, after feature selection, for Oculus Rift setup.

Oculus Rift

Features

sac velocity kiosk
sac density kiosk
avg 1500 roi fix time kiosk
dens look kiosk
avg sac size classroom
match roi fix classroom
match mean time roi fix classroom
spatial density classroom
sac density zebra
num 1500 out fix zebra

Besides this, the features that we considered having more differences between classes,

in the previous step, num 1500 fix classroom and fv gen n roi zebra for RED setup,

and sac density kiosk for Oculus setup, also were also selected with these methods,

composing, among others, the features we see in tables 4.5 and 4.6.

We also tested the classes classification with the SVM algorithm with both kernels.

The results for this, can be seen in table 4.7.

The percentages for the evaluation metrics in this table (table 4.7) show once more

that the classification is generally more accurate with a linear kernel. Nevertheless,

here we see that the classification of the data acquired with oculus rift, with a

RBF kernel, also show slightly higher evaluation percentages, higher than the values

obtained with a linear kernel for the same setup, despite not being significant in

terms of value (only 0.7%).
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Table 4.7: Results after the remaining feature selection methods, for both linear
and RBF kernels, where ASD is the ratio of well classified autistic individuals, among
the total number of people within the correspondent class, and TD is the equivalent
for the Typically Developing individuals class.

Setup
SVM
Kernel

Evaluation Metrics

ASD TD TPR FPR Accuracy Error Rate Precision

Oculus
Linear 0.731 0.821 0.821 0.269 0.771 0.229 0.773

RBF 0.580 0.436 0.436 0.420 0.395 0.604 0.247

RED
Linear 0.741 0.759 0.759 0.259 0.744 0.255 0.739

RBF 0.671 0.895 0.895 0.329 0.751 0.249 0.701

Then again, the classification results are similar with both setups (77.1% of accuracy

for RED and 74.4% of accuracy for Oculus). However, Oculus setup can give a better

classification for TD individuals than the RED apparatus. And regardless of the

setup, the models classify more correctly TD individuals than ASD individuals.

4.1.4 4th step

In this step we introduced PCA to the datasets, taking advantage from the vari-

ance between the classes. It works by creating new features that encapsulates high

variance, from the given set of features.

In this step we used PCA in two different ways.

First, we obtained the number of features that combined, allowed us to have a

variance of 95% between them. For both cases, the first component is always the

one with higher variance, the second component has the second highest variance,

and so on.

Figures 4.5 and 4.6 show the percentage of each original feature, in the making of

the new components.

The former corresponds to the data from RED setup, where the given features

are the ones in table 4.5. In this case the final number of ideal components is

5, and if we look at the first component, the one with higher variance, we see

that dist anim classroom, avg reaction time anim look and dens look kiosk are the

features with higher percentage in this new component.
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Figure 4.5: Ideal number of PCA components and their feature percentage, for
RED setup.

Figure 4.6: Ideal number of PCA components and their feature percentage, for
Oculus setup.

In the latter figure (figure 4.6), which corresponds to the data obtained with oculus

rift, we have 7 new components, recreated from the features in table 4.6. Here, the

features that have higher percentage in the 1st component are spatial density classroom,

match roi fix classroom and match mean time roi fix classroom.

With these new features, we trained once more our SVMs, obtaining the results
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shown in table 4.8.

Table 4.8: Results after PCA, for both linear and rbf kernels, where ASD is the
ratio of well classified autistic individuals, among the total number of people within
the correspondent class, and TD is the equivalent for the Typically Developing
individuals class.

Setup
SVM
Kernel

Evaluation Metrics

ASD TD TPR FPR Accuracy Error Rate Precision

Oculus
Linear 1.00 0.667 0.667 0 0.800 0.200 1.00

RBF 1.00 0 0 0 0.400 0.600 0

RED
Linear 0.500 0.667 0.667 0.500 0.600 0.400 0.667

RBF 1.0 0 0 0 0.400 0.600 0

Comparing the results for both setups with linear kernel, we see better results with

the data acquired with Oculus rift. Here we obtained 100% in ASD classification

and 66.7% in TD classification, which makes a model with 80% of accuracy.

Secondly, to see what was happening behind the PCA, we reduced the dimensions

to two, obtaining plots with both classes, according to the transformed new compo-

nents.

Figure 4.7 shows the plot of the two classes with the dataset obtained with RED

setup, whilst figure 4.8 shows the same approach but with the dataset obtained from

data acquired with Oculus rift.

Despite none of the plots showing a complete separability of the classes, we can see

that figure 4.8, obtained from the data acquired with Oculus rift, shows a higher

separability between TD and ASD individuals, with less cases with common infor-

mation. This results are in agreement with what was obtained after training the

SVM with PCA’s new components. The components retrieved from the data ob-

tained with Oculus rift show better results with the SVM and seem to be more easily

separable in the plot with two components, than the data from RED setup.
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Figure 4.7: 2D PCA for RED setup.

Figure 4.8: 2D PCA for Oculus setup.
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Discussion

In this project we tried to answer different questions targetting final classification

of ASD, which led us to our final approach. The answers to those questions started

with the extraction of features from the data obtained with the two setups, RED

and Oculus rift.

This extraction was followed by an analysis of the obtained dataset, divided in 4

steps:

• 1st step: classification of the raw data from both setups, which was trained

and tested with a SVM with linear kernel and a SVM with RBF kernel.

• 2nd step: implementation of Spearman’s correlation test in the data from the

previous step. This culminated in new datasets with fewer and more relevant

features, which were trained and tested with the SVMs with linear and RBF

kernels.

• 3rd step: implementation of different feature selection methods, in the final

datasets obtained in the 2nd step. Once again, these new dataset were trained

and tested with both SVMs.

• 4th step: a PCA was used in the dataset from the previous step, this was

followed by training and testing with SVM.

From the results obtained in each step, in chapter 4, we see that the SVM with

the linear kernel is better suited to distinguish the classes, when compared with the

SVM with the RBF kernel.

The summary of the best results for each step can be found in table 5.1.

Nevertheless, the first step and results do not give a viable mean of classification,

due to the low percentages for the evaluation metrics.

We see a clear improvement of classification in each phase of the data acquired with
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Table 5.1: Compilation of the best results for each step, where ASD is the percent-
age of well classified autistic individuals, among the total number of people within
the correspondent class, and TD is the equivalent for the Typically Developing in-
dividuals class. 1st step - before any feature selection; 2nd step - after Spearman’s
correlation test; 3rd step - after implementing the remaining feature selection meth-
ods; 4th step - after PCA implementation.

Setup Step Kernel
Evaluation Metrics

ASD TD TPR FPR Accuracy Error Rate Precision

Oculus

1st Linear 0.487 0.583 0.583 0.513 0.515 0.484 0.500
2nd Linear 0.709 0.743 0.743 0.291 0.702 0.298 0.736
3rd Linear 0.731 0.821 0.821 0.269 0.771 0.229 0.773
4th Linear 1.00 0.667 0.667 0 0.800 0.200 1.00

RED

1st Linear 0.556 0.473 0.473 0.444 0.511 0.489 0.517
2nd Linear 0.716 0.707 0.707 0.284 0.698 0.302 0.727
3rd Linear 0.741 0.759 0.759 0.259 0.744 0.255 0.739
4th Linear 0.500 0.667 0.667 0.500 0.600 0.400 0.667

a 360o immersivity. This evolution reveals the importance of feature selection done

in each step of our approach. Interestingly, the results in the 4th and last step, show

a full ability to classify autistic individuals, and a final model accuracy of 80%.

On the other hand, with RED setup, the results are slightly inferior. Curiously, the

results from the 4th step are lower than the ones obtaining in the 2nd step. This

suggests that PCA created a loss of information, which is coherent with the idea

that the data retrieved from RED setup has less discriminative variance between

the classes. This is corroborated by the worst performance of the classifier with the

data from RED. We suggest that less immersivity in this setup might be influencing

the individual’s behaviour, creating less room to translate its true differences in the

data.

Taking a closer look to the features and to the scenario they belong to, we notice that

there is no coherence among the selected features in each step and in each scenario.

The implemented feature selection techniques gave importance to different metrics,

and this rejects, once more, the hypothesis of the existence of a single feature, despite

the social context, that works better as a biomarker. All together, it seams that

the social context influences not only the behaviour of each person, and thus the

features with more relevance in that specific context.

Analysing the selected features from both setups (in tables 4.5 and 4.6) we see

metrics related to both fixations and saccades, but only with RED setup we have

selected features from the free viewing part of the acquisition. We suppose that a

higher immersivity, only possible with Oculus rift, is related with higher dispersion

of the eye gaze and that the differences in the data from RED are harder to explain
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from the cognitive neuroscience point of view, due to the reduced immersivity.

According to figures 4.1 and 4.3, of the selected features from the RED and Oculus

setups, we see that ASD individuals have a tendency to show more saccades, but

with lower velocity and duration, which is according to what was reported [37][38].

They also show a higher reaction time, since the animation occur until they look

at the correspondent ROI, nevertheless, they do this lesser than TD individuals,

meaning that the JA phenomena occurs less times in these individuals.

Regarding the features related with the fixations within the ASD class, we see a

tendency for less fixations in the avatar’s face, and a higher number of fixations in

the region outside the scenario. Besides this, the tendency is also for longer fixations,

when they happen. All of these results were accordingly to what was expected and

found in previous studies [28][29][30][31].

Separating both setups, we notice that the selected features from the RED setup

come closer to the literature review, and that there was surprisingly not much co-

herence among those features and the ones resultant from the data acquired with

Oculus rift. Since the majority of the studies with eyetracking and ASD have been

done with screen-based eye tracking, like RED setup, and the model with the data

from Oculus rift performed better.
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Conclusions

Autism Spectrum Disorder, like previously described, is a neurodevelopmental disor-

der, characterized by deficits in social behaviour, which include difficulties in making

eye contact and an impairment in understanding and using body language and ges-

tures [2].

By making use of virtual reality experiments, that can mimic real life situations,

we can put to test the behaviour of ASD individuals, and record and analyse their

eye tracking data or, in other words, their behaviour during situations with social

context.

The aim of this project was to analyse these eye tracking data, obtained during

virtual reality experiments with people with and without ASD, which was acquired

during the work of Carlos Amaral et. al [64].

This project followed three main questions:

1. Which features can we obtain from data containing eye positions and their

respective time stamps?

2. Is any of those features “good” enough to define a potential biomarker for

ASD?

3. Can we predict or confirm the disorder, by analysing eyetracking data with a

machine learning approach?

The answer to the first question, might have been the most challenging part of this

project. Understand what could be meaningful in this data, and how we could

retrieve it from the existent files, made up a big and important part of our simple,

yet interesting, analysis.

We were able to retrieve a total of 53 features from the data, considering their

relevance in previous eye tracking studies and in ASD. They were divided in features

acquired during the free viewing part of the experiment, and in features acquired
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after the first avatar’s animation, which represented the starting of the part with

a social context. The major difference imposed in these two parts were the time it

took to consider a fixation, due to the different complexity of each part.

The retrieved features were then related with fixations and saccades, the two most

considered and relevant movements in eye gaze and in its study. The obtained and

selected features after all the steps includes the average number of saccades and

their variation in space and time, the total number of fixations, the average reaction

time it took for the individual to look at the ROI after the avatar’s animation, and

the total distance traveled during saccadic movement, among others. We analysed

each feature individually, without considering the relation that might exist between

them. For example, reaction time might not be relevant when considered alone, but

it might be related with the animation that preceded it and with the fixation and

its time that might succeed it. This increase in complexity in feature extraction can

give ground to future work, and approach the complexity of how we behave in social

contexts.

From all those features, we were not able to select one that could work as a biomarker

for ASD. Despite showing differences between both groups, with none of the features

we were able to clearly state that it could separate those groups. Retrospectivly,

one might argue that considering individually each feature one will not explain the

complexity of ASD, which is proved by our results.

The results showed that, after feature selection and the implementation of PCA, a

SVM with a linear kernel and with the data acquired from the Oculus rift setup,

could give a reasonable classification of ASD individuals. Despite the inspiring

results, this is far from replacing the current diagnostic tools and tests, neither the

important role of the trained clinician in all the process.

There were some limitations to our work. This approach does not allow to assess the

effects of IQ or severity levels within ASD. Since orienting to social cues and all its

underlying neurological processes are considered extremely complex, this approach

could suit as a simple starting point to improve the way we analyse and interpret

eye tracking data.

Since the data were acquired with two different setups, we notice that the results

obtained with a 360o immersity, which give more viewing freedom to the individual,

are the best results. These results, and their differences from the obtained with

RED, suggest that more studies have to be done with higher immersivity, since they

can give us more and different information that screen-based eye tracking could not.
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These encouraging results lead us to the future work that can be done in this field.

6.1 Future work

We can divide future work in different parts.

Let us start with the already mentioned limitations. Since our approach was pro-

posed after the data acquisition, we had no control in the way and how the data

were obtained. So, the first step in future work might be designing an experiment,

and acquiring data that fits better our needs. For example, some findings show that

individuals with ASD might exhibit a higher level of impairment in the perception

of auditory information, rather than in the perception of non-speech stimuli [68][69].

Since this was a simple approach, other thing we can do is increase the complexity

of the features we retrieve from the data. We already noticed differences when

considering each parameter as a feature alone, nevertheless, they do not happen

isolated from the remaining. So, the relationship between the different metrics

might approach what really happens behind our eyes, and might help us understand

better human behaviour. Besides this, it might be interesting to complement eye

tracking data with other types of data, like EEG signals.

During this project, we tried a more linearly approach, leaving room to the imple-

mentation and testing of non-linear methods, which might fit better the data. Since

there is no standardized way to analyse data, we are left with several approaches

that might be worth trying.
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